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Abstract

In this study, we tested the hypothesis that milk oligosaccharides may contribute not only to selective growth of
bifidobacteria, but also to their specific adhesive ability. Human milk oligosaccharides (39sialyllactose and 69sialyllactose)
and a commercial prebiotic (Beneo Orafti P95; oligofructose) were assayed for their ability to promote adhesion of
Bifidobacterium longum subsp. infantis ATCC 15697 to HT-29 and Caco-2 human intestinal cells. Treatment with the
commercial prebiotic or 39sialyllactose did not enhance adhesion. However, treatment with 69sialyllactose resulted in
increased adhesion (4.7 fold), while treatment with a mixture of 39- and 69-sialyllactose substantially increased adhesion (9.8
fold) to HT-29 intestinal cells. Microarray analyses were subsequently employed to investigate the transcriptional response
of B. longum subsp. infantis to the different oligosaccharide treatments. This data correlated strongly with the observed
changes in adhesion to HT-29 cells. The combination of 39- and 69-sialyllactose resulted in the greatest response at the
genetic level (both in diversity and magnitude) followed by 69sialyllactose, and 39sialyllactose alone. The microarray data
was further validated by means of real-time PCR. The current findings suggest that the increased adherence phenotype of
Bifidobacterium longum subsp. infantis resulting from exposure to milk oligosaccharides is multi-faceted, involving
transcription factors, chaperone proteins, adhesion-related proteins, and a glycoside hydrolase. This study gives additional
insight into the role of milk oligosaccharides within the human intestine and the molecular mechanisms underpinning host-
microbe interactions.
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Introduction

The microflora of the human gastrointestinal (GI) tract

outnumber the cells of the human host by a factor of 10, with

the bacterial population composed of up to 400 different species

from 40–50 genera [1,2]. Intestinal colonisation by commensal

bacteria is associated with several beneficial outcomes to the host,

including resistance to colonisation by pathogens, the provision of

nutrients through degradation of non-digestible food components,

the production of metabolites and short-chain fatty acids, and

modulation of mucosal immunity, among others [2]. Many

benefits to the host are associated with colonisation by bifido-

bacteria in particular [3] and therefore methods to increase the

numbers of intestinal bifidobacteria have been actively pursued

[3]. The two approaches most frequently employed are the

delivery of live bacteria (probiotics) within a food source, or the use

of specific carbohydrates or prebiotics (inulin, fructo- and galacto-

oligosaccharides) which are known to survive gastric transit and

are fermented in the colon by beneficial bacteria, thus promoting

their growth [4].

Following birth, the neonatal intestinal tract is colonised

predominantly by Staphyloccocus, Streptococcus, and Enterobacteriaceae,

rapidly followed by a transition to obligate anaerobes, including

Bacteroides, Clostridium, and Bifidobacterium [5]. The transition of the

intestinal microflora during early life can be influenced by the

source of nutrition. Human milk has evolved to become the

optimal source of infant nutrition, containing various components

that benefit the neonate including oligosaccharides, protein, and

immune factors [6]. Breastfeeding is associated with higher counts

of bifidobacteria in neonatal feces at one week of age, as well as

typically lower counts of bacteroides, eubacteria, peptococci,

veillonella, clostridia, and enterobacteria than formula-fed neo-

nates [7,8]. Human milk oligosaccharides (HMO) are believed to

serve as a natural source of prebiotics for infants which stimulate

the growth of bifidobacteria [9,10]. Moreover, HMOs have also

been shown to possess anti-adhesive effects that reduce the binding

of pathogenic bacteria to the host cells [11]. Interestingly, human

milk contains between 5 and 23 g/L of these oligosaccharides,

with over 200 different HMO structures, which differ in their size,
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charge, and sequence [12]. The genome of Bifidobacterium longum

subsp. infantis ATCC 15697 has been fully sequenced, allowing

investigations into the genetic basis and molecular mechanisms

underlying the adaptation of this strain to the intestine, including

metabolism of HMOs. Many of its genes encode enzymes that are

active on HMOs and in particular, a novel 43-kbp region

dedicated to oligosaccharide utilization is present in the genome

[13]. Research to date suggests that one of the primary roles of

milk oligosaccharides is to act as a source of prebiotics, however,

the first step in establishment of bacterial populations in the

intestine is the adherence of the organisms in the gut environment.

Previously, Gonzalez et al., (2008), have demonstrated that

growth of Bifidobacterium longum in de-fatted human milk leads to

the genetic up-regulation of putative type II glycoprotein binding

fimbriae, which are implicated in attachment and colonisation

[14]. Recently, Chichlowski et al. (2012), demonstrated that

growth of Bifidobacterium longum subsp. infantis ATCC 15697 to

mid-exponential phase on human milk oligosaccharides as the sole

carbon source increased adherence to the HT-29 cell line [15]. As

the majority of oligosaccharides in breast milk are able to traverse

the GI tract and reach the colon undigested [16,17], perhaps

HMOs may contribute not only to selective growth of commensal

bacteria, but also to their specific adhesive ability. The aim of the

current study is to investigate the adhesion- and metabolic-related

transcriptomic changes of B. longum subsp. infantis following

transient exposure to milk oligosaccharides and to correlate the

observed phenotypic changes with transcriptional changes as

determined by microarray analysis.

Materials and Methods

Bacterial Strains and Culture Conditions
Bifidobacterium longum subsp. infantis ATCC 15697 was purchased

from DSMZ (Germany), Bifidobacterium longum subsp. infantis

ATCC 15702 was obtained from ATCC (Middlesex, UK),

Bifidobacterium longum NCIMB 8809 and Bifidobacterium angulatum

NCIMB 2236 from NCIMB (Aberdeen, Scotland), and Lactoba-

cillus reuteri DPC 6100 from the Teagasc Food Research Centre

culture collection, (Fermoy, Ireland). Strains were stored in deMan

Rogosa Sharpe (MRS) [Difco, Sparks, MD, USA] broth

containing 50% glycerol at 280uC and propagated twice in

MRS media supplemented with L-cysteine (0.05% w/v) [Sigma,

Steinheim, Germany] prior to use. Bacteria were routinely grown

overnight at 37̊C under anaerobic conditions generated using the

Anaerocult A system (Merck, Dannstadt, Germany). All cultures

were grown to an optical density (OD600 nm) of 0.4–0.5 to ensure

entry into mid-logarithmic growth prior to use. Following the

initial carbohydrate screening and lactose inhibition assays using

Bifidobacterium longum subsp. infantis ATCC 15697, subsequent

adhesion studies were done using mid-exponential phase cultures.

To prepare mid-exponential phase cells, bacterial growth time was

measured to determine the time of entry into the mid-exponential

growth phase at which time the optical density was adjusted to 0.3,

and the cultures were allowed to grow for a further 2 hours and

used at an optical density (OD600 nm) ,0.45–0.5 (corresponding to

,56107 CFU/mL, ascertained by plate counts). The procedure

was identical for the other bacterial strains tested.

Bacterial Oligosaccharide Exposure Conditions
The time taken for B. longum subsp. infantis ATCC 15697 to

enter the mid-exponential growth phase was determined by

constructing growth curves by measuring the optical density at

600 nm (OD600) at intervals during growth. Bacteria were

harvested in mid-exponential growth phase (18 hours) and the

optical density was adjusted to an OD600 of 0.3, incubated for a

further 2 hours and used at an optical density (OD600 nm) ,0.45–

0.5 (corresponding to approximately 56107 CFU/mL, ascer-

tained by plate counts on MRS agar). The B. longum subsp. infantis

cells were washed twice by centrifugation and resuspension in

PBS, before final resuspension in McCoy’s 5A tissue culture media

supplemented with 2% Fetal Bovine Serum (FBS). 1 mg/mL of

either 69sialyllactose, 39sialyllactose, or a combination of the two

(1 mg/ml each) was added and incubated for 3 hours at 37uC
under anaerobic conditions. A control sample using tissue culture

medium without oligosaccharide supplementation was also pre-

pared. Bacteria were harvested by centrifugation (10,0006g, 8

minutes), the supernatants removed and pellets resuspended in

RNAprotect (Qiagen, Hilden, Germany) for 10 minutes at room

temperature followed by storage at 280uC prior to RNA

extraction. As a control, non-supplemented tissue culture media

was used. Additionally, exposures were replicated in the presence

of 1 mg/ml lactose.

Epithelial Cell Line Conditions
The HT-29 (human colonic adenocarcinoma) and Caco-2 cell

lines were used as a model of the human intestinal epithelial layer.

HT-29 and Caco-2 cells were routinely cultured in McCoy’s 5A

media (10% FBS; 1% penicillin/streptomycin) and DMEM (10%

FBS; 1% penicillin/streptomycin; 1% non-essential amino acids)

(Sigma, Steinheim, Germany), respectively, in 75 cm2 tissue

culture flasks at 37uC in a humidified 5% CO2 atmosphere. The

cultures were passaged by detaching with trypsin when the cell

growth had reached approximately 80% confluency. Cultures

between passage numbers 15 and 18 (HT-29) and 20 to 24 (Caco-

2) were used for adhesion studies. For adhesion assays, cells were

seeded at a density of 26105 cells/mL into 12-well plates

(Cellbind; Corning, New York, USA) and grown to late post-

confluence as described by Coconnier et al. [18]. HT-29 and

Caco-2 cells were used 21 days and 14 days post-confluence,

respectively. Twenty-four hours prior to assay, media was

substituted for McCoy’s 5A or DMEM (2% FBS, no antibiotics)

for the appropriate cell line. Both flask and plate cultures were fed

by replacing the culture medium with fresh medium every other

day.

Adhesion Assays
Bacterial strains were grown overnight and harvested at an

optical density (OD600) between 0.4–0.5 (corresponding to

,56107 CFU/mL, determined by plate counts) by centrifugation

(4500 g, 8 min), washed twice in phosphate buffered saline (PBS;

Sigma, Steinheim, Germany) and resuspended in McCoy’s 5A or

DMEM tissue culture media (2% FBS; further referred to as non-

supplemented media) supplemented with 39sialyllactose, 69sialyl-

lactose (Carbosynth, Berkshire, UK), or Beneo Orafti P95

(oligofructose) (Beneo Orafti, Dublin, Ireland) at the concentra-

tions indicated in the results section. Non-supplemented media

was used as a control. The bacteria were exposed to the

oligosaccharides at 37uC for the times indicated in the results

section, washed once in PBS to remove the supplemented

oligosaccharides, and resuspended in non-supplemented McCoy’s

5A/DMEM media prior to use in the assays.

Eukaryotic cells were washed twice with PBS, and 500 ml of the

bacteria:media suspensions were added to the appropriate wells,

corresponding to approximately 10–20 bacterial cells per cell. The

number of viable cells per well was determined by detaching the

cells with trypsin and counting in a Neubauer hemocytometer, and

was about 36106 cells per well. Bacterial exposure to eukaryotic

cells was for 2 hours at 37uC under anaerobic conditions. The

Effect of Milk Sugars on Bacterial Adhesion
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exposure conditions were optimized to ensure maximal viability of

bacterial and mammalian cells, with the viability of the eukaryotic

cells remaining at 96–98% throughout the assays. After two hours,

the wells were washed three times with PBS to remove any non-

adherent bacteria and lysed with 500 ml of PBS containing 0.1%

Triton X100; (Sigma, Steinheim, Germany) for 30 min at 37uC on

a shaking platform at 110 agitations per minute to ensure maximal

recovery of viable bacterial cells. The lysates were serially diluted

and enumerated by spread-plating on MRS plates. Aliquots of the

experimental inocula were retained, diluted and plated to

determine original CFU/mL. The results were expressed as

adherent bacteria as a percentage of the original inoculum,

thereby accounting for variations in the original inocula between

groups. Percentage adherent = [CFU/mL of recovered adherent

bacteria 4 CFU/mL of inoculum]6100. Each adhesion assay was

conducted independently in triplicate over 3 successive passages of

intestinal cells.

During carbohydrate exposure, bacteria were harvested and

plated for CFU/mL on MRS agar at the following timepoints: 0,

1.5, and 3 hrs exposure in order to determine if bacterial numbers

increased over the duration of the assay. In addition, the effect of

longer incubation times was examined by harvesting an overnight

culture and adjusting the cell density to an OD600 = 1.0

(,26108 CFU/mL). The cells were then washed in PBS and

resuspended in McCoy’s 5A tissue culture media supplemented

with 2% FBS. One millilitre of the bacterial suspension was added

to 3 mL of either non-supplemented tissue culture media or media

supplemented with 69sialyllactose (final concentration of 1 mg/

mL). Aliquots were removed at 3, 6, 9, and 24 hours to determine

CFU/mL by decimal dilutions and plating on MRS agar.

To determine if the oligosaccharide concentration had de-

creased during exposure to the bacteria, aliquots of the original

and spent media following exposure were analysed by High pH

Anion Exchange Chromatography with Pulsed Amperometric

Detection (HPAEC-PAD) using a Dionex ICS-3000 system

equipped with an ED40 electrochemical detector with a gold cell

and LC30 chromatography oven. A CarboPac PA100

(25064 mm) column protected with a CarboPac PA100

(5064 mm) guard column was used. The mobile phase was

100 mM NaOH, 25 mM NaAc (0–40 min), 100 mM NaOH,

250 mM NaAc (40–40.01 min), and 100 mM NaOH, 25 mM

NaAc (40.01–50 min). The limit of detection was 10 parts per

million for this assay.

RNA Isolation and Microarray Hybridisation
Bacterial RNA was isolated using the RNA isolate mini kit

(Bioline, London, UK) with modifications. Bacterial aliquots were

thawed on ice and pelleted at 5,0006g for 10 minutes. The

supernatant (RNAprotect) was removed and the bacterial pellets

resuspended in 100 mL TE buffer (50 mg/mL lysozyme, 1000

units/mL mutanolysin; Sigma, Poole, Dorset, UK) at 37uC for 30

minutes. Bacteria were then added to 2 mL screw-cap vials

containing glass beads (Sigma) (filled to 0.25 mL mark) and

800 mL lysis buffer (Bioline kit). The cells were disrupted by bead-

beating (Mini-Beadbeater-16; BioSpec Products Ltd, Bartlesville,

USA) for 3 intervals of 20 seconds and placed on ice between each

interval to cool the samples. The tubes were centrifuged at

10,0006g for 10 minutes at 4uC to collect glass beads and cell

debris. Supernatants were removed and processed according to

the manufacturer’s instructions commencing at the post-lysis step.

RNA quantity and quality was assessed on a NanoDrop 1000

(Wilmington, DE, USA). Only samples with 260/280 nm readings

.1.9, and 230/260 nm readings $1.00 were used. Sample quality

was further assessed by agarose gel electrophoresis (NorthernMax

buffer, Bioline, London, UK). RNA samples were subsequently

shipped to IMGM laboratories (Martinsried, Germany) for

labelling and DNA microarray analysis. Prior to their use in the

microarray experiments the quality of the RNA was assessed using

an Agilent Bioanalyser (RNA600 Chip) to ensure that degradation

of the samples had not occurred during transit. All samples used

for microarray analysis had an RNA integrity number (RIN) of 10,

indicating that the RNA was of excellent quality.

Microarray Analysis
The RNA was labelled for analysis using an RT-IVT protocol.

Prior to labelling, the RNA was spiked with synthetic polyadenyl-

ated transcripts (Agilent spike-in controls). For each RT-IVT

reaction, 500 ng of RNA was used and labelled as follows. The

spiked total RNA was reverse transcribed into cDNA using

random priming (Full SpectrumTM MultiStart Primers for T7

IVT, System Biosciences (SBI)) and then converted into labelled

cRNA by in-vitro transcription (Quick-Amp Labelling Kit One-

Color, Agilent Technologies) incorporating Cyanine-3-CTP. The

manufacturers protocols were followed for both the reverse

transcription and labelling steps.

The efficiency of labelling was determined both by using a

NanoDrop analyser and by analysis on an Agilent 2100

Bioanalyser with a 6000 Nano LabChip Kit (Agilent Technolo-

gies, Co. Cork, Ireland). Only samples with cRNA yields .825 ng

and with a specific activity of 9.0 pmol cyanine3 per microgram of

cRNA were used for array analysis.

Following cRNA clean-up and quantification (NanoDrop),

600 ng of each Cyanine-3-labeled cRNA sample was fragmented

and prepared for One-Color based hybridization (Gene Expres-

sion Hybridization Kit, Agilent Technologies, Co. Cork, Ireland).

cRNA samples were hybridized at 65uC for 17 hrs on separate

custom Bifidobacterium GE Microarrays (8615K format).

Afterwards, microarrays were washed with increasing stringency

using Gene Expression Wash Buffers (Agilent Technologies)

followed by drying with acetonitrile. Fluorescent signal intensities

were detected with Scan Control A.8.4.1 Software (Agilent

Technologies) on the Agilent DNA Microarray Scanner and

extracted from the images using Feature Extraction 10.7.3.1

Software (Agilent Technologies) and the design file

033172_D_F_20110831.xml.

Analysis of Microarray Data
The raw microarray results were analysed using the Limma

package of the R statistics suite. Background correction was

performed by the normexp method with offset = 12. The inter-

array normalisation method chosen was the Cyclic Loess

normalisation algorithm. The array data were clustered using

the heatmap2 package in R to identify any experimental samples

deemed to be outliers. The fold-changes in gene expression were

calculated as actual fold-change relative to the control samples.

The cut-off for identifying genes of interest was a fold change of

.2 and an uncorrected p-value of ,0.05. As the majority of the

differentially expressed genes identified from the microarray data

were confirmed by real-time quantitative RT-PCR, adjusted P-

values to correct for multiple sample errors were not taken into

consideration as false detections would be identified by qPCR.

qPCR Analysis
Complementary DNA (cDNA) was synthesized from 1 mg of

RNA incubated with 3.2 mg of random hexamers, 0.5 ml of

Transcript Reverse Transcriptase (Roche), 0.5 ml of Protector

RNAse inhibitor, 1 mM dNTPs mix and 4 ml of Transcriptor RT

Reaction Buffer (Roche), in a final volume of 20 ml. Template and

Effect of Milk Sugars on Bacterial Adhesion
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random primers were incubated at 65uC for 10 min, followed by

addition of the remaining components. The mix was incubated at

55uC for 30 min. Finally, Transcript Reverse Transcriptase was

inactivated by heating to 85uC for 5 min.

PCR primers and probes were designed using the Universal

Probe Library Assay Design Centre (Roche, West Sussex, UK).

Primer sequences and probe combinations are listed in Supple-

mentary Table S1.

16S rRNA and cysteinyl-tRNA synthetase were used as

endogenous controls to correct for variability in the starting total

RNA and provide a stable expression marker, against which

relative levels of expression could be determined. Amplification

reactions contained 2.5 ml of cDNA, 5 ml of 2X SensiMix II Probe

Buffer (Bioline), 5 pmol/ml of each primer and probe mix and

were brought up to a total of 10 ml by the addition of RNase-free

water.

All reactions were performed in duplicate in 384-well plates on

the LightCyclerH480 System (Roche). Positive and negative

controls were included in each run. Thermal cycling conditions

applied were 95uC for 10 mins, [95uC for 10 seconds, 60uC for 45

seconds, and 72uC for 1 second to allow for fluorescence

acquisition] (55 cycles), 40uC for 10 seconds as recommended by

the manufacturer (Roche, West Sussex, UK). The 22DDCt method

[19] was employed to calculate relative changes in gene

expression.

Statistical Analysis
All adhesion studies were carried out on three separate

occasions in triplicate. Results are presented as mean 6 standard

deviation of replicate experiments. Graphs were drawn using

Microsoft Excel and the Student t-test and one-way ANOVA were

used for pairwise or multiple comparisons, respectively, to

determine statistically significant results, where p,0.05 was

considered significant.

Results

Promotion of Bacterial Adhesion by Selected
Carbohydrates
B. longum subsp. infantis ATCC 15697 grown to mid-logarithmic

phase were incubated separately with the two predominant milk

oligosaccharides found in human and bovine milk (39- and 69-

sialyllactose) or a commercial prebiotic (Beneo Orafti P95) for

three hours at a concentration of 1 mg/ml, after which

oligosaccharides were removed and their ability to adhere to

HT-29 and Caco-2 cells was determined. Addition of 69sialyllac-

tose to mid-exponential cells resulted in a marked increase in

adhesive ability, as represented by a 4.7-fold increase in adhesion

of B. longum subsp. infantis ATCC 15697 to the HT-29 cells versus

the control (p,0.0001). No change in adhesion of B. longum subsp.

infantis ATCC 15697 to HT-29 cells was observed following

incubation alone with 39sialyllactose, Beneo Orafti P95 (Fig. 1) or

lactose (data not shown).

When combinations of the structurally similar milk sugars were

tested, simultaneous exposure of B. longum subsp. infantis ATCC

15697 to 39sialyllactose and 69sialyllactose (1 mg/mL each)

produced an enhanced effect with an increase in percent adhesion

of 9.8-fold over control (p,0.0001; Fig. 1). In contrast, pairing

lactose with 69sialyllactose completely abolished the ability of

69sialyllactose to enhance bacterial adhesion.

Adhesion of B. longum subsp. infantis ATCC 15697 to Caco-2

cells following pre-treatment with oligosaccharides displayed a

different response than that of the HT-29 cell line. 3-Sialyllactose

pre-treatment resulted in the greatest effect upon bacterial

adhesion (1.85-fold increase), while pre-treatment with 69sialyllac-

tose or the combination of 39- and 69-sialyllactose increased

adhesion by 1.53-fold and 1.58-fold, respectively (p,0.01) (Fig.

S1). Pre-treatment with lactose or oligofructose (P95) did not

significantly affect bacterial adhesion to the Caco-2 cell line.

Effect of 39sialyllactose, 69sialyllactose, Lactose and P95
on the Growth Characteristics of B. longum subsp.
infantis ATCC 15697

Growth studies were carried out to determine if the screened

carbohydrates were capable of promoting the growth of B. longum

subsp. infantis ATCC 15697 under the experimental conditions

used in the adhesion study. Lactose alone promoted the growth of

the bacteria (data not shown) within the three hour incubation

period. No change in growth rate was observed with 39sialyllac-

tose, 69sialyllactose, oligofructose (P95), or the non-supplemented

media. It was further confirmed that 69sialyllactose did not affect

growth of B. longum subsp. infantis following 3, 6, 9, and 24 hours of

incubation in tissue culture media under identical conditions used

in the adhesion assays (data not shown).

The Effect of Bacterial Exposure on Oligosaccharide
Concentrations

To assess whether the increased adhesion was associated with

metabolism of the added oligosaccharides by the bacteria during

the 3-hour exposure period, the oligosaccharide content of media

before and after incubation with bacteria was determined by

HPAEC-PAD (Fig. 2). No significant change was noted in the

concentration of 69sialyllactose following exposure at 1 mg/mL to

the bacteria. The concentration of 69sialyllactose increased by

3.7%, which was non-significant. When lactose and 69sialyllactose

were incubated with bacteria together (1 mg/mL each), a

significant decrease of 29% in lactose concentration was detected

(p = 0.0035), while 69sialyllactose showed an increase of 5.9%

(non-significant). Interestingly, the media transitioned from red to

yellow during the 3-hour bacterial incubation in the presence of

lactose (alone or in combination with 69sialyllactose; data not

shown) indicating acidification. Bacterial exposure to the combi-

nation of 39sialyllactose and 69sialyllactose (1 mg/mL each)

resulted in non-significant increases in both 39sialyllactose (1.9%)

Figure 1. Screening oligosaccharides for their ability to
influence adhesion of B. longum subsp. infantis ATCC 15697 to
HT-29 cells. Abbreviations: P95 - Beneo Orafti P95; 39SL - 39sialyllac-
tose; 69SL –69sialyllactose; Lac - lactose. Non-supplemented tissue
culture media was used as control. Results are expressed as fold-change
relative to control percent adhesion with error bars representing
standard deviation. adenotes significant difference in relation to control;
bdenotes significance in relation to 69SL group; p,0.0001.
doi:10.1371/journal.pone.0067224.g001
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and 69sialyllactose (2.6%). These results confirm that the two

oligosaccharides, 39sialyllactose and 69sialyllactose, were not

significantly catabolised during bacterial exposure, while lactose

was preferentially consumed.

Influence of Oligosaccharide Concentration and
Exposure Time on Bacterial Adhesion to HT-29 cells

To determine if the effect of 69sialyllactose on the adhesion of B.

longum subsp. infantis ATCC 15697 could be enhanced, the effects

of increased exposure duration (1 mg/ml, 6 hours) or exposure

concentration (2 mg/ml, 3 hours) on adhesion of bacterial cells

were examined. Each treatment group resulted in a significant

increase in percent adhesion in relation to the control (4.7-fold,

p,0.0001 [1 mg/ml; 3 hours]; 3.3-fold, p,0.0001 [1 mg/ml; 6

hours]; 5.1-fold, p,0.0001 [2 mg/ml; 3 hours]). Neither increas-

ing the concentration of 69sialyllactose nor the length of exposure

significantly increased adhesion to HT-29 cells in comparison to

the original exposure conditions (1 mg/mL; 3 hour incubation;

Fig. 3A). Given the current findings, an incubation time of 3 hours

appears to produce the maximal increase in adhesion of the

bacteria to the HT-29 cells.

As increasing the concentration of 69sialyllactose did not

significantly increase bacterial adhesion beyond that previously

achieved, lower concentrations were investigated. Subsequent

assays were performed using lower concentrations of 69sialyllactose

(0.25 and 0.50 mg/mL) with an exposure time of 3 hours and

these concentrations did not significantly alter the adhesion of the

bacteria in relation to the control, while exposure to 1 mg/ml

continued to demonstrate a significant increase in adhesion (4.2

fold; p,0.0001) (Fig. 3B). Additionally, no increase in adhesion

was noted after 1-hour exposure of bacteria to 69sialyllactose

(1 mg/mL) (Fig. 3B).

Effect of Trypsin-treatment on Adhesion of B. longum
subsp. infantis ATCC 15697 to HT-29 Cells Following
Oligosaccharide Exposure

To explore whether the increased adhesion of the bacteria to

HT-29 cells was mediated by a surface protein, B. longum subsp.

infantis cells were treated with trypsin in PBS or PBS alone (1 hour)

following 69sialyllactose exposure (1 mg/ml, 3 hours), and used

subsequently in adhesion assays. The results indicate that trypsin-

treatment following 69sialyllactose exposure significantly reduces

the adhesive percentage of the bacteria to HT-29 cells compared

to the control (p,0.05), while 69sialyllactose exposure followed by

incubation in PBS for 1 hour still resulted in increased adhesion

(p,0.05) (Fig. 4). Trypsin treatment was carried out on a control

group following exposure to non-supplemented media for 3 hours,

resulting in a non-significant reduction in the adhesive percentage

versus the untreated control (p = 0.0561). Furthermore, compar-

ison among the 69sialyllactose-treated groups indicates that

enzymatic treatment resulted in a significant reduction in adhesion

to the HT-29 cells (p,0.0001). The results provide support for the

involvement of a surface protein or proteins in the normal

adhesion of B. longum subsp. infantis ATCC 15697 to HT-29 cells

and the increased adhesion following exposure to 69sialyllactose.

Increased Adhesion Response is Unique to B. longum
subsp. infantis ATCC 15697

To assess whether 69sialyllactose could promote the adhesion of

other commensal strains, adhesion studies were performed under

identical conditions with three different strains of bifidobacteria

and a Lactobacillus strain. No significant increases in adhesion were

observed for any of the other strains tested (Table 1), suggesting

that the observed effect was species/strain-specific. The percent-

age adhesion of the bifidobacteria strains was much lower than the

Lactobacillus reuteri (DPC 6100) (0.09–2.29% of the inoculum versus

12.0%, respectively).

Figure 2. Bacterial influence on oligosaccharide concentrations
during exposure. Aliquots of media prior to and following exposure
with B. longum subsp. infantis ATCC 15697 for 3 hours were assessed by
HPLC. Abbreviations: 69SL - 69Sialyllactose; 39SL - 39sialyllactose. Results
are expressed as percentage of initial oligosaccharide concentration in
non-exposed media for each treatment group with error bars
representing standard deviation. *denotes p,0.005.
doi:10.1371/journal.pone.0067224.g002

Figure 3. Dose-response of B. longum subsp. infantis ATCC
15697 to 69sialyllactose and subsequent adherence to HT-29
cells. (A) Bacterial exposure to original conditions (1 mg/ml; 3 hours),
increased duration (1 mg/ml; 6 hours) or increased concentration
(2 mg/ml; 1 hour) in comparison to non-treated control bacteria. (B)
Exposure to a gradient of 69sialyllactose was assayed over 3 hours (gray
shading) or control and 1 mg/ml for 1 hour exposure (white shading).
Results are expressed as fold-change in percent adhesion in relation to
the respective control 6 standard deviation. adenotes significance in
relation to the control; bdenotes significance in relation to 69SL (1 mg/
ml; 6 hr) treatment; p,0.0001.
doi:10.1371/journal.pone.0067224.g003
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Gene Expression Analysis by DNA Microarray
The overall numbers of genes differentially expressed following

the experimental treatments are shown by Venn diagram (Fig. 5).

It can be seen from this analysis that while 39- and 69-sialyllactose

alone induced numerous differentially expressed transcripts

(DETs) in comparison to control media, that there was a very

substantial synergistic effect observed when the B. longum subsp.

infantis ATCC 15697 cells were treated with a mixture of 39- and

69-sialyllactose. Following exposure to the mixed oligosaccharides,

a total of 135 DETs were up-regulated in comparison to 66

following treatment with 69sialyllactose and 52 following treatment

with 39sialyllactose (Fig. 5). A relatively low number of genes (22)

were differentially regulated by all three treatments (Table 2). As

well as inducing the highest number of DETs following upon

oligosaccharide treatment, the oligosaccharide mixture induced

the highest number of treatment specific genes (70) compared to

21 for 69sialyllactose and 14 for 39sialyllactose (Fig. 5). The genes

with altered levels of transcription are described in Tables S2, S3,

and S4.

Given the effects of oligosaccharide treatment on adhesion, it is

probable that only those genes that are up-regulated by more than

one oligosaccharide treatment are central to the adhesive

phenotype and may be considered the core component of the

oligosaccharide response. The total number of core genes is 55,

and of those, the 42 up-regulated genes shared between

69sialyllactose and the 39- and 69-sialyllactose mixture (Fig. 5)

are of particular interest as these treatments directly led to an

increase in adhesion to HT-29 cells (Fig. 1). This group of 42 genes

is listed in Table S5, where the function assigned to each (if known)

is also stated.

Aside from the qualitative changes observed for gene expres-

sion, the quantitative aspect of the transcriptional response is also

important. The synergistic effect of the oligosaccharide mixture on

adhesion correlated strongly with a higher level of gene

transcription induced by the mixed oligosaccharides. We have

used boxplot type plots to represent the overall transcript levels for

the 22 commonly up-regulated genes (Fig. 6a) and from this plot it

may be seen that the median value for gene transcription following

each treatment correlated extremely well with the observed effects

on adhesion.

The final set of genes of interest includes those genes whose up-

regulation was unique to either 69sialyllactose or 39 and

69sialyllactose treatment. This group contains 21 genes specific

to 69sialyllactose treatment and 70 genes specific to the mixed 39-

and 69-sialyllactose treatment (Fig. 5). Finally, we examined the

expression profile of all of the genes up-regulated by the 39- and

69-sialyllactose mixture based on their position in the Venn

diagram. Of the 4 treatment groups, the genes common to all

three treatment groups (22) had the highest transcript level

followed by those genes commonly up-regulated by 69sialyllactose

and the mixture group ([69SL]+[39&69SL]). The genes common to

the 39sialyllactose treatment and the 39- and 69-sialyllactose

mixture ([39SL]+[39&69SL]) and, lastly, those unique to the

combination of 39- and 69-sialyllactose, had the lowest levels of

transcription (Fig. S2). From this analysis it is clear that the genes

most significant are those that are up-regulated by all treatments.

Our detailed analysis of the transcriptional response has

identified two significant groups of genes that are likely responsible

for the enhanced adhesion response which are those common to

all 3 treatments (Table 2) and those common to the 69sialyllactose

and the 39- and 69-sialyllactose mixtures (Table S5).

Figure 4. Effects of trypsin treatment on adhesion of B. longum
subsp. infantis ATCC 15697 to HT-29 cells following exposure
to 69sialyllactose (1 mg/ml, 3 hours). Results are expressed as fold-
change in percent adhesion in relation to the control with error bars
representing standard deviation. adenotes significance in relation to the
control, p,0.05; bdenotes significance in relation to Trypsin control and
69SL/Trypsin groups; p = 0.0001.
doi:10.1371/journal.pone.0067224.g004

Table 1. Screen of commensal strains for increased adherence to HT-29 cells following exposure to 69sialyllactose.

B. longum subsp.
infantis ATCC 15697

B. longum subsp. infantis
ATCC 15702

B. longum
NCIMB 8809

B. angulatum
NCIMB 2236

L.reuteri
DPC 6100

Control (%
Adherent)

0.40%60.18 0.094%60.019 2.29%60.38 1.14%60.066 12.00%62.30

69SL-exposed (%
Adherent)

1.81%60.71 0.14%60.050 1.61%60.30 0.90%60.53 11.57%61.20

Fold-change 4.53 1.47 0.70 0.79 0.96

doi:10.1371/journal.pone.0067224.t001

Figure 5. Differentially expressed transcripts following expo-
sure to the three oligosaccharide treatments. (A) up-regulated
transcripts (B) down-regulated transcripts. The cut-off point for
inclusion was a p-value ,0.05.
doi:10.1371/journal.pone.0067224.g005
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The number of genes for which expression was reduced in

response to oligosaccharide treatment was roughly similar to the

number of up-regulated genes. However, in general, the magni-

tude of the changes observed was lower than that for the up-

regulated genes. The 13 genes down-regulated in common to all

three treatments (Table 3) were down-regulated in inverse

proportion to the observed adhesion effects, with the extent of

down-regulation being highest for the cells treated with the

Table 2. Up-regulated genes common to all three oligosaccharide treatments.

39SL 69SL 39+69SL

Locus_tag Gene Description FC pval FC pval FC pval

Blon_0029 Ferritin, Dps family protein 1.67 0.0002 1.72 0.0002 2.79 0.0002

Blon_0036 FAD-dependent pyridine nucleotide-
disulphide oxidoreductase

1.31 0.017 1.26 0.036 1.78 0.0001

Blon_0392 Cation efflux protein 1.66 0.006 1.84 0.0001 3.04 0.00001

Blon_0460 Binding-protein-dependent transport
systems inner membrane component

1.32 0.037 1.38 0.02 1.81 0.001

Blon_0617 Glutamate-cysteine ligase, GCS2 1.32 0.022 1.63 0.0009 1.37 0.014

Blon_0758 Glutaredoxin-like protein 1.45 0.004 1.45 0.004 1.99 0.0007

Blon_0759 ABC transporter related 1.42 0.029 1.37 0.05 1.93 0.0007

Blon_0902 Initiation factor 3 1.65 0.005 1.59 0.008 1.43 0.012

Blon_0947 helix-turn-helix domain protein 1.32 0.01 1.35 0.007 1.54 0.0002

Blon_0948 hypothetical protein 1.3 0.02 1.3 0.02 1.5 0.003

Blon_0992 hypothetical protein 1.43 0.021 1.98 0.004 2.47 0.002

Blon_1687 TfoX, C-terminal domain protein 1.56 0.009 1.93 0.0006 2.26 0.001

Blon_1688 transcription activator, effector binding 1.78 0.0005 2.35 0.00002 2.88 0.00006

Blon_1950 hypothetical protein 1.26 0.01 1.2 0.03 1.35 0.001

Blon_1951 UMUC domain protein DNA-repair protein 1.28 0.012 1.22 0.03 1.41 0.001

Blon_2191 ribose 5-phosphate isomerase 1.23 0.025 1.25 0.016 1.58 0.001

Blon_2370 glycerophosphoryl diester
phosphodiesterase

1.71 0.0002 1.83 0.00008 2.09 0.00001

Blon_2371 Glutamate–tRNA ligase 1.45 0.002 1.75 0.0001 2.29 0.000005

Blon_2372 ATPase AAA-2 domain protein 1.7 0.0002 1.88 0.00004 2.45 0.000004

dnaK chaperone protein DnaK 1.44 0.002 1.57 0.0005 1.97 0.00006

groEL chaperonin GroEL 1.33 0.02 1.37 0.015 2.11 0.0022

recA recA protein 1.19 0.044 1.26 0.014 1.21 0.027

39SL –39sialyllactose; 69SL –69sialyllactose; 39+69SL – combined treatment of 39- and 69-sialyllactose; FC – fold change; pval – p-value.
doi:10.1371/journal.pone.0067224.t002

Figure 6. Boxplot representation of the fold-change in expression for the genes up-regulated (A) and down-regulated (B) by all
three treatments.
doi:10.1371/journal.pone.0067224.g006
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oligosaccharide mixture (Fig 6b). Unlike the up-regulated

transcripts, the majority of those genes that were down-regulated

were associated with sugar transport and metabolism. Among the

down-regulated genes that would be central to sugar metabolism

are two transcriptional regulators (blon_0573 and blon_0879)

from the ROK family of proteins. Both of these genes appear to be

transcriptional repressors and their down-regulation is likely to

result in the up-regulation of the genes that they regulate.

Interestingly, one of the genes down-regulated by both 69sialyl-

lactose and the 39- and 69-sialyllactose mixture was an exo-alpha

sialidase that is located in a large cluster of genes (blon_2331-

blon_2361) that are involved in sugar metabolism. Following a

closer examination of the expression patterns of milk oligosaccha-

ride metabolism genes, it is clear that the majority of them are

down-regulated slightly following treatment with 69-sialyllactose

and down-regulated more so by exposure to the mixture of 39- and

69-sialyllactose (Figs. S3 and S4).

Gene Expression Validation by qPCR
The genes of interest identified by DNA microarray were

further validated through the use of real-time PCR. In addition to

those selected from the array analysis, we included the sortase and

tadE pilus in the qPCR screening, as these genes were previously

reported to be significant contributors to the adhesive potential of

different strains of bifidobacteria [20,21] (Fig. 7). The 16S rRNA

gene target produced a stable level of expression against which the

relative expression of the selected gene targets could be assessed.

Two genes, Blon_1687 and Blon_1688, were found to be

significantly up-regulated in the DNA microarray analysis, but

were not validated through qPCR, as their levels of expression

were nearly identical to those of the 16S rRNA control.

Interestingly, four genes associated with bacterial adhesion were

up-regulated following bacterial exposure to the combination of

39- and 69-sialyllactose; i) DPS-ferritin (Blon_0029); ii) GroEL

(Blon_0694); iii) DnaK (Blon_0141); and iv) Sortase (Blon_0162)

(Fig. 7). When bacterial oligosaccharide exposures were performed

in the presence of lactose, expression of each of the selected genes

of interest was similar to that of the control (data not shown).

Discussion

By one month of age, bifidobacteria are the predominant fecal

bacteria in neonates [7], with several strains demonstrating the

ability to utilize the abundant supply of breast milk oligosaccha-

rides as a carbon source [22,23]. Bifidobacterium longum subsp.

infantis ATCC 15697 is the archetypical human milk oligosaccha-

ride consumer in the infant GI tract [24] and has previously been

demonstrated to display an adherent phenotype following growth

on human milk oligosaccharides in in vitro models [15]. However,

the current study is the first to examine the effect of milk

oligosaccharide treatment on the adhesive capacity of B. longum

subsp. infantis ATCC 15697 and to identify specific transcriptional

responses associated with an oligosaccharide-induced adherent

phenotype.

While our findings were similar to that of Chichlowski et al., the

focus of our study was upon brief exposure (3 hours) to specific

HMOs, as opposed to mid-exponential growth (48 hours) on a

pool of HMOs [15]. Additionally, the current results were

obtained through enumeration of live colonies by plating,

compared to the methodology of qPCR. Bacterial adhesion to

intestinal epithelial cells is strain- and species-specific [25–27].

Typically, the adhesive proportion of bifidobacteria, particularly

B. infantis and B. longum, to Caco-2 and HT-29 cell lines is low (0–

5%), with the exceptions of B. bifidum, B. adolescentis and B. animalis

subsp. lactis Bb12 which display a greater degree of adhesion (10–

30%) [25,26,28–33]. The current findings are in agreement with

the previous studies in terms of percentage adherence and

adherent bacteria/100 mammalian cells.

In agreement with the results of Chichlowski et al., our results

demonstrate that exposure of B. longum subsp. infantis ATCC 15697

to 39SL, 69SL, or a combination of the two, resulted in

approximately 1.5–1.8-fold increased adhesion to Caco-2 cells

Table 3. Down-regulated genes common to all treatments.

39SL 69SL 39+69SL

Locus tag Gene Description FC pval FC pval FC pval

Blon_0335 trc regulator merR 21.20 0.0400 21.28 0.0100 21.29 0.0060

Blon_0505 Hypothetical protein 21.26 0.0200 21.26 0.0190 21.27 0.0100

Blon_0644 ROK family protein 21.29 0.0400 21.36 0.0200 21.65 0.0080

Blon_0645 N-acetylglucosamine-6-phosphate
deacetylase

21.38 0.0300 21.36 0.0300 21.69 0.0030

Blon_0790 Proteinase inhibitor 21.25 0.0500 21.28 0.0300 21.46 0.0040

Blon_0884 Extracellular solute binding protein 21.31 0.0200 21.29 0.0300 21.47 0.0500

Blon_0885 Binding protein dependent sugar
transport inner membrane protein

21.25 0.0200 21.40 0.0020 21.50 0.0000

Blon_2174 Hypothetical protein 21.40 0.0200 21.55 0.0060 21.75 0.0020

Blon_2175 Solute transport 21.35 0.0300 21.56 0.0030 21.43 0.0100

Blon_2176 Solute transport 21.46 0.0060 21.63 0.0010 21.51 0.0020

Blon_2341 Hypothetical protein 21.29 0.0190 21.33 0.0100 21.73 0.0020

Blon_2379 Transport system inner membrane
protein

21.55 0.0070 21.41 0.0200 21.85 0.0020

Blon_2380 Sugar transport system solute
binding protein

21.51 0.0030 21.38 0.0100 21.53 0.0007

39SL –39sialyllactose; 69SL –69sialyllactose; 39+69SL – combined treatment of 39- and 69-sialyllactose; FC – fold change; pval – p-value.
doi:10.1371/journal.pone.0067224.t003
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and an increase in adhesion to HT-29 cells (3-4-fold increase

following growth on a pool of HMOs versus 4-10-fold increase

observed in the current study), though independent of growth

upon the supplemented oligosaccharides. Confluent and fully-

differentiated Caco-2 cells are similar to small intestine-like

enterocytes [34], while HT-29 cells are colonic adenocarcinoma

epithelial cells remaining undifferentiated (95%) in the post-

confluent state [35]. Accordingly, the HT-29 model may better

represent the in vivo immature intestinal environment of a neonate,

as infant-type bifidobacteria encounter milk oligosaccharides in

the colon [36], a destination in which sialylated milk oligosaccha-

rides may be enriched [37]. Further in vivo colonisation studies are

necessary to validate the model-specific effects observed.

In the current study, increased adhesion conferred by exposure

to HMOs was not accompanied by a change in oligosaccharide

content in the spent culture supernatant, indicating that under the

given conditions, 39- and 69-sialyllactose were not catabolised.

Additionally, it has previously been reported that semi-synthetic

media supplemented with human milk oligosaccharides at less

than 0.8% (8 mg/mL) resulted in only minimal growth of B.

longum subsp. infantis ATCC 15697 [38], indicating that the

concentrations used in the current study were not sufficient to

stimulate growth. It is clear from analysis of both bacterial growth

and the oligosaccharide content of the assay medium that the

oligosaccharides did not confer a growth advantage to the bacteria

under the conditions used in this study, thereby eliminating the

possibility that the increased adhesion was due to an increase in

the bacterial numbers during the assay.

While in vivo experiments are ideal, the implementation of

in vitro cell lines, such as HT-29 and Caco-2, prove valuable.

Though the two cell lines are not completely representative of

in vivo conditions, they provide a tightly-controlled environment in

Figure 7. Transcript levels for thirteen (13) selected genes as determined by qPCR (A) and microarray analysis (B). 39sialyllactose
(white shading); 69sialyllactose (black and white diagonal shading); 39- and 69-sialyllactose mixture (black shading). Blon_0029– Ferritin; Blon_0141 -
Chaperonin protein DnaK; Blon_0156 - TadE family protein; Blon_0162– Sortase; Blon_0392 - Cation efflux protein;Blon_0459 - Glycoside hydrolase,
family 20; Blon_0694– GroEL; Blon_0993 - Magnesium-translocating P-type ATPase; Blon_1687 - TfoX, C-terminal domain protein; Blon_1688 -
Transcription activator, effector binding; Blon_1971 - High-affinity zinc ABC transporter; Blon_1990 - Glycine dehydrogenase; Blon_2061– Extracellular
solute binding protein.
doi:10.1371/journal.pone.0067224.g007
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which to assay the ability of bacterial strains to adhere to

differentiated and non-differentiated enterocytes. Though the

intestinal cell lines used do not produce the mucus layer that is

typically present in in vivo conditions, the mucin producing cell

lines currently available do not produce a mucus layer specifically

representative of the large intestine or colon, while primary cell

cultures present difficulties in reproducibility [39]. Furthermore,

there exist situations wherein the mucus layer has not yet fully

developed or becomes disrupted. Under these circumstances,

adhesion of intestinal bacteria to colonocytes becomes an issue. In

the given scenario, it is of advantage to the host to promote or

accommodate colonisation by beneficial bacteria, as their coloni-

sation will negate the effects of invasion by other potentially pro-

inflammatory species.

It is important to remember that the in vivo exposure of

intestinal bacteria to oligosaccharides present in the digesta will

always take the form of exposure to a mixture of different

oligosaccharides. The synergistic effect between the oligosaccha-

rides reported here is evidence that B. longum subsp. infantis

produces a more effective adhesion phenotype under conditions

that better represent the intestinal milieu. While 39sialyllactose and

69sialyllactose are identical in molecular weight and contain the

same functional groups, a marked difference in adhesion-

promoting ability exists between the two, which infers a specific

response to a-2,6-linked sialic acid. Furthermore, the presence of

lactose completely abolished the increased adhesion phenotype of

B. longum subsp. infantis ATCC 15697 to the HT-29 cell line. As

reported by Garrido et al., [40], growth of Bifidobacterium longum

subsp. infantis ATCC 15697 on HMO as a sole carbon source,

resulted in the expression of specific proteins that bind and import

HMO isomers, but were also able to bind mucin and blood group

glycans. If this finding is considered along with the fact that

bacterial treatment with trypsin is accompanied by a significant

reduction in adhesion, bacterial exposure to the milk oligosaccha-

ride, 69sialyllactose, may contribute to increased bacterial adhe-

sion to the HT-29 intestinal model through expression of a

proteinaceous surface receptor [41].

We observed a strong correlation between the number of

differentially expressed transcripts following each oligosaccharide

treatment and the observed increase in the adhesive potential of B.

longum subsp. infantis. The use of Venn diagrams allowed us to

identify genes that were induced by all of the treatments along with

those genes induced specifically by certain treatments, thereby

allowing for the separation of the transcriptional responses to

oligosaccharide treatments into two categories. B. longum subsp.

infantis mounts what appears to be a general response to

oligosaccharide exposure, wherein, 22 genes are induced in

common to all three oligosaccharide treatments. It is clear that

the magnitude of change in the transcript level for these genes is

important in developing the adhesive response, as there was a

strong correlation between transcript expression level and

adhesion to the HT-29 cell line. A similar trend was observed

for the 20 genes co-induced by the 69sialyllactose treatment and

the oligosaccharide mixture and these genes may be considered as

being more specific to the adhesion process as they were only up-

regulated by the treatments that enhanced adhesion, with the

extent of the increase in transcription correlating well with the

changes in adherence.

It appears that the contribution of the individual genes to

epithelial adherence is greater if they are differentially regulated by

more than one treatment and these may be designated the core

genes. The increased transcription of those genes that were unique

to each treatment may reflect changes in cell processes occurring

as a consequence of the up-regulation of the core genes rather than

contributing to the adhesive process.

In terms of the enhanced HT-29 adhesion observed, the most

significant gene identified was the DNA-binding protein-ferritin

(dps-ferritin) locus. The dps-ferritin type family is a widely

diverged family of proteins that has evolved to perform a range

of functions other than DNA protection, including the formation

of fine tangle pili in Haemophilus ducreyii [42] and possible roles in

adhesion and protection against oxidative stress in Helicobacter pylori

[43]. The function of this protein homolog (NapA) in H. pylori is of

particular interest because H. pylori is effectively a commensal

organism in the human gut and it is therefore quite probable that

the dps-ferritin protein plays a similar role in Bifidobacterium. The

close correlation observed between transcription of this dps-ferritin

gene and the increased adhesion support the assumption that it is

involved in virulence or adhesion. Members of the dps-ferritin

family also have a role in stress response, particularly towards

oxidative stress, and it has been demonstrated for Salmonella

enterocolitica and Listeria monocytogenes that the dps-ferritin stress

resistance is associated with increased virulence [44,45].

GroEL is a well characterised heat shock protein similar both in

structure and function to the eukaryotic Hsp60. GroEL is virtually

ubiquitous in prokaryotes, being present in .90% of genomes

examined [46] and is also present in bifidobacteria [47]. The most

important function of groEL is in its role as a molecular chaperone

wherein it acts to ensure that certain proteins are folded to the

correct tertiary structure. In its protein-folding role, groEL

requires the co-chaperonin groES in equimolar quantities and in

Bifidobacterium breve UCC2003 groEL and groES are transcribed at

similar levels in response to heat shock even though they are

located in different regions of the genome. It is noticeable,

however, that the levels of groES transcript induced in our studies

did not correlate with those of groEL and this may indicate that

the excess groEL may fulfil a role that is independent of groES.

Furthermore, there was no evidence that groEL was co-

transcribed with the contiguous cold-shock gene cspA (blon_0693)

in this study unlike the case for other bifidobacteria [47], as

transcript levels for cspA were lower following all treatments.

These observations may indicate that regulation of groEL mRNA

levels occurs by means of decreased RNA turnover rather than

increased transcription levels and may suggest a role for groEL in

adhesion that is independent of its chaperone function. Surface

expression of the groEL protein has been previously shown in

several pathogens and has been implicated in attachment and/or

immunomodulatory activities [48–52]. Surface expression of

groEL has also been reported for the probiotic Lactobacillus johnsonii

La1 (NCC 533), and was demonstrated to bind to both mucins

and epithelial cells, as well as possessing the ability to aggregate

Helicobacter pylori [52]. In this study, increased levels of groEL

transcript followed all three treatments, with the greatest response

following exposure to the mixture of 39- and 69-sialyllactose which

correlated well with the increased adhesion to HT-29 cells

observed.

DnaK is another chaperone protein, the transcription of which

is induced on exposure to environmental stresses (temperature, bile

salts, etc.). We observed transcript levels for dnaK at levels that

were discordant with those of other known chaperone proteins

apart from groEL. It is interesting because as reported for groEL,

dnaK is also regarded as having a potential for acting as a surface

bound receptor in Bifidobacterium animalis and has been associated

with increased adhesion to host tissues [53]. The experimental

observations in this study appear to support a role for these two

proteins in adhesion as exposure of bifidobacteria to milk

oligosaccharides should not elicit a stress response. However in
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terms of intestinal colonisation, the ability to mount a response

likely to facilitate adherence is advantageous to the bacteria and

sustaining the level of dnaK and groEL transcript will obviously be

of benefit under these conditions.

Although the sortase gene was not detected as being up-

regulated by the microarray experiment, we did detect up-

regulation by qPCR. The function of sortase enzymes in the

anchoring of surface proteins is vital to their correct presentation

on the external surface of bacterial cells. It is thought that the

anchoring of sortase-dependent proteins may in some circum-

stances be limited by the availability of the sortase enzyme and

therefore transcription of the sortase at higher levels would

increase the anchoring of sortase-dependent proteins. Sortases are

not essential for cell growth, as sortase deletion mutants are viable,

however, adhesion of Lactobacillus salivarius to epithelial cells is

reduced in sortase-negative mutants [54,55].

The tight adherence locus (tad) is homologous in members of

Actinobacteria [56] and is responsible for the formation and assembly

of type IVB pili. These pili bind to carbohydrate moieties present

in glycoprotein and glycolipid receptors and are thought to

mediate the initial encounter with host structures [57]. TadE

transcription, as measured using the microarrays, was not

significantly increased in response to oligosaccharide treatment,

however because this locus has been reported elsewhere to be an

important mediator of colonisation in B. breve [21] we decided to

examine the expression of the tadE gene by qPCR, where it was

found to be transcribed at a higher level. This increased expression

of tadE and its role in the assembly of proteinaceous surface

appendages could potentially contribute to the enhanced adhesive

response of B. longum subsp. infantis ATCC 15697.

It is not clear why this discrepancy between the array results and

the qPCR results occurred for those genes, however, differences

between transcriptional data obtained from microarray and qPCR

experiments are not unknown and may arise in this instance from

the fact that the microarrays used directly-labelled mRNA while

the qPCR analysis was done on cDNA. In addition, the selection

process for deciding if a particular locus is significant in the

microarrays was a combination of fold-change and statistical

significance and this process leads to genes that narrowly exceed

the statistical cut-offs being disregarded.

A glycosyl hydrolase active against the GlcNAcb1-3 linkages

found in lacto-N-hexaose, an oligosaccharide abundant in human

milk [6], was the only example of an up-regulated gene that was

specifically related to sugar metabolism. In this study, this gene

was only substantially differentially expressed in response to the

mixture of 39 and 69sialyllactose. In addition to the glycosyl

hydrolase, a sugar-binding ABC transporter component was also

up-regulated (blon_2061). Of interest regarding this gene is that

there are 6 similar binding proteins present in the genome of B.

longum subsp. infantis 15697 yet blon_2061 is the only one up-

regulated, indicating that the induction of this gene is treatment-

specific and not a component of a broad-spectrum global

transcriptional response to oligosaccharide exposure. The general

tendency was for genes involved in carbohydrate metabolism to be

down-regulated.

Interestingly, the presence of lactose in experimental media at

equal concentration during bacterial exposure resulted in the

elimination of both, the adhesive in vitro response, as well as the

associated up-regulation of the selected genes of interest

determined through qPCR. Lactose is largely digested and

removed in the small intestine, while HMOs are able to resist

digestion and reach the colon [16,58]. Accordingly, the current

data demonstrate the potential function of HMOs to act as a site-

specific adhesion-promoting factor in the large intestine.

Examination of the down-regulated genes revealed the inter-

esting result that the HMO-utilisation cluster described previously

by Sela et al. [13] was generally down-regulated following all three

oligosaccharide treatments. As this cluster of thirty contiguous

genes encodes sialidases, fucosidases, b-galactosidases, solute-

binding proteins, and ABC transport permeases [13,59], it is

likely most effective in the degradation of complex milk

oligosaccharides and the presence of the relatively simple

structures of 39sialyllactose and 69sialyllactose may well act to

suppress the transcription of those genes involved in complex

oligosaccharide hydrolysis. Furthermore, digestion and growth

upon HMOs as a sole carbon source is typically observed between

20–48 hours following inoculation [60]. A second cluster of genes

reported to be involved in metabolism of lacto-N-biose and

galacto-N-biose (LNB/GNB metabolic pathway; blon_2171-

blon_2177) [59] was also slightly down-regulated and again this

down-regulation may be a consequence of the availability of less

complex oligosaccharides. These findings relating to suppressed

carbohydrate metabolism are supported by the HPLC results

indicating that significant oligosaccharide metabolism was absent

during the oligosaccharide exposure period of three hours.

This study has confirmed a substantial increase in the adhesive

potential of B. longum subsp. infantis ATCC 15697 to HT-29 cells

following certain oligosaccharide treatments and this correlated

extremely well with the transcriptional response. The transcrip-

tional response itself was composed of two distinct components in

which there was a significant up-regulation of a number of genes

likely to enhance adhesion to epithelial cells with an additional

down-regulatory effect on the transcription of a group of genes

likely to be involved in the metabolism of more complex

oligosaccharides. The magnitude of the transcriptional response

(and the enhanced adhesion phenotype) was greater during co-

incubation with two oligosaccharides rather than either alone.

Exposure of B. longum subsp. infantis ATCC 15697 to 69sialyllactose

at a concentration of 1 mg/mL for a duration of 3 hours results in

a substantial increase in adhesion to the HT-29 cells compared to

the non-oligosaccharide exposed control. While increasing expo-

sure time or concentration did not produce a concentration-

dependent effect, decreasing the oligosaccharide concentration to

0.5 mg/ml or below resulted in levels of adhesion to HT-29 cells

that did not differ from the control samples. This would suggest

that while relatively low concentrations of oligosaccharides are

effective in promoting adhesion, there is a threshold value below

which they have no effect. This would suggest that B. longum subsp.

infantis ATCC 15697 possesses a sensitive detection mechanism for

the presence of oligosaccharides that is active in the micromolar

range and which responds to oligosaccharide concentrations

between 0.5 mg/ml and 1 mg/ml. The quite narrow response

range suggests a sensor that is adapted to respond to a relatively

low and stable level of oligosaccharides likely to be present in the

intestinal environment, as levels of 39sialyllactose and 69sialyllac-

tose in human colostrum are 0.30 and 0.37 mg/mL, respectively,

following the first 3 days of lactation [61] and thought to be further

concentrated and enriched in the large intestine and colon [37].

The current findings suggest that B. longum subsp. infantis ATCC

15697 is capable of sensing subtle environmental signals such as

oligosaccharides and mounting a proportional transcriptomic and

physiological response. The ability to detect and respond to the

presence of potentially beneficial adhesion-promoting molecules is

of immense benefit to a commensal species exposed to the

constantly changing gut environment. The results obtained from

this study provide a new insight into the mechanisms by which

commensal bacteria adapt to their residency in the intestinal tract

and the role of ingested oligosaccharides in eliciting an adaptive
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response. Of particular interest is the identification of a number of

genes for potential colonisation factors that are very similar to

known virulence factors employed by pathogenic bacteria. The

expression of these genes may give beneficial commensals such as

Bifidobacterium the opportunity to compete with pathogenic bacteria

for specific intestinal niches thereby reducing colonisation by

pathogens. The induction of these responses by milk oligosaccha-

rides provides a molecular-level explanation to aid in the

identification and characterisation of the protective effects of milk

oligosaccharides previously observed in other in vivo studies.

Supporting Information

Figure S1 Screening oligosaccharides for their ability to
influence adhesion of B. longum subsp. infantis ATCC
15697 to Caco-2 monolayers. Abbreviations: P95 - Beneo

Orafti P95; 39SL - 39sialyllactose; 69SL –69sialyllactose; Lac -

lactose. Non-supplemented tissue culture media was used as

control. Results are expressed as fold-change relative to control

percent adhesion with error bars representing standard deviation.
adenotes significant difference in relation to control; bdenotes

significant difference in relation to P95 and LAC/69SL groups;

p = 0.0027.

(TIF)

Figure S2 Boxplot analysis of the pool of genes up-
regulated by the mixture of 39- and 69-sialyllactose.
Common = those genes upregulated by all treatments, [39SL] &

[39+69SL] = genes also upregulated by 39SL; [69SL] &

[39+69SL] = genes also up-regulated by 69SL alone;

[39+69SL] = genes only up-regulated by the 39- and 69-sialyllactose

mixture.

(TIF)

Figure S3 Transcription levels (fold-change) for the
cluster of genes for LNB/GNB metabolism. 39sialyllactose

(white shading); 69sialyllactose (black and white diagonal shading);

39- and 69-sialyllactose mixture (black shading).

(TIF)

Figure S4 Transcription (fold-change) of the genes in
the HMO-utilisation cluster (blon_2331-blon_2361) fol-
lowing exposure to the three oligosaccharide treat-
ments. 39sialyllactose (white shading); 69sialyllactose (black and

white diagonal shading); 39- and 69-sialyllactose mixture (black

shading).

(TIF)

Table S1 Selected genes, primers, and probes for
qPCR.
(DOC)

Table S2 List of genes differentially regulated by
39sialyllactose treatment.
(DOC)

Table S3 List of genes differentially regulated by
69sialyllactose treatment.
(DOC)

Table S4 List of genes differentially regulated by
treatment with a mixture of 39- and 69-sialyllactose.
(DOC)

Table S5 List of common genes up-regulated by 69sia-
lyllactose and the mixture of 39-and 69-sialyllactose.
(DOC)
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10. Ward RE, Niñonuevo M, Mills DA, Lebrilla CB, German JB (2007) In vitro

fermentability of human milk oligosaccharides by several strains of bifidobac-

teria. Mol Nutr Food Res 51: 1398–1405.

11. Lane JA, Mehra RK, Carrington SD, Hickey RM (2010) The food glycome: a

source of protection against pathogen colonization in the gastrointestinal tract.

Int J Food Microbiol 142: 1–13.

12. Zivkovic AM, German JB, Lebrilla CB, Mills DA (2010) Human milk

glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl

Acad Sci U S A 108 Suppl 1: 4653–4658.

13. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, et al. (2008) The genome

sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk

utilization within the infant microbiome. Proc Natl Acad Sci U S A 105: 18964–

18969.

14. Gonzalez R, Klaassens ES, Malinen E, de Vos WM, Vaughan EE (2008)

Differential transcriptional response of Bifidobacterium longum to human milk,

formula milk, and galactooligosaccharide. Appl Environ Microbiol 74: 4686–

4694.

15. Chichlowski M, De Lartigue G, German JB, Raybould HE, Mills DA (2012)

Bifidobacteria isolated from infants and cultured on human milk oligosaccha-

rides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr 55: 321–

327.

16. Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H (2000) Human milk

oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointes-

tinal tract. Am J Clin Nutr 71: 1589–1596.

17. Gnoth MJ, Kunz C, Kinne-Saffran E, Rudloff S (2000) Human milk

oligosaccharides are minimally digested in vitro. J Nutr 130: 3014–3020.

18. Coconnier MH, Klaenhammer TR, Kerneis S, Bernet MF, Servin AL (1992)

Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human

enterocyte and mucus-secreting cell lines in culture. Appl Environ Microbiol 58:

2034–2039.

19. Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data

Using Real-Time Quantitative PCR and the 22DDCT Method. Methods 25:

402–408.

20. Foroni E, Serafini F, Amidani D, Turroni F, He F, et al. (2011) Genetic analysis

and morphological identification of pilus-like structures in members of the genus

Bifidobacterium. Microb Cell Fact 10: S16.

21. O’Connell-Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, et al.

(2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals

type IVb tight adherence (Tad) pili as an essential and conserved host-

colonization factor. Proc Nat Acad Sci 108: 11217–11222.

Effect of Milk Sugars on Bacterial Adhesion

PLOS ONE | www.plosone.org 12 June 2013 | Volume 8 | Issue 6 | e67224



22. Kiyohara M, Tachizawa A, Nishimoto M, Kitaoka M, Ashida H, et al. (2009)

Prebiotic effect of lacto-N-biose I on bifidobacterial growth. Biosci Biotechnol

Biochem 73: 1175–1179.

23. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, et al. (2010)

Consumption of human milk oligosaccharides by gut-related microbes. J Agric

Food Chem 58: 5334–5340.

24. Sela D, Chapman J, Adeuya A, Kim J, Chen F, et al. (2008) The genome

sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk

utilization within the infant microbiome. ProcNat Acad Sci 105: 18964–18969.

25. Bernet MF, Brassart D, Neeser JR, Servin AL (1993) Adhesion of human

bifidobacterial strains to cultured human intestinal epithelial cells and inhibition

of enteropathogen-cell interactions. Appl Environ Microbiol 59: 4121–4128.

26. Candela M, Seibold G, Vitali B, Lachenmaier S, Eikmanns BJ, et al. (2005)

Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition

between bifidobacteria and enteropathogens. Res Microbiol 156: 887–895.

27. Crociani J, Grill JP, Huppert M, Ballongue J (1995) Adhesion of different

bifidobacteria strains to human enterocyte-like Caco-2 cells and comparison

with in vivo study. Lett Appl Microbiol 21: 146–148.

28. Ali QS, Farid, A J., Kabeir, B M., Zamberi S., Shuhaimi M., Ghazali, H M.,

Yazid, A M. (2009) Adhesion properties of Bifidobacterium Pseudocatenulatum G4

and Bifidobacterium Longum BB536 on HT-29 human epithelium cell line at

different times and pH. Proc World Acad Sci Eng Tech 37: 149–153.

29. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggrega-

tion and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl

Microbiol 31: 438–442.

30. Gleinser M, Grimm V., Zhurina D., Yuan J., Riedel, C U. (2012) Improved

adhesive properties of recombinant bifidobacteria expressing the Bifidobacter-

ium bifidum-specific lipoprotein BopA. Microb Cell Fact 11: 80.

31. Laparra JM, Sanz Y (2009) Comparison of in vitro models to study bacterial

adhesion to the intestinal epithelium. Lett Appl Microbiol 49: 695–701.

32. Preising J, Philippe D, Gleinser M, Wei H, Blum S, et al. (2010) Selection of

bifidobacteria based on adhesion and anti-inflammatory capacity in vitro for

amelioration of murine colitis. Appl Environ Microbiol 76: 3048–3051.

33. Riedel CU, Foata F, Goldstein DR, Blum S, Eikmanns BJ (2006) Interaction of

bifidobacteria with Caco-2 cells-adhesion and impact on expression profiles.

Int J Food Microbiol 110: 62–68.

34. Chopra DP, Dombkowski AA, Stemmer PM, Parker GC (2010) Intestinal

epithelial cells in vitro. Stem Cells Dev 19: 131–142.

35. Moss AC, Anton P, Savidge T, Newman P, Cheifetz AS, et al. (2007) Urocortin

II mediates pro-inflammatory effects in human colonocytes via corticotropin-

releasing hormone receptor 2a. Gut 56: 1210–1217.

36. Sela DA (2011) Bifidobacterial utilization of human milk oligosaccharides.

Int J Food Microbiol 149: 58–64.

37. Sela DA, Li Y, Lerno L, Wu S, Marcobal AM, et al. (2011) An Infant-associated

Bacterial Commensal Utilizes Breast Milk Sialyloligosaccharides. J Biol Chem

286: 11909–11918.

38. LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, et al. (2007)

Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides

demonstrates strain specific, preferential consumption of small chain glycans

secreted in early human lactation. J Agric Food Chem 55: 8914–8919.

39. Langerholc T, Maragkoudakis PA, Wollgast J, Gradisnik L, Cencic A (2011)

Novel and established intestinal cell line models–An indispensable tool in food

science and nutrition. Trends Food Sci Tech 22: S11–S20.

40. Garrido D, Kim JH, German JB, Raybould HE, Mills DA (2011)

Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis

reveal a preference for host glycans. PLoS One 6: e17315.

41. Mukai T, Toba T, Ohori H (1997) Collagen binding of Bifidobacterium

adolescentis. Curr Microbiol 34: 326–331.

42. Brentjens RJ, Ketterer M, Apicella MA, Spinola SM (1996) Fine tangled pili

expressed by Haemophilus ducreyi are a novel class of pili. J Bacteriol 178: 808–
816.

43. Cooksley C, Jenks PJ, Green A, Cockayne A, Logan RP, et al. (2003) NapA

protects Helicobacter pylori from oxidative stress damage, and its production is
influenced by the ferric uptake regulator. J Med Microbiol 52: 461–469.

44. Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ (2004) The
ferritin-like Dps protein is required for Salmonella enterica serovar Typhimur-

ium oxidative stress resistance and virulence. Infect Immun 72: 1155–1158.

45. Dussurget O, Dumas E, Archambaud C, Chafsey I, Chambon C, et al. (2005)
Listeria monocytogenes ferritin protects against multiple stresses and is required

for virulence. FEMS Microbiology Letters 250: 253–261.
46. Charlebois RL, Doolittle WF (2004) Computing prokaryotic gene ubiquity:

rescuing the core from extinction. Genome Res 14: 2469–2477.
47. Ventura M, Canchaya C, Zink R, Fitzgerald GF, Van Sinderen D (2004)

Characterization of the groEL and groES loci in Bifidobacterium breve UCC

2003: genetic, transcriptional, and phylogenetic analyses. Appl Environ
Microbiol 70: 6197–6209.

48. Gillis T, Miller R, Young D, Khanolkar S, Buchanan T (1985) Immunochemical
characterization of a protein associated with Mycobacterium leprae cell wall. Infect

Immun 49: 371–377.

49. Hennequin C, Porcheray F, Waligora-Dupriet A-J, Collignon A, Barc M-C, et
al. (2001) GroEL (Hsp60) of Clostridium difficile is involved in cell adherence.

Microbiology 147: 87–96.
50. Dunn BE, Vakil NB, Schneider BG, Miller MM, Zitzer JB, et al. (1997)

Localization of Helicobacter pylori urease and heat shock protein in human gastric
biopsies. Infect Immun 65: 1181–1188.
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