W CORA =

g/ﬁ%

Title A survey of advanced encryption for database security: primitives,
schemes, and attacks
Authors Ganesh, Buvana:Palmieri, Paolo

Publication date

2020-12

Original Citation

Ganesh, B. and Palmieri, P. (2020) 'A Survey of Advanced
Encryption for Database Security: Primitives, Schemes,
and Attacks’, Foundations and Practice of Security, FPS
2020, Lecture Notes in Computer Science, vol 12637,
Cham: Springer International Publishing, pp. 100-120. doi:
10.1007/978-3-030-70881-8 7

Type of publication

Conference item

Link to publisher’s
version

https://link.springer.com/chapter/10.1007/978-3-030-70881-8_7 -
10.1007/978-3-030-70881-8_7

Rights

This is a post-peer-review, pre-copyedit version of an

article published in Lecture Notes in Computer Science

The final authenticated version is available online at: http://
dx.doi.org/10.1007/978-3-030-70881-8_7 © Springer Nature
Switzerland AG 2021

Download date

2024-05-16 20:42:00

[tem downloaded
from

https://hdl.handle.net/10468/11140

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh

https://hdl.handle.net/10468/11140

A Survey of Advanced Encryption
for Database Security: Primitives, Schemes, and Attacks

Buvana Ganesh* and Paolo Palmieri

School of Computer Science & IT,
University College Cork, Ireland
b.ganesh@cs.ucc.ie, p.palmieri@cs.ucc.ie

Abstract. The use of traditional encryption techniques in Database Management
Systems is limited, as encrypting data within the database can prevent basic func-
tionalities such as ordering and searching. Advanced encryption techniques and
trusted hardware, however, can enable standard functionalities to be achieved on
encrypted databases, and a number of such schemes have been proposed in the
recent literature. In this survey, different approaches towards database security
through software/hardware components are explored and compared based on per-
formance and security, and relevant attacks are discussed.

1 Introduction

Ross Anderson famously stated that “you cannot construct a database with scale,
functionality and security because if you design a large system for ease of access it
becomes insecure, while if you make it watertight it becomes impossible to use” [6].
While compromises between security and functionality are common in many techno-
logical domains, getting the right balance is critical in databases, which are a primary
way to store complex information on digital systems. Two factors make research into
database security more relevant than ever: first, the ever increasing amount of informa-
tion that is being generated, collected and stored, most of which sensitive, partly due to
advances in the Internet of Things and the diffusion of personal devices such as smart-
phones and wearables; secondly, the trend towards outsourcing information storage to
the cloud, following the Database-as-a-Service (DBaaS) paradigm, which introduces
additional privacy risks [4].

Traditional cryptographic techniques cannot be easily applied to databases, due to
their inherent nature as a way to structure information. While cryptography can pro-
vide an “external” layer of security, where the information is encrypted while at rest
(for example through the use of file system or full disk encryption), this does not pro-
tect against any attack that targets a “live” database, for example via malicious queries.
Trivially encrypting data within a database, instead, compromises the functionality of
the database, as it prevents basic operations such as ordering, (partial) equality testing,
search and many other. An alternative strategy to protect information is differential pri-
vacy, which adds noise to data but yields almost accurate results using statistical mech-
anisms, based on a privacy budget. Although corporations like Apple and Google favor

* Buvana Ganesh is supported by a PhD scholarship funded by the Science Foundation Ireland
Centre for Research Training in Artificial Intelligence under Grant No. 18/CRT/6223.

2 Buvana Ganesh and Paolo Palmieri

this for ease of usage, it is not suitable for accurate search and retrieval, and is difficult
to implement in dynamic (constantly changing) databases. On the other hand, research
on advanced cryptographic mechanisms such as homomorphic or searchable encryp-
tion, combined with novel hardware security mechanisms, is increasingly pushing the
boundaries of the security vs. functionality compromise in databases by allowing, for
example, certain operations to be performed on encrypted data. Anderson’s intuition
remains true, and even the most advanced security schemes cannot entirely prevent
leakage of information, which may allow an attacker to approximately reconstruct a
database in less than linear time [27]. However, the adoption of these advanced mech-
anisms can undoubtedly enhance the security of database systems, while maintaining
performance comparable to that of an unencrypted database.

In this paper, we discuss the novel cryptographic and security primitives that can
be applied to databases (Section [3]), and we survey the schemes in the literature that
are employing these primitives for database security (Section). To the best of our
knowledge, no previous survey covers secure databases with encryption and hardware.
While a direct comparison of the schemes is challenging, due to the different levels of
functionalities they provide, we categorise the schemes according to the security they
claim to offer, and juxtapose their respective performances according to standard bench-
mark tests (Section [5). Finally, we discuss the main potential attacks in relation to the
schemes, in order to gain valuable insight for the development of future schemes.

2 Terminology and Definitions

A database (DB) is an organised collection of data of any type, used for the storage,
retrieval and management of information, which are performed through a database man-
agement system (DBMS). DBs are differentiated based on their structure and properties.
Relational databases (RDB) are structured by predefined categories with a Schema of
Columns and Tables. NoSQL databases are not as well-defined, and the data is malleable
and eventually consistent, thus improving scalability and flexibility. Types include Key-
value, Graph, Wide Column or Document oriented stores. NewSQL forms a class of
RDBMS that seek to provide the same scalability of NoSQL and are distributed to en-
able faster distributed analytics. In terms of warehousing, Online Analytic Processing
(OLAP) is utilized for large scale read-only multidimensional databases to create on-
line comparative summaries of data. Online Transaction Processing (OLTP) helps in
dynamic transactions and updates on smaller sizes of data with read and write access.

In the following, we refer to databases that are protected either cryptographically or
through trusted hardware as encrypted databases (EDB), and their respective encrypted
database management systems as EDBMS.

The aim of an EDB is to provide secure data outsourcing and sharing. When out-
sourced either to a cloud or third party, who performs computations on the database,
the data should possess the necessary properties that enable such computations to be
performed without decryption. These normally include search, retrieval, transactions
and operations. The EDBMS should also enable access control and policies. A basic
set of properties including full range of Queries, Storage, Memory management, Dy-
namic Updates, Access pattern hiding, etc. are to be considered for the construction.

A Survey of Advanced Encryption for Database Security 3

In EDBMS, generally, the client acts as user interface for identification, authentication,
key generation and sometimes query processing. Proxies, if used, mainly help in the
modification of queries received by the server dedicated to database storage-retrieval.
Additional servers with various purposes such as key distribution, computation, etc.
may be present.

2.1 Threats and Adversaries

Attacks on unencrypted databases are commonplace in the news causing significant
losses every year. Common threats include privilege abuse, image leaks from virtual
machines, SQL injections, and disk theft [28]]. The main way to secure unencrypted
DBs is through the use of policies and access control. Query control [56], for instance,
uses policies to ensure the query is sufficiently targeted. However, only cryptographic
security can make data provably secure, even in the case of attacks on the DBMS com-
ponents. Currently, most industry DB solutions only rely on Transparent Data Encryp-
tion for securing data at rest, and Transport Layer Security for data in transit. This
implies that any computation can be performed only after decryption. EDBs aim to
provide increased security, and prevent log, memory and access pattern based attacks.

The security literature categorises adversaries based on their abilities. In the con-
text of databases, honest but curious adversaries are administrators or service providers
(SPs) with access to a part (or sometimes full) history of queries performed. Most
schemes assume this and it is often referred to as the “Snapshot attack™ [28]]. Persis-
tent passive attackers compromise the DBMS server and passively observe all its oper-
ations. Malicious administrators, users or servers are capable of modifying the contents
of a DB to manipulate the output. They can carry out chosen document, query or key-
word attacks based on prior knowledge, as discussed in Section [5.2] Databases can be
attacked by internal or external entities with various levels of prior knowledge from fully
known document, partially known document, known document subset to distributional
knowledge. Based on the level of prior knowledge, it is possible to recover queries,
plaintext or partial plaintext (see Section 5.2).

2.2 Provable Security

Different types of proofs are available to establish security, the most common be-
ing game-based proofs. Game-based proofs cover indistinguishability attacks such as
Known Plaintext Attack (or Known Query Attack in DBs), Chosen Plaintext Attack
(IND-CPA), Chosen Ciphertext Attack (IND-CCA). In this paper, we use the defini-
tions provided in [36] for these classes of attacks. In game-based proofs two parties, the
challenger and the adversary, play a cryptographic game. If the adversary cannot guess
which of the two texts presented by the challenger is the right plaintext/ciphertext in
polynomial time, then the encryption used is IND CPA/CCA secure respectively. This
type is employed when one or more cryptosystems are used in a scheme.

Real/ldeal model also known as the simulation paradigm is a technique for provable
security first described by Goldreich et. al. in [24]. A protocol P securely computes
a functionality if for every adversary A in the real model, there exists an adversary (a
simulator) S in the ideal model, such that a real execution and an ideal execution of

4 Buvana Ganesh and Paolo Palmieri

P is indistinguishable for the adversary. This is useful when input is provided by both
honest and corrupt parties. Schemes which utilize privacy preserving data structures use
such paradigms for proving security. Similarly, Universal Composibility (UC-Secure)
framework works with an environment, an ideal functionality and a simulator to prove
security when composing different protocols [12]].

3 Security Primitives

The primitives mentioned here are used for different applications and sometimes as
standalones to provide security. But in order to achieve a number of basic database
functionalities, the techniques used need to be used in a modular manner or modified.
Leakage in encryptions is unavoidable, since the result of a query using that function-
ality would leak the same property about the data. Analytical queries for deriving data
summaries such as Equality, Order, Max, Min, Round, Sum, Average, Limit, Count,
Like, Stemming, and Wildcard require order-preserving, homomorphic and searchable
encryptions. Boolean queries And, Or, Not require interoperablity with conjunctive and
disjunctive search support. In this section, we discuss the aforementioned mechanisms
in relation to EDBs. We note, however, how most EDBs can execute only a subset of all
possible queries, and therefore will use a a selection, rather than all, of these schemes.

3.1 Property Preserving Encryptions (PPE)

Schemes in the class of Property Preserving Encryptions (PPE) enable functions such

as Order, Search, Arithmetics, Equality, Distance, etc. to be performed in EDBs. Three
main families of schemes are discussed below: homomorphic encryption; searchable
encryptions; and order preserving/revealing encryptions. Secure implementations of
these functions are present in most of the surveyed schemes. While encryptions for
other functions are available, such standalone methods usually imply significant leak-
ages. For instance, Distance Recoverable Encryption were introduced by Wong et al
[63] for calculating k-nearest neighbors in EDBs, using asymmetric scalar-product-
preserving encryption. Tex et. al. [59] discuss case studies for encrypting SQL query
logs using Xquery and use Distance preserving encryption with PPE.
Homomorphic Encryption (HE) — The property of an encryption that allows alge-
braic operations to be performed on ciphertext without decryption is called Homomor-
phic Encryption. A standard HE scheme comprises a minimum of 4 algorithms: Key
Generation, Encryption, Decryption and Homomorphic Evaluation for the operations
(often addition, + and multiplication, -). Based on the evaluations, a HE scheme can be
partially homomorphic (PHE), supporting one of the two operations above, or fully ho-
momorphic (FHE), supporting both operations. In order to improve performance, some
schemes are somewhat homomorphic with just a limited set of operations before the
noise makes the system unreliable. Also, as the encryptions are based on finite struc-
tures, in certain schemes homomorphic evaluation is possible only up to a modulus
level, due to the increase in size of ciphertext, while others allow evaluations at all
levels. Often, a leveled HE (LFHE) scheme is bootstrapped and extended to a fully
homomorphic scheme.

A Survey of Advanced Encryption for Database Security 5

Table 1. Types of Homomorphic Encryption

Scheme Type |Underlying Hard problem [Ops |Libraries

Paillier [45] [PHE |Composite Residuosity + Palisade, Paillier

DGHV [18] [SWHE|LWE +,- |-

FV/BFV [21] |LFHE |[LWE +,- |SEAL, Palisade

BGV [L1] LFHE |LWE with no bootstrapping |+, - |Helib

HEAAN [15]] [LFHE |Approximate LWE +,- |HEANN, Palisade, SEAL, Helib

Since Gentry’s FHE scheme in 2009, Post Quantum Public Key Encryption (PKE) HE
are the most commonly used and are based on NP-hard problems like learning with
errors (LWE) and its variants. Symmetric HE are more prone to attacks. Overall, HE
schemes are susceptible to size pattern based attacks (Sec.[5.2).

In recent years, commercial interest in HE has increased, leading to many open source
libraries, such as Microsoft Seal [55]], IBM’s HELib [29]], TARPA’s PALISADE]1]. The
libraries support variants of HE schemes such as BFV [21]], HEAAN [15]], Paillier [45]].
We summarize the schemes and their implementations in Table [I]

Searchable encryptions (SE) — Searchable encryption, another PPE, is a type of func-
tional encryption that allows Search on encrypted data. Searchable Symmetric Encryp-
tion (SSE) may have many or all of the search features, such as keyword, Boolean, and
phrase search queries, as well as stemming, wildcard, and approximate-match search-
ing. SSE provides provable security because of the predetermined leakage function, but
requires a scan of the entire DB for every query, unless some Indexing is provided. SSE
focuses on data outsourcing, where the data owner is the client. The client parses each
input document and performs keyword extraction, followed by a probabilistic setup al-
gorithm that outputs the EDB (to be hosted on the server) and the master Key. The
search protocol requires the EDB, master key and the query (keyword) w as the input.
To search for w, the client generates and sends a trapdoor, which the server uses to run
the search and recover pointers to appropriate documents. Dynamic SSE introduced by
Kamara et al. [35]], are stateful and thus reduce leakage. The setup generates a state to
be passed to the Search, Read or Write protocol. Dynamic schemes ensure forward or
backward privacy, or both.

Boneh et al. proposed Public Key Encryption with Keyword Search (PEKS) based on
public key infrastructure using bilinear pairing. The general structure is similar to SSE,
but with PKE. The schemes can be for single keyword, conjunctive or subset search.
Zhou et al explain on the evolution of PEKS in their paper [66]. A Private Information
Retrieval (PIR) protocol allows a query to retrieve an element from the DB without
revealing the access patterns, relations between columns and their storage blocks. [34]
and [31] are inspired by PIR. The schemes which form the basis for SSE systems are in
Table 2

Order Preserving Encryptions (OPE) — Range queries are critical for DBs and Or-
der Preserving Encryptions provide this function. They are numeric and well ordered,
therefore lead to significant leakage. Despite this, OPEs are widely studied as detailed
in Table[3] Boldyreva et al.’s OPE scheme is the most commonly used due to its ease of
implementation [9]. The algorithm constructs a deterministic Random Order Preserving
Function (ROPF) on a domain of integers where the range is recursively bisected. This

6 Buvana Ganesh and Paolo Palmieri

Table 2. Searchable Symmetric Encryption (SSE) schemes

SSE - Year Feature Operations

Song et al "00 [S7] Embedding information in pseudo-||Single word search
random bit streams
OSPIR OXT’13 [33] ||Malicious, Oblivious PRF, Cross|/Conjunctive, Boolean queries
Tags(OXT)[14], IND CPA
ShadowCrypt ’14 [30] ||Efficiently searchable encryption||Standard Full text search
with DOM
Mimesis Aegis *14 [39]||Efficiently deployable efficiently||Standard Full text search
searchable encryption

Sophos *16 [10] Pseudo-random functions and trap- ||L-Adaptively Secure forward pri-
door permutations vate scheme
Pouliot et al 16 [S1] |/Bloom Filters Weighted Graph Matching at-
tacks on EDESE
SisoSPIR *16 [31] Oblivious Transfer, Secure node|Distributed, Full SSE, Range
search. Real/Ideal queries
Saha et al 19 [53]] Ring LWE, IND CPA Conjunctive, Disjunctive and
Threshold queries

Table 3. Order Preserving/Revealing Encryptions (OPE) schemes

OPE Feature Security
Agrawal’09 [5] ||Data Buckets transformed to Target distribution Leaks more than
Order
ROPF *09 [9] ROPF with a hyper-geometric distribution. Modular||Leaks > half the
ROPF by adding an integer modulo M bits

mOPE ’13 [49] |[Mutable - refreshes Cipher text using Merkle hashing (|[IND-OCPA
ORE 16 [40] Left encryption: Domain’s permutation and hashed key||Leaks d-bits of]
of plaintext. Right: encryptions of the comparison with||first differing

every other value in the domain block
Dyer et al’17 [19] || Approximate Integer Common Divisor problem PKE |Window One-
wayness
FHOPE "18 [41]] |[Appx Greatest Common Divisor based Symmetric|[IND-HOCPA
Fully Homomorphic OPE

method reveals almost half of the bits in the ciphertext. Security for such encryptions
is proved by Indistinguishability under Ordered Chosen Plaintext attacks (IND-OCPA)
where an OPE leaks nothing but the order of the ciphertext. Other simulation-based
security proofs are provided where IND-OCPA is considered insecure (Sec. [5.2).

3.2 Oblivious RAM

Initially introduced for secure multi-party computation, Oblivious Random Access
Memory enables the oblivious execution of the RAM algorithm while hiding the access
pattern from the server and memory. ORAM continuously reshuffles and re-encrypts
(Symmetric or FHE) the data in blocks as they are accessed with fresh randomness
using a position map with bandwidth and block size as parameters. The blocks are
stored in binary search trees. Path ORAM [58]] is the most used and practical version

A Survey of Advanced Encryption for Database Security 7

of ORAM. Here, when a block is read from the server, the entire path to the mapped
leaf is read, the requested block is remapped to another leaf, and then the path that was
just read is written back to the server. Garg et. al. [23] use TWORAM with two rounds
of oblivious exchange between client and server. It does not support inserts/deletes or
hides result sizes. In ORAM based schemes, the message length from the server to the
user, as the result of query execution, is proportional to the number of records match-
ing the query, therefore causing leakage of the size pattern. Therefore ORAM-based
schemes are vulnerable to size pattern-based attacks, e.g., count attack (Sec. [5.2).

3.3 Enclaves

Enclaves are software programs written into a trusted portion of the hardware for
secure storage and computation of data. The hardware manufacturer becomes a trusted
third party, with potential access to the keys and code. Some of the commercially avail-
able Trusted Execution Environments are Intel Software Guard Extensions (SGX) [16],
ARM’s TrustZone [3]] to be used in devices like Raspberry Pi and AMD Secure Memory
Encryption which is enabled at BIOS and uses a single key generated by the AMD Se-
cure Processor at boot for transparent encryption. Our focus shall rest on SGX because
of its usage in a majority of the Hardware based EDBs.

SGX is a set of new x86 instructions that enable code isolation within virtual con-
tainers. The attack models assume untrusted servers. The three main functionalities are:
Isolation, Sealing and Attestation. SGX isolates enclave code and data in the Proces-
sor Reserved Memory (PRM). Cryptographic keys are owned by the trusted processor.
SGX uses AES-GCM to encrypt with additional authenticated data for sealing. An en-
clave can derive a Seal Key, specific to the enclave identity, from the Root Seal Key
and this can be used to encrypt/authenticate and store data in untrusted memory. A spe-
cial signing key and instructions are used for attestation to ensure unforgeable reports
Attestation can be done locally or remotely.

Enclaves occupy a fixed and limited part of the memory and so an application is
built around the SGX. Intel becomes compulsory hardware to run SGX,which is . The
performance degrades around 4 times when a DBMS is run on the SGX.

4 Secure Database Schemes

In this section, we give a brief discursive description of current encrypted database
schemes and their implementation, focusing on security and functionality. In previous
work, Fuller et. al. [22]] provided a systematization of knowledge for cryptographically
protected database search, but do not include hardware attacks. We divide the schemes
into three categories — encrypted conventional databases, privacy-preserving data struc-
ture based schemes, and hardware-based schemes. The schemes were chosen for the
survey based on novelty, relevance, extent of functionality and implementation.

For key management, most schemes assume that only the clients possess the mas-
ter key. Proxies or trusted execution environments hold the encryption schemes for the
particular components. For members of the organisation, access control is the primary
way to ensure key distribution if the scheme supports multiple users. Also, the number
of servers used in each model is normally not specified.

8 Buvana Ganesh and Paolo Palmieri

4.1 Encrypted Conventional Databases

CryptDB [50]] is an DBMS that supports all of the standard SQL over encrypted data
without requiring any client-side query processing, modifications to existing DBMS
or legacy applications and offloads virtually all query processing to the server, using
a proxy server to process encrypted queries. CryptDB uses the security of existing
cryptosystems like AES-CBC/CMC, ROPF[9]] and Paillier, forming an Onion Layer-
ing Model where encryptions and their respective keys are layered based on the type of
queries. Therefore, CryptDB cannot perform Complex Join operations and lacks rich
functionality though it primarily focuses on relational data. Although CryptDB shows
good performance with TPC-C queries, it is 26% slower than performance on MySQL.
Monomi [60]], based on the same Onion Layering model, delegates Queries between a
trusted client and an untrusted server using a query planner and designer, based on the
encryption and order of the Queries. The scheme is optimized based on Cost of Storage
and Transaction, yet reserves as many tasks as possible for the server. This improves in-
teroperability. But the data leaks order related properties in steady state and on querying
and the adversary is assumed to have full access to the DB.

Arx [48] assumes the non-malicious non-curious CSP model with intrusion detection
to prevent attackers from observing and logging queries over time, but fears “steal-and-
run” attacks. Arx has the same building blocks structure along with ArxAgg for addition
and two new DB indices, ArxRange for Range queries and ArxEq for equality queries,
which uses treap like structure, whose nodes destroy and rebuild themselves for un-
traceability. Queries on these indices reveal only a limited per-query access pattern.
Arx is built against leakage attacks based on frequency and order. Overheads are only
about 6% to 15% more than on specific unencrypted data and deployed on MongoDB
and similar databases to show functionality. Arx uses a two-round protocol to hide the
relationship between the node values of the range query index and the DB rows holding
that value to avoid snapshot attacks. Nevertheless, the leakage is sufficient to recover
the values in the index using a variant of the bipartite matching attacks.

Seabed [40], built by Microsoft, uses Additively Symmetric Homomorphic Encryption
(ASHE) for performing analytics on big data. The adversary is assumed to be with hon-
est but curious. To prevent frequency attacks, Splayed ASHE (SPLASHE) uses deter-
ministic encryption with padding for infrequent plaintext values, rather than a dedicated
column in the schema. Seabed is built on Apache Spark. The performance-schema will
leak a query histogram for only the frequently occurring values. However, a partial his-
togram could be reconstructed from the logs. With other leakage about frequent values
from query patterns, damaging cross-column inference attacks can be performed. [28]]
DBMask [54] can efficiently handle large databases even when user dynamics change.
The Proxy server acts as a mask for the data attribute based models with access con-
trol and cryptographic constructors like Attribute based Group Key Management(AB-
GKM) are introduced for functionality in DBMask. No changes are made to the DBMS
engine. An access tree is formed and thresholds are set with Shamir’s Secret Sharing
polynomials to derive group keys for querying. Privacy Preserving Numerical compar-
isons, key searches, joins are derivatives Hence, DBMask can perform access control
and predicate matching at the time of query processing by adding predicates to the
query being executed.

A Survey of Advanced Encryption for Database Security 9

P-McDB [17] — Cui et al. proposed a dynamic SSE scheme for Privacy Preserving
Multi Cloud DB which uses multiple clouds for storage and search, Index and witness
and, re-randomize and shuffle. P-McDb is meant for multiple users and data cannot be
re-encrypted on user revocation. In this system, the clouds are Honest but curious, ca-
pable of injecting malicious records. It supports partial searches of encrypted records.
The communication between them could introduce more delays. The model is efficient
enabling full search. The dual cloud system prevents inference attacks.

Encrypted NoSQL databases — EncKV [65] uses Symmetric Searchable Encryption
and ORE [40] to accomplish the primary task of the Key Value Stores. EncKV is tested
on the Redis Cluster with the Amazon EC2 public cloud platform. Graph Databases for
Encryption for Approximate Shortest Distance Queries (GRECS) [42] uses somewhat
homomorphic and symmetric encryptions for secure Graph operations. GraphSE?2 [38]
provides scalable social search by decomposing queries and using interchangeable pro-
tocols, and demonstrate using Azure Cloud. Wiese et al [62] present CloudDB guard
adapting an Onion Layering model with PPE for Wide Column Stores and test their
scheme on the Enron email dataset. The scheme presents optimised reading, writing
and storage efficient schemes with low performance loss.

4.2 Privacy Preserving Data Structure based Schemes

Structures such as B-trees, B+ trees are used in DBs for indexing purposes. Queries
return observable states in memory, along with which parts of the DB are touched
(called access patterns), frequency. To avoid this, EDBs often rely on modified data
structures or mechanisms such as Inverted Index, Oblivious Index, Bloom filter trees,
AVL Trees or SE based index, ORAM, etc.

Blind Seer [47] — Pappas et al provide a framework (BLoom filter INDex SEarch of
Encrypted Results) for developing secure and oblivious search using Bloom filter search
trees, garbled circuits and HE. Garbled circuits (GC) [[64] enable oblivious exchange
of information between two parties. Bloom Filters are helpful in privately checking if
an element belongs to a set, using hashes allowing no false negatives. A DB is permu-
tated with a Pseudo-random Generator on a Random string XOR’ed with the Record
which forms a Bloom filter search tree. The DB and Search tree are encrypted using an
additive homomorphism in the server and sent to the Index server along with the public
key. A Query gets transformed into a Boolean Circuit, which the index server securely
computes, garbled and sent to the server, where the data is retrieved from the Search
Tree and sent back. The transaction queries can be executed in constant time, but the
periodic re-indexing that merges the temporary Bloom filter list to the tree on updations
is expensive.

Blind Seer supports analytical Boolean queries and provides security against Access
pattern leakage. Bloom filter search tree supports range queries without OPE. Blind
Seer claims to be 1.2 - 3 times slower than MySQL.

Oblix [43] — Mishra et al proposed a highly scalable Doubly Oblivious Search Index
using SGX and Doubly Oblivious RAM. The client’s access to the server’s memory and
to its own local memory are obliviously accessed and hence the double obliviousness.
The attack model assumes a malicious attacker, performing any hardware attacks on
the enclave and code modifications but the processor cannot be harmed. Oblix supports

10 Buvana Ganesh and Paolo Palmieri

multi user access to data without revealing the other party’s query results or changes.
It creates Doubly Oblivious Sorted Multi-maps (DOSM) to store key-value pairs and
Doubly Oblivious Data Structures (DODS) to store the EDB. The AVL binary trees are
modified to rebalance only after a fixed number of nodes have been accessed in the
previous phase, so the adversary can predict when rebalancing begins, and cache the
nodes accessed. Oblix achieves protection against modification attacks and access pat-
tern leakage for both Data and code via Merkle hash trees by using Intel SGX’s built-in
integrity tree and by employing a separate hash tree for data stored outside.

4.3 Trusted Hardware Based Schemes

TrustedDB [8]] — Bajaj et al were one of the first to propose an EDBMS based on
Trusted hardware. TrustedDB is built on IBM 4764 series of secure co-processors
(SCPU) with Sensitive attributes processed by SQLite and a commodity Server for rich
MySQL DBs. Query processing engines are run on both the server and SCPU. Private
attributes can only be decrypted by the client or by the SCPU. The main CPU DBMS
is an unmodified MySQL 14.12 engine, but can be substituted. An ample amount of
changes are required to integrate the hardware to cooperate with each other.
CipherBase [7] is an extension of Microsoft SQL Server, designed to protect data
against admins with root access privileges. Cipherbase integrates a custom designed
FPGA to act as a secure DB processor for the Trusted Module(TM) a submodule for
core operations over encrypted Data, alongside an Untrusted DB Server Module(UM),
The Cipherbase query plan runtime system aids in shipping tuples encrypted with AES-
ECB, AES-CBC or ROPF[9]], from UM to TM then to decrypt, process, and re-encrypt
these tuples in the TM, and ship results back. It provides end to end functionality. Com-
putations runs an order of magnitude slower than regular processors.

ObliDB [20] is an enclave-based oblivious DB engine that efficiently runs general re-
lational read workloads with an SGX implemented. ObliDB can store data with no
obliviousness or indexed, or both combined. Based on the query’s characteristics, like
the amount of DB covered and choice of storage, the query planner chooses one of the
available select algorithm for Select, Aggregate and Join queries. ObliDB uses Path-
ORAM to cover the access patterns of the queries to avoid the disadvantages of Ci-
pherBase and TrustedDB. It is 2.6% slower than SparkSQL.

Stealthdb [61] creates three enclaves on the server: For client authentication, query
pre-processing and operation. Based on the importance, columns are marked with an
Encrypted or Unencrypted index. StealthDB with encrypted IDs incurs 4.2 times the
overhead to PostgreSQL 9.6, for even large DBs.

EnclaveDB [52] is built with an enclave based on Hekaton, optimized for OLTP work-
loads where data fits in the available memory. The model assumes threats from any
party controlling the DB server. It does not consider Access pattern attacks. The imple-
mentation uses AES-GCM, a high-performance AEAD scheme, and Oblivious transfers
with Software Guard Extensions for security.

A Survey of Advanced Encryption for Database Security 11

Table 4. Performance

EDBMS Focus |Type Benchmark Code
CryptDB’11 [50] |S RDBMS/NoSQL |TPC-C 31, TPC-H 4 [50]
Monomi’13 [60] |S/C RDBMS/NoSQL |TPC-C 31, TPC-H 19 [60]
Arx’17 [48]] S RDBMS/MongoDB|TPC-C 30 -
Seabed’ 16 [46] S/C/H |Apache Spark Ad Analytics, MDX API, TPC-DS 99 |-
P-McDB’19 [17] |S RDBMS, Cloud TPC-H -
DBMask’16 [54] |S/C RDBMS TPC-C, CRIS -
Oblix’18 [43] S Search Index, Key-|ZeroTrace, Google Key Transparency, |-
Value, Scalable Signal

Blind Seer [47]] S/C Search Index US Census and “Call of the wild” based|-
TrustedDB’13 [8] |TH SQLite/MySQL TPC-H -
Cipherbase’13 [7] |TCH |MS SQL Server TPC-C 31 -
ObliDB’17 [20] TH MongoDB Big Data [20]
StealthDB’17 [61] |TH PostgreSQL TPC-C 31 [610
EnclaveDB’18 [52]] [TH Hekaton TPC-C, TATP -

Focus(Query Handling) - S: Server, C: Client, TH: Trusted Hardware

5 Discussion

In this section, we discuss and compare the schemes which we presented and catego-
rized above. Section[5.T]discusses performances, compared based on run time and abil-
ity to execute queries in benchmarks including TPC-C, TPC-H, and TATP, Enron email
dataset, Big Data [2]. Benchmarks simulate a complete computing environment to exe-
cute queries with varying degrees of complexity, centred around transactions, decision
support systems, OLAP, etc. Table [d]lists the benchmarks relevant to each scheme.

Section discusses the schemes from a security point of view, and identifies the
main attacks. The security components included in each scheme are listed in Table[3]

5.1 Performance

The performance comparison presented here is based on the results included in the
original papers. It would be outside the scope of this review, as well as technically chal-
lenging to reproduce the original results independently: the software based schemes
considered have different basic components that are not easily integrated, while the
hardware based schemes make use of equipment that is not readily available and whose
configurations are hard to reconstruct. The code is available as open source only for
the schemes mentioned in the Table [5.1} which is not sufficient for elaborate analysis.
Comparisons in terms of complexity is usually done with respect to MySQL or other
popular DBMS and are stated in the scheme descriptions.

Conventional EDB schemes like CryptDB, DBMask are feasible because of their
modular structure and are faster as they resemble traditional DBs. These schemes, how-
ever, try to process full queries in the proxy or the server instead of delegating a portion
to the client. This reduces the functionality. For example, a query with computation
and comparison cannot be performed together as the encryptions do not allow this. In
comparison, privacy-preserving data structure based systems are not immediately prac-

12 Buvana Ganesh and Paolo Palmieri

Table 5. Security Comparisons

EDBMS \Adv \Encryptions, ORAM \Hardware Security
CryptDB HbC |Paillier[45], AES, ROPF [9], mOPE[49] |- IND CPA
Monomi HbC |Paillier[45]], ROPF[9], AES - IND-CPA
Seabed HbC |Splayed Additively SHE - SS/ IND-CPA
DBMask HbC |AB-GKM, AES, ROPF [9], Song SSE[57] |- SS
P-MCDB Mal |AES-ECB, Asghar OPE, - Real/Ideal
Arx HbC |GC, AES, mOPE, ArxEq, ArxAgg - SS/IND-CPA
Blind Seer |[Mal |GC, Bloom Filter Tree - SS
Oblix Mal |D-Oblivious sorted multimaps/Data Struc-|Enclave Real/Ideal
ture, DORAM
TrustedDB |HbC |AES,RSA,SHA SCPU Hardware
Cipherbase |[HbC |AES, Paillier, Column level, ROPF, ORAM |FPGA IND-CPA
ObliDB Mal |Path-ORAM SGX Real/Ideal
EnclaveDB |Mal |AES SGX IND-CPA/CTXT
StealthDB [HbC |AES GCM SGX SS

HbC: Honest but Curious, Mal: Malicious, SS: Semantic Security

tical, due to their focus on obscuring the access pattern, including Oblix, Blind Seer,
SisoSPIR. Here, every query has to search the entire DB to retrieve even one element.

Hardware-based solutions require utilities like SGX from all parties, which is not al-
ways ideal. Storage and Memory in SGX are not scalable over time. Moreover, making
the hardware and the encryptions work together using an existing DBMS framework
can be difficult, as stated in [8]], and [[7].

The distinct features of each scheme make them difficult to collectively compare and
rank. A secure scheme may not be fully functional and vice versa. Each scheme has a
different number of servers, presence or absence of proxies, integration of protocols,
hardware, etc. Therefore, each of the three categories are compared using some stan-
dard parameters and benchmarks in Table [4]

Industry:Encrypted Databases have become commercialised for cloud computing plat-
forms majorly and products are available for use, such as Bitglass Cloud Encryption,
CipherCloud, McAfee MVISION Cloud from Skyhigh Networks, Microsoft Always
Encrypted (SQL Server and Azure Plus enclaves), Netskope, Symantec CloudSOC,
Google Encrypted BigQuery. A majority of the products feature secure search and re-
trieval using a combination of access control and established cryptosystems like AES-
256. Schemes like Bitglass, also support Range Queries. However, advanced EDBs are
still in research and experimental stages, e.g. Encrypted BigQuery.

5.2 Attacks and Security

EDBs support properties requiring ciphertext manipulation, thereby refusing IND-
CCA. Hence most schemes prove security through Real/Ideal or IND-CPA though this
does not guarantee the absence of leakage, which is discussed here as any piece of in-
formation that the user derives more than what the returned query result implies. It can
occur online and offline. We classify leakage based on where it occurs: in the memory,
or during computation.

A Survey of Advanced Encryption for Database Security 13

Table 6. Attacks based on Leakage levels and the affected schemes[[13]]

lLeakage Attacks \ Schemes

L4 - Full-text Substitution Ci-|Full DB Reconstruction [Song et. al. [57]

pher

L3 - PPE - Data Distribution|Inference, IKK [32],|Conventional EDB: CryptDB[50],
(Occurrence leakage) Count, Record Injection |Cipherbase[7], Monomi[60l], Seabed[46]
L2- DET, Appended PRF - Ac-|IKK, Count, Record In-|Unencrypted Indexes - Blind seer [47],
cess, Size and Search Patterns |jection Arx [48]], etc

L, - HE/ORAM - Communi-|Count Encrypted Index/Result Length Hiding -
cation Volume Oblix [43]), SisoSPIR [31]

Leakage from Memory — Inference attacks, termed IKK attack, proposed by Islam
et al. [32] use frequency analysis on SSE with only access pattern disclosure and full
document/partial query knowledge. Naveed et. al. [44] performed inference attacks on
EDBs and state that it is better to offload data to the client and perform queries locally. If
the data distribution of a particular column is known, the column can be reconstructed
in O(N*log N) queries where N is the number of entries. The attack is performed
using frequency analysis on Static DB without any queries. Another passive attack ap-
plicable for most schemes is the Count attack, where an adversary could recover queries
by counting the number of matched records even if the encrypted records are seman-
tically secure. The attacker with full knowledge of query distribution, sees how many
records are returned in response to a query and identifies it if the number is unique,
hence matching every returned record with that keyword [[13]].

Leakage from Computation — Leakage abuse attacks are common and cannot be
eliminated in SE and PPE. In order to evaluate leakages from searchable encryptions,
Curtmola et. al. define a series of leakage levels which was then characterised by Cash
et al.[13]] as £1—Ly4, from least to most leakage. We present leakage levels and related
attacks in Table[6l

Any snapshot of the system contains information about search tokens, past queries,
workloads, and access patterns from logs in the byte level. With this knowledge, the
attacker who compromised the disk can reconstruct queries that were used to modify
the DB [28]. Prior knowledge of the plaintext at various degrees can lead to Injection of
malicious records to reveal data or even without the knowledge, the record can simply
alter the results of the analytics performed on the data. Only some schemes, like Oblix,
can handle injections and malicious entities (Table 3).

By using just the volume of the range queries, databases can be reconstructed in at most
O(N 4logN) time for IV unique entries in the DB [26]. Lacharite et al. [37]] consider Full
and Approximate Database Reconstruction using range queries and access pattern leak-
age from just O(N) queries. Grubbs et al. [27] perform e-Approximate Database recon-
struction (ADR) through access pattern leakage relating it closely to statistical learning
theory and no Query distribution Knowledge with e admissible error. On neglecting the
extremities, ADR can be performed within O(e~'log(e~1)) time, which implies that
the complexity is invariant of the number of items in the DB but focuses on the error €.
Attacks on Hardware — Side channel attacks, as well as denial of service are applica-
ble to the TEE as well [16]. The licensing allows Intel to force itself as an intermediary

14 Buvana Ganesh and Paolo Palmieri

for their enclaves. The software used for isolating the memory to create the SGX can
be made malicious using privilege escalation. Cache timing attacks observe the time
differences between accessing a cached and uncached memory location Private caches
can partially prevent this. Simple power analysis can correlate power consumption and
type of query executed. Memory mapping attacks uses address retrieval for page tables.
Some attacks can be solved by pairing with an ORAM or PIR.

5.3 Future research directions

As highlighted in our discussion, research gaps and open questions are evident in
all three types of schemes: malicious attackers are often not defendable in the con-
structions; EDBs face issues with the dynamic updations; search features like wildcard,
stemming, concatenation are not refined or available altogether. While SSEs focus on
search, only schemes like SisoSPIR [31] give a near complete and secure framework.

Artificial intelligence and machine learning algorithms on DBs are gaining interest.
In general, they require vectorization for efficient computation and tackling natural lan-
guage processing problems. Secure matrix multiplication is necessary to deploy neural
networks even after reducing the activation functions to polynomials like ML Confiden-
tial [25]. NewSQL DBs require privacy preserving matrix multiplication, while NoSQL
structures demand array multiplication, graph operations as well.

Finally, in order to enable meaningful comparison between schemes, a general frame-
work for leakage quantification would prove very useful, and would contribute to im-
prove security of new schemes.

6 Conclusions

In this survey, we highlight how several existing schemes are vulnerable to a number
of known attacks. Finding the delicate compromise between performance and security,
conforming to Anderson’s Law, can only give a viable but imperfect solution. Our dis-
cussion points to future research directions, aimed on one hand to secure schemes in
the shorter term, and on the other hand to improve the real-world applicability of more
secure schemes in the long term.

This survey focuses in particular on the tools required to build an EDB, along with
the pros and cons of using the different methods. When designing a future EDB, the
aim can be to increase security, functionality or both. As the conventional systems are
weaker in security because of PPE leakage, index based schemes are preferred, though
they are not immediately viable. An index based scheme supporting access pattern hid-
ing, updates, range queries, injection, etc, would represent a significant breakthrough.

References

1. PALISADE Lattice Cryptography Lib. (ver.1.9.2). http://palisade-crypto.org

2. Tpc benchmarks, http://www.tpc.org/information/benchmarks.asp

3. ARM security technology building a secure system using trustzone technology (rev. C).
Tech. rep., ARM (2009)

http://palisade-crypto.org
http://www.tpc.org/information/benchmarks.asp

10.

11.

12.

13.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A Survey of Advanced Encryption for Database Security 15

. Agrawal, D., El Abbadi, A., Emekgi, F., Metwally, A.: Database management as a service:

Challenges and opportunities. In: IEEE ICDE. pp. 1709-1716 (2009)

. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for numeric data.

In: ACM SIGMOD International Conference on Management of Data. pp. 563-574 (2004)

. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed

Systems. Wiley Publishing, 2 edn. (2008)

. Arasu, A., Eguro, K., Joglekar, M., Kaushik, R., Kossmann, D., Ramamurthy, R.: Transac-

tion processing on confidential data using cipherbase. In: IEEE ICDE. pp. 435-446 (2015)

. Bajaj, S., Sion, R.: Trusteddb: A trusted hardware-based database with privacy and data

confidentiality. IEEE Trans. Knowl. Data Eng. 26(3), 752-765 (2014)

. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption.

In: EuroCrypt 2009. pp. 224-241 (2009)

Bost, R.: > opos: Forward secure searchable encryption. In: ACM SIGSAC CCS. pp.
1143-1154. ACM (2016)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without
bootstrapping. Electron. Colloquium Comput. Complex. 18, 111 (2011)

Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: Foundations of Computer Science, FOCS 2001. pp. 136-145. IEEE (2001)

Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable
encryption. In: ACM SIGSAC CCS. pp. 668-679. ACM (2015)

. Cash, D, Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner, M.: Highly-Scalable

Searchable Symmetric Encryption with Support for Boolean Queries. In: CRYPTO 2013,
vol. 8042, pp. 353-373 (2013)

Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arithmetic of
approximate numbers. In: AsiaCrypt 2017. LNCS, vol. 10624, pp. 409—-437. Springer (2017)
Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch. 2016, 86 (2016)
Cui, S., Song, X., Asghar, M.R., Galbraith, S.D., Russello, G.: Privacy-preserving searchable
databases with controllable leakage. CoRR abs/1909.11624 (2019)

van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption
over the integers. In: EuroCrypt 2010 LNCS, vol. 6110, pp. 24-43. Springer (2010)

Dyer, J., Dyer, M.E., Djemame, K.: Order-preserving encryption using approximate
common divisors. J. Inf. Secur. Appl. 49 (2019)

Eskandarian, S., Zaharia, M.: Oblidb: Oblivious query processing for secure databases.
PVLDB 13(2), 169-183 (2019)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol.
ePrint Arch. 2012, 144 (2012)

Fuller, B., Varia, M., Yerukhimovich, A., Shen, E., Hamlin, A., Gadepally, V., Shay, R.,
Mitchell, J.D., Cunningham, R.K.: Sok: Cryptographically protected database search. In:
IEEE Security & Privacy. pp. 172-191 (2017)

Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in two
rounds with applications to searchable encryption. In: CRYPTO. LNCS, vol. 9816, pp.
563-592. Springer (2016)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness
theorem for protocols with honest majority. In: Providing Sound Foundations for Cryptog-
raphy: On the Work of Shafi Goldwasser and Silvio Micali, pp. 307-328. ACM (2019)
Graepel, T., Lauter, K.E., Naehrig, M.: ML confidential: Machine learning on encrypted data.
In: Information Security and Cryptology - ICISC 2012. vol. 7839, pp. 1-21. Springer (2012)
Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.: Pump up the volume: Practical database
reconstruction from volume leakage on range queries. In: ACM CCS. pp. 315-331 (2018)

16

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Buvana Ganesh and Paolo Palmieri

Grubbs, P., Lacharite, M.S., Minaud, B., Paterson, K.G.: Learning to Reconstruct: Statistical
Learning Theory and Encrypted Database Attacks. In: IEEE Security & Privacy. pp.
1067-1083 (2019)

Grubbs, P., Ristenpart, T., Shmatikov, V.: Why your encrypted database is not secure. In:
16th Workshop on Hot Topics in Operating Systems. pp. 162-168 (2017)

Halevi, S., Shoup, V.: Algorithms in helib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 554-571. Springer (2014)

He, W., Akhawe, D., Jain, S., Shi, E., Song, D.X.: Shadowcrypt: Encrypted web applications
for everyone. In: ACM SIGSAC. pp. 1028-1039. ACM (2014)

Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with distributed
searchable symmetric encryption. In: CT-RSA. vol. 9610, pp. 90-107. Springer (2016)
Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In: NDSS. The Internet Society (2012)
Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric private
information retrieval. In: ACM SIGSAC CCS’13. pp. 875-888. ACM (2013)

Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric private
information retrieval. In: ACM SIGSAC CCS’13. pp. 875-888. ACM (2013)

Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In:
Yu, T., Danezis, G., Gligor, V.D. (eds.) the ACM CCS’12. pp. 965-976. ACM (2012)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd Edition. CRC Press (2014)
Lacharité, M., Minaud, B., Paterson, K.G.: Improved reconstruction attacks on encrypted
data using range query leakage. In: 2018 IEEE Security & Privacy. pp. 297-314 (2018)

Lai, S., Yuan, X., Sun, S., Liu, J.LK,, Liu, Y., Liu, D.: GraphseQ: An encrypted graph database
for privacy-preserving social search. In: ACM Security AsiaCCS. pp. 41-54. ACM (2019)
Lau, B., Chung, S.P., Song, C., Jang, Y., Lee, W., Boldyreva, A.: Mimesis aegis: A mimicry
privacy shield-a system’s approach to data privacy on public cloud. In: 23rd USENIX
Security Symposium. pp. 33—48. USENIX Association (2014)

Lewi, K., Wu, D.J.: Order-Revealing Encryption: New Constructions, Applications, and
Lower Bounds. In: ACM SIGSAC- CCS’16. ACM Press (2016)

Liu, G., Yang, G., Wang, H., Xiang, Y., Dai, H.: A Novel Secure Scheme for Supporting
Complex SQL Queries over Encrypted Databases in Cloud Computing. Security and
Communication Networks (Jul 2018)

Meng, X., Kamara, S., Nissim, K., Kollios, G.: GRECS: Graph encryption for approximate
shortest distance queries. In: 22nd ACM SIGSAC. ACM (2015)

Mishra, P., Poddar, R., Chen, J., Chiesa, A., Popa, R.A.: Oblix: An efficient oblivious search
index. In: 2018 IEEE Symposium on Security and Privacy. pp. 279-296 (2018)

Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property preserving encrypted
databases. In: 22nd ACM SIGSAC-CCS ’15. ACM Press (2015)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
EuroCrypt 1999. pp. 223-238 (1999)

Papadimitriou, A., Bhagwan, R., Chandran, N., Ramjee, R., Haeberlen, A., Singh, H., Modi,
A., Badrinarayanan, S.: Big data analytics over encrypted datasets with seabed. In: 12th
USENIX Symposium on OS Design and Implementation. USENIX Association (2016)
Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George, W., Keromytis,
A., Bellovin, S.: Blind seer: A Scalable Private DBMS. In: 2014 IEEE Security & Privacy.
pp. 359-374. IEEE (2014)

Poddar, R., Boelter, T., Popa, R.A.: Arx: an encrypted database using semantically secure
encryption. Proceedings of the VLDB Endowment 12(11), 1664-1678 (Jul 2019)

Popa, R.A., Li, FH., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding. In: 2013 IEEE Symposium on Security and Privacy. pp. 463-477 (2013)

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

A Survey of Advanced Encryption for Database Security 17

Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: processing queries
on an encrypted database. Commun. ACM 55(9), 103-111 (2012)

Pouliot, D., Wright, C.V.: The shadow nemesis: Inference attacks on efficiently deployable,
efficiently searchable encryption. In: ACM SIGSAC. pp. 1341-1352. ACM (2016)

Priebe, C., Vaswani, K., Costa, M.: Enclavedb: A secure database using SGX. In: 2018
IEEE Symposium on Security and Privacy. pp. 264-278 (2018)

Saha, T.K., Rathee, M., Koshiba, T.: Efficient private database queries using ring-lwe
somewhat homomorphic encryption. J. Inf. Secur. Appl. 49 (2019)

Sarfraz, M.L., Nabeel, M., Cao, J., Bertino, E.: Dbmask: Fine-grained access control on
encrypted relational databases. Trans. Data Priv. 9(3), 187-214 (2016)

Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL (Apr
2020), microsoft Research, Redmond, WA.

Shay, R., Blumenthal, U., Gadepally, V., Hamlin, A., Mitchell, J., Cunningham, R.: Don’t
even ask: Database access control through query control. SIGMOD Rec. 47(3), 17-22 (2018)
Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on encrypted data.
In: 2000 IEEE Symposium on Security and Privacy. pp. 44-55 (2000)

Stefanov, E., van Dijk, M., Shi, E., Chan, T.H., Fletcher, C.W., Yu, X., Devadas, S.: Path
ORAM: an extremely simple oblivious RAM protocol. J. ACM 65(4), 18:1-18:26 (2018)
Tex, C., Schiler, M., Bohm, K.: Towards meaningful distance-preserving encryption. In: 30th
Intl. Conf. on Scientific and Statistical Database Management, SSDBM. pp. 2:1-2:12 (2018)
Tu, S., Kaashoek, M.E.,, Madden, S., Zeldovich, N.: Processing analytical queries over
encrypted data. Proceedings of the VLDB Endowment 6, 289-300 (Mar 2013)
Vinayagamurthy, D., Gribov, A., Gorbunov, S.: Stealthdb: a scalable encrypted database
with full SQL query support. POPETs 2019(3), 370-388 (2019)

Wiese, L., Waage, T., Brenner, M.: Clouddbguard: A framework for encrypted data storage
in nosql wide column stores. Data Knowl. Eng. 126, 101732 (2020)

Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure knn computation on encrypted
databases. In: ACM SIGMOD ’09. pp. 139-152 (2009)

Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Sympo-
sium on Foundations of Computer Science. pp. 160-164. IEEE Computer Society (1982)
Yuan, X., Guo, Y., Wang, X., Wang, C., Li, B., Jia, X.: Enckv: An encrypted key-value store
with rich queries. In: ACM Asia CCS. pp. 423-435 (2017)

Zhou, Y., Li, N, Tian, Y., An, D., Wang, L.: Public key encryption with keyword search in
cloud: A survey. Entropy 22(4), 421 (2020)

https://github.com/Microsoft/SEAL

	A Survey of Advanced Encryption for Database Security: Primitives, Schemes, and Attacks

