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Abstract 
 

Mesoporous silica materials have been investigated as novel formulation aids for oral 

drug delivery due to their drug solubility enhancing characteristics. However, the 

mechanism of drug release from these systems is not well understood. Several 

studies have reported unexplained incomplete release from mesoporous silica 

carriers. It has been reported, in other research fields, that passive drug adsorption 

onto the silica surface is possible. However, the implications for this behaviour on 

drug release from silica systems has not been considered to date. Dissolution studies 

involving these formulations are generally conducted using Type II dissolution 

apparatus under sink conditions with traditional simple buffer media. In this thesis, 

the suitability of this dissolution approach for mesoporous silica systems is 

considered. The overall aim of this thesis was to investigate factors influencing drug 

adsorption and release from mesoporous silica systems to enhance understanding of 

their drug release profiles.  

This thesis began with a comprehensive overview of the literature which identified 

the gaps in knowledge in this area. Based on these findings, the hypothesis, aims and 

objectives were developed. The four research chapters were each dedicated to 

factors which could potentially affect drug release; formulation excipients, 

dissolution medium, drug/silica interactions and dissolution apparatus. The role of 

drug adsorption on the silica surface was explored across several of the chapters 

using adsorption isotherms, adsorption models and spectroscopic techniques. 

Several aspects of dissolution experimental design were investigated including sink 

and supersaturating conditions, traditional simple buffer media versus biorelevant 



xxvi 
 

media and Type II (paddle) apparatus versus Type IV (flow-through cell) and a 

Transfer model (incorporating an SGF to FaSSIF-V2 media transfer). Finally, the 

results of in vitro dissolution studies were compared to in vivo performance in a 

fasting pig model.  

The literature review demonstrated the gap in knowledge concerning the mechanism 

of drug release from mesoporous silica systems. This informed the central themes of 

the thesis which were explored in four research chapters. In Chapter 3, it was 

determined that formulation excipients which can reduce surface tension of the 

dissolution media (e.g. surfactants) can significantly increase drug release from 

mesoporous silica carriers. Passive drug adsorption and competitive adsorption 

involving drug and surfactant molecules on the silica surface was also observed. 

Chapter 4 built on work from the previous chapter and demonstrated that 

components of biorelevant media that reduced surface tension can also enhance 

drug release from silica systems. This chapter established that the influence of 

biorelevant media extends beyond its impact on drug supersaturation promotion and 

that its use should also be recommended under sink conditions. In Chapter 5, the 

focus was placed on investigating drug/silica interactions under supersaturating 

conditions. It was determined these interactions occur through a hydrogen bonding 

process and not via non-specific hydrophobic interactions. It was determined that 

the dynamic equilibrium which exists between adsorbed and free drug during passive 

adsorption and dissolution can be related to the drug’s activity in solution. Finally, in 

Chapter 6, it was observed that dissolution experimental design can influence in vitro 

drug release from mesoporous silica systems. It was established that the Type IV 
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apparatus incorporating an SGF -> FaSSIF-V2 transfer is the best predictor of in vivo 

performance.  

The findings of this thesis have made a significant contribution to enhancing 

knowledge on drug release from mesoporous silica systems. It provides robust 

recommendations for the design of in vitro dissolution studies involving mesoporous 

silica formulations including choice of dissolution media, drug supersaturation level 

and dissolution apparatus. Interesting results concerning the influence of drug 

activity in solution on the equilibrium process observed during drug adsorption and 

dissolution from mesoporous silica materials were documented. These findings open 

up interesting new avenues for future research in the field of mesoporous silica 

carriers for oral drug delivery.  
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1.1.  Oral Drug Delivery 

Drug delivery via the oral route is the most widely used and patient acceptable 

dosage form (1). For an orally administered drug to be absorbed into the 

bloodstream, it must first undergo dissolution in the gastrointestinal tract (2). In 

2000, it was reported that the introduction of combinatorial chemistry and high 

throughput screening had resulted in the properties of new chemical entities shifting 

towards higher molecular weight and increasing lipophilicity, resulting in decreased 

aqueous solubility (3, 4). This trend continues in drug discovery today and has 

become a significant challenge for the pharmaceutical industry as novel formulations 

are required to deliver these poorly water-soluble drug molecules (5, 6).  

 

1.1.1. Biopharmaceutical Classification System (BCS)  

To assist in formulation development, a scientific framework, the Biopharmaceutical 

Classification System, was developed by Amidon et al (Figure 1.1) (7). Under this 

system, drugs can be categorized into four basic groups according to their solubility 

properties and their ability to permeate the gastrointestinal mucosa. 

Physicochemical limitations of the drug as a source of incomplete release from the 

formulation are recognised. This classification is based on the solubility properties of 

the drug substance throughout the upper GI tract and is defined as the minimum 

solubility of a drug across a pH range of 1 to 8 at a temperature of 37 ± 0.5 °C. High-

solubility drugs are categorized as those with a ratio of dose to solubility volume that 

is less than or equal to 250 ml. Permeability (Peff, expressed in units of 104 cm per 

second) is defined as the effective human jejunal wall permeability of a drug. High-
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permeability drugs are generally those with an extent of absorption greater than or 

equal to 90 %. Below this figure, the drug is considered poorly permeable (8). 

It was reported in 2002 that more than 40 % of drug candidates discovered using 

combinatorial chemistry have poor aqueous solubility, a number which has only 

increased in recent years (5, 9).  These BCS Class II and IV drugs pose an industry-

wide challenge as a result of their poor dissolution behaviour in vivo.  

 

 

Figure 1.1 The Biopharmaceutical Classification Scheme (adapted from 

Amidon et al  (7)). 
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1.2.  Drug Dissolution 

Dissolution is the process of a solute dispersing/dissociating in a solvent, forming a 

molecular-level chemically and physically homogenous dispersion (10). In oral drug 

delivery, the drug generally exists in a solid phase initially and dissolves in the 

dissolution medium to transition to a liquid phase (solution). This is an essential step 

before the drug can be absorbed across the intestinal wall. Absorption from poorly 

water-soluble drugs, falling into the BCS Class II category, is typically dissolution rate-

limited (11).  

 

1.2.1. Dissolution Theory 

Dissolution occurs spontaneously when a negative free-energy difference exists 

between the free energy of the drug molecules in the solid phase (Gsolid) and the 

liquid phase (Gliquid) (12). Molecules will move from the solid to the liquid phase until 

the free-energy gradient is eliminated and equilibrium is reached (Gsolid = Gliquid). This 

free-energy difference (∆G) can be described in Equation 1.1, 

∆𝐺 =  ∆𝐻 − 𝑇∆𝑆            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1.1) 

where ∆H and ∆S are the enthalpy and entropy of mixing, respectively. It is  

dependent on temperature, physicochemical properties of the drug and composition 

of the dissolution medium (13). Dissolution of a drug molecule from a solid phase to 

a liquid phase in solution involves three stages (Figure 1.2). Drug particles are wetted 

by the solvent which results in the breakdown of solid-state bonds. The solvent 

medium generates a cavity to accommodate the individual drug molecules released. 

Finally, the drug molecules enters the solvent cavity, resulting in dissolution (14).  
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Figure 1.2 Schematic representation of the dissolution process 
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1.2.2.  Dissolution Process 

Drug dissolution occurs in a two-step process. The drug molecules first undergo a 

solid-liquid phase transition in the interfacial region where the drug quickly reaches 

a saturated concentration (Cs). The concentration gradient which exists between this 

saturated layer and the bulk solution (Cb) drives the diffusion of the drug molecules 

into the bulk liquid (2). This diffusion is the second stage of the dissolution process 

(Figure 1.3). The movement of drug into the bulk solution allows for more drug 

molecules in the solid phase to undergo phase transition and enter the interfacial 

region, maintaining its saturated drug concentration (12).  

The boundary layer is an area of low flow movement adjacent to the interfacial region 

existing as a result of adhesional forces between the solute and solvent. Drug 

molecules must first diffuse through this layer before reaching the bulk solution (12, 

15).  

 

 

Figure 1.3 Schematic representation of the dissolution process  
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1.2.3.  Dissolution Rate 

Dissolution rate is the movement of mass from a solid phase to a liquid phase per 

unit time (dm/dt). It can be represented mathematically by the Noyes-Whitney 

equation (Equation (1.2)) (16) 

d𝑚

d𝑡
=  −𝑘(𝐶𝑠 −  𝐶𝑏)                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1.2) 

The rate of dissolution is proportional to both the concentration gradient between 

the interfacial region and the bulk solution in addition to a second factor, the 

constant k.  

Nernst and Brunner developed this equation further by incorporating the diffusion 

layer concept and Fick’s second law to derive the Nernst-Brunner equation (Equation 

(1.3)) (17, 18) 

d𝐶

𝑑𝑡
=  

𝐷𝑆

𝑉ℎ
(𝐶𝑠 − 𝐶)               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1.3)  

where D is the diffusion coefficient, S is the surface area of the solid in contact with 

the dissolution medium, h is the thickness of the diffusion layer and V is the volume 

of the dissolution medium.  

The thickness of the boundary layer can be influenced by the chemical composition 

of the drug and the dissolution medium, the temperature of the system and 

dissolution medium agitation (14, 15). The solid/liquid interfacial surface area can be 

increased by reducing particle size, increasing particle porosity and increasing the 

wettability of the surface (2, 19-21).  
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1.2.4. Wettability of the Solid Surface during Dissolution 
 

The process of wetting the drug’s solid surface during drug delivery is a key step in 

the dissolution process (Section 1.2.2). Wetting of drug particles by the dissolution 

medium occurs when the surface of the drug solid is covered by liquid on immersion 

in the dissolution medium. A decrease in the contact angle between the drug surface 

and liquid medium is observed as the contact area between the two phases increases 

(Figure 1.4).  

 

 

Figure 1.4 Spreading of a liquid on a solid surface 

 

Wettability can be defined as the tendency for a liquid to spread on a solid substrate. 

It describes the extent of intimate contact between the liquid and solid phases (22). 

Increasing the wettability of the solid surface can increase drug dissolution rate.  Two 

parameters have a significant influence on the wettability of a liquid on a solid 

surface – the degree/extent of wetting and the rate of wetting. The degree of wetting 

is generally indicated by the contact angle formed at the interface between solid and 

liquid and is dependent on surface and interfacial energies at the solid/liquid 

interface. The rate of wetting is a measure of how fast the liquid wets the surface 
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and subsequently spreads over it. This is influenced by a number of factors including 

temperature, capillary forces, viscosity of the liquid and chemical reactions occurring 

at the interface (23).  

Liquid properties are one of the most significant factors influencing both the extent 

and rate of wetting. Viscosity, surface tension and density affect spreading of a liquid 

drop over a solid substrate. Based on Young's equation (24), a lower contact angle or 

better wetting is expected when the liquid interfacial tension is low. This is most 

commonly achieved through the addition of surfactants to the dissolution 

media. High viscosity of the liquid phase can impede surface wetting. It has been 

reported that a droplet with higher viscosity produces a smaller maximum spread, 

because the higher viscous dissipation decreases the rate of spread (25). These 

factors need to be considered when choosing an appropriate dissolution medium for 

in vitro release studies (Section 1.4.2).  

 

1.3. Dissolution Enhancing Formulations 
 

Where solubility or dissolution has been identified as the rate-limiting step for 

absorption, a strategic decision is usually made to progress the drug candidate via 

the use of enabling formulations (26). Numerous formulation approaches have been 

developed to enhance drug dissolution. These can be divided into physical and 

chemical modifications (27). Chemical modifications encompass the use of soluble 

pro-drugs and conversion of the compound of interest to a more soluble salt form. 

These strategies are not preferred as they result in the pharmaceutical company 
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performing further clinical testing as these products represent NCEs (new chemical 

entities) (21). 

Many approaches have been developed which physically modify the drug. These 

include particle size reduction, modification of the crystal habit, complexation, 

solubilisation and the use of drug loading carriers (Table 1.1). This thesis focused on 

the use of inorganic carriers as drug delivery systems, specifically silica carriers. Drug 

loaded onto these carriers exists in an amorphous form, thus enhancing dissolution 

(Section 1.3.1) (28) Both non-porous and mesoporous systems were investigated. 

These materials are discussed, in detail, in Chapter 2 where a detailed literature 

review of their use as novel oral drug delivery formulations is presented. 
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Table 1.1 Dissolution enhancing formulations 

PHYSICAL MODIFICATION 

Particle Size Reduction  

Micronization (20, 29, 30) 

Nanosuspensions (31-33) 

  

Modification of the Crystal Habit  

Polymorphs (34-36) 

Co-Crystals (37-39) 

  

Complexation/Solubilisation  

Surfactants (40-42) 

Cyclodextrins (43, 44) 

  

Drug-Loading Carriers  

Lipid-Based Systems (45-48) 

Polymeric Carriers (49-51) 

Inorganic High Surface Area Carriers  
Non-Porous Carriers (52, 53) 
Mesoporous Carriers (54-56) 

CHEMICAL MODIFICATION 

Soluble Prodrugs (57, 58) 

Salts (59, 60) 

 

 

1.3.1. Amorphous Drug Formulations 

 

Poorly water-soluble, crystalline drugs exhibit an increase in solubility in their 

amorphous form (21, 61). One method utilised to generate the amorphous state is 

to cool melted crystalline drug below its Tg (glass transition temperature), while 

avoiding crystallization, to the point at which it becomes a supercooled liquid (62). 

Material in this glassy state behaves like a brittle solid, but without crystalline 

structure and possessing short-range order. Other approaches to produce the 

amorphous form include vapor condensation, precipitation from solution (solvent 
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evaporation, freeze drying and spray drying) and milling (21, 63-65). The amorphous 

state of a drug has a higher enthalpy, entropy, free energy and volume compared to 

its crystalline form, resulting in higher apparent drug solubility. Amorphous drug 

delivery systems are developed to take advantage of the favourable solubility 

characteristics of the amorphous drug form.  

Drug loaded onto polymeric carriers can exist in its amorphous state and these 

amorphous solid dispersions (ASDs) have been the focus of much research over the 

last decades (49, 66-68). Examples of commonly used polymers include 

hydroxypropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP), polyethylene 

glycol (PEG) and polyacrylic acid (PAA). Formulations incorporating this approach 

have proven useful for enhancing drug dissolution (63, 69, 70). One challenge for 

ASDs is to ensure long-term stability of the drug in the amorphous form through 

prevention of drug recrystallization (27, 49). The amorphous solid state is one of high 

free energy and thus it is thermodynamically favourable to return to the crystalline 

form (61). 

Alternative carriers to polymers are also under investigation to assess their 

usefulness in formulation development.  These include inorganic silica carriers, which 

are the focus of this thesis. Drug loaded onto the silica surface can also become 

amorphous in nature, resulting in enhanced drug release (54, 55, 71). Silica materials 

possess many favourable characteristics for use as carriers in oral drug delivery. They 

boast high surface areas, ordered pore networks and surface functionalization 

capabilities for controlled drug release (72-74). Long-term stability of amorphous 

drug in the mesopores has also been reported (75, 76). Silica-based drug carriers are 
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more resistant to heat, pH, mechanical stress, and hydrolysis-induced degradations 

than many polymer materials used to enhance drug dissolution (77). Drug-loaded 

silica formulations are discussed in more detail in Chapter 2. 

 

1.3.2. Supersaturating Drug Delivery Systems (SDDS) 
 

Dissolution enhancing formulations such as ASDs and drug-loaded silica systems can 

result in drug supersaturation in the intestinal environment. This is advantageous as 

it can overcome the limitations of equilibrium solubility levels for BCS Class II drugs 

(78). During dissolution of these formulations, drug concentrations exceed their 

equilibrium solubility in the intestinal fluids producing a thermodynamically unstable 

drug supersaturation that has the tendency to return to the equilibrium state by 

precipitation (Figure 1.5). However, if the metastable state exists for a time sufficient 

for drug adsorption, it can result in an enhanced flux across the intestinal wall (79). 

Therefore, the benefit of these formulations is dependent on the stability of the 

saturated state and the kinetics of drug precipitation.  

In this thesis, the supersaturation potential of drug-loaded silica systems and the 

relationship of supersaturated drug release with drug adsorption behaviour are 

investigated.  
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Figure 1.5 Supersaturating drug delivery system profile  

 

1.4.   In Vitro Dissolution Experimental Set-Up 

In vitro drug dissolution experiments are an essential part of formulation pre-

screening. While many innovative drug delivery systems have been developed for 

BCS Class II drugs, traditional dissolution experiments have not changed radically 

since the 1970s. Experiments involving the standard basket (Type I) and paddle 

apparatus (Type II) and simple dissolution media have limitations which are of 

significance to BCS Class II drugs with their challenging biopharmaceutical properties. 

The development of more biorelevant in vitro dissolution experiments could improve 

the quality of data generated and lead to better prediction of in vivo behaviour and 

bioavailability (80).  
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1.4.1. Sink vs Non-Sink Conditions 
 

When the concentration, Cb, (the concentration gradient which exists between this 

saturated layer and the bulk solution) is not more than 33 % of the saturated 

solubility value (Cs), it is considered negligible (81, 82). This is the definition of ‘sink’ 

conditions for a dissolution study. These low drug concentrations attempt to model 

what occurs in the gastrointestinal tract when drug is absorbed rapidly from solution 

across the intestinal barrier (83, 84). Under sink conditions, (Cs – Cb) becomes 

constant such that the rate of dissolution is directly proportional to the saturated 

solubility, Cs. Most dissolution studies reported in the literature are conducted under 

sink conditions. However, non-sink conditions are now recommended for in vitro 

dissolution of novel BCS Class II formulations which adopt a supersaturating drug 

delivery approach (85).  

 

1.4.2. Dissolution Media 

The composition of the gastrointestinal tract can significantly affect drug solubility, 

an important parameter in the Noyes-Whitney and Nernst-Brunner equations 

(Section 1.2.3). For ionisable drugs, buffer capacity and pH are pertinent factors 

whereas for lipophilic drugs, fat level and bile salt concentration should be 

considered (86). Physiological parameters such as surface tension (Section 1.2.4) and 

volume of the luminal contents can also play an important role (87). A significant 

proportion of dissolution experiments in the literature investigating drug release 

from dissolution enabling formulations utilise traditional dissolution media such as 

0.1 M HCl and phosphate buffer (pH 6.8) (88-92). These simple media do not mimic 
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the contents of the gastrointestinal tract and therefore cannot adequately simulate 

the in vivo environment. Over the last decade, the development of biorelevant media 

has aimed to better replicate conditions in the stomach and the proximal small 

intestine in both the pre- and postprandial states (including Fasted-State Simulated 

Intestinal Fluid (FaSSIF-V2), which is utilised in this thesis) (87, 93-95). This has 

improved the relationship between in vitro dissolution studies and in vivo 

performance. However, many studies continue to use traditional media rather than 

their more biorelevant counterparts, which is potentially inappropriate for BCS Class 

II drug formulations.  
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1.4.3. Dissolution Apparatus 

The basket (Type I) and paddle (Type II) apparatus were the first dissolution tests 

introduced into the US Pharmacopeia. They are useful for quality control testing and 

for product development of immediate release (IR) oral drug products belonging to 

BCS Class I and Class III. However, these in vitro dissolution methods are not as 

successful at predicting in vivo behaviour of formulations delivering poorly water-

soluble drugs (80). 

Paddle and basket apparatus require dissolution media volumes in the range of 500-

1000 ml (Figure 1.6). These volumes are utilised to generate sink conditions, which 

are useful to demonstrate complete drug release from a dosage form. However, this 

overestimates the gastric volume in the fasted stomach which is unlikely to exceed 

250 ml (96). The hydrodynamics of these apparatus are also problematic as they do 

not consider in vivo conditions and vary substantially within the dissolution vessel 

(97, 98). Another concern is the potential development of a coning effect in the 

apparatus during the experiment (99).  Granules or particles with sufficiently high 

density form a mound, inhibiting dissolution in the stagnant zone below the 

paddle/basket.  
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Figure 1.6 Schematic of USP II (paddle) apparatus 

 

In recent years, two additional dissolution apparatus have been added to the US 

Pharmacopeia, the reciprocating cylinder (Type III) and the flow-through cell (Type 

IV). In this thesis, the biorelevance of the flow-through cell is compared to the paddle 

apparatus (Figure 1.6 and Figure 1.7).  

The USP Type IV apparatus consists of a reservoir containing the dissolution medium, 

a water bath that maintains the dissolution medium at 37 ± 0.5 oC and a pump that 

forces it upwards through the cell at a specific flow rate (4, 8 or 16 ml/min) (Figure 

1.7). The flow-through cell is fitted with a filter to prevent the escape of dissolved 

particles from the top of the cell. The bottom cone of the cell is filled with small glass 

bead (~ 1 mm) to produce a laminar fluid flow and one bead (~ 5 mm) to protect the 

fluid entry tube (80). It can operate as an open system with fresh dissolution medium 

continuously flowing through the cell or as a closed system where a fixed volume of 

dissolution medium is recycled (100). The USP IV has the potential to operate at 
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lower agitation rates than the paddle apparatus, resulting in lower fluid velocities 

which are considered more biorelevant (101, 102). However, data regarding the 

superiority of the USP Type IV over traditional dissolution apparatus are not in 

agreement (103, 104). Further investigation is warranted to determine whether the 

USP Type IV is superior at predicting in vivo behaviour compared to the basket and 

paddle apparatus.  

 

Figure 1.7 Schematic of USP IV (flow-through cell) apparatus 

 

1.4.4. In Vitro In Vivo In Silico Relationships 
 

In vitro biorelevant dissolution testing has proved useful in qualitatively, and in some 

cases quantitatively, predicting in vivo performance. However, these in vitro methods 

cannot capture the full picture of what is happening in the in vivo environment. For 

example, gastric emptying, permeability through the intestinal membrane, transit 

time, pH and fluid volume in each segment of the GI tract, first pass metabolism and 

excretion can all play a role in drug bioavailability. To better predict in vivo behaviour, 
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in vitro test results can be combined with physiologically based pharmacokinetic 

(PBPK) models using in silico software (80). An in vitro in vivo correlation (IVIVC) is 

traditionally defined as a predictive mathematical relationship between in vitro drug 

dissolution and an in vivo experiment, covering either the entire absorption curve 

(Level A) or an individual parameter associated with the rate or extent of absorption 

(as in Level C correlations) (105). Linear IVIVC’s have been derived for modified 

release preparations but are unlikely in the case of immediate release products for 

which absorption is not dissolution rate limited (106). However, the non-linear 

models produced by in silico software can be useful – here the term in vitro in vivo 

relationship (IVIVR) is preferred to IVIVC. The development and implementation of in 

silico models to predict IVIVRs for use in novel immediate release formulation 

development is still in its infancy. Working to increase understanding of the link 

between in vitro dissolution and in vivo performance could help streamline the drug 

development process.  

 

1.5.  Adsorption at Solid/Liquid Interface 
 

While dissolution has been the subject of extensive research in the drug delivery 

field, significantly less is reported relating to drug adsorption at the solid-liquid 

interface. This adsorption could have a role in determining the extent of drug release 

from particular novel drug delivery formulations such as inorganic carriers. This gap 

in knowledge requires further investigation and is a central focus of this thesis.  
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1.5.1. Theory of Adsorption at the Solid/Liquid Interface 
 

Adsorption results from energetically favourable interactions between the solid 

adsorbent and the solute species. It is often a complex process as it can be influenced 

by a combination of solid, solvent and solute components of the system (107). 

Interactions between the adsorbent and adsorbate species can take the form of 

various electrostatic interactions, including Van der Waals forces and hydrogen 

bonding, or stronger interactions such as covalent bonding. Lateral interaction 

between molecules of the adsorbed species can also contribute to the adsorption 

and desorption processes.  

These interactions between adsorbate species (in solution) and adsorbent material 

result in the selective partitioning of the adsorbate species to the interface in 

preference to the bulk medium (Figure 1.8). 

 

 

Figure 1.8 Adsorption at the solid/liquid interface 
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Adsorption can be broadly classified into two categories, physical adsorption and 

chemical adsorption (108). Physical adsorption is usually weak, generally reversible 

and involves small energy changes. Van der Waals forces and electrostatic forces 

such as hydrogen bonding are primarily responsible for physical adsorption which is 

also characterized by a high rate of adsorption and the formation of multilayers (109). 

Chemical adsorption occurs through covalent bonding between the adsorbate and 

the solid surface. Chemical adsorption normally involves an activation stage and is 

characterized by relatively high energy changes and a low rate of adsorption. Such 

adsorption is usually strong, irreversible and limited to a monolayer. However, this 

distinction between physical and chemical adsorption has been proven to be 

arbitrary and in many cases an intermediate character of adsorption exists, for 

example, adsorption involving strong hydrogen bonds or weak charge transfer (110). 

 

1.5.2. Adsorption Isotherms 
 

Adsorption isotherms are used to describe adsorption processes and represent a 

functional relationship between the amount adsorbed and the activity of the 

adsorbate at equilibrium under constant temperature conditions (107). A number of 

isotherm models have been developed to describe this relationship based on varying 

fundamental approaches (111). Two of the most commonly applied isotherms are 

discussed below.  
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1.5.2.1. Langmuir Isotherm 
 

The Langmuir isotherm is an empirical model which assumes monolayer adsorption 

(the adsorbed layer is one molecule in thickness). Under the conditions of this model, 

adsorption only occurs at a finite number of definite localized sites which are 

identical and equivalent. There is no lateral interaction or steric hindrance between 

the adsorbed molecules, even on adjacent sites (112). Homogeneous adsorption 

exists where each molecule possesses constant enthalpies and sorption activation 

energy (all sites possess equal affinity for the adsorbate) (113). 

Graphically, it is characterized by a plateau, an equilibrium saturation point where no 

further adsorption can take place (Figure 1.9) (114). The Langmuir linear equation is 

displayed in Table 1.2. 

 

Figure 1.9 Langmuir Isotherm (B represents the concentration of drug 

adsorbed to the silica surface, F represents the concentration of free 

substrate in solution at equilibrium conditions) 
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Table 1.2  Linearized forms of Langmuir and Freundlich isotherms 

NAME LINEARISED FORM 

Langmuir 
𝐹/𝐵 =  (1/𝐾𝐿. 𝑁𝑡)  +  𝐹/𝑁𝑡 

Freundlich 𝑚𝑙𝑜𝑔𝐹 =  𝑙𝑜𝑔𝐵 +  𝐾𝐹 

 

where B is the concentration of drug adsorbed to the silica surface, F is the 

concentration of free substrate in solution at equilibrium, Nt is the total number of 

binding sites and KL and KF are related to the average binding affinity. 

 

1.5.2.2. Freundlich Isotherm 
 

In contrast to the Langmuir isotherm, the Freundlich empirical model can be applied 

to multilayer adsorption, with non-uniform distribution of adsorption heat and 

affinities over the heterogeneous surface (Figure 1.10) (115). At present, the 

Freundlich isotherm is widely applied in heterogeneous systems especially for 

organic compounds or highly interactive species on activated carbon and molecular 

sieves. The slope of the line, determined from the linear equation, is a measure of 

adsorption intensity or surface heterogeneity, becoming more heterogeneous as its 

value gets closer to zero. The Freundlich linear equation is displayed in Table 1.2. 
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Figure 1.10  Freundlich Isotherm (B is the concentration of drug adsorbed 

to the silica surface, F is the concentration of free substrate in solution 

at equilibrium) 

 

1.6.  Adsorption/Desorption Behaviour of Mesoporous Silica 

Systems: Current Knowledge 
 

Mesoporous silica systems have been extensively investigated as novel formulations 

for BCS Class II drugs (see Chapter 2). However, there remains a gap in knowledge 

concerning the mechanism of drug release from these carriers. An initial ‘burst’ 

release of drug is generally observed in their dissolution profile. However, while most 

of the drug is released here, full drug dissolution from the silica surface is not 

achieved in many cases (54, 55, 116). This incomplete release profile is not well 

understood.  
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It has been suggested that drug release rate can be controlled by the equilibrium 

between drug molecules bonding with silica surface versus free drug in solution in 

the aqueous medium (117). This was suggested by Xue et al as an explanation for the 

slower drug release rate observed after initial ‘burst’ release from a mesoporous 

silica formulation. It may also play a role in understanding the basis of incomplete 

release from mesoporous silica systems but this has not been investigated to date. 

Outside of its use in drug delivery, mesoporous silica has been investigated as an 

adsorbent for chemical removal from wastewater of pharmaceutical industrial 

manufacturers (118). Bui et al reported that drug molecules could adsorb both 

reversibly and irreversibly onto the silica surface. This could have implications for 

drug release from when these materials are utilized as drug delivery systems. 

Furthermore, a comprehensive review on adsorption of organic molecules onto the 

silica surface has been published by Parida et al (119). They presented an overview 

of studies which reported passive adsorption of numerous organic adsorbates onto 

the silica surface including surfactants, dyes, polymers and proteins.  

Based on these reports and knowledge of the fundamentals of adsorption at the 

solid/liquid interface discussed above (Section 1.5), it would be of interest to examine 

adsorption/release behaviour from mesoporous silica systems during dissolution. 

This could enhance understanding of the mechanism of drug release from these 

carriers and thus aid in formulation development.  
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1.7.  Hypothesis, Aims and Objectives 
 

1.7.1. Hypothesis 

 

The mechanism of drug dissolution from mesoporous silica systems is not well 

understood. Investigation of factors that influence drug adsorption, retention and 

release from these formulations can help address this gap in current knowledge.  

 

1.7.2. Aim 

 

Investigate factors influencing drug adsorption and release from mesoporous silica 

systems to enhance understanding of their drug release profiles.  

 

1.7.3. Objectives 
 

A number of specific objectives were identified to achieve this aim.  

1. Compile a literature review to examine current knowledge of drug loading and 

release from mesoporous silica   

2. Exploration of drug and surfactant adsorption/release behaviour on the silica 

surface with a view to determining factors influencing these processes 

3. Ascertain factors which play a role in drug adsorption and dissolution from 

mesoporous silica formulations in the presence of biorelevant media (SGF and 

FaSSIF-V2) 
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4. Probe the mechanism of drug/silica interactions and whether these interactions 

are influenced by a dynamic equilibrium process under supersaturating 

conditions 

5. Investigate the potential for in vitro dissolution experimental design to affect 

drug dissolution from a mesoporous silica formulation 
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Figure 1.11 Graphical thesis outline
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Chapter 2: Mesoporous Silica Formulation 

Strategies for Drug Dissolution Enhancement: A 

Review 

 

Modified Version of Publication 

McCarthy CA, Ahern RJ, Dontireddy R, Ryan KB, Crean AM. Mesoporous silica 

formulation strategies for drug dissolution enhancement: a review. Expert Opinion 

on Drug Delivery. 2016;13(1):93-108. 
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2.1.  Abstract  
 

Mesoporous silicas have demonstrated excellent properties to enhance the oral 

bioavailability of poorly water-soluble drugs. This review provides an overview of 

different methods utilised to load drugs onto mesoporous silica carriers. The 

influence of silica properties and silica pore architecture on drug loading and release 

are discussed. The kinetics of drug release from mesoporous silica systems are 

examined and the manufacturability and stability of these formulations are 

reviewed.   
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2.2.  Introduction 

 

As discussed in Chapter 1, loading drugs onto a mesoporous silica substrate has been 

considered as a formulation strategy to overcome the limitations of drugs classified 

as Biopharmaceutics Classification System (BCS) II, whose bioavailability is said to be 

dissolution rate limited. Adsorption of drugs onto porous and non-porous silica 

materials has been described in the literature since the early 1970’s (120, 121). In 

2001, Vallet-Regi et al identified the potential of mesoporous silica as a controlled 

release system (72). Its ability to enhance the delivery of poorly soluble drugs was 

subsequently investigated (55, 122, 123). Mesoporous silica carriers have a number 

of attractive features for enhancing drug dissolution such as high surface area, large 

pore volume and ordered pore networks (74). They can also provide an adjustable 

drug release profile as their surface hydroxyl groups can be functionalized to control 

release. Mesoporous silica materials have also displayed structural stability on 

storage (124). This provides an advantage over solid dispersions composed of 

biodegradable polymeric materials which can demonstrate solid-state phase 

separation on storage due to their hygroscopic nature (125). Silica-based drug 

carriers are more resistant to heat, pH, mechanical stress, and hydrolysis-induced 

degradations than many polymer materials used to enhance drug dissolution. A 

range of silica materials are commonly used as excipients in numerous oral drug 

products and are considered non-toxic and biocompatible (126). There is limited 

evidence to describe the safety of ordered mesoporous silica grades, especially when 

they are administered in larger quantities required to enhance drug delivery (127, 

128). Hudson et al reported that ordered mesoporous silicas (MCM-41, SBA-15 and 
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MCF) have the potential to be toxic when delivered by certain routes (intravenous 

and intra-peritoneal) (128). Recently, a number of animal studies have been 

conducted using oral mesoporous silica formulations, suggesting the oral route is 

more biocompatible (56, 129, 130). Several publications have considered the issues 

relating to mesoporous silica potential toxicity, including an extensive review by 

Manzano et al (127, 131, 132).  

The aim of this review is to summarise the progress made in the development of 

mesoporous silica carriers to enhance drug dissolution rate. A particular focus will be 

placed on the factors that influence drug loading and release in mesoporous silica 

systems. The mechanism and kinetics of drug release in such formulations will be 

discussed.  
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2.3.  Silica for Drug Delivery (Non-Porous and Porous) 
 

A wide range of silicon dioxide (silica) materials exist. However, amorphous 

hydrophilic silica has been the focus for researchers in the oral drug delivery field. It 

can be divided into two categories, porous and non-porous. 

 

2.3.1. Non-Porous Silica 
 

The most common non-porous fumed silica is colloidal silicon dioxide (hydrophilic 

fumed silica). Examples of commercial varieties include, Cab-O-Sil® (Cabot 

Corporation), Aerosil ® (Evonik Industries) and HDK® (Wacker)(Table 2.1). Colloidal 

silicon dioxide has been utilised for many years in the pharmaceutical industry as a 

glidant to improve dry powder flowability in powder tableting processes.  

The relatively large surface area of silicon dioxide allows for a poorly water-soluble 

drug to be deposited onto its surface which enhances the drug’s dissolution rate as 

the loaded drug is present in its amorphous form (53). In contrast to mesoporous 

silica, there is a history of regulatory acceptance of these non-porous silicon dioxides 

as pharmaceutical excipients for oral drug delivery which is advantageous for 

formulation development. Fumed silicon dioxide is employed in Bend Research Inc.’s 

Spray-Dried Nanoadsorbate Technology (SDNA) (133). The SDNA process consists of 

a solid amorphous drug or drug/excipient dispersion adsorbed to the surface of the 

silica. This approach greatly increases the surface area of the drug dispersion, relative 

to normal solid dispersion particles, which leads to rapid drug dissolution resulting in 

improved bioavailability relative to crystalline drug. The physical stability of this 

drug/silica system is also superior to pure amorphous formulations. However, the 
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majority of published research on the use of silica as a carrier for poorly water-

soluble drugs has centred on mesoporous silica, which is the focus of this thesis. 
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Table 2.1 Characteristics of a selection of porous and non-porous silica materials  

Silica Type Pore structure Pore volume (cm3/g) Pore size (nm) Surface area (m2/g) Reference 

Colloidal SiO2 Aerosil® N/A N/A N/A 50 – 300 (134) 

Colloidal SiO2 Cab-O-Sil® N/A N/A N/A 200 (134) 

Colloidal SiO2 HDK N/A N/A N/A 150 – 200 (134) 

Mesoporous MCM-41 Hexagonal 0.5 – 1.5 1.5 – 10 800 – 1000 (74) 

Mesoporous MCM-48 Cubic 1.05 1.5 – 10 1000 (135, 136) 

Mesoporous SBA-15 Hexagonal 0.50 –0. 65 5 – 8 400 – 800 (137) 

Mesoporous FSM-16 Honeycomb 0.28 – 0.83 1.5 – 4 680 – 1000 (138) 

Mesoporous TUD-1 Foam-like 0.5 – 1.7 4 – 18 400 – 1000 (139) 

Mesoporous Sylysia®350 Disordered 1.6 21 300 (140) 

Mesoporous Syloid®244 Disordered 1.42 19.0 311 (90) 
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2.3.2. Mesoporous Silica 
 

Mesoporous silica (pore size range 2-50 nm) can enhance the dissolution rate of 

poorly water-soluble drugs as drug loaded on the surface also exists in an 

amorphous state (55). However, it possesses an important advantage over non-

porous materials in that it has a significantly larger surface area and it is possible 

to control its porous architecture during manufacture (Table 2.1) (74). Due to its 

porous nature, drug molecules can be confined and stabilised within the silica 

pores in a non-crystalline form (75, 141-143). The ratio of drug molecule size to 

silica pore width and the interaction of the drug molecules with the silica 

substrate prevents recrystallization of the drug by nano-confinement (124, 144, 

145).  

There are many varieties of mesoporous silica, the most widely investigated in 

the literature are listed in Table 2.1. Researchers have developed both ordered 

and non-ordered mesoporous silicas which vary in final architecture due to 

differences in conditions during manufacture, for example, temperature and 

surfactant concentration. Examples of non-ordered mesoporous silicas include 

Syloid® and Sylysia® materials which have been investigated as drug carriers (140, 

146-148). Ordered mesoporous silica materials with a uniformity in pore shape, 

size and volume have also been developed. Examples of ordered materials 

include the Mobil crystalline material (MCM) range of mesoporous silicas which 

was developed by researchers of the Mobil Corporation in 1992 and is part of the 

M41S family of molecular sieves. They possess a well ordered stable hexagonal 

unidirectional mesoporous network (74). MCM-48 is a modification of MCM-41 
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with a cubic array of pores (135). It has been reported that a cubic structure with 

space group Ia3d can increase molecular accessibility and displays potential for 

the development of controlled release systems (136). The Santa Barbara 

Amorphous type mesoporous silica (SBA-15) was developed by researchers at the 

University of California, Santa Barbara in 1998 (137). The pore sizes of SBA-15 are 

larger than MCM-41 (149); this property facilitates faster release from SBA-15 

than MCM-41. The highly ordered pore structures of mesoporous silica MCM-41 

and SBA-15 are demonstrated in the transmission electron microscopy (TEM) 

image below (Figure 2.1). 

In recent years, a number of commercial mesoporous silicas marketed for 

pharmaceutical formulation have been developed. Parteck®SLC is a silica 

formulation by Merck Millipore Corporation, Syloid® silicas have been produced 

by Grace Pharmaceuticals and Sylysia® by Fuji Sylysia Chemical Ltd. (146, 147, 

150).   

 

Figure 2.1 TEM image of SBA-15 mesoporous silica  
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2.4.  Drug Loading Processes 
 

Numerous methods to load drug onto mesoporous silica substrates have been 

developed. These include melt processes, various organic solvent processes and 

methods involving supercritical fluid (SCF) technology. The extent of drug loading 

depends on surface area and the affinity of the drug for the silica substrate (151, 

152). The internal silica pore volume and the concentration of drug in solution are 

also important considerations (153). The choice of loading process can also affect the 

quantity of drug loaded, drug distribution in the silica and drug physiochemical 

properties in the mesoporous structure (54, 55, 142).  

 

2.4.1. Melt Process 
 

Mellaerts et al utilised a melt method to load ibuprofen and itraconazole onto SBA-

15 (154). The melt process involves heating the drug loaded mesoporous system 

above the drug’s melting point which could result in potential drug degradation 

(154). Itraconazole was not successfully loaded onto SBA-15 at any of the drug 

loading ratios investigated. It was not homogeneously distributed throughout the 

silica surface and remained somewhat crystalline. Whereas, ibuprofen was 

successfully loaded onto SBA-15 in a non-crystalline state and achieved rapid in vitro 

release (154). This work highlighted the high dependency of drug molten viscosity for 

mesopore penetration in this process. The thermal stability of the drug at the 

elevated temperatures required during melting is also an important consideration 

when choosing this loading method.  
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Microwave irradiation has also been employed to load drug onto silica materials. A 

method has recently been developed which allows samples to be heated with a 

feedback system to ensure the temperature can be controlled during the loading 

process. This protects against drug degradation (155). Waters et al loaded 

fenofibrate onto several different silica materials using this method and compared 

them with samples loaded by physical mixing and traditional heating methods. Their 

results demonstrated that a greater proportion of the loaded drug existed in an 

amorphous state using the microwave loaded method. Drug release from this 

formulations was also enhanced compared with the other formulations tested (156).  

 

2.4.2. Solvent Loading Methods 
 

2.4.2.1. Solvent Immersion Processes 
 

Organic solvent drug loading methods have been extensively reported in the 

literature by several research groups. The most common technique employed is an 

immersion method involving adsorption from organic solution followed by filtration 

to recover the drug-loaded mesoporous silica (123, 154, 157, 158). It usually results 

in a low yield as adsorption is confined to a monolayer on the surface (159). 

Furthermore, it is necessary to reduce solvent traces to acceptable limits as outlined 

in the International Conference on Harmonisation (ICH) guideline Q3 (R5) (160).  

Drug loading can be influenced by interactions involving drug, silica and solvent. 

Highly polar solvents can compete with drug molecules for adsorption sites. Charnay 

et al reported that the use of polar solvents such as DMSO (dimethyl sulfoxide), DMF 
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(dimethylformamide) and DMA (dimethylacetamide) resulted in a low degree of 

ibuprofen loading onto MCM-41 (142). In contrast, ethanol and hexane (non-polar 

solvents) produced relatively high drug loading concentrations. The optimal drug 

concentration in solvent should be determined before drug loading. If drug 

concentration is too high, drug molecules can adsorb onto the surface too quickly, 

blocking mesopores, which reduces the potential surface area available for loading 

drug (145). 

 

2.4.2.2. Incipient Wetness Impregnation Process 
 

In this process, a high degree of loading can be obtained using a concentrated drug 

solution (generally close to the saturation solubility of the drug). This technique 

exploits the large pore volume of the mesoporous silica (154). The drug’s solubility in 

the loading solvent is important as it affects the drug loading efficiency and 

subsequent drug release (161, 162). Compared to the immersion method, the time 

consuming filtration step can be avoided as a loading solution with a volume 

approximately equal to the pore volume is used (163). This is generally an efficient 

process and the amount of drug loaded onto the carrier can be easily controlled, 

making it suitable for loading expensive drug molecules. However, high loading 

concentrations or repeated impregnations can be required to achieve high degrees 

of drug loading (typically in the range 5-40 % (w/w)) (163).  

A frequently reported single-step incipient wetness impregnation involves preparing 

a concentrated solution of drug in solvent followed by its drop-wise addition to the 

mesoporous silica. The powder is subsequently dried using air for 24 h and then 
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placed under vacuum for 48 h at a temperature of 40 oC (28, 55, 76, 154, 164). 

Charnay et al reported improved drug loading using this method when compared 

with a traditional solvent immersion process (142). They proposed that the drug 

molecules diffused with the solvent into the pores by capillarity and remain trapped 

within the pores after solvent removal. The drug in the pores existed in an 

amorphous state and dissolution rates were enhanced compared to crystalline drug 

(142). Mellaerts et al. employed an incipient wetness loading method and a solvent 

method to load itraconazole onto SBA-15 mesoporous silica. Both methods involved 

drying the sample at 35 oC and then placing it under reduced pressure (1 hPa) at 40 

°C for 48 h.  They suggested that the rapid solvent removal encountered in the 

incipient wetness method may have contributed to preferential loading of the SBA-

15 micropores, with the drug deposited along the pore walls. SBA-15 has a high 

proportion of micropores located in the walls of large ordered mesopores (165).  

During the incipient wetness process, drug molecules are introduced to the pores 

rapidly and the solvent is evaporated quickly. Using the traditional solvent method, 

drug loading is a slow process requiring diffusion of the molecules from an external 

solution onto the mesoporous silica surface. This gives the drug molecules time to 

rearrange and deposit in the mesopores. While drug release was improved for the 

incipient wetness method, the presence of itraconazole in the micropores rather 

than the mesopores resulted in slightly slower drug release when compared to the 

solvent immersion method. This preferential micropore loading was not reported for 

ibuprofen in the same study (154). 
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2.4.2.3. Loading using Supercritical Fluid Technology (SCF) 
 

SCF drug loading techniques offer significant advantages by exploiting the solvent 

power variation that can be achieved by manipulation of the fluid pressure and 

temperature in the supercritical region. Carbon dioxide (CO2) is the most commonly 

used SCF as it possesses a low critical point (7.4 MPa, 31.2 oC), is non-flammable, 

recyclable, environmentally benign and inexpensive. Many pharmaceuticals have 

demonstrated solubility in supercritical CO2 (SC-CO2) (166). A further advantage of 

utilising SCF for drug loading is that the final product is totally solvent-free post fluid 

evacuation.  

Several studies have compared SCF processes directly with solvent methods (88, 

167). It has been reported that SC-CO2 produces a similar degree of drug loading to 

impregnation of the drug using hexane as a solvent. However, the SCF technique 

required a much reduced process time. This was attributed to the more 

homogeneous loading demonstrated using the SCF method. Fenofibrate was 

successfully loaded onto SBA-15 using supercritical carbon dioxide at various 

pressure and duration times, which did not affect the solid-state of the drug, its 

distribution into the mesopores or the subsequent drug release profiles (88). Ahern 

et al reported that while solvent and SC-CO2 loaded samples displayed differences in 

drug distribution, they demonstrated similar release profiles and solid-state stability 

properties (54).  There is limited published research comparing the drug release rate 

of silica loaded using SCF technology with the release rate from other loading 

methods. 
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2.4.3. Large scale drug loading techniques 
 

The laboratory drug-loading methods outlined above are suitable for small batch 

sizes. However, there is a need to address the scale-up challenges for cost-effective 

commercial production. Limnell et al compared the traditional immersion method 

with rotavapor and fluid-bed loading methods (116). They reported that loading 

processes using this typical pharmaceutical lab equipment was straight-forward and 

the extent of drug loading was substantial. In addition, they proposed that these 

techniques overcame the requirement for excessive drug quantities to achieve high 

drug loading in the immersion method, which is economically beneficial. The drug 

does not require heating, which is advantageous as it prevents possible drug 

degradation. Researchers have also investigated a co-spray drying technique. They 

reported a high degree of drug loading and the amorphous drug/silica product 

displayed physical stability on testing (75, 143). Bahl et al utilised a co-milling method 

to load indomethacin onto a silica substrate using a rolling jar mill. This method has 

the advantage of being ‘solvent free’. The co-ground amorphous indomethacin was 

physically stable for three to six months at 40 °C/75 % relative humidity (RH) (168).  

 

2.5.  Mesoporous Silica Characteristics Influencing Drug Loading 

and Release 
 

The most significant silica properties that can influence drug loading and release are 

surface area, pore volume, pore size and pore arrangement. Particle properties (such 

as particle size and morphology) are also important. These are discussed in further 
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detail below. Furthermore, silica surface functionalization provides numerous 

opportunities to control both drug loading and release. 

 

2.5.1. Silica Pore Architecture and Particle Properties 
 

The pore properties of silica materials have a significant influence on the degree of 

drug loading, loaded drug solid-state structure and long-term drug solid-state 

stability. Numerous studies have investigated the impact of silica pore volume (142, 

162), silica pore size (116, 136, 151, 157, 169-172) and silica pore 

connectivity/geometry/morphology (162, 173, 174).  

Heikkila et al investigated the impact of pore volume on drug adsorption by loading 

ibuprofen onto specific mesoporous silicas (TUD-1, SBA-15 and MCM-41). They 

reported that total mesopore volume was significant in terms of the degree of 

achievable drug-loading (162). This was confirmed by Zhang et al who determined 

that total pore volume and pore size were the two limiting factors for maximum drug 

loading (175). Excessive loading above the limits of the total pore volume can result 

in a layer of crystalline drug on the silica surface which can slow drug release rate 

from the pores (154).  

Pore size has an important role to play in drug loading, release and drug solid-state 

stability. The long-term stability of amorphous drug in the mesopores has been 

reported by a number of groups (75, 76). A drug molecule loaded into a confined 

space cannot recrystallize if the confinement space diameter is less than or equal to 

15 times the drug molecule diameter (144, 176). The influence of pore size on drug 

loading and release has also been examined (116, 175, 177-179). As pore size 
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decreases the amount of drug loaded is reduced. The release rate also decreases as 

a result of increasingly tightly packed molecules in the mesopores (170). Izquierdo-

Barba et al reported a decrease in release rate for bulkier erythromycin molecules 

compared to ibuprofen from pores of the same diameter. The effect becomes more 

evident as pore size decreases (136). Consequently, to allow for easy access during 

drug loading and release, pore size should be at least be three times greater than the 

drug molecule diameter (73). The pore diameters of ordered mesoporous silicas, 

such as SBA-15 and MCM-41, can be adjusted during the manufacturing process. As 

a result, pore size can be modified to control the drug release rate (74, 137). 

However, it has also been demonstrated that there is a pore size threshold limit for 

individual molecules, after which further increases in pore diameter do not enhance 

release rate (122). Furthermore, in silica samples with larger pore sizes, increased 

recrystallization has been reported due to the loss of nano-confinement properties 

(180). A comparison between in vitro and in vivo release profiles for drug loaded silica 

samples has provided interesting results. It was observed that a larger pore diameter 

resulted in faster release in vitro while the smaller pore diameter gave the fastest in 

vivo release profile. The authors attributed this behaviour to the slower rate of 

supersaturation produced by the smaller pore diameter in the intestine which 

enhances absorption of fenofibrate across the intestinal wall (181). This research is 

discussed in more detail in Section 2.7.2. 

Pore channel length and morphology are also significant factors controlling drug 

loading and release in the silica matrix. Gao et al compared bimodal mesoporous 

silica (BMM) which possesses short channels and MCM-41 which has long ordered 

channels (173). They reported that BMM achieved greater drug loading and faster 
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release. Heikklia et al compared the pore morphologies of TUD-1, MCM-41 and SBA-

15. They determined that TUD-1 produced the fastest drug release due to its highly 

accessible pore network compared to the unidirectional, uniform hexagonal 

mesopores of SBA-15 and MCM-41 (162). Zhu et al reported that hollow mesoporous 

spheres (HMS) resulted in higher drug loading concentrations than MCM-41 despite 

their similar surface area and pore volumes. This was attributed to the HMS pore 

channel structure which runs into a hollow core, allowing for increased drug loading 

(174). 

Silica particle properties such as particle size and morphology have also been 

investigated to determine their effects on drug loading and release. Mesoporous 

silica particles can be manufactured to produce a monodisperse particle size (182, 

183). There is limited research in the literature investigating the effectiveness of 

further reducing silica particle size to enhance drug loading and release for oral drug 

delivery. Instead, most work is focussed on controlling pore diameter. Results from 

the studies on the significance of particle morphology have proved inconclusive (184, 

185). Work to date has not specifically looked at the effect of particle morphology in 

isolation so its influence cannot be accurately determined.  

The large surface area of mesoporous silica is a key characteristic that makes it a 

potentially useful carrier for poorly water-soluble drugs (152). Many research groups 

have documented that increasing silica surface area improves drug loading and 

dissolution rate (53, 122, 151, 170, 186). However, a recent study has proposed that 

there is a threshold level above which increasing surface area does not result in a 

linear increase in drug release rate (91).  
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2.5.2. Surface functionalization 
 

Surface functionalization of the silica provides numerous possibilities to control drug 

adsorption and release. The aim of functionalization is to increase the attraction 

between drug and silica. There are a number of different methods which can be 

employed to functionalise mesoporous silica including co-condensation (one-pot 

synthesis), grafting (post-synthesis modification) and imprint coating methods (183). 

The choice of method will influence the position of the functional groups on the silica 

(i.e. presence on the surface or internally in the pores). Studies thus far indicate that 

the grafting method is superior to co-condensation because the latter can damage 

the mesoporous framework (187). This is a rapidly developing area and many drugs 

have been incorporated into various functionalised silica systems (Table 2.2). One of 

the most widely reported is amino-functionalization pf the silica surface. Balas et al 

compared alendronate loading in non-functionalized and amino-functionalized silica. 

They reported a drug loading almost three times higher for the modified silica 

material using a solvent loading method (188). A second strategy utilised in surface 

functionalization is to attach hydrophobic species to the surface. The drug-surface 

interactions are not necessarily increased but aqueous medium does not easily 

penetrate the functionalized silica system and this slows drug release rate. A 

controlled release formulation of erythromycin was developed using SBA-15 

functionalised with octyl and octadecyl groups (189). The functional groups 

decreased the effective pore size of the SBA-15 and decreased the wettability of the 

surface by aqueous solutions, thus creating a controlled release formulation. 

Mesoporous silica had also been modified by silylation to produce controlled release 

formulations using captopril and ibuprofen as model drugs (190, 191). These systems 
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are showing promise for controlled and targeted drug release and are an exciting 

prospect for the future.  
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Table 2.2 Examples of drugs incorporated into functionalised mesoporous silica materials  

 (LP-Ia3d refers to pores with Ia3d symmetry, LP refers to large pore, Al refers to aluminum-tri-sec-butoxide, APTES refers to 3-aminopropyltriethoxysilane, APMS refers to 
N-(2-aminoethyl)-aminopropyl dimethoxymethylsilane, APTMS refers to 3-aminopropyltrimethoxysilane, C8T refers to octyltrimethoxysilane, C18T refers to 
octadecyltrimethoxysilane, MPTS refers to 3-mercaptopropyl trimethoxysilane, TMCS refers to trimethylchlorosilane, TMS refers to trimethylsilyl, * indicates no information 
provided in article as to source material for modification) 

Class of Drug Drug Functionalised Mesoporous Carrier Reference 

Anti-inflammatory Ibuprofen MCM-41- CH3 (TMCS) (191) 

Ibuprofen SBA-15-NH2 (APTMS) (187) 

Ibuprofen MCM-41-NH2 (APTES) (185) 

Ketoprofen SBA-15-NH2 (APTES) (192) 

Naproxen MCM-41-NH2 (APTES) (89) 

Bisphosphonates Alendronate SBA-15-NH2
* (188) 

Alendronate MCM-41-NH2
* (188) 

Antibiotics Erythromycin SBA-15-C8T (189) 

Erythromycin SBA-15-C18T (189) 

Amikacin MCM-41-Al (193) 

Cefuroxime FDU-12 (MPTS and APMS) (194) 

Cefuroxime SBA-15 (MPTS and APMS) (194) 

Vancomycin FDU-12 (MPTS and APMS) (194) 

Vancomycin SBA-15 (MPTS and APMS) (194) 

Anti-hypertensives Captopril MCM-41- CH3 (TMCS) (190) 

Anti-fungals Griseofulvin MCM-41-NH2 (APTES) (195) 

Griseofulvin MCM-41-CH3 (TMCS) (195) 

Steroid Budesonide MCM-41-NH2 (APTES) (92) 
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2.6.  Physical and Chemical Stability of Drug Loaded Silica System 
 

Various formulation approaches can be utilised to create supersaturated solutions to 

enhance drug bioavailability, one of which is the generation of an amorphous state 

of the drug in drug/mesoporous silica systems. The amorphous form is one of high 

energy and is thermodynamically unstable compared to the crystalline state (as 

described in Section 1.3.1). This leads to higher apparent solubility and dissolution 

rate (196). However, recrystallization can occur spontaneously in these unstable 

amorphous drugs and this negates any solubility advantages. Research is now 

ongoing to investigate how to stabilise amorphous drug/mesoporous silica 

formulations for drug delivery.  

A key feature of mesoporous silica is that it has a large surface area which gives it a 

high surface free energy. Adsorption of drug molecules onto the silica surface allows 

the system to transfer to a lower free energy state. The adsorbed molecules exist in 

an amorphous but physically stable state, due to a decrease in the Gibbs free energy 

of the drug/silica system. Crystallisation of the drug will only occur if the 

thermodynamic state is disrupted (197). A further advantage of drug/mesoporous 

silica systems is that they can stabilise the amorphous drug by size-confinement 

effects. Crystal growth can occur spontaneously once a critical nucleation size is 

obtained. The drug molecules in the pores are constrained to such a degree that they 

cannot reach this point and crystal growth is inhibited (144). 

The long-term physical stability of mesoporous silica formulations has been 

demonstrated by a number of groups. Ambrogi et al examined drug loaded silica 

samples over 60 days at 75 % relative humidity (% RH) and 40 oC. No change in drug 
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physical characteristics and no drug recrystallization was reported. They suggested 

this was due to a combination of drug nano-confinement in the pores and the 

interaction between drug and the silanol groups stabilising the system (158). A 

second study reported that drug loaded silica samples displayed no evidence of 

recrystallization after six months of storage at 25 oC and 52 %RH (55). Enhanced drug 

dissolution profiles were also maintained on storage, indicating the physical stability 

of the samples was preserved. The silica’s average pore diameter was retained on 

storage but the surface area and microporosity had decreased slightly. The drug-free 

silica samples had absorbed water over the six-month time-frame but the drug 

loaded samples displayed little water uptake. This was attributed to the presence of 

hydrophobic drug molecules on the surface of the silica. Mellaerts et al investigated 

the stability of itraconazole loaded SBA-15 over 12 months at 4 oC and 25 oC and 

relative humidities of 0 %, 52 % and 97 %. They reported that storage at relative 

humidity of 0 % for twelve months maintained the original release behaviour of the 

formulation. At the higher relative humidity levels, a higher supersaturation level 

than that of the original formulation was achieved. The authors suggested this was 

due to hydroxylation of the SBA-15 surface which results in a more hydrophilic 

surface which facilitates drug release upon competitive adsorption of water 

molecules from simulated gastric fluid. The drug loaded samples displayed little 

variation in pore size compared to drug free samples (76).  

The chemical stability of drugs loaded onto mesoporous silica materials also requires 

consideration. Some recent studies have described problematic chemical 

degradation of drug samples during storage under stressed conditions. Kinnari et al 

reported that itraconazole loaded onto mesoporous silica had degraded after 
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months of storage at 40 oC and 70 % RH. The differential scanning calorimetry (DSC) 

results presented no evidence of recrystallization. They suggested that certain 

functional groups in the drug molecule reacted with the silica surface resulting in 

chemical degradation (90). This contrasts with results from previous work which 

examined ibuprofen loaded silica on storage and demonstrated no evidence of 

chemical degradation (198). This suggests the effect may be drug specific as it 

depends on particular functional groups interacting with the silica surface. Limnell et 

al also observed chemical degradation of indomethacin loaded onto MCM-41 and 

SBA-15 during storage over 3 months at 30 oC and 56 %RH  (199). One out of the ten 

drugs loaded onto SBA-15 by Van Speybroeck et al displayed chemical degradation 

when tested (55). 

Research has also examined the complex effects of moisture on the stability of 

mesoporous silica formulations (159, 200-202). Qian et al reported that moisture 

could both suppress the amorphization capacity of drug molecules loaded on 

mesoporous silicon dioxide and reverse an already amorphous formulation. 

However, the presence of co-adsorbed water molecules has also been demonstrated 

to improve drug release (203). Exposure to moisture can result in siloxane bond 

fractures which have been found at normal processing conditions (159).  

The presence of moisture can also affect the chemical stability of the loaded drug. 

Water can be involved as a reactant or a product in a drug degradation reaction, 

influence the polarity of amorphous matrix, serve as a medium for proton transfer 

and increase molecular mobility due to its plasticizing effect (200, 204, 205). As a 

consequence of moisture’s potential effects on drug physical and chemical stability, 
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it is recommended that humidity during processing and storage needs to be 

controlled in the preparation of mesoporous silica formulations (200). Further 

investigation is required to fully understand the effect of moisture content on 

mesoporous silica formulations and the competitive role it plays in the interaction 

between drug and silica surface, its potential impact on drug chemical stability and 

the mechanism in which it can alter drug release from silica carriers.  

 

2.7.  Drug release  
 

2.7.1. Release mechanism studies 
 

The classic Higuchi equation has been used to describe drug release where fine drug 

particles are dispersed in a thin film consisting of an inert, non-soluble and non-

swellable matrix former, at an initial drug loading which is much higher than drug 

solubility in the matrix (Equation (2.1)) (14)  

𝑀𝑡 = 𝐴√2𝐶𝑖𝑛𝑖𝐷𝐶𝑠𝑡         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.1) 

where Mt is the cumulative amount of drug released from the film at time t; A 

denotes the surface area exposed to the release medium; Cini is the initial drug 

concentration, which is much higher than the solubility of the drug in the matrix 

former, Cs; D is the diffusion coefficient of the drug in the matrix former.  

It has been reported that the Higuchi equation is applicable to the drug/mesoporous 

system (136, 170). This equation suggests the interaction of dispersion medium with 

the drug-silica matrix is dependent on factors such as porosity, the initial drug load, 

the drug’s solubility in the release medium and the diffusion coefficient of the drug 
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molecules in the medium (206, 207). However, it has been widely demonstrated that 

mesoporous silica drug release can deviate from this relationship and that the drug 

release process comprises of a two-step profile (90, 117, 151). Xue et al suggested 

this two-step release profile is observed as drug molecules can bind both physically 

and chemically to the mesoporous silica. The physically entrapped drug is released 

quickly which provides a sharp initial burst release profile. The slower release in the 

second part of the process is due to drug bonded to the silica via hydrogen bonding 

with the silanol groups. Drug release rate is controlled by the equilibrium between 

drug bonding to the silica and drug interaction with the dissolution medium (117). It 

has also been proposed that drug molecules located near the surface are released 

quickly due to their proximity to the dissolution medium and that drug molecules 

located deeper in the pores are released much more slowly (55, 90, 189). Figure 2.3 

illustrates the potential sites for drug distribution throughout the mesoporous silica 

matrix. 
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Figure 2.2 Schematic illustration of potential sites for drug 

distribution throughout the silica matrix  

 

The ability of mesoporous silica to readsorb drug molecules after release is a factor 

to consider in the drug release profile. Mesoporous silica has been investigated as an 

adsorbent for chemical removal from wastewater of pharmaceutical industrial 

manufacturers (118). It was reported that drug molecules could adsorb both 

reversibly and irreversibly onto the silica surface which has potential implications for 

drug delivery formulation development. Bui et al suggested the strength of 

interaction between the silica and drug functional groups is implicated in this 

process. Furthermore, Turku et al reported irreversible adsorption of tetracycline 

onto silica. Approximately 9% of the tetracycline loaded onto the silica was 

irreversibly adsorbed onto the silica surface, whereas the remainder exhibited 

Langmuir behaviour (208).  

Incomplete release of drug from mesoporous systems has been noted in several 

studies. Ahern et al reported a maximum of 70-80 % fenofibrate release from 

mesoporous silica formulations (Figure 2.4) (209). Incomplete release of vancomycin 
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and cefuroxime from various silica carriers has also been observed. The authors 

attributed this to strong interactions with surface functional groups and hindered 

diffusion of drug molecules through nano-sized windows that connect spherical 

mesopores (194). This property of mesoporous silica should be considered during 

future formulation development. 

 

 

Figure 2.3 Fenofibrate release profiles from mesoporous silica 

formulations  (○ with dashed line) solvent  impregnation, () physical 

mix method and () SC-CO2 sample in 0.3 % w/v SDS in 0.1 M HCl 

media (mean ± SD, n = 9) (data sourced from thesis entitled 

‘Application of mesoporous silica for the oral delivery of poorly water 

soluble drugs’ Ahern (209)) 

 

It has been observed that pH has a significant influence on drug interaction with the 

silica surface (118, 208). Adsorption of drugs onto silica can be due to both 

electrostatic and non-electrostatic interactions. The surface charge of silica is 

determined by the relative concentrations of H+ and OH- groups, originating from the 
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protonation and deprotonation reactions of the silanol group. The isoelectric point 

of silica is reported to be approximately pH 2. The proportion of negative charges 

remains low below pH 6, and increases sharply between pH 6 and 11 (210). 

Depending on the nature of the drug molecule (acidic or basic), it will be positively or 

negatively charged at specific pHs. This will influence its interaction with the silica 

surface and the adsorption/desorption equilibrium. To illustrate this point, Turku et 

al reported that the irreversible adsorption capacity of the silica surface is strongly 

dependent on the pH of the solution (208).  

The influence of co-adsorbed water on adsorption, hydrophobic aggregation and 

migration in SBA-15 pores also warrants consideration in mesoporous silica 

formulation development as the drug delivery process takes place in an aqueous 

environment. Mellaerts et al examined the effect of co-adsorbed water on 

itraconazole drug loading and release. They observed that at a low SBA-15 hydration 

level, itraconazole was involved in multiple hydrogen bonding interactions with the 

pore walls of the SBA-15. With increasing co-adsorbed water content, water 

molecules aggregate between the drug molecules and the silica surface and decrease 

host-guest interaction. The rate of itraconazole release was enhanced with increasing 

co-adsorbed water content. The distribution of a hydrophobic molecule, Nile Red, in 

SBA-15 was also examined in the presence of high and low concentrations of co-

adsorbed water. They reported a higher density of co-adsorbed water molecules 

resulted in a rapid influx of water molecules in the dissolution medium producing a 

more complete release of guest molecules (203).  
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2.7.2. Role of Supersaturation 
 

The generation of an amorphous drug state in mesoporous silica systems is utilised 

to create a supersaturated solution which can be a means of improving oral 

bioavailability of poorly water-soluble drugs. Drug in supersaturated solutions exists 

at a concentration above their saturation solubility which represents a 

thermodynamically unstable state (Section 1.5). However, if the solution can be 

maintained in this metastable state in the gastrointestinal tract for a period of time 

to allow for absorption, the increased drug concentration can permit enhanced 

transport across the intestinal wall. 

Supersaturated drug levels generated by rapid release from the mesoporous silica 

system can lead to drug precipitation and the conversion of drug molecules to an 

energetically more favourable but less soluble form that can impede absorption (59).  

Van Speybroeck et al investigated the use of a precipitation inhibitor to improve the 

oral absorption of itraconazole from a drug-mesoporous silica system (28). They 

conducted both in vitro and in vivo tests and determined that 

hydroxypropylmethylcellulose (HPMC) proved to be a good stabiliser of itraconazole 

supersaturation in intestinal media and resulted in more than a 60 % increase in 

absorption compared to a mesoporous silica formulation without precipitation 

inhibitor. Their findings highlight the importance of picking the appropriate 

precipitation inhibitor as hydroxypropylmethylcellulose acetate succinate (HMPCAS) 

was ineffective in vivo as it is not soluble in the stomach. A drawback of precipitation 

inhibitors is that they tend to be chosen on an empirical basis and structure-activity 

relationships have not been established (211). It is therefore useful to also consider 
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other methods to stabilize the rate of drug supersaturation in vivo. Another 

approach, taken by Van Speybroeck et al, was to decrease the drug release rate by 

decreasing the silica pore size. This slows down the rate of supersaturation and can 

prevent the drug from precipitating out of solution in the intestinal fluid. Their 

research involved the use of three ordered mesoporous silica materials with different 

pore diameters to improve the extent of fenofibrate absorption. The silica with the 

narrowest pore diameter produced the slowest drug release rate. As a consequence, 

the rate of supersaturation was decreased and fenofibrate in vivo absorption was 

improved (181). 

Van Speybroeck et al also investigated the way in which drug supersaturation state 

can be harnessed to enhance certain aspects of the drug release process. It was 

demonstrated that by preventing early drug release in the stomach, the total 

absorption of  the poorly water soluble drug, glibenclamide, could be enhanced in 

vivo compared to a commercially available product (164). It has also been reported 

that a mesoporous silica system can produce a pH independent supersaturation 

effect for the basic drug itraconazole. This negates the need for preceding dissolution 

in the stomach and allows for enhanced systemic absorption. This finding indicates 

there is potential for this formulation to result in more reproducible systemic 

exposure compared to commercially available products (71). 
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2.8.  Conclusion 
 

Scientific advances in the field of mesoporous silica oral drug delivery have 

experienced remarkable growth over the past ten years. This extensive review 

highlighted the advances made in research concerning drug loading methods, surface 

functionalisation and understanding of silica pore properties. An area which requires 

further research is the mechanism of drug release from mesoporous silica materials. 

This review highlighted several studies demonstrating incomplete release from 

mesoporous silica formulations. The reasons behind these incomplete release 

profiles are not well understood. Furthermore, it has been demonstrated in other 

research fields that drug molecules can passively adsorb on the silica surface. The 

implications of this observation for drug release from loaded silica materials requires 

consideration. These findings form the basis for the research hypothesis for this 

thesis (Section 1.7) and are investigated in detail in research chapters 4 – 6.  
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3.1 Abstract 
 

As highlighted from the review of the literature in Chapter 2, factors contributing to 

incomplete drug release from mesoporous silica formulations are not well 

understood. This study aimed to address this gap in knowledge by exploring the role 

of drug adsorption onto silica substrates during the drug release process in 

dissolution media. Adsorption isotherms were generated to understand drug 

adsorption behaviour onto the silica surface. Two silica materials were selected (SBA-

15 (mesoporous) and Aerosil®200 (non-porous)) to investigate the influence of 

porous architecture on adsorption and release processes. The ability of the 

dissolution medium to wet the silica surface, particularly the porous network, was 

investigated through the addition of a surfactant to the dissolution medium. The 

results demonstrated that a larger amount of drug was bound/m2 to the non-porous 

surface than to the mesoporous material. Adsorption isotherms proved useful in 

understanding drug adsorption and release behaviour for the non-porous silica 

formulation. However, the quantity of drug remaining on the mesoporous silica 

surface after dissolution was significantly higher than the amount predicted using 

adsorption isotherm data. These results suggest that a fraction of loaded drug 

molecules were tightly bound to the silica surface or attached to sites which are 

inaccessible for the dissolution media. The presence of surfactant (sodium dodecyl 

sulphate) in the media enhanced drug release from the silica surface. This behaviour 

can be attributed to both the improved wetting characteristics of the media and 

adsorption of the surfactant to the silica surface. The findings of this study reinforce 

the significance of the role that silica porous architecture plays in the dissolution 
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process and indicates that accessible surface area is an important parameter to 

consider for mesoporous systems in relation to drug release.  
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3.2 Introduction 
 

As described in Chapters 1 and 2, drug release from mesoporous silica formulations 

is not fully understood. Incomplete in vitro drug release from these systems has been 

widely reported in the literature (55, 88, 116).  However, the factors contributing to 

these observations in dissolution experiments, performed under sink conditions, 

have not been elucidated. A study by Bui et al. explored the use of 

mesoporous silica materials as adsorbents for chemicals found in pharmaceutical 

wastewater (118). They determined that some drug molecules could bind irreversibly 

onto the silica surface. However, the impact of this irreversible drug binding on the 

release of drug from mesoporous silica formulations has not been considered in the 

literature to date. 

The aim of this study was to elucidate the role of drug adsorption, onto porous and 

non-porous silica substrates, during drug release from these systems. Adsorption 

isotherms were generated to understand drug adsorption onto the silica surface. This 

equilibrium process describing drug bound to the silica surface and drug existing in 

solution emerged as a significant factor in gentamicin release from a silica carrier in 

a study by Xue et al (117). In this work, sulphamethazine (Sz) was chosen as the model 

drug. Sulphamethazine has the potential to form amine-hydroxyl hydrogen bonds 

with the silica surface (117). Two silica substrates were selected (SBA-15 

(mesoporous) and Aerosil®200 (non-porous)) to investigate the influence of porous 

architecture on the adsorption process. The extent of passive drug adsorption was 

quantified and compared with drug retained during dissolution experiments to 
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determine whether isotherms can predict the extent of drug release from these 

formulations.  

The ability of the dissolution medium to influence drug adsorption and release was 

considered through the addition of a surfactant to the dissolution medium. Sodium 

dodecyl sulphate (SDS), an anionic surfactant, was chosen as it is a common excipient 

added to dissolution media and formulations to improve the wetting characteristics 

and the solubilisation of drug molecules (27, 212-214). Sulphamethazine dissolution 

from Sz/silica systems in 0.1 M HCl media was compared with drug dissolution in 

media containing surfactant to determine if improved dissolution media wetting 

capability of the silica surface can enhance drug release from silica formulations.   
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3.3 Materials and Methods 
 

3.3.1 Materials 
 

SBA-15 was obtained from Glantreo Ltd. (Ireland). Aerosil®200 Pharma was sourced 

from Evonik Industries (Germany). Silica surface and pore properties were obtained 

from suppliers (Table 3.1). Sulphamethazine (Sz) and sodium dodecyl sulphate (SDS) 

(>98.5 %) were purchased from Sigma Aldrich (Ireland). Liquid carbon dioxide was 

supplied by Irish Oxygen Ltd (Ireland). All other chemicals and solvents were of 

analytical grade or HPLC grade and purchased from Sigma-Aldrich (Ireland).  

 

Table 3.1 Properties of silica materials obtained from suppliers  

Silica 

Material 
Porosity 

Particle Size 

(µm) 

Surface Area 

(m2) 

Pore Volume 

(cm3) 

Pore Diameter 

(Å) 

SBA-15 Mesoporous 30 678.57 ± 8.23 0.64 ± 0.02 51.85 ± 0.05 

Aerosil®200 Non-porous 12 200.00 ± 25.00 N/A N/A 

 

3.3.2 Surface Tension Measurements  
 

Surface tension was determined experimentally using a KRUSS processor 

tensiometer K12 (KRUSS GmbH, Germany) with a platinum Wilhelmy plate. The plate 

was washed with deionised water, followed by an ethanol wash and subsequently 

flamed over a Bunsen burner after each measurement. All measurements were 

performed at 37 oC which was maintained with the HAAKE water bath (Thermo Fisher 
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Scientific Inc., USA). Full independent replicates were performed in triplicate. Critical 

micellar concentrations (CMC) of SDS in deionised water and 0.1 M HCl were 

determined by analysing changes in surface tension over the surfactant 

concentration range investigated. 

 

3.3.3 Solubility Measurements 
 

Solubility studies were performed in triplicate through the addition of excess 

sulphamethazine (Sz) to 10 ml of buffer media (0.1 M HCl) using a standardised 

shake-flask method with a total shaking time of 48 h at 37 oC. Samples (2 ml volume) 

were removed at 24 h and 48 h time points and centrifuged at 16,500 g for 13 min 

using a Hermle z233M-2 fixed angle rotor centrifuge, (HERMLE Labortechnik GmbH, 

Germany). The supernatant was removed and centrifuged again under the same 

conditions. The resultant supernatant was analysed using HPLC following dilution 

with mobile phase.  

 

3.3.4 Adsorption Studies 
 

Sulphamethazine adsorption studies were performed in screw-capped glass vials 

containing 100 mg of silica (SBA-15 or Aerosil®200) in 20 ml of Sz solution at a defined 

concentration in buffer (0.1 M HCl, pH 1.2). Experiments were conducted under the 

same conditions as solubility measurements i.e. shake-flask conditions for 24 h at 37 

oC. At 24 h, samples (2 ml) volume were removed and centrifuged at 16,500 g for 13 

min using a Hermle z233M-2 fixed angle rotor centrifuge, (HERMLE Labortechnik 
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GmbH, Germany). The supernatant was removed and centrifuged again under the 

same conditions. The resultant supernatant was analysed using HPLC following 

dilution with mobile phase.  

Adsorption studies were also conducted under the same conditions in the presence 

of a surfactant (sodium dodecyl sulphate (SDS)) at two defined concentrations, 10 

mM SDS and 50 mM SDS. These concentrations were chosen as they reflect the range 

of concentrations approved for SDS by the U.S. Food and Drug Administration (FDA) 

Dissolution Methods (215). An isotherm was generated by plotting the concentration 

of drug (mM) in solution at 24 h (x-axis) versus the quantity of drug adsorbed (mmol) 

per gram or per m2 of the silica carrier (y-axis). Linearized forms of the Langmuir (216) 

and Freundlich (217) isotherms were applied to the experimental data and the 

parameters determined are detailed in Table 3.2. 

 

Table 3.2 Linearized forms of Langmuir and Freundlich isotherms 

Name Linearised Form Plot Parameters 

Langmuir 
𝐹/𝐵 =  (1/𝐾𝐿. 𝑁𝑡)  +  𝐹/𝑁𝑡 F versus F/B 

KL = slope/intercept 

Nt 
 = 1/slope 

Freundlich 𝑚𝑙𝑜𝑔𝐹 =  𝑙𝑜𝑔𝐵 +  𝐾𝐹 log F versus log B 
KF = intercept 

m = slope 

 

where B is the concentration of drug adsorbed to the silica surface, F is the 

concentration of free substrate in solution at equilibrium, Nt is the total number of 

binding sites and KL and KF are related to the average binding affinity 
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3.3.5 Preparation of Sulphamethazine Loaded Silica Formulations 
 

Sulphamethazine loaded silica formulations were prepared according to the method 

previously described by Ahern et al (88). The drug and silica material were combined 

at a ratio of 1 mg SZ: 3 m2 silica (SBA-15 or Aerosil®200) in a BC 316 high-pressure 

reactor (High Pressure Equipment Company, USA) and stirred using a magnetic 

stirring. The reactor was heated to 40 °C using heating tape and maintained at this 

temperature for the duration of the experiment. Temperature was monitored using 

a temperature monitor (Horst GmbH, Germany). The reactor cell was filled with liquid 

CO2 and a high pressure pump (D Series Syringe Pump 260D, Teledyne ISCO, USA) 

was used to pump additional CO2 to a final processing pressure (27.58 MPa). After 

24 h, the cell was depressurised rapidly by venting the CO2. The processed material 

was collected from the cell and stored in a desiccator prior to analysis. 

 

3.3.6 Drug Content Quantification 
 

The sulphamethazine content of the silica formulations was determined by 

thermogravimetric analysis (TGA), using a TGA 500 instrument (TA Instruments Ltd., 

United Kingdom). Samples in the weight range 2–10 mg were loaded onto tared 

platinum pans and heated from ambient temperature to 900 °C, at a heating rate of 

10 °C/min under an inert N2 atmosphere. Samples were analysed in triplicate. The 

drug quantity was calculated based on the weight loss between 100 and 900 °C, 

corrected for the weight loss over the same temperature range for a silica reference 

sample (55). TGA thermograms were analysed using Universal Analysis 2000 

software (TA Instruments Ltd., United Kingdom). Figure 3.1 (a) below shows the TGA 
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plot for unprocessed Sulphamethazine. At 900oC weight loss of the unprocessed drug 

is 100%. Figure 3.1 (b) shows weight loss for the unprocessed SBA-15. Weight loss 

from 100oC to 900oC is 3.6%. 

 

Figure 3.1 TGA profiles for degradation of (a) sulphamethazine and (b) 

SBA-15 over a temperature range of 100 – 900 oC.  

 

Drug-loading efficiency was calculated using Equation 3.1:  

𝐷𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝑚𝑔)

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝑚𝑔)
 ∗ 100          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.1)     

The theoretical drug-loading was based on mass fraction of drug and silica used to 

prepare samples. 

 

3.3.7 Dissolution Studies 
 

Dissolution studies were performed in triplicate using USP II apparatus (Erweka® 

DT600 dissolution test system (ERWEKA GmBH, Germany)) in 500ml buffer (0.1 M 

HCl, pH 1.2) at 37 ± 5oC with a paddle rotation of 50 rpm. Sink conditions were 

employed for all dissolution experiments. A fixed mass of unprocessed drug (150 mg) 

or a mass of drug-silica formulation equivalent to 150 mg of drug was added to the 
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dissolution medium. Samples of 4 ml volume were withdrawn at 1, 5, 10, 15, 30, 60 

and 120 min intervals with an additional sample taken at the 24 h time point. Samples 

were immediately replaced with an equal volume of fresh, pre-warmed medium. The 

withdrawn samples were centrifuged at 16,500 g for 13 min using a Hermle z233M-

2 fixed angle rotor centrifuge, (HERMLE Labortechnik GmbH, Germany). The 

supernatant was removed and centrifuged again under the same conditions. The 

resultant supernatant was analysed using HPLC following dilution with mobile phase.  

Dissolution studies were repeated as above with the addition of surfactant (SDS) to 

the dissolution media at two concentrations (10 mM and 50 mM).  

 

3.3.8 HPLC Analysis of Sulphamethazine and Sodium Dodecyl 

Sulphate 
 

Reversed phase high performance liquid chromatography (HPLC) was performed 

using an Agilent 1200 series HPLC system (Agilent Technologies, USA) equipped with 

both a Photo Diode Array Detector (DAD) and an Evaporative Light Scattering 

Detector (ELSD) in series. To quantify drug content in adsorption and dissolution 

studies without surfactant a reversed-phase column Kinetex C-18 column 

(150 mm × 4 mm) with internal pore width 2.6 μm (Phenomenex Ltd., United 

Kingdom) was utilised. An isocratic HPLC-DAD (diode array detector) technique 

adapted from a method by Ding et al (218) with a mobile phase consisting of 

acetonitrile – water – acetic acid (25:75:0.05), an injection volume of 50 µL and a flow 

rate of 1 ml.min-1
 at ambient temperature was employed. The detection wavelength 

was 265 nm. The retention time for sulphamethazine was 5.9 min.  



105 
 

To quantify both drug and surfactant concentrations in adsorption and dissolution 

studies, a HPLC-ELSD method adapted from Im et al (219) was utilised. The ELSD 

system was operated with an evaporative temperature of 80 oC, a nebulizer 

temperature of 70 oC and a N2 gas flow rate of 1.0 L.min-1. A reversed-phase column 

Prodigy ODS-3 column (150 mm × 4.6 mm) with internal pore width 5 μm 

(Phenomenex Ltd., United Kingdom) was utilised. Drug and surfactant were 

separated using a mobile phase gradient which consisted of two solutions: eluent A 

(water (25 mM ammonium acetate)) and B (acetonitrile). The gradient program 

started with 5 % eluent B for 2 min, followed a 6 min gradient up to 95 % eluent B. 

The column was then equilibrated with starting conditions for 2 min before the next 

injection. The flow rate was 1 ml.min-1 with an injection volume of 10 µL. Column 

temperature was set to 30 oC. The retention time for sulphamethazine and sodium 

dodecyl sulphate was 5.9 min and 7.4 min, respectively.  

 

3.3.9 Pore Size Analysis of Mesoporous Silica Systems Before and 

After Dissolution  
 

Pore size analysis by nitrogen (N2) adsorption of the mesoporous sulphamethazine-

SBA-15 formulation was carried out using a Gemini VI surface area and pore size 

analyser (Micromeritics, USA). Aerosil®200 is a non-porous silica material so porosity 

analysis was not undertaken. The samples were degassed overnight at 100 °C in a 

FlowPrep 060 sample degas system (Micromeritics, USA) prior to analysis. During 

analysis, liquid N2 at −196 °C maintained isothermal conditions. The mesopore 
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volume along with mesopore width were calculated using the Barrett–Joyner–

Halenda (BJH) adsorption correlation (220). Samples were analysed in duplicate. 

 

3.3.10 Statistical Analysis 
 

All statistical analyses were conducted using Microsoft Excel 2013 (Microsoft, USA) 

and GraphPad Prism (ver. 5, GraphPad Software Inc., USA). Results are expressed as 

mean ± standard deviation. In vitro dissolution and adsorption isotherm data 

comparing both formulations at different time points and concentrations, 

respectively, were tested for significance using a two-tailed, independent sample t-

test, assuming Gaussian distribution and equal variance (p < 0.05 was considered 

significant).   
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3.4 Results 
 

3.4.1 Sulphamethazine (Sz) Loading Efficiency 
 

Sulphamethazine was loaded onto both silica substrates at a theoretical ratio of 1 mg 

SZ/ 3 m2 silica surface area. Sulphamethazine loading onto SBA-15 was 190 mg/g 

silica corresponding to a drug loading efficiency of 75.86 % (calculated using Equation 

3.1). SZ drug loading onto Aerosil®200 was 60 mg/g silica, equivalent to an 88.62 % 

loading efficiency. These results are in line with loading efficiencies previously 

reported using SC-CO2 methods (88).   

 

3.4.2 Solubility Studies 
 

SDS increases the solubility of some drugs above its CMC (critical micellar 

concentration) (221). In this study, the CMC of SDS in both deionised water and 0.1 

M HCl were determined.  The CMC of SDS in deionised water at 37 oC was 7.3 mM 

(0.21 % w/v), while in 0.1 M HCl solution at 37 oC it was 0.8 mM (0.023 %). Therefore, 

both concentrations of surfactant investigated in this study (0.3 % w/v and 1.44 % 

w/v) were above the CMC in 0.1M HCl. Drug solubility (mM) in each of the 

adsorption/dissolution media are as follows; 0.1 M HCl as 30.00 ± 1.80, 0.1 M HCl 10 

mM SDS as 30.28 ± 0.97 and 0.1 M HCl 50 mM SDS as 38.80 ± 0.40. Sz solubility in 0.1 

M HCl and 0.1 M HCl with 10 mM SDS (0.3 % w/v) were not significantly different. At 

the higher concentration of surfactant (50 mM SDS (1.44 % w/v)), Sz solubility (38.80 

± 0.40 mM) was significantly higher than in the other two media (p < 0.01). However, 
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Sz solubility enhancement in the presence of both concentrations of SDS was 

considered marginal. 

 

3.4.3 Adsorption Studies  
 

3.4.3.1 Sulphamethazine Adsorption onto Silica in 0.1 M HCl Medium 
 

Adsorption isotherms for sulphamethazine adsorption onto SBA-15 and Aerosil®200, 

at the 24 h time point, in 0.1 M HCl at 37 oC, are displayed in Figure 3.2 as both mmol 

Sz/g silica adsorbed and mmol Sz/m2 silica adsorbed. Drug adsorption onto the 

Aerosil®200 non-porous surface levelled off.  In contrast, adsorption onto the 

mesoporous surface increased with increasing drug concentration. There was more 

drug bound per m2 to the non-porous silica surface than the mesoporous SBA-15, 

indicating the drug cannot access the porous network in its entirety.  

Adsorption data for the porous and non-porous silica systems were fitted to the 

Langmuir and the Freundlich adsorption models (Table 3.3). While both models were 

capable of describing the data for both silica substrates (R2 > 0.90), the Langmuir 

model emerged as the best-fit for the adsorption of Sz onto non-porous Aerosil®200. 

In contrast, drug adsorption onto mesoporous SBA-15 was best described by the 

Freundlich model. The Langmuir model parameters were calculated for both silica 

substrates. The number of binding sites on the surface (Nt (mmol/m2)) was 

determined to be greater for the non-porous Aerosil®200 than SBA-15, indicating 

that drug molecules cannot access the full extent of the SBA-15 porous architecture. 

The binding affinity (designated as KL (mM)) of drug to the silica surface was 
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equivalent for both the mesoporous material and the non-porous Aerosil®200 

(adsorbed Sz mmol/m2 silica). Freundlich model parameters were also calculated for 

both substrates and are displayed in Table 3.3. The heterogeneity index (m) is defined 

over a range of 0 to 1 with values closer to 1 describing a more homogenous system. 

The non-porous material exhibited the most homogenous surface of the two 

materials. The Freundlich equation binding affinity parameter (KF (mM)), revealed 

stronger binding affinities between the drug and the non-porous surface.  
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Figure 3.2  Adsorption isotherms for Sz adsorption ((a) mmol Sz /g silica and (b) mmol Sz/m2 silica) onto SBA-15 () 

and Aerosil®200 () at 24 h, 37 oC in 0.1 M HCl (n=3, X and Y error bars indicate standard deviation)  
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Table 3.3 Isotherm parameters obtained by fitting Sz and SDS adsorption 

data (mmol/m2) onto SBA-15 and Aerosil®200 to Langmuir and 

Freundlich isotherms (SDS adsorption data only produced an acceptable 

fit with Freundlich isotherm). Measure of data fit to model is indicated 

by the R2 value. 

Sulphamethazine 

Langmuir Isotherm Nt (mmol/m2) KL (mM) R2 

SBA-15 0.04 0.0004 0.95 

Aerosil®
 0.15 0.0004 0.99 

Freundlich isotherm m KF (mM) R2 

SBA-15 0.50 5.66 0.98 

Aerosil® 0.70 8.09 0.91 

Sodium Dodecyl Sulphate 

Freundlich isotherm m KF (mM) R2 

SBA-15 0.53 10.70 0.98 

Aerosil® 0.77 6.72 0.95 

 

3.4.3.2 SDS Adsorption onto Silica in 0.1 M HCl Medium 
 

The isotherm for SDS adsorption onto both silica substrates in 0.1 M HCl at 37 oC is 

presented in Figure 3.3. The quantity of surfactant adsorbed onto both silica 

materials was similar in magnitude to the quantity of drug adsorbed under the same 

experimental conditions (Figure 3.2 (b) versus Figure 3.3). For SBA-15, a correlation 

of r = 0.83 (p < 0.04) between surfactant and drug adsorption was determined while 

the correlation of adsorption on the non-porous surface was stronger at r = 0.88 (p < 

0.02). The Freundlich adsorption model emerged as the best-fit model for SDS 

adsorption onto both substrates (R2 ≥ 0.95, Table 3.3). The Freundlich binding affinity 
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for the surfactant with the mesoporous SBA-15 was stronger than that of the drug 

molecule. This is most likely a result of the surfactant’s ability to reduce interfacial 

tension leading to improved pore wetting and access to additional binding sites in 

the porous network.  

 

 

Figure 3.3 Adsorption isotherms for SDS adsorption (mmol SDS/m2 silica) 

onto SBA-15 () and Aerosil () at 24 h, 37 oC in 0.1 M HCl (n=3, X and 

Y error bars indicate standard deviation) 
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3.4.3.3 Sulphamethazine Adsorption onto Silica in 0.1 M HCl/SDS Media 
 

Adsorption isotherms for sulphamethazine adsorption (mmol SZ/m2silica) onto SBA-

15 and Aerosil® at 24 h in media with 0.1 M HCl (10 mM SDS) and 0.1 M HCl (50mM 

SDS) at 37 oC are displayed in Figure 3.4. There is significantly less drug adsorbed onto 

both silica materials in the presence of surfactant at both SDS concentrations 

investigated. Similar to drug adsorption in 0.1 M HCl media without surfactant (Figure 

3.2), the non-porous Aerosil® adsorbed a larger fraction of drug/m2 than the 

mesoporous material. As this experiment involved a multi-component system where 

drug and surfactant are simultaneously adsorbing onto the silica surface, data was 

not fit to the Freundlich and Langmuir adsorption models.  
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Figure 3.4 Adsorption isotherms for Sz adsorption (mmol Sz /m2 silica) onto SBA-15 () and Aerosil () at 24 h, 37 oC 

in (a) 0.1 M HCl (10 mM SDS) and (b) 0.1 M HCl (50 mM SDS)  (n=3, X and Y error bars indicate standard deviation)  
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3.4.4 Dissolution Studies 
 

Dissolution experiments were conducted in the same three media as used for 

adsorption experiments. Experiments were conducted under sink conditions and the 

theoretical Sz concentration following 100 % release was < 4% the Sz solubility in all 

cases (Table 3.4). Drug release observed followed a typical immediate release profile 

in all media investigated. 
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Table 3.4 Solubility and dissolution parameters for unprocessed S z and Sz loaded silica formulations in the three 

dissolution media investigated (mean ± standard deviation is provided, n=3)  

Dissolution 
Medium 

Solubility Dissolution Dissolution (% Cumulative Release) 

Solubility of 
Drug (mM) 

% Saturated Solubility 
assuming 100% release 

Sample 5 min 10min 15 min 24 h 

0.1 M HCl 30.00 ± 1.80 3.60 Unprocessed SZ 

SZ loaded SBA-15 

SZ loaded Aerosil® 

25.61 ± 4.34 

74.03 ± 7.21 

70.10 ± 0.35 

51.86 ± 5.02 

76.06 ± 7.53 

73.47 ± 0.83 

82.41 ± 5.56 

74.55 ± 6.10 

74.17 ± 0.38 

97.26 ± 1.80 

79.58 ± 2.08 

77.21 ± 0.01 

0.1 M HCl 
10 mM SDS 

30.28 ± 0.97 3.56 Unprocessed SZ 

SZ loaded SBA-15 

SZ loaded Aerosil® 

98.65 ± 1.04 

90.20 ± 0.65 

89.13 ± 4.75 

97.77 ± 0.40 

90.27 ± 1.06 

90.84 ± 4.09 

97.10 ± 0.18 

90.32 ± 0.86 

89.08 ± 4.41 

97.55 ± 1.02 

92.94 ± 1.25 

86.15 ± 5.23 

0.1 M HCl 
50 mM SDS 

38.80 ± 0.40 2.70 Unprocessed SZ 

SZ loaded SBA-15 

SZ loaded Aerosil® 

100.93 ± 0.94 

86.97 ± 3.15 

91.84 ± 5.26 

100.11 ± 0.80 

91.95 ± 3.03 

92.84 ± 5.27 

99.22 ± 0.94 

94.97 ± 6.33 

92.53 ± 4.74 

99.71 ± 1.06 

98.02 ± 4.44 

90.40 ± 4.12 
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3.4.4.1 Sulphamethazine Loaded Silica Systems in 0.1 M HCl Medium 
 

Loading Sz onto porous and non-porous silica carriers significantly enhanced the 

drug’s dissolution rate in 0.1 M HCl buffer media compared to the unprocessed Sz 

(Figure 3.5 and Table 3.4). At the 5 min time point, Sz release from Aerosil®200 and 

SBA-15 was significantly higher than for the unprocessed drug. However, by 15 min, 

unprocessed Sz dissolution had significantly exceeded drug release from both silica 

systems. The amount of the free drug released remained higher for the unprocessed 

Sz than that of the drug loaded silica samples for the remainder of the experiment. 

At 24 h, incomplete drug release was observed for both silica systems; unprocessed 

Sz release was significantly greater than the extent of release from drug/silica 

samples (Table 3.4). Drug release from the porous and non-porous silica carriers was 

not significantly different at any of the dissolution time points.  
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Figure 3.5 Dissolution profiles of Sz loaded SBA-15 (⧫), Aerosil®200 (Δ) and unprocessed Sz () in (a) 0.1 M HCl, (b) 

0.1 M HCl SDS 10 mM and (c) 0.1 M HCl SDS 50 mM (n=3, Y error bars indicate standard deviation)  
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3.4.4.2 Sulphamethazine Loaded Silica Systems in 0.1 M HCl/SDS Media 
 

In vitro drug dissolution was investigated in the presence of surfactant (SDS) at the 

same concentrations investigated in the adsorption study (10 mM and 50 mM). The 

addition of the surfactant at low concentration (10 mM) significantly enhanced the 

rate and extent of drug release from both silica systems compared to dissolution in 

0.1 M HCl media alone (Figure 3.5, Table 3.4). A further enhancement in the rate or 

extent of SZ release was not observed for the higher concentration of SDS (50 mM). 

Incomplete dissolution was observed for both porous and non-porous systems in the 

presence of 10 mM SDS (unprocessed drug dissolution reached 100% API release). 

Complete drug release was only observed for the drug/ SBA-15 samples in 0.1 M HCl 

containing 50mM SDS.  

 

3.4.5 Porosity Analysis of Recovered SBA-15 Following Dissolution  
 

Pore size distributions of unprocessed and recovered SBA-15 samples are displayed 

in Figure 3.6. Changes in silica porosity can indicate a change in the quantity and 

distribution of bound molecules on the silica surface. A decrease in pore diameter 

and pore volume is evidence of the presence of drug/surfactant molecules in the 

pores or blocking the pores (136).  SBA-15 samples recovered after dissolution in 0.1 

M HCl displayed a reduction in mesopore volume but not mesopore width. Samples 

exposed to media containing surfactant displayed the greatest reduction in 

mesopore volume and demonstrated a significant reduction in mesopore size. This 

suggests that SDS molecules can adsorb onto the silica surface and have the potential 

to deposit in the silica mesopores and block them. 
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Figure 3.6 (a) Pore size distribution of unprocessed SBA-15 (dashed line 

with dot) and recovered SBA-15 samples after drug loading and 

dissolution in 0.1 M HCl (black line), 0.1 M HCl 10 mM SDS (dotted line) 

and 0.1 M HCl 50 mM SDS (dashed line); (b) recovered SBA  samples after 

drug loading and dissolution in 0.1  M HCl 10 mM SDS (dotted line) and 

in 0.1 M HCl 50 mM SDS (dashed line)  

 

3.4.6 Relating Dissolution Release Profiles to Adsorption Isotherms 
 

The relationship between the quantity of Sz adsorbed on the silica surface at the end 

of the dissolution experiment and the estimated quantity of Sz adsorbed (calculated 

using the adsorption isotherm equations) was compared for the 0.1 M HCl media. 

Figure 3.7 (a) demonstrates that the quantity of drug that remains adsorbed to the 

mesoporous silica surface after dissolution is significantly higher than the predicted 

value. The amount retained per m2 was considerably higher for the porous SBA-15 

compared to non-porous Aerosil®200. These results indicate that retention of drug 

molecules on the mesoporous silica surface was not simply due to an adsorption 

equilibrium between adsorbed drug and drug existing in solution in the dissolution 

media and that the porous architecture of silica influences the retention of drug on 

its surface.  
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In contrast to drug molecule adsorption behaviour, the quantity of SDS bound at the 

end of the dissolution experiment was not significantly different to the predicted 

values from the adsorption isotherms for the porous or non-porous systems (Figure 

3.7 (b)).  

The presence of SDS significantly reduces the amount of drug retained on the silica 

surface at the end the of the dissolution experiment (Figure 3.8). This is particularly 

evident for the mesoporous SBA-15. It is possible that the increased wettability of 

the media containing the surfactant provides enhanced access to drug binding sites, 

resulting in less drug retention. Increasing the concentration of SDS does not result 

in significant further reduction in drug retention. While the presence of surfactant 

increases the extent of Sz dissolution, incomplete release was observed in dissolution 

experiments for both silica substrates (except SBA-15 loaded samples in 50 mM SDS). 

This indicates that some drug molecules are so tightly bound to particular silica 

binding sites that they are, in essence, ‘irreversibly bound’ under the dissolution 

experimental conditions.  
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Figure 3.7 Comparison of (a) Sz and (b) SDS bound both predicted (from adsorption isotherm data) and experimentally 

determined after dissolution in 0.1 M HCl  (n=3, error bars indicate standard deviation, *** deno tes p < 0.001) 

 

Figure 3.8 Comparison of the actual bound Sz fraction (mmol/m2 silica) after dissolution in the three media investigated 

for (a) SBA-15 and (b) Aerosil®200 (n=3, error bars indicate standard deviation, ** denotes p < 0.01 of difference com pared 

to amount bound in 0.1 M HCl
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3.5 Discussion 
 

In this study, two factors demonstrated a significant influence on drug release from 

silica systems. The first factor was the influence of drug and surfactant adsorption 

onto the silica surface. The second was the ability of the dissolution medium to wet 

the silica surface, particularly the porous network of the mesoporous SBA-15. 

Drug adsorption onto the silica surface was noted for both silica materials across all 

three media investigated. The mesoporous material had a lower adsorbed drug 

fraction/m2 compared to the non-porous Aerosil®. This indicates that Sz molecules 

cannot access the entirety of the mesoporous network. Mesoporous silica materials 

have a wide range of pore sizes (between 2 – 50 nm), as described in Chapter 2 (222). 

It is possible that adsorbed drug molecules could block smaller pores preventing 

access to further drug binding sites located deeper in the porous architecture. 

Additionally, porous binding sites may be different in terms of the number of 

available sites/m2 and/or binding affinity to those located on the surface, resulting in 

altered drug adsorption levels compared to non-porous materials. Further evidence 

for this hypothesis is observed in the porosity analysis which displays a reduced pore 

volume for the drug loaded samples after dissolution in 0.1 M HCl, indicating bound 

drug molecules remaining are occupying mesopores on the surface. This finding is 

interesting as it suggests accessible surface area rather than specific surface area of 

the SBA-15 is as an important parameter in drug loading and dissolution from these 

porous systems.  

Adsorption isotherms for single component systems were fitted to the Langmuir and 

Freundlich linearized equations. These two models have also been used successfully 
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in other studies investigating adsorption on silica substrates (118, 151, 223). The 

Langmuir model describes a homogeneous surface which contains only one type of 

binding site (224). It emerged as the best-fit for drug binding onto the non-porous 

Aerosil®. In contrast, Sz adsorption onto mesoporous SBA-15 produced a Freundlich 

model best-fit correlation. The Freundlich model is an empirical model which 

describes a heterogeneous surface (a system which contains a range of binding sites 

with different binding affinities) and indicates that multi-layer adsorption of drug 

onto the porous SBA-15 surface exists (225). This observation agreed with a previous 

literature report which demonstrated that the Freundlich isotherm proved the best-

fit for the absorption of a range of pharmaceuticals onto SBA-15 (118). The number 

of Sz binding sites on the surface (Nt) was lower for the mesoporous material. This is 

further evidence that the accessible surface area of the porous silica is an important 

parameter to consider for these formulations. The binding affinity (designated as KL 

for the Langmuir isotherm and KF for the Freundlich model) of drug to the surface is 

stronger for the non-porous Aerosil®. This is most likely a result of SBA-15’s porous 

architecture as drug interactions with the surface could vary depending on the 

dimensions of the pores and silica surface chemistry.   

The quantity of surfactant adsorbed onto both silica substrates was significantly 

similar in magnitude to the quantity of drug adsorbed under the same experimental 

conditions and concentration range (from adsorption isotherms, Figure 3.2 (b) and 

Figure 3.3). This was determined by comparing drug and surfactant adsorption onto 

both silica surfaces. Both molecules have a similar molecular mass (278.33 g/mol for 

SZ and 288.372 g/mol for SDS). SDS is an anionic surfactant and SZ has an aromatic 

amine functional group with a pKa of 2.06 ± 0.30. The isoelectric point of the silica 
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surface has been measured as pH 2 (226). In 0.1 M HCl, the results indicate that the 

more positively charged silica has a similar potential to attract both surfactant and 

drug molecules. Drug interaction with the silica surface is most likely a result of 

hydrogen bonding between the aromatic amine functional group and the silanol 

hydroxyl groups. Amine-silanol hydrogen bonding between drug molecules and the 

silica surface has been reported previously in a study by Xue et al (117). The 

interaction of the surfactant with the silica surface is not well understood. In this 

case, it is likely that the negatively charged head group interacts with the silica 

surface (which is slightly positively charged under these experimental conditions). It 

is possible that the SDS molecules adsorb in a multilayer hemi-micelle formation. This 

phenomenon has been described for cationic surfactant adsorption at the silica gel – 

water interface (227). The nature of this surfactant-silica interaction requires further 

investigation.  

The results of this study indicate that the retention of drug molecules on the 

mesoporous silica surface is not simply due to an equilibrium adsorption related to 

the concentration of drug in solution in the dissolution media. A certain fraction of 

the loaded drug molecules are bound very tightly or to sites which are inaccessible 

for the dissolution media. These findings reinforce the influence of the porous 

network in drug dissolution from these systems. While the quantity of loaded drug 

retained at the end of dissolution was greater than the predicted quantity, the 

amount of surfactant adsorbed was not significantly different when predicted and 

experimental values were compared. The surfactant was not loaded onto the silica 

material in the dissolution experiment. This observation indicates that the drug 

loading process utilised in this study (SC-CO2 loading) is another factor to consider in 
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determining drug adsorption and release behaviour. It has been reported in the 

literature that water molecules can adsorb onto silica by interacting with surface 

functional groups (228). It is possible that during drug loading under SC-CO2 

conditions, water that was bound to the silica surface was removed thus activating 

potential binding sites which would otherwise be unavailable in the mesoporous 

material. This could increase the bound drug fraction remaining at the end of 

dissolution as drug molecules are potentially more difficult to remove from these 

binding sites.  

While both concentrations of SDS investigated were determined to be above the 

surfactant CMC in 0.1 M HCl (0.8 mM), drug solubility was only marginally enhanced 

in the dissolution media containing 50mM SDS. This is most likely due to the extent 

of incorporation of SZ (an acidic drug) into surfactant micelles which is dependent on 

the pKa (acid dissociation constant) of the drug and the ionic nature of the surfactant 

(40). As the pKa of the aromatic amine (2.06 ± 0.30) is only marginally above the pH, 

it is possible the drug is not fully protonated, reducing drug partitioning into anionic 

SDS micelles.  

However, despite the marginal improvement in drug solubility, the addition of 

surfactant at both concentrations (10 mM and 50 mM) significantly enhanced the 

rate and extent of drug release from both porous and non-porous systems compared 

to dissolution in 0.1 M HCl alone. In this case, the improved wetting characteristics 

of the media in the presence of the surfactant is the most likely explanation for the 

improved dissolution profile. Surfactants decrease the solid/liquid surface tension 

(229) which could allow the dissolution media to access additional drug binding sites 
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thus enhancing drug release. Superior release was observed for the non-porous 

Aerosil® at 1 min compared to SBA-15. This could be attributed to the time taken for 

the media to wet the pores. At 5 min, there is no significant difference in the extent 

of release between the two silica systems. This remains the case for the remainder 

of the experiment (24 h).  
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3.6 Conclusions 
 

This study demonstrates that drug adsorption plays a role in the release of drug 

molecules from drug/silica systems. Adsorption isotherms proved useful for 

understanding drug release for non-porous silica formulations. However, adsorption 

behaviour does not explain the high quantity of drug retained on mesoporous 

formulations. The addition of sodium dodecyl sulphate to the dissolution media 

significantly increased sulphamethazine dissolution from both porous and non-

porous silica systems. The study findings highlight the importance of considering drug 

and dissolution media interaction with the silica substrate and accessibility of 

dissolution media to the silica porous architecture when optimising drug release 

from drug/silica systems. 
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4.1 Abstract 
 

Increasingly, in vitro dissolution studies of pharmaceutical systems utilize biorelevant 

media containing various pH modifiers, salts, lipids and proteins which have the 

potential to interact with the silica material. The role of interfacial interactions 

between dissolution media components and the silica surface with respect to their 

ability to influence drug release warrants investigation.  

This study builds on work from Chapter 3 and investigates factors impacting drug 

adsorption, release and retention behaviour for a drug-loaded silica system in two 

biorelevant media; simulated gastric fluid (SGF) and fasted state simulated intestinal 

media (FaSSIF-V2). The aim of this chapter was to examine the influence of 

dissolution media composition on both drug release and drug retention on the silica 

surface. The results demonstrate that constituents of dissolution media can impact 

in vitro drug dissolution profiles from silica systems when studied under sink 

conditions. Reduced surface tension of dissolution medium and its subsequent ability 

to wet the silica surface emerged as the significant factor influencing the extent of 

drug release. This is an important finding as it demonstrates the importance of using 

biorelevant media over traditional buffer media when studying drug loaded 

mesoporous silica systems under sink conditions as well as non-sink conditions. It 

was also established that drug retention on the silica surface can be attributed to 

loaded drug located in pores which are inaccessible to dissolution media. Drug and 

dissolution media passive adsorption contributed to the observed adsorption 

isotherm data but was not a significant factor affecting drug release under sink 

conditions.   
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4.2 Introduction 
 

This chapter builds on work from Chapter 3 which was the first study of its kind to 

explore the role of drug adsorption onto the silica surface during the dissolution 

process. It was observed that quantifiable levels of both drug and surfactant 

adsorbed passively onto the silica surface. Adsorption isotherms generated in parallel 

to the dissolution experiments proved useful in enhancing knowledge concerning 

drug release and retention behaviour on silica materials. Three factors emerged as 

having a significant influence on drug adsorption, release and retention on the silica 

surface; the porous architecture of the material, competitive adsorption and the 

surface tension of the dissolution medium. While this study was undertaken in a 

simple dissolution medium (0.1 M HCl), it is now increasingly recommended that in 

vitro dissolution studies utilize biorelevant media for dissolution testing of novel oral 

dosage forms (230-232). The use of biorelevant media has been promoted as it is 

designed to resemble aspects of the fluid composition of the gastrointestinal (GI) 

tract (233). These media contain various pH modifiers, salts, lipids and proteins which 

are themselves potential silica surface adsorbates (119). However, their interaction 

with the silica surface has not been investigated to date. It was our hypothesis, in this 

study, that interfacial interactions between dissolution media components and the 

silica material could impact drug release from these materials. It is the first study to 

investigate this aspect of the relationship between biorelevant dissolution media and 

mesoporous silica formulations. 

In this work, dissolution experiments were performed on a silica formulation in both 

simulated gastric fluid (SGF), intestinal fluid (FaSSIF-V2) and the individual 



132 
 

components of these media. The aim of these experiments was to examine the 

influence of dissolution media composition on both drug release and drug retention 

on the silica surface. In parallel, adsorption isotherms were generated in equivalent 

media to examine passive drug and specific media component adsorption onto the 

silica surface. The two sets of experiments were then related to each other to provide 

insight into the relationships between drug adsorption, release and retention 

behaviour and to identify potential interactions between the silica surface and 

biorelevant media components. Surface tension measurements were conducted on 

all dissolution media utilized in the study to ascertain the influence of dissolution 

media wettability of the silica surface on drug release from mesoporous silica 

systems. 

The model drug utilized was sulphamethazine (Sz) which has the potential to adsorb 

onto the silica surface as demonstrated in Chapter 3. Its aqueous solubility (0.47 ± 

0.01 mg/ml in NaOH (pH 6.5) and 7.63 ± 0.33 mg/ml in 0.1 M HCl (pH 1.2)) was 

sufficient to enable dissolution behaviour to be assessed under sink conditions, 

defined as under 33 % saturated solubility (as described in Section 1.4.1)  (81, 82). 

This study was designed to focus specifically on the interactions between silica 

surface and dissolution medium that can potentially affect drug release. Conducting 

the experiments under sink conditions minimised the potential effects of drug 

concentration gradients and removed the potential confounding issue of drug 

recrystallization and precipitation, thus enabling effects due to drug adsorption and 

dissolution media surface tension on the extent of drug release to be explored.  
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4.3 Materials and Methods 
 

4.3.1 Materials 
 

SBA-15 was obtained from Glantreo Ltd. (Ireland). Silica surface and pore properties 

were obtained from suppliers (particle size 30 µm, surface area 678.57 ± 8.23 m2/g, 

pore volume 0.64 ± 0.02 cm3 and pore diameter 51.85 ± 0.05 Å). Sulphamethazine 

(Sz) was purchased from Sigma Aldrich (Ireland). Liquid carbon dioxide was supplied 

by Irish Oxygen Ltd (Ireland). All other chemicals and solvents were of analytical 

grade or HPLC grade and purchased from Sigma-Aldrich (Ireland).  

 

4.3.2 Solubility Measurements 
 

Solubility studies were performed in triplicate by the addition of excess 

sulphamethazine (Sz) to 10 ml of SGF and FaSSIF-V2 (Table 4.1) using a standardised 

shake-flask method with a total shaking time of 24 h at 37 oC. Simulated gastric fluid 

(SGF) was prepared as outlined in the USP NF 26 (234). FaSSIF-V2 was prepared as 

outlined by Jantratid et al (233). Solubility studies were also conducted in solutions 

of the individual components of biorelevant media. The pH of SGF and its individual 

components was pH 1.2 while the pH of FaSSIF-V2 and its components was pH 6.5 

(except in the case of maleic acid). Solutions were adjusted to the required pH using 

dilute HCl or NaOH, where appropriate. Samples (2 ml volume) were removed at the 

24 h time point and centrifuged at 16,500 g for 13 min using a Hermle z233M-2 fixed 

angle rotor centrifuge (HERMLE Labortechnik GmbH, Germany). The supernatant 
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was removed and centrifuged again under the same conditions. The resultant 

supernatant was analysed using HPLC following dilution with mobile phase.  

 

Table 4.1 Composition of Simulated Gastric Fluid (SGF) and Fasted State 

Simulated Intestinal Fluid Version 2 (FaSSIF -V2) 

COMPONENT SGF COMPONENT FASSIF-V2 

Pepsin (g L-1) 3.2 Sodium Taurocholate (mM) 3.0 

Sodium Chloride (mM) 34.2 Lecithin (mM) 0.2 

HCl (mM) 226.6 NaOH (mM) 34.8 

  Sodium Chloride (mM) 68.6 

  Maleic Acid (mM) 19.1 

pH 1.2 pH 6.5 

  

4.3.3 Surface Tension Measurements 
 

The surface tension of SGF, FaSSIF-V2 and solutions of their components listed in 

Table 4.1 were measured using a method adapted from Enright et al using a 

Attension Theta Optical Tensiometer (Attension Biolin Scientific, Finland), calibrated 

by prior measurements with deionized water (72.8 mN/m) (235). All measurements 

were based on a 10 μL droplet size and were performed at ambient temperature. 

Surface tension data are presented as mean ± standard deviation (n = 3). 
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4.3.4 Adsorption Studies 
 

Adsorption studies were performed in screw-capped glass vials containing 100 mg of 

silica in 10 ml of sulphamethazine solution over a defined concentration range (from 

low concentration increasing gradually to concentrations nearing equilibrium 

solubility) in the particular medium. Adsorption studies were also conducted for 

pepsin in the presence of 100 mg SBA-15 in dilute HCl (pH 1.2). Experiments were 

conducted under the same conditions as solubility measurements i.e. shake-flask 

conditions for 24 h at 37 oC. At 24 h, samples (2 ml) were removed and centrifuged 

at 16,500 g for 13 min using a Hermle z233M-2 fixed angle rotor centrifuge, (HERMLE 

Labortechnik GmbH, Germany). The supernatant was removed and centrifuged again 

under the same conditions. The resultant supernatant was analysed using HPLC or 

UV spectroscopy following appropriate dilution. UV spectroscopy was used for 

pepsin quantification only (Section 4.4.4.1) 

 

4.3.5 Preparation of Sulphamethazine Loaded Silica Formulations 
 

Sulphamethazine loaded silica formulations were prepared according to the method 

previously described by Ahern et al (88). The drug and silica material was combined 

at a ratio of 1 mg Sz: 3 m2 silica in a BC 316 high-pressure reactor (High Pressure 

Equipment Company, USA) and stirred using magnetic stirring. The reactor was 

heated to 40 °C using heating tape and maintained at this temperature for the 

duration of the experiment. Temperature was monitored using a temperature 

monitor (Horst GmbH, Germany). The reactor cell was filled with liquid CO2 and a 

high pressure pump (D Series Syringe Pump 260D, Teledyne ISCO, USA) was used to 
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pump additional CO2 to a final processing pressure (27.58 MPa). After 24 h, the cell 

was depressurised rapidly by venting the CO2. The processed material was collected 

from the cell and stored in a desiccator prior to analysis. 

 

4.3.6 Drug Content Quantification 
 

The sulphamethazine content of the silica formulations was determined by 

thermogravimetric analysis (TGA), using a TGA 500 instrument (TA Instruments Ltd., 

United Kingdom). Samples in the weight range 2–10 mg were loaded onto tared 

platinum pans and heated from ambient temperature to 900 °C, at a heating rate of 

10 °C/min under an inert N2 atmosphere. Samples were analysed in triplicate. The 

drug quantity was calculated based on the weight loss between 100 and 900 °C, 

corrected for the weight loss over the same temperature range for a silica reference 

sample (55). TGA thermograms were analysed using Universal Analysis 2000 

software (TA Instruments Ltd., United Kingdom). Drug-loading efficiency was 

calculated using Equation 3.1.     

 

4.3.7 Dissolution Studies 
 

Dissolution studies were performed in triplicate using USP II apparatus (Erweka® 

DT600 dissolution test system (ERWEKA GmBH, Germany)) in 500ml dissolution 

medium at 37 ± 5 oC at a paddle rotation of 50 rpm. Drug dissolution was investigated 

in SGF, FaSSIF-V2 and the individual components of both media. Sink conditions (10% 

saturated solubility) were employed for all dissolution experiments. Samples of 4 ml 

volume were withdrawn at 1, 5, 10, 15 and 30 min intervals with an additional sample 
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taken at the 24 h time point. Samples were immediately replaced with an equal 

volume of fresh, pre-warmed medium. The withdrawn samples were centrifuged at 

16,500 g for 13 min using a Hermle z233M-2 fixed angle rotor centrifuge, (HERMLE 

Labortechnik GmbH, Germany). The supernatant was removed and centrifuged again 

under the same conditions. The resultant supernatant was analysed using HPLC 

following dilution with mobile phase.  

 

4.3.8 HPLC Analysis of Sulphamethazine  
 

Reversed phase high performance liquid chromatography (HPLC) was performed 

using an Agilent 1200 series HPLC system (Agilent Technologies, USA) equipped with 

a Photo Diode Array Detector (DAD). To quantify drug content in adsorption and 

dissolution studies a reversed-phase column Kinetex C-18 column (150 mm × 4 mm) 

with internal pore width 2.6 μm (Phenomenex Ltd., United Kingdom) was utilised. An 

isocratic HPLC-DAD (diode array detector) technique utilised in Chapter 3 and 

adapted from a method by Ding et al (218) with a mobile phase consisting of 

acetonitrile – water – acetic acid (25:75:0.05), an injection volume of 50 µL and a flow 

rate of 0.75 ml.min-1
 at ambient temperature was employed. The detection 

wavelength was 265 nm. The retention time for sulphamethazine was 5.9 min.  

 

4.3.9 UV-Vis Spectroscopy Analysis of Pepsin Adsorption 
 

Pepsin adsorption onto silica was analysed by quantifying the remaining pepsin in 

solution at 24 h time point of the adsorption study and subtracting this value from 
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the pepsin starting concentration. Experiments were conducted over a defined range 

of pepsin concentrations. UV-Vis spectroscopy (Unicam 500 spectrometer) enabled 

with Vision 32 software was utilised to quantify the amount of pepsin in solution at 

24 h. The λmax  for pepsin in dilute HCl (pH 1.2) was determined as 209 nm. Samples 

were diluted appropriately prior to analysis.  

 

4.3.10 Statistical Analysis 
 

All statistical analyses were conducted using Microsoft Excel 2013 (Microsoft, USA) 

and GraphPad Prism (ver. 5, GraphPad Software Inc., USA). Results are expressed as 

mean ± standard deviation. In vitro dissolution and adsorption isotherm data 

comparing the formulations and different time points was tested for significance 

using a two-tailed, independent sample t-test, assuming Gaussian distribution and 

equal variance or a one-way-analysis of variance (ANOVA) with Tukey’s multiple 

comparison test where appropriate (p  0.05 was considered significant).   
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4.4 Results 
 

4.4.1 Solubility Studies 
 

Sulphamethazine solubility in SGF, FaSSIF-V2 and solutions of their individual 

components are displayed in Figure 4.1. Comparing components of SGF, solubility is 

highest in solutions containing HCl alone and decreases in the presence of NaCl and 

pepsin (Figure 4.1 (a)). Drug solubility is significantly higher in SGF compared to 

FaSSIF-V2 (Figure 4.1 (a) and 4.1 (b)). Sulphamethazine (Sz) has two pKa values due 

to dissociation of its primary amine (pKa1 = 2.1) and secondary amine groups (pKa2 = 

7.5) (236). At pH values below the pKa1, the Sz molecule exists in its cationic form 

which is more soluble than the neutral form which exists at pH 6.5 (pH of FaSSIF-V2) 

(237). In the presence of HCl, Sz exists in a salt form as the amine becomes 

protonated to form an ammonium ion with a Cl- counter ion. This results in enhanced 

solubility compared to solubility in solutions of maleic acid which have a pH 2.9 where 

solubility enhancement relies solely on the influence of pH (Figure 4.1 (b)).  

There is a statistically significant enhancement of Sz solubility at pH 6.5 both in the 

presence of sodium taurocholate (TCA) (a bile salt and naturally occurring surfactant) 

and FaSSIF-V2, compared to its solubility in the solution containing NaOH alone. 

However, this improvement in solubility was marginal. As Sz is an acidic drug with a 

low pKa, it is predominately ionised at pH 6.5. Sodium taurocholate exists in an 

anionic state at pH 6.5 and this results in repulsion between the anionic charge of the 

drug and surfactant, hindering drug partitioning into bile salt micelles (40, 238).  
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Figure 4.1 Solubility of sulphamethazine in (a) SGF and solutions of its 

individual components and (b) FaSSIF-V2 and solutions of its individual 

components (TCA = sodium taurocholate) at 37 oC. Concentrations of 

individual components utilised are based on composition of SGF and 

FaSSIF-V2 from Table 4.1. The pH of SGF and its individual components 

was pH 1.2 while the pH of FaSSIF-V2 and its components was pH 6.5 

(except in the case of maleic acid). The pH was adjusted where necessary 

using dilute HCl and NaOH (n = 3, mean ± SD).  

 

4.4.2 Surface Tension Measurements  
 

Surface tension measurements for SGF, FaSSIF-V2 and solutions of their individual 

components are displayed in Table 4.2. NaOH, HCl, maleic acid and NaCl components 

of SGF or FaSSIF-V2 did not contribute to the significant reduction in surface tension 

determined for SGF or FaSSIF-V2 compared to that of deionised water (72.8 mN/m). 

The presence of pepsin in SGF significantly reduces surface tension (p < 0.001). This 

effect has also been reported by Vertzoni et al (239). The bile salt, sodium 

taurocholate, contributed to the surface tension reduction observed in FaSSIF-V2. 

The measured surface tension (48 mN/m) agrees with literature reports for this 

parameter in FaSSIF-V2 (93).  
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Table 4.2 Surface tension measurements for SGF, FaSSIF-V2 and 

individual components of both biorelevant media. Concentrations of 

individual components utilised are based on composition of SGF and 

FaSSIF-V2 from Table 4.1. The pH of SGF and its individual components 

was pH 1.2 while the pH of FaSSIF-V2 and its components was pH 6.5 

(except in the case of maleic acid). The pH was adjusted where necessary 

using dilute HCl and NaOH (mean ± SD, n = 3).  

 

Components of  

SGF 

Surface tension 

(mN/m) 

Components of 

FASSIF-V2 

Surface tension 

(mN/m) 

SGF 59.48 ± 0.48 FaSSIF-V2 48.27 ± 0.23 

 HCl 72.16 ± 0.62 NaOH 73.31 ± 0.63 

NaCl 72.21 ± 1.42 NaCl 71.42 ± 2.34 

Pepsin 57.48 ± 0.82 Maleic Acid 71.09 ± 2.11 

  Sodium Taurocholate 43.76 ± 0.82 

 

4.4.3 Sulphamethazine (Sz) Loading Efficiency 
 

Sulphamethazine loading onto SBA-15 was 203.40 mg/g silica corresponding to a 

drug loading efficiency of 89.20% (calculated using Equation 3.1). These results are 

in line with loading efficiencies previously reported using SC-CO2 methods (88). 

 

4.4.4 Adsorption Isotherm 
 

To ascertain to what extent incomplete release of drug from the drug loaded silica 

system could be explained by passive drug adsorption onto the silica surface, drug 

adsorption isotherms in each of the dissolution media utilized in the dissolution 

experiments were generated. 
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4.4.4.1 Simulated Gastric Fluid (SGF) 
 

Adsorption isotherms for sulphamethazine adsorption onto silica in the presence of 

specific components of SGF are displayed in Figure 4.2. Drug adsorption onto SBA-15 

in the dilute HCl media was significantly higher than adsorption onto the silica surface 

in the presence of NaCl, pepsin or SGF at free drug concentrations above 1 mM (p < 

0.001). There was no significant difference in drug adsorption onto the silica surface 

in SGF media and media containing pepsin or NaCl (Figure 4.2). In these three media, 

adsorption does not greatly increase with increasing drug concentrations above 3 

mM (low drug concentrations). Drug adsorption does increase with increasing free 

drug concentration in dilute HCl (pH 1.2).  

In dilute HCl (pH 1.2), the silica surface has a slight positive charge as the pH is below 

the isoelectric point of silica (pH 2) (226). The drug molecule is also positively charged 

in this acidic media (below pKa1). However, this charge is balanced by a Cl- counter 

ion. The drug molecule can form hydrogen bonds with the silica surface through 

interactions between the aromatic amine group and the silica hydroxyl groups as 

discussed in Chapter 3. Amine-silanol bonding has been reported previously by Xue 

et al (117). Hydrogen bonding between molecules and the silica surface can 

overcome electrostatic repulsion as demonstrated by Shi et al if the repulsion can be 

effectively screened by counter ions at the surface, in this case Cl- and H+ ions (240).  

The significant drop in adsorption when NaCl was added to the medium is attributed 

to the interaction of salt ions with the silica surface, which has previously been 

reported at low pH (241). This interaction could shield drug binding sites resulting in 

the observed significant decrease in drug adsorption. Figure 4.3 demonstrates that 
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pepsin was adsorbed to a greater extent than sulphamethazine on the silica material. 

The reduction in drug adsorption observed when pepsin is present indicates that 

pepsin competes with the drug for binding sites/occupies potential drug binding 

sites.  

 

 

Figure 4.2 Adsorption isotherms for Sz adsorption (mmol Sz /m 2 silica) 

onto SBA-15 in dilute HCl (), NaCl (), pepsin () and SGF (◼) at 37 
oC. All concentrations of components of SGF are as per Table 4.1 and pH 

was adjusted to pH 1.2 (n=3, X and Y error bars indicate standard 

deviation).  
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Figure 4.3 Adsorption isotherms for Sz adsorption (expressed as Log 

Quantity Adsorbed (mg Sz /m2 silica)) onto SBA-15 in dilute HCl () and 

pepsin () at 37oC. The adsorption isotherm for pepsin adsorption (mg 

pepsin/m2 silica) onto SBA-15 in dilute HCl (◼) (in the absence if Sz) at 

37 oC is also displayed. All concentrations of components of SGF are as 

per Table 4.1 and pH was adjusted to pH 1.2 (n=3, X error bars indicate 

standard deviation).  

 

4.4.4.2 FaSSIF-V2  
 

Adsorption isotherms for sulphamethazine adsorption onto silica in solutions of 

individual components of FaSSIF-V2 are displayed in Figure 4.4. Drug adsorption was 

significantly higher in dilute NaOH (pH 6.5) than dilute HCl (pH 1.2) at the same free 

drug concentrations. However, the solubility of Sz in dilute acid was higher than that 

in dilute NaOH (Figure 4.1) and adsorption increased significantly at these higher 

drug concentrations (Figure 4.2). Sulphamethazine adsorption was decreased in the 

presence of salt (a trend which was also observed in SGF (Section 4.4.4.1). However, 

the decrease is not as pronounced as that for the acidic medium. This is due to a 
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decrease in interaction between salt ions and the silica surface at pH above the silica 

isoelectric point which results in a reduction of the shielding effect that hinders drug 

adsorption (226, 242).  

The presence of sodium taurocholate decreased drug adsorption onto the silica 

surface (Figure 4.4) at concentrations from 0.5 mM but not to the same extent as 

pepsin (Figure 4.2). Sulphamethazine adsorption was further decreased in the 

presence of FaSSIF-V2 which indicates that lecithin adsorption onto the silica surface 

can further decrease drug adsorption levels. It was not possible to study the effect of 

lecithin in isolation as its solubility is dependent on the presence of bile salt micelles 

(243).  

 

 

Figure 4.4 Adsorption isotherms for Sz adsorption (mmol Sz /m2 silica) 

onto SBA-15 in dilute NaOH (), NaCl (), TCA () and FaSSIF-V2 (⧫) at 

37oC. All concentrations of components of FaSSIF-V2 are as per Table 4.1 

and pH was adjusted to pH 6.5 (n=3, X and Y error bars indicate standard 

deviation).  
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4.4.5 Dissolution Studies 
 

Dissolution experiments were conducted in dissolution media identical to those used 

in the adsorption studies. Drug release was measured over 30 min with a final 24 h 

time point to study the effect of silica adsorption (determined in the adsorption 

experiments) on drug release.  

 

4.4.5.1 Simulated Gastric Fluid 
 

Loading sulphamethazine onto SBA-15 significantly enhanced the initial rate of drug 

release in the presence of dilute HCl and NaCl (pH 1.2) (Figure 4.5). In media 

containing pepsin, the dissolution enhancement at 5 min was not observed. This was 

attributed to the decreased surface tension of these media resulting in improved 

wettability of the unprocessed drug. After 30 min, there was no significant difference 

between unprocessed drug release and Sz release from the silica systems in the 

dissolution media examined. However, at 24 h, drug release from the unprocessed 

samples was significantly higher than that from the silica formulation in all four media 

(p < 0.05) (Table 4.3). When behaviour across the dissolution and adsorption 

isotherm experiments are considered, it can be observed that while NaCl and pepsin 

had similar effects on drug adsorption behaviour, the extent of release during 

dissolution studies from pepsin was higher. This indicates that reduced surface 

tension is plays a more significant role influencing drug release from silica systems in 

SGF than passive adsorption. Complete drug dissolution was not observed from any 

of the silica samples. This incomplete release was most significant in dilute HCl and 

decreased when other components of the SGF are added to the acidic medium (Table 
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4.3). These results suggest that the composition of the dissolution media is 

instrumental in governing the extent of potential drug release under sink conditions. 
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Figure 4.5 Dissolution profiles of (a) unprocessed Sz and (b) Sz loaded SBA -15 in specific dissolution media ((⧫) 

represents SGF, () pepsin, () NaCl and () 0.1 M HCl). All concentrations of components of SGF are as per Table 

4.1 and pH was adjusted to pH 1.2 (n=3, Y error bars indicate standard deviation)  
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Table 4.3 Cumulative drug dissolution (%) for unprocessed drug and 

drug-loaded silica formulation at 24 h in SGF, FASSIF and their respective 

components. All concentrations of components of SGF and FASSIF are as 

per Table 4.1 and pH was adjusted to pH 1.2 and pH 6.5 respectively 

(n=3) 

Dissolution Media 
Sz loaded SBA-15 

release at 30 min (%) 
Sz loaded SBA-15 
release at 24h (%) 

Unprocessed Sz 
release at 24h (%) 

HCl 76.7 ± 3.7 79.6 ± 2.1 97.2 ± 1.8 

NaCl 81.2 ± 1.3 86.5 ± 3.2 102.5 ± 0.3 

Pepsin 84.8 ± 3.2 94.7 ± 4.2 102.2 ± 1.6 

SGF 88.1 ± 1.4 96.1 ± 0.6 103.8 ± 1.3 

NaOH 78.9 ± 12.3 77.1 ± 4.6 93.2 ± 0.2 

NaCl 81.2 ± 6.7 87.1 ± 4.4 96.1 ± 6.8 

Sodium Taurocholate 78.0 ± 2.3 95.7 ± 1.7 98.7 ± 3.2 

FaSSIF-V2 80.3 ± 5.3 94.5 ± 4.2 95.4 ± 4.0 

 

4.4.5.2 FaSSIF-V2 
 

Drug dissolution enhancement from the SBA-15 system was observed in the 

presence of TCA and FaSSIF-V2 (p < 0.05 at 24 h) but not in the other individual 

components of FaSSIF-V2 media (Table 4.3). This was most likely a result of more 

favourable wettability of the formulation in the presence of the bile salt, further 

indicating that reduced surface tension is the most important dissolution media 

characteristic influencing drug release in this study. Greater variability in dissolution 

profiles was observed in media without the bile salt which was attributed to their 

inferior wetting characteristics (Figure 4.6). After 24 h, incomplete release was 

observed from the silica formulation in all dissolution media investigated (Table 4.3). 
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The same trend noted in Section 4.4.5.1 SGF (i.e. unprocessed drug release 

significantly higher than drug release from the silica systems) was also observed in 

dilute NaOH and NaCl (pH 6.5) dissolution media. However, the extent of drug release 

in the presence of sodium taurocholate (TCA) alone and in FaSSIF-V2 was not 

significantly different from unprocessed drug release at 24 h. When adsorption and 

dissolution experiments were compared, it was noted that while NaCl and TCA had a 

similar effect on drug adsorption behaviour during adsorption studies, TCA provided 

a more significant enhancement of drug dissolution. This is a result of its ability to 

reduce surface tension of the media which proved superior in augmenting drug 

release compared to the drug binding site ‘shielding effect’ of NaCl. 

  



151 
 

 

Figure 4.6 Dissolution profiles of (a) unprocessed Sz and (b) Sz loaded SBA -15 in specific dissolution media ((⧫) 

represents FaSSIF, (∆) TCA, () NaCl and () dilute NaOH). All concentrations of components of FaSSIF are as per 

Table 4.1 and pH was adjusted to pH 6.5 (n=3, Y error bars indicate standard deviation)  
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4.4.6 Relating Dissolution Release Profiles to Adsorption Isotherms 
 

The quantity of drug retained after dissolution experiments was significantly higher 

than the quantity adsorbed during the isotherm studies for all dissolution media 

investigated (assuming drug not released at the end of the dissolution study (24 h 

time point) represents drug bound to SBA-15) (Figure 4.7).  This behaviour 

demonstrates that incomplete release of drug from these systems cannot be 

explained solely by drug adsorption behaviour in solution. It indicates that a 

considerable quantity of loaded drug remains on the silica surface, possibly located 

in pores which are inaccessible to the dissolution media. The extent of this 

inaccessible pore network is governed by the ability of the dissolution media to wet 

the surface. There is a significant reduction in % drug retained after dissolution in 

media containing components which reduce surface tension compared to simple 

traditional media (Figure 4.7). However, in all cases a substantial incomplete release 

is observed following dissolution.  
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Figure 4.7 Comparison of % drug adsorbed (mmol/m 2 silica) during adsorption and dissolution studies in components 

of (a) SGF and (b) FaSSIF-V2 media (n=3, error bars indicate standard deviation)  
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4.5 Discussion 
 

The results of this study demonstrate that constituents of dissolution media can have 

a significant influence on in vitro drug release from silica systems when studied under 

sink conditions. Two features of the dissolution media composition, in particular, 

were investigated; dissolution media surface tension and adsorption of media 

components onto the silica material.  

The surface tension of the dissolution medium and its subsequent ability to wet the 

silica surface emerged as the significant factor influencing the extent of drug release. 

This is highlighted in Figure 4.7 where it can be observed that drug retention on the 

surface was lowest in media containing surface active agents such as pepsin or TCA. 

Both of these components decreased the surface tension of the dissolution medium 

(93, 239). This finding agreed with the results in Chapter 3 where drug retention was 

reduced in the presence of a non-biological surfactant (sodium dodecyl sulphate). 

The Nernst-Brunner equation provides justification for these observations as it 

explains how contact area between media and solid surface influences dissolution 

(244). In this study, it was observed that a reduction in surface tension enhanced the 

wettability of the silica mesoporous network and thereby increased the effective 

surface area for dissolution (14).  This finding demonstrates the importance of using 

biorelevant media over traditional buffers (i.e. dilute HCl and phosphate buffer) 

when studying drug release from mesoporous silica systems under sink conditions. 

Biorelevant media is commonly employed to study drug release in non-sink 

conditions due to its impact on drug solubility and supersaturation levels (78, 94, 

245). Together with results described in Chapter 3, this data provides evidence that 
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media surface tension can significantly influence drug release from mesoporous silica 

formulations under sink conditions.  

The higher levels of retention noted after dissolution experiments compared to 

adsorption studies suggest that drug retained on the surface after dissolution could 

be located in pores inaccessible to the dissolution media. Mesoporous silica materials 

have a wide range of pore size (2 -50 nm) (222). During the drug loading process, it is 

feasible that a quantity of drug was loaded deep in the porous network which was 

accessible to the loading solvent (supercritical CO2) but not accessible to the 

dissolution medium during release studies (54).  The hypothesis of a relationship 

between loading methodology and release is not resolved in this current study and 

warrants further investigation.  

The impact of media composition on drug adsorption onto the silica material was a 

secondary factor impacting drug release. Dissolution media pH influenced drug 

adsorption by altering silica surface charge, drug ionisation state and drug solubility. 

At low pH the silica surface is positively charged and at pH 6.5 the silica surface is 

negatively charged allowing for electrostatic attraction or repulsion interactions with 

solute molecules. Sulphamethazine has the ability to form hydrogen bonds with the 

silica surface through interactions between the aromatic amine group and the silica 

hydroxyl groups. Amine-silanol bonding has been reported previously by Xue et al 

(117). At the same free drug concentrations, adsorption onto the silica surface is 

higher in the presence of dilute NaOH as the drug is unionised at this pH. However, 

in acidic pH, hydrogen bonding between molecules and the silica surface can 

overcome electrostatic repulsion as demonstrated by Shi et al if the repulsion can be 
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effectively screened by counter ions at the surface, in this case Cl- and H+ ions (240). 

As free drug concentration increased in HCl (Figure 4.1), drug adsorption increased 

significantly indicating the importance of drug solubility in the dissolution medium as 

a factor influencing passive drug adsorption.  

Competitive adsorption of drug and dissolution media components on the silica 

surface was observed in this study. Both pepsin and TCA demonstrate a competitive 

adsorption behaviour with the drug in isotherm experiments. Drug adsorption 

observed in isotherm experiments was significantly reduced in the presence of 

pepsin (Figure 4.3). This was attributed to competitive binding of pepsin with the 

silica surface. In dilute HCl, pepsin is uncharged and competes with the drug for 

binding sites on the silica surface (it has been reported that protein adsorption onto 

the solid surface is maximised at the isoelectric point (246-248)). While 

sulphamethazine adsorption was significantly reduced, quantifiable adsorption was 

observed. It is possible that certain drug binding sites remain available to the drug on 

the silica surface despite the influence of factors which significantly affect drug 

adsorption levels. Sodium taurocholate (TCA) also decreased drug adsorption onto 

the silica surface (Figure 4.4). Adsorption of bile salts onto silica surfaces have been 

reported in the literature (119). Sulphamethazine adsorption was further decreased 

in FaSSIF-V2 which indicates that a combined competitive effect incorporating NaCl, 

bile salt and lecithin can further decrease drug adsorption levels.  
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4.6 Conclusion 
 

This study is the first to consider interfacial interactions between dissolution medium 

and the silica surface with respect to their effect on drug release. The results highlight 

that dissolution media surface tension was the most significant factor affecting drug 

release from drug loaded mesoporous silica systems. The ability of media 

components to alter passive drug adsorption and to competitively adsorb on the 

silica surface was a secondary factor. These results highlight the importance of 

employing biorelevant media when studying drug dissolution from mesoporous silica 

formulations under sink conditions. 
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5.1.  Abstract 
 

The specific nature of drug-silica interactions is not well understood. It has been 

suggested that drug can bind to the silica surface via hydrogen bonding and non-

specific hydrophobic interactions. In this chapter, the mechanism of these 

interactions was investigated using spectroscopic techniques and competitive 

adsorption experiments. It was determined that drug interacts with mesoporous 

silica via hydrogen bonding and not through non-specific hydrophobic interactions. 

It was also determined that hydrogen bonding capability can potentially influence 

drug adsorption onto mesoporous silica. The role of drug adsorption onto the silica 

surface was investigated under supersaturating conditions through the generation of 

adsorption isotherms up to and exceeding amorphous solubility levels. It was 

observed that the equilibrium between drug adsorbed on the silica surface and free 

drug in solution was related to drug activity in solution. This activity is a function of 

the chemical potential of the drug in the system with silica and dissolution medium. 

The results suggest that solute activity in solution can potentially influence drug 

release from mesoporous silica materials. An equilibrium was also confirmed 

between adsorbed drug and free drug in solution during drug dissolution from silica 

formulations under supersaturating conditions (at amorphous solubility). It was 

demonstrated that this equilibrium was not dependant on the quantity of silica 

present, rather the equilibrium relationship between drug adsorbed and drug in the 

dissolution medium. This provides further evidence that knowledge of drug activity 

in solution can aid in our understanding of drug release from mesoporous silica 

formulations.   
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5.2.  Introduction 
 

As previously described in Chapter 2, drug molecules have been loaded onto 

mesoporous silica substrates to enhance aqueous solubility and control drug release 

(72, 120, 249, 250). However, the specific nature of the interaction between the silica 

surface and the adsorbed drug molecules has not been confirmed. The literature 

differs with some authors suggesting drug-silica interactions are solely due to 

hydrogen bonding while others report they are a mixture of hydrogen bonding and 

non-specific hydrophobic interactions (73, 251-254). However, there is no detailed 

study published in the literature to confirm the mechanism of interaction. This work 

aims to fill this gap in knowledge by exploring the adsorption of two similar 

compounds with different hydrogen bonding capabilities onto the mesoporous silica 

surface. Indomethacin has one hydrogen bond donor and four hydrogen bond 

acceptors while indomethacin methyl ester has no hydrogen bond donor and four 

hydrogen bond acceptors.  It was hypothesized that the lack of a hydrogen bond 

donor would impact adsorption of the methyl ester compared to that of 

indomethacin. Drug-silica interactions were examined using specific spectroscopic 

techniques (FT-IR and fluorescence spectroscopy) alongside competitive adsorption 

studies using indicators of hydrogen bonding (urea (255)) and hydrophobic 

interactions (NaCl (256)).  

Chapter 3 and 4 of this thesis investigated the role of drug adsorption onto the silica 

surface during dissolution in sink conditions. However, mesoporous silica systems are 

noted for their ability to achieve supersaturated levels of drug release (257-260). To 

address this, drug adsorption onto SBA-15 was examined under supersaturating 
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conditions in this chapter up to and exceeding amorphous solubility levels. 

Amorphous solubility is defined as the maximum increase in solution concentration 

that can be obtained relative to the crystalline form (261). At concentrations above 

the amorphous solubility a metastable equilibrium can exist for slow crystallizers as 

the system splits into two liquid phases to lower free energy - one phase is water rich 

and the other is drug rich. This is defined as liquid-liquid phase separation (LLPS) 

(262). The drug-rich species formed following LLPS typically have a size of 100–

500 nm when characterized immediately after formation using techniques such 

as dynamic light scattering (263, 264). Growth of the drug-rich droplets/particles can 

subsequently occur or can be inhibited if additives such as polymers are present (265, 

266). Thus, some compounds can clearly persist as a two-phase solution which 

remains supersaturated at a constant level (at the co-existence concentration) until 

crystallization occurs. LLPS is most commonly observed in systems where there is 

very high supersaturation, rapid generation of supersaturation, when crystallization 

inhibitors or high levels of impurities are present and where there is inadequate 

mixing causing high local supersaturations (267). The amorphous phase generated 

can be considered a precursor to crystallization as the system remains 

supersaturated after LLPS has occurred and is expected to subsequently crystallize. 

Conducting drug release studies under conditions which promote LLPS has been 

widely employed for amorphous solid dispersions (268-271). However, to date, only 

one study has examined drug release from mesoporous systems under such 

experimental conditions (272). This work aims to expand knowledge in this area by 

investigating drug dissolution and adsorption onto mesoporous silica materials up to 

and exceeding amorphous solubility levels.  
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It has recently been confirmed in a paper by Dening et al that an equilibrium exists 

between drug adsorbed on the silica surface and free drug in solution (272). This 

study aims to build on this work by further investigating the basis of this equilibrium 

using Langmuir and Freundlich adsorption isotherms, which have been successfully 

used to describe drug adsorption onto the silica surface in Chapter 3 and in the 

literature (118, 151, 273). The influence of the drug’s activity in solution which is 

related to the chemical potential (µ) of the adsorbed drug and the free drug in 

solution during the equilibrium process was considered. The chemical potential of a 

component is defined as the contribution that component makes to the overall free 

energy of the system (12). The Langmuir constant (KL) explains this change in the free 

energy of adsorption and can provide information on the chemical potential of the 

drug adsorbed to the silica surface (274-278). To examine chemical potential where 

more than one component is present, the concept of activity is utilized which 

provides a method to quantify the way in which the chemical potential of a pure 

substance changes when it becomes a component in a system (12).  In this study, 

adsorption isotherms were generated up to and exceeding both drug’s amorphous 

solubility. To compare the drug adsorption between the two model drugs, 

equilibrium concentrations were converted to drug activity levels with amorphous 

solubility designated an activity of 1.  
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5.3.  Materials and Methods 
 

5.3.1. Materials  
 

Indomethacin (IND) (γ form) was purchased from Letco Medical (Decatur, AL). 

Indomethacin methyl ester (INDME) was synthesised using a method by Trask et al 

(279). SBA-15 material with pore diameter 7.1 nm, pore volume 0.80 cm3/g and SSA 

586 m2/g was supplied by Glantreo Ltd. (Cork, Ireland). Hydroxypropyl 

methylcellulose (HPMC) (Pharmacoat® 606) was purchased from Shin-Etsu Chemical 

Co. Ltd. (Tokyo, Japan). Pyrene and urea were obtained from Sigma-Aldrich (St. Louis, 

MO, USA). Buffer salts and analytical grade solvents were supplied by Fisher Chemical 

(Fair Lawn, NJ, USA). The aqueous media used in all experiments was McIllvaine 

buffer (pH 2.2) (280). HPMC at a concentration of 100 µg/ml was used, when 

required, to inhibit drug crystallization during experiments.  

 

5.3.2. Crystalline and Amorphous Solubility Measurements 
 

The crystalline solubilities of indomethacin (γ form) and indomethacin methyl ester 

in McIllvaine buffer (pH 2.2) were determined by equilibrating an excess of crystalline 

IND and INDME in 20 mL of medium using an agitating water bath (Dubnoff metallic 

shaking incubator, PGC Scientific, Palm Desert, CA, USA) set at 37 °C for 48 h. The 

undissolved crystalline material was separated from solution by centrifugation at 

21,100 × g for 30 min (37 °C), using a Sorvall™ Legend™ Micro 21R Microcentrifuge 

(ThermoFisher Scientific, Waltham, MA, USA). The supernatant was diluted with 

acetonitrile and analyzed via high performance liquid chromatography (HPLC) using 

the method described below.  
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The amorphous solubility of both compounds was determined by both UV 

spectroscopy and ultracentrifugation. The LLPS (liquid – liquid phase separation) 

onset concentration (i.e. amorphous solubility) can be detected by UV spectroscopy 

as an increase in UV signal at a wavelength where the drug does not show absorption, 

manifested as a change in baseline. The extinction was monitored at 450 nm at 15 s 

intervals using a UV-vis spectrometer (SI Photonics Inc, Tuscon, AZ,USA) coupled with 

an in situ fiber optic probe (1 cm pathlength). Drug absorbance at 319 nm (IND) and 

254 nm (INDME) was also measured to determine whether an increase in extinction 

at 450 nm was due to the formation of crystals (where a sharp decrease in 

absorbance would be anticipated) or a new liquid droplet phase (absorbance remains 

high). The concentration of both compounds was controlled by pumping a stock 

methanol solution of IND or INDME (5 mg/ml) at a rate of 50 µL/min for 16 min into 

50 ml McIllvaine buffer pH 2.2 with pre-dissolved HPMC (100 µg/ml). The buffer 

solutions were stirred at 300 rpm and maintained at 37 oC in a jacketed beaker.  

The amorphous solubility of both compounds was also determined using 

ultracentrifugation. A methanolic solution of drug concentration 10 mg/mL was 

prepared and 250 µL was added to 50 mL of McIllvaine buffer (pH 2.2) containing 

HPMC 100 µg/ml at 37 °C under stirring at 300 rpm. The opaque solutions were 

immediately centrifuged at 35,000 rpm for 60 min in a Beckman L7-56 ultracentrifuge 

(Beckman Instruments, Palo Alto, USA) equipped with an NVT90 rotor. The 

supernatant was diluted with acetonitrile and analyzed via HPLC as described below. 
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5.3.3. Fourier Transform Infrared Spectroscopy (FTIR) 
 

Attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy was 

utilized to investigate interactions between drug and silica. Spectra were obtained 

using a Bruker Vertex 70 spectrometer. Measurements were carried out over the 

scan range 600 to 4000 cm-1, accumulating 64 scans with a resolution of 4 cm-1. 

 

5.3.4. Fluorescence Spectroscopy 
 

A fluorescence probe technique was used to provide information on the mechanisms 

by which SBA-15 interacts with hydrophobic molecules in solution, as well as to 

confirm the presence of drug multilayers within the SBA-15 mesopores following 

adsorption. Pyrene, which exhibits different fluorescence characteristics depending 

on the polarity of its environment, was used as a fluorescent probe. Fluorescence 

spectra were obtained using a Shimadzu spectrofluorophotometer RF-5301PC 

(Shimadzu Scientific Instruments Inc., Columbia, MD, USA). Pyrene stock solution (1 

mg/mL in ethanol) was added to each sample to generate a pyrene concentration of 

0.25 µg/mL. Emission spectra of pyrene were obtained by exciting samples at 332 

nm, using an excitation slit width of 1.5 nm and 1.5 nm emission slit width. The 

change in the ratio of intensities between the first (I1 at 371-373 nm) and third (I3 at 

382-384 nm) peaks of the pyrene emission spectra was monitored; this ratio of I1/I3 

intensities is very sensitive to changes in the polarity of the surrounding 

environment.  
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5.3.5. Adsorption Experiments 
 

Adsorption experiments were conducted using 50 mg SBA-15 which was added to 40 

ml McIllvaine buffer pH 2.2 (containing HPMC 100 µg/ml) and equilibrated at 37 °C 

under stirring at 300 rpm. IND stock solution (10 mg/mL in methanol) was added at 

specific concentrations over a defined range (1 – 60 µg/mL) and samples were 

equilibrated for 8 h. Samples were centrifuged at 21,100  g for 10 min (37 °C), and 

the supernatant was diluted with acetonitrile and analyzed via HPLC. The procedure 

was repeated for the INDME over the concentration range 1 – 14 µg/ml. The quantity 

of drug adsorbed onto the silica surface at equilibrium, Qa, was calculated using the 

following equation (Equation 5.1): 

𝑄𝑎 =
(𝐶𝑖 − 𝐶𝑒)𝑉

𝑚
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.1) 

where, Ci is the initial drug concentration, Ce is the equilibrium drug concentration in 

the supernatant following adsorption, V is the total volume of solution, and m is the 

mass of SBA-15 added to the solution.  

Desorption of both IND and INDME from SBA-15 was investigated to study the 

strength of interaction between drug and the silica surface. Following adsorption (as 

described above), 1 mL sample aliquots were removed and diluted with fresh buffer 

to attain IND and INDME concentrations of equal activity. These concentrations were 

calculated by first assigning amorphous solubility for both drugs an activity of 1. 

Concentrations of equal activity were then calculated using the Equation 5.2 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (
𝐶𝑒

𝐴𝑚𝑜𝑟𝑝ℎ𝑜𝑢𝑠 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦
) 𝑥 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (

𝑢𝑔

𝑚𝑙
)                (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.2) 
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 A 20% activity level was determined as 8 µg/ml for IND and 2 µg/ml for INDME.  

Samples were equilibrated at 37 °C under stirring at 300 rpm for 24 h, and then 

centrifuged at 21,100 g for 10 min (37 °C). Drug concentration in the supernatant was 

analyzed via HPLC.  

To investigate the mechanism of interaction between IND and INDME molecules with 

the silica surface, adsorption experiments were conducted at different ionic 

strengths (i.e. water, 0.1 M NaCl and 0.5 M NaCl) and in the absence and presence of 

urea (5 M urea in McIllvaine buffer pH 2.2). Competitive adsorption experiments 

were also performed where both drugs were present in solution with SBA -15. These 

experiments were all undertaken at equal activity levels of IND and INDME, as 

specified above.  

 

5.3.6. Estimation of IND and INDME Molecular Dimensions 
 

The molecular dimensions of both IND and INDME were measured using Mercury 

CSD 3.10.1 software (Cambridge Crystallographic Data Centre, Cambridge, United 

Kingdom). The single crystal structure with a reference code of INDMET was utilised 

for indomethacin and ETIJOG for the methyl ester. The “measure distance” tool was 

used to determine the distance between the atoms furthest apart in approximately 

orthogonal directions. Surface area for adsorption was then estimated from the 

product of the two longest dimensions. 
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5.3.7. Preparation of Drug Loaded SBA-15 Systems  
 

IND and INDME were loaded onto SBA-15 using a solvent incipient wetness 

impregnation method. Theoretical monolayer coverage within the SBA-15 particles 

(calculated based on an equation by Dening et al (272)) was the basis for determining 

the drug loading quantities utilized in the study (Equation 5.3) 

𝑋𝑚 =
𝑆𝑆𝐴 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡 × 1020  ×  𝑀𝑊𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒

𝑆𝑐  ×  𝑁𝐴

(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.3) 

where, Xm is the quantity of adsorbate required for monolayer coverage of the 

adsorbent (g/g), MW is the molecular weight of the adsorbate molecule (g/mol), Sc 

is the contact surface area for each adsorbate molecule (Å2), and NA is Avogadro’s 

number. The molecular dimensions of both compounds (Figure 5.1) were calculated 

using Mercury software as described above. The SSA of SBA-15 was 586 m2/g 

(provided by supplier).  

 

 

Figure 5.1  Molecular structure and estimated molecular dimensions for 

(a) IND and (b) INDME 
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The solvent was subsequently removed from the sample by drying in an oven at 40 

°C for 24 h, followed by 48 h under reduced pressure at ambient temperature. The 

drug content was analyzed using a solvent extraction technique, whereby a known 

quantity of sample was dissolved in methanol with the aid of ultrasonication (Cole 

Parmer Ultrasonic Cleaner Model 8892, Vernon Hills, IL, USA) for 30 min. Samples 

were then centrifuged at 21,100  g for 10 min, and the supernatant was diluted with 

acetonitrile prior to HPLC analysis.  

 

5.3.8. X-Ray Powder Diffraction (XRPD) Analysis 
 

Drug crystallinity of the loaded SBA systems was analyzed by measuring the X-ray 

powder diffraction pattern using a Rigaku Smartlab™ diffractometer (Rigaku, Tokyo, 

Japan). Samples were scanned over the range 5 to 40° 2θ at a scanning rate of 

10°/min and step size of 0.02°. The voltage and current were set at 40 kV and 44 mA, 

respectively.  

 

5.3.9. In vitro dissolution experiments  
 

Dissolution experiments were performed in McIllvaine buffer pH 2.2 containing 

HPMC 100 µg/ml. The buffered solution (75 mL) was equilibrated in a jacketed-vessel 

maintained at 37 °C under stirring at 300 rpm. A known quantity of sample was added 

to the dissolution medium to generate a supersaturated solution of IND or INDME 

and 0.7 mL sample aliquots were withdrawn at fixed time points up to 120 min. 
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Samples were centrifuged at 21,100 g for 10 min (37 °C), and the supernatant was 

diluted with acetonitrile and analyzed via HPLC.  

 

5.3.10. High Performance Liquid Chromatography (HPLC) 
 

HPLC analysis was performed using an Agilent HPLC 1260 Infinity System (Agilent 

Technologies, Santa Clara, CA, USA) equipped with an Agilent Poroshell 120 EC – C18 

analytical column (2.7 µm, 4.6 mm ID × 100 mm). The mobile phase consisted of 

acetonitrile and water at a ratio of 60:40 (v/v) with a flow rate of 1 mL/min. Analyses 

were conducted at room temperature and ultraviolet (UV) detection was at 254 nm. 

The injection volume was 20 µL. Retention time for IND and INDME was 3.2 min and 

7.1 min, respectively.  

 

5.3.11. Statistical Analysis 
 

The experimental data were analyzed statistically using a Student’s t-test (unpaired) 

in GraphPad Prism Version 7.01 (CA, USA). Data were considered statistically 

significant when p < 0.05. 
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5.4.  Results 
 

5.4.1. Crystalline and Amorphous Solubility 
 

The crystalline solubility for IND was determined as 2.29 ± 0.13 µg/ml (Table 5.1). 

Equilibrium solubility for INDME was lower at 0.42 ± 0.05 µg/ml. The experimental 

amorphous solubility/liquid-liquid phase separation (LLPS) concentration 

determined using the UV spectroscopy method was 39.86 ± 2.05 µg/ml for 

indomethacin and 9.44 ± 2.92 µg/ml for the methyl ester. This represents a 17.4 fold 

increase in solubility for indomethacin compared to the equilibrium solubility and a 

22.5 fold increase for the methyl ester. These amorphous solubility values are in 

agreement with the results obtained using the ultracentrifugation method. Using this 

approach, amorphous solubility for indomethacin was measured as 35.13 ± 2.31 

µg/ml and 8.96 ± 0.56 µg/ml for the methyl ester (Table 5.1). Amorphous solubility 

determined via ultracentrifugation was deemed to be the more precise 

measurement compared to the UV spectroscopy method where LLPS is detected as 

drug is continuously added to the system. The limitation of the  UV spectroscopy 

method is the point of detection may overshoot the amorphous solubility (262). 
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Table 5.1 Equilibrium and amorphous solubility values for IND and 

INDME (n = 3, values represent mean ± standard deviation)  

 
Indomethacin 

Conc (µg/ml) 

Indomethacin Methyl Ester 

Conc (µg/ml) 

Equilibrium Solubility 2.29 ± 0.13 0.42 ± 0.05 

Amorphous Solubility 

(UV method) 
39.86 ± 2.05 9.44 ± 2.92 

Amorphous Solubility 

(Ultracentrifugation method) 
35.13 ± 2.31 8.96 ± 0.56 

 

5.4.2. Mechanism of Interaction 
 

5.4.2.1. FTIR Spectroscopy 
 

FTIR spectroscopy was utilised to characterize specific interactions between drug and 

the silica surface. Figure 5.2 displays IR spectra for the amorphous forms of IND and 

INDME, IND and INDME loaded SBA-15 and blank SBA-15 in the region 1600 to 1800 

cm-1. It is evident from the spectra that SBA-15 does not absorb in this region. 

Amorphous indomethacin displays a peak at 1682 cm-1 that represents the benzoyl 

C=O. This shifts to 1669 cm-1 when the drug is loaded onto the silica surface indicating 

hydrogen bonding with the silanol groups on the silica. These silanol groups (Si – OH) 

can act as proton donors or proton acceptors to form hydrogen bonds with adsorbate 

molecules (281-283). A peak at 1710 cm-1 is also observed in the amorphous IND 

spectrum. This represents the asymmetric acid C=O present in the dimer species 

formation which has been reported for indomethacin (61). A shoulder peak is also 

visible here at 1732 cm-1 which corresponds to the non-hydrogen bonded acid C=O. 



173 
 

Loading the drug onto SBA-15 results in a shift of the peak at 1710 cm-1 to 1688 cm-1 

while the shoulder peak disappears. This provides further evidence of hydrogen bond 

formation between amorphous IND and the silica surface as the -COOH group 

donates a proton to hydrogen bond with silanol -OH acceptor groups. 

Amorphous indomethacin methyl ester also possesses a benzoyl C=O group which is 

visible on the IR spectra at 1674 cm-1 (Figure 5.2). This shifts to 1663 cm-1 when the 

methyl ester is loaded onto the silica surface indicating that it can also form hydrogen 

bonds with silica silanol donor groups, similar to indomethacin. The ester group 

present at 1735 cm-1 shifts to 1725 cm-1 when loaded onto SBA-15. This indicates that 

the proton acceptor on the ester functional group can interact with silica silanol 

groups. 

 

Figure 5.2 IR spectra of blank SBA-15, IND and INDME ((a) and (b) 

respectively) amorphous forms and drug loaded SBA -15 systems in the 

region of 1600 to 1800 cm -1 
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5.4.2.2. Fluorescence Spectroscopy  
 

Fluorescence spectroscopy was utilised to further examine the nature of interactions 

between drug and the silica surface (284, 285). Pyrene was selected as the 

fluorescent dye as it displays different fluorescence characteristics, depending on the 

polarity of its environment (286). Pyrene can interact with other molecules only via 

hydrophobic interactions resulting in the ratio of its first and third vibronic peaks 

(I1/I3) decreasing as the pyrene partitions into a more hydrophobic environment 

(287). The results presented in Table 5.2 demonstrate that pyrene is unable to 

interact with the silica surface as the I1/I3 ratio does not decrease compared to that 

in McIllvaine buffer pH 2.2 alone. This result is further evidence that the interactions 

between both IND and INDME and the silica surface are due to hydrogen bond 

formation. Pyrene itself cannot form hydrogen bonds with other molecules.  
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Table 5.2 Ratio of the intensity of the first and third peaks (I 1/I3) for 

pyrene in the presence of various additives in McIllvaine buffer pH 2.2 

containing HPMC 100 µg/ml at 37 oC (* indicates concentration is above 

LLPS level) 

Sample I1/I3 Peak Ratio 

McIllvaine Buffer pH 2.2 1.96 

SBA 50 µg/ml 2.00 

Indomethacin  

*Indomethacin 50 µg/ml 1.54 

Indomethacin 30 µg/ml and SBA-15 50 µg/ml 1.72 

Indomethacin Methyl Ester  

*Indomethacin Methyl Ester 12 µg/ml 1.70 

Indomethacin Methyl Ester 8 µg/ml and SBA-15 50 µg/ml 1.88 

 

Fluorescence studies with pyrene also provide evidence of drug multilayer formation 

on the silica surface. Above the LLPS concentration of a drug, the colloidal dispersions 

formed produce a hydrophobic environment with which pyrene can interact, 

resulting in a reduction of I1/I3 ratio compared to buffer alone (265). This behaviour 

is observed for both drugs when dosed above their respective amorphous solubilities 

(Table 5.2). Furthermore, if drug multilayers are present on SBA-15, the pyrene 

should also partition into the hydrophobic environment they would create. To 

confirm this, drug and silica material were added to buffer at initial concentrations 

that would not exceed LLPS based on isotherm data (Figure 5.3). The I1/I3 ratio 

decreased for both drugs indicating the probe had partitioned to drug-rich layers on 

the SBA-15 surface.  
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5.4.3. Adsorption Studies 
 

5.4.3.1. Adsorption Isotherms 
 

The adsorption isotherms for IND and INDME on SBA-15 from McIllvaine buffer pH 

2.2 at 37 oC are displayed in Figure 5.3. Significant adsorption was observed for both 

drugs on the silica surface. This adsorption begins to exceed theoretical monolayer 

coverage at the highest Ci (initial drug concentration) investigated for both drugs (60 

µg/ml for IND and 14 µg/ml for INDME). To gain a better understanding of the 

adsorption phenomenon observed, the data was fit to Langmuir and Freundlich 

isotherm models (previously utilised in Chapter 3).  

 

 

Figure 5.3 Adsorption isotherm of (a) IND and (b) INDME on SBA-15 from 

McIllvaine buffer pH 2.2 containing HPMC 100 µg/ml at 37 °C. The dashed 

lines indicate theoretical monolayer coverage of IND and INDME 

 

The linear equations for these models are described in Chapter Three (Table 3.2). The 

isotherms for both drugs produced a reasonable fit for both the Langmuir and 
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Freundlich models. This suggests that both monolayer and multilayer adsorption 

contribute to drug adsorption onto the silica surface. The Freundlich isotherm (which 

describes multi-layer adsorption) resulted in a more favorable fit for the 

indomethacin data possibly due to indomethacin self-interactions through its dimer 

formation capability (61).   

 

Table 5.3 Binding affinity parameters (K L and KF) and R2 values obtained 

by fitting drug adsorption onto SBA-15 to Langmuir and Freundlich 

isotherm linear equations. 

Langmuir Isotherm KL R2 

Indomethacin 0.07 0.82 

Indomethacin Methyl Ester 0.40 0.85 

Freundlich Isotherm KF R2 

Indomethacin 1.09 0.96 

Indomethacin Methyl Ester 1.76 0.89 

 

The binding affinity parameters were calculated for both isotherms (KL for Langmuir 

and KF for Freundlich, Table 5.3). In both cases, INDME displayed a stronger binding 

affinity to the silica surface than IND.  

The quantity of drug adsorbed onto the silica surface for both compounds is very 

similar across the concentration ranges investigated (Figure 5.3). The initial 

concentrations (Ci) utilized represent a range from 1 µg/ml up to amorphous 

solubility levels (37.5 µg/ml for indomethacin and 9.2 µg/ml for indomethacin methyl 

ester) and beyond. The highest initial drug concentrations (Ci) employed were 60 
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µg/ml and 14 µg/ml for indomethacin and indomethacin methyl ester, respectively. 

To compare adsorption of the two compounds directly, equilibrium concentrations 

obtained were converted to their corresponding activity levels in solution using 

Equation (5.4): 

                                
𝐶𝑒

𝐴𝑚𝑜𝑟𝑝ℎ𝑜𝑢𝑠 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦
                           (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.4) 

where Ce is equilibrium concentration of the drug in solution (mM) and amorphous 

solubility is 0.11 mM and 0.02 mM for IND and INDME, respectively. The results 

presented in Figure 5.4 demonstrate that adsorption of the two compounds over 

their corresponding activity ranges follow the same trend.  

 

 

Figure 5.4 Adsorption isotherm of IND () and INDME (∆) in McIllvaine 

buffer pH 2.2 containing HPMC 100 µg/ml at 37 oC based on solute 

activity in solution. Each value represents mean ± standard deviation.  
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5.4.3.2. Desorption Studies 
 

Following adsorption studies at the same activity levels, desorption experiments 

were conducted to better understand the strength of interaction between the drugs 

and the silica surface. Adsorption samples were diluted to sink conditions (20% of 

saturated solubility for this study) and the free drug concentration in solution was 

sampled after equilibration for 24 h. The level of desorption from indomethacin 

loaded SBA-15 was 73 % whereas this dropped to 57 % for the methyl ester (Figure 

5.5), indicating it has a stronger attraction to the silica surface which was predicted 

using the Langmuir and Freudlich isotherm models (Section 5.4.3.1). This increased 

affinity for the silica carrier may explain the slower release rate during dissolution 

studies (Section 5.4.5). Importantly, this result indicates that the adsorption of both 

indomethacin and indomethacin methyl ester by SBA-15 is not completely reversible.  

 

Figure 5.5 Desorption of IND and INDME after adsorption onto SBA-15 in 

McIllvaine buffer pH 2.2 containing HPMC 100 µg/ml at 37 oC (mean ± 

standard deviation, n=3) 
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5.4.3.3. Competitive Adsorption 
 

Competitive adsorption studies were conducted to compare the strength of 

interaction of both drugs with the silica surface. In the first experiment, both drugs 

were present in solution at the same activity levels (20% of total activity (amorphous 

solubility) i.e. 8 µg/ml for IND and 2 µg/ml for INDME) (Section 5.3.5). The quantity 

of drug adsorbed onto the silica surface was compared to their individual isotherm 

adsorption at the same initial drug concentration (Figure 5.3). The results displayed 

in Figure 5.6 demonstrate that indomethacin adsorption is significantly decreased by 

the presence of the methyl ester whereas adsorption of INDME is not statistically 

different in the presence of the indomethacin.  

 

Figure 5.6 Adsorption of IND and INDME onto SBA-15 during individual 

isotherm experiments and competitively (with the alternate drug in 

solution) (mean ± standard deviation, n=3)  
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5.4.3.4. Influence of Urea on Adsorption 
 

Adsorption studies in the presence and absence of urea were undertaken to further 

investigate the nature of the interaction between drug and silica surface. Urea is a 

strong hydrogen bonder and a reduction in drug adsorption would be expected if 

hydrogen bonding played a significant role in drug/silica interactions (255). The 

results demonstrate a significant decrease in adsorption of both drugs. Indomethacin 

adsorption decreased from 12.4 ± 1.9 mg/g to 6.1 ± 1.7 mg/g while indomethacin 

methyl ester adsorption was reduced from 14.2 ± 0.3 mg/g to 5.8 ± 1.0 mg/g (Figure 

5.7). This data provides further evidence that drug interaction with the surface is 

indeed the result of hydrogen bonding. 

 

 

Figure 5.7 Adsorption data for (a) IND and (b) INDME (at the same 

activity level) in McIllvaine buffer pH 2.2 containing HPMC 100 µg/ml at 

37 oC in the absence and presence of 0.1 M urea (mean ± standard 

deviation, n=3) 
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5.4.3.5. Influence of Ionic Strength 
 

The effect of increasing ionic strength on drug adsorption onto the silica surface was 

investigated to determine the influence of non-specific hydrophobic interactions on 

the process. If such interactions exist between drug and silica, increased NaCl 

concentration should increase drug adsorption, due to the ‘salting out’ effect (255, 

256). In this experiment, the adsorption of both drugs was examined at two 

concentrations representing equal activity levels (2 and 8 µg/ml) in media of 

increasing ionic strength (distilled water, 0.1 M NaCl and 0.5 M NaCl) (Figure 5.8). 

There is no significant change in drug adsorption across all three media indicating 

that hydrophobic interactions do not play a role in drug adsorption onto the silica 

surface.  

 

 

Figure 5.8 Adsorption data for (a) IND and (b) INDME at two initial drug 

concentrations (2 µg/ml and 8 µg/mL) in three media of varying ionic 

strength: distilled water, 0.1 M NaCl and 0.5 M NaCl containing HPMC 

100 µg/ml at 37 oC (mean ± standard deviation, n=3) 
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5.4.4. Preparation of Drug Loaded SBA-15 Systems 

 

Based on the estimated molecular dimensions of indomethacin and indomethacin 

methyl ester (Figure 5.1) and the SSA of SBA-15 (586 m2/g), the quantity of both 

compounds required to achieve theoretical monolayer coverage on the silica surface 

was calculated using Equation 5.1. For indomethacin theoretical monolayer coverage 

was determined as 0.287 g/g (i.e. 28.7 % w/w) and for indomethacin methyl ester 

0.269 g/g (i.e. 26.9 %w/w). IND was loaded onto SBA-15 at levels corresponding to 

specific theoretical surface coverages in the range 25 – 150 % as displayed in Table 

5.4. The same procedure was repeated for INDME. The % drug loading efficiency for 

both drugs at the specified loading levels utilised was calculated (Figure 5.9). The 

results demonstrate a significantly higher loading efficiency for IND at 25% and 50% 

monolayer coverages. The loaded powders were analysed by p-XRD to assess drug 

solid-state (Figure 5.10). Both drugs were X-ray amorphous on the silica surface at 25 

% and 50 % monolayer coverage. However, at levels of 75 % coverage and above, 

crystalline peaks were observed. At this point both drugs may have exceeded the 

total pore volume limits of the SBA-15 (288). Strong INDME crystalline peaks are 

visible from 100 % monolayer coverage. This is most likely due to instability as a result 

of the methyl ester’s low Tg (glass transition temperature), measured as -20 oC. 

Indomethacin has a higher Tg of  50 oC and is therefore more physically stable in the 

amorphous state under ambient preparation conditions (289).  
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Table 5.4 SBA-15 formulations with loaded IND and INDME at specific 

theoretical monolayer coverage levels (for actual drug load, each value 

represents mean ± standard deviation, n=3)  

 

 

 

% THEORETICAL 

MONOLAYER 

COVERAGE 

INDOMETHACIN 
INDOMETHACIN 

METHYL ESTER 

 
Theoretical Drug 

Load (% w/w) 

Actual Drug 

Load (% w/w) 

Theoretical Drug 

Load (% w/w) 

Actual Drug 

Load (% w/w) 

25 7.17 5.6 ± 0.74 6.74 3.84 ± 0.39 

50 14.33 10.46 ± 0.62 13.48 7.65 ± 0.33 

75 21.50 15.55 ± 3.27 20.22 14.00 ± 2.31 

100 28.66 20.82 ± 3.42 27.97 15.60 ± 0.49 

125 35.83 22.01 ± 2.49 33.71 20.13 ± 1.90 

150 43.00 39.02 ± 6.63 40.45 29.26 ± 0.69 
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Figure 5.9 Comparison of % drug loading efficiency for IND and INDME 

(n=3, mean ± standard deviation) 

 

 

 

 

Figure 5.10 p-XRD diffractograms of (a)  IND loaded SBA-15 and (b) 

INDME loaded SBA-15 at specified loading levels in the range 25 – 150% 

monolayer coverage 
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5.4.5. In Vitro Release under Supersaturating Conditions 
 

Dissolution studies were performed on 50 % monolayer coverage drug-loaded 

formulations to ensure drug in both systems was X-ray amorphous in nature (Figure 

5.10). The SBA-15 formulation was dosed at the amorphous solubility of IND or 

INDME, where appropriate, theoretically resulting in a 100 % drug release of 37.5 

µg/ml and 9.2 µg/ml respectively. These dissolution studies were thus conducted at 

a supersaturation ratio (S) of 17.5 for IND and 19.1 for INDME. A rapid burst release 

of drug was observed with a supersaturated solution of both drugs generated at the 

initial time point, 5 min (Figure 5.11). Drug release from the IND loaded system 

peaked at 5 min whereas drug dissolution from the INDME formulation continued to 

increase until 30 min, after which release plateaued for the remainder of the 

experiment. The gradual initial release from the methyl ester loaded SBA-15 could 

be attributed to its stronger affinity for the silica surface which was predicted by the 

isotherm models (Section 5.4.3.1) and confirmed by desorption and competitive 

adsorption experiments (Section 5.4.3.2 and Section 5.4.3.3).  

The maximal concentration of drug in solution (Cmax) was recorded as 16.6 µg/ml for 

indomethacin and 2.9 µg/ml for indomethacin methyl ester. This translates to a 

significantly higher % release from the indomethacin system (44% release) compared 

to that from the methyl ester formulation (32% release). However, the release from 

both drugs is comparable in terms of supersaturation achieved as the ratio of Cmax to 

equilibrium solubility for both drugs is similar (7.2 for IND and 8.2 for INDME).  
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Figure 5.11 Dissolution of (a) IND and (b) INDME loaded SBA-15 systems 

in McIllvaine buffer (pH 2.2) containing H PMC 100 µg/ml at 37 oC dosed 

at amorphous solubility levels (37.5 µg/ml for IND and 9.2 µg/ml for 

INDME). The dashed line represents equilibrium solubility levels for bot h 

drugs (2.3 µg/ml for IND and 0.42 µg/ml for INDME). Values represent 

mean ± standard deviation, n=3 (error bars too small to be visible).  

 

While drug release for both IND and INDME was significantly enhanced compared to 

equilibrium solubility levels, drug release was incomplete. To exclude the possibility 

of drug crystallisation as a cause of this incomplete release, the media was filtered 

following dissolution, the precipitate collected and dried under vacuum overnight. 

The precipitate was analysed by pXRD and the results are presented in Figure 5.12. 

No crystalline peaks were detected in the recovered material indicating drug retained 

on the surface remained in an amorphous state and no precipitation of crystalline 

drug was detected. The retained drug in the precipitate was dissolved in methanol 

using ultrasonication for analysis by HPLC to quantify drug content. The results are in 

agreement with drug release measured during the dissolution study. Retained 

indomethacin was calculated as 58.8 ± 6.6 % and indomethacin methyl ester as 61.8 

± 6.8 % (n=3, mean ± standard deviation) which accounts for 103% of the 

indomethacin dosed and 94% of the indomethacin methyl ester.  
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Figure 5.12 p-XRD diffractorgrams of (a) IND and (b) INDME formulations 

before and after dissolution 

 

A second dissolution study was conducted with the precipitate collected to further 

investigate the presence for an equilibrium between drug retention and release from 

SBA-15 systems (Figure 5.13). The release profiles were not statistically significantly 

different to those of the original dissolution study. In this case, a Cmax of 41.6 % 

indomethacin and 34.4 % indomethacin methyl ester were obtained. This result 

provides further evidence of the dynamic equilibrium existing between drug 

adsorbed on the silica surface and free drug in solution. Interestingly, even though 

the quantity of silica in the dissolution medium was double that of the original 

experiment, the extent of release was unchanged (Table 5.5).  
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Figure 5.13 Dissolution of recovered precipitate of (a) IND and (b) INDME 

loaded SBA-15 systems in McIllvaine buffer (pH 2.2) containing HPMC 

100 µg/ml at 37 oC dosed at amorphous solubility levels (37.5 µg/ml for 

IND and 9.2 µg/ml for INDME). The dashed line represents equilibrium 

solubility levels for both drugs (2.3 µg/ml for IND and 0.42 µg/ml for 

INDME) (n=1).   

 

Interestingly, it was also observed that drug retention following dissolution from 

solvent loaded SBA-15 formulations was higher than that predicted on the isotherm 

at 2.1 mmol/g for IND and 3.4 mmol/g for INDME compared to 0.38 mmol/g for IND 

and 0.41 mmol/g for INDME during adsorption studies. These formulations were 

loaded using methanol as the solvent which has a much lower surface tension than 

McIllvaine buffer pH 2.2 (21 nM/m2 (290) versus 72 nM/m2 for McIllvaine buffer). It 

could therefore access areas in the porous network inaccessible to the dissolution 

medium, resulting in greater retention on the surface than predicted by the 

adsorption isotherm. A similar finding has been reported in this thesis in Chapters 4 

and 4 for SC-CO2 loaded mesoporous silica formulations.  
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Table 5.5 Amount of drug and silica present (mg) with supersaturation 

ratios (S) attained for original dissolution and dissolution of precipitate  

 ORIGINAL DISSOLUTION DISSOLUTION OF PRECIPITATE 

Drug 
Amount 
of drug 

(mg) 

Amount 
of silica 

(mg) 
(S) 

Amount 
of silica 

(mg) 

Amount 
of silica 

(mg) 
(S) 

Indomethacin 2.93 21.71 7.2 2.93 38.19 6.6 

Indomethacin 
Methyl Ester 

0.69 3.72 8.2 0.69 5.61 7.4 

 

 

  



191 
 

5.5.  Discussion 
 

In this study, two similar drug molecules with different hydrogen bonding capabilities 

were examined to elucidate the mechanism of drug/silica interactions and the 

influence of hydrogen bond donor and acceptor groups in drug/silica interactions. 

Indomethacin contains 1 hydrogen bond donor and 4 hydrogen bond acceptors. 

Indomethacin methyl ester also possesses 4 hydrogen bond acceptors but no 

hydrogen bond donor (Figure 5.1).  

When discussing drug/silica interactions, it is important to first consider the surface 

chemistry of the mesoporous silica material. Two functional groups are predominant 

on the heterogeneous silica surface - siloxane bridges and silanol groups (228). 

Siloxane sites are hydrophobic in nature, whereas hydrophilic silanol groups are 

considered the key functional group participating in adsorptive interactions. Siloxane 

(O – Si – O) bridges are strengthened by dπ-pπ interaction. Both lone pairs of electrons 

on the oxygen atom are involved in π-interactions meaning the siloxane sites on the 

silica surface cannot form hydrogen bonds with adsorbates (291). Silanol groups are 

capable of hydrogen bonding and can be further described as isolated (a single Si-OH 

group), geminal (Si(OH)2 groups) or vicinal (isolated or geminal silanols hydrogen 

bonded with each other) (292). It has been documented that not all silanol groups 

possess equal reactivity, which can determine the strength of potential interactions 

formed with the silica surface. Reactivity depends on functional group acidity 

(influenced by pKa and pH of the dissolution medium). Hydrogen-bonded geminal 

groups are more acidic in nature than isolated silanols, indicating they have the 

capability to form stronger hydrogen bonds (291). Importantly, silanol groups can act 
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as hydrogen bond donors or acceptors (293). It has been reported that drug 

molecules interact with the silica surface via three main mechanisms; hydrogen 

bonding and ion-exchange with hydrophilic groups (294). In this study, it was 

hypothesized that both hydrophobic drug molecules would interact with the silica 

material through a combination of hydrogen bonding and non-specific hydrophobic 

interactions. It was also postulated that there would be a disparity in interaction 

between IND and INDME with the silica surface, as a result of their different hydrogen 

bonding capabilities.  

The data strongly demonstrates that drug/silica interactions for both compounds 

investigated are a result of hydrogen bonding via silanol groups. Evidence for specific 

intermolecular interactions indicating the presence of hydrogen bond formation is 

provided in FTIR data displayed in Figure 5.2. The ability of urea, as a strong hydrogen 

bonding molecule, to reduce the extent of interaction between both drugs and SBA-

15 provided further evidence that hydrogen bonding drives drug adsorption (Figure 

5.7). This finding supports reports in several published works proposing a range of 

molecules interact with mesoporous silica through hydrogen bonding (76, 295-297). 

Interestingly, there was no evidence that either drug interacts with the silica surface 

via non-specific hydrophobic interactions. As both molecules have a logP of less than 

5 (LogP IND = 4.27 and LogP INDME = 4.6 (298)), it was hypothesized that they could 

interact with siloxane bridges through a hydrophobic interaction mechanism. 

However, manipulation of medium ionic strength conclusively revealed that neither 

drug interacts with SBA-15 in a hydrophobic manner. When solvent ionic strength is 

increased by the addition of salts, hydrophobic drug molecules are expected to 

associate more strongly with hydrophobic siloxane bridges on the silica surface, 
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thereby promoting adsorption (255, 256). As shown in Figure 5.8, the level of drug 

adsorption was not affected by ionic strength, indicating the absence of hydrophobic 

drug/silica interactions. The results of fluorescence studies further supported this 

finding, whereby hydrophobic pyrene did not interact with SBA-15 particles in buffer 

media (Table 5.2).   

To ascertain whether hydrogen bonding capability influenced drug adsorption, 

drug/silica interactions during the solvent loading process were first explored. As can 

be observed from Figure 5.9 and Table 5.4, at lower monolayer coverage (25 % and 

50 %), drug loading of indomethacin was significantly higher indicating the presence 

of the hydrogen bond donor was advantageous for drug adsorption. However, at 

monolayer coverage levels of 75 % and above, no difference was displayed in loading 

efficiency for both molecules. This may be attributed to both drugs exceeding the 

total pore limit of the silica material as crystalline peaks were observed in XRD data 

for both IND and INDME. SBA-15 has a wide range of pore sizes (between 2 – 50 nm) 

with a significant micropore volume, which potentially became blocked by adsorbed 

drug, reducing achievable monolayer coverage below the theoretical calculated 

values as described in Section 2.5.1  (288). Based on these results, there is a 

suggestion that the presence of the hydrogen bond donor enhanced drug/silica 

interactions. However, the choice of loading solvent should also be considered and 

has a demonstrated influence on drug loading. It has been reported that the use of 

SC-CO2 can result in drug loading deeper in the porous network which could have 

implications for the results described in this study (273, 299). Future work examining 

loading of these two drugs using various techniques will be required to further 

investigate these preliminary findings.  
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During competitive adsorption experiments, indomethacin methyl ester displayed 

the strongest affinity for the silica surface (Figure 5.6). This is an interesting finding 

as it is contrary to observations made during solvent loading. It can be attributed to 

the relationship between drug, silica and dissolution medium. Both drugs were 

soluble to a similar extent in methanol, the loading solvent, whereas in McIllvaine 

buffer (pH 2.2), indomethacin equilibrium solubility was 5.5 times higher and 

amorphous solubility was 4 times higher than that for the indomethacin methyl ester 

(Table 5.1). Both drugs are also ionised in the acidic dissolution medium (the pH is 

below the pKa of both indomethacin and the methyl ester), indicating there was no 

difference between the two compounds with respect to electrostatic interactions 

with the neutral silica surface (226, 300, 301). These results highlight that 

interactions between drug, silica and the dissolution medium can influence drug 

adsorption and release from the silica surface. 

To understand the nature of drug adsorption onto the silica surface, under conditions 

up to and exceeding amorphous solubility levels, adsorption isotherms were 

generated. The adsorption isotherms developed are displayed in Figure 5.3 and were 

fitted to various isotherm equations including the Langmuir model which describes 

monolayer adsorption onto a homogeneous surface which contains only one type of 

binding site. Under the constraints of this model no lateral interactions can exist 

between adsorbed molecules (224, 302). The Freundlich model which depicts non-

ideal adsorption onto heterogeneous surfaces, including multi-layer adsorption, was 

also applied to the data. This empirical model accounts for an adsorptive surface 

possessing a range of binding sites, having different binding affinities for the 

adsorbate. The SBA-15 surface can be considered heterogeneous, due to the 
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presence of silanol functional groups possessing different binding affinities for 

adsorbate molecules (225). These isotherm models have already been applied 

successfully in published studies and in Chapter 3 of this thesis (118, 151, 223). As 

can be evidenced in Table 5.3, the data fit reasonably well to Langmuir and Freundlich 

equations which indicates both monolayer and multilayer drug adsorption contribute 

to overall drug adsorption on the surface. Interestingly, multilayer adsorption was 

demonstrated below theoretical monolayer coverage (Figure 5.3). This was 

demonstrated in the fluorescence spectroscopy data where the fluorescent dye, 

pyrene, interacted with drug multilayers on the silica surface at concentrations below 

liquid-liquid phase separation levels (Table 5.2). This explains the good fit to the 

Freundlich model and indicates drug molecules do not adsorb initially as a full 

monolayer before multilayer adsorption occurs. The Freundlich model proved to be 

a better fit for indomethacin adsorption onto SBA-15. This can be attributed to 

indomethacin’s superior ability to self-interact through dimerization, thus forming 

multilayers more easily on the silica surface (61).  

Isotherm parameters related to binding affinity were also calculated. For IND and 

INDME, the binding affinities derived from both isotherm models were stronger for 

the methyl ester than indomethacin (Table 5.3). The Langmuir constant, KL, can be 

related to the chemical potential of the drug which is defined as the contribution it 

makes to the overall free energy of the system (12). As the binding affinity of the 

methyl ester to the silica surface is stronger than that of the indomethacin (as 

determined by its larger KL value), it would be energetically favourable to have methyl 

ester bound on the surface than existing as free drug in solution. Further evidence of 

this is demonstrated in the competitive adsorption experiments where methyl ester 
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has the ability to displace indomethacin from the silica surface but the reverse is not 

observed (Figure 5.6).  

To compare adsorption of both drugs directly, equilibrium concentrations were 

converted to their corresponding activity levels in solution using Equation 5.4 and 

plotted against quantity of drug adsorbed (mmol) per gram SBA-15. Activity is related 

to chemical potential as described in Equation 5.5, 

𝜇 =  𝜇𝑖
𝑜 + 𝑅𝑇 ln 𝑎𝑖                         (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5.5) 

where µ is the chemical potential of the component,  is the chemical potential of 

component i in the standard state, that is, at 1 bar pressure.  The quantity ai is known 

as the activity of component i of the system.  

The activity allows us to quantify how the chemical potential of a pure substance 

changes when it becomes a component in a mixture as is the case when drug is 

adsorbing on the surface of the silica material. The concept of activity rather than 

chemical potential is required because it has been found that the amount of a 

substance in a system which is active (that is which is causing an effect of some sort) 

is not always identical to the concentration (12).  In this study, amorphous solubility 

was designated an activity of 1. Data from both IND and INDME overlay closely on 

this graph indicating that activity of free drug in solution determines passive drug 

adsorption on the silica surface. A similar finding was observed by Hansen et al in a 

study that examined aliphatic alcohol and acid adsorption onto carbon material 

(303). They observed marked progression of amounts adsorbed at a given 

concentration on ascending a homologous series becomes almost non-existent if 

amounts adsorbed are compared at given absolute activity of the organic solute and 
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concluded that relative adsorption of members in a homologous series is determined 

primarily by solute activity on non-porous carbon. A second study investigated 

diazepam adsorption onto a different carbon system and reported similar findings 

(304). They observed a relationship between drug adsorption affinity for the 

adsorbent surface and drug solubility in solution. Both studies utilized activity versus 

adsorption plots to represent their data similar to the approach adopted in this study 

(Figure 5.4). However, this is the first study which examines the influence of solute 

activity at supersaturating conditions. The findings could have implications for 

mesoporous silica formulations as they suggest that drug adsorption onto the silica 

surface can be predicted to some extent by solute activity in solution. This hypothesis 

would need to be tested further using a range of drugs with various physicochemical 

properties and using solvents utilized in drug loading processes.  

To investigate the implications of the observations made during adsorption studies 

on drug release from loaded silica formulations, dissolution studies were conducted 

for both formulations. The two model compounds displayed significant incomplete 

release (44 % release of IND and 32 % release of INDME) (Figure 5.11). Further 

dissolution experiments of the precipitate revealed similar dissolution profiles to the 

original study, indicating the presence of a dynamic equilibrium process during drug 

release from these formulations. This equilibrium can be expressed in Equation 5.6, 

𝐴𝑑𝑠𝑜𝑟𝑏𝑒𝑑 𝑑𝑟𝑢𝑔 + 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⇌ 𝐴𝑑𝑠𝑜𝑟𝑏𝑒𝑑 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 + 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝐸𝑞. 5.6)  

and has recently been described for these systems by Dening et al (272). Further 

evidence for the presence of this dynamic equilibrium is presented in this work as 

theoretical supersaturation ratio for both drugs is compared with supersaturation 
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achieved during the dissolution study. Theoretical supersaturation ratio for IND was 

17.5 while INDME was calculated as 19.1. However, the supersaturation achieved 

was approximately only half that at 7.2 for IND and 8.2 for INDME. This compares 

favourably with data from the study by Dening et al for ritonavir where theoretical 

supersaturation was 7.8 while a supersaturation of only 3.9 was realised. The 

supersaturation levels reached for these three drug molecules was approximately 50 

% of theoretical limits at amorphous solubility. This finding poses challenges for drug 

delivery from these mesoporous silica systems when compared with other solubility 

enhancing formulations, such as polymer based amorphous solid dispersions, as they 

are not capable of comparable supersaturation (287). It has been demonstrated in 

Chapter 3 and 4 of this thesis that the presence of incomplete release is not confined 

to supersaturation conditions. Several studies have also published incomplete 

release profiles under sink conditions (116, 249, 299). In this study, samples 

containing both drugs adsorbed on the silica surface were diluted to ‘sink conditions’ 

(20 % saturated solubility (81)). However, a significant quantity of drug remained 

adsorbed to the silica material after 24 h (27 % for IND and 43 % for INDME, Figure 

5.5).  

It is interesting to note that drug release from the original dissolution study and the 

precipitate are identical even though the quantity of silica utilized in both studies 

varied (approximately double the amount of silica was required for the precipitate 

experiment for both drugs). This indicates that that quantity of silica present is not 

the determining factor for drug release, rather the equilibrium exists between drug 

in solution and drug on the silica surface. This is related to the activity of drug in 
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solution providing further evidence for the hypothesis that drug adsorption onto the 

silica surface is influenced to some extent by solute activity in solution. 
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5.6.  Conclusion 
 

This study is the first to demonstrate experimentally that drug/silica interactions 

occur via hydrogen bonding. Non-specific hydrophobic interactions did not 

contribute to the mechanism of interaction. The data suggests that hydrogen bond 

donor capability may influence drug adsorption during the loading process. However, 

other factors play a role in drug adsorption and retention during dissolution which 

depends on the relationship between drug, silica and dissolution medium. 

Adsorption isotherms proved useful in understanding the equilibrium between drug 

adsorbed on the surface and free drug in solution. Adsorption of the two model drugs 

was comparable when examined as a function of drug activity in the system. The data 

suggests that solute activity in solution could help predict drug adsorption on 

mesoporous silica materials.  Dissolution studies also confirm the presence of an 

equilibrium between drug adsorbed on the silica surface and drug in solution during 

drug release. It was observed that this equilibrium is not a consequence of the 

quantity of silica present but rather the relationship between drug on the silica 

material versus drug in the dissolution medium. This provides further evidence that 

knowledge of drug activity in solution can aid in our understanding of drug release 

from mesoporous silica formulations.  
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6.1 Abstract  
 

Drug release from mesoporous silica systems has been widely investigated in vitro 

using USP Type II (paddle) dissolution apparatus. However, it is not clear if the 

observed enhanced in vitro dissolution can forecast drug bioavailability in vivo. In this 

study, the ability of different in vitro dissolution models to predict in vivo oral 

bioavailability in a pig model was examined. The fenofibrate loaded mesoporous 

silica formulation was compared directly to a commercial reference product, Lipantil 

Supra®. Three in vitro dissolution methods were considered; USP Type II (paddle) 

apparatus, USP Type IV (flow-through cell) apparatus and a USP IV Transfer model 

(incorporating an SGF to FaSSIF-V2 media transfer). In silico modelling, using a 

physiologically based pharmacokinetic modelling and simulation software package 

(Gastroplus™), to generate in vitro/in vivo relationships was also investigated. The 

study demonstrates that the in vitro dissolution performance of a mesoporous silica 

formulation varies depending on the dissolution apparatus utilised and experimental 

design. The findings demonstrate that the USP IV transfer model was the best 

predictor of in vivo bioavailability. The USP Type II (paddle) apparatus was not 

effective at forecasting in vivo behaviour. This observation is likely due to 

hydrodynamic differences between the two apparatus and the ability of the transfer 

model to better simulate gastrointestinal transit. The transfer model is advantageous 

in forecasting in vivo behaviour for formulations which promote drug 

supersaturation and as a result are prone to precipitation to a more energetically 

favourable, less soluble form. The USP IV transfer model could prove useful in future 

mesoporous silica formulation development. In silico modelling has the potential to 
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assist in this process. However, further investigation is required to overcome the 

limitations of the model for solubility enhancing formulations. 
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6.2 Introduction 
 

While the previous research chapters in this thesis have focused on in vitro 

dissolution at a molecular level, the final chapter investigates the apparatus utilized 

in these dissolution studies and examines which experimental set-up best predicts in 

vivo performance.  

The majority of in vitro dissolution experiments conducted involving mesoporous 

silica formulations have utilised traditional methods: USP Type II apparatus and sink 

conditions with simple buffer solutions as the dissolution medium (88-92).  There are 

limitations associated with this traditional approach to dissolution which are of 

particular relevance to poorly water-soluble drug candidates (80). Augustijns et al 

recommended that non-sink in vitro dissolution conditions are required for silica-

based formulations to provide meaningful data that can be correlated with in vivo 

studies (85). Furthermore, as described in Chapter 4, simple buffer solutions utilised 

in most in vitro experiments do not represent all aspects of the fluid composition of 

the gastrointestinal (GI) tract and it is now recommended to use biorelevant media 

that better simulate physiological fluids (233). The Type IV dissolution apparatus 

offers the ability to change the dissolution medium during an experiment, which 

results in conditions that more closely reflect the pH gradient associated with transit 

through the GI tract (305). It has been reported that the Type IV dissolution apparatus 

is a better simulator of in vivo hydrodynamics than the paddle apparatus (101). 

However, the number of studies which utilise this model are limited and published 

data with regards to the superiority of the Type IV flow-through cell over the Type II 

apparatus is not in agreement (103, 104). 
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In this study, the ability of in vitro dissolution methods to predict in vivo performance 

of an oral mesoporous silica drug delivery system was compared. Type II and Type IV 

dissolution apparatus were employed to investigate the release of a poorly water-

soluble drug, fenofibrate, from this formulation. This study is the first to use the Type 

IV apparatus to assess dissolution of a BCS Class II drug loaded mesoporous silica 

system. Fenofibrate was chosen as the model compound in this study. Fenofibrate is 

a neutral, lipophilic drug (log P = 5.2), which is practically insoluble in water (20). The 

in vivo performance of the mesoporous silica formulation was assessed following oral 

administration in a fasted pig model and compared to the commercial fenofibrate  

formulation, Lipantil Supra® (which utilises NanoCrystal® technology) (306).  

In vitro/in vivo correlations (IVIVC) and in vitro/in vivo relationships (IVIVR) are being 

increasingly used as part of the formulation ‘toolbox’ to build on knowledge from in 

vitro data and forecast formulation effects. The best candidates for in vitro/in vivo 

correlations are drugs where dissolution is the rate-limiting step to drug absorption 

and biorelevant dissolution models are utilised in the experimental design (307). In 

this study, data from the in vitro and in vivo experiments was analysed using a 

physiologically-based pharmacokinetic modelling and simulation software package 

(Gastroplus™) to generate IVIVR. The potential benefits and limitations of this in silico 

modelling approach are discussed.  
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6.3 Material and Methods 
 

6.3.1. Materials 
 

Fenofibrate was purchased from Kemprotec Ltd. (United Kingdom). SBA-15 was 

obtained from Glantreo Ltd. (Ireland). Liquid carbon dioxide was supplied by Irish 

Oxygen Ltd. (Ireland). Fenofibric acid, sodium taurocholate (>95%) and pepsin (from 

porcine gastric mucosa, 800-2500 units/mg protein) were obtained from Sigma 

Aldrich (Ireland). Lecithin (Lipoid E PC S, >98 % pure) was kindly donated by Lipoid 

GmbH, Germany. All other chemicals and solvents were of analytical grade or HPLC 

grade and purchased from Sigma-Aldrich (Ireland). Lipantil® Supra 145 mg film-

coated tablets were sourced through a local community pharmacy.  

 

6.3.2. Preparation of Fenofibrate Loaded Silica Formulation 
 

Fenofibrate loaded SBA-15 was prepared according to the method previously 

described by Ahern et al (88). The drug and mesoporous silica (2 g) at a drug:silica 

mass ratio of 2:3 were combined in a BC 316 high-pressure reactor (High Pressure 

Equipment Company, USA) and stirred using a magnetic stirring. The reactor was 

heated to 40 °C using heating tape and maintained at this temperature for the 

duration of the experiment. Temperature was monitored using a temperature 

monitor (Horst GmbH, Germany). The reactor cell was filled with liquid CO2 and a 

high pressure pump (D Series Syringe Pump 260D, Teledyne ISCO, USA) was used to 

pump additional CO2 to a final processing pressure (27.58 MPa). After 12 h, the cell 
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was depressurised rapidly by venting the CO2. The processed material was collected 

from the cell and stored in a desiccator prior to analysis.  

 

6.3.3. Drug Content Quantification 
 

The fenofibrate content of the silica formulation was determined by 

thermogravimetric analysis (TGA), using a TGA 500 instrument (TA Instruments Ltd., 

United Kingdom). Samples in the weight range 2–10 mg were loaded onto tared 

platinum pans and heated from ambient temperature to 900 °C, at a heating rate of 

10 °C/min under an inert N2 atmosphere.  Samples were analysed in triplicate. The 

drug quantity was calculated based on the weight loss between 100 and 900 °C, 

corrected for the weight loss over the same temperature range for a silica (SBA-15) 

reference sample (55). TGA thermograms were analysed using Universal Analysis 

2000 software (TA Instruments Ltd., United Kingdom). Drug-loading efficiency was 

calculated using Equation 3.2. 

 

6.3.4. Solubility Measurements 
 

Solubility studies were carried out by the addition of excess fenofibrate to 

biorelevant media using a standardised shake-flask method with a shake time of 24 

h at 37 °C (308). Simulated gastric fluid (SGF) was prepared as outlined in the USP NF 

26 (234). FaSSIF-V2 was prepared as outlined in the literature (233). Samples (2 ml 

volume) were removed at 24 h and centrifuged at 16,500 g for 13 min using a Hermle 

z233M-2 fixed angle rotor centrifuge, (HERMLE Labortechnik GmbH, Germany). The 
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supernatant was removed and centrifuged again under the same conditions. The 

resultant supernatant was analysed using HPLC following dilution with acetonitrile.  

 

6.3.5. In Vitro Dissolution Experiments 
 

USP Type II (Paddle) Apparatus: Dissolution studies were carried out in triplicate 

with an Erweka® DT600 dissolution test system (Erweka GmbH, Germany). Tests 

were performed in 500 ml of SGF or FaSSIF-V2 at 37 ± 0.5 oC at a paddle rotation of 

50 rpm. Drug loaded silica samples equivalent to 50 mg fenofibrate were placed in 

the dissolution medium. The dose of 50 mg fenofibrate in the release media 

corresponded to a theoretical concentration of 100 µg/ml following complete 

dissolution which represents a supersaturated state in SGF and FaSSIF-V2 (see 

fenofibrate solubility values in section 6.4.2). Samples of 4 ml volume were 

withdrawn at 1, 5, 10, 15, 30, 60 and 120 min intervals (with additional samples taken 

from the FaSSIF-V2 media at 180 and 240 min). Samples were immediately replaced 

with an equal volume of fresh, pre-warmed medium. The withdrawn samples were 

filtered through a 0.20 µm PES membrane filter (Filtropur S0.2, Sarstedt AG & Co., 

Germany). Samples were diluted with acetonitrile prior to analysis by HPLC.  

USP Type IV (Flow-Through Cell) Apparatus: Dissolution studies were carried out in 

triplicate with an Erweka® flow-through apparatus (DFZ 720 with HKP 720 piston 

pump) equipped with 22.6 mm diameter cells. The temperature of the water bath 

was maintained at 37 oC. The dissolution medium of either 100 ml SGF or FaSSIF-V2, 

recirculated in closed loop model at a flow rate of 4 ml/min. A glass ball (5 mm) and 

1 g of glass beads (1 mm) were placed in the bottom of the cone to ensure laminar 
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flow of the jet of fluid entering the cell. Formulation samples equivalent to 10 mg 

fenofibrate were placed on top of the glass beads. Undissolved fenofibrate particles 

were retained in the sample holder using a glass fibre filter located in the top of the 

cone. The dose of fenofibrate in the release media thus corresponded to a theoretical 

concentration of 100 µg/ml which represents a supersaturated state in SGF and 

FaSSIF-V2 (see fenofibrate solubility values in section 6.4.2). Samples of 1 ml volume 

were withdrawn at 1, 5, 10, 15, 30, 60 and 120 min intervals (with additional samples 

taken from the FaSSIF-V2 media at 180 and 240 min). Samples were immediately 

replaced with an equal volume of fresh, pre-warmed medium. The withdrawn 

samples were filtered through a 0.20 µm PES membrane filter (Filtropur S0.2, 

Sarstedt AG & Co., Germany). Samples were diluted with acetonitrile and analysed 

by HPLC. In addition to conducting individual dissolution experiments using the Type 

IV apparatus employing either SGF or FaSSIF-V2, a dissolution experiment involving 

a SGF to FaSSIF-V2 transfer method was conducted. Samples were removed as 

described above for the initial SGF stage of the experiment up to the 120 min time 

point. The SGF dissolution medium supply beaker was then removed and replaced 

with a beaker containing 100 ml of FaSSIF-V2 medium. Subsequent sampling time 

points were taken at 1, 5, 10, 15, 30, 60 and 120, 180 and 240 min) following transfer 

from SGF to FaSSIF-V2 medium.  

 

6.3.6. In Vivo Oral Bioavailability Study 
 

The study was carried out under licences issued by the department of Health, Ireland 

as directed by the Cruelty to Animals Act Ireland and EU Statutory Instructions. Local 
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university ethical committee approval was also obtained. The data from this 

intravenous study has been previously used for the calculation of fenofibrate 

clearance in pigs to allow absolute bioavailability to be determined in separate 

studies (309, 310). Female landrace pigs (17–19 kg) housed at the University College 

Cork’s Biological Services Unit were used for these experiments. Animals were fasted 

for 16 h before experimentation. On day 1, an indwelling intravenous catheter was 

inserted in the jugular vein, under general anaesthesia, as previously described (311). 

Following recovery, pigs were returned to their pens and allowed access to food and 

water.   

On day 2 (following an overnight fast), the oral formulations containing a dose of 67 

mg fenofibrate were administered in gelatin capsules with the aid of a dosing gun.  

After dosing the pigs received 50 ml of water via an oral syringe. Blood samples (5 

ml) were withdrawn from the jugular line at time zero (pre-dosing) and at 0.5, 1, 1.5, 

2, 3, 4, 6, 8, 12 and 24 h intervals post dosing. Water was available ad libitum 

throughout the study period and the animals were fed 8 h post-dose. For the 

intravenous treatment (i.v.), animals were administered 25 mg fenofibrate by slow 

infusion, over 2 min, via 3 ml of a solution containing 8.33 mg/ml fenofibrate in 80 

%w/w ethanol and 20 %w/v physiological saline into an ear vein. Blood sampling was 

performed as outlined above. All blood samples were collected in heparinised tubes 

(Sarstedt, Germany) and centrifuged immediately after withdrawal at 3220 g for 5 

minutes at 4 °C. Plasma samples were stored at −80 °C prior to HPLC assay.  
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6.3.7. Quantitative Analysis of Fenofibrate 
 

HPLC analysis of the in vitro dissolution samples was performed using an Agilent 1200 

series HPLC system with an UV/Vis detector (Agilent Technologies, USA). A reversed-

phase column (Kinetex C-18, 150 × 4 mm x 2.6 µm, Phenomenex Ltd. UK), mobile 

phase of acetronitrile and water (80:20) at a flow rate of 1 ml/min and injection 

volume of 20 µl were employed. The wavelength for fenofibrate detection was set at 

286 nm and retention time was 4.5 min. 

In vivo plasma samples were quantified for fenofibric acid (the major active 

metabolite of fenofibrate). Based on a method by Griffin et al (310), a volume of 0.5 

ml plasma was spiked with 50 µl of internal standard (sulindac) and vortexed. 

Proteins were precipitated through the addition of 0.5 ml of 25 %w/v NaCl solution 

and 1 ml of 1 %w/v H3PO4 in methanol with thorough mixing. Samples were 

centrifuged at 11,500 g for 9 min using a Hermle z233M-2 fixed angle rotor centrifuge 

(HERMLE Labortechnik GmbH, Germany). The supernatant (20 µl) was injected onto 

a Synergi C18 reversed phase column (250 x 4.6 x 2.6 µm, Phenomenex Ltd. UK) using 

the Agilent system described above. The mobile phase consisted of acetronitrile and 

water (80:20) adjusted to pH 2.5. The flow rate was set at 1 ml/min resulting in 

elution of fenofibric acid and fenofibrate at 6.5 and 10.5 min, respectively. The 

concentration of drug was determined at 286 nm.  
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6.3.8. In Vitro and In Vivo Data Analysis 
 

 The extent of fenofibrate release was calculated as area under the dissolution curve 

(AUC) using Prism (ver. 5, GraphPad Software Inc., USA.). Peak fenofibrate 

concentrations (Cmax) and the time for their occurrence (Tmax) were noted directly 

from the individual dissolution profiles. Intravenous pharmacokinetic parameters 

were fitted to a two-compartment model using the PKPlus™ module in Gastroplus™ 

(ver. 8.6, Simulations Plus Inc., USA). AUC for fenofibric acid after oral administration 

of both formulations was calculated for 24 h post-dosing using Prism. The peak 

plasma concentrations (Cmax) and the time for their occurrence (Tmax) were noted 

directly from the individual plasma concentration vs. time profiles. Absolute 

bioavailability (Fabs) was calculated according to Equation 6.1:  

𝐹𝑎𝑏𝑠 =  (
AUC oral

AUC i. v.
)  𝑥 (

Dose i. v.

Dose oral
)                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6.1) 

Relative bioavailability was calculated as the ratio of AUC0→24 obtained after oral 

administration of the silica and Lipantil Supra® formulations. The relative extent of 

fenofibrate release from both formulations in the three different dissolution models 

was calculated as the ratio of AUC values.  Results are reported as mean ± standard 

deviation.  

In vitro dissolution data comparing the two formulations was tested for significance 

(p < 0.05) using a two-tailed, independent sample t-test, assuming Gaussian 

distribution and equal variance. Statistical analysis of the Cmax and AUC values from 

the dissolution profile for both formulations were performed using a one-way 

analysis of variance (ANOVA) and post hoc Tukey’s multiple comparisons test. P-
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values of <0.05 were considered significant. Paired t-tests were used to determine 

the statistical significance (p < 0.05) of calculated in vivo bioavailability and 

pharmacokinetic results, as each animal acted as its own control in this crossover 

study. All statistical analyses were performed using GraphPad Prism (Version 5, USA). 

 

6.3.9. In Silico Predictive Modelling 
 

In silico modelling was conducted using GastroPlus™ (ver. 9.0, Simulations Plus, 

USA.). The ADMET Predictor™ module was used to estimate fenofibrate 

physiochemical characteristics. Predictive mathematical models were generated 

using the IVIVCPlus™ component of the software. In this study, the Loo-Riegelman 

two-compartment method was implemented to deconvolute the in vivo oral plasma 

concentration profiles using intravenous data as previously published (309, 310). An 

IVIVR was generated by correlating the fraction of drug absorbed in vivo with the 

fraction of drug dissolved in vitro (for the initial period of fenofibrate dissolution i.e. 

time points up to Tmax). The data was then convoluted to generate a predicted plasma 

concentration-time profile, which was compared with the observed in vivo data. The 

software displayed Cmax and AUC for the observed and predicted profiles. It also 

generated the prediction error between the two profiles which can be used to 

evaluate the predictability of the correlation as described by the FDA (Food and Drug 

Administration) (312). The FDA require an average absolute percentage error (%PE) 

of 10 % or less for AUC and Cmax for internal predictability. The % PE for each 

formulation should not exceed 15 %. 
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6.4 Results 
 

6.4.1. Drug Content Quantification 
 

Fenofibrate loading onto SBA-15 was 251.3 mg drug/g silica (25.13 % ± 0.68). The low 

variability observed in the drug loading for this SC-CO2 process is indicative of a 

homogeneous drug distribution on the silica surface (54). The drug loading efficiency, 

calculated using Equation 3.2, was 62.83%. The loading technique converted the 

fenofibrate to a non-crystalline solid phase as previously reported by Ahern et al (88).  

 

6.4.2. Fenofibrate Solubility  
 

Fenofibrate solubility in SGF was determined as 0.17 ± 0.05 µg/ml.  Fenofibrate 

solubility in FaSSIF-V2 (3.64 ± 0.62 µg/ml) was significantly enhanced, which indicates 

that fenofibrate is solubilised in the micelles of simulated intestinal fluid (308).  

 

6.4.3. In Vitro Dissolution  
 

6.4.3.1. USP Type II (Paddle) Apparatus 
 

Dissolution experiments using the USP Type II (paddle) method were conducted 

under supersaturated conditions (580 times drug saturated solubility in SGF and 27 

times the saturated solubility in FaSSIF-V2). There was no detectable release of 

fenofibrate from the silica formulation in SGF. This could be explained by the 

mechanism of drug release previously published for mesoporous silica systems in 

vitro (207, 313). These reported dissolution profiles involve an initial burst release 
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(where the majority of loaded drug is released) followed by a sustained secondary 

release (117). As a result of the drug’s low solubility in conditions of low pH and the 

absence of additional excipients to enhance solubility or stabilise dissolution, the 

release of fenofibrate was not quantifiable (the limit of quantification was 200 

ng/ml). Fenofibrate dissolution from the Lipantil Supra® formulation resulted in a 

sustained supersaturation (Figure 6.1). Drug release increased over the first 15 mins 

(Cmax 2.79 ± 0.70 µg/ml), before reaching a plateau for the remainder of the 

experiment. The supersaturation ratio during this plateau phase (defined as C/Cs, 

where Cs is the saturated solubility) was 15.49. This marked solubility increase is most 

likely due to the composition of the Lipantil Supra® formulation which contains 

surfactants, sodium dodecyl sulfate (SDS) and sodium docusate. SDS can significantly 

increase the solubility and dissolution rate of fenofibrate through a combination of 

wetting, micellar solubilisation and deflocculation (314, 315).  
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Figure 6.1 Fenofibrate release profiles for Lipantil Supra® in SGF at 37  
oC; () indicates Type IV apparatus, () indicates Type II (paddle) 

apparatus. Dotted line indicates equilibrium solubility of fenofibrate in 

SGF. (n=3, Y error bars indicate standard deviation) 

 

Compared to SGF, fenofibrate release from both formulations was significantly 

higher in FaSSIF-V2 due to the greater amount of physiologically relevant surfactants 

in the medium. FaSSIF-V2 allows for increased micellar solubilisation of the drug 

(Figure 6.2). However, the extent of release from the commercial product was 

significantly higher than release from the silica formulation (p <0.001). Fenofibrate 

release from the silica formulation in FaSSIF-V2 media exhibited the classic ‘burst 

release’ profile characteristic of silica formulations (207, 313). Drug dissolution 

maintained supersaturation levels for the first 30 min of the experiment (Cmax = 5.76 

± 0.28 µg/ml, supersaturation ratio of 1.58). However, at 60 min, release had 

dropped below fenofibrate thermodynamic solubility levels. Fenofibrate release 

from the Lipantil Supra® formulation demonstrated high levels of supersaturation 
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(Cmax = 53.68 ± 2.73 µg/ml, peaking at a supersaturation ratio of 14.74). Drug 

dissolution decreased after 30 min for the remainder of the experiment but never 

dropped below supersaturation levels over the 4 h experiment.  

 

Figure 6.2 Fenofibrate release profiles from mesoporous silica 

formulation (◼) and Lipantil Supra® (◆) in FaSSIF-V2 media at 37 oC for 

Type II (paddle) apparatus. Dotted line indicates fenofibrate solubility 

in FaSSIF-V2 media. (n=3, Y error bars indicate standard deviation ) 

 

A summary of the in vitro release parameters are detailed in Table 6.1. The high levels 

of release observed in this dissolution experiment with FaSSIF-V2 alone might not be 

indicative of in vivo performance. In vivo, the formulation will experience the low pH 

of the stomach initially (where the drug has extremely low solubility), which may 

result in significant precipitation. Precipitation to a lower energetically favourable, 

less water-soluble form can have a dramatic effect on drug release following transit 

to the small intestine environment mimicked by FaSSIF-V2. In vitro experiments 

simulating this transition were therefore conducted and are described in the section 

6.4.3.3.   
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Table 6.1 Summary of in vitro  dissolution parameters.  Mean values +/- standard deviation are provided (n=3) 

Type II (Paddle) Apparatus 

Formulation C
max FASSIF

 (µg/ml) AUC
240min

 
FASSIF 

(µg/ml.min) T
max 

(min) 

Mesoporous Silica 5.76 ± 0.28 631 ± 9 10 ± 0 

Lipantil Supra® 53.68 ± 2.73 7493 ± 1177 20 ± 8.7 

Type IV (Flow Through Cell) Apparatus 

Formulation C
max FASSIF

 (µg/ml) AUC
240min

 
FASSIF 

(µg/ml.min) T
max 

(min) 

Mesoporous Silica 2.96 ± 0.79 398 ± 81 20 ± 8.7 

Lipantil Supra® 4.45 ± 0.29 924 ± 36 15 ± 0 

Transfer Model 

Formulation C
max FASSIF

 (µg/ml) AUC
240min

 
FASSIF 

(µg/ml.min) T
max 

(min) 

Mesoporous Silica 1.49 ± 0.07 322 ± 18 160 ± 69.3 

Lipantil Supra® 2.04 ± 0.06 364 ± 30 240 ± 0 
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6.4.3.2. USP Type IV (Flow-Through Cell) Apparatus 
 

Non-sink conditions in the Type IV model were equivalent to those employed for USP 

II apparatus (580 times drug equilibrium solubility in SGF and 27 times the saturated 

solubility in FaSSIF-V2). Similar to results observed for the Type II model, fenofibrate 

release from the mesoporous silica formulation in SGF was not quantifiable. 

Fenofibrate release from Lipantil Supra® in SGF reached supersaturation levels for 

the first 30 min of the experiment (Cmax = 0.41 ± 0.09 µg/ml) but at 60 min release 

had fallen to the drug’s equilibrium solubility (Figure 6.1). As illustrated in Figure 6.1, 

the Cmax level and the extent of fenofibrate release was significantly higher using the 

Type II apparatus compared to the Type IV flow through cell (p < 0.005). This indicates 

that hydrodynamic differences between the two model apparatus have a significant 

impact on the dissolution process and the final dissolution profile.  This is discussed 

in more detail in Section 6.5.  

Similar to the Type II apparatus, both formulations exhibit enhanced drug release in 

the FaSSIF-V2 media using the Type IV apparatus. The extent of release from Lipantil 

Supra® was significantly higher than that of the silica formulation (p < 0.001, Figure 

6.3). However, release from the SBA-15 system did not reach supersaturation levels 

in the Type II apparatus. Fenofibrate release from the Lipantil Supra® formulation 

peaked at 15 min (Cmax = 4.45 ± 0.29µg/ml, supersaturation ratio of 1.22), then 

dropped to remain at the thermodynamic solubility level for the duration of the four 

hour experiment. A summary of in vitro release parameters is provided in Table 6.1. 
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Figure 6.3 Fenofibrate release profiles from mesoporous silica 

formulation (◼) and Lipantil Supra® (◆) in FaSSIF-V2 media at 37 oC for 

Type IV (flow through cell) apparatus. Dotted line indicates fenofibrate 

solubility in FaSSIF-V2 media. (n=3, Y error bars indicate standard 

deviation) 

 

6.4.3.3. Transfer Model in USP Type IV (Flow-Through Cell) Apparatus 
 

In the Type IV transfer model, samples were first exposed to SGF for 120 min followed 

by FaSSIF-V2 media for 240 min, to simulate GI transit in the dissolution model. As 

described in section 6.4.3.2, the Lipantil Supra® formulation reached supersaturation 

levels in the SGF, whereas release from the mesoporous silica system was 

unquantifiable (Figure 6.4). The shape of the dissolution profile for the silica 

formulation in the transfer model (FaSSIF-V2 stage) is different from that of the Type 

II or Type IV FaSSIF-V2 profiles (Figure 6.4). The classic ‘burst’ release in FaSSIF-V2 

media was not evident using the transfer model and neither formulation reached 

supersaturation levels in the FaSSIF-V2 media (Cmax = 2.04 ± 0.06 µg/ml for Lipantil 

Supra® and Cmax= 1.49 ± 0.07 µg/ml for the silica formulation). It is probable that the 
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reduction in the extent of dissolution in FaSSIF-V2 is due to fenofibrate precipitation 

upon exposure to SGF media for both formulations. While Cmax for Lipantil Supra® 

was significantly higher than for the silica system (p < 0.001), there was no significant 

difference in the overall extent of fenofibrate release over the duration of the 

experiment (p > 0.1). This is in contrast to release profiles for both formulations in 

FaSSIF-V2 media alone in USP Type II and USP Type IV apparatus (Table 6.1). 

 

 

Figure 6.4 Fenofibrate release profiles from mesoporous silica 

formulation (◼) and Lipantil Supra® (◆) in USP IV Transfer Model at 37  
oC (incorporating SGF to FaSSIF-V2 transfer). Dotted line indicates 

fenofibrate solubility in SGF and FaSSIF-V2 media. (n=3, Y error bars 

indicate standard deviation) 
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6.4.4. In Vivo Oral Bioavailability  
 

The plasma concentration profiles obtained following oral administration of 67 mg 

of fenofibrate (in the form of either Lipantil Supra® or the silica formulation) to fasted 

pigs are displayed in Figure 6.5. A maximum plasma concentration of 3.96 ± 1.29 

µg/ml was observed for Lipantil Supra® at 5.0 ± 2.4 h. The absorption of fenofibrate 

from the silica formulation was slower with a Cmax of 2.34 ± 1.23 µg/ml at Tmax  9.5 ± 

3.0 h. A summary of the in vivo parameters for both formulations is provided in Table 

6.2. The classical ‘burst’ release of the silica formulation, observed during both 

dissolution experiments conducted in FaSSIF-V2 alone was not evident in the in vivo 

pig model. No corresponding sharp onset of fenofibrate absorption was observed for 

the silica formulation. A slower rate of drug absorption was noted which indicates a 

slower release profile as noted in the transfer model FaSSIF-V2 phase. This data 

suggests the transfer model better simulates how the formulation will perform in 

vivo.  
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Figure 6.5 Plasma concentration of fenofibric acid vs. time profiles after 

oral administration of 67 mg fenofibrate to fasted pigs, (◼) indicates 

mesoporous silica formulation, (◆) indicates Lipantil Supra®, () 

indicates intravenous preparation (n=4, Y error bars indicate standard 

deviation 

 

 

 

Table 6.2 Summary of in vivo  pig model parameters. Mean values +/- 

standard deviation are provided (n=4). (*) denotes values which are 

significantly different (p <0.05) 

Formulation Cmax (µg/ml)* AUC0→24h Tmax Fabs0→24h 

Mesoporous Silica 2.34 ± 1.23 26502 ± 11377 9.5 ± 3 54.55 ± 23.42 

Lipantil Supra® 3.96 ± 1.29 34536 ± 12527 5 ± 2.4 71.08 ± 25.78 
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Absolute bioavailability was determined for both formulations relative to an 

intravenous control. An absolute bioavailability of 54.55 ± 23.42 % was observed for 

the silica formulation which was not significantly different to that of the commercial 

product, 71.08 ± 25.78 % (p > 0.1). This confirms the potential of the silica system to 

enhance the bioavailability of fenofibrate. However, the silica formulation displayed 

a slower onset of release when compared with the Lipantil Supra® (Tmax of 5.0 ± 2.4 

h and 9.5 ± 3.0 h, respectively). The relative bioavailability in vivo of the silica 

formulation versus Lipantil Supra® was 73.33 ± 17.07 %.  

To enable comparison of the in vitro dissolution and the in vivo bioavailability results, 

the relative extent of drug release (as a ratio of the silica formulation to Lipantil 

Supra® AUC) for the Type II, Type IV and USP IV transfer methods were plotted 

adjacent to the relative bioavailability of both formulations in vivo (Figure 6.6). This 

figure highlights the differences between the extent of release from both 

formulations using the Type II (a) and Type IV (b) apparatus and similarity using the 

Type IV Transfer Model (c) and oral bioavailability in the in vivo pig model (d). To 

facilitate further quantitative comparison, the ratio of extent of release of the silica 

vs. commercial formulation were calculated (Figure 6.7). The ratios of extent of 

release determined for the Type II and Type IV dissolution data were 8.55±1.28 % 

and 43.32±10.50 %, respectively. In contrast, the ratio of extent of fenofibrate 

release from the Type IV transfer method data was 89.16±12.49 %. This ratio did not 

significantly differ from the relative in vivo oral bioavailability of these formulations 

(p > 0.05, Figure 6.7).  This indicates that the USP IV transfer method was a superior 

predictor of in vivo performance compared to USP Type II and Type IV using FaSSIF-

V2 alone.   
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Figure 6.6 Extent of release (AUC) and oral bioavailability of fenofibrate 

from mesoporous silica and Lipantil Supra® formulations.  A = extent of 

release using Type II apparatus, B = extent of release using FaSSIF-V2 

media in a Type IV apparatus, C = extent of release using Type IV Transfer 

model, D = oral bioavailability determined using an in vivo  pig model. 

(Graphs show AUC over 240 min for Type II and Type IV, 360 min for 

Transfer and 24 h for in vivo  pig model). (n=3 for in vitro  dissolution 

models, n=4 for in vivo  pig bioavailability model, Y error bars indicate 

standard deviation) 
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Figure 6.7 Ratio of extent of release of fenofibrate from the silica 

formulation vs. the commercial product, Lipantil Supra®, for the in vitro  

dissolution experiments and the in vivo  pig study. Graphs display ratio 

of AUC release of si lica formulation: Lipantil Supra® over 240 min for 

Type II and Type IV, 360 min for Transfer and 24 h for in vivo pig model). 

(n=3 for in vitro  dissolution models, n=4 for in vivo  pig bioavailability 

model, Y error bars indicate standard deviation) 

 

6.4.5. In Silico IVIVR Modelling  
 

The IVIVRs for the two formulations were generated using Gastroplus™ software. 

Previously published intravenous data was used to deconvolute the in vivo oral 

plasma concentration profiles using the Loo-Riegelman model (309, 310). This two 

compartment model was chosen over a single compartment model as it has been 

reported that it is not possible to perform a rigorous pharmacokinetic analysis of an 

absorption process from oral data, unless the parameters of the model have first 

been derived from a separate intravenous experiment (316-318). 
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No quantitative IVIVR could be established with the dissolution profiles from the 

Type II apparatus. IVIVRs could be generated for the Type IV (FaSSIF-V2) and the Type 

IV transfer Model (Figure 6.8 and Figure 6.9 respectively). Deconvolution of the Type 

IV data produced a linear best-fit correlation between the fraction of in vitro release 

and the fraction of absolute bioavailability (R2 = 0.883 for the silica formulation and 

R2 = 0.802 for the Lipantil Supra®).   

 

 

Figure 6.8 Plasma concentration profiles for observed data  (designated 

by the markers – (◼) indicates mesoporous silica formulation, () 

indicates Lipantil Supra®) and predicted plasma concentration-time 

profiles based on Type IV apparatus (designated by the solid lines - SBA-

15 formulation (dotted line) and Lipantil Supra® (black))  
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Figure 6.9 Plasma concentration profiles for observed data  (designated 

by the markers – (◼) indicates mesoporous silica formulation, ) 

indicates Lipantil Supra®) and predicted plasma concentration-time 

profiles based on USP IV Transfer model (designated by the solid lines - 

SBA-15 formulation (dotted line) and Lipantil Supra® (black))  

 

The mean absolute prediction error (MAE) was 5.18 % for Cmax and 12.14 % for AUC 

(this falls outside the FDA limit of 10 % error). The full list of validation statistics is 

displayed in Table 6.3. Optimisation of the deconvoluted Transfer model data 

produced a second-order polynomial best-fit correlation (R2 = 0.771 for the SBA-15 

formulation and R2 = 0.569 for the Lipantil Supra®). The MAE was 16.02 % for Cmax 

and 15.55 % for AUC, indicating the correlation is not as powerful as the Type IV 

model using FaSSIF-V2 media alone. The IVIVRs generated using Gastroplus™ 

software identify the Type IV apparatus as more effective at forecasting in vivo 

0

0,5

1

1,5

2

2,5

3

3,5

0 5 10 15 20 25

P
la

s
m

a
 C

o
n

c
e
n

tr
a
ti

o
n

 (
u

g
/m

l)

Time (h)



229 
 

performance than the traditional paddle apparatus. However, it also suggests that 

the Type IV dissolution, using FaSSIF-V2 alone, is the best prediction model. These 

findings are in contrast to data generated based on the extent of release discussed 

in section 6.4.3, which identified the Type IV Transfer model as the superior in vitro 

dissolution model. 
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Table 6.3 Summary of  in vitro/in vivo  relationship parameters. Observed and predicted Cmax and AUC values and the 

correlation (R2) between the observed and predicted plasma profiles generated by the Gastroplus™ IVIVCPlus® 

software are displayed. 

 

Formulation 

Cmax (µg/ml) AUC (µg/ml.h) Reconstructed Plasma 
Concentration-Time Profile 

from Convolution Tab (R
2
) Observed Predicted 

% Prediction 
Error 

Observed Predicted 
% Prediction 

Error 

Type IV Apparatus 

Mesoporous Silica 
Formulation 

1.85 1.99 -7.50 24.31 26.45 -8.80 0.88 

Lipantil Supra® 2.97 2.89 2.86 31.87 26.94 15.47 0.80 

USP IV Transfer Model 

Mesoporous Silica 
Formulation 

1.85 1.86 -0.22 24.31 28.97 -19.17 0.77 

Lipantil Supra® 2.97 2.03 31.82 31.87 28.07 11.92 0.57 
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6.5.  Discussion 
 

To date, mesoporous silica drug formulations have been widely investigated in vitro 

using USP Type II dissolution methods. There have been limited studies to determine 

whether the enhanced dissolution observed during these in vitro dissolutions tests is 

capable of forecasting their oral in vivo bioavailability. This study demonstrates that 

the in vitro dissolution performance of a mesoporous silica fenofibrate formulation 

varies depending on dissolution apparatus and experiment design. The findings 

provide evidence that a USP IV dissolution method incorporating a SGF to FaSSIF-V2 

media transfer is the best predictor of in vivo oral bioavailability in a pig model.  

The study highlighted that the Cmax and AUC0→240min of both the commercial, Lipantil 

Supra®, and silica formulations in FaSSIF-V2 was significantly higher in the Type II 

compared to the Type IV apparatus. This observation is most likely due to 

hydrodynamic differences between the two dissolution models. The hydrodynamic 

properties of the Type II apparatus have been studied in detail and significant 

limitations have been recognised (80, 319-321). The USP IV has the potential to 

operate at lower agitation rates than the paddle apparatus, resulting in lower fluid 

velocities considered to be more biorelevant (101, 102). In vivo studies have 

demonstrated that oral dosage forms can be exposed to small volumes of fluid in the 

gastro-intestinal tract, which can also be modelled using the Type IV apparatus (96). 

This is the first study to utilize the Type IV flow-through apparatus to investigate 

release from drug loaded mesoporous silica systems. It is also the first to compare 

the Type IV and the Type II apparatus directly to study the dissolution behaviour of 

this formulation approach. The similarity between the relative bioavailability of the 
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silica formulation versus Lipantil Supra®, and the relative AUC (extent of release) of 

the formulations determined using the USP IV transfer method, suggests that the 

USP IV is a more biorelevant in vitro test for these formulations. These results 

indicate that a supersaturation/precipitation process plays a significant role in the 

dissolution process of these systems and is best simulated using a transfer model.  

The advantages of using a transfer model to investigate formulation approaches 

which promote drug supersaturation, and are therefore prone to precipitation, have 

been reported by other groups (78, 322, 323).  Both formulations in this study utilise 

a supersaturation formulation strategy to enhance the oral bioavailability of 

fenofibrate (79). The transfer model is a two-compartment dissolution method to 

simulate GI transit from the stomach to the intestine. Fenofibrate release from the 

mesoporous formulation in SGF was below the HPLC assay detection limit. In 

contrast, fenofibrate release at supersaturation levels from Lipantil Supra® was 

evident in the gastric component of the transfer model. The exposure of the 

formulations to the acidic component in the transfer model affected their 

subsequent release profile in FaSSIF-V2 media. This is evident in the significant 

decrease in Cmax for both formulations in the Type IV transfer model compared to the 

Type IV FaSSIF-V2 only model. As described in Chapter 1, the exposure of high energy 

amorphous drug forms to an aqueous environment where it has very limited 

solubility is reported to promote recrystallization of the drug to a lower energy less 

soluble form (78). Partial recrystallization and precipitation of drug in the silica 

formulation would explain the reduction in Cmax and AUC0→240min upon exposure to 

FaSSIF-V2 media. 
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The importance of controlling supersaturation in mesoporous silica formulations has 

been investigated by Van Speybroeck et al (28, 181). Although supersaturation has 

been explored intensively in vitro, there is little evidence to support what occurs in 

the in vivo environment. A recent study investigated the impact of gastrointestinal 

dissolution, supersaturation and precipitation of posoconazole in humans (324). 

After administration of the formulations, gastric and duodenal fluids were aspirated 

and blood samples were collected in parallel. Supersaturation followed by significant 

intestinal precipitation was reported. This is in contrast to a study which reported 

limited duodenal precipitation for ketoconazole and dipyridamole in a human study 

(325). In this study, previously reported in vitro dissolution dipyridamole data over-

estimated the subsequent in vivo observations (322). This indicates that drug 

supersaturation/precipitation is a complex process which can depend on the 

physiochemical properties of the drug, the formulation and physiological variables 

(78).  

The relationship between dosage form and physiological variables, such as the fed 

and fasted state warrant discussion. In this study, in vitro dissolution studies were 

performed in FASSIF-V2 media designed to mimic the fastest state and pigs were 

dosed following an overnight fast, with food administered 8 hours post dose. The 

oral bioavailability of poorly water-soluble drugs, such as fenofibrate, is limited by 

their poor solubility within gastrointestinal fluid (326) and oral bioavailability can be 

variable depending on the food effect (327). Formulation strategies can enhance 

bioavailability by reducing or eliminating the food effect (308, 309, 328). For 

example, the commercial micronized fenofibrate formulation, Lipantil Micro®, 

displays food dependent bioavailability while the Lipantil® Supra formulation, 
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encompassing NanoCrystal® technology, enables food independent administration 

and dose reduction (329). These findings emphasise the need for studies of this 

nature which use in vivo reference data to optimize in vitro dissolution models and 

inform the development of bio-enabling formulation strategies.  

The IVIVRs generated using the Gastroplus™ software support the relationships 

observed between the relative bioavailability of the formulations and their relative 

AUC (extent of release) determined from raw dissolution profiles. IVIVRs were 

determined for the Type IV FaSSIF-V2 model and the Type IV transfer model. No 

quantitative IVIVR could be determined for the Type II (paddle) apparatus. 

Correlations suggest that the Type IV apparatus with FaSSIF-V2 alone was better at 

forecasting in vivo performance than the transfer model. This finding can be 

explained by outlining the mechanism in which the model is generated and hence 

model assumption. The initial part of the dissolution profile (time points up to Cmax) 

was used to generate the IVIVR. The assumption of the model was that the second 

part of the dissolution profile, which corresponded to a reduction in drug 

concentration due to drug precipitation, may be an artefact of the in vitro dissolution 

model, particularly in the absence of an absorption sink. The initial dissolution phase 

was correlated with the deconvoluted in-vivo plasma profile and then re-convoluted 

to generate a predicted plasma profile.  

The IVIVR generated for the Type IV transfer model revealed significant limitations of 

the model; the MAE was 16.02 % for Cmax and 15.55 % for AUC and a large prediction 

error for the Lipantil Supra® Cmax of 31.82 % was noted (more than double the FDA 

approved error limit of 15% for an individual formulation). This error can be 

attributed to the raw dissolution data for the Lipantil Supra®, specifically the 
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concentration of fenofibrate at the fourth and fifth time point. This reduction (dip) in 

the release profile, while not statistically significant (p > 0.5) did significantly affected 

the in vitro/in vivo correlation simulated by the Gastroplus™ software. This sensitivity 

is a limitation of the current multi-step approach of deconvolution and correlation 

when comparing a small number of immediate release formulations. Removal of fifth 

time point from the analysis improved the correlation but consequently reduced the 

power of the Type IV FaSSIF-V2 transfer model IVIVR.  

In silico modelling requires further investigation to overcome the limitations outlined 

above. To date, modified release formulations have proved most successful as 

regards development of effective IVIVR (105). Work to improve in silico modelling for 

formulations which employ supersaturation to improve the bioavailability of poorly 

water-soluble drugs will be of significant benefit in their development.  
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6.6 Conclusion 
 

This study demonstrates that the dissolution performance of a fenofibrate 

mesoporous silica formulation varies depending on the dissolution apparatus and the 

dissolution experimental design. The findings demonstrate that a USP IV transfer 

dissolution model was best at forecasting in vivo performance. This observation is 

most likely due to hydrodynamic differences between the two apparatus and the 

ability of the transfer model to better simulate GI transit. This is advantageous in 

forecasting in vivo behaviour for formulations which promote drug supersaturation 

and as a result are prone to precipitation. As this drug supersaturation/precipitation 

process is complex and depends on both formulation and physiological variables, 

studies which relate in vitro to in vivo data can help optimise in vitro models used in 

formulation development. In silico modelling has the potential to assist in this 

process. However, further development is required to overcome the limitations 

outlined in this study for solubility enhancing formulations.  
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7.1.  Introduction 
 

This thesis investigated the mechanism of drug dissolution from mesoporous silica 

carriers by examining factors influencing drug adsorption, release and retention on 

the silica surface. In this chapter, the thesis, as a complete body of work, is discussed 

and the overall findings are interpreted. Following this, the overall strengths and 

limitations of the thesis will be described. Finally, recommendations for future work 

will be provided. 

 

7.2.  Interpretation and Implications of Findings 
 

Mesoporous silica formulations continue to be the focus of much research as novel 

oral drug delivery systems (230, 260, 330-332). The principal contribution of this 

thesis is the enhancement of knowledge concerning the mechanism of drug 

adsorption and release from these materials. Incomplete release from these systems 

had been reported but not addressed in several studies (54, 55, 116). This thesis 

considered the rationale behind this incomplete release profile by systematically 

addressing factors influencing drug adsorption and dissolution from these 

formulations. The findings of this thesis should be of use to researchers designing in 

vitro dissolution studies involving mesoporous silica formulations to ensure they are 

conducting appropriate experiments for these systems. This should ultimately help 

in the development and success of these formulations as they move from bench to 

bedside.  
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7.2.1. Dynamic Equilibrium between Drug Adsorption on Silica and 

Free Drug in Solution 
 

This thesis is the first to explore, in detail, passive drug adsorption onto mesoporous 

silica. While adsorption and retention of certain organic molecules on the silica 

surface had been considered in the literature, the potential implications for drug 

dissolution from novel mesoporous silica formulations had not been investigated to 

date (118, 119). The frequency of observed incomplete release from mesoporous 

silica systems was discussed in detail in Chapter 2. The investigation of factors 

influencing this incomplete release became one of the central themes of this thesis.  

Adsorption isotherms were utilized extensively to aid in understanding the role of 

drug adsorption onto the silica surface (Chapters 3, 4 and 5). The Langmuir and 

Freundlich isotherm models have been successfully applied to explain drug 

adsorption onto the silica surface in the literature and also proved a good fit for the 

data in this work (118, 151). The adsorption isotherms generated provided evidence 

of an equilibrium between drug passively adsorbed on the silica surface and free drug 

existing in solution. This was first observed under sink conditions in Chapters 3 and 

4. As mesoporous silica formulations are capable of achieving drug supersaturation 

levels (181, 272, 333), passive adsorption under such conditions was investigated in 

Chapter 5 and a dynamic equilibrium between adsorbed and free drug was also 

demonstrated.  

It was observed in Chapters 3 and 4 that organic molecules including potential 

formulation excipients (surfactants) and constituents of biorelevant media (bile salts 

and proteins) can adsorb onto the silica surface. Competitive adsorption of these 
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molecules reduced passive adsorption of drug on the silica. This may have 

implications for excipient choice as mesoporous silica formulations move from the 

laboratory setting to large-scale manufacture (116, 334). The concept of biological 

components adsorbing onto large surface area drug carriers has been reported 

extensively for nanocarrier drug delivery systems (335-339). However, it has not 

been considered for mesoporous silica materials to date and is an important finding 

of this thesis.  

In Chapter 5, it was determined that the equilibrium between adsorbed and free drug 

during passive adsorption was related to the drug’s activity in solution. This activity 

is related to the chemical potential of the drug in the system. Passive adsorption of 

both drugs was compared directly by converting equilibrium free concentrations to 

drug activity in solution (amorphous solubility was designated an activity of one). The 

data overlaid closely indicating the presence of a relationship between passive 

adsorption and activity. Similar findings have been reported in a number of older 

studies in the literature examining adsorption onto carbon materials (303, 304). 

However, this is the first study to investigate the influence of activity on drug 

adsorption and release from mesoporous silica formulations.  

The equilibrium between adsorbed and free drug was also confirmed under 

supersaturating conditions during the drug dissolution process in Chapter 5. It was 

determined that the equilibrium was not influenced by the quantity of silica, rather 

the relationship between adsorbed drug and free drug. This provides further 

evidence that knowledge of drug activity in solution can aid in our understanding of 

drug release from mesoporous silica formulations.  
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In Chapters 3 and 4, when passive adsorption levels were compared to retention 

after drug dissolution, it was determined that the amount retained on the surface 

after dissolution was significantly higher. This was attributed to the SC-CO2 loading 

method which resulted in drug loading deep in the porous network, rendering it 

inaccessible to the dissolution medium (88, 273). A similar finding was noted in 

Chapter 5 for organic solvent loaded formulations. Drug loading methods have been 

examined comprehensively as regards their ability to enhance drug dissolution (as 

discussed in Chapter 2). However, based on these findings they warrant further 

investigation with respect to the location of deposited drug in the porous network 

and their influence on the observed equilibrium between drug adsorption and 

release. 

 

7.2.2. Dissolution Experimental Set-Up for Mesoporous Silica 

Formulations 
 

The second major contribution of this thesis is to provide insight into the design of 

more appropriate in vitro dissolution experiments for oral mesoporous silica drug 

delivery systems. To date, most dissolution studies involving these formulations are 

conducted in USP Type II dissolution apparatus, using simple traditional buffers as 

dissolution media (0.1M HCl and phosphate buffer pH 6.8) (88-92). Throughout this 

thesis, evidence is presented revealing these are not the most suitable conditions to 

investigate drug release from mesoporous silica formulations. 

In Chapter 3, it was demonstrated that the addition of a surfactant (sodium dodecyl 

sulphate) to 0.1M HCl medium significantly enhanced drug dissolution. This increase 
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in drug release was not the result of enhanced drug solubility in the surfactant 

micelles but rather the reduced surface tension of the media, resulting in improved 

wetting of the silica surface. Mesoporous silica materials possess a wide range of 

pore sizes (2 – 50 nm) and their porous architecture was identified as a significant 

factor influencing the extent of drug release. This had previously been reported in a 

study conducted by Mellaerts et al who compared dissolution profiles of silica 

materials with a range of pore sizes (181). However, they did not consider the impact 

of the porous network on incomplete release or the significance of the role of 

dissolution media additives in the release process. As described in Section 1.3.1, 

during the drug loading process, solvents can access areas deep in the porous 

network to deposit drug as a result of their superior wetting characteristics. These 

areas are subsequently inaccessible to traditional aqueous buffers used in dissolution 

due to their high surface tension (measured in Chapter 4). As dissolution media 

components which improve the wettability of the silica surface can enhance drug 

release, their addition to dissolution media needs to be considered in the design of 

future dissolution experiments involving mesoporous silica formulations. These 

findings also suggest that accessible surface area rather than specific surface area of 

mesoporous silica is as an important parameter in drug loading and dissolution from 

these porous systems.  

In Chapter 4, the influence of biorelevant components on drug adsorption and 

release from silica systems was investigated under sink conditions. It is increasingly 

recommended in the literature that biorelevant media should be utilized in 

dissolution studies involving formulations capable of achieving supersaturation levels 

(78, 230, 231). However, in this study, it was demonstrated that components of 
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biorelevant media can also have a significant effect on drug release from mesoporous 

silica systems under sink conditions due to their reduced surface tension 

characteristics. This echoes the observations in Chapter 3 describing the importance 

of dissolution medium wettability of the silica surface under sink conditions. These 

findings are novel in the field of mesoporous silica drug delivery. They provide strong 

evidence that biorelevant media can influence drug release in ways other than via 

promotion of drug supersaturation. As a result of these observations, the use of 

biorelevant media should be considered in all future dissolution studies under sink 

conditions involving these systems.  

Chapter 6 investigated the apparatus utilized in dissolution studies to determine 

which is most appropriate to predict in vivo performance. Experiments in this Chapter 

were conducted under drug supersaturating conditions using biorelevant media 

(simulated gastric fluid (SGF) and fasted state simulated intestinal media (FaSSIF-

V2)). In this chapter, the USP Type II (paddle) apparatus was compared to USP Type 

IV (flow-through cell) apparatus and a transfer model (using the flow-through cell 

equipment). It has been proposed that the Type IV apparatus is a better simulator of 

in vivo hydrodynamics than the paddle apparatus (101). Incorporating a transfer from 

SGF to FaSSIF-V2 media during the experiment results in conditions that more closely 

reflect the pH gradient associated with transit through the GI tract which, in theory, 

should lead to better in vivo simulation (305). However, as discussed in Chapter 6 the 

number of studies which utilise these models are limited and published data with 

regards to the superiority of the Type IV flow-through cell over the Type II apparatus 

is not in agreement (103, 104). 
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This study demonstrated that the in vitro dissolution performance of a mesoporous 

silica fenofibrate formulation varied depending on dissolution apparatus and 

experiment design. The findings provide evidence that a USP IV dissolution method 

incorporating an SGF to FaSSIF-V2 media transfer is the best predictor of in vivo oral 

bioavailability in a pig model. The findings build on previously published work 

detailing the advantages of using a transfer model to investigate formulation 

approaches which promote drug supersaturation and are therefore prone to 

precipitation (78, 322, 323).  However, this was the first time the transfer model had 

been investigated for a mesoporous silica system. The results provide evidence that 

the transfer model should be the model of choice for in vitro studies used in the 

prediction of in vivo performance for mesoporous silica formulations.  

 

7.3.  Strengths and Limitations 
 

The individual research chapters of this thesis were based on the findings of a 

comprehensive review of the literature (presented in Chapter 2). Throughout this 

extensive review, the current state of the art regarding oral mesoporous silica drug 

delivery systems was presented. It also identified gaps in the knowledge regarding 

the mechanism of drug release from these formulations which provided the basis for 

the hypothesis and aims of this thesis.  

A key strength of this thesis is the approach taken to systematically investigate drug 

dissolution from mesoporous silica formulations. Individual research chapters 

examined the influence of potential excipients (surfactants), dissolution medium 

composition, supersaturation conditions and dissolution apparatus on drug release 
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from silica carriers. A robust experimental approach was adopted throughout this 

work involving a comprehensive range of experiments including adsorption 

isotherms, dissolution studies and advanced spectroscopic techniques. This 

facilitated the generation of valuable insights into numerous aspects of the 

dissolution process from mesoporous silica systems resulting in recommendations 

for the design of future in vitro studies involving these systems.  

This thesis is the first to examine the role of drug adsorption onto the silica surface 

during the drug release process from mesoporous silica formulations. The literature 

review identified that passive drug adsorption onto these carriers was recognised in 

other fields, including environmental science. However, its influence on drug release 

had not been investigated to date. Drug adsorption on the silica surface was 

examined directly in three of the research chapters. The results generated provide 

enhanced understanding of the relationship between drug adsorption and release 

for these formulations which could aid in the future development of these 

formulations.  

Another novel aspect of this thesis was the enhanced understanding of the role 

biorelevant media can play in drug release from mesoporous silica carriers. It has 

been recommended to use biorelevant media to conduct dissolution studies of 

formulations which promote supersaturation. In this work, it was demonstrated that 

biorelevant media should also be utilized for dissolution experiments involving 

mesoporous silica drug delivery systems under sink conditions as the reduced surface 

tension of the media can enhance release compared to simple traditional buffer 

media. 
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A major contribution of this thesis is the finding that drug activity can potentially 

influence the equilibrium between drug adsorbed on the silica surface and free drug 

in solution. It had been demonstrated in the literature that an equilibrium between 

adsorbed and free drug exists for these systems but the factors underpinning this 

process were not understood. This thesis provides evidence that the drug’s activity 

in solution, which is related to the drug’s chemical potential, plays a role in this 

relationship.  

As the first in vivo studies begin to be published involving mesoporous silica 

formulations, this thesis examined a range of in vitro dissolution studies to 

investigate which is the best predictor of in vivo performance. It was determined that 

the Type IV apparatus incorporating a transfer model was the superior choice. This 

will aid in future development of oral mesoporous silica drug delivery systems.  

The quality of the research conducted as part of this doctoral thesis is evidenced in 

the number of peer-reviewed academic publications and conference presentations 

achieved. This highlights that this research is of scientific merit, interesting to 

academic colleagues and of sufficient quality and rigour. 

While there are numerous strengths associated with this research, certain limitations 

must also be acknowledged. The results presented are based on a small pool of 

model drugs and silica materials. Both weakly acidic and neutral drugs were 

investigated but it would be of benefit to repeat experiments in this thesis using a 

wider range of compounds with a variety of physicochemical characteristics to assess 

the universal nature of the findings. The same is true for silica materials with diverse 

porous architectures. 
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Spectroscopic techniques were employed very successfully in Chapter 5 to describe 

drug adsorption onto the silica surface. It is a limitation of the thesis that they were 

not also applied in Chapters 3 and 4 to provide further evidence of drug-silica 

interactions.   

Drug supersaturation was dosed at amorphous solubility levels in Chapter 5 which 

was completed after Chapter 6 (which examined various dissolution models). It 

would be been preferable to conduct studies in Chapter 6 at amorphous solubility to 

attempt to draw parallels between the two chapters.  

 

7.4.  Recommendations for Future Work 
 

This thesis provides many new insights into the mechanism of drug dissolution from 

mesoporous silica systems. In particular, the investigation of the role of adsorption 

during drug release from these materials was a novel concept. It therefore provides 

an ideal starting point for future research in the area of oral mesoporous silica 

formulation development. Future work should focus on the following areas: 

I. Further exploration of the location of drug in the silica porous network 

following drug loading using organic solvents and SC-CO2. 

II. Generation of adsorption isotherms for drug adsorption onto mesoporous 

silica in loading solvent. Compare passive drug loading to drug retention 

following dissolution studies.  

III. Exploration of the exact nature of surfactant-silica interactions using 

advanced spectroscopic techniques and microscopy. 
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IV. Further investigation of the role of drug adsorption on the silica surface 

(particularly the impact of drug activity on the dynamic equilibrium between 

adsorbed and free drug) using a wider variety of drug molecules with a range 

of physicochemical characteristics. 

V. Improvement of in silico methods to describe in vitro/in vivo correlations for 

immediate release formulations. 
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7.5.  Conclusions 
 

The overall aim of this thesis was to investigate factors influencing drug adsorption 

and release from mesoporous silica formulations to gain an enhanced understanding 

of the mechanism of drug release from these systems. This aim was devised based 

on the findings of a comprehensive review of the literature which identified 

unexplained incomplete release from these carriers. Passive drug adsorption onto 

the silica surface had been recognised in other fields of research but its influence on 

drug release from oral mesoporous silica formulations had not been considered. 

The first major contribution of this thesis was to describe the equilibrium between 

drug adsorbed on the silica surface and free drug in solution using a robust 

experimental approach involving adsorption isotherms, competitive adsorption and 

spectroscopic techniques. Of particular novelty, is the finding that equilibrium drug 

adsorption can be related to the drug’s activity in solution. Further evidence for the 

role of activity was provided in dissolution experiments which demonstrate drug 

release was not a function of the quantity of silica but rather the relationship 

between adsorbed and free drug in the system.  

This work also demonstrated the ability of non-biological and biological components 

to adsorb on the silica surface during the drug release process. These constituents 

were observed to competitively adsorb on the silica surface and displace drug during 

adsorption isotherm studies. 

A second significant contribution was the generation of novel insights into the 

dissolution process from mesoporous silica formulations which can aid in the design 

of more appropriate dissolution experiments for these systems. It was demonstrated 
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that dissolution media additives with reduced surface tension could enhance drug 

release from silica carriers under sink conditions, due to superior wetting of the silica 

material. Of particular interest, was the finding that biorelevant media can influence 

drug release from mesoporous silica in ways other than via promotion of drug 

supersaturation. Future mesoporous silica dissolution studies conducted under sink 

conditions should incorporate a biorelevant approach. Furthermore, it was 

demonstrated that choice of dissolution apparatus is critical when performing 

studies to predict in vivo bioavailability. The Type IV apparatus featuring a transfer 

model component was significantly better at simulating in vivo conditions due to its 

ability to model potential drug supersaturation and precipitation during transit in the 

GI tract.  

This thesis contributes substantially to the present literature, through the provision 

of comprehensive, novel data on drug dissolution from mesoporous silica materials. 

The value of this research is that it provides recommendations for the design of 

future dissolution studies involving these formulations while opening up exciting new 

avenues for research as a result of interesting findings concerning the dynamic 

equilibrium between drug adsorbed on the silica surface and free drug in solution.  
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