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A simulated annealing algorithm for joint stratification and 

sample allocation 

Mervyn O’Luing, Steven Prestwich and S. Armagan Tarim1 

Abstract 

This study combines simulated annealing with delta evaluation to solve the joint stratification and sample 

allocation problem. In this problem, atomic strata are partitioned into mutually exclusive and collectively 

exhaustive strata. Each partition of atomic strata is a possible solution to the stratification problem, the quality 

of which is measured by its cost. The Bell number of possible solutions is enormous, for even a moderate 

number of atomic strata, and an additional layer of complexity is added with the evaluation time of each 

solution. Many larger scale combinatorial optimisation problems cannot be solved to optimality, because the 

search for an optimum solution requires a prohibitive amount of computation time. A number of local search 

heuristic algorithms have been designed for this problem but these can become trapped in local minima 

preventing any further improvements. We add, to the existing suite of local search algorithms, a simulated 

annealing algorithm that allows for an escape from local minima and uses delta evaluation to exploit the 

similarity between consecutive solutions, and thereby reduces the evaluation time. We compared the 

simulated annealing algorithm with two recent algorithms. In both cases, the simulated annealing algorithm 

attained a solution of comparable quality in considerably less computation time. 

 

Key Words: Simulated annealing algorithm; Optimal stratification; Sample allocation; R software. 

 

 

1. Introduction 
 

In stratified simple random sampling, a population is partitioned into mutually exclusive and 

collectively exhaustive strata, and then sampling units from each of those strata are randomly selected. 

The purposes for stratification are discussed in Cochran (1977). If the intra-strata variances were 

minimized then precision would be improved. It follows that the resulting small samples from each 

stratum can be combined to give a small sample size.  

To this end, we intend to construct strata which are internally homogeneous but which also 

accommodate outlying measurements. To do so, we adopt an approach which entails searching for the 

optimum partitioning of atomic strata (however, the methodology can also be applied to continuous strata) 

created from the Cartesian product of categorical stratification variables, see Benedetti, Espa and Lafratta 

(2008); Ballin and Barcaroli (2013, 2020). 

The Bell number, representing the number of possible partitions (stratifications) of a set of atomic 

strata, grows very rapidly with the number of atomic strata (Ballin and Barcaroli, 2013). In fact, there 

comes a point where, even for a moderate number of atomic strata and the most powerful computers, the 

problem is intractable, i.e. there are no known efficient algorithms to solve the problem.  

Many large scale combinatorial optimisation problems of this type cannot be solved to optimality, 

because the search for an optimum solution requires a prohibitive amount of computation time. This 
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compels one to use approximisation algorithms or heuristics which do not guarantee optimal solutions, 

but can provide approximate solutions in an acceptable time interval. In this way, one trades off the 

quality of the final solution against computation time (Van Laarhoven and Aarts, 1987). In other words, 

heuristic algorithms are developed to find a solution that is “good enough” in a computing time that is 

“small enough” (Sörensen and Glover, 2013). 

A number of heuristic algorithms have been developed to search for optimal or near optimal solutions, 

for both univariate and multivariate scenarios of this problem. This includes the hierarchichal algorithm 

proposed by Benedetti et al. (2008), the genetic algorithm proposed by Ballin and Barcaroli (2013) and the 

grouping genetic algorithm proposed by O’Luing, Prestwich and Tarim (2019). Although effective, the 

evaluation function in these algorithms can be costly in terms of running time.  

We add to this work with a simulated annealing algorithm (SAA) (Kirkpatrick, Gelatt and Vecchi, 

1983; Černỳ, 1985). SAAs have been found to work well in problems such as this, where there are many 

local minima and finding an approximate global solution in a fixed amount of computation time is more 

desirable than finding a precise local minimum (Takeang and Aurasopon, 2019). We present a SAA to 

which we have added delta evaluation (see Section 5) to take advantage of the similarity between 

consecutive solutions and help speed up computation times.  

We compared the performance of the SAA on atomic strata with that of the grouping genetic algorithm 

(GGA) in the SamplingStrata package (Ballin and Barcaroli, 2020). This algorithm implements the 

grouping operators described by O’Luing et al. (2019). To do this, we used sampling frames of varying 

sizes containing what we assume to be completely representative details for target and auxiliary variable 

columns.  

Further to the suggestion of a Survey Methodology reviewer, we subsequently compared the SAA with 

a traditional genetic algorithm (TGA) used by Ballin and Barcaroli (2020) on continuous strata. In both 

sets of experiments, we used an initial solution created by the k-means algorithm (Hartigan and Wong, 

1979) in a two-stage process (see Section 2.3 for more details).  

Section 2 provides background information on atomic strata, introduces the SAA and motivates the 

addition of delta evaluation as a means to improve computation time. Two-stage simulated annealing is 

also discussed. Section 3 of the paper describes the cost function and evaluation algorithm. Section 4 

provides an outline of the SAA. Section 5 presents the improved SAA with delta evaluation. Section 6 

provides a comparison of the performance of the SAA with the GGA using an initial solution and fine-

tuned hyperparameters. Section 7 then provides details of the comparison of the SAA with the genetic 

algorithm in Ballin and Barcaroli (2020) on continuous strata. Section 8 presents the conclusions and 

Section 9 suggests some further work. The Appendix contains background details on precision constraints, 

the hyperparameters, and the process of fine-tuning the hyperparameters for both comparisons as well as 

the computer specifications. 
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2. Background information 

 
2.1 Stratification of atomic strata 
 

Atomic strata are created using categorical auxiliary variable columns such as age group, gender or 

ethnicity for a survey of people or industry, type of business and employee size for business surveys. The 

cross-classification of the class-intervals of the auxiliary variable columns form the atomic strata.  

Auxiliary variable columns which are correlated to the target variable columns may provide a gain in 

sample precision or similarity. Each target variable column, ,gy  contains the value of the survey 

characteristic of interest, e.g. total income, for each population element in the sample.  

Once these are created, we obtain summary statistics, such as the number, mean and standard deviation 

of the relevant observed values, from the one or more target variable columns that fall within each atomic 

stratum. The summary information is then aggregated in order to calculate the means and variances for 

each stratum which in turn are used to calculate the sample allocation for a given stratification.  

The partitioning of atomic strata that provides the global minimum sample allocation, i.e. the minimum 

of all possible sample allocations for the set of possible stratifications, is known as an optimal 

stratification. There could be a multiple of such partitionings. Although an optimum stratification is the 

solution to the problem, each stratification represents a solution of varying quality (the lower the cost 

(minimum or optimal sample allocation) the higher the quality). For each stratification, the cost is 

estimated by the Bethel-Chromy algorithm (Bethel, 1985, 1989; Chromy, 1987). A more detailed 

description, and discussion of the methodology for this approach for joint determination of stratification 

and sample allocation, can be found in Ballin and Barcaroli (2013). 

 
2.2 Simulated annealing algorithms 
 

The basic principle of the SAA (Kirkpatrick et al., 1983; Černỳ, 1985) is that it can accept solutions 

that are inferior to the current best solution in order to find the global minima (or maxima). It is one of 

several stochastic local search algorithms, which focus their attention within a local neighbourhood of a 

given initial solution (Cortez, 2014), and use different stochastic techniques to escape from attractive local 

minima (Hoos and Stützle, 2004). 

Based on physical annealing in metallurgy, the SAA is designed to simulate the controlled cooling 

process from liquid metal to a solid state (Luke, 2013). This controlled cooling uses the temperature 

parameter to compute the probability of accepting inferior solutions (Cortez, 2014). This acceptance 

probability is not only a function of the temperature, but also the difference in cost between the new 

solution and the current best solution. For the same difference in cost, a higher temperature means a higher 

probability of accepting inferior solutions.  

For a given temperature, solutions are iteratively generated by applying a small, randomly generated, 

perturbation to the current best solution. Generally, in SAAs, a perturbation is the small displacement of a 
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randomly chosen particle (Van Laarhoven and Aarts, 1987). In the context of our problem, we take 

perturbation to mean the displacement (or re-positioning) of q  (generally 1)q =  randomly chosen atomic 

strata from one randomly chosen stratum to another.  

With a perturbation, the current best solution transitions to a new solution. If a perturbation results in a 

lower cost for the new solution, or if there is no change in cost, then that solution is always selected as the 

current best solution. If the new solution results in a higher cost, then it is accepted at the above mentioned 

acceptance probability. This acceptance condition is called the Metropolis criterion (Metropolis, 

Rosenbluth, Rosenbluth, Teller and Teller, 1953). This process continues until the end of the sequence, at 

which point the temperature is decremented and a new sequence begins.  

If the perturbations are minor, then the current solution and the new solution will be very similar. 

Indeed, in our SAA we are assuming only a slight difference between consecutive solutions owing to such 

perturbations (see Section 4.1 for more details). For this reason we have added delta evaluation, which 

will be discussed further in Section 5, to take advantage of this similarity and help improve computation 

times.  

Accordingly, and as mentioned in the introduction, we present a SAA with delta evaluation and 

compare it with the GGA when both are combined with an initial solution. We also compare it with a 

genetic algorithm used by Ballin and Barcaroli (2020) on continuous strata. We provide more background 

details on initial solutions in Section 2.3 below. 

 
2.3 Two-stage simulated annealing 
 

A two stage simulated annealing process, where an initial solution is generated by a heuristic algorithm 

in the first stage, has been proposed for problems such as the cell placement problem (Grover, 1987; Rose, 

Snelgrove and Vranesic, 1988) or the graph partitioning problem (Johnson, Aragon, McGeoch and 

Schevon, 1989). Lisic, Sang, Zhu and Zimmer (2018) combined an initial solution, generated by the k-

means algorithm, with a simulated annealing algorithm, for a problem similar in nature to this problem, 

but where the sample allocation as well as strata number are fixed, and the algorithm searches for the 

optimal arrangement of sampling units between strata. 

The simulated annealing algorithm used by Lisic et al. (2018) starts with an initial solution 

(stratification and sample allocation to each stratum) and, for each iteration, generates a new candidate 

solution by moving one atomic stratum from one stratum to another and adjusting the sample allocation 

for that stratification. Each candidate solution is then evaluated to measure the coefficient of variation 

(CV) of the target variables and is accepted, as the new current best solution, if its objective function is 

less than the preceding solution. Inferior quality solutions are also accepted at a probability, ,  which is a 

function of a tunable temperature parameter and the change in solution quality between iterations. The 

temperature cools, at a rate which is also tunable, as the number of iterations increases. 
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Following this work, Ballin and Barcaroli (2020) recommended combining an initial solution, 

generated by k-means, with the grouping and traditional genetic algorithms. They demonstrate that the k-

means algorithm provides better starting solutions when compared with the starting solution generated by 

a stochastic approach. We also combine a k-means initial solution with the SAA in the experiments 

described in Sections 6 and 7. 

 
3. The joint stratification and sample allocation problem 
 

Our aim is to partition L  atomic strata into H  non-empty sub-populations or strata. A partitioning 

represents a stratification of the population. We aim to minimise the sample allocation to this stratification 

while keeping the measure of similarity less than or equal to the upper limit of precision, .g  This 

similarity is measured by the CV of the estimated population total for each one of G  target variable 

columns, ˆ .gT  We indicate by hn  the sample allocated to stratum h  and the survey cost for a given 

stratification is calculated as follows: 

 ( )1

1

, , 
H

H h h

h

C n n C n
=

 =    

where hC  is the average cost of surveying one unit in stratum h  and hn  is the sample allocation to 

stratum .h  In our analysis hC  is set to 1.  

The variance of the estimator is given by: 

 ( ) ( )
2

,2

1

  1ˆVAR  1, ,
H

h gh
g h

h h h

Sn
T N g G

N n=

 
= − =  

 
   

where hN  is the number of units in stratum h  and 2

,h gS  is the variance of stratum h  for each target 

variable column .g  

As mentioned above g  is the upper precision limit for the CV for each ˆ :gT  

 ( )
( )

( )
.

VAR
CV

ˆ
ˆ

ˆ

g

g g

g

T
T

E T
=    

The problem can be summarised in this way:  

 

( ) ( )
1

min 

subject to CV 1, , .ˆ

H

h

h

g g

n n

T g G
=

=

 = 


  

To solve the allocation problem for a particular stratification with the Bethel-Chromy algorithm the upper 

precision constraint for variable g  can be expressed as follows: 



230 O’Luing et al.: A simulated annealing algorithm for joint stratification and sample allocation 

 

 

Statistics Canada, Catalogue No. 12-001-X 

 

( ) ( )

( )( )

2 2
2

,2 2 2 2

,

1
2 2

,

2 2 2
1

,1

C ˆV

1.

ˆ

ˆ

H
h h g

g g h h g g g

h h

H
h h g

H
h

g g h h g hh

N S
T N S E T

n

N S

E T N S n

 



=

=
=

  − 

 
+






  

Then we substitute  

 

( )( )

2 2

,

2 2 2

,1
ˆ

h h g

H

g g h h gh

N S

E T N S
=

+
  

with ,h g  and replace the problem summary with the following: 
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  The Bethel-Chromy algorithm uses Lagrangian multipliers to derive a solution for each .hn  
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and g  is the Lagrangian multiplier (Benedetti et al., 2008). The algorithm starts with a default setting for 

each g  and uses gradient descent to converge to a final value for them. 

 
4. Outline of the simulated annealing algorithm 
 

The SAA with delta evaluation is described in Algorithm 1 below. We then describe the heuristics we 

have used in the SAA. Delta evaluation is explained in more detail in Section 5. 
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Algorithm 1 Simulated annealing algorithm 
 

Function SIMULATEDANNEALING (S  is the starting solution, f  is the evaluation function (Bethel-Chromy algorithm), best is the 
current best solution, BSFSF is the best solution found so far, maxit is the maximum number of sequences, J  is the length of 
sequence, 

maxT  is the starting temperature, 
minT  is the minimum temperature, DC is the Decrement Constant, 

%maxL  is a % of L  
(number of atomic strata), ( 1)P H +  is the probability of a new stratum, 1,H +  being added)  
 

maxT T  
 best   S  
 ( ) ( )Cost best f best        ►using Bethel-Chromy algorithm  
 while i maxit &&

minT T  do 
  if RANDOM ( )0,1 1 / J  then 
   for 1l =  to L  do 
    if RANDOM ( )0,1 ( )1P H +  then 
     move atomic stratum l  to new stratum 1H +  ►see Section 4.3 
    end if 
   end for 
  end if 

  for 1j =  to J  do 
   if 1i =  & 1j =  then 

%maxq L L=   
   else if 1i =  & 1j   then ( )0.99q ceiling q=     ►0.99 is not tunable 
   else if 1i   then 1q =   
   end if 
   Randomly select h  and h  
   next   PERTURBATION(best) 
           ►Assign q  atomic strata from h  and h  
   Cost(next) ( )f best       ►using delta evaluation 
   ΔE COST ( )next −  COST ( )best   
   if Δ 0E   then 
    best next   
   else if RANDOM ( )0,1

( )E
Te
−

  then    ►Metropolis Criterion 
    best next   
   end if 

   if best = BSFSF  then 
    BSFSF best  
   end if 

  end for 
  *T T DC  
 end while 

 return BSFSF  
end function 

 
4.1 Perturbation 
 

Consider the following solution represented by the stratification: 

      1, 3 , 2 , 4, 5, 6 .   

The integers within each stratum represent atomic strata. In perturbation, the new solution below is 

created by arbitrarily moving atomic strata, in this example 1,q =  from one randomly chosen stratum to 

another. 

      1, 3, 2 , , 4, 5, 6 .   

The first stratum gains an additional atomic stratum  2  to become  1, 3, 2 ,  whereas the middle or 

second stratum has been “emptied” (and is deleted), and there remains only two strata. Strata are only 

emptied when the last remaining atomic stratum has been moved to another stratum. 
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To clarify how this works in the algorithm: each solution is represented by a vector of integers ‒ 

atomic strata which have the same integer are in the same stratum. A separate vector of the unique integers 

in the solution represents the strata. For example, the first solution  1, 3 ,  2 ,  4, 5, 6  would be 

represented by the vector  1 2 1 3 3 3  and the strata would be represented by the vector 

 1 2 3 .  When the new solution is created, the second stratum has been removed and is no longer part 

of the solution. That is to say, the vector for the new solution is:  1 1 1 3 3 3  and the strata vector 

is  1 3 . With stratum 2 removed, and for clarity, we rename stratum 3 to 2 so that this solution becomes: 

 1 1 1 2 2 2 ,  and the strata are now represented by the vector  1 2 .  Strata  1 2  will remain in 

any further solutions unless another stratum is “emptied” or a new stratum is added. 

 

4.2 Evaluation and acceptance 
 

Each new solution is evaluated using the Bethel-Chromy algorithm and the Metropolis acceptance 

criterion is applied. If accepted, the new solution differs from the previous solution only by the above 

mentioned perturbation. If it is not accepted, we continue with the previous solution, and again try moving 

q  randomly chosen atomic strata between two randomly selected strata. 

 

4.3 Sequences and new strata 
 

This continues for the tunable length of the sequence, .J  This should be long enough to allow the 

sequence to reach equilibrium. However, there is no rule to determine .J  At the commencement of each 

new sequence, we have H  strata in the current best solution. With a fixed probability of 1 ,J  an 

additional stratum is added. If a new stratum is to be added, the SAA loops through each atomic stratum 

and moves it to a new stratum, which is called 1,H +  because each stratum is labelled sequentially from 1 

to H  (see Section 4.1), at a tunable probability, ( )1 .P H +  The algorithm runs for a tunable number of 

sequences, maxit. 

 

4.4 Temperature 
 

The temperature is decremented from a starting temperature, max ,T  to a minimum temperature, min ,T  or 

until maxit has been reached. As we are starting with a near optimal solution, we select maxT  as no greater 

than 0.01 and we set minT  to be 11.1.0 10−  

This is to allow for the advanced nature of the search, and allows the algorithm to focus more on the 

search for superior solutions, with an ever-reducing probability of accepting inferior solutions. However, a 

low temperature, ,T  does not always equate to a low probability of acceptance.  

Small positive differences in solution quality (where the new solution has a marginally inferior quality 

to the current best solution), Δ ,E  occur often because we are starting with a good quality initial solution. 

Figure 4.1 demonstrates the probability of such solutions being accepted, 
( )Δ

,
E

Te
−

 increases the smaller this 

difference becomes for the same .T  Nonetheless, Figure 4.1 also demonstrates that for the same changes 

in solution quality as the T  decreases, the probability also decreases (and it behaves increasingly like a 

hill climbing algorithm). 
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Figure 4.1 Probability of accepting an inferior solution as a function of ΔE  and T.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 
5. Improving the performance of the simulated annealing algorithm 

using delta evaluation 
 

As outlined earlier, the only difference between consecutive solutions is that q  atomic strata have been 

moved from one group into another. As with the other heuristics, q  is also tunable, and for the first 

sequence we have added the option of setting 1q   and reducing q  for each new solution in the first 

sequence until 1.q =  The reason for this is that, where 1,q   the increased size of the perturbation can 

help reduce the number of strata. In this case, we set q  as a tunable percentage of the solution size, or of 

the number of atomic strata, ,L  to be partitioned. After the first sequence 1.q =  

Furthermore, as the strata are mutually exclusive, this movement of q  atomic strata from one stratum 

to another does not affect the remaining strata in any way. Ross, Corne and Fang (1994) introduce a 

technique called delta evaluation, where the evaluation of a new solution makes use of previously 

evaluated similar solutions, to significantly speed up evolutionary algorithms/timetabling experiments. We 

use the similar properties of two consecutive solutions to apply delta evaluation to the SAA. It follows, 

therefore, that in the first sequence q  should be kept low and the reduction to 1q =  should be swift.  

The Bethel-Chromy algorithm requires the means and variances for each stratum in order to calculate 

the sample allocation. However, we use the information already calculated for the remaining 2H −  strata, 

and simply calculate for the two strata affected by the perturbation. Thus, the computation for the means 

and variances of the H  strata is reduced to a mere subset of that otherwise required.  

Now recall that the Bethel-Chromy algorithm starts with a default value for each ,g  and uses gradient 

descent to find a final value for each .g  This search continues up to when the algorithm reaches a 

minimum step-size threshold, or alternatively exceeds a maximum number of iterations. This minimum 
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threshold is characterised by 𝜖, which is set as 111.0 10−  in Ballin and Barcaroli (2020), and the 

maximum number of iterations is 200. We make the assumption that this search will be substantially 

reduced if we use the g  values from the evaluation of the current solution as a starting point for the next 

solution.  

The above two implementations of delta evaluation result in a noticeable reduction in computation 

times as demonstrated in the experiments described below. 

 
6. Comparing the performance of the two algorithms 

 
6.1 Evaluation plan 
 

In this section, we outline the comparison of the performance of the grouping genetic algorithm with 

the simulated annealing algorithm. We used a number of data sets of varying sizes in these experiments. 

There are a number of regions in each data set (labelled here as domains). An optimal stratification and 

minimum sample allocation was selected for each domain.  

The sum of the samples for all domains provides the total sample size. The sample size, or cost of the 

solution, defines the solution quality. For more details on domains refer to Ballin and Barcaroli (2013). 

The aim of these experiments was to consider whether the SAA can attain comparable solution quality 

with the GGA in less computation time per solution thus resulting in savings in execution times.  

However, we also compared the total execution times as this is a consequence of the need to train the 

hyperparameters for both algorithms. More details are available in the Appendix. 

We tabulate the results of these experiments in Section 6.4 where for comparison purposes we express 

the SAA results as a ratio of those for the GGA.  

 
6.2 Comparing the number of solutions generated 
 

After the first iteration the GGA retains the elite solutions, ,E  from the previous iteration. These are 

calculated by the product of the elitism rate (the proportion of the chromosome population which are elite 

solutions), ,RE  and the chromosome population size (the number of candidate solutions in each iteration), 

.PN  As E  have already been evaluated they are not evaluated again.  

For this reason, we compared the evaluation times for the evaluated solutions in the GGA with all 

those of the SAA. For the GGA, the total number of evaluated solutions, GGAsol ,N  is a function of the 

number of domains, ,D  the chromosome population size, the non-elite solutions (calculated by the 

product of 1 RE−  and ),PN  and the number of iterations, .I  For more details on the implementation of 

GGAs (e.g. elite solutions, elitism rate, chromosome population) we refer the reader to (Falkenauer, 1998) 

 ( ) ( )( )( )( )GGAsol 1 1 .P P RN D N N E I=  +  −  −   
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For the simulated annealing algorithm, the maximum number of solutions, SAAsol ,N  is the number of 

domains, ,D  by the number of sequences, maxit, by the length of sequence, .J  Recall that the SAA also 

stops if the minimum temperature has been reached ‒ hence we refer to the maximum number of solutions 

rather than the total. For comparability purposes however, because the temperature is decremented only at 

the end of each sequence and we have a small number of sequences in the experiments below we assume 

the full number of solutions has been generated 

 SAAsol .N D maxit J=     

 

6.3 Data sets, target and auxiliary variables 
 

Table 6.1 provides a summary by data set of the target and auxiliary variables.  

 

Table 6.1 

Summary by data set of the target and auxiliary variables 
 

Dataset Target variables Description Auxiliary 

variables 

Description 

Swiss Municipalities Surfacebois wood area POPTOT total population 

Airbat area with buildings Hapoly municipality area 

American 

Community Survey, 

2015 

HINCP Household income 

past 12 months 

BLD Units in structure 

VALP Property value TEN Tenure 

SMOCP Selected monthly 

owner costs 

WKEXREL Work experience of householder and spouse 

INSP Fire/hazard/flood 

insurance yearly 

amount 

WORKSTAT Work status of householder or spouse in 

family households 

HFL House heating fuel 

YBL When structure first built 

US Census, 2000 HHINCOME total household 

income 

PROPINSR Annual property insurance cost 

COSTFUEL annual home heating fuel cost 

COSTELEC Annual electricity cost 

VALUEH House value 

Kiva Loans term_in_months duration for which the 

loan was disbursed 

sector high level categories, e.g. food 

lender_count the total number of 

lenders 

currency currency of the loan 

loan the amount in USD activity more granular category, e.g. fruits & 

vegetables 

region region name within the country 

partner_id ID of the partner organization 

UN Commodity 

Trade Statistics data 

trade_usd value of the trade in 

USD 

commodity type of commodity e.g. “Horses, live except 

pure-bred breeding” 

flow whether the commodity was an import, export, 

re-import or re-export 

category category of commodity, e.g. silk or fertilisers 

 



236 O’Luing et al.: A simulated annealing algorithm for joint stratification and sample allocation 

 

 

Statistics Canada, Catalogue No. 12-001-X 

The target and auxiliary variables for the Swiss Municipalities data set were selected based on the 

experiment described in Ballin and Barcaroli (2020). Accordingly, POPTOT and HApoly were converted 

into categorical variables using the k-means clustering algorithm. However, we used more domains and 

iterations in our experiment. More information on this data set is provided by Barcaroli (2014). 

For the remaining experiments we selected target and auxiliary variables which we deemed likely to be 

of interest to survey designers. Further details on the American Community Survey, 2015 (U.S. Census 

Bureau, 2016), the U.S. Census, 2000 (Ruggles, Genadek, Goeken, Grover and Sobek, 2017), Kiva Loans 

(Kiva, 2018), and the UN commodity trade statistics data (United Nations, 2017) metadata are available in 

O’Luing et al. (2019). 

A further summary by data set of the number of records and atomic strata, along with a description of 

the domain variable, is provided in Table 6.2 below. 

 
Table 6.2 

Summary by data set of the number of records and atomic strata and a description of the domain variable 
 

Data set  Number of records Number of atomic strata, L Domain variable 

Swiss Municipalities 2,896 579 REG 

American Community Survey, 2015 619,747 123,007 ST (the 51 states) 

US Census, 2000 627,611 517,632 REGION 

Kiva Loans 614,361 84,897 country code 

UN Commodity Trade Statistics data 352,078 351,916 country or area 

 
6.4 Results 
 

As mentioned previously, we used an initial solution in each experiment that is created by the 

KmeansSolution algorithm (Ballin and Barcaroli, 2020). We then compared the performance of the 

algorithms in terms of average computation time (in seconds) per solution and solution quality. Table 6.3 

provides the sample size, execution times and total execution times for the SAA and GGA. 

 
Table 6.3 

Summary by data set of the sample size and evaluation time for the grouping genetic algorithm and simulated 

annealing algorithm 
 

Data set GGA SAA 

Sample  

size 

Execution  

time 

(seconds) 

Total  

Execution  

time (seconds) 

Sample  

size 

Execution  

time 

(seconds) 

Total  

Execution  

time (seconds) 

Swiss Municipalities 128.69 753.82 10,434.30 125.17 248.91 8,808.63 

American Community Survey, 2015 10,136.50 13,146.25 182,152.46 10,279.44 517.76 6,822.42 

US Census, 2000 228.81 2,367.36 36,298.35 224.75 741.75 8,996.85 

Kiva Loans 6,756.19 15,669.11 288,946.79 6,646.67 664.30 7,549.87 

UN Commodity Trade Statistics data 3,216.68 6,535.97 88,459.22 3,120.07 1,169.26 12,161.80 
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The total execution time is the sum of the execution times for 20 evaluations of the GGA and SAA 

algorithms (by the MBO (model-based optimisation) function in the R package mlrMBO (Bischla, 

Richterb, Bossekc, Hornb, Thomasa and Langb, 2017)) using 20 sets of selected hyperparameters (i.e. one 

set for each evaluation). Details on the precision constraints and hyperparameters for each experiment can 

be found in the Appendix. Table 6.4 expresses the SAA results as a ratio of those for the GGA.  

 
Table 6.4 

Ratio comparison of the sample sizes, execution times, and total execution times for the grouping genetic 

algorithm and simulated annealing algorithm 
 

Data set Sample size Execution time (seconds) Total execution time (seconds) 

Swiss Municipalities 0.97 0.33 0.84 

American Community Survey, 2015 1.01 0.04 0.04 

US Census, 2000 0.98 0.31 0.25 

Kiva Loans 0.98 0.04 0.03 

UN Commodity Trade Statistics data 0.97 0.18 0.14 

 
As can be seen, the sample sizes are similar, however, the SAA shows significantly lower execution 

and total execution times. When these experiments are run in parallel, for cases where there is a large 

number of domains, there may not be enough cores to cover all domains in one run. Indeed, it may take 

several parallel runs to complete the task, and this will affect mean evaluation time. The computer 

specifications are provided in Table A.2. Table 6.5 shows the number of solutions evaluated by each 

algorithm to obtain the results shown in Table 6.3. It also provides a ratio comparison of the average 

execution time (in seconds) per solution. 

 
Table 6.5 

Number of solutions and ratio comparison of execution time (per second) between the grouping genetic 

algorithm and simulated annealing algorithm 
 

Data set Number of  

solutions evaluated 

Average execution time 

 per solution (seconds) 

GGA SAA GGA SAA Proportion 

Swiss Municipalities 840,140 210,000 0.0009 0.0012 1.3210 

American Community Survey, 2015 2,550,510 459,000 0.0052 0.0011 0.2188 

US Census, 2000 10,872 36,000 0.2177 0.0206 0.0946 

Kiva Loans 2,190,730 730,000 0.0072 0.0009 0.1272 

UN Commodity Trade Statistics data 2,395,026 1,539,000 0.0027 0.0008 0.2784 

 
The above results indicate that the GGA has evaluated more solutions to find a solution of similar 

quality to the SAA in all cases, except for the US Census, 2000 experiment. However, we also can see that 

the SAA takes less time to evaluate each solution in all cases except for the Swiss Municipalities 

experiment. The average execution time for each experiment can be considered in the context of the size 
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of the data set, parallelisation, and the particular sets of hyperparameters used for the GGA and SAA. In 

addition to this, there is also memoisation in the evaluation algorithm for the GGA, and the gains obtained 

by delta evaluation by the SAA.  

Gains are more noticeable for larger data sets, because of the size of the solution and number of atomic 

strata in each stratum. As the strata get larger in size, the movement of q  atomic strata from one stratum 

to another (where q  is small) will have a smaller impact on solution quality and, therefore, the delta 

evaluation will be quicker. 

 
7. Comparison with the continuous method in SamplingStrata 
 

We also compared the SAA with the traditional genetic algorithm which Ballin and Barcaroli (2020) 

have applied to partition continuous strata. We used the target variables outlined in Table 6.1 above as 

both the continuous target and auxiliary variables (for clarity we outline them again in Table 7.1 below) 

along with the precision constraints outlined in Table A.1 (the Appendix). In practice, the target variable 

would not be exactly equal to the auxiliary variable though it is common for the auxiliary variable to be an 

imperfect version (for example an out-of-date or a related variable) available on the sampling frame. We 

invite the reader to consider this when reviewing the results of the comparisons below. It is also worth 

noting that initial solutions were created for both algorithms using the k-means method. Details on the 

training of hyperparameters for these experiments also can be found in the Appendix. 

 
Table 7.1 

Summary by data set of the target and auxiliary variable descriptions for the continuous method 
 

Dataset Target variables Auxiliary variables Description 

Swiss Municipalities Surfacebois Surfacebois wood area 

Airbat Airbat area with buildings 

American Community Survey, 2015 HINCP HINCP Household income (past 12 months) 

VALP VALP Property value 

SMOCP SMOCP Selected monthly owner costs 

INSP INSP Fire/hazard/flood insurance (yearly amount) 

US Census, 2000 HHINCOME HHINCOME total household income 

Kiva Loans term_in_months term_in_months duration for which the loan was disbursed 

lender_count lender_count the total number of lenders 

loan loan the amount in USD 

UN Commodity Trade Statistics data trade_usd trade_usd value of the trade in USD 

 
The attained sample sizes are compared in Table 7.2 below where the sample size for the SAA is 

expressed as a ratio of the TGA. After the hyperparameters were fine-tuned (see Section A.6) the resulting 

sample sizes are comparable. 
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Table 7.2 

Ratio comparison of the sample sizes for the traditional genetic algorithm and simulated annealing algorithm 

on the continuous method 
 

Data set TGA SAA Ratio 

Swiss Municipalities 128.69 120.00 0.93 

American Community Survey, 2015 4,197.68 3,915.48 0.93 

US Census, 2000 192.71 179.89 0.93 

Kiva Loans 3,062.33 3,017.79 0.99 

UN Commodity Trade Statistics data 3,619.42 3,258.52 0.90 

 
Table 7.3 compares the execution times for the set of hyperparameters that found the sample sizes for 

each algorithm in Table 7.2 above, as well as the total execution times taken to train that set of 

hyperparameters. 

 

Table 7.3 

Ratio comparison of the execution times and total execution times for the traditional genetic algorithm and 

simulated annealing algorithm on the continuous method 
 

Data set TGA SAA Ratio comparison 

Execution  
time  

(seconds) 

Total  
execution  

time 

(seconds) 

Execution  
time  

(seconds) 

Total  
execution  

time 

(seconds) 

Execution  
time  

(seconds) 

Total  
execution  

time 

(seconds) 

Swiss Municipalities 753.82 10,434.30 213.44 1,905.82 0.28 0.18 

American Community Survey, 2015 22,016.95 227,635.51 13,351.19 169,115.92 0.61 0.74 

US Census, 2000 3,361.90 46,801.78 51.94 1,147.36 0.02 0.02 

Kiva Loans 3,232.78 48,746.61 300.16 4,149.06 0.09 0.09 

UN Commodity Trade Statistics data 29,045.23 326,931.63 73.18 1,287.38 0.003 0.004 

 
These results indicate a significantly lower execution time for the SAA for the attained solution 

quality. The computational efficiency gained by delta evaluation in the training of the recommended 

hyperparameters is also evident in the total execution times. For the American Community Survey, 2015 

experiment significantly more solutions were generated by the SAA than the TGA as a result of the given 

hyperparameters and this impacts the execution and total execution times (see also Table 7.4). Table 7.4 

compares the number of solutions generated by the traditional genetic algorithm with the simulated 

annealing algorithm. 

 
Table 7.4 

Comparison of the number of solutions generated by the traditional genetic algorithm and simulated 

annealing algorithm on the continuous method 
 

Data set Number of solutions evaluated 

TGA SAA 

Swiss Municipalities 840,140 175,000 
American Community Survey, 2015 918,102 5,100,000 
US Census, 2000 43,272 18,000 
Kiva Loans 146,730 292,000 
UN Commodity Trade Statistics data 20,521,026 85,500 
 



240 O’Luing et al.: A simulated annealing algorithm for joint stratification and sample allocation 

 

 

Statistics Canada, Catalogue No. 12-001-X 

In all cases except for Kiva Loans and the American Community Survey, 2015 the SAA has generated 

fewer solutions. The low number of solutions generated by both algorithms for the US Census, 2000 

experiment may indicate that the initial k-means solution was near the global minimum. The American 

Community Survey, 2015 results indicate that the SAA generated significantly more solutions to get to a 

comparable sample size with the TGA. As we are moving, predominantly, 1q =  atomic strata between 

strata such changes in this case had limited impact on solution quality from one solution to the next. 

However, the gains achieved by delta evaluation meant that more solutions were evaluated per second 

leading to a more complete search and a lower sample size being attained. 

For these experiments, the TGA took longer to find a comparable sample size in all cases. As pointed 

out in O’Luing et al. (2019), traditional genetic algorithms are not as efficient for grouping problems as 

the grouping genetic algorithm because solutions tend to have a great deal of redundancy. We would, 

therefore, propose that the GGA be applied also to continuous strata. On the basis of the above analysis, 

and the performance of SAAs in local search generally speaking along with the added gains in efficiency 

from delta evaluation, we would also propose that the SAA be considered as an alternative to the 

traditional genetic algorithm. 

 
8. Conclusions 
 

We compared the SAA with the GGA in the case of atomic strata and the TGA in the case of 

continuous strata (Ballin and Barcaroli, 2020). The k-means algorithm provided good starting points in all 

cases. When the hyperparameters have been fine-tuned all algorithms attain results of similar quality.  

However, the execution times for the recommended hyperparameters are lower for the SAA than for 

the GGA with respect to atomic strata and traditional genetic algorithm with respect to continuous strata. 

Delta evaluation also has advantages in reducing the training times needed to find the suitable 

hyperparameters for the SAA. 

The GGA might benefit from being extended into a memetic algorithm by using local search to quickly 

improve a chromosome before adding it to the GGA chromosome population. 

The SAA, by using local search (along with a probabilistic acceptance of inferior solutions), is well 

suited to navigation out of local minima and the implementation of delta evaluation enables a more 

complete search of the local neighbourhood than would otherwise be possible in the same computation 

time. 

 
9. Further work 
 

The perturbation used by the SAA randomly moves q  atomic strata, where mainly 1,q =  from one 

stratum to another. This stochastic process is standard in default simulated annealing algorithms. 
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However, as we are using a starting solution where there is already similarity within the strata, this 

random process could easily move an atomic stratum ( )1q =  to a stratum where it is less suited than the 

stratum it was in. This suggests the presence of a certain amount of redundancy in the search for the global 

minimum. 

Lisic et al. (2018) conjecture that the introduction of nonuniform weighting in atomic strata selection 

could greatly improve performance of (their proposed) simulated annealing method by exchanging atomic 

strata near stratum boundaries more frequently than more important atomic strata. We agree that, for this 

algorithm, it would be more beneficial if there was a higher probability that an atomic stratum which was 

dissimilar to the other atomic strata was selected. We could then search for a more suitable stratum to 

move this atomic stratum to. 

To achieve this we could first randomly select a stratum, and then measure the Euclidean distance of 

each atomic stratum from that stratum medoid, weighting the chance of selection of the atomic strata in 

accordance with their distance from the medoid. At this point, an atomic stratum is selected using these 

weighted probabilities. 

The next step would be to use a K-nearest-neighbour algorithm to find the stratum medoid closest to 

that atomic stratum and move it to that stratum. This simple machine learning algorithm uses distance 

measures to classify objects based on their K  nearest neighbours. In this case, 1,k =  so the algorithm in 

practice is a closest nearest neighbour classifier. 

This additional degree of complexity to the algorithm may offset the gains achieved by using delta 

evaluation, particularly as the problem grows in size, thus reducing the number of solutions evaluated in 

the same running time. It might be more effective to use the column medians as an equivalent to the 

medoids. This could assist the algorithm find better quality solutions.  

However, the above suggestions may only be effective at an advanced stage of the search, where the 

atomic strata in each stratum are already quite similar. 
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Appendix 

 
Background details on the comparisons in Sections 6 and 7 

 
A.1 Precision constraints 
 

The target upper precision levels for these experiments, i.e. coefficients of variation, for each of the 

five experiments are provided in Table A.1 below. 

 
Table A.1 

Summary by data set of the upper limits for the coefficients of variation 
 

Data set CV 

Swiss Municipalities 0.1 

American Community Survey, 2015 0.05 

US Census, 2000 0.05 

Kiva Loans 0.05 

UN Commodity Trade Statistics data 0.05 

 
We selected an upper precision level of 0.1 for the Swiss Municipalities data set in keeping with the 

level set for the experiment in Ballin and Barcaroli (2020). We used an upper precision level of 0.05 for 

the remaining experiments, given that the upper CV levels generally set by national statistics institutes 

(NSIs) tend to be between 0.01 and 0.1, and, for this reason, results for CVs in the mid-point of this range 

are of interest.  

 
A.2 Processing platform 
 

Table A.2 below provides details of the processing platform used for these experiments. 

 
Table A.2 

Specifications of the processing platform 
 

Specification Details Notes 

Processor AMD Ryzen 9 3950X 16-Core Processor, 3493 Mhz  

Cores 16 Core(s)  

Logical processors 32 Logical Processor(s) 32 cores in R 

System model X570 GAMING X  

System type x64-based PC  

Installed physical memory (RAM) 16.0 GB  

Total virtual memory 35.7 GB  

OS name Microsoft Windows 10 Pro  

 



Survey Methodology, June 2022 243 

 

 

Statistics Canada, Catalogue No. 12-001-X 

In all cases, R version 4.0 or greater was used. We used the foreach (Microsoft Corporation and 

Weston, 2020a) and doParallel (Microsoft Corporation and Weston, 2020b) packages to run the 

experiments in parallel. The number of cores used in the experiments was 31 (32 less 1) and this means 

that in the three experiments with more than 31 domains (American Community Survey 2015, Kiva Loans, 

UN Commodity Trade Statistics data) the foreach algorithm continued to loop through the available cores 

until a solution had been found for all domains. 

 
A.3 Hyperparameters for the grouping genetic algorithm and simulated 

annealing algorithm 
 

Tables A.3 and A.4 below outline the number of domains in each experiment, along with number of 

iterations and chromosome population size for the grouping genetic algorithm and along with the number 

of sequences, length of sequence, and starting temperature for the simulated annealing algorithm. 

Section A.4 provides details on fine-tuning the hyperparameters. For more details on the hyperparameters 

of the GGA we refer the reader to Ballin and Barcaroli (2013) and O’Luing et al. (2019) and of the SAA 

to Sections 2.2 and 4. 

 
Table A.3 

Summary by data set of the hyperparameters for the grouping genetic algorithm for each domain 
 

Data set Domains Number  

of  

iterations, I 

Chromosome 

population  

size, p
N  

Mutation  

chance 

Elitism  

rate,  

R
E  

Add  

strata  

factor 

Swiss Municipalities 7 4,000 50 0.0053360 0.4 0.0037620 

American Community Survey, 2015 51 5,000 20 0.0008134 0.5 0.0610529 

US Census, 2000 9 100 20 0.0000007 0.4 0.0000472 

Kiva Loans 73 3,000 20 0.0007221 0.5 0.0685005 

UN Commodity Trade Statistics data 171 1,000 20 0.0004493 0.3 0.0866266 

 
Table A.4 

Summary by data set of the hyperparameters for the simulated annealing algorithm for each domain 
 

Data set Domains Number of 

sequences, 

maxit 

Length of 

sequence,  

J  

Temperature, 

T  

Decrement 

constant,  

DC  

% of L for 

maximum 

q value, 

max%
L  

Probability  

of new 

stratum, 

( )1P H +  

Swiss Municipalities 7 10 3,000 0.0000720 0.5083686 0.0183356 0.0997907 

American Community Survey, 2015 51 3 3,000 0.0002347 0.6873029 0.0076477 0.0291729 

US Census, 2000 9 2 2,000 0.0006706 0.5457192 0.0189395 0.0806919 

Kiva Loans 73 5 2,000 0.0009935 0.7806557 0.0143925 0.0317491 

UN Commodity Trade Statistics data 171 3 3,000 0.0007902 0.5072737 0.0234728 0.0013775 
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A.4 Fine-tuning the hyperparameters for the grouping genetic algorithm and 

simulated annealing algorithm 
 

In order to fine-tune the initial parameters or hyperparameters we used sequential model-based 

optimization (Hutter, Hoos and Leyton-Brown, 2010). We first generated an initial design of 

hyperparameters from the value ranges described for the GGA in Table A.5 and in Table A.6 for the SAA 

below using the latin hypercube design method (McKay, Beckman and Conover, 2000). 

 
Table A.5 

Ranges for fine-tuning the hyperparameters for the grouping genetic algorithm 
 

Value type 

Iterations Population  

size 

Mutation  

chance 
Elitism  

rate, 
R

E  

Add  

strata factor 

Discrete Discrete Numeric Discrete Numeric 

Value range Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Swiss 
Municipalities 

500 5,000 500 10 50 10 0 0.10 0.1 0.5 0.1 0 0.1 

American 

Community Survey, 

2015 

1,000 5,000 1,000 10 20 10 0 0.001 0.1 0.5 0.1 0 0.1 

Kiva Loans 1,000 3,000 1,000 10 20 10 0 0.001 0.1 0.5 0.1 0 0.1 

UN Commodity 

Trade Statistics data 

500 1,000 500 10 20 10 0 0.001 0.1 0.5 0.1 0 0.1 

US Census, 2000 50 100 50 10 20 10 0 0.000001 0.1 0.5 0.1 0 0.0001 

 
Table A.6 

Ranges for fine-tuning the hyperparameters for the simulated annealing algorithm 
 

Value type 

Number of  

sequences, maxit 

Length of  

sequence, J  

Temperature, 

T  

Decrement 

constant, DC 

% L for 

maximum q 

value, 
max%

L  

Probability 

of new 

stratum, 

( )1P H +  

Discrete Discrete Numeric Numeric Numeric Numeric 

Value range Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Lower 

value 

Upper 

value 

Lower 

value 

Upper 

value 

Lower 

value 

Upper 

value 

Swiss 
Municipalities 

10 50 10 1,000 3,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

American 

Community 

Survey, 2015 

1 3 1 1,000 3,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

Kiva Loans 1 5 1 1,000 2,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

UN 

Commodity 

Trade 
Statistics data 

1 3 1 1,000 3,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

US Census, 

2000 

1 2 1 1,000 2,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

 
As some of the hyperparameter value ranges were discrete, we used a random forest with regression 

trees to develop a surrogate learner model. After this, a confidence bound using a lambda value, ,  to 

control the trade-off between exploitation and exploration was used as the acquisition function. The focus 
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search approach (Bischla et al., 2017) was used to optimise the acquisition function which, in turn, was 

used to propose the hyperparameters which were evaluated using the surrogate function (which is a 

cheaper alternative to using the GGA or SAA algorithms). From these, the most promising 

hyperparameters were then evaluated by the GGA or SAA and the hyperparameters and solution costs 

added to the initial design. The process was then repeated for a set number of iterations and the best 

performing hyperparameters and solution outcomes were selected. We implemented this using the MBO 

function with the parameters outlined in Table A.7. These are distinct from the parameters being fine-

tuned, which are outlined in Tables A.5 and A.6 above. 

 
Table A.7 

Parameters used in the MBO Function 
 

MBO parameters Value 

Initial Design size (Latin Hypercube Design method) 10 

Iterations, number of  10 

Number of Trees 500 

Lambda,   5 

Focus Search Points 1,000 

 
As can be seen from the limited scope of the MBO function parameters this was not an exhaustive fine-

tuning of the hyperparameters for the GGA and SAA. The aim of these experiments was to consider 

whether the SAA can attain comparable solution quality with the GGA in less computation time per 

solution thus resulting in savings in execution times. However, we also compared the total execution times 

as this is a consequence of the need to train the hyperparameters for both algorithms.  

Tables outlining the hyperparameters, in each of the 20 fine-tuning iterations, for each experiment are 

available from the authors on request. The first 10 sets of hyperparameters were randomly generated from 

the ranges laid out in Tables A.5 and A.6. The ranges selected were identified using practical knowledge 

of the algorithms and data. The second 10 sets reflects the MBO function’s attempts to learn the 

hyperparameters that best lead each algorithm towards the optimal solution using the previous solutions as 

a guide. 

 
A.5 Hyperparameters for the traditional genetic algorithm and simulated 

annealing algorithm 
 

Tables A.8 and A.9 outline the hyperparameters for the tradtional genetic algorithm and the simulated 

annealing algorithm. The add strata factor option is not available for the traditional genetic algorithm and, 

therefore, is not included in Table A.8. More details on fine-tuning the hyperparameters are provided in 

Section A.6. 
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Table A.8 

Hyperparameters for the traditional genetic algorithm 
 

Data set Iterations Population size Mutation chance Elitism rate, 
RE  

Swiss Municipalities 4,000 50 0.0053360 0.4 

American Community Survey, 2015 1,000 20 0.0009952 0.1 

US Census, 2000 400 20 0.0002317 0.4 

Kiva Loans 200 20 0.0817285 0.5 

UN Commodity Trade Statistics data 5,000 30 0.0005599 0.2 

 
Table A.9 

Hyperparameters for the simulated annealing algorithm 
 

Data set Number 

of sequences, 

maxit 

Length of 

sequence,  

J  

Temperature,  

T  

Decrement 

constant, DC 

% for  

maximum q 

value, 
max%

L  

Probability 

of new 

stratum, 

( )1P H +  

Swiss Municipalities 5 5,000 0.02311057 0.9427609 0.3736443 0.0229361 
American Community Survey, 2015 50 2,000 0.00000005 0.9528952 0.0001021 0.0000008 

US Census, 2000 1 2,000 0.00002000 0.9665631 0.0221147 0.0160408 

Kiva Loans 2 2,000 0.00053839 0.8660943 0.0014281 0.0216320 
UN Commodity Trade Statistics data 2 250 0.00067481 0.9309940 0.0203113 0.0149499 

 
A.6 Fine-tuning the hyperparameters for the traditional genetic algorithm 

and simulated annealing algorithm 
 

We fine-tuned the hyperparameters for the TGA and SAA using the same methodology described in 

Section A.4. Tables outlining the hyperparameters, in each of the 20 fine-tuning iterations, for each 

experiment are available from the authors on request. The first 10 sets were randomly generated using 

practical knowledge of the algorithms and data to define upper and lower bounds for each hyperparameter. 

In the second 10 sets the MBO function attempts to optimise the hyperparameters using the previous 

solutions as a guide. 
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