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Relatively simple foraging radius models have the potential to generate predictive distri-
butions for a large number of species rapidly, thus providing a cost-effective alternative 
to large-scale surveys or complex modelling approaches. Their effectiveness, however, 
remains largely untested. Here we compare foraging radius distribution models for all 
breeding seabirds in Ireland, to distributions of empirical data collected from track-
ing studies and aerial surveys. At the local/colony level, we compared foraging radius 
distributions to GPS tracking data from seabirds with short (Atlantic puffin Fratercula 
arctica, and razorbill Alca torda) and long (Manx shearwater Puffinus puffinus, and 
European storm-petrel Hydrobates pelagicus) foraging ranges. At the regional/national 
level, we compared foraging radius distributions to extensive aerial surveys conducted 
over a two-year period. Foraging radius distributions were significantly positively cor-
related with tracking data for all species except Manx shearwater. Correlations between 
foraging radius distributions and aerial survey data were also significant, but generally 
weaker than those for tracking data. Correlations between foraging radius distributions 
and aerial survey data were benchmarked against generalised additive models (GAMs) 
of the aerial survey data that included a range of environmental covariates. While 
GAM distributions had slightly higher correlations with aerial survey data, the results 
highlight that the foraging radius approach can be a useful and pragmatic approach 
for assessing breeding distributions for many seabird species. The approach is likely to 
have acceptable utility in complex, temporally variable ecosystems and when logistic 
and financial resources are limited.
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Introduction

Determining the distributions of species for conservation 
planning can present many challenges. In particular, it is usu-
ally time-intensive and costly to capture a representative sam-
ple of the population, especially for species with large ranges. 
The challenges can be even greater for marine species, where 
the difficulties in accessing study sites can be limiting and the 
dynamic nature of the environment can cause high spatio-
temporal variation in distributions. Consequently, there is 
often insufficient data to inform conservation planning in 
marine systems, leading to a difficulty in defining marine 
protected areas for many marine top predators (Game et al. 
2009, Dias et al. 2017). This is especially true for seabirds, 
a taxonomic group for which there remains a major gap 
in the level of protection afforded at sea for even the most 
threatened species (McGowan  et  al. 2017, Critchley  et  al. 
2018) and who face significant threats when foraging at sea 
(Croxall et al. 2012, Dias et al. 2019).

Predictive modelling has the potential to overcome 
these challenges, and is less costly and time-intensive than 
large-scale at-sea surveys or tracking studies. Techniques 
available for ecological modelling have expanded rapidly 
(Wakefield et al. 2009, Lascelles et al. 2016), giving conser-
vation practitioners an array of choices. However, many pre-
dictive models are still reliant on the collection of extensive 
data to inform inputs, for example ecological niche models 
(Scales  et  al. 2015), and the spatial resolution and tempo-
ral averaging of environmental covariates can also influence 
the accuracy of predictive models significantly (Pearson et al. 
2006, Péron et al. 2018). Some models take a simpler and 
more mechanistic approach, modelling distribution based on 
a combination of telemetry and population data (Jones et al. 
2015, Pikesley  et  al. 2018). This avoids any uncertainties 
about the relationship of observations with environmental 
data being propagated in the final model output.

One simple method that can be applied to any central-
place forager and requires little a-priori data on at-sea dis-
tribution is the foraging radius model approach (BirdLife 
International 2010, Grecian  et  al. 2012, Critchley  et  al. 
2018). This approach projects distributions based on a set 
of foraging radii, a decay function from the central place or 
colony, and colony size, providing a rapid and cost-effective 
method for assessing at-sea distribution during the breed-
ing season. While in general the use of simplified models 
is thought to sacrifice species-specific accuracy (e.g. due to 
habitat preferences) and fails to account for local variation 
(e.g. spatial partitioning), there is also evidence that the for-
aging radius approach can be effective for individual spe-
cies when compared to empirical data (Grecian et al. 2012, 
Ludynia et al. 2012, Soanes et al. 2016). However, the effec-
tiveness of foraging radius models has not yet been assessed 
at the community level across multiple species or colonies.

Empirical methods generate essential inputs for predictive 
distribution models. The best method to use is dependent on 

the species of interest, the area to be covered, accessibility and 
the amount of resources available. At-sea surveys are an estab-
lished approach to inform marine spatial planning at regional 
(Smith et al. 2014), national (Kober et al. 2012) and inter-
national (Lambert  et  al. 2017) scales. Aerial or ship-based 
surveys can target most seabird species in a community, often 
at large spatial scales and can also provide absolute abun-
dance estimates if conducted following distance based meth-
odology (Embling et al. 2010). However, such data is often 
obtained from surveys conducted from vessels of opportunity 
and tends to be spatially and temporally patchy (Stone et al. 
1995, Dunn 2012) with few repeated transects that would 
allow an examination of temporal variation. In contrast bio-
logging studies provide detailed information on the fine-scale 
distribution of seabirds, usually during the breeding sea-
son (Wakefield et al. 2013, Dean et al. 2015, Soanes et al. 
2016), and on broader scale movements during the non-
breeding season (Frederiksen et al. 2012, Jessopp et al. 2013, 
Grecian et al. 2016). However, the individuals selected may 
not be representative of the wider colony, other colonies in 
the region, or other regions, given the inevitability of only 
ever being able to track a small proportion of a population 
(Soanes  et  al. 2013). The temporal scale of tracking is also 
usually heavily restricted by resources (Wakefield et al. 2009). 
Furthermore, foraging areas can vary annually depending on 
environmental fluctuations (Robertson et al. 2014), a factor 
that is predicted to increase with climate change (Grémillet 
and Boulinier 2009, Daunt and Mitchell 2013). This source 
of variation is hard to capture by all empirical approaches. 
While foraging radius models do have limitations, the same 
is true for all empirical approaches, the robustness of which 
remains largely unknown.

Here we explore the accuracy and suitability of the for-
aging radius approach for assessing distributions of seabirds 
at sea during the breeding season. We do this by comparing 
foraging radius distributions to empirical data from biotelem-
etry and at-sea aerial surveys in Irish waters, which support 
diverse and internationally important numbers of breeding 
seabirds (Mitchell et al. 2004). At a colony level we compare 
foraging radius distributions to GPS tracking data obtained 
from four breeding seabirds (Manx shearwater, razorbill, 
European storm-petrel and Atlantic puffin), representing spe-
cies with short and long foraging ranges. At a national level 
we compare foraging radius distributions for 25 breeding 
seabird species to extensive aerial surveys conducted over a 
two-year period. To provide a benchmark for the correlation 
values between foraging radius distributions and empirical 
data, we also model distributions from the aerial survey data 
using generalised additive models (GAMs), incorporating 
environmental predictors, as this approach is often considered 
to be the best method for modelling survey data (Booth and 
Hammond 2014, Potts and Rose 2018). We discuss the per-
formance of the foraging radius model in comparison to the 
empirical data and the appropriateness of using this method 
for assessing seabird distributions under different scenarios.
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Material and methods

Overview

Assessing the effectiveness of the foraging radius model for 
predicting seabird distributions at sea during the breeding 
season involved the following steps (see also Fig. 1): 1) pre-
dicting the distribution of seabirds in Irish waters using the 
foraging radius approach at both species and family level; 2) 
generating utilisation distributions from GPS tracking data 
for Manx shearwater Puffinus puffinus, razorbill Alca torda, 
European storm-petrel Hydrobates pelagicus and Atlantic puf-
fin Fratercula arctica; 3) comparing colony level foraging radius 
distributions to utilisation distributions; 4) calculating density 
per km2 for aerial survey data in Irish waters; 5) comparing 

multi-colony foraging radius distributions to fine scale aerial 
survey data for 20 species/groups and broad scale aerial survey 
data for 9 species/groups; 6) generating predicted distributions 
from broad scale aerial survey data using generalised additive 
models (GAMs) and environmental covariates; 7) comparing 
GAM predicted distributions to broad scale aerial data for 7 
species/groups. See Supplementary material Appendix 1 Table 
A1 for a full list of species and data availability.

Foraging radius model

Foraging radius distributions were generated for individual 
colonies of all seabirds (25 species, Supplementary mate-
rial Appendix 1 Table A1) across the UK and Ireland dur-
ing the breeding season using the approach described in 

Figure 1. Schematic of methodology for data processing and distribution comparisons at colony and regional level. Double headed arrows 
indicate distribution comparisons and single headed arrows indicate data processing.
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Critchley  et  al. (2018). The model predicts the occurrence 
of birds within the at-sea area surrounding a colony, up to a 
set colony-centred radius. The mean of all maximum forag-
ing ranges (mean maximum foraging range) reported for each 
species was taken from the literature (Thaxter et al. 2012 and 
more recent studies, see Supplementary material Appendix 
1 Table A2 for a list of foraging ranges and sources). A 
5 × 5 km grid was generated across the study area, and the 
probability of occurrence within each grid square was first 
calculated by taking the normalised inverse distance from the 
grid square to the colony, so that all squares had a value of 
between 0 and 1 with the highest values being found clos-
est to the colony. Distributions were then distance-weighted 
using a logarithmic decay function so that areas closer to the 
colony were of higher importance per unit area, accounting 
for non-foraging behaviours such as washing/preening or 
rafting (Wilson  et  al. 2009). Values were again normalised 
so that all grid squares summed to 100% and then multi-
plied by estimates of the breeding population, taken from 
the JNCC Seabird Monitoring Programme (SMP) Database 
[at < www.jncc.gov.uk/smp >] and additional colony surveys 
from National Parks and Wildlife Service and BirdWatch 
Ireland annual reports (Daly et al. 2015, Doyle et al. 2015), 
to estimate abundance per grid square.

The distribution maps were plotted on a 5 × 5 km grid and 
show the number of individuals predicted to occur in each 
grid square, assuming 50% of the colony is foraging at-sea 
at a given time. This accounts for the assumption that on 
average, one half of a breeding pair will remain at the nest at 
any one time (e.g. during incubation and early chick rearing). 
These steps were repeated for each individual colony in the 
UK and Ireland and the distributions were then summed to 
generate a foraging radius distribution map for each of the 25 
species over the entire region. To test the sensitivity of varying 
foraging range on comparisons with other methods of assess-
ing at-sea distribution, foraging radius distributions were also 
generated using the maximum of all recorded foraging ranges 
for each species (Supplementary material Appendix 1 Table 
A2). Foraging radius distributions were produced using R 
ver. 3.4.3 (R Development Core Team).

GPS tracking

GPS tracking data were collected from Manx shearwaters 
Puffinus puffinus breeding on two Islands off the west coast 
of Ireland, Great Blasket, Co. Kerry (2014–2015; 52.10N, 
10.52W; n = 24), and High Island, Co. Galway (2014–2016; 
53.55N, 10.26W; n = 65); from razorbills Alca torda breed-
ing on the southeast coast of Ireland on Great Saltee, Co. 
Wexford (2014; 52.12N, −6.61W; n = 11); from European 
storm-petrels Hydrobates pelagicus breeding on the west coast 
on High Island, Co. Galway (2016; 53.55N, 10.26W; n = 8), 
Ireland; and from Atlantic puffins Fratercula arctica breeding 
on the southeast coast on Little Saltee, Co. Wexford (2017; 
52.13N, −6.62W; n = 9) (Fig. 2). All data were collected dur-
ing chick rearing, apart from for Manx shearwater for which 
data was also collected during the incubation stage.

All tracked birds were caught at their nest or burrow by 
hand, crook or purse nets. Manx shearwaters and razorbills 
were fitted with GPS loggers (i-gotU GT-120, Mobile Action 
Technology, Taiwan) attached dorsally to contour feathers 
using strips of waterproof Tesa tape (4651, Tesa, Germany). 
European storm-petrels were tracked using 0.95 g Pathtrack 
GPS tags attached to the tail feathers using Tesa tape (4651, 
Tesa, Germany). Atlantic puffins were tracked using Ecotone 
Uria GPS loggers attached ventrally to the lower back using 
Tesa tape (4651, Tesa, Germany). Deployment weight was 
kept below 3% (puffins, razorbills, storm-petrels) or 4% of 
body mass (Manx shearwater). On return to the colony, tags 
were recovered and downloaded from all species except puf-
fins, where data was obtained by remote download. The use 
of Tesa tape as a temporary attachment method in all cases 
allowed for any tags not retrieved to drop off. Licenses for 
capture and deployment of devices were granted by National 
Parks and Wildlife Service, and British Trust for Ornithology.

Tags were programmed to record locations every 2–30 min 
depending on the tag used and the species tracked. All loca-
tion fixes were included in analyses, except those generated 
whilst birds were within a 2 km buffer of the centre of the 
colony, or where recorded over land (Fig. 2 for a map of 
colony locations and tracks). All track processing was car-
ried out in ArcMap 10.3.1. As there was large variation in 
the GPS relocation intervals across the four species (ranging 
from 2 to 30 min) all tracking data was also interpolated to 
regularised 3-min intervals, apart from the data for razor-
bills which was collected at 2 min intervals. Bivariate ker-
nel utilisation distributions were generated for each species 
using the adehabitatHR package (Calenge 2015) in R ver. 
3.4.3 (R Development Core Team). For Manx shearwaters, 
utilisation distributions were estimated for the two colonies 
separately and data for multiple years were combined. All 
utilisation distributions were generated using the reference 
smoothing parameter from the package on a 2 × 2 km grid 
(Supplementary material Appendix 1 Table A7 for smooth-
ing parameter values).

Aerial surveys

Aerial survey data was obtained from the ObSERVE aerial 
survey programme (Jessopp et al. 2018, Rogan et al. 2018), 
conducted in Irish waters over the 2015 and 2016 breeding 
seasons. Two sets of surveys were flown, a broad-scale survey 
covering predominantly offshore waters, and a fine-scale sur-
vey covering the western Irish Sea, including inshore coastal 
waters. Broad scale survey transects were designed to provide 
equal coverage for the survey area and consisted of equally 
spaced randomly placed zig-zag lines (Fig. 3) that were posi-
tioned differently in 2015 and 2016 to allow for a more rep-
resentative coverage of the study area. The fine scale survey 
transects consisted of 55 parallel lines spaced approximately 
2 nautical miles (3.7 km) apart, and between 20–30 nautical 
miles in length, and were only surveyed in 2016. The parallel 
line design sought to cover all of the shallower sand banks 
on the Irish east coast which broadly run in a north-south 
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direction, while also taking in aquatic habitat adjacent to the 
banks (Fig. 3).

Surveys used a fixed high-wing, twin-engine Britten-
Norman (BN-2) Islander fitted with bubble-windows to 
afford observers unrestricted views of the transect area 
beneath the aircraft. Flying speed was 90 knots (167 km 
h−1) at an altitude of 183 m on broad scale surveys, and 
76 m on fine-scale surveys under target weather conditions 
of Beaufort Force 3 or less, with good visibility (1 km or 
more). The plane’s geographic position was recorded every 
two seconds using an on-board GPS linked to a data logging 
computer. Two fully trained observers, one either side of the 
plane, employed a strip transect methodology, recording all 
seabirds within a 200 m distance band either side of the air-
craft, determined by use of inclinometers (Camphuysen et al. 

2004). When seabirds came abeam of the aircraft, a date/time 
stamped record was produced consisting of location (latitude, 
longitude), species ID and group size. Species were identi-
fied to the lowest taxonomic level whenever possible. When 
individuals could not be identified to species level, they were 
grouped into higher taxa categories.

Density of seabirds from both the fine scale and broad 
scale survey data was determined by dividing the number of 
individuals sighted by survey effort (distance travelled multi-
plied by strip width and corrected for observer effort), to give 
density per km2 for each strip segment. The centre point for 
each segment was taken as the spatial point for comparison 
with foraging radius distributions.

In the broad scale surveys, summer seabird abundance 
and distribution was also modelled using generalized 

Figure 2. GPS tracks and colony locations for Manx shearwater and European storm-petrel on the west coast of Ireland and inset for razor-
bill and Atlantic puffin on the south east coast of Ireland.
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additive models (GAM) with a logarithmic link function, 
and a Tweedie error distribution following Cañadas and 
Hammond (2008). The response variable was the number 
of groups (or number of animals in non-gregarious species), 
using the effective area searched (distance travelled × 400 m 
strip width) as an offset. Distributions were predicted at a 
resolution of 0.10 × 0.06 degrees (latitude × longitude) and 
as a function of a wide range of environmental covariates. 
See Supplementary material Appendix 1 (Table A4, A5, A6) 
for further details of methods and environmental covariates 
used.

Distribution comparisons

Densities of seabirds per grid cell were compared across dis-
tributions using a Dutilleul’s modified t-test of correlation 
(Dutilleul et al. 1993), which accounts for spatial autocorre-
lation within the data (Fortin and Payette 2002). Individual 
Dutilleul’s modified t-tests for each species/family group 
were conducted using the ‘SpatialPack’ package (Osorio et al. 
2014) in R. At the individual colony scale, kernel densities 
from GPS tracking data were compared to foraging radius 
distributions for the same colonies (Fig. 1). At the regional 
scale, aerial survey outputs for fine-scale surveys in the Irish 
Sea and broader offshore waters (two summer surveys com-
bined to include any inter-annual variability in distributions) 
were compared to the regional foraging radius distributions 
for each species/family group (Fig. 1). A benchmark for the 
foraging radius model correlations was provided by compar-
ing aerial survey data to modelled GAM distributions incor-
porating a range of environmental variables (Supplementary 
material Appendix 1 Table A4, A5, A6). All analysis was car-
ried out in R ver. 3.4.3 (R Development Core Team).

Results

Example colony level and regional distribution maps, derived 
from both foraging radius and empirical approaches, are 
shown for Manx shearwater (Fig. 4) and razorbill/auks (Fig. 5).

Comparison of foraging radius distributions with 
GPS tracking data

Correlations of colony-level foraging radius distributions 
with kernel estimated utilisation distributions from GPS 
tracking data ranged from 0.187 to 0.621; all p < 0.05 apart 
from Manx shearwaters, (Fig. 6 and Supplementary material 
Appendix 1 Table A7). For all species, the use of mean maxi-
mum foraging range in the foraging radius model resulted 
in stronger correlations than using maximum foraging range. 
For three of the four species, correlations increased only 
marginally with the use of mean maximum foraging range; 
from 0.497 (p < 0.005) to 0.504 (p < 0.001) in European 
storm-petrel; from 0.187 (p = 0.189) to 0.252 (p = 0.03) 
in Manx shearwater at High Island, and 0.188 (p = 0.3) to 
0.281(p = 0.1) at Great Blasket for Manx shearwater; and 
from 0.457 (p < 0.001) to 0.518 (p < 0.001) for Atlantic puf-
fin. For razorbill, the difference was greater changing from 
0.47 (p < 0.001) to 0.621 (p < 0.001) with the use of mean 
maximum foraging range.

Comparison of foraging radius distributions with 
fine-scale Irish Sea aerial survey data

There were few significant correlations between foraging 
radius distributions and empirical data from fine-scale sur-
veys, with the notable exceptions of terns (0.335–0.392, 

Figure 3. Broad-scale aerial survey transect lines for Irish offshore waters flown in summer 2015 (blue) and 2016 (green) and inset, fine-scale 
aerial survey transects in the Irish Sea flown in summer 2016 (red).
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Figure 4. Maps showing (a) foraging radius distribution of Manx shearwaters from High Island colony only, generated using the mean maxi-
mum foraging radius (population estimate from Seabird 2000 census; Mitchell et al. 2004); (b) kernel density distribution for Manx shear-
waters breeding on High Island, Co. Galway, generated from three years of summer breeding season GPS tracking data (2014–2016); (c) 
foraging radius distributions of Manx shearwaters in the Irish Sea generated using the mean maximum foraging radius; (d) empirical density 
values of Manx shearwaters in the Irish Sea from fine-scale aerial surveys (2016); (e) foraging radius distribution for all Manx shearwater 
colonies in Ireland and the UK generated using the mean maximum foraging radius (population estimate from Seabird 2000 census; 
Mitchell et al. 2004); and (f ) GAM modelled density for Manx shearwaters in Irish waters, generated from two years of summer ObSERVE 
aerial survey data (2015–2016). Densities for all maps were normalised to percentage at-sea population per grid square, i.e. all grid squares 
in each map sum to 100%.
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Figure 5. Maps showing (a) foraging radius distribution for razorbill from the Great Saltee colony only generated using the mean maximum 
foraging radius (population estimate from Seabird 2000 census; Mitchell et al. 2004); (b) kernel density distribution for razorbill breeding 
on Great Saltee, generated from summer breeding season GPS tracking data (2014); (c) foraging radius distributions in the Irish Sea gener-
ated using the mean maximum foraging radius for all auk species; (d) empirical density values in the Irish Sea from fine-scale aerial surveys 
(2016) for all auk species; (e) foraging radius distribution for all auk colonies in Ireland and the UK generated using the mean maximum 
foraging radius (population estimate from Seabird 2000 census; Mitchell et al. 2004); and (f ) GAM modelled density for auks in Irish 
waters, generated from two years of summer ObSERVE aerial survey data (2015–2016). Densities for all maps were normalised to percent-
age at-sea population per grid square, i.e. all grid squares in each map sum to 100%.
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p < 0.001) and Manx shearwater (0.112, p < 0.05) although 
these correlation values were low, (Fig. 6 and Supplementary 
material Appendix 1 Table A8). At the species level, signifi-
cant positive correlations were found for arctic and common 
tern (0.166–0.339, p < 0.05), roseate tern (0.313–0.391, 
p < 0.001) and sandwich tern (0.194–0.209, p < 0.05). No 
significant correlation was noted for all species combined, 
Atlantic puffin, auks, black guillemot, black-legged kittiwake, 
cormorant/shag, gulls, little tern, Manx shearwater, northern 
gannet, northern fulmar, petrels and razorbill/guillemot.

Comparison of foraging radius distributions with 
broad-scale offshore aerial survey data

When comparing regional foraging radius distributions 
to broad-scale survey data the best correlations were found 
for auks (0.389–0.426, p < 0.001) and terns (0.424–0.439, 
p < 0.001), (Fig. 6 and Supplementary material Appendix 
1 Table A9). Significant correlations were also found for all 
species combined (0.151–0.167, p < 0.01), gulls (0.141–
0.161, p < 0.005) and black-legged kittiwake (0.129–0.155, 
p < 0.005). There was no significant correlation between for-
aging radius distributions and broad-scale aerial survey data 
for petrels, Manx shearwater, northern gannet or northern 
fulmar. Marginal differences in correlation values were found 

with the use of mean maximum versus maximum foraging 
range for foraging radius distributions.

Benchmarking correlations

To provide a benchmark for correlations between foraging 
radius distributions and aerial survey data, we compared 
GAM modelled distributions with empirical aerial survey 
data. Not surprisingly GAM correlations with aerial survey 
data were stronger than for foraging radius distributions, but 
the values were still low (Fig. 6 and Supplementary material 
Appendix 1 Table A9). Significant correlations were detected 
for petrels, Manx shearwater, northern fulmar and northern 
gannet, whereas correlations between foraging radius distri-
butions and aerial survey data were not significant for these 
species.

Discussion

Our results show good agreement (i.e. a correlation value 
of 0.5 or above) between a simplified foraging radius model 
and empirical data from GPS tracking studies across three 
of the four seabird species in this study. Reasonable correla-
tions (0.389–0.439) were also found between foraging radius 

Figure 6. Pearson correlation coefficients for comparisons between (a) individual colony kernel densities (from GPS tracking data) and 
foraging radius distributions for that colony using mean maximum foraging range – two correlation values are shown for Manx shearwater 
as tracking data was collected from two colonies; (b) empirical survey data (fine-scale Irish Sea) and foraging radius distributions using mean 
maximum foraging range; (c) empirical survey data (broad-scale offshore) and foraging radius distributions using mean maximum foraging 
range; and (d) empirical survey data and predicted GAM distributions. Significant correlations (p < 0.05) are indicated by *. In all cases 
correlation coefficients and p values were calculated after accounting for spatial autocorrelation using Dutilleul’s (1993) method.
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distributions and broad scale aerial survey data at the fam-
ily group level for both auks and terns. Other correlations 
between foraging radius distributions and aerial survey data 
were either low, although benchmark correlations against a 
more complex GAM approach were also low, or not signifi-
cant for a number of species and family groups.

Comparison of foraging radius distributions with 
GPS tracking data

The good correlations found between foraging radius dis-
tributions from single colonies and GPS tracking data are 
promising, particularly as it holds true for both short rang-
ing and long ranging foragers. Correlations between track-
ing data and foraging radius distributions for Atlantic puffin, 
European storm-petrel and razorbill were higher than pre-
viously found for gannets by Grecian  et  al. (2012), even 
with relatively small sample sizes for the GPS tracking data 
(n = 9, trips = 107; n = 8, trips = 8; n = 11, trips = 103). Given 
how expensive it can be to track some of these species either 
due to their size, e.g. European storm-petrels, or difficulty of 
accessing colonies, foraging radius models provide a valuable 
alternative to collecting additional empirical data. However, 
it should be noted that the relatively small sample size for 
tracking data is lower than that recommended by Soanes et al. 
(2013) and may not be fully representative of the colony 
level distribution. This is less likely to be the case for Manx 
shearwaters which had a large sample size (n = 24; 64) but the 
low correlations and lack of statistical significance could be 
explained by variation in behaviour due to their dual forag-
ing strategy of frequent chick-provisioning trips and longer 
self-maintenance trips, which results in a bi-modal distribu-
tion of foraging range (Shoji et al. 2015a, Wischnewski et al. 
2019). Thus a foraging radius model based on mean maxi-
mum foraging range is unlikely to be representative of their 
foraging distributions. The difference between the foraging 
radius distributions and GPS tracking data for Manx shear-
waters is also notable when visually comparing Fig. 4a to 
4b. In contrast, a visual comparison of the razorbill foraging 
radius distribution (Fig. 5a) to GPS tracking data (Fig. 5b) 
reflects the higher correlation value that was found for this 
species. Despite these promising results, it should be noted 
that both methods compared here only capture the distri-
bution of breeding birds and do not account for juveniles, 
immature birds and non-breeding adults.

Comparison of foraging radius distributions with 
aerial survey data

At a regional level, correlations were low overall between 
foraging radius distributions and empirical data from both 
broad scale offshore surveys and fine scale coastal surveys. 
This discrepancy can be explained by a number of factors that 
are not accounted for in the basic foraging radius model, as 
well as limitations of survey data, both of which we discuss 
in detail below. In particular, variability in density-dependent 

competition (Wakefield et al. 2013) across multiple colonies 
and movement of non-breeders can have significant effects 
on regional distributions. Whereas both the foraging radius 
distributions and GPS distributions only account for breed-
ing birds, survey data captures all birds observed, regardless of 
breeding stage. Seabird populations are composed of a signifi-
cant number of juveniles, immature birds and non-breeders, 
which can display very different foraging behaviour com-
pared to the colony constrained breeders (Fayet et al. 2015, 
Grecian et al. 2018).

Highest correlations were found for auks and terns, at 
both the family group and individual species level, and across 
both the fine scale coastal and the broad scale offshore sur-
veys, suggesting that the foraging radius model is a suitable 
method for assessing their distribution. This is likely to reflect 
the foraging behaviour of these groups, which are restricted 
to smaller home ranges due to their high flight costs, in con-
trast with pelagic species. Terns have a high level of variabil-
ity in foraging modes (Eglington  et  al. 2014) both within 
and across years, and appear to rely on trophic level segre-
gation rather than spatial segregation to avoid competition 
(Robertson et al. 2014). Although foraging auks are known 
to associate with discrete features in the environment, such 
as tidal currents (Waggitt et al. 2016, Bennison et al. 2019), 
auk distribution is generally closely linked to distance to 
colony (Johnston et al. 2015). Furthermore, sympatric auk 
species also rely on niche segregation rather than spatial seg-
regation during the breeding season (Linnebjerg et al. 2013, 
Shoji et al. 2015b). These factors probably explain why a for-
aging radius distribution with a uniform decay from the col-
ony appears to be a good representation of their distribution.

Many of the species showing poor correlations have forag-
ing behaviours that are more strongly associated with specific 
habitat cues or environmental conditions, which are often 
patchily distributed (Wakefield et al. 2009). Many gull spe-
cies forage inland during the breeding season (Rock  et  al. 
2016), while pelagic foragers, including the Manx shearwater 
and northern gannet, will cue to specific environmental fea-
tures, such as frontal systems (Scales et al. 2014, Grecian et al. 
2018) or fishing vessels (Bodey  et  al. 2014). Shorter rang-
ing benthic foragers such as cormorants, shags and divers are 
known to have strong foraging associations with shallow sand 
bars and tidal streams (Waggitt et al. 2017), which will not 
be captured by a general foraging radius method. Modifying 
the foraging radius model for each species to account for 
known environmental features should improve the match 
with empirical data, as has previously been shown for gannets 
(Grecian et al. 2012), though doing so is likely challenging 
for at least two reasons. First, although primary productivity 
and sea surface temperature are often touted as being some 
of the most important, readily accessible environmental fea-
tures, there is still considerable uncertainty about their util-
ity for predicting foraging locations due to spatiotemporal 
and trophic lags (Grémillet et al. 2008, Wakefield et al. 2009, 
Oppel et al. 2012). Second, the influence of environmental 
features will in many cases be colony specific, and dependent 
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on both the location of the colony and intra- and inter-spe-
cific competition, leading to unaccounted for spatial varia-
tion (Huettmann and Diamond 2001).

The lower correlations seen between the foraging radius 
distributions and aerial survey data, compared to GPS track-
ing data, may also be due to the resolution of the underlying 
data. This is unlikely to be the case for spatial resolution since 
the Dutilleul’s test groups all similar value cells into larger 
blocks for comparisons. Temporal resolution may be more 
important. Survey data is a snapshot of the distribution in 
a given area at a given time and will be very much depen-
dent on the seascape (e.g. sandbanks; Fijn et al. 2016) and 
the environmental conditions (e.g. wind strength/direction; 
Gibb et al. 2017) on that day or at that time. Foraging radius 
models are unaffected by such variation and may represent 
average distributions over longer periods of time. GPS data 
is collected over a period of days to weeks, and therefore also 
likely to include more environmental variability. In cases 
where multi-year survey data is not available it may be more 
appropriate to utilise foraging radius distributions (based on 
robust colony size data) to inform spatial management (e.g. 
MPAs) as these will better reflect spatio-temporal variability 
in the distribution of breeding individuals. Furthermore, sur-
vey data may be less reliable for some species due to mis-
identification or low detectability. European storm-petrels in 
particular can be difficult to pick out given their small size 
and dark colour. Other closely related species, such as cormo-
rants and shags, may be difficult to separate and additionally, 
spend much of their time underwater whilst at sea.

When benchmarking correlations between foraging radius 
distributions and aerial survey data against a more complex 
GAM approach, we noted higher correlation values for GAM 
outputs. This is unsurprising given that aerial survey data was 
also included in the GAMs along with environmental vari-
ables. However, two points are notable. The first is that cor-
relation patterns across species for the foraging radius model/
aerial survey and the GAM/aerial survey comparisons were 
similar. Similarly, both modelling approaches (foraging radius 
and GAM) performed better for auks and terns compared 
to the longer ranging procellariiformes and northern gannet. 
Correlation values higher than 0.3 were found only for auks 
using the GAM model, and for auks and terns using the pro-
jection model; there was insufficient empirical survey data on 
tern observations for use in a GAM model. The lack of a major 
improvement in the use of GAM models could be explained by 
the fact that most of the environmental variables were dropped 
during the model selection process, with distance to coast, lati-
tude, longitude and an interaction between latitude and lon-
gitude often the only explanatory variables retained. Indeed, 
for many centrally-placed species it appears that distance to 
the coast or colony is one of the strongest drivers of seabird 
occurrence and abundance (Johnston  et  al. 2015, Warwick-
Evans  et  al. 2018), emphasising further why foraging radius 
models may be an effective, pragmatic approach.

Finally, we found that correlation values generally increased 
marginally with the use of mean maximum foraging range in 
the foraging radius model as opposed to maximum foraging 

range, although not in all cases. As estimates for maximum 
foraging range often come from a single study, it may be more 
appropriate to take a conservative approach and use mean max-
imum foraging range, particularly if the distribution is to be 
used for site designation purposes. MPA designations are usu-
ally based on core foraging areas, which are often taken as the 
50% utilisation distribution (Arcos et al. 2012, Lascelles et al. 
2016). It should also be noted that maximum foraging range 
is likely to vary with colony size (Jovani et al. 2015) and where 
the relationship is clear, e.g. for gannets (Lewis et al. 2001), this 
should be accounted for in the foraging radius model.

Conclusions

Overall the foraging radius method showed a good match 
with empirical GPS data at the colony level, and only slightly 
underperformed at the regional level compared to a much 
more complex model requiring extensive empirical survey 
and environmental data. Our findings support the suggestion 
that foraging radius models may be a viable alternative for 
assessing at sea distributions rather than collecting additional 
empirical data (BirdLife International 2010, Grecian  et  al. 
2012, Afán  et  al. 2018, Critchley  et  al. 2018). The forag-
ing radius method is a far quicker and more cost-effective 
method for assessing at-sea distribution over a large area com-
pared to GPS tracking studies or at-sea surveys. We suggest 
that further empirical research is needed over a larger number 
of species, colonies and regions, focusing on the ability of 
foraging radius models to capture average distributions over 
longer time periods.
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