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Abstract

Dynamical control of quantum systems is a fundamental requirement for de-
signing and engineering quantum technologies. Adiabatic control methods are
used extensively to control quantum systems in many settings. However, adi-
abatic control methods require long operation times. To address this issue, a
collection of techniques called “shortcuts to adiabaticity" (STA) have been de-
veloped. STA have been applied in many settings, and they can offer significant
improvement over adiabatic schemes.

However, a major limitation of STA is that fully analytic STA schemes
are known only for several specific families of quantum systems. Motivated to
overcome this restriction, in this thesis we derive an analytic method called
“enhanced shortcuts to adiabaticity" (eSTA) that extends STA techniques to
systems that do not admit STA methods exactly. We first derive the eSTA
formalism and demonstrate its utility in designing control schemes for several
practical quantum control settings. We then investigate the robustness of eSTA
against several types of systematic error and environmental noise, using the
setting of neutral atom lattice transport. We also derive an alternative eSTA
technique that naturally includes higher order terms, at the expense of further
calculation. Both the alternative and original eSTA schemes are applied to
fast anharmonic trap expansion. Finally, transport of two ions with Coulomb
interaction in an anharmonic trap is considered and eSTA is shown to be robust
against the effect of amplitude noise in this setting.
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Chapter 1

Introduction

At its heart, physics tries to explain the fundamental constituents and processes

of our universe. Physics contains many different fields, each concerned with

different aspects of matter, energy and the interaction between them. Within

physics, quantum mechanics is the physical theory that seeks to describe and

predict the dynamics of objects at the smallest scales. While many of the

consequences of quantum mechanics can be unintuitive and surprising, there is

enormous potential to use quantum mechanics to design new devices that push

the boundaries of what is technologically possible. Currently, a second quantum

revolution is ongoing [1], where new quantum technologies are emerging such

as quantum computing, quantum metrology and quantum sensing [2, 3]. These

potentially disruptive technologies go beyond what is even possible using their

classical counterparts.

However, there are many challenges in designing practical quantum devices.

At the fundamental level, quantum systems are sensitive to decoherence and

the effect of the environment. Furthermore, there are practical limits on how

well a quantum system can be isolated from the environment. Any theoretical

design scheme needs to address this practical consideration, and one way to

prevent decoherence is to employ fast control schemes that have a straightfor-

ward physical implementation. Within any realistic quantum device there will

be constraints on the level of control that can be realised, and robust quantum
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control techniques are needed that allow quantum devices to operate success-

fully even when the control is imperfect. Thus fast and robust quantum control

is a critical prerequisite for any practical quantum technology.

Many practical quantum control techniques began with designing laser pulse

shapes for specific applications. For example, chemical reactions can be con-

trolled using using laser pulses [4] and the structure of molecules can be deter-

mined using NMR spectroscopy, where the nuclei-spin of molecules in a mag-

netic field are manipulated using coherent light [5]. The interaction of laser

light and matter is one of the cornerstones of modern quantum technologies,

with quantum effects even being observable macroscopically as is the case with

Bose-Einstein condensates (BECs). BECs are states of matter typical made

from many particles, which mostly occupy a single quantum state. Quantum

control techniques can be applied to the manipulation of BECs, and experimen-

tally wavepacket interferometry has already been achieved in this setting [6].

This kind of interferometry has the potential to give rise to new classes of quan-

tum sensors, that can out perform their classical counterparts at a fundamental

level [3, 7].

As the development of lasers and other quantum technology platforms has

progressed, the question of how to design optimal control schemes has become

a critical roadblock to constructing practical quantum devices. There are many

techniques that can be used to design control schemes for a given quantum sys-

tem [7], but choosing an optimal design method depends heavily on the system

under consideration. While numerical methods are often used in practical set-

tings, they often do not scale well with system size and can require significant

resources to implement. Analytic control methods have several major advan-

tages over numerical methods: they are less computationally expensive, they

can offer physical insight into the control process (e.g. reveal symmetries) and

they can be chosen so that they are intrinsically robust against error. These
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properties are particularly relevant to the current generation of noisy interme-

diate scale quantum (NISQ) devices [8]. Within the framework of analytical

control techniques, adiabatic control schemes have been used extensively in ex-

perimental settings, for example STIRAP [9]. STIRAP has found many practi-

cal applications as it enables population transfer between two quantum states

by following a dark state, meaning that population transfer can be achieved

using coherent light and an intermediate state that is never populated during

the process. However, there are many settings where adiabatic schemes re-

quire large timescales relative to the system coherence time, which make them

susceptible to decoherence. These long timescales are also a problem for quan-

tum technologies such as quantum computing or quantum sensing, where many

different operations need to be repeated or concatenated together in sequence.

Shortcuts to adiabaticity (STA) are mostly analytic techniques that produce

the same state transfer achieved by an adiabatic process, but in a much faster

operation time that prevents decoherence [10, 11]. There is a plethora of STA

techniques, with different techniques having advantages and disadvantages in

different settings. For systems that admit analytical STA techniques, there

are several methods to design control schemes with intrinsic robustness against

errors and noise [11]. However, a limitation of all STA methods is that they

work perfectly only for a limited number of quantum systems.

In this thesis we develop a general framework for extending existing STA

techniques to systems which do not readily admit a STA solution. This general

framework is called enhanced shortcuts to adiabaticity (eSTA) and uses the fact

that many systems we would like to control can be approximated by systems

where STA techniques can be easily applied. Using a perturbative approach,

corrections to an existing STA technique can be calculated using eSTA, allowing

control of systems beyond the current scope of STA alone. Several advantages of

eSTA are consequences of how it is constructed as an extension of STA; eSTA is

analytic and can take advantage of the useful properties of STA schemes, there



Chapter 1. Introduction 4

is significant freedom in choosing how one chooses the parameterisation of an

eSTA scheme, and by construction eSTA is expected to give improved robustness

against errors. There have already been applications of eSTA outside of this

thesis, to single-atom transport in optical conveyor belts and double-well optical

lattices [12, 13].

In the next chapter we review background information relevant to this the-

sis, starting with a review of the adiabatic theorem and a discussion of several

STA techniques. We then introduce numerical techniques used throughout the

thesis. In Chapter 3 the eSTA formalism is developed and applied in several

key quantum control settings; population inversion in two-level systems with-

out the rotating wave approximation and transport of one and two particles

(with Coulomb interaction) in a Gaussian trap. It is shown that high fidelity

control is achieved but the question of robustness is not addressed. In Chapter

4 the robustness of eSTA to different types of noise is investigated using the

example of single atom transport in an optical lattice. It is shown that eSTA

can improve the fidelity and robustness of transport simultaneously, for several

different types of noise. This makes eSTA a very useful candidate for possible

future experimental implementation. In Chapter 5 an alternative derivation

of eSTA is presented that takes advantage of higher order terms in the eSTA

formalism. At the expense of calculating a Hessian term, one assumption of

the original eSTA derivation can be removed. Both the original and alternative

eSTA schemes are applied to anharmonic trap expansion and shown to give high

fidelity and exhibit improved robustness against noise. In Chapter 6, eSTA is

used to transport two masses in a lattice potential with Coulomb interaction.

Again eSTA produces higher fidelities and robustness against systemic noise.

The thesis concludes with a summary and an outlook on future applications of

eSTA.
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Chapter 2

Background Theory

In this chapter we review material relevant to this thesis. We start with a

review of the adiabatic theorem (Section 2.1), then introduce STA and discuss

several applications of STA (Section 2.2). We conclude by introducing numerical

techniques used throughout the thesis (Section 2.3).

2.1 The Adiabatic Theorem

The word “adiabatic" is derived from the Greek “adiabatos", meaning “impass-

able" or “not passing through". It was first introduced in 1858 by W.J.M. Rank-

ine in reference to a thermodynamic process in which there is no heat transfer

[14]. Modern thermodynamics uses “adiabatic" to refer to a thermodynamic

process in which no heat or mass is transferred between the thermodynamic

system and the environment [15]. Starting with Boltzmann, “adiabatic" began

to also be used when describing processes for which the action E/ν (where ν

is a frequency associated with the dynamics) remains constant. Later work by

Einstein, Rayleigh and Ehrenfest led to “adiabatic invariance" being used to de-

scribe the constancy of E/ν, specifically when varying parameters of a (classical

or quantum) system in an “infinitely slowly way".

Unfortunately this has led to confusion. Adiabatic processes in classical ther-

modynamics are usually taken to mean that heat and mass is not transferred

during the process. Note that classical adiabatic processes can be quasi-static
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(at thermodynamic equilibrium during the process) or non-quasi-static. In con-

trast, modern quantum mechanics uses “adiabatic" to describe the dynamical

evolution of a quantum system for which the system remains in an instanta-

neous energy eigenstate of the Hamiltonian during the time evolution. This

means that a quantum adiabatic process is more akin to a classical quasi-static

process, but we stress that the use of the word adiabatic is specific to the context

in which it is used. The quantum idea of adiabaticity is made precise through

the adiabatic theorem, first rigorously demonstrated for a closed quantum sys-

tem with a discrete-spectrum Hamiltonian by Born and Fock in 1928 [16]. It

was extended to non-discrete spectrum Hamiltonians by Kato in 1950 [17], and

has since been further extended to degenerate spectrum cases [18], recast in the

form of a geometrical holonomy evolution [19, 20] and to open quantum systems

[21].

It is important to note that there is not one single unique adiabatic theorem.

The proof of an adiabatic theorem depends on the physical setting and the as-

sumed properties of the system Hamiltonian. However, each adiabatic theorem

proof will follow a similar structure. We outline this structure by following the

proof of the adiabatic theorem in [22], which essentially follows a streamlined

form of Kato’s proof restricted to the discrete spectrum case [17, 23]. In the

following we outline the main structure of the proof for closed quantum systems

and further details can be found in [22].

We start with a closed quantum system with Hamiltonian H(t), with the

state of the system at time t given by |Ψ(t)⟩. The Schrödinger equation describes

the time-evolution of the system and is given by

iℏ
∂

∂t
|Ψ(t)⟩ = H(t)|Ψ(t)⟩. (2.1)
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We can describe this equivalently in terms of a time-evolution operator U(t, 0),

defined by |Ψ(t)⟩ = U(t, 0)|Ψ(0)⟩, which satisfies

iℏ
d

dt
U(t) = H(t)U(t). (2.2)

We now introduce a parameter T , and define the dimensionless variable s = t/T ,

giving

iℏ
d

dt
UT (s) = T H̃(s)UT (s), (2.3)

where s ∈ [0, 1], H̃(s) = H(sT ) and UT (s) = U(sT ). We assume a discrete spec-

trum for H̃(s) with eigenvalues Ej(s) and corresponding projection operators

Pj(s). We further assume that the eigenvalues are piecewise differentiable and

that there are no level crossings during the time evolution, i.e. Ei(s) ̸= Ej(s) for

i ̸= j and s ∈ [0, 1]. The Hamiltonian can be written as H̃(s) =
∑

j Ej(s)Pj(s).

The outline of the proof is is to write UT as a product of three unitary

operators,

UT (s, 0) = A(s)ST (s)WT (s, 0), (2.4)

where A(s) is used to move to a picture that diagonalises H̃, ST allows us to

eliminate an integrable contribution and WT can be written in terms of another

operator that eventually shows that WT (s, 0) = 1+O(1/T ).

We first consider a unitary transformation A(s) that can diagonalise H̃(s)

(i.e. A†(s)H̃(s)A(s) is diagonal), while simultaneously transfer a given Pj(0) to

Pj(s). We assume A(s) to satisfy

Pj(s) = A(s)Pj(0)A
†(s), (2.5)

with A(0) = 1. Note that A has a number of equivalent interpretations; as an
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operator that diagonalises H̃, as a map taking Eq. (2.3) to a frame rotating with

the instantaneous eigenvectors of H̃ or as a mapping of Eq. (2.3) to a frame

where the projection operators are constant in time. The Hamiltonian will then

split into diagonal terms and other contributions, which we will eventually use

to show that the full time evolution operator differs from the identity by terms

O(1/T ).

We assume A(s) satisfies

iℏ
d

ds
A(s) = K(s)A(s), (2.6)

with A(0) = 1 and K(s) is a Hermitian operator. We choose

K(s) = iℏ
∑
j

d

ds
Pj(s) Pj(s) (2.7)

which guarantees that in the A(s) picture the projection operators are constant

P
(A)
j (s) = Pj(0) with

H̃(A)(s) =
∑
j

Ej(s) Pj(0). (2.8)

Now we can write the Schrödinger equation in the A(s) picture, as

iℏ
d

ds
U (A)(s) = T

[
H̃(A)(s)− 1

T
K(A)(s)

]
U (A)(s), (2.9)

where U (A)(0) = 1 and K(A)(s) = A†(s)K(s)A(s). Note that H̃(A)(s) and

K(A)(s) are independent of T so it is to be expected that in the limit T → ∞

the first term on the right hand side should dominate. We define

iℏ
d

ds
ST (s) = TH̃(A)(s)ST (s), (2.10)
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with ST (0) = 1. This is integrable and can be solved to give

ST (s) =
∑
j

exp

[
−iT

ℏ

∫ s

0

du Ej(u)

]
Pj(0). (2.11)

To complete the proof a second transformation is made using an operator WT (s)

in a similar manner to the A(s) definition. This ultimately allows the original

time evolution operator for T → ∞, to be written as

UT (s) = A(s)ST (s)

[
1+O

(
1

T

)]
. (2.12)

By Eq. (2.11), ST (s) and Pj(0) commute, thus

A(s)ST (s)Pj(0) = Pj(s)A(s)ST (s). (2.13)

Hence in the limit T → ∞ the time evolution follows the adiabatic picture rep-

resented by A(s)ST (s) exactly and the system remains in the initial eigenstate

it started in, up to a phase factor. Again, the details of the proof can be found

in [22].

We now consider the specific case where the initial state |ψ(0)⟩ is an eigen-

state |ϕm(0)⟩ of the Hamiltonian H̃(0), and consider the action of the time

evolution in Eq. (2.12). Following again the details in [22], we obtain

|ψ(s)⟩ = UT (s, 0)|ψ(0)⟩ ≈ A(s)ST (s)|ϕm(0)⟩

≈ A(s)|ϕm(0)⟩ exp
[
−iT

ℏ

∫ s

0

du Em(u)

]
= |ϕm(s)⟩ exp

[
−iT

ℏ

∫ s

0

du Em(u)

]
. (2.14)

Hence the system remains in the initial instantaneous eigenstate up to a phase

term. If we consider the probability that the system is in a different eigenstate
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at time s,

P (s) =
∑
j ̸=m

|⟨ϕj(s)|UT (s, 0)|ϕm(0)⟩|2 , (2.15)

and use time-dependent perturbation theory, we obtain the adiabatic approxi-

mation [22]

P (s) ≈
∑
j ̸=m

∣∣∣∣∫ s

0

du exp

{
iT

ℏ

∫ u

0

dv [Ej(v)− Em(v)]

}
⟨ϕj(u)|

d

du
ϕm(u)⟩

∣∣∣∣2 ≪ 1.

(2.16)

If we consider Ej, Em and ⟨ϕj|d/dsϕm⟩ independent of s, we can derive a rough

estimate for the adiabatic approximation

P (s) ≈
∑
j ̸=m

1

T

∣∣∣∣∣ ⟨ϕj| ddsϕm⟩
(Ej − Em)/ℏ

∣∣∣∣∣
2 ∣∣∣∣1− exp

[
iTs

ℏ
(Ej − Em)

]∣∣∣∣2

≤
∑
j ̸=m

4

T

∣∣∣∣∣ ⟨ϕj| ddsϕm⟩
(Ej − Em)/ℏ

∣∣∣∣∣
2

, (2.17)

and assuming P (s) ≪ 1 we have

∑
j ̸=m

∣∣∣∣∣ ⟨ϕj| ddsϕm⟩
(Ej − Em)/ℏ

∣∣∣∣∣
2

≪
T

4
. (2.18)

If we assume Ej, Em and ⟨ϕj|d/dsϕm⟩ are varying sufficiently smoothly in s

[22, 24], we have a rough condition for the adiabatic approximation

∑
j ̸=m

max
0≤s≤1

∣∣∣∣∣ ⟨ϕj(s)| ddsϕm(s)⟩
(Ej(s)− Em(s))/ℏ

∣∣∣∣∣
2

≪ T. (2.19)

Tighter bounds and more general bounds can be found by considering further

terms in the time-dependent perturbation expansion, but their utility will de-

pend on the form of the system Hamiltonian [24]. Also worth noting is that
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the conditions in Eq. (2.18) and Eq. (2.19) are not in general sufficient or nec-

essary to ensure adiabatic evolution. However, for many applications they do

guarantee adiabaticity and they have been used in many practical settings, for

example in Landau-Zener models, rapid adiabatic passage (RAP) and stimu-

lated Raman adiabatic passage (STIRAP). A common application is the design

of a control pulse, where state transfer can be accomplished using a linear ramp

over a large enough time to ensure adiabaticity [25].

As noted in [26], there is a straightforward way that the adiabatic limit

T → ∞ can be achieved in finite time for bounded Hamiltonians. We set

H̃max = max
∣∣∣H̃(s)

∣∣∣, then rescale with h(s) = H̃/H̃max. Eq. (2.3) has Hamilto-

nian TH̃maxh(s), and h(s) and H̃(s) will produce the same A(s) and K(s). In

this case the adiabatic limit can be reached by fixing T and letting H̃max → ∞.

This gives an intuition as to why adiabatic population transfer in experimental

settings can often require strong control fields. However, in practical settings

there are constraints on implementing a given Hamiltonian, for example lim-

ited laser intensity or finite magnetic field strength. This has motivated the

development of shortcuts to adiabaticity, which will be discussed in Section 1.2.

The adiabatic approximation can be derived in alternative manner using the

approach taken by Berry in [19, 27, 28]. In this case we make the same assump-

tions about the Hamiltonian as we did before, but we consider the unscaled

Hamiltonian H(t) and make an ansatz for the wavefunction

|ψ(t)⟩ =
∑
n

cn(t)e
iθn(t)|ϕn(t)⟩, (2.20)

where H(t)|ϕn(t)⟩ = En|ϕn(t)⟩,
∑

n |cn(t)|
2 = 1 and the dynamical phase is

θn(t) = −1

ℏ

∫ t

0

ds En(s). (2.21)
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Substituting Eq. (2.20) into the time-dependent Schrod̈inger equation, and

simplifying we obtain

∑
n

ċn|ϕn⟩ = −
∑
n

cn|ϕ̇n⟩. (2.22)

We now apply ⟨ϕm| and get

ċm = −cm⟨ϕm|ϕ̇m⟩ −
∑
n ̸=m

cn⟨ϕm|ϕ̇m⟩ei(θn−θm). (2.23)

Note that differentiating H(t)|ϕn(t)⟩ = En(t)|ϕn(t)⟩ and applying ⟨ϕm| one gets

that

⟨ϕm|ϕ̇n⟩ =
⟨ϕm|Ḣ|ϕn⟩
En − Em

, (2.24)

thus Eq. (2.23) becomes

ċm = −cm⟨ϕm|ϕ̇m⟩ −
∑
n ̸=m

cn
⟨ϕm|Ḣ|ϕn⟩
En − Em

ei(θn−θm). (2.25)

We now make the adiabatic approximation, whereby we assume that the Hamil-

tonian is changing slowly enough in time such that ⟨ϕm|Ḣ|ϕn⟩ ≪ En − Em.

Hence,

ċm = −cm⟨ϕm|ϕ̇m⟩, (2.26)

which has solution

cm(t) = cm(0)e
iγm(t), (2.27)

with the geometric phase defined as γm(t) = i
∫ t

0
ds ⟨ϕm(s)|d/ds ϕm(s)⟩. Note

here that ⟨ϕm|ϕm⟩ = 1 thus ⟨ϕm(s)|d/dsϕm(s)⟩ is purely imaginary, and so γm(t)

is strictly real valued. If we consider an initial state in the instantaneous energy
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eigenbasis |ψ(0)⟩ =
∑

n cn(0)|ϕn(0)⟩, the state will evolve in the adiabatic limit

to

|ψ(t)⟩ ≈
∑
n

cn(0)e
iθn(t)eiγn(t)|ϕn(t)⟩. (2.28)

As found before in the previous approach, the state remains in the initial instan-

taneous eigenstate but acquires a dynamical phase θn(t) and a geometric phase

γn(t). The important distinction between these phases is that the dynamical

phase depends on the rate of change of the instantaneous energy eigenvalues of

the system and the total evolution time, whereas the geometric phase depends

on the structure or geometry of the eigenstates and not on the total time. This

can be seen by considering the dependence of the Hamiltonian on a vector pa-

rameter v⃗(t), i.e. H[v⃗(t)]. Then the eigenstates will also depend on v⃗(t), i.e.

|ϕn[v⃗(t)]⟩ and after using the chain rule we have that

γn(t) = i

∫ t

0

ds ⟨ϕn(s)|d/ds ϕn(s)⟩ = i

∫ v⃗(t)

v⃗(0)

dv⃗ · ⟨ϕn(v⃗)|∇v⃗ ϕn(v⃗)⟩, (2.29)

thus the geometric phase depends on the geometry of parameter space, but not

on the speed at which the path is traversed in parameter space.

In summary, the adiabatic theorem is an important theoretical and practical

tool for control of quantum systems in a variety of contexts. While adiabatic

control is useful in certain systems, it requires long control times which allows

decoherence to degrade the performance of the control scheme. Shortcuts to

adiabaticity (STA) are a collection of techniques that can address these issues,

and we discuss them further in the next section.

2.2 Shortcuts to Adiabaticity

A natural question arises as a consequence of the adiabatic theorem; can we

design a control scheme that allows the same adiabatic transfer of an initial
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state to a chosen target state, but in a chosen operation time? This is the

central idea behind shortcuts to adiabaticity (STA), which are a collection of

mostly analytic techniques that allow adiabatic population transfer but on much

shorter time-scales.

There are many techniques within the STA framework; inverse engineer-

ing via Lewis-Riesenfeld invariants, the fast-forward approach, counterdiabatic

driving, variational methods and approximate methods such as FAQUAD and

STA in combination with optimal control theory [10, 11]. The diversity of STA

techniques available has allowed them to be applied in many different settings,

for example, suppression of pair production in driven Dirac dynamics [29], fast

dynamical exchange cooling with trapped ions [30], transport of BECs in har-

monic traps [31] and compression of solitons [32]. STA has also been applied to

the control of classical systems, for example STA based crane control [33, 34].

An important consideration for any quantum control protocol is how robust

it is against noise. The inherent freedom within STA allows control protocols

to be designed from the start with robustness against noise in mind, while

simultaneously achieving the desired state transfer. Robustness of STA against

noise has been considered in several settings, for example the fast transport

of atoms [35], the transport of two ions under slow spring-constant drifts [36]

and noisy population inversion [37]. Analytical STA control schemes can offer

physical insight into the control problem, and certain properties can be used to

simplify or enhance physical implementation of the protocol e.g. symmetries in

the control scheme.

These advantages of STA make them very useful for practical implemen-

tation. STA have been applied experimentally to a number of systems, for

example; trapped ion transport [38], fast ion separation in segmented Paul

traps [39], optical transfer [40], STA enhanced STIRAP [41], decompression

and displacement of Bose-Einstein condensates and ultra-cold gases [25, 42].

In the next sections we introduce several STA techniques; counterdiabatic
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driving, the fast forward approach and inverse engineering using Lewis-Riesenfeld

invariants.

2.2.1 Counterdiabatic driving

The goal of counterdiabatic driving is to control a quantum system with Hamil-

tonian H0. We assume we know the instantaneous energy eigenstates of H0 and

that H0 has a non-degenerate spectrum. We then construct a counterdiabatic

Hamiltonian HCD, such that the full system with Hamiltonian H = H0 +HCD

follows the instantaneous energy eigenstates of H0 but in a shorter times. Note

that the instantaneous energy eigenstates of H are irrelevant in this discus-

sion, and that counterdiabatic driving allows the same adiabatic population

transfer of the system with Hamiltonian H0 alone, to be implemented on the

system with Hamiltonian H. Counterdiabatic driving was first introduced by

Demirplak and Rice [43], and independently derived via transistionless quantum

driving by Berry [27].

In the language of the proof of the adiabatic theorem from Section 2.1,

counterdiabatic driving amounts to adding a Hamiltonian term in Eq. (2.9)

such that the non-adiabatic terms are eliminated, i.e.

iℏ
d

dt
U (A)(t) =

[
H(A)(t) +H

(A)
CD(t)−K(A)(t)

]
U (A)(t), (2.30)

where A is used to transform to the adiabatic frame and we choose H(A)
CD(t) such

that it cancels K(A)(t). This can be achieved using

HCD(t) = iℏ
∑
n

d

dt
Pn(t) Pn(t), (2.31)

where Pn(t) = |ϕn(t)⟩⟨ϕn(t)|.

The counterdiabatic term can be derived in a number of ways, and here we

follow the formalism developed by Berry [27]. We consider a closed quantum
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system with Hamiltonian H0(t), whose instantaneous eigenvectors are |ϕn(t)⟩

with eigenvalues En(t). We assume that the system is initially in an eigenstate

|ϕn(0)⟩ of H0(0), and in the adiabatic approximation (Eq. (2.28)) we have

|ψn(t)⟩ = eiζn(t)|ϕn(t)⟩, (2.32)

where ζn(t) = θn(t) + γn(t) and the dynamic phase θn(t) and geometric phase

γn(t) are defined by Eq. (2.21) and Eq. (2.29) respectively. The goal of coun-

terdiabatic driving is to find a Hamiltonian H(t) such that |ψn(t)⟩ are exact

evolving states with

iℏ
∂

∂t
|ψn(t)⟩ = H(t)|ψn(t)⟩. (2.33)

We assume

U(t) =
∑
n

eiζn(t)|ϕn(t)⟩⟨ϕn(0)|, (2.34)

and using H(t) = iℏU̇U †, we have that

H(t) = iℏ
∑
n

[
iζ̇n|ϕn(t)⟩⟨ϕn(t)|+ |ϕ̇n(t)⟩⟨ϕn(t)|

]
,

= H0(t) +HCD(t), (2.35)

which can be simplified using the defintions of the dynamical and geometric

phases from Eq. (2.21) and Eq. (2.29), giving

H0(t) =
∑
n

En(t)|ϕn(t)⟩⟨ϕn(t)|,

HCD(t) = iℏ
∑
n

(|∂tϕn⟩⟨ϕn| − ⟨ϕn|∂tϕn⟩|ϕn⟩⟨ϕn|) , (2.36)

which is equivalent to Eq. (2.31) using Pn(t) = |ϕn(t)⟩⟨ϕn(t)|. Note that if we
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specify the eigenstates |ϕn(t)⟩ rather than H0(t), we have freedom to choose

En(t). This illustrates that many Hamiltonians can generate the dynamics of a

given |ϕn(t)⟩, and they are defined by the choice of phases. For example, choos-

ing En(t) = 0 gives U(t) =
∑

n |ϕn(t)⟩⟨ϕn(0)| with H(t) = iℏ
∑

n |∂tϕn⟩⟨ϕn|

[27]. In this example H0(t) is only relevant through the eigenvectors |ϕn(t)⟩.

Counterdiabatic driving has been applied to many settings, for example

expansion of a harmonic trap [44], many body systems [45, 46] and open quan-

tum systems [47]. One problem that can arise with counterdiabatic driving is

whether the additional HCD Hamiltonian can be implemented experimentally.

For example, direct calculation of HCD for harmonic trap expansion takes the

form of a non-local operator [44]. One way to resolve this issue is to move to a

suitable interaction picture where HCD takes a physically implementable form

[48]. Another strategy is to combine counterdiabatic driving with a variational

approach that allows one to find the best approximate scheme given constraints

on the type of control available [49]. This approach is particularly useful for

many body systems where calculating the full spectrum of the Hamiltonian is

not feasible [50]. This approach has also been extended to an open system con-

text [51]. Another strategy is to use counterdiabatic driving in conjunction with

optimal control theory, which has been experimentally implemented in control

of a QED superconducting circuit [52].

Counterdiabatic driving has also found applications outside of quantum con-

trol, for example, controlling the speed and trajectory of biological evolution

[53] and control of classical systems [54].

2.2.2 The Streamlined Fast Forward approach

The fast forward approach was first introduced by Masuda and Nakamura [55].

This method was streamlined in [56], and shown to be essentially a method for

inverting the Schrödinger equation. The streamlined fast forward method has
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been applied to eigenstate transfer by trap deformation in [57]. We will follow

this approach, and demonstrate the example of harmonic trap expansion.

We start with the one dimensional time-dependent Schrödinger equation

iℏ
∂

∂t
Ψ(x, t) =

[
− ℏ2

2m

∂2

∂x2
+ V (x, t)

]
Ψ(x, t). (2.37)

Given the time-dependent potential V (x, t), our goal is to evolve an initial

energy eigenstate Ψ(x, 0) = ψ0(x) to a final energy eigenstate Ψ(x, tf ) = ψf (x).

We invert the Eq. (2.37) for the potential,

V (x, t) =
1

Ψ(x, t)

[
iℏ
∂Ψ(x, t)

∂t
+

ℏ2

2m

∂2Ψ(x, t)

∂x2

]
. (2.38)

We use the modulus-phase form of the wave function,

Ψ(x, t) = ρ(x, t) expiϕ(x,t), (2.39)

and by imposing that the potential is real, i.e. Im[V (x, t)] = 0, we obtain

1

ρ

∂ρ

∂t
+

ℏ
2m

(
2

ρ

∂ϕ

∂x

∂ρ

∂x
+
∂2ϕ

∂x2

)
= 0. (2.40)

Rewriting this and multiplying across by ρ2, we get

ρ
∂ρ

∂t
= − ℏ

2m

(
2ρ
∂ϕ

∂x

∂ρ

∂x
+ ρ2∂

2ϕ

∂x2

)
= − ℏ

2m

∂

∂x

(
∂ϕ

∂x
ρ2

)
. (2.41)

We define

∂ϕ

∂x
= −m

ℏ
u(x, t). (2.42)

Using ∂ρ2

∂t
= 2ρ ∂ρ

∂t
, Eq. (2.41) becomes

∂

∂t
ρ2 =

∂

∂x

(
uρ2
)
. (2.43)
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Then we have

u(x, t) =
1

ρ2(x, t)

∂

∂t

[∫ x

0

ρ2(x′, t)dx′
]
. (2.44)

Using

ρ Re [V (x, t)] =
ℏ2

2m

[
∂2ρ

∂x2
−
(
∂ϕ

∂x

)2

ρ

]
− ℏρ

∂ϕ

∂t
, (2.45)

and Eq. (2.42), Eq. (2.43) and Eq. (2.44), we obtain

V (x, t) = m
∂

∂t

[∫ x

0

ρ2(x′, t)dx′
]
+

ℏ2

2m

1

ρ(x, t)

∂2ρ(x, t)

∂x2

− 1

2
u2(x, t)− ℏ

∂ϕ(0, t)

∂t
. (2.46)

The advantage of this approach is that now V (x, t) is written solely in terms of

ρ(x, t) (via Eq. (2.42) and Eq. (2.44)), making the required potential easier to

calculate.

We now use this technique to design a control scheme that takes the ground-

state of a harmonic trap with initial frequency ω0, to the groundstate of the

harmonic trap with final trap frequency ωf , in a given expansion time tf . For

convenience we move to dimensionless variables, using ω−1
0 and

√
ℏ/mω0 as

units of time and distance respectively. We set α = ωf/ω0 and the initial and

final wave functions, potentials and energies are given by

ψ0(x) =
( 1
π

) 1
4
e−

x2

2 , V (x, 0) =
1

2
x2, E0 =

1

2
, (2.47)

ψf (x) =
(α
π

) 1
4
e−

(
√
αx)2

2 , V (x, tf ) =
1

2
α2x2, Ef =

α

2
. (2.48)

This transformation is an expansion of the initial trap when 0 < α < 1, and a

compression when α > 1.
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We now consider

ρ(x, t) =
( 1
π

) 1
4

√
α

η(t)
2 e−

1
2

(
α

η(t)
2 x
)2
, (2.49)

where we assume

η(0) = 0, η(tf ) = 1,

η̇(0) = η̇(tf ) = 0, η̈(0) = η̈(tf ) = 0, (2.50)

and where we have ensured (see [57] for details)

ρ(x, 0) = ψi(x) and ρ(x, tf ) = ψf (x), (2.51)

with ρ̇(x, t′) = ρ̈(x, t′) = 0 for t′ = 0, tf . Using Eq. (2.46), we can then write

the potential fully analytically as

V (x, t) =
1

2
x2

[
α4η(t) + log(α)

(
η′′(t)− log(α)η′(t)2

)]

− 1

2

(
α2η(t) + 2ϕ̇(0, t)

)
, (2.52)

where we have chosen polynomial interpolations for η(t) and ϕ(0, t) that satisfy

the appropriate boundary conditions,

ϕ(0, t) =
t

tf

(
1− t

tf

)[(Ei + Ef )t− Eitf
ℏ

]
, (2.53)

η(t) =
t3

t3f

[
1 + 3

(
1− t

tf

)
+ 6
(
1− t

tf

)2]
. (2.54)

In Fig. 2.1 we plot an example of the time evolution of this trap expansion.

Note that calculating the potential using Eq. (2.46) could result in poten-

tials that are difficult to implement experimentally. Another issue arises when

evolving from an even to odd parity state, as problems of divergence emerge in
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Figure 2.1: The figure is read left to right, and then descended
row by row. The sequence of images illustrates the time evolu-
tion of V (x, t) due to ρ(x, t), evaluated at tf/8 intervals, shown
as the blue solid line. The dotted-red line is a harmonic trap
with angular frequency ω0, and the dashed-red line is the final

harmonic potential with ωf = 1/3 ω0.

the inversion process. While there has been progress to counteract divergences

[58], it is still a nontrivial task to implement these kinds of state transfers.

In the next section we introduce a STA method called Lewis-Riesenfeld

(L.R.) invariant-based inverse engineering. This technique can be considered

special case of the fast forward approach [56], but offers a simpler design pro-

cedure specifically when considering potentials of the Lewis-Leach type [59].
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2.2.3 Invariant-based inverse engineering

We consider the time-dependent Schrödinger equation,

iℏ
∂

∂t
|Ψ(t)⟩ = H(t)|Ψ(t)⟩, (2.55)

where |Ψ(t)⟩ is an arbitrary solution. A Lewis-Riesenfeld invariant for the

Hamiltonian H(t) is a Hermitian operator I(t) that satisfies

⟨Ψ(t)|I(t)|Ψ(t)⟩ = c, (2.56)

where c is a constant. We now take the time-derivative of Eq. (2.56) and

using Eq. (2.55), together with the fact that I(t)|Ψ(t)⟩ is also a solution of the

Schrödinger equation, Eq. (2.56) becomes

dI(t)

dt
=
∂I(t)

∂t
+
i

ℏ
[H(t), I(t)] = 0. (2.57)

An operator I(t) satisfying Eq. (2.57) is also called a dynamical invariant or

a constant of motion, since the eigenvalues of I(t) are time independent [10,

11]. If we assume a discrete non–degenerate spectrum for the invariant I(t), an

arbitrary solution |Ψ(t)⟩ of the Schrödinger equation can be written in terms of

the instantaneous eigenstates {|ϕn(t)⟩}n of I(t) up to a phase factor,

|Ψ(t)⟩ =
∞∑
n=0

cne
iαn(t)|ϕn(t)⟩, (2.58)

where

αn(t) =
1

ℏ

∫ t

0

⟨ϕn(t
′)|iℏ ∂

∂t′
−H(t′)|ϕn(t

′)⟩dt′, (2.59)

is the Lewis-Riesenfeld phase (see [60] for further details) and the cn are time

independent.
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Lewis-Riesenfeld invariants were first introduced in [60], where they were

used to solve for the state driven by a given time-dependent Hamiltonian. They

were further generalised in [59] and [61], and they have found numerous appli-

cations in quantum physics, from the transport of Bose Einstein condensates

[62], to applications with non-Hermitian Hamiltonians [63]. There are many

possible invariants for a given Hamiltonian, a simple example is |Ψ(t)⟩⟨Ψ(t)|,

where Ψ(t) is a solution of the Schrödinger equation. Finding invariants for

a given Hamiltonian is in general non-trivial, but L.R. invariants are known

for Hamiltonians linear and quadratic in momentum as well as 2,3 and 4 level

systems [11].

Invariant-based inverse engineering uses the existence of an invariant and

given initial and final states, to engineer the Hamiltonian - the reverse process

of the original application of invariants in [60]. To be precise, assume the

system is initially in state |Ψ(0)⟩ at t = 0, with Hamiltonian H(0). The goal

is to evolve the system to a final state |Ψ(tf )⟩ in a given total time t = tf ,

with Hamiltonian H(tf ). The key idea that during the time interval [0, tf ] the

system follows the instantaneous eigenstates of I(t) (up to a time-dependent

phase), rather than the instantaneous energy eigenstates of H(t). Given I(t),

we can formally assume a time evolution operator of the form

U =
∑
n

eiαn(t)|ϕn(t)⟩⟨ϕn(0)|, (2.60)

which implies that H(t) = iℏU̇U †. Thus knowledge of an invariant I(t) allows

us to reverse engineer the required H(t) for a given state transfer during [0, tf ].

Note that the populations of each nth eigenstate of I(t) will remain constant

[11]. We can enforce that the eigenstates of I(t) and H(t) are the same at t = 0

and t = tf by setting

[H(0), I(0)] = [H(tf ), I(tf )] = 0. (2.61)
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Now we can take advantage of freedom in the invariant to design schemes that

need to be consistent only with Eq. (2.57) and Eq. (2.61) to ensure the desired

state transfer.

Invariant-based engineering allows perfect control of an important class of

potentials, the Lewis-Leach type potentials [59],

V (x, t) =
1

2
mω2(t)x2 − F (t)x+

1

ρ2(t)
U

[
x− qc(t)

ρ(t)

]
+ f(t), (2.62)

where the Hamiltonian of the system is H(t) = p2/2m + V (x, t) and ρ(t) is a

time-dependent function. This family of Hamiltonians has known quadratic in

momentum invariants

I =
1

2m
[ρ(p−mq̇c)−mρ̇(x− qc)]

2

+
1

2
mω2

0

(
x− qc
ρ

)2

+ U

(
x− qc
ρ

)
, (2.63)

where the functions ρ, qc, ω and F must satisfy the auxiliary equations

ρ̈+ ω2(t)ρ =
ω2
0

ρ3
(2.64)

q̈c + ω2(t)qc =
F (t)

m
, (2.65)

and ω0 is a constant (often chosen for convenience to be ω(t = 0)). These

equations are found by using Eq. (2.63) in Eq. (2.57). Eq. (2.64) is known as

the Ermakov equation [64, 65] and Eq. (2.65) is the Newton equation of motion

for a forced harmonic oscillator. The Lewis-Riesenfeld phase is given by

αn(t) = −1

ℏ

∫ t

0

dt′
{
λn
ρ2

+
m

2ρ2
[
(q̇cρ− qcρ̇)

2 − (ω0qc/ρ)
2
]
+ f

}
(2.66)
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and the invariant eigenvectors

ϕn(x, t) = exp

{
im

ℏ

[
ρ̇

2ρ
x2 +

x

ρ
(q̇cρ− qcρ̇)

]}
ρ1/2Φn (σ) , (2.67)

where σ = (x − qc)/ρ, and Φn (σ) is a solution of the stationary Schrödinger

equation

[
− ℏ2

2m

∂2

∂σ2
+

1

2
mω2

0σ
2 + U (σ)

]
Φn = λnΦn. (2.68)

The function ρ(t) describes the wave function width while qc(t) corresponds

with a classical particle trajectory. By choosing an ansatz for ρ(t) and qc(t)

that satisfy appropriate appropiate boundary conditions that are found using

Eq. (2.61), we can then calculate F (t) and ω(t) using Eq. (2.65) and Eq. (2.64)

respectively, as we will demonstrate in later examples.

Note that the Lewis-Leach family of potentials has many applications in ex-

perimental settings, since near the minimum x0 of any one dimensional trapping

potential V (x) we can approximate the potential using a Taylor series [66],

V (x) = V (x0) + V ′(x0) (x− x0) +
V ′′(x0)

2
(x− x0)

2 +O
(
x3
)
. (2.69)

Quantum information experiments have been conducted using trapped ions for

several decades, where the potentials are often approximated harmonically when

designing control schemes [67–69]. More recently, shuttling trapped ions has

been theoretically explored and experimentally demonstrated to provide a pos-

sible architecture for future large scale quantum computing [39, 66, 70, 71].

Finally, in comparison to the previous streamlined fast-forward approach the

invariant-based inverse engineering approach is a much simpler way to calculate

the required control functions for Lewis-Leach potentials. In the next subsec-

tions we consider several examples of invariant-based inverse engineering; trap

expansion, trap transport and two-level population inversion.
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Fast harmonic trap expansion using Lewis-Riesenfeld invariants

We now consider transferring the ground state of a harmonic trap with frequency

ω(0) = ω0 to the ground state of a harmonic trap with frequency ω(tf ) = ωf .

This problem has been studied in detail in [72]. The Hamiltonian for this system

has a Lewis-Leach type potential, given by

H(t) =
p2

2m
+

1

2
mω2(t)x2. (2.70)

The associated L.R. invariant Eq. (2.63) simplifies to

I =
1

2m
[ρp−mρ̇x]2 +

1

2
mω2

0

(
x

ρ

)2

, (2.71)

where in Eq. (2.63) we have set U = 0 and qc = F = 0. Note that in principle

ω0 is arbitrary in I, but for this example it is convenient to define ω(0) = ω0.

To design ρ, we first find the boundary conditions by considering the com-

mutator [H(t), I(t)] at t = 0 and t = tf . For t = 0,

[H(0), I(0)] =

[
p2

2m
+

1

2
mω2(0)x2,

1

2m

[
ρ(0)p−m ˙ρ(0)x

]2
+

1

2
mω2

0

(
x

ρ(0)

)2
]
.

(2.72)

If we choose ρ(0) = 1, we obtain

[H(0), I(0)] =

[
p2

2m
+

1

2
mω2

0x
2,

1

2m

[
p−m ˙ρ(0)x

]2
+

1

2
mω2

0x
2

]
, (2.73)

and choosing ρ̇(0) = 0 gives [H(0), I(0)] = 0. From Eq. (2.64) it follows that

ρ̈(0) = 0. In summary, for t = 0 we have

ρ(0) = 1, ρ̇(0) = 0, ρ̈(0) = 0. (2.74)
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In a similar manner we obtain the boundary conditions for t = tf ,

ρ(tf ) = γ =

√
ω0

ωf

, ρ̇(tf ) = 0, ρ̈(tf ) = 0. (2.75)

Note that for this example the time-dependent average energy can be calcu-

lated analytically, and the boundary conditions derived here are equivalent to

minimising the time-dependent average energy [72].

We are now free to choose any ansatz for ρ(t) that satisfies the boundary

conditions in Eq. (2.74) and Eq. (2.75). We will use a polynomial ansatz from

[72],

ρ(t) = 6(γ − 1)s5 − 15(γ − 1)s4 + 10(γ − 1)s3 + 1, (2.76)

where s = t/tf . Then using Eq. (2.64) we obtain

ω2(t) =
ω2
0

ρ4
− ρ̈

ρ
. (2.77)

In Fig. 2.2, ω2(t)/ω2
0 is shown for several different final times tf , using ex-

perimentally realistic parameters from [72]. We now compare the performance

of the invariant-based inverse engineered (IBIE) ω(t) to an adiabatic protocol

given by

ωa(t) = ω0 + (ωf − ω0)
t

tf
. (2.78)

For both the adiabatic and IBIE protocols we evaluate the fidelity

F = |⟨ψT |U(tf , 0)ψ0⟩|2 , (2.79)

where U(tf , 0) is the time evolution operator, |ψ0⟩ is the initial state (the

groundstate of a harmonic trap with angular frequency ω0) and |ψT ⟩ is the
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Figure 2.2: Examples of ω2(t)/ω2
0 using ω0 = 250 × 2π Hz,

ωf = 2.5× 2π Hz, γ = 10, with final times tf : tf = 25ms (solid-
red line), tf = 15ms (dashed-blue line), tf = 10ms (dotted-green

line), tf = 6ms (dash-dotted black line).

target state (the groundstate of a harmonic trap with angular frequency ωf ).

We set ω0 = 250 × 2π Hz and ωf = 2.5 × 2π Hz, which gives γ = 10. These

values have been used in cold atom clock experiments [72, 73]. The results

for different expansion times tf are shown in Fig. 2.3, where the IBIE proto-

col (solid blue) gives perfect fidelity while the adiabatic scheme (dashed red)

only achieves high fidelity for larger expansion times. To achieve a fidelity of

F = 0.99, the adiabatic protocol requires tf > 9s, while in principle the IBIE

scheme can give perfect fidelity for an arbitrary tf . In practice a given exper-

imental configuration will have constraints, for example limited available laser

power. For very fast expansion times with tf < 2.5ms, the invariant-base STA

schemes considered in Eq. (2.77) produces a potential that is repulsive over a

portion of the expansion time. This is not a major obstacle, as in many practical

settings repulsive potentials can be implemented [72].

Fast expansion and compression using the invariant-based inverse engineer-

ing approach outlined here has also been experimentally demonstrated using a
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Figure 2.3: Fidelity versus expansion time tf (in seconds),
using the STA scheme from Eq. (2.77) (solid blue) and adiabatic
scheme from Eq. (2.78) (dashed-red). Inset: Example of the

adiabatic scheme from Eq. (2.78).

one dimensional Bose gas [74] and a Fermi gas [75].

Fast harmonic trap transport via Lewis-Riesenfeld invariants

We now consider harmonic trap transport, with Hamiltonian

H =
p2

2m
+

1

2
mω2

0 [x− q0(t)]
2 , (2.80)

where ω0 is the angular frequency of the harmonic trap, m is the mass of the

particle and q0(t) is the transport trajectory of the potential minimum. We

assume a transport distance of length d, giving boundary conditions for the

trajectory q0(0) = 0 and q0(tf ) = d. This potential is in the Lewis-Leach family
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(Eq. (2.62)), and we set ρ = 1, f(t) = 1
2
mω2

0q0(t)
2 and F (t) = mω2

0q0(t) giving

V (x, t) =
1

2
mω2

0x
2 −mω2

0q0(t)x+
1

2
mω2

0q0(t)
2,

=
1

2
mω2

0 [x− q0(t)]
2 . (2.81)

Note that the purely time-dependent term f(t) is physically irrelevant, since it

only contributes a global phase to the dynamics.

As ρ = 1, we need only consider the auxiliary equation Eq. (2.65),

q̈c
ω2
0

+ qc = q0(t). (2.82)

To determine boundary conditions on qc(t), we again consider [H(t), I(t)] at

t = 0 and t = tf . For t = 0,

[H(0), I(0)] =
1

2

[
p2

m
+mω2

0 [x− q0(0)]
2 ,

1

m
[p−mq̇c(0)]

2 +mω2
0 [x−mqc(0)]

2

]
=

1

2

[
p2

m
+mω2

0x
2,

1

m
[p−mq̇c(0)]

2 +mω2
0 [x−mqc(0)]

2

]
, (2.83)

hence qc(0) = q̇c(0) = 0. Then from Eq. (2.65) we must have that q̈c(0) = 0. In

a similar manner we obtain the boundary conditions for t = tf . We also enforce

that the trap is at rest at t′ = 0, tf by setting q̇0(t′) = q̈0(t
′) = 0, and by using

Eq. (2.65) we therefore have that q(3)c (t′) = q
(4)
c (t′) = 0. In summary qc(t) must

satisfy q(3)c (t′) = q
(4)
c (t′) = 0 for t′ = 0, tf .

Now we can choose any qc(t) that satisfies these boundary conditions and

inverse engineer the trap trajectory q0(t) using Eq. (2.65), i.e. we solve

q̈c(t) + ω2
0qc(t) =

q̈0(t)

m
, (2.84)

for q0(t). This again highlights the great freedom that inverse engineering using
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Figure 2.4: Example of qc(t) (solid blue line). Examples
of q0(t); tf = 3.0ω0 (dot-dashed black), tf = 3.5ω0 (dou-
ble dot-dashed purple), tf = 5.0ω0 (triple dot-dashed brown),
tf = 7.5ω0 (4 dot-dashed green), tf = 10.0ω0 (5 dot-dashed
red), tf = 15.0ω0 (6 dot-dashed orange). As tf increases, q0

approaches qc.

L.R. invariants allows when designing control protocols. We choose a polyno-

mial ansatz for qc(t),

qc(t) = ds5
(
70s4 − 315s3 + 540s2 − 420s+ 126

)
, (2.85)

with s = t/tf . Examples of qc(t) and q0(t) are shown in Fig. 2.4. Note that

for tf ≲ 3.2ω0, q0(t) may move the trap beyond the transport distance d during

transport. There are strategies to design q0(t) that satisfy more restraints, for

example minimisation of time-averaged energy or bounded maximal distance

during transport [72].

As an example, we compare the IBIE derived q0(t) with an adiabatic linear-

ramp trajectory given by

q0,a(t) = d
t

tf
, (2.86)

where d is the transport distance. We use numerical values from an atom
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Figure 2.5: Fidelity vs. transport time tf for an adiabatic
scheme q0,a(t) and IBIE scheme q0. Inset: Adiabatic linear ramp

transport scheme q0,a(t).

transport experiment using an optical lattice [76], where a 133Cs atom was

transported over a distance of one lattice site. This corresponds with a transport

distance of d = 10.9944σ, where σ =
√

ℏ/mω0, ω0 = 0.3 Mhz and m is the

mass of a 133Cs atom. The fidelity using the IBIE scheme (solid blue) and

adiabatic ramp (dashed-red line) is shown in Fig. 2.5. The fidelity for the

adiabatic ramp is perfect for times that are multiples of 2π/ω0, and are the

result of the wavepacket motion within the potential producing the correct

transport. While the fidelity at these times is high, this protocol is inherently

sensitive to noise since it requires precise transport times to achieve perfect

fidelity. In contrast, the IBIE scheme produces perfect fidelity for all transport

times and can be further optimised against anharmonicities and with different

experimental constraints [77, 78].
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2-level population inversion using Lewis-Riesenfeld invariants

The two-level system his one of the simplest quantum models and has appli-

cations throughout quantum physics; from a spin half particle in a magnetic

field to the semi-classical coupling of two atomic levels with a laser. We now

use invariant-based inverse engineering to achieve population inversion in a two-

level system, where we transfer an initial state |Ψ(0)⟩ to a target state |Ψ(tf )⟩

in a given time tf , with

|Ψ(0)⟩ =

1

0

 = |1⟩, |Ψ(tf )⟩ =

0

1

 = |2⟩. (2.87)

We consider the Hamiltonian

H0(t) =
ℏ
2

 −∆(t) ΩR − iΩI(t)

ΩR + iΩI(t) ∆(t)

 . (2.88)

This Hamiltonian can model a two-level system in coherent laser light [22],

where in the laser-adapted interaction picture, Ω(t) = ΩR − iΩI(t) is the com-

plex Rabi frequency where ΩR,ΩI are the real and imaginary parts respectively

and ∆(t) is the time-dependent detuning between the laser and transition fre-

quencies.

There is a known invariant for H0 given by [79],

I(t) =
ℏ
2
µ

 cos [Θ (t)] e−iα(t) sin [Θ (t)]

eiα(t) sin [Θ (t)]− cos [Θ (t)]

 , (2.89)
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where µ is an arbitrary constant with units of frequency (since I(t) must have

units of energy), and

Θ̇ = ΩI cos (α)− ΩR sin (α) , (2.90)

α̇ = −∆− cot (Θ) [ΩR cos (α) + ΩI sin (α)] . (2.91)

The eigenvectors of I(t) (Eq. (2.89)) are

|ϕ+(t)⟩ =

cos (Θ/2) e−iα(t)/2

sin (Θ/2) eiα(t)/2

 , |ϕ−(t)⟩ =

 sin (Θ/2) e−iα(t)/2

− cos (Θ/2) eiα(t)/2

 , (2.92)

with eigenvalues ±ℏµ/2. A general solution of the Schrödinger equation |Ψ(t)⟩

can then be written as a linear combination,

|Ψ(t)⟩ = c+e
iκ+(t)|ϕ+(t)⟩+ c−e

iκ−(t)|ϕ−(t)⟩, (2.93)

where c± are constants and κ± are the Lewis-Riesenfeld phases satisfying

κ̇± =
1

ℏ
⟨ϕ±|iℏ

∂

∂t
−H0|ϕ±⟩. (2.94)

Particular solutions are

|Ψ(t)⟩ = |ϕ+(t)⟩e−iγ(t)/2 = e−iγ/2

cos [Θ/2] e−iα/2

sin [Θ/2] eiα/2

 , (2.95)

and the orthogonal solution that satisfies ⟨Ψ⊥|Ψ⟩ = 0,

|Ψ⊥(t)⟩ = |ϕ−(t)⟩eiγ(t)/2 = eiγ/2

 sin [Θ/2] e−iα/2

− cos [Θ/2] eiα/2

 , (2.96)
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with γ = 2κ±. From Eq. (2.94) we obtain

γ̇ =
1

sin(Θ)
[ΩR cos (α) + ΩI sin (α)] . (2.97)

To transfer the population from |Ψ(0)⟩ = |1⟩ to |Ψ(tf )⟩ = |2⟩ , we require

Θ(0) = 0 and Θ(tf ) = π which gives

|Ψ(0)⟩ = eiγ(0)/2

e−iα(0)/2

0

 , |Ψ(tf )⟩ = eiγ(tf )/2

 0

e−iα(tf )/2

 , (2.98)

where the populations are unaffected by global phase terms. We now assume

that α(t), γ(t) and Θ(t) are given (they must satisfy Eq. (2.90), and Eq. (2.97)).

Then by inverting Eq. (2.90) and Eq. (2.97), we obtain

ΩR = cos (α) sin (Θ) γ̇ − sin (α) Θ̇,

ΩI = sin (α) sin (Θ) γ̇ + cos (α) Θ̇,

∆ = − cos (Θ) γ̇ − α̇. (2.99)

Thus if α, γ and Θ are chosen with appropriate boundary conditions, perfect

population inversion can be engineered for a given time tf using the potentials

described by Eq. (2.99). There is considerable freedom in choosing these func-

tions, and in the following example we choose a real Rabi frequency (ΩI = 0)

and the following functions also minimise systematic error in the Rabi frequency

[79]

θ(t) = π
t

tf
,

α(t) = −ArcCot
[
4 sin

(
θ3
)]
,

γ(t) = 2θ(t)− sin (2θ) . (2.100)
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Figure 2.6: Fidelity for IBIE (solid-blue) and RAP (dashed-
red) protocols, with Ω0 = ∆0 and unit of time Ω−1

0 . Inset: Ex-
amples of Ωa (solid red) and ∆a (dashed red) from Eq. (2.101).

As a comparison, consider the standard rapid adiabatic protocol with ΩI = 0,

Ωa = Ω0 sin

(
πt

tf

)
,

∆a = −∆0 cos

(
πt

tf

)
. (2.101)

The fidelity for the two schemes is shown in Fig. 2.6, with the IBIE protocol

giving perfect fidelity while the RAP scheme needs longer tf to achieve high

fidelities.

2.3 Numerical Methods

While we design the control schemes in this thesis analytically, we use numerical

simulation of the Schrödinger equation to evaluate the fidelity and robustness of

the designed schemes. In this section we describe some core numerical methods

that were used in this thesis.
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2.3.1 Operator splitting

Operator splitting is a general method for numerically solving differential equa-

tions [80]. In this thesis we apply operator splitting to the Schrödinger equation,

iℏ
∂

∂t
|ψ⟩ = H|ψ⟩, (2.102)

where H = TK + V is the Hamiltonian of the system and TK = −(ℏ2/2m)∇2 is

the kinetic energy operator and V is the potential energy operator. The system

starts in a known initial state |ψ0⟩ at t = 0, and our goal is to calculate the

final state of the system |ψtf ⟩ at t = tf . In this thesis we are concerned with

time-dependent potentials, with the time dynamics of the system described by

the time-ordered time-evolution operator ([81])

U (tf , 0) = τ exp

[
− i

ℏ

∫ tf

0

dsH(s)

]
, (2.103)

where |ψtf ⟩ = U (tf , 0) |ψ0⟩ and τ indicates time ordering. To simulate the

dynamics we numerical implement U(tf , 0) using the split operator method. We

first discretise the time interval [0, tf ] into N steps of ∆t, and consider U over

a single step of ∆t = tf/N , which we assume are small enough such that H

does not vary significantly over ∆t. Using a perturbative approach, U can be

approximated over ∆t by ([81])

U (t+∆t, t) = τ exp

[
− i

ℏ

∫ t+∆t

t

dsH(s)

]
= +

(
− i

ℏ

)∫ t+∆t

t

dt1H(t1)

+

(
− i

ℏ

)2 ∫ t+∆t

t

dt1

∫ t1

t

dt2H(t1)H(t2) + · · · (2.104)
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For the first non-trivial term

∫ t+∆t

t

dt1H(t1) =

∫ t+∆t

t

dt1 [TK + V (t1)] = ∆t TK +

∫ t+∆t

t

dt1V (t1), (2.105)

and the integral of the potential can be approximated using the Midpoint Rule

(see [80] for details)

∫ t+∆t

t

dt1V (t1) = ∆t Vmid +O
(
∆t3
)
, (2.106)

where Vmid = [V (t) + V (t+∆t)] /2. The second integral in Eq. (2.104) becomes

∫ t+∆t

t

dt1

∫ t1

t

dt2
[
T 2
K + V (t1)TK + TK V (t2) + V (t1)V (t2)

]
. (2.107)

The first term in Eq. (2.107) simply becomes (∆t TK)
2/2. The second term in

Eq. (2.107) can be approximated

∫ t+∆t

t

dt1

∫ t1

t

dt2V (t1)TK = TK

∫ t+∆t

t

dt1(t1 − t)V (t1)

=
TK
2
∆t2 V (t+∆t) +O

(
∆t3
)
. (2.108)

Using Eq. (2.106) the third term in Eq. (2.107) becomes

∫ t+∆t

t

dt1

∫ t1

t

dt2TKV (t2) = TK

∫ t+∆t

t

dt1
[V (t1) + V (t)]

2
(t1 − t) +O

(
∆t3
)

=
TK
2
∆t2 Vmid +O

(
∆t3
)
. (2.109)
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Again using Eq. (2.106) twice (let Ṽ (t1) = V (t1) [V (t1) + V (t)] (t1 − t) /2 in

the second application), the last term in Eq. (2.107) becomes

∫ t+∆t

t

dt1

∫ t1

t

dt2V (t1)V (t2)

=

∫ t+∆t

t

dt1V (t1)
[V (t1) + V (t)]

2
(t1 − t) +O

(
∆t3
)

=
∆t2

4

[
V (t+∆t)2 + V (t+∆t)V (t)

]
+O

(
∆t3
)
. (2.110)

Combining these terms we can write Eq. (2.104) up to third order in ∆t as

U (t+∆t, t) = +

(
−i∆t

ℏ

)
(TK + Vmid)

+

(
−i∆t

ℏ

)2
1

2

[
T 2
K + V (t)TK + TKV (t) + V (t)2

]
+O

(
∆t3
)
.

(2.111)

Now we notice that this is exactly what we obtain on expanding the series forms

of the following exponential operators up to O(∆t3), i.e.

U (t+∆t, t) = exp

(
− i

ℏ
∆t

2
TK

)
exp

(
− i

ℏ
∆t Vmid

)
exp

(
− i

ℏ
∆t

2
TK

)
+O

(
∆t3
)
. (2.112)

Thus Eq. (2.112) provides an approximation to the true time evolution with

error of order ∆t3. Thus choosing a large enough number of time steps N

will allow us to numerically implement the time evolution operator to high

precision. An estimate of the required N can be found by choosing N such

that ∆t/ℏ Vmid ≪ 2π and ∆t/ℏ TK ≪ 2π. Note that Eq. (2.112) is a very

useful way to approximate U , since TK and V have diagonal representations

in the momentum and position bases respectively. Furthermore, transforming

between the position and momentum bases can be implemented efficiently using

the Fast Fourier Transform (FFT) and its inverse. Let F represent the Fourier
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transform, then the wavefunction after ∆t will be well approximated by

ψ(x, t+∆t) ≈

[
F−1 exp

(
− i

ℏ
∆t

2
TK

)
F exp

(
− i

ℏ
∆t Vmid

)

F−1 exp

(
− i

ℏ
∆t

2
TK

)
F

]
ψ(x, t), (2.113)

where transforming the wavefunction between the position and momentum basis

allows the application of the exponential operators to be numerically calculated

as a vector dot product, rather than a full matrix-vector operation.

There are also alternative and higher order decompositions of the time evo-

lution operator [82], where the decomposition discussed here is used as an il-

lustrative example. The question of the error of a given decomposition is an

area of active research and depends on the exact system in question. Recently

a more general approach to the question of decomposition error (often called

Trotter error) has been developed in [83]. For more complicated situations than

the simple Schrödinger equation simulation we consider here, the interplay of

decomposition length and error bound can be significant when numerically sim-

ulating more complicated systems [83].

2.3.2 Imaginary time evolution

Imaginary time evolution is a very useful technique to find the ground state of

a stationary Hamiltonian

H = − ℏ2

2m
∇2 + V (x⃗). (2.114)

We choose an initial trial wave function

|ψ⟩ =
∑
k

ck|ϕk⟩ (2.115)
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where |ϕk⟩ are the energy eigenstates of H with ordered energy levels E0 <

E1 < . . . Ek . . . , and we assume that there is some overlap between the trial

wavefunction and the groundstate i.e. c0 ̸= 0. The time evolution of H acting

on |ψ⟩ is given by |Ψ(t)⟩, where

|Ψ(t)⟩ = exp

(
− i

ℏ
H t

)
|ψ⟩ =

∑
k

ck exp

(
− i

ℏ
Ek t

)
|ϕk⟩,

since H is time independent. Now we map t→ it = τ , so that τ ∈ R and obtain

|Ψ(τ)⟩ =
∑
k

ck exp

(
−1

ℏ
Ek τ

)
|ϕk⟩

= α(τ)

{
|ϕ0⟩+

∑
k ̸=0

ck
c0

exp

[
−1

ℏ
(Ek − E0) τ

]
|ϕk⟩

}
, (2.116)

where α(τ) = c0 exp
(
−1

ℏE0 τ
)
. As τ increases, the sum term will tend towards

|ϕ0⟩ while α(τ) tends exponentially to zero. When implementing this process

numerically, we discretise time and we can counter the α(τ) term’s effect by

renormalising the wavefunction after each imaginary time step. During the

imaginary time evolution the energy states |ϕk⟩ decay at a rate proportional

to their energy Ek. This means that if we can evolve |Ψ(τ)⟩ for long enough

imaginary time, we will ensure that all other energy states will have decayed

leaving only the ground state. Note that if the trial wave function has no

overlap with the ground state |ϕ0⟩, then this procedure cannot converge to the

groundstate. In practice this is not a significant problem as long as we know

approximately the form of the ground state (for systems in this thesis this is

the case, for example the groundstate of any anharmonic trap is approximately

the harmonic groundstate for sufficiently deep traps). When implementing this

method numerically, it is useful to evolve two different trial wave functions

and at each step measure their overlap. When the overlap approaches close to

unity we know that both trial wave functions have approached the ground state.

Furthermore, this the imaginary time evolution is easily implemented using the
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split operator method.

2.3.3 The GRAPE algorithm

The GRAPE algorithm (gradient ascent pulse engineering) was first introduced

in [5], where an iterative gradient ascent process was used to calculate optimal

pulses for coupled spin systems. GRAPE was initially formulated for open

systems, but for simplicity we describe it here for a closed quantum system.

The goal of GRAPE to design a control pulse that takes an initial state |ψ0⟩

to a target state |ψT ⟩ in a given time tf . We assume a Hamiltonian of the form

H = H0 +
M∑
k=1

uk(t)Hk, (2.117)

where H0 is the time-independent free evolution of the system and Hk are

constant. We now discretise the time evolution into N equal steps of duration

∆t. For the jth time step the Hamiltonian has M adjustable parameters uk,j

that we assume are constant over ∆t, i.e. uk,j(t) = uk,j for tj−1 < t < tj with

j = 0, . . . , N and k = 0, . . .M . This allows us to write the time evolution as

a simple matrix exponential, with the time evolution during the jth time step

given by

Uj = exp

[
− i

ℏ
∆t

(
H0 +

M∑
k=1

uk,jHk

)]
. (2.118)

The final state after the full time evolution is

|ψ(tf )⟩ = |ψN⟩ = UN . . . U1|ψ0⟩. (2.119)

We define a state transfer cost function

C = 1− |⟨ψf |ψN⟩|2 . (2.120)
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Now we calculate ∂C/∂uk,j over the jth time interval to first order in ∆t,

∂C

∂uk,j
= − ∂

∂uk,j

(
⟨ψf |UN . . . U1ψ0⟩⟨ψ0|U †

1 . . . U
†
Nψf⟩

)
= −⟨U †

j+1 . . . U
†
Nψf |

(
∂Uj

∂uk,j

)
Uj−1 . . . U1ψ0⟩⟨ψf |ψN⟩+ c.c.

= −2Re
[
⟨U †

j+1 . . . U
†
Nψf |

(
∂Uj

∂uk,j

)
Uj−1 . . . U1ψ0⟩⟨ψf |ψN⟩

]
(2.121)

To calculate the derivative one can follow the approach in [5], by first letting

uk,j 7→ uk,j + δuk,j and using the formula 1

d

dx
eA+xB

∣∣∣∣
x=0

=
eA

∆t

∫ ∆t

0

eAτ̃Be−Aτ̃dτ̃ , (2.122)

with τ̃ = t∆t and

A = − i

ℏ
∆t

(
H0 +

M∑
k=1

uk,jHk

)
, B = − i

ℏ
∆tHk, x = δuj,k. (2.123)

Then we have

∂Uj

∂uk,j
= − i

ℏ
∆tHkUj +O

(
∆t2
)
, (2.124)

with

Hk =
1

∆t

∫ ∆t

0

Uj(τ)HkUj(−τ)dτ, (2.125)

and

Uj(τ) = exp

[
− i

ℏ
τ

(
H0 +

M∑
k=1

uk,jHk

)]
. (2.126)

1Eq. (2.122) has several independent origins, the earliest is found in [84] and then in [85].
Later the result was made rigorous in [86] and [87]. Eq. (2.122) has been generalised to
ordered exponentials in [88].
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If we consider the norm ∥A∥ = ∆t ∥H0 +
∑

k uk,jHk∥ ≪ 1, then for ∆t ≪

∥H0 +
∑

k uk,jHk∥−1 we can approximate Hk ≈ Hk. Thus Eq. (2.121) becomes

∂C

∂uk,j
= −2∆t Re

[
⟨U †

j+1 . . . U
†
Nψf |iHkUjUj−1 . . . U1ψ0⟩⟨ψN |ψf⟩

]
. (2.127)

There is a simpler way to derive the same result using time-dependent per-

turbation theory. If we consider the time evolution over ∆t, and set H =

HA + δHk where

HA = H0 +
M∑
l=1

ulHl, (2.128)

and k ∈ {1, . . . ,M}. We define an interaction picture by

|Ψ̃(t)⟩ = U (A)†(t, 0)|Ψ(t)⟩, (2.129)

where U (A)(t, 0) is the time-evolution operator for the system with Hamiltonian

HA(t). We then have

d

dt
|Ψ̃(t)⟩ = − i

ℏ
U (A)†(t, 0)δHkU

(A)(t, 0)|Ψ̃(t)⟩. (2.130)

Considering the integral form of this equation over [t, t + ∆t], and using that

Hk is time independent, gives

U(t+∆t, t) = U (A)(t+∆t, t)− iδHk

ℏ

∫ t+∆t

t

dt1U
(A)(t1, t) + . . . (2.131)

where we have only written the first iteration of solving the integral equation

for the time evolution operator U . Note that U (A) = Uj is time independent

and the first time integral can be done trivially. Now we take the derivative
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with respect to δ to obtain

∂

∂δ
U(t+∆t, t) ≈ −iHk∆t

ℏ
Uj, (2.132)

which is equivalent to Eq. (2.124) (after the approximation Hk ≈ Hk).

For closed quantum systems there is an efficient way to implement the gra-

dient calculation:

Step 1: Using current control parameters uk,j, evolve |ψ0⟩ → |ψN⟩. If the fidelity

|⟨ψT |ψN⟩|2 > c, we are done (where c is a threshold fidelity we choose).

Step 2: Evolve backwards |ψN⟩ and |ψf⟩ simultaneously using U †
N a single ∆t step

and calculate all k derivatives using Eq. (2.127), to give the gradient for

j = 1.

Step 3: Repeat the previous for all time steps, calculating the gradient for each j.

Step 4: Update the control parameters uk,j → uk,j + ϵ ∂C
∂uk,j

, with a chosen small

ϵ (in practice a simple line search can be used, or extended versions see

[80]). Return to step 1.

This algorithm is naturally suited to implementation on a GPU, since the back-

wards in time evolution is easily parallelised. For example in step 2, this means

we can evolve both |ψN⟩ and |ψf⟩ backwards at the same time. On the GPU the

FFT of complex vectors is very fast, and since we are considering a closed sys-

tem the evolution is unitary, and the previous mentioned split-operator method

works very efficiently on the GPU. Note that for closed systems the memory

requirement is small, since we only need to hold two states in memory during

the gradient calculation process.
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Chapter 3

Quantum control via enhanced

shortcuts to adiabaticity

3.1 Overview

In this chapter we develop an analytic extension to STA called enhanced short-

cuts to adiabaticity (eSTA). The eSTA method provides control schemes for

Hamiltonians that have no known STA control method, by providing an an-

alytical correction to existing STA protocols. This correction can be easily

calculated, and the resulting protocols can be outside the class of STA schemes.

We demonstrate the effectiveness of the method in both finite and infinite di-

mensional settings using three distinct cases: manipulation of an internal atomic

state beyond the rotating-wave approximation, transport of a neutral atom in an

optical Gaussian trap, and transport of two trapped ions in an anharmonic trap.

This chapter is based on the following publication:

C. Whitty, A. Kiely and A. Ruschhaupt,

Enhanced shortcuts to adiabaticity,

Phys. Rev. Research 2, 023360 (2020).

https://doi.org/10.1103/PhysRevResearch.2.023360


Chapter 3. Quantum control via enhanced shortcuts to adiabaticity 47

3.2 Introduction

The development of quantum technologies for a wide variety of applications is a

rapidly growing field [89]. However, a common roadblock is the requirement for

fast and robust control of fragile quantum states, which is critical to exploiting

any quantum advantage. The process must be fast to avoid long interaction

times with the external environment (decoherence) and stable to avoid accu-

mulation of errors. These problems have been addressed by a number of distinct

techniques such as adiabatic methods [9], composite pulses [90–92], numerical

optimal control [5, 7, 93, 94] and shortcuts to adiabaticity [10, 11].

Shortcuts to adiabaticity (STA) are analytical methods to design the time

dependence of the Hamiltonian to ensure effective adiabatic state evolution in

finite time. STA methods have the advantage of providing physical insight

into the control process as well as constructing a whole class of protocols that

achieve the desired result. In combination with perturbation theory, the optimal

protocol in this class can be found which is most stable regarding a relevant

type of noise or imperfection [79, 95, 96]. There has also been work to improve

protocols in a non-perturbative manner [37, 97], using variational methods [45,

49] and in combination with numerical optimal control [46, 98–100].

STA methods have been used to control a variety of Hamiltonians such as

harmonic oscillator potentials [72, 77, 101] and two-level [79, 96], three-level

[102, 103] and four-level [104] systems. They have been utilised experimentally

for trapped ions [105], superconducting qubits [106, 107], nitrogen-vacancy cen-

ters [108, 109], ultracold atoms [25] and Bose-Einstein condensates [42]. How-

ever there are still many Hamiltonians which are not tractable with standard

STA techniques. Our new procedure is intended to deal with such cases.

In this chapter we provide an analytical enhancement to STA protocols in-

spired by techniques of numerical optimal control, termed enhanced shortcuts
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to adiabaticity (eSTA). There are several key benefits. Firstly, the eSTA pro-

tocol provides higher fidelities than the STA protocol and may be outside the

original class of STA protocols. This represents a significant improvement over

previous methods based on optimisation inside the STA class [79]. Secondly,

the resulting protocol is still completely analytical in nature, requiring no signif-

icant numerical computation or iterative procedure and therefore the resulting

protocols can provide further physical insight. In addition, it is expected that

eSTA protocols can also serve as good initial seeds for further numerical opti-

misation. As STA methods have also been applied beyond quantum systems

[11], for example in optical waveguides [110–112], classical mechanical systems

[33, 54, 113] and statistical physics [114], eSTA has a broad range of applica-

bility and in principle can be applied beyond the scope of quantum control. In

the following, we will outline the details of the eSTA method; the key result

is summarised in Eq. (3.8). After this, we will demonstrate the flexibility of

this approach by applying it to three different settings which are all ubiquitous

in quantum technologies: population transfer in a two-level system beyond the

rotating wave approximation [115–118], transport of a single neutral atom in an

optical trap [119–121] and the transport of two trapped ions in an anharmonic

trap [36, 122–125].

3.3 Formalism of eSTA

Consider a closed quantum system described by a Hamiltonian Hµ, which we

will refer to as the system Hamiltonian. Our goal is to change the Hamiltonian in

time so that the system evolves from the initial state |Ψ0⟩ at t = 0 to the target

state |ΨT ⟩ in a given total time tf . The Schrödinger equation is iℏ ∂
∂t
|Ψ(t)⟩ =

Hµ(λ⃗; t)|Ψ(t)⟩, where the value of µ fixes the form of the Hamiltonian and the

time dependent control of the system parameters is characterised by λ⃗. The

fidelity for this evolution is F(µ, λ⃗) =
∣∣∣⟨ΨT |Uµ,λ⃗(tf , 0)|Ψ0⟩

∣∣∣2.
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Figure 3.1: Schematic overview of eSTA: (a) Fidelity using
the STA protocol λ⃗0 as a function of the Hamiltonian parame-
terisation µ. Red dot indicates the fidelity at the point µs. (b)
Surface diagram of the fidelity for different Hamiltonians µ and
different control protocols λ⃗. The black arrow shows the gradient
at (µs, λ⃗0). The solid red line indicates the parabolic approxi-
mation with the red triangle located at its maximum. (c) Cross
section of part (b), showing the fidelity for the system Hamil-
tonian as a function of the control parameterisation. (d) Set of
control protocols using STA methods (blue, inner region) and

using eSTA (green, outer region)

First the system Hamiltonian Hµ (which is not easily dealt with using STA

techniques) is approximated by an idealised, simpler Hamiltonian H0 where an

STA method can be applied. The manipulations required for the STA protocol

are parameterised by λ⃗0 ∈ RN . Our goal is to find λ⃗ such that the fidelity of

this chosen evolution under Hµ is improved, where the method of improvement

is motivated by the GRAPE algorithm [5, 126]. We now specify that the par-

ticular system we want to control has Hamiltonian Hµ=µs , and that Hµ=0 is

the approximate STA Hamiltonian. Clearly, just using the STA protocol that
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was designed for the idealised Hamiltonian H0 does not give perfect fidelity for

the system Hamiltonian Hµs (see red dot in Fig. 3.1(a)). However, we assume

that the difference between the system and idealised Hamiltonians µs is small.

Hence, we also assume that using the STA protocol λ⃗0 for the system Hamilto-

nian is close to optimal, see Fig. 3.1(b). In order to calculate how much and

in what manner to alter the original STA scheme λ⃗0, we calculate the gradi-

ent with respect to λ⃗ and assume that the fidelity behaves quadratically in the

neighborhood of (µs, λ⃗0), see Fig. 3.1(c).

The new control function parameterised by λ⃗ is given by λ⃗s = λ⃗0 + ϵ⃗, where

the correction is

ϵ⃗ ≈
2
[
1− F(µs, λ⃗0)

]
∣∣∣∇F (µs, λ⃗0)

∣∣∣ ∇F (µs, λ⃗0)∣∣∣∇F (µs, λ⃗0)
∣∣∣ , (3.1)

and ∇ = ∇λ⃗ is the gradient with respect to λ⃗. Here, we have assumed the

fidelity at the maximum of the parabola (see red triangle in Figs. 3.1(b) and

3.1(c)) is approximately one i.e. F (µs, λ⃗0 + ϵ⃗) ≈ 1.

To calculate ϵ⃗ we must estimate the gradient and the value of the fidelity

at (µs, λ⃗0), (see red dot in Fig. 3.1). To derive these estimates, we assume

that the initial state |Ψ0⟩ and the final target state |ΨT ⟩ are independent of

the parameterisation µ. Since STA methods can be applied for the idealised

Hamiltonian, the solutions |χn(t)⟩ are known (using Lewis-Riesenfeld invariants

for example). Since U0,λ⃗0
(t2, t1) is the time-evolution for µ = 0, we have that

|χn(t)⟩ = U0,λ⃗0
(t, 0)|χn(0)⟩ and U0,λ⃗0

(t, s) =
∑

n |χn(t)⟩⟨χn(s)|. We assume

|χ0(0)⟩ = |Ψ0⟩ and therefore |χ0(tf )⟩ = |ΨT ⟩.

We now estimate the terms needed to calculate the correction, assuming

that we can neglect higher order contributions in both µ and ϵ⃗. We start with

a series expansion Hµ(λ⃗; t) =
∑∞

n=0 µ
nH(n)(λ⃗; t) where H(0)(λ⃗; t) = H0(λ⃗; t).

Using time-dependent perturbation theory [23], we construct a series expansion

of the corresponding time-evolution operator Uµ,λ⃗(t2, t1) =
∑∞

n=0 µ
nU

(n)

λ⃗
(t2, t1)
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where exact form of the first, second and third order can be found in Appendix

3.8.

From a series expansion of the fidelity in µ we get F (µ, λ⃗0) =
∑∞

n=0 µ
nF (n).

The STA scheme works perfectly for the idealised Hamiltonian by construction,

F (0) = 1. For the higher orders, one gets (see Appendix 3.8 for details):

F (1) = 0,

F (2) = − 1

ℏ2
∞∑
n=1

∣∣∣∣∫ tf

0

dt α
(1)
n,0(t)

∣∣∣∣2 ,
F (3) ≈ − 2

ℏ2
∞∑
n=1

Re
[(∫ tf

0

dt α
(1)
n,0(t)

)∗(∫ tf

0

dt α
(2)
n,0(t)

)]
, (3.2)

where we have defined α
(j)
n,m(t) = ⟨χn(t)|H(j)(λ⃗0; t)|χm(t)⟩. Using these results,

the fidelity F (µs, λ⃗0) can be approximated up to second order in µs as

F (µs, λ⃗0) ≈ 1− 1

ℏ2
∞∑
n=1

∣∣∣∣∫ tf

0

dt
(
µsα

(1)
n,0(t) + µ2

sα
(2)
n,0(t)

)∣∣∣∣2 ≈ 1− 1

ℏ2
∞∑
n=1

|Gn|2 ,

(3.3)

where

Gn =

∫ tf

0

dt⟨χn(t)|
[
HS(λ⃗0; t)−H(0)(λ⃗0; t)

]
|χ0(t)⟩, (3.4)

and HS = Hµs . The gradient of the fidelity with respect to λ⃗ can be expanded

in µ as ∇F (µ, λ0) =
∑∞

n=0 µ
nF⃗ (n). The relevant orders are in Appendix 3.8,

F⃗ (0) = 0⃗

F⃗ (1) = − 2

ℏ2
∞∑
n=1

Re
[∫ tf

0

dt α
(1)
n,0(t)

∫ tf

0

ds β⃗
(0)
n,0(s)

∗
]
,

F⃗ (2) ≈ − 2

ℏ2
∞∑
n=1

Re

[(∫ tf

0

dt β⃗
(1)
n,0(t)

)∗(∫ tf

0

dt α
(1)
n,0(t)

)

+

(∫ tf

0

dt β⃗
(0)
n,0(t)

)∗(∫ tf

0

dt α
(2)
n,0(t)

)]
, (3.5)
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where we have defined β⃗(j)
n,m(t) = ⟨χn(t)|∇H(j)(λ⃗0; t)|χm(t)⟩. From these results,

we get up to second order in µs that

∇F (µs, λ0) ≈ −2µs

ℏ2
∞∑
n=1

Re

{∫ tf

0

dt
[
µsα

(1)
n,0(t) + µ2

sα
(2)
n,0(t)

]
∫ tf

0

ds
[
β⃗
(0)
n,0(s) + µβ⃗

(1)
n,0(s)

]∗}

≈ − 2

ℏ2
∞∑
n=1

Re
(
GnK⃗

∗
n

)
, (3.6)

where

K⃗n =

∫ tf

0

dt ⟨χn(t)|∇HS(λ⃗0; t)|χ0(t)⟩. (3.7)

From Eq. (3.1), we finally arrive at the key result of the chapter, the ana-

lytical expression for the eSTA protocol

λ⃗s ≈ λ⃗0 −

(∑N
n=1 |Gn|2

) [∑N
n=1 Re

(
G∗

nK⃗n

)]
∣∣∣∑N

n=1 Re
(
G∗

nK⃗n

)∣∣∣2 , (3.8)

where Gn is given by Eq. (3.4), Kn is given by Eq. (3.7), and we have truncated

the infinite sums to the first N terms.

We underline that Gn and K⃗n can be both easily calculated as only the

Hamiltonians and the known solutions for the idealised Hamiltonian H0 are

involved. Note that using the eSTA method provides protocols which are out-

side the class of STA schemes (see Fig. 3.1(d)) and so represents a significant

improvement over previous perturbation based optimisation [79].
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3.4 Population inversion without the Rotating-

Wave-Approximation

As a first example, we consider the following system Hamiltonian

HS =
ℏ
2

 −δ(λ⃗; t) Ω∗(λ⃗; t) (1 + e−2iωt)

Ω(λ⃗; t) (1 + e2iωt) δ(λ⃗; t)

 ,

which generically appears in many areas of quantum technologies. A common

setting is that of two atomic states which are coupled by a classical light source

(e.g. a laser) where the Rabi frequency Ω depends on the light amplitude and

the detuning δ depends on the light frequency ω.

The terms e±2iωt are typically neglected, which is known as the “Rotating-

wave-approximation"(RWA) [127]. Our idealised Hamiltonian H0 is then just

HS where the terms e±2iωt are set to zero.

While this approximation may work well for adiabatic methods, it will fail

for fast nonadiabatic operations. Our goal is to use the eSTA method to provide

fast population inversion even in the regime where the RWA does not hold (i.e.

small values of tf ). This has been previous attempted using numerical methods

[118]; however here it will be done analytically.

Our initial scheme λ⃗0 was derived to be stable concerning systematic errors

in the Rabi frequency [79] (e.g. arising from the Gaussian profile of the laser),

and is given by

Ω(λ⃗0; t) =
π

tf

√
1 + 16 sin

(
πt

tf

)6

,

δ(λ⃗0; t) = −8
π

tf
sin

(
πt

tf

)
sin

(
2πt

tf

)
1 + 4 sin (πt/tf )

6

1 + 16 sin (πt/tf )
6 (3.9)

By design, this scheme gives perfect population inversion for the idealised Hamil-

tonian H0.
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Figure 3.2: Population inversion without rotating-wave ap-
proximation: Fidelity F versus final time tf for two-level Hamil-
tonian Eq. (3.9); STA scheme λ⃗0 (blue, dashed line) and the
eSTA scheme λ⃗s (orange, solid line). Inset: Fidelity F for the
idealised Hamiltonian H0 using the eSTA scheme λ⃗s (red, solid

line).

The scheme is modified as Ω(λ⃗; t) = Ω(λ⃗0; t)+f1(⃗ϵ; t) and δ(λ⃗; t) = δ(λ⃗0; t)+

f2(⃗ϵ; t) where f1 and f2 are the minimal polynomial functions which fulfil

fi(⃗ϵ; t
′) = 0 for t′ = 0, tf and fi(⃗ϵ;

jtf
5
) = ϵ4(i−1)+j, where we have chosen to use 8

components ϵ⃗ = (ϵn)n=1,...,8. Note that f1(⃗0, t) = 0 and f2(⃗0, t) = 0. Since there

are only two solutions in this setting, we can calculate ϵ⃗ exactly, without any

truncation. These solutions can be found analytically using Lewis-Riesenfeld

Invariants [79].

The fidelity using the STA scheme and eSTA schemes for the system Hamil-

tonian HS, is shown in Fig. 3.2. For the shown final times tf , the eSTA scheme

outperforms the original STA scheme, since it always results in a higher or equal

fidelity. The eSTA schemes are outside the set of STA control functions (see

Fig. 3.1(d)). This can been seen by calculating the fidelity of the eSTA schemes

for the the idealised Hamiltonian H0 (see inset of Fig.3.2). Since applying the

STA scheme to the idealised Hamiltonian gives unit fidelity for all total times
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tf by construction, every fidelity value below one shows that the eSTA scheme

is outside the set of STA schemes.

3.5 Single Particle Transport

We consider transport of a particle in a one dimensional trap over a distance d

in a total time tf . The trap trajectory q0(λ⃗, t) is parameterised by a real valued

control vector λ⃗ = (λ1, ..., λ6), so that q0(0) = 0, q0(tf ) = d and q0(j/7) = λj for

j = 1, ..., 6. The system/idealised Hamiltonian is HS/0 =
p2

2m
+ VS/0[x− q0(λ⃗, t)]

where VS(x) = U0

[
1− exp

(
−mω2

2U0
x2
)]

is a Gaussian potential, and V0(x) =

1
2
mω2x2, since V (x) → V0(x) for µ = 1/a → 0 where a = U0/(ℏω). There are

known STA techniques for H0 to design trajectories q0 that give perfect fidelity

e.g. using Lewis-Riesenfeld invariants [77]. A known dynamical invariant for

harmonic trap transport has the form I(t) = 1
2m

(p−mq̇c)
2+1

2
mω2 [x−mqc (t)]

2

where qc(t) must satisfy the auxiliary equation

q̈c + ω2 (qc − q0) = 0. (3.10)

This equation relates the physical trap trajectory q0(t) with the particle’s clas-

sical path qc(t) (which parameterises the state). q0(t) can be inverse engineered

using boundary conditions and an appropriately chosen qc(t) via Eq. (3.10). To

ensure the system is in the ground state after transport and that the trap is

stationary, we require the boundary conditions qc(0) = 0, qc(tf ) = d, dnqc(t′)
dtn

= 0

for n = 1, . . . , 4 at t′ = 0, tf . We set qc(t) =
∑10

n=0 cnt
n, and find q0(t) from

Eq. (3.10). To implement eSTA we need only to calculate ϵ⃗ using Gn and K⃗n.

The eigenstates |χn(s)⟩ are known analytically from [77], and so the integrals

Gn and Kn can be calculated for each n. In the following, we will show that

using N = 1 is sufficient.

In Fig. 3.3, the fidelity F is shown versus different final times tf using the
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Figure 3.3: Transport of a single particle: Fidelity F versus
total time tf using the STA scheme λ⃗0 (blue, dashed line) and
the eSTA scheme λ⃗s (N = 1: orange, solid line, N = 2: black,
dots); a = 100 × 103. Left inset: Fidelity F for the idealised
Hamiltonian H0 using the eSTA scheme λ⃗s (red, dashed-dotted
line). Right inset: threshold time t0.99 versus a. Transport dis-

tance d = 1562σ.

STA transport scheme λ⃗0 (blue, dashed line) and eSTA transport scheme λ⃗s

(using N = 1, orange, solid line). This was calculated numerically where the

time evolution was performed using the Fourier split-operator method and the

initial ground state was found by imaginary-time evolution. For generality, we

use natural units; the frequency ω of the approximated harmonic potential as

the inverse time unit, σ =
√
ℏ/(mω) as the length scale and ℏω as the energy

scale. We set the transport distance to d = 1562σ and a = 100×103. The chosen

dimensionless values can correspond to different physical settings, for example

to a 87Rb atom within an optical Gaussian trap of U0 = 0.4mK, a trap width

of w = 2
√
aσ = 334µm (purposely chosen very wide to be far from the regime

of classical and adiabatic motion) and a transport distance of d = 825µm.

We see a significant improvement in transport fidelity using eSTA in com-

parison with STA. For extremely short times the approximation breaks down

and neither STA nor eSTA produce good fidelity. For longer times the system
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approaches adiabaticity and the two schemes converge. Clearly it is sufficient

to consider just the first term, as the results for N = 1 and N = 2 are identical,

see Fig. 3.3. While not a requirement, we note that the symmetry of the STA

trajectory is preserved by the eSTA protocol.

To highlight these eSTA schemes are outside the set of STA schemes (Fig.

3.1(d)), we calculate the fidelity using λ⃗s for the idealised Hamiltonian H0 (left

inset in Fig. 3.3, red dashed-dotted line). By design every STA scheme must

give a fidelity of exactly one, which is not necessarily true when using the eSTA

protocol.

To examine the dependence on a, we look at a threshold time t0.99 which is

defined as the time such that the fidelity F ≥ 0.99 for all final times tf ≥ t0.99.

The right inset plot shows this threshold time t0.99 versus different values of

a. We see that the eSTA threshold time (orange, solid line) decreases with

increasing a and is always much lower than the corresponding STA threshold

time (blue, dashed line). We have also investigated other potentials which

produced qualitatively similar results to the Gaussian trap. This underlines the

broad applicability of eSTA for single particle transport.

3.6 Transport of two ions including Coulomb in-

teraction

We now consider transport of two interacting (Coulomb) ions with equal mass

m and charge +e, in a one dimensional Gaussian trap VS (as in the previous

case), over a distance d, and in total time tf . The coordinates of the ions in

the lab frame are given by x1 and x2. We assume that x1 > x2 and treat the

ions as distinguishable. We define M = 2m and move to center-of-mass and

relative coordinates defined by xc = (x1 + x2) /2 and xr = (x1 − x2) /2. The
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Figure 3.4: Transport of two ions including Coulomb interac-
tion: a = 107 for the outer figure, C̃ = 7.35× 107; otherwise see

caption of Fig. 3.3.

system/idealised Hamiltonian then becomes

HS/0 =
p2c
2M

+
p2r
2M

+
C

2xr
+ VS/0

[
xc + xr − q0(λ⃗, t)

]
+ VS/0

[
xc − xr − q0(λ⃗, t)

]
(3.11)

where C = e2/4πϵ0, and V0(x) = 1
2
Mω2x2 in this case. As H0 becomes separable

in center-of-mass and relative coordinates, STA techniques need only be applied

to the center-of-mass [124]. For the eSTA scheme, we assume that the relative

distance between the ions is constant and equal to the stationary equilibrium

distance when calculating Gn and K⃗n.

In Fig. 3.4, the fidelity F is shown versus different final times tf using the

STA transport scheme λ⃗0 (dashed, blue line) and the eSTA transport scheme λ⃗s

(using N = 1, orange, solid line). We set the transport distance to d = 1562σ,

a = 107 and the dimensionless Coulomb constant C̃ = e2

4πϵ0
1

σℏω = 7.35 × 107.

These dimensionless values can correspond to different physical settings, for

example transport of two 9Be+ ions over 370 µm in a surface ion trap of depth

U0 = 0.8 meV, and frequency 0.13 MHz (again a large trap width).
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Similar to the previous case, we see a significant improvement in transport

fidelity based on eSTA in comparison with STA. For longer times the system

approaches adiabaticity and the two schemes converge. It is sufficient to con-

sider just the first order (i.e. set N = 1 when calculating the eSTA scheme); to

check this we also plot the result for N = 2 (black dots) which give identical

results. As before, one finds that the eSTA schemes are outside the set of STA

schemes. The inset of Fig. 3.4 shows the threshold time t0.99 versus a. We see

that the eSTA threshold times (using N = 1, orange, solid line) decreases with

increasing a and it is always significantly lower than the corresponding STA

threshold time (blue dashed line).

3.7 Conclusion

In this chapter we have presented an analytic extension to previous STA quan-

tum control methods. We have demonstrated through three complementary

examples relevant to quantum technologies, that this method can be applied

to improve performance and achieve physical insight. Further work could focus

on deriving strict criteria and uncertainty relations for when the method works

effectively. The eSTA procedure could be extended in several ways such as to

condensates, open systems, and even beyond the scope of quantum control.
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3.8 Appendix

In the following we provide further details concerning the estimations of F (µ, λ⃗0)

and ∇F (µ, λ⃗0), which are used to derive the main eSTA formula. We highlight

again that throughout the derivations, ∇ = ∇λ⃗ i.e. the gradient with respect to

λ⃗. A series expansion of the time-evolution operator of the system Hamiltonian

is

Uµ,λ⃗(t2, t1) =
∞∑
n=0

µnU
(n)

λ⃗
(t2, t1), (3.12)

where the first order is

U
(1)

λ⃗
(t2, t1) = − i

ℏ

∫ t2

t1

dt U
(0)

λ⃗
(t2, t)H(1)(λ⃗; t)U

(0)

λ⃗
(t, t1), (3.13)

the second order is

U
(2)

λ⃗
(t2, t1) =− 1

ℏ2

∫ t2

t1

dt

∫ t

t1

dsU
(0)

λ⃗
(t2, t)H(1)(λ⃗; t)U

(0)

λ⃗
(t, s)H(1)(λ⃗; s)U

(0)

λ⃗
(s, t1)

− i

ℏ

∫ t2

t1

dt U
(0)

λ⃗
(t2, t)H(2)(λ⃗; t)U

(0)

λ⃗
(t, t1), (3.14)

and finally the third order is

U
(3)

λ⃗
(t2, t1) =

i

ℏ3

∫ t2

t1

dt

∫ t

t1

ds

∫ s

t1

du
[

U
(0)

λ⃗
(t2, t)H(1)(λ⃗; t)U

(0)

λ⃗
(t, s)H(1)(λ⃗; s)U

(0)

λ⃗
(s, u)H(1)(λ⃗;u)U

(0)

λ⃗
(u, t1)

]
− 1

ℏ2

∫ t2

t1

dt

∫ t

t1

ds U
(0)

λ⃗
(t2, t)

[
H(1)(λ⃗; t)U

(0)

λ⃗
(t, s)H(2)(λ⃗; s)

+H(2)(λ⃗; t)U
(0)

λ⃗
(t, s)H(1)(λ⃗; s)

]
U

(0)

λ⃗
(s, t1)

− i

ℏ

∫ t2

t1

dt U
(0)

λ⃗
(t2, t)H(3)(λ⃗; t)U

(0)

λ⃗
(t, t1). (3.15)
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We define the following useful matrix elements

α(j)
n,m(t) = ⟨χn(t)|H(j)(λ⃗0; t)|χm(t)⟩, (3.16)

β⃗(j)
n,m(t) = ⟨χn(t)|∇H(j)(λ⃗0; t)|χm(t)⟩. (3.17)

Note also that the matrix elements defined in Eq. (3.16) and Eq. (3.17) obey

the relations α(j)
n,m(t) = α

(j)
m,n(t)

∗
and β⃗

(j)
n,m(t) = β⃗

(j)
m,n(t)

∗
. Hence it follows that

α
(j)
n,n(t) and β⃗(j)

n,n(t) are real.

3.8.1 Approximation of F (µ, λ⃗0)

From a series expansion of the fidelity in µ we get

F (µ, λ⃗0) =
∞∑
n=0

µnF (n). (3.18)

By defining

uj = ⟨χ0(tf )|U (j)

λ⃗0
(tf , 0)|χ0(0)⟩, (3.19)

we can express the coefficients in Eq. (3.18) generally as

F (n) =
n∑

k=0

un−ku
∗
k

=


∣∣un/2∣∣2 + 2 Re

(∑n
2
−1

k=0 un−ku
∗
k

)
, n is even

2 Re
(∑(n−1)/2

k=0 un−ku
∗
k

)
, n is odd

Since the STA scheme works perfectly for the idealised Hamiltonian by con-

struction, we have that u0 = 1 and hence F (0) = 1. From Eq. (3.13), we

get

u1 = − i

ℏ

∫ tf

0

dt ⟨χ0(t)|H(1)(λ⃗0; t)|χ0(t)⟩ = − i

ℏ

∫ tf

0

dt α
(1)
0,0(t). (3.20)
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As u1 is purely imaginary, it follows that F (1) = 0.

Now by using Eq. (3.14), we get

u2 =− 1

ℏ2

∫ tf

0

dt

∫ t

0

ds⟨χ0(t)|H(1)(λ⃗; t)U
(0)

λ⃗0
(t, s)H(1)(λ⃗; s)|χ0(s)⟩

− i

ℏ

∫ tf

0

dt ⟨χn(t)|H(2)(λ⃗0; t)|χ0(t)⟩. (3.21)

Using U (0)

λ⃗0
(t, s) =

∑
n |χn(t)⟩⟨χn(s)| simplifies this to

u2 = − 1

ℏ2

∫ tf

0

dt

∫ t

0

ds
∑
n

α
(1)
0,n(t)α

(1)
n,0(s)−

i

ℏ

∫ tf

0

dt α
(2)
0,0(t).

After a suitable transformation of the integration variables, we can also write

this as

u2 =− 1

2ℏ2

∫ tf

0

dt
∑
n

[∫ t

0

ds α
(1)
0,n(t)α

(1)
n,0(s) +

∫ tf

t

ds α
(1)
0,n(s)α

(1)
n,0(t)

]
− i

ℏ

∫ tf

0

dt α
(2)
0,0(t). (3.22)

This form will be useful for calculating F (2) since

2 Re(u2) = − 1

ℏ2
∑
n

∫ tf

0

dt

∫ tf

0

dsRe
[
α
(1)
0,n(t)α

(1)
n,0(s)

]
= − 1

ℏ2
∑
n

Re
[∫ tf

0

dt α
(1)
0,n(t)

∫ tf

0

ds α
(1)
n,0(s)

]

= − 1

ℏ2
∑
n

∣∣∣∣∫ tf

0

dt α
(1)
n,0(t)

∣∣∣∣2 (3.23)

because α(1)
0,n = α

(1)
n,0

∗
and α(2)

0,0(t) is real. Finally, we get

F (2) = − 1

ℏ2
∞∑
n=1

∣∣∣∣∫ tf

0

dt α
(1)
n,0(t)

∣∣∣∣2 . (3.24)
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In a similar way by using Eq. (3.15), we arrive at

u3 =
i

ℏ3

∫ tf

t1

dt

∫ t

0

ds

∫ s

0

du
∑
n,m

α
(1)
0,n(t)α

(1)
n,m(s)α

(1)
n,0(u)

− 1

ℏ2

∫ tf

0

dt

∫ t

0

ds
∑
n

[
α
(1)
0,n(t)α

(2)
n,0(s) + α

(2)
0,n(t)α

(1)
n,0(s)

]
− i

ℏ

∫ tf

0

dt α
(3)
0,0. (3.25)

We use this together with previous results to calculate F (3). However, we re-

strict to the contributions which involve double integrals (while ignoring the

contributions with three integrals over time). In such a way,

F (3) ≈ − 2

ℏ2
∞∑
n=1

Re
[(∫ tf

0

dt α
(1)
n,0(t)

)∗(∫ tf

0

dt α
(2)
n,0(t)

)]
.

3.8.2 Approximation of ∇F (µ, λ⃗0)

The gradient of the fidelity

∇F (µ, λ⃗0) = 2 Re
[
⟨χ0(tf )|∇Uµ,λ⃗0

(tf , 0)|χ0(0)⟩⟨χ0(tf )|Uµ,λ⃗0
(tf , 0)|χ0(0)⟩∗

]
,

(3.26)

can be expand in µ

∇F (µ, λ0) =
∞∑
n=0

µnF⃗ (n). (3.27)

If we define

v⃗j = ⟨χ0(tf )|∇U (j)

λ⃗0
(tf , 0)|χ0(0)⟩, (3.28)
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then we can express the coefficients in Eq. (3.27) as

F⃗ (n) = 2 Re

(
n∑

k=0

v⃗n−ku
∗
k

)
. (3.29)

It will be useful to define a generalisation of v⃗0 namely

W⃗n,m(t2, t1) ≡ ⟨χn(t2)|∇U (0)

λ⃗0
(t2, t1)|χm(t1)⟩. (3.30)

Using time-dependent perturbation theory (similar to the previous subsection)

and H(0)(λ⃗) ≈ H(0)(λ⃗0) + (λ⃗− λ⃗0) · ∇H(0)(λ⃗0), simplifies this to

W⃗n,m(t2, t1) = − i

ℏ

∫ t2

t1

dt β⃗(0)
n,m(t). (3.31)

Especially v⃗0 = W⃗0,0(tf , 0). Since W⃗0,0 is purely imaginary, it follows that

F⃗ (0) = 0⃗.

From Eq. (3.13), we get

v⃗1 = − i

ℏ

∫ tf

0

dt⟨χ0(tf )|∇
[
U

(0)

λ⃗
(tf , t)H(1)(λ⃗; t)U

(0)

λ⃗
(t, 0)

]∣∣∣
λ⃗=λ⃗0

|χ0(0)⟩. (3.32)

Using the product rule and inserting identities =
∑

n |χn(t)⟩⟨χn(t)| we arrive at

v⃗1 =− i

ℏ

∫ tf

0

dt

{∑
n

[
W⃗0,n(tf , t)α

(1)
n,0(t) + α

(1)
0,n(t)W⃗n,0(t, 0)

]
+ β⃗

(1)
0,0(t)

}

=− 1

ℏ2
∑
n

∫ tf

0

dt

[∫ tf

t

ds β⃗
(0)
0,n(s)α

(1)
n,0(t) +

∫ t

0

ds α
(1)
0,n(t)β⃗

(0)
n,0(s)

]
− i

ℏ

∫ tf

0

dt β⃗
(1)
0,0(t). (3.33)

In order to find F⃗ (1), we first calculate

2 Re(v⃗1) = − 2

ℏ2
∑
n

Re
[∫ tf

0

dt α
(1)
n,0(t)

∫ tf

0

ds β⃗
(0)
n,0(s)

∗
]
, (3.34)
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and

2 Re(v⃗0u∗1) =
2

ℏ2
Re
[∫ tf

0

dtα
(1)
0,0(t)

∫ tf

0

ds β⃗
(0)
0,0(s)

∗
]
. (3.35)

By combining these two results gives

F⃗ (1) = − 2

ℏ2
∞∑
n=1

Re
[∫ tf

0

dt α
(1)
n,0(t)

∫ tf

0

ds β⃗
(0)
n,0(s)

∗
]
. (3.36)

Using Eq. (3.14) and a similar calculation as above, we arrive at

v⃗2 =
i

ℏ3

∫ tf

0

dt

∫ t

0

ds
∑
n,m

[∫ tf

t

du β⃗
(0)
0,n(u)α

(1)
n,m(t)α

(1)
m,0(s)

+

∫ t

s

duα
(1)
0,n(t)β⃗

(0)
n,m(u)α

(1)
m,0(s) +

∫ s

0

duα
(1)
0,n(t)α

(1)
n,m(s)β⃗

(0)
m,0(u)

]

− 1

ℏ2

∫ tf

0

dt

∫ t

0

ds

{∑
n

[
β⃗
(1)
0,n(t)α

(1)
n,0(s) + α

(1)
0,n(t)β⃗

(1)
n,0(s)

]}

− 1

ℏ2
∑
n

∫ tf

0

dt

[∫ tf

t

dsβ⃗
(0)
0,n(s)α

(2)
n,0(t) +

∫ t

0

dsα
(2)
0,n(t)β⃗

(0)
n,0(s)

]
− i

ℏ

∫ tf

0

dt β⃗
(2)
0,0(t). (3.37)

Similarly to the calculation of F⃗ (2), we neglect contributions involving three

integrals over time which results in

F⃗ (2) ≈ − 2

ℏ2
∞∑
n=1

Re

[(∫ tf

0

dt β⃗
(1)
n,0(t)

)∗(∫ tf

0

dt α
(1)
n,0(t)

)

+

(∫ tf

0

dt β⃗
(0)
n,0(t)

)∗(∫ tf

0

dt α
(2)
n,0(t)

)]
. (3.38)
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Chapter 4

Robustness of enhanced shortcuts

to adiabaticity in lattice transport

4.1 Overview

In this Chapter we consider the robustness of eSTA to different types of noise.

It is conjectured that eSTA can offer simultaneously improvement in fidelity and

robustness against noise. We first provide a heuristic argument as to why this

should be true, and then provide numerical evidence of this claim by applying

eSTA to fast atomic transport using an optical lattice and evaluating several

appropriate robustness measures. We consider several starting STA schemes

from which we construct improved eSTA schemes. We show that the eSTA

schemes not only produce higher fidelities than the original STA schemes, but

also remain more stable against several common errors and environmental noise.

This chapter is based on the following publication:

C. Whitty, A. Kiely and A. Ruschhaupt,

Robustness of enhanced shortcuts to adiabaticity in lattice transport,

Phys. Rev. A 105, 013311 (2022).

https://doi.org/10.1103/PhysRevA.105.013311
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4.2 Introduction

Quantum devices and technologies have the potential to revolutionise a broad

range of scientific and engineering disciplines [89, 128]. However, fast and stable

control of these systems is a significant barrier to building practical devices [93].

Quantum control needs to be fast to avoid decoherence, while simultaneously

being robust and stable against implementation errors. Furthermore, it should

be effective within the constrained resources of the physical implementation,

such as energetic cost or pulse bandwidth [122].

Often practical quantum control relies heavily on numerical optimisation,

which has some drawbacks: it can be computationally expensive, difficult to

scale and it may be unclear how to understand or generalise the resulting

schemes [129–131]. There exists alternative analytic techniques, such as Short-

cuts to Adiabaticity (STA), which give exact quantum state transfer. However,

analytic techniques such as STA are known exactly for only a limited number of

physical systems [10, 11, 72]. In Chapter 3 we developed an extension to STA

methods, known as enhanced Shortcuts to Adiabaticity (eSTA), that provides

control of a broader class of systems [132]. Crucially, eSTA is an analytic tech-

nique that allows physical insight into the control scheme. Additionally, eSTA

has a much lower computation cost compared with full numerical optimisation.

eSTA has been applied to population inversion in a two-level system without

the rotating-wave approximation and to the transport of a Gaussian trap with

one and two ions [132]. There has already been a first application of eSTA

techniques to the transport of atoms in an optical lattice [12].

STA schemes are extremely robust to noise and systematic errors [35, 40,

79, 101, 133]. An obvious question is whether robustness remains in the eSTA

framework. Therefore, the main goal of this chapter is to provide a thorough

investigation into how this stability is affected by the application of eSTA.
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We choose atomic transport using an optical lattice to examine the robust-

ness of eSTA, since the coherent control of lattice systems has many practical

quantum technological applications. For example: transport in atomic chains

[134], modeling condensed matter systems [135], many-body phenomena in ul-

tracold gases [136] and the trapping and control of ions [137, 138]. There

has been experimental exploration of atom transport via a lattice potential

around the quantum speed limit [76]. We consider similar physical parameters

with transport times near this proposed speed limit [76]. We then show that

the eSTA schemes provide improved robustness over the corresponding STA

schemes, when considering a variety of imperfections.

In the following section we give a brief review of the formalism of eSTA.

In Section 4.4 we present the physical optical lattice model we are considering;

we will introduce different control schemes and we examine and compare the

fidelities achieved by eSTA. In Section 4.5, we first define and then examine

the deviation of the eSTA control function under variations of the Hamiltonian.

This gives a preliminary indication of the stability of eSTA. In the following

sections we compare the stability of eSTA and STA in more detail. This includes

a definition of a sensitivity quantity and an error bound for a quantitative

comparison of the stability of different schemes. In Section 4.6 we consider

systematic errors during the transport. In Section 4.7 the stability of lattice

transport is examined for noisy fluctuations.

4.3 eSTA Formalism

The purpose of eSTA is to provide a formalism by which existing STA methods

can be extended to quantum control problems beyond their current scope.

We start with a system with Hamiltonian Hs that has a difficult quantum

control problem. However, we assume that the Hamiltonian Hs can be approx-

imated by another Hamiltonian H0 of an idealised system that has an exact
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STA solution. In the following we construct the improved eSTA protocol for

Hs using the solutions of the idealised system H0.

4.3.1 Construction of eSTA control scheme

To make the approximation of Hs by H0 precise, we assume there is a parameter

µ and Hamiltonians Hµ such that Hµ=µs = Hs and Hµ=0 = H0. We also assume

we can parameterise the control scheme by a vector λ⃗. We set λ⃗0 to denote the

STA scheme, and λ⃗s as the eSTA scheme.

Our goal is to evolve the initial state |Ψ0⟩ at time t = 0 to the target state

|ΨT ⟩ in a given total time tf . As previously discussed, we assume there exists

an idealised system with known STA solutions and Hamiltonian H0(λ⃗0; t). λ⃗0

solves the control problem for H0, and we assume it works approximately for

Hµs . To state this formally we define the fidelity

F(µ, λ⃗) =
∣∣∣⟨ΨT |Uµ,λ⃗(tf , 0)|Ψ0⟩

∣∣∣2 , (4.1)

where Uµ,λ⃗ is the time evolution operator using the Hamiltonian Hµ with control

scheme λ⃗. We have that F(µs, λ⃗0) < F(0, λ⃗0) = 1; see also Fig. 4.1 (a).

The goal of eSTA is to produce a λ⃗s that is built upon λ⃗0, such that we

maximise F(µs, λ⃗s) with F(µs, λ⃗s) > F(µs, λ⃗0). We define λ⃗s = λ⃗0 + ϵ⃗, and

eSTA is now used to calculate ϵ⃗.

To find ϵ⃗, we use information about the fidelity and the gradient of the

fidelity with respect to λ⃗ to construct a parabola in the parameter space of

λ⃗ and F , as illustrated in Fig. 4.1 (b). We assume that this parabola is a

good approximation to the fidelity landscape in the direction of the gradient at

(µs, λ⃗0). This is schematically shown in Fig. 4.1 (b), with the dashed red line

representing the parabolic approximation and the solid-blue line denoting the

actual fidelity landscape. Furthermore we assume that the maximum of this
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(a) (b)

Figure 4.1: (a) is a schematic representation of fidelity versus
µ. The fidelity of Hµ using λ⃗0 is the dash-dotted blue line.
The blue square is Hµs using λ⃗0. The red dot is the improved
fidelity of Hµs using λ⃗s. The dashed-orange line represents the
assumed parabolic profile of the fidelity as H0 → Hµs , with the
improved eSTA control λ⃗µ calculated for each µ. The slopes of
each line at µs are depicted as solid-black lines. (b) is a diagram
of eSTA in control space (λ⃗, F ). The starting STA scheme fidelity
(blue square), gradient (black arrow) and fidelity at λ⃗s (red dot)
are shown. The resulting eSTA approximate parabola (dashed-
red line), and true fidelity landscape (solid-blue line) are also

displayed.

parabola gives perfect fidelity, i.e. F (µs, λ⃗0 + ϵ⃗) ≈ 1. We can then write

ϵ⃗ ≈
2
[
1− F(µs, λ⃗0)

]
∣∣∣∇F (µs, λ⃗0)

∣∣∣ ∇F (µs, λ⃗0)∣∣∣∇F (µs, λ⃗0)
∣∣∣ , (4.2)

where ∇ = ∇λ⃗, the gradient with respect to λ⃗.

We now calculate ϵ⃗ using an approximation of the gradient and fidelity at

the point (µs, λ⃗0), shown as the blue square in Fig. 4.1. We begin the derivation

of these estimates by assuming that the initial state |Ψ0⟩ and the final target

state |ΨT ⟩ are both the same for the H0 and Hµs systems. We assume that

the idealised H0 system can be treated with STA techniques, i.e. there is a

solution |χ0(t)⟩ of the time evolution leading to fidelity one, i.e. |χ0(0)⟩ =

|Ψ0⟩ and |χ0(tf )⟩ = |ΨT ⟩. In addition, we assume that there are solutions of



Chapter 4. Robustness of eSTA in lattice transport 71

the time evolution of H0 labeled {|χn(t)⟩}n∈N such that {|χn(t)⟩}n∈N0 form an

orthonormal basis for solutions of the Hµs system. So we have

|χn(t)⟩ = U0,λ⃗0
(t, 0)|χn(0)⟩, (4.3)

U0,λ⃗0
(t, s) =

∑
n

|χn(t)⟩⟨χn(s)|. (4.4)

Note that in the following examples, we will use invariant-based inverse engi-

neering to design the STA solutions and in these cases {|χn(t)⟩}n∈N0 are (up to

a phase) the instantaneous eigenstates of the corresponding invariant.

We use time dependent perturbation theory to calculate an approximation

of the fidelity F (µs, λ⃗0) and the gradient of the fidelity ∇F (µs, λ⃗0). We assume

that we can neglect higher order contributions in both µ and ϵ⃗. The details of

the calculations can be found in [132]. For the fidelity F (µs, λ⃗0) we then obtain

up to second order in µs

F (µs, λ⃗0) ≈ 1− 1

ℏ2
∞∑
n=1

|Gn|2 , (4.5)

where

Gn =

∫ tf

0

dt⟨χn(t)|
[
Hµs(λ⃗0; t)−H0(λ⃗0; t)

]
|χ0(t)⟩. (4.6)

For the gradient approximation we find

∇F (µs, λ0) ≈ − 2

ℏ2
∞∑
n=1

Re
(
GnK⃗

∗
n

)
, (4.7)

with

K⃗n =

∫ tf

0

dt ⟨χn(t)|∇Hµs(λ⃗0; t)|χ0(t)⟩. (4.8)
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Using Eq. (4.2), we can now write the analytical expression for the eSTA

protocol λ⃗s ≈ λ⃗0 + ϵ⃗

ϵ⃗ = −

(∑N
n=1 |Gn|2

) [∑N
n=1 Re

(
G∗

nK⃗n

)]
∣∣∣∑N

n=1 Re
(
G∗

nK⃗n

)∣∣∣2 , (4.9)

where Gn is given by Eq. (4.6), Kn is given by Eq. (4.8), and we have truncated

the infinite sums to the first N terms.

It is important to note that Gn and K⃗n can both be easily calculated as

only the Hamiltonians and the known STA solutions for the idealised system

with Hamiltonian H0 are needed. We also note that eSTA can produce protocols

which are outside the class of STA schemes and offers improvement over previous

perturbation based optimisation [132].

4.3.2 Expected stabilities of eSTA and STA

We now provide a general heuristic argument of why it is expected that eSTA

protocols not only have improved fidelity, but also have improved stability com-

pared with their corresponding STA schemes. Let us consider Fig. 4.1 (a),

showing schematically the fidelity versus µ; µ = 0 corresponds with the ap-

proximated system and µs the system of interest. The fidelity of Hµ using the

initial STA control scheme λ⃗0 is the dot-dashed blue line; the dashed-orange

line represents the fidelity using the improved eSTA control λ⃗µ calculated for

each µ. Since the STA and eSTA control schemes agree at µ = 0, the fidelity

must be one for both at this point. By construction, for a given µ the fidelity

produced using the eSTA control scheme (dashed orange line) is higher than

the corresponding one for the STA scheme (dot-dashed blue line). Assuming

that the fidelity behaves as a parabola, the magnitude of the slope of the eSTA

fidelity must be less than the slope of the STA fidelity at µs.

We now consider the effect of a systematic error δ, such that the STA and
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eSTA schemes derived using µs are now applied to the system at a different,

near-by µ = µs(1 + δ). We expect that the derivative of the fidelity in both

cases can be approximated by the slopes shown in Fig. 4.1 (a) (solid-black

lines). Therefore, the fidelity in the eSTA case should vary less than the fidelity

in the STA case. Thus, the eSTA protocol should have higher stability against

changes in µ than the corresponding STA scheme. To confirm this intuitive

reasoning, in the following we will examine the stability in more detail.

4.4 Physical Model

We consider atomic transport in an optical lattice, which currently has no STA

solution. For sufficient trapping depths the lattice potential can be well approxi-

mated locally by the harmonic potential. The transport of a harmonic potential

has an exact STA solution for all transport times using Lewis-Riesenfeld invari-

ants [10, 11]. Hence, we choose the harmonic potential transport STA solutions

as the starting point to produce an eSTA protocol for the lattice transport

problem.

The lattice potential is given by

VS(x) = U0 sin
2 (k0x) , (4.10)

where U0 = αErec, Erec = 2(πℏ)2/mλ2 and k0 = 2π/λ. We choose α = 150

in agreement with a physically implemented value in [76]. The motion of the

lattice is described by a function q0(t), and Hamiltonian Hµs = HS where

HS =
p2

2m
+ VS

[
x− q0(λ⃗, t)

]
. (4.11)
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For designing the STA trajectories, we apply a harmonic approximation to

the potential VS. A series expansion of VS(x) results in

VS(x) = V0(x) +O
(
x4
)
, (4.12)

where

V0(x) =
1

2
mω2

0x
2, (4.13)

and ω0 =
√

2U0

m
k0 =

√
α(4π2ℏ)/mλ2. The corresponding idealised Hamiltonian

H0 = H0 is

H0 =
p2

2m
+ V0[x− q0(λ⃗, t)]. (4.14)

Note that in this case as U0 → ∞, HS → H0.

We also define a time unit τ = 2π/ω0 and a spatial unit σ =
√
ℏ/(mω0).

4.4.1 STA control functions

There exists known STA techniques to design trajectories q0(t) that give fidelity

F = 1 for the harmonic potential H0 and arbitrary transport times [10, 11]. In

the following, we will use Lewis-Riesenfeld invariants to obtain STA trajectories

for H0 [11, 77]. For harmonic trap transport a known dynamical invariant has

the form [11]

I(t) =
1

2m
(p−mq̇c)

2 +
1

2
mω2

0 [x−mqc (t)]
2 , (4.15)

where qc(t) must satisfy the auxiliary equation

q̈c + ω2
0 (qc − q0) = 0. (4.16)
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Note that Eq. (4.16) describes a single-particle classical equation of motion,

where q0(t) is the trajectory of the potential minimum and qc(t) is the resulting

classical particle trajectory.

Solutions of the Schödinger equation iℏ∂/∂tΨ(x, t) = H0Ψ(x, t) can be ex-

pressed in terms of weighted transport modes,

Ψ(x, t) =
∑
n

cne
iθn(t)ψn(x, t), (4.17)

where ψn(x, t) are orthonormal eigenstates of the invariant I,

satisfying I(t)ψn(x, t) = λnψn(x, t), cn are constants and the Lewis-Riesenfeld

phase is given by

θn(t) =
1

ℏ

∫ t

0

⟨ϕ(t′, n)|iℏ ∂

∂t′
−H0(t

′)|ϕ(t′, n)⟩dt′. (4.18)

In the specific case of harmonic transport, the resulting transport modes in

Eq. (4.17) are

χn(x, t) = eiθn(t)ψn(x, t) = eiθn(t)e
i
ℏmq̇cxϕn(x− qc), (4.19)

where

θn(t) = − i

ℏ
[(n+ 1/2)ℏω0]t+

∫ t

0

mq̇c
2

2
dt′, (4.20)

with λn = (n+1/2)ℏω0 and ϕn(x) are solutions to the Schrödinger equation at

t = 0, i.e. harmonic eigenstates.

To ensure I(t) andH0(t) agree at initial and final times, we set [I(t), H0(t)] =

0 for t = 0, tf . This is equivalent [via Eq. (4.16) and Eq. (4.19)] to the boundary
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conditions

qc(0) = 0, qc(tf ) = d,

q̇c(0) = q̈c(0) = 0, q̇c(tf ) = q̈c(tf ) = 0. (4.21)

The key idea is that qc(t) can be chosen first, for example to be a polynomial

that satisfies the boundary conditions in Eq. (4.21), and then q0(t) can be

inverse engineered using Eq. (4.16).

Throughout this chapter we enforce further boundary conditions on qc(t),

namely

q(3)c (t′) = q(4)c (t′) = 0, for t = 0, tf , (4.22)

so that the resulting trap trajectory q0(t) ensures the trap is at rest for initial

and final times. In the following, we will use three different auxiliary functions

qc(t) and calculate the corresponding STA trajectories q0(t).

Polynomial Function qc,1(t): One of the simplest choices for an auxiliary

function is a polynomial ansatz qc,1(t) [11], i.e.

qc,1(t) =
J∑

j=1

ajt
j (4.23)

where J is the number of boundary conditions. For the boundary conditions in

Eq. (4.21) and Eq. (4.22), J = 10 and we solve for the aj to get qc,1(t). We

then use Eq. (4.16) to produce q0,1(t). Examples of qc,1(t) and q0,1(t) can be

seen in Fig. 4.2 (a) and (b) respectively (blue dot-dashed lines).

Quasi-optimal function qc,2(t): Moving beyond the simple polynomial

ansatz for qc, we consider a trajectory introduced in [139] as a quasi-optimal

solution to minimizing the quartic term in the potential (1/2)mω2
0[x− q0(t)]

2−

β[x−q0(t)]4. We label this auxiliary function qc,2(t) and our motivation for using
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this function is that it should reduce the effect of the anharmonic contribution

within Hs. This auxiliary function was derived using Pontryagin’s maximal

principle, and relies on first calculating a function fc that minimises the quartic

term contribution to the potential during transport [139],

fc(t) =
3d

8

(
1− 2

t

tf

)7/3

+
7d

4

t

tf
− 3d

8
. (4.24)

This function fc does not satisfy the boundary conditions in Eq. (4.21) and it

is the root of a complex valued equation [139]. We simplify the definition of fc,

by mapping fc from (0, tf/2) to (tf/2, tf ) appropriately. We also enforce the

boundary conditions from Eq. (4.21),

qc,2(t) =



0, t ≤ 0

fc(t), 0 < t < tf/2

−fc(tf − t) + d, tf/2 < t < tf

d, t ≥ tf

. (4.25)

To calculate q0,2(t), it is convenient to define fu(t) = 1/ω2
0f

′′
c (tf − t) where

fu(t) =
14d

3ω2
0t

2
f

(
2
t

tf
− 1

)1/3

. (4.26)

Similarly we first consider fu on (tf/2, tf ) and map appropriately to (0, tf/2),

and obtain

q0,2(t) =



0, t ≤ 0

fc(t) + fu(tf − t), 0 < t < tf/2

−fc(tf − t)− fu(t) + d, tf/2 < t < tf

d, t ≥ tf

, (4.27)
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that has discontinuities at t = 0, t = tf/2 and t = tf . These jump-points may

be difficult to implement practically, so we smooth qc,2(t) in a time-interval of

length tT around the jump points, using polynomial interpolation. Later we will

show that high performance can be achieved even with this smoothing process,

and that the exact time-interval chosen is not critical to robust and high-fidelity

transport. Using Eq. (4.16) we can now calculate q0,2(t),

q0,2(t) =



p′′0(t)/ω
2
0 + p0(t), 0 ≤ t < t0

fc(t) + fu(tf − t), t0 ≤ t ≤ t1

p′′1(t)/ω
2
0 + p1(t), t1 < t < t2

−fc(tf − t)− fu(t) + d, t2 ≤ t ≤ t3

p′′2(t)/ω
2
0 + p2(t), t3 ≤ t ≤ tf

, (4.28)

where t0 = tT , t1 = (tf − tT )/2, t2 = (tf + tT )/2 and t3 = tf − tT/2. By

design, the polynomials pj(t) are matched to fc(t) and −fc(t) on the appropiate

boundary points. Throughout this chapter we choose tT = tf/8. An example of

qc,2(t) and q0,2(t) can be seen in Fig. 4.2 (a) and (b), respectively (green dashed

lines).

Quasi-optimal classical function qc,3(t): Lastly we use a quasi-optimal

classical auxiliary function as described in [76]. This auxiliary function is also

derived via transport time-minimisation in [78]. One motivation for this func-

tion is to consider the classical version of the particle transport problem. The

intuitive optimal strategy in this case is to maximally accelerate the particle

during the first half of the transport, and maximally decelerate the particle in

the second half of the transport. In [76] a sudden initial and final displace-

ment of the potential is also included; we omit this since these displacements

will occur within the smoothing intervals. We call this auxiliary function the
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quasi-optimal classical function, and define it by

qc,3(t) =


2d
(

t
tf

)2
, 0 ≤ t <

tf
2

d

[
1− 2

(
t
tf
− 1
)2]

,
tf
2
< t ≤ tf

. (4.29)

We obtain q0,3 using Eq. (4.16), giving

q0,3(t) =



0, t ≤ 0

2d

[(
t
tf

)2
+ 2

ω2
0t

2
f

]
, 0 < t <

tf
2

−2d
(

t
tf
− 1
)2

− d
(

4
ω2
0t

2
f
− 1
)
,

tf
2
< t < tf

d, t ≥ tf

. (4.30)

We perform the same smoothing procedure as in the previous section. In the

next section we investigate the impact smoothing has on fidelity for this tra-

jectory. Examples of qc,3(t) and q0,3(t) can be seen in Fig. 4.2 (a) and (b)

respectively (solid red lines).

4.4.2 Derivation of eSTA control functions

To derive the eSTA control function, we must calculate ϵ⃗ in Eq. (4.9). In

Fig. 4.1 (b) the improved eSTA control vector is shown schematically, with

λ⃗s = λ⃗0 + ϵ⃗. λ⃗0 characterises the STA control function, while ϵ⃗ parameterises

the eSTA correction. The purpose of this distinction is to highlight how eSTA

improves the control of a system, starting with an idealised STA system with

control vector λ⃗0.

Now we wish to parameterise explicitly the eSTA modification and, without

loss of generality, we can simplify our chosen parameterisation by choosing

λ⃗0 = 0⃗. This allows us to define the new improved eSTA control function

Qj (⃗ϵ, t) as the sum of the original STA control function and a second function
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(a) (b)

(c) (d)

Figure 4.2: Plot of STA and eSTA control functions. (a)
Plot of the auxiliary functions, qc,1(t) (dot-dashed blue), qc,2(t)
(dashed green) and qc,3(t) (solid red). In each of these plots
tf/τ = 0.8 and d = λ/2σ (one lattice site). (b) Corresponding
plots of the STA transport functions, q0,1(t) (dot-dashed blue),
q0,2(t) (dashed green) and q0,3(t) (solid red). (c) Example of the
vector components of the eSTA correction ϵ⃗, with q0,1 (dashed
blue) and Q1 (solid orange) shown for tf/τ = 0.8 and d = λ/2σ.
(d) Examples of the eSTA control functions. The vertical dashed
lines in plots (a) and (b) indicate the smoothing boxes of length

tf/8 about the discontinuities in qc,2, q0,2, qc,3 and q0,3.

∆q0,j (⃗ϵ, t),

Qj (⃗ϵ, t) = q0,j(t) + ∆q0,j (⃗ϵ, t). (4.31)

We now have the freedom to define ∆q0,j and the ϵ⃗ parameterisation in any

manner that is convenient, provided that Qj (⃗ϵ, t) remains consistent with the

boundary conditions of q0,j(t).

We define ϵ⃗ by values that ∆q0,j takes for equally spaced points in time

during the transport. It is then convenient to set ∆q0,j to be a polynomial

∆q0,j (⃗ϵ, t) =
L+5∑
l=0

blt
l, (4.32)
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that satisfies

∆q0,j(t
′) = 0, t = 0, tf

∂n

∂tn
∆q0,j(t

′) = 0, t = 0, tf and n = 1, 2,

∆q0,j

(
l tf
L

)
= ϵl, l = 1, . . . , L. (4.33)

We choose L = 8 as a good compromise between numerical implementation and

optimisation freedom, further details can be found in [132].

To implement eSTA for a given trajectory, we calculate ϵ⃗ using Eq. (4.9).

The states |χn(s)⟩ are known analytically from Eq. (4.19), and so the integrals

Gn and Kn can be calculated for each n. We choose N = 4 for all the results

presented in this chapter as terms beyond N = 4 do not have an impact on the

resulting fidelities or robustness, for this physical setting.

Both ∆q0,j and ϵ⃗ are illustrated in Fig. 4.2 (c), with the STA trajectory

q0,1(t) (dot-dashed blue line) and the improved eSTA trajectory Q1(⃗ϵ, t) (solid

orange line) shown for tf/τ = 0.8. The magnitude of the ϵ⃗ components ϵl are

shown explicitly as changes to the original STA trajectory at the times l tf/L,

where l = 1, . . . , L and L = 8.

4.4.3 Fidelities for STA and eSTA schemes

We investigate the fidelites using STA and eSTA by numerically simulating the

Schrödinger equation with the lattice Hamiltonian from Eq. (4.11), for short

transport times. We choose m = 133 amu (133Cs), λ = 866 nm and α = 150,

motivated by the physical values stated for lattice transport near the quantum

speed limit in [76]. This choice of units correspond to a natural time unit of

τ = 20µs, where τ is approximately the quantum speed limit for this transport

given in [76].

We first consider the fidelity of the STA trajectories q0,1(t), q0,2(t) and q0,3(t),
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and the results are shown in Fig. 4.3. The STA trajectories based on quasi-

optimal solutions [q0,2(t) and q0,3(t)] perform better than a simple polynomial

ansatz [q0,1(t)]. We now fix a reference fidelity FR = 0.9, and we see that both

q0,2(t) and q0,3(t) have F > FR for tf/τ ⪆ 1.2, while tf/τ ≫ 1.5 is required for

q0,1(t). Since the performance of STA is already optimal for tf/τ ≈ 1.45, we

will focus on the region tf/τ < 1.5.

The fidelities for the three eSTA optimised trajectories Q1(t), Q2(t) and

Q3(t) are also shown in Fig. 4.3. They show improvement over their corre-

sponding STA trajectories for the transport times considered. As with the STA

trajectories, the eSTA trajectories also show that the quasi-optimal solutions

out-perform the polynomial ansatz. Furthermore, the eSTA trajectories pro-

duce higher fidelities for shorter times than the STA trajectories; Q0,2(t) has

F > FR for tf/τ ⪆ 1.025 and Q0,3(t) has F > FR for tf/τ ⪆ 0.98.

As a side remark, we investigated whether the smoothing we performed on

the trajectories had a significant impact on fidelity. As an example, in inset of

Fig. 4.3 the fidelities for different smoothing possibilities are shown for Q3(t).

It was found that the smoothing interval tT was not critical in obtaining high

fidelities. While the highest fidelity is obtained for the fully discontinuous tra-

jectory (dashed line), very similar results are found using a smoothing interval

even as large as tT = tf/8 (dashed line). An alternative approach is to use a

fully discontinuous qc,3(t) and perform a smoothing procedure on the resulting

eSTA trajectory Q0,3(t). However, this was found to give poorer performance,

as shown in the inset of Fig. 4.3 (dash-dotted line). Thus, for the results in this

chapter the STA trajectories qc,j(t) were smoothed using tT = tf/8, and then

the eSTA trajectories Qj(t) were calculated.
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Figure 4.3: Fidelity F versus final time tf , for δ = 0. The
fidelities for the STA trajectories are given by the broken lines;
q0,1(t) (dot-dashed blue), q0,2(t) (dashed green) and q0,3(t) (dot-
ted red). The corresponding eSTA optimised fidelities are solid
lines; Q1(t) (blue), Q2(t) (green) and Q3(t) (red). Inset of (a):
Fidelity F versus final time tf using Q3 with different smoothing
options. The solid-red line uses a fully discontinuous qc,3, and
the dashed-black line on top of it uses qc,3 with only the center
discontinuity smoothed over a tT = tf/16 interval. The dotted-
red line uses qc,3 smoothed in an interval of length tT = tf/16
around the three discontinuities and the dashed-red line uses qc,3
smoothed in an interval of length tT = tf/8 around the three dis-
continuities. The dot-dashed line uses a discontinuous qc,3 and

then a smoothed q0,3.

4.5 eSTA Control Function Deviation

Before starting with an examination of the robustness of eSTA, we will first

examine the related question of how much the eSTA control function deviates

when parameters within the potential are slightly changed. We define the de-

viation CQ of the control function Q. The motivation for examining CQ is an

expectation that if the control function does not depend strongly on a spe-

cific parameter of the potential, then this could result in stability concerning

systematic errors in that parameter.
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In detail, we define the deviation CQ as

CQ := lim
δ→0

1

δ
∥Q(δ)−Q(0)∥ =

∥∥∥∥ ∂∂δQ∣∣∣δ=0

∥∥∥∥ . (4.34)

where δ is some variation of the potential.

There is freedom in the choice of norm in Eq. (4.34), in the following we

will use the L1 norm

∥Q(δ)∥ =

∫ tf

0

ds |Q(δ, s)| . (4.35)

As in Eq. (4.31), we assume that the solution to the eSTA system with

Hamiltonian H(δ) takes the form

Q(δ, t) = q0(δ, t) + ∆q0 [⃗ϵ(δ), t] , (4.36)

where q0(δ, t) is the STA control function that solves the approximate STA

system, and ∆q0 is a polynomial as defined in Eq. (4.33). We set ∆q0
[⃗
0, t
]
= 0

and assume ∆q0 does not depend on the STA control function q0(δ, t). We also

have that

∂Q

∂δ

∣∣∣
δ=0

=
∂q0
∂δ

∣∣∣
δ=0

+
∂

∂δ
∆q0(⃗ϵ(0), t)

∣∣∣
δ=0

=
∂q0
∂δ

∣∣∣
δ=0

+
N∑
j=1

∂∆q0
∂ϵj

(⃗ϵ(0), t)
∂ϵj
∂δ

∣∣∣
δ=0

. (4.37)

Using the definition of CQ in Eq. (4.34) we obtain

CQ : =

∥∥∥∥∥∂q0∂δ ∣∣∣δ=0
+

N∑
j=1

∂∆q0
∂ϵj

(⃗ϵ(0), t)
∂ϵj
∂δ

∣∣∣
δ=0

∥∥∥∥∥ (4.38)

By using the eSTA formalism, we can calculate ∂ϵj
∂δ

explicitly as shown in Ap-

pendix 4.9.1. Starting from Eq. (4.38), we can also derive an upper bound of
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the quantity CQ:

CQ ≤
∥∥∥∥∂q0∂δ ∣∣∣δ=0

∥∥∥∥+ N∑
j=1

∥∥∥∥∂∆q0∂ϵj
(⃗ϵ(0), t)

∥∥∥∥ ∣∣∣∣∂ϵj∂δ
∣∣∣∣
δ=0

≤
∥∥∥∥∂q0∂δ ∣∣∣δ=0

∥∥∥∥+ [max
j

∥∥∥∥∂∆q0∂ϵj
(⃗ϵ(0), t)

∥∥∥∥] N∑
j=1

∣∣∣∣∂ϵj∂δ
∣∣∣∣
δ=0

. (4.39)

The first term ∂q0/∂δ is the deviation of the STA trajectory. The second term

is a measure of the eSTA dependence with respect to the control function Q,

and this is the term we wish to investigate. Note that the calculation of CQ can

be done fully analytically as shown in Appendix 4.9.1, and so requires far less

computation than the numerical derivative of the fidelity which we will consider

in the next section. We highlight here that CQ offers potential as a tool to eval-

uate and classify possible eSTA trajectories in lieu of full numerical treatment.

As an example, we consider a correlated error in the lattice amplitude U0 and

wavenumber k0:

V c
err(x, t) = U0(1 + δ) sin2

{
k0

[x−Qj(t)]√
(1 + δ)

}
, (4.40)

such that ω = ω0 =
√

2U0

m
k0 is kept constant, hence the STA trajectories do not

depend on δ. Systematic errors in the lattice amplitude or wavenumber alone

will be considered in following sections. This error potential allows us to focus

on applying CQ to eSTA control functions, since the STA trajectories q0,j do not

depend on δ.

The corresponding results of CQ can be seen in Fig. 4.4. We find that the

trajectories Q2 and Q3 (solid lines) show a lower deviation with changes in δ

than the trajectory Q1. The upper bound on CQ from Eq. (4.39) is also shown

and we see that the upper bound can be also used for classifying the different

schemes. From these results, one would expect that the trajectories Q2 and Q3

are more stable concerning a systematic error δ. This will be examined in the
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Figure 4.4: Control function deviation CQ versus tf for cor-
related systematic error. Trajectories Q1(t) (solid blue), Q2(t)
(solid green) and Q3(t) (solid red). Upper bound of CQ: trajec-
tories Q1(t) (dot-dashed blue), Q2(t) (dashed green) and Q3(t)

(dotted red).

next section in detail and will be shown to be the case.

4.6 Robustness to Systematic Errors

In this section we compare the robustness of the eSTA and STA trajectories by

considering how the fidelity changes under three systematic errors in the lattice

potential.

We first consider the correlated error V c
err introduced in the last section for

a specific final time and then define a sensitivity S for a given trajectory. We

compare eSTA to STA using three systematic errors: the correlated error V c
err

and two further errors, an error in the lattice amplitude V A
err and an error in the

lattice wavenumber V k
err. The amplitude and wavenumber errors can occur in

the physical implementation of lattice potentials [140].
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Figure 4.5: Fidelity at tf/τ = 1.1 versus δ for correlated error.
The fidelities for the STA trajectories are shown, for q0,1(t) (dot-
dashed blue), q0,2(t) (dashed green) and q0,3(t) (dotted red). The
corresponding eSTA optimised fidelities are Q1(t) (solid blue),
Q2(t) (solid green) and Q3(t) (solid red). The horizontal solid-
black arrows show |δ|, such that F (δ) > FR = 0.9 for Q2 (solid
green). The vertical solid-black arrow at δ = 0 is F (δ = 0)−FR.
These quantities are used in the definition of the systemic error

bound B, in Eq. (4.45).

We define δ to be the strength of the systematic error, and define two further

error potentials: The lattice amplitude error potential is given by

V A
err(x, t) = U0(1 + δ) sin2 {k0 [x−Qj(t)]} , (4.41)

and the wavenumber error potential is

V k
err(x, t) = U0 sin

2
{
k0
√
1 + δ [x−Qj(t)]

}
, (4.42)

with ω = ω0

√
(1 + δ) in both cases.

As a first step, we consider the correlated error V c
err for a fixed final time of

tf/τ = 1.1.



Chapter 4. Robustness of eSTA in lattice transport 88

In Fig. 4.5, the fidelity F versus the error strength δ is shown for the

three eSTA and three STA trajectories. The STA trajectories q0,2 and q0,3 show

similar fidelities about δ = 0, and the same is true for the eSTA trajectories

Q2 and Q3. We see significant higher fidelities of the eSTA schemes Q2 and Q3

over the STA schemes q0,2 and q0,3, respectively. While the eSTA polynomial

ansatz Q1 has much higher fidelity than the STA q0,1, Q1 has fidelity F < 0.9

for all δ in the range considered.

We see that there is no significant change in the fidelity for the eSTA tra-

jectories in a neighborhood about δ = 0, and that even for larger values of

δ the eSTA trajectories maintain their higher fidelity over their related STA

trajectories.

We will show later that even ∂F/∂δ at δ = 0 is smaller for the eSTA trajec-

tories Q2 and Q3, than the STA trajectories q0,2 and q0,3 (see Fig. 4.6). This can

also already be seen in Fig. 4.5, as the slopes of the eSTA lines (solid green and

red line) are less than those for the STA lines (dashed-green line and dotted-red

line).

Note that for V c
err, increasing δ corresponds with deepening of the lattice.

As the lattice is deepened we find increased fidelity and stability for both Q2

and Q3, and q0,2 and q0,3.

4.6.1 Systematic Error Sensitivity

To examine the robustness of eSTA quantitatively for the three types of sys-

tematic errors we define the sensitivity

S :=

∣∣∣∣∂F∂δ ∣∣∣δ=0

∣∣∣∣ . (4.43)

A smaller value of S corresponds to a more robust protocol, i.e. less sensitivity

to the error induced by δ. We evaluate S for the different errors and trajectories

numerically around δ = 0 by simulating the full transport. Note that using
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time-dependent perturbation theory, S can be expressed as

S =
1

ℏ

∣∣∣∣∫ tf

0

dt ⟨ΨT (t)|
∂H

∂δ

∣∣∣
δ=0

|Ψ0(t)⟩⟨ΨT (tf )|Ψ0(tf )⟩
∣∣∣∣ , (4.44)

where |Ψ0(0)⟩ is the initial state, |ΨT (tf )⟩ is the target state and |Ψ0(t)⟩ is the

time-evolved solution of the Schrödinger equation.

In the following, we will evaluate both eSTA and STA for the three system-

atic errors stated previously. Since we are interested in trajectories that give

the highest fidelity, we restrict our focus to Q2 and Q3 (q0,2, q0,3 respectively).

In Fig. 4.6 (c) we consider the correlated error V c
err. For tf/τ ≥ 0.95, eSTA

shows reduced sensitivity over STA. Note that the fidelities are also higher in

this tf range (see Fig. 4.3). We also find that Q2 and Q3 in Fig. 4.6 (c) both

agree qualitatively with their analytic CQ behavior in Fig. 4.4.

We show the sensitivity of eSTA and STA versus tf/τ for V A
err in Fig. 4.6

(a) and V k
err in Fig. 4.6 (b). For these errors, the eSTA trajectories (solid lines)

generally have lower sensitivities than the STA trajectories (dashed and dotted

lines).

If we first consider longer transport times tf , S is approaching zero for

every trajectory. This behavior is expected given the Adiabatic theorem; as tf

approaches the adiabatic limit, small perturbations in the potential will have

less impact on the instantaneous eigenstate of the system. Thus, F → 1, and

S → 0.

For very short final times (tf/τ < 1), S becomes a less useful description of

robustness since the fidelity is rapidly decreasing for all trajectories. Hence a

more useful quantity would consider the fidelity F and sensitivity S together,

and this motivates us to define a new quantity in the next section that we call

the systemic error bound.
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Figure 4.6: Sensitivity S for systematic errors versus tf for (a)
amplitude error V A

err, (b) wavenumber error V k
err, (c) correlated

error V c
err. eSTA trajectories: Q2 (solid green) and Q3 (solid red).

STA trajectories: q0,2 (dashed green) and q0,3 (dotted red).
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4.6.2 Systematic Error bound

For practical implementation, we are interested in protocols that exceed a chosen

threshold fidelity FR while also having stability against a systematic error within

a certain bound. To address these concerns, we now define a new quantity B

called the systematic error bound. For a given final time, we approximate a

bound B on the strength of the systematic error δ, such that for |δ| < B we

ensure that the fidelity satisfies F > FR, with FR a given reference fidelity. We

can approximate B by assuming a linear dependence of the fidelity on δ, with

B =


F (δ=0)−FR

S
: F (δ = 0) > FR

0 : F (δ = 0) ≤ FR

, (4.45)

where for simplicity we have used the convention that B = 0 for F (δ = 0) ≤ FR.

The systematic error bound B indicates that for a given final time, the trajectory

achieves fidelity above FR for |δ| < B. Hence, higher values of B mean higher

fidelity and lower sensitivity. (In contrast, higher values of S correspond with

decreased stability at a given δ.)

In Fig 4.5 we show a specific example of the quantities needed to calculate

B. For Q2 (solid-green line), the horizontal solid-black arrows in Fig. 4.5 show

|δ| symmetric about δ = 0 such that F (δ) > FR = 0.9. To calculate B, we find

the difference F (δ = 0)−FR (the vertical solid arrow in Fig 4.5), and then scale

by 1/S. Note that for this example, S can be seen on Fig. 4.6 (c).

The systematic error bound B is shown in Fig. 4.7 for the same trajectories

and errors as shown previously in Fig. 4.6. In Fig. 4.7 we choose FR = 0.9

and note that the quasi-optimal eSTA trajectories Q2 and Q3 show significant

improvement over the polynomial ansatz eSTA Q1. We include the polynomial

ansatz trajectories Q1 and q0,1, as a reference case to highlight the usefulness of

B as a robustness measure. For all three errors the eSTA trajectories achieve

a higher or equal B over their STA counterparts, and this reflects the previous
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fidelity results (Fig. 4.3) and sensitivity results (Fig. 4.6).
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Figure 4.7: Systematic error bound B versus tf with FR =
0.9 for (a) amplitude error V A

err, (b) wavenumber error V k
err, (c)

correlated error V c
err. eSTA: Q2 (solid green) and Q3 (solid red).

STA: q0,2 (dashed green) and q0,3 (dotted red).



Chapter 4. Robustness of eSTA in lattice transport 93

For tf → ∞, for both the eSTA and STA error bounds B → ∞, since

as discussed in the last section S → 0 in the adiabatic limit. This is not an

inherent problem with B, since we are interested in applying B in regions far

from adiabaticity. Thus we restrict our investigation to tf/τ < 1.45, as shown

in Fig. 4.7.

In Fig. 4.7 we note that the three error types produce similar B behavior

for each trajectory, although the magnitude of B is different in each case. We

find that from tf ≥ 1 the eSTA trajectories Q2 and Q3 give larger values of B

than the STA trajectories q0,2 and q0,3. These values are increasing, indicating

that even when the fidelities are very high, a larger value of B informs us that

the eSTA sensitivity must be decreasing faster than the STA sensitivity. In this

way the error bound B gives us a useful comparison between trajectories, as it

allows both the fidelity and sensitivity of different trajectories to be compared

simultaneously.

4.7 Robustness of eSTA to noise

We now consider the robustness and stability of eSTA with respect to noise.

Specifically we consider lattice transport with classical Gaussian white noise in

position and lattice amplitude. The noise sensitivity of lattice transport using

STA has previously been studied in [35, 140, 141].

We consider a Hamiltonian H = H0(t) + η ξ(t)H1(t), where η is the noise

strength, ξ(t) is a realisation of the noise and H1(t) is the operator coupling the

system to the noise [142–144]. As shown in Appendix 4.9.2 a master equation

can be derived [35, 140]

d

dt
ρ = − i

ℏ
[H0, ρ]−

η2

2ℏ2
[H1, [H1, ρ]] , (4.46)

where H0 is from Eq. (4.11).
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We define the noise sensitivity SN ,

SN =

∣∣∣∣ ∂F∂ (η2)

∣∣∣∣ = ∣∣∣∣12 ∂2F∂η2
∣∣∣∣ , (4.47)

and in Appendix 4.9.2 we use a perturbation approach to the master equation

[35, 145] to obtain

SN =
1

ℏ2

∣∣∣∣∣
∫ t

0

ds
[

Re
{
⟨ΨT (s)|H2

1 (s)|Ψ0(s)⟩⟨Ψ0(s)|ΨT (s)⟩
}

− |⟨ΨT (s)|H1(s)|Ψ0(s)⟩|2
]∣∣∣∣∣, (4.48)

where we use the same notation as in Eq. (4.44) regarding |Ψ0(s)⟩ and |ΨT (s)⟩.

We focus on transport of the ground state of the lattice, but the results in

this section can be generalised naturally. The quantity SN in Eq. (4.48) is

useful as it allows us measure the system’s sensitivity to noise without having to

numerically simulate the full open system dynamics, for example using quantum

trajectories.

Let us first consider the special case of the adiabatic limit. Let ψ0(x) be the

ground state of the lattice, thus

Ψ0(t, x) = ΨT (t, x) = ψ0[x−Qj(t)]e
iϕ(t). (4.49)

Then Eq. (4.48) simplifies to

SN = tfC, (4.50)

where C is given by

C =
1

ℏ2

∣∣∣∣∣⟨ψ0|H2
1 |ψ0⟩ − |⟨ψ0|H1|ψ0⟩|2

∣∣∣∣∣. (4.51)
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We again consider the error bound defined in the previous section which

combines the fidelity and the sensitivity, defined as

BN =


F (δ=0)−FR

SN
: F (δ = 0) > FR

0 : F (δ = 0) ≤ FR

, (4.52)

where we again adopt the convention BN = 0 for F ≤ FR. We note that in the

adiabatic limit, BN ≈ 1−FR

C
· 1
T
, i.e. the error bound goes to zero for T → ∞,

where T = tf/τ (in contrast with the systemic errors considered in the previous

section).

4.7.1 Position noise

As a first example we consider position noise described by the potential

V P
N = V [x−Qj(t)− σηξ(t)], (4.53)

with V the lattice potential and σ the unit of space defined in Section 4.4. Using

only first-order in η, we have

HP
1 = −σ ∂

∂x
V [x−Qj(t)]

= −σU0k0 sin {2k0[x−Qj(t)]} . (4.54)

We evaluate Eq. (4.48) using both STA and eSTA trajectories and plot BN in

Fig. 4.8 (a). The eSTA trajectories again out-perform their STA counterparts,

showing a greater BN over a larger range of shorter final times.

In Fig. 4.8 (b) we look at larger tf/τ and we see the STA trajectories

(dashed-coloured lines) approach the adiabatic limit (dashed-black line).

Note that when the ground state is known analytically as with the harmonic

oscillator, then explicit formulas for the constant C in Eq. (4.51) can be found.
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Using the harmonic oscillator ground state as an approximation to the lattice

ground state, we obtain an approximation for Eq. (4.51)

CP ≈ 1

2

(
U0k0σ

ℏ

)2 [
1− e−4k20σ

2
]

=
ω2
0Ũ0

4

[
1− e−2/Ũ0

]
, (4.55)

where Ũ0 = U0/(ℏω0). For the values considered here, τ 2CP = 0.0112 and the

approximation in Eq. (4.55) gives τ 2CP ≈ 0.0108.

4.7.2 Amplitude noise

For noise in the lattice amplitude we define the noise potential as

V A
N = [1 + ηξ(t)]V [x−Qj(t)], (4.56)

with V the lattice potential. In this case we have

HA
1 = V [x−Qj(t)]. (4.57)

The results for the STA and eSTA trajectories are shown Fig. 4.8 (d). As with

the position noise, the eSTA trajectories are an improvement over the STA

trajectories.

Both noise sources have similar BN scales, with the position noise eSTA

results showing greater improvement over STA than the amplitude noise eSTA

results have over their STA counterparts

In Fig. 4.8 (c) the STA trajectories for amplitude noise are shown for values

of tf/τ approaching the adiabatic limit, and for tf/τ > 4 they agree.
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Figure 4.8: Noise error bound BN versus tf with FR = 0.9 for:
(a) Position noise V P

N . eSTA trap trajectories Q1(t) (solid blue),
Q2(t) (solid green) and Q3(t) (solid red); STA trap trajectories
q0,1(t) (dot-dashed blue), q0,2(t) (dashed green) and q0,3(t) (dot-
ted red). (b) Position noise BN versus larger tf using the STA
trajectories. All the trajectories converge to the adiabatic limit
(dashed black) for large tf . (c) Amplitude noise BN versus larger
tf , again using the STA trajectories. They also converge to the
adiabatic limit (dashed black) for large tf . (d) Amplitude noise

V A
N , with same details as (a).
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As with the previous section, we can approximate CA by using the analytic

harmonic ground state with the lattice potential,

CA ≈ 1

8

(
U0

ℏ

)2

e−4k20σ
2
(
e2k

2
0σ

2 − 1
)2
,

=
ω2
0Ũ

2
0

8
e−2/Ũ0

(
e1/Ũ0 − 1

)2
, (4.58)

and again Ũ0 = U0/(ℏω0). The approximation gives τ 2CA ≈ 2.70× 10−3, while

the exact value is τ 2CA = 2.97× 10−3.

4.8 Conclusion

We applied the general eSTA formalism developed in [132] to the the practical

problem of atom transport using an optical lattice potential, near the quantum

speed limit [76]. By examining the robustness of the eSTA control schemes, we

found that the eSTA transport protocols result in higher fidelity and improved

robustness against several types of systematic errors and noise errors.

We have provided a general heuristic argument that the eSTA schemes

should result in higher fidelities and improved stability compared with the orig-

inal STA schemes. Furthermore, we have shown strong numerical evidence of

this claim by considering noise and systematic errors in the lattice potential.

Finally, we have quantified this increased robustness by defining new mea-

sures. These include an eSTA- specific evaluation tool CQ, that allows possible

control functions to be evaluated without full numerical treatment and a prac-

tical error bound B that combines fidelity and sensitivity such that eSTA and

STA control functions can be compared qualitatively In the future the robust-

ness of eSTA schemes and the error bound B could be considered in further

quantum control applications.
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4.9 Appendix

4.9.1 Derivation of CQ

We can evaluate CQ using the formalism of eSTA. As before with eSTA, we

write the system Hamiltonian H(δ) as an expansion about the STA system

that approximates it

H(δ) = HSTA
0 (δ) + µH1(δ) + µ2H2(δ) + . . . (4.59)

We generalise the definitions of K⃗n and Gn from the eSTA formalism to include

the δ dependence in the Hamiltonian, giving

K⃗n (δ) =

∫ tf

0

dt ⟨χn(t)|∇HS(λ⃗0; t; δ)|χ0(t)⟩, (4.60)

and

Gn (δ) =

∫ tf

0

dt⟨χn(t)|
[
HS(λ⃗0; t; δ)−H(0)(λ⃗0; t)

]
|χ0(t)⟩. (4.61)

Hence we have that the eSTA control vector is given by

ϵ⃗ (δ) ≈ −

[∑N
n=1 |Gn (δ)|2

]{∑N
n=1 Re

[
G∗

n (δ) K⃗n (δ)
]}

∣∣∣∑N
n=1 Re

[
G∗

n (δ) K⃗n (δ)
]∣∣∣2 . (4.62)
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Now we look at the derivative with respect to δ and evaluate at δ = 0,

∂

∂δ
ϵj (0) = ϵj (0)

{∑N
n=1 2Re

[
G∗

n (0)
∂
∂δ
Gn (0)

]∑N
n=1 |Gn (0)|2

+

∑N
n=1

{
Re
[
K∗

n,j (0)
∂
∂δ
Gn (0)

]
+ Re

[
G∗

n (0)
∂
∂δ
Kn,j (0)

]}
∑N

n=1 Re
[
G∗

n (0) K⃗n,j (0)
]

+
M∑
j=1

{
N∑

n=1

Re
[
G∗

n (0) K⃗n,j (0)
] N∑

n=1

Re
[
K∗

n,j (0)
∂

∂δ
Gn (0)

]

+ Re
[
G∗

n (0)
∂

∂δ
Kn,j (0)

]}/ M∑
j=1

∣∣∣∣∣
N∑

n=1

Re
[
G∗

n (0) K⃗n,j (0)
]∣∣∣∣∣

2}
. (4.63)

While this expression is detailed, the individual terms are known exactly and

can be calculated entirely analytically.

4.9.2 Derivation of SN

To consider the effect of noise on eSTA protocols, we start with a system obeying

the Schrödinger equation

iℏ
∂

∂t
|Ψ⟩ = H0(t)|Ψ⟩, (4.64)

where H0(t) = p2/2m+V (x, t), and V is the potential. We consider noise of the

form η ξ(t)H1(t), where ξ(t) is a given noise realisation, H1(t) is the operator

coupling the system to the noise and η is the noise strength [35, 142, 143]. We

assume that the statistical expectation E [ξ(t)] = 0, with

E [ξ(t)ξ(t′)] = α(t− t′), (4.65)

where α(t− t′) is the correlation function of the noise. Following the approach

taken in [145], a master equation can be derived [35, 140]

d

dt
ρ = − i

ℏ
[H0, ρ]−

iη

ℏ
[H1, ⟨ξρ⟩] , (4.66)
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where η is the perturbation parameter and ρ is the average over realisations of

ξ(t). Now we assume Gaussian white noise, i.e. α(t− t′) = δ(t′ − t) and using

Novikov’s theorem [146], ⟨ξρ⟩ = −iη/2ℏ[H1, ρ] we obtain

d

dt
ρ = − i

ℏ
[H0, ρ]−

η2

2ℏ2
[H1, [H1, ρ]] . (4.67)

We define

d

dt
ρ0 = − i

ℏ
[H0, ρ0] ,

|ρ0(t)⟩⟩ = U0(t, 0)|ρ0(0)⟩⟩, (4.68)

where |ρ0(t)⟩⟩ denotes ρ0(t) written in super-operator notation. Let

L(t)|ρ⟩⟩ = − 1

2ℏ2
[H1, [H1, ρ]] , (4.69)

then [145] [35]

|ρ(t)⟩⟩ = |ρ0(t)⟩⟩+ η2
∫ t

0

dsU0(t, s)L(s)U0(s, 0)|ρ0(0)⟩⟩+O(η4)

= |ρ0(t)⟩⟩+ η2
∫ t

0

dsU0(t, s)L(s)|ρ0(s)⟩⟩+O(η4). (4.70)

We denote the target state as |ΨT ⟩ and set |ρT ⟩⟩ = |ΨT ⟩⟨ΨT |. The fidelity is

then

F = ⟨⟨ρT |ρ⟩⟩ = Tr
(
ρ†Tρ
)

= ⟨⟨ρT |ρ0⟩⟩+ η2
∫ t

0

ds⟨⟨ρT (s)|L(s)|ρ0(s)⟩⟩+O(η4).

We define the noise sensitivity SN ,

SN =

∣∣∣∣ ∂F
∂ (η2)

∣∣∣∣ = ∣∣∣∣∫ t

0

ds⟨⟨ρT (s)|L(s)|ρ0(s)⟩⟩
∣∣∣∣ . (4.71)
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Using ρ0 = |Ψ0⟩⟨Ψ0| and the explicit form of L from Eq. (4.69), this expression

can be simplified to

SN =
1

ℏ2

∣∣∣∣∣
∫ t

0

ds
[
Re
{
⟨ΨT (s)|H2

1 (s)|Ψ0(s)⟩⟨Ψ0(s)|ΨT (s)⟩
}

− |⟨ΨT (s)|H1(s)|Ψ0(s)⟩|2
]∣∣∣∣∣. (4.72)
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Chapter 5

Improved anharmonic trap

expansion through eSTA

5.1 Overview

In this chapter we generalise the derivation of eSTA and construct an alterna-

tive eSTA method that takes advantage of higher order terms. This alternative

method uses higher order terms to remove an assumption used in the original

eSTA formulation. We apply both the original eSTA method and the alterna-

tive method to the expansion of a Gaussian trap and accordion lattice potential.

We demonstrate improved fidelity and robustness of both eSTA versions in both

physical settings.

This chapter is based on the following publication:

C. Whitty, A. Kiely and A. Ruschhaupt,

Improved anharmonic trap expansion through

enhanced shortcuts to adiabaticity,

J. Phys. B: At. Mol. Opt. Phys. (2022).

https://doi.org/10.1088/1361-6455/ac8bb7
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5.2 Introduction

Fast high-fidelity control of quantum systems is a key requirement for the im-

plementation of future quantum technologies [7]. Specifically, analytical control

solutions are particularly desirable as they are simpler, provide greater physical

insight and allow for additional stability requirements [79, 101]. Shortcuts to

Adiabaticity (STA) are a broad class of analytical control techniques that mimic

adiabatic evolution on much shorter timescales [10, 11, 72]. STA have been ap-

plied in many different contexts; engineering quantum heat engines [147–149],

creating exotic angular momentum states in optical lattices [104], designing ex-

perimentally realisable fast driving of many-body spin systems [45], speed up

STIRAP population transfer [9, 43, 150, 151], and to inhibit unwanted transi-

tions in two and three level systems [96].

However, STA methods can have limitations. Some STA techniques could

require non-trivial physical implementation (e.g. counterdiabatic driving), while

other STA techniques may only be easily applied to small or highly symmetrical

systems (e.g. Lewis-Riesenfeld invariants)[10, 11]. This difficulty motivated the

development of eSTA where STA solutions can be perturbatively corrected to

perform well on more complex quantum systems [132]. This method is broadly

applicable, since many applications of STA techniques have already used ide-

alised Hamiltonian descriptions e.g. single effective particles [152, 153], few-level

descriptions [103, 104, 154, 155], and mean field Hamiltonians [156]. Indeed,

eSTA has been applied to the transport of neutral atoms in optical conveyor

belts [12, 13], and additionally has been shown to have intrinsic robustness

[157].

In this work we generalise the original eSTA approach and formulate an

alternative eSTA scheme. While the original eSTA scheme uses the assumption

that perfect fidelity can be achieved near the starting STA scheme, the alterna-

tive eSTA scheme does not require this assumption by using higher order terms.
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We show how these higher order terms can be systematically calculated using

time-dependent perturbation theory.

We apply the original and alternative eSTA schemes to atomic trap ex-

pansion, using the physical settings of an optical dipole trap and an optical

accordion lattice. Trap expansion of anharmonic potentials using STA has been

studied [158, 159], and faster than adiabatic trap expansion has been experi-

mentally realised using STA invariant-based engineering, in a cold atomic cloud

[160], one dimensional Bose gas [74], a Fermi gas [75, 161] and loading a Bose

Einstein condensate (BEC) into an optical lattice [162, 163]. The dynamic

control of lattice spacing in optical accordions is another important trap expan-

sion setting [164–166]. There have been a variety of experimental realisations

of optical accordions; dynamically expanding the lattice spacing of an optical

accordion loaded with ultra-cold atoms [167], expansion of a one dimensional

BEC [168] and loading and compression of a two dimensional tunable Bose gas

in an optical accordion [169].

This chapter is organised as follows. In Section 5.3 we introduce the gen-

eralised eSTA formalism. Then we look at trap expansion in Section 5.4 and

compare STA and eSTA control schemes, considering their sensitivity to ampli-

tude noise in both trap models.

5.3 Generalised eSTA formalism

In the following we give a generalised derivation of eSTA, complementary to the

original formalism outlined in [132], which allows the formulation of an alternate

eSTA scheme.

The goal of eSTA is to control a quantum system with Hamiltonian Hs.

Specifically, we want to evolve the initial state |Ψ0⟩ at time t = 0 to the target

state |ΨT ⟩ in a given total time tf . We assume that Hs can be approximated

by an existing Hamiltonian H0 with known STA solutions, that we refer to as
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the idealised STA system. In detail, we assume that there exists a parameter

µ that varies continuously from µs to 0, such that Hs = Hµs approaches H0

as µ approaches 0. In later examples µ will represent the anharmonicity of the

experimental trapping potential, with the idealised STA system taking the form

of a time-dependent harmonic oscillator. We parameterise the control scheme of

Hµs by a vector λ⃗, which represents the deviation from the original STA control

scheme (λ⃗ = 0⃗). Our objective is to derive a correction to the STA scheme that

improves the fidelity, which we label λ⃗s.

There are two main steps behind the derivation of eSTA. The first is the

assumption that µ and ∥λ⃗∥ are small such that the fidelity landscape around

(µ = 0, λ⃗ = 0⃗) can be well approximated to second order in µ and λ⃗. Secondly,

we can take advantage of the known time evolution operator of the STA sys-

tem to derive an improved control scheme analytically using time-dependent

perturbation theory.

5.3.1 eSTA construction

Throughout the following derivation of eSTA, we assume that at the initial and

target states of Hµs can be approximated by the known eigenstates of H0 at

initial and final times. We define the fidelity

F (µ, λ⃗) =
∣∣∣⟨ΨT |Uµ,λ⃗(tf , 0)|Ψ0⟩

∣∣∣2 , (5.1)

where the time evolution is explicitly parameterised by µ and λ⃗ through the

Hamiltonian Hµ(λ⃗, t).

For a given Hµs we derive the eSTA control vector λ⃗s by approximating

several quantities that allow us to construct a parabola in λ⃗ for fixed µ =

µs. This parabola projects a path of increasing fidelity, and using the eSTA

formalism we calculate the λ⃗s that corresponds to the peak of this parabola. To
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illustrate this construction explicitly, we let λ⃗ = ϵv̂ and set

f(ϵ) = F (µs, ϵ v̂), (5.2)

with v̂ = ∇F (µs, 0⃗)/
∥∥∥∇F (µs, 0⃗)

∥∥∥. Throughout this chapter we follow the con-

vention set earlier that ∇ = ∇λ⃗, i.e. the gradient with respect to λ⃗. We now

approximate

f(ϵ) ≈ f(0) + ϵf ′(0) +
ϵ2

2
f ′′(0), (5.3)

with

f(0) = F (µs, 0⃗),

f ′(0) =
∥∥∥∇F (µs, 0⃗)

∥∥∥ ,
f ′′(0) = v̂T Hess

[
F (µs, 0⃗)

]
v̂, (5.4)

where Hess
[
F (µs, 0⃗)

]
is the Hessian matrix of second order partial derivatives

of F with respect to the components of λ⃗, and the superscript T denotes vector

transposition.

In the original eSTA approach [132], the parabola is constructed using ap-

proximations to the fidelity F (µs, 0⃗), the gradient ∇F (µs, 0⃗), together with the

assumption that the optimal control vector λ⃗(1)s can achieve perfect fidelity i.e.

F (µs, λ⃗
(1)
s ) = 1. This leads to ϵ(1)s = 2[1− f(0)]/f ′(0), with

λ⃗(1)s =
2
[
1− F (µs, 0⃗)

]
∥∥∥∇F (µs, 0⃗)

∥∥∥ v̂. (5.5)

We label this original method eSTA1, and note that it does not use approxima-

tions to terms beyond the gradient.

Using the generalised derivation presented later in Section 5.3.2, we can
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Figure 5.1: Diagram of eSTA construction, F (µ, ϵv̂) vs. ϵ.
The true fidelity landscape (solid green), eSTA1 parabolic ap-
proximation (dot-dashed blue) and eSTA2 parabola (dashed red)
are shown. The normalised gradient v̂ is represented by the solid
black arrow, and F (µs, 0⃗) corresponds with f(0). The result
of applying eSTA2 is the improved control vector λ⃗

(2)
s = ϵ

(2)
s v̂,

which is shown matching the peak of the true fidelity landscape
well.

obtain a simple approximation to the second order term f
′′
(0) in Eq. (5.4).

Using this higher order term we derive an alternative eSTA scheme that we

label eSTA2. We construct this scheme by noting that the maximum of f(ϵ)

will be at ϵ(2)s = −f ′(0)/f ′′(0), and the eSTA2 control vector now takes the form

λ⃗(2)s = − ∇F (µs, 0⃗)

v̂T Hess
[
F (µs, 0⃗)

]
v̂
. (5.6)

We schematically represent the parabola construction of Eq. (5.3) in Fig.

5.1. Note that eSTA1 (dot-dashed blue line) can overshoot the desired optimal

λ⃗s, due to the assumption that F = 1 at λ⃗(1)s . At the expense of calculating the

Hessian term in Eq. (5.4) this assumption can be removed. Note that in later

examples of trap expansions we will show quantitative versions of the schematic

in Fig. 5.1.
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5.3.2 Perturbative approximations for eSTA control

To calculate the eSTA control vector λ⃗s for either eSTA1 or eSTA2, we ap-

proximate the quantities in Eq. (5.4) using the known solutions to the STA

system H0 (which can be obtained for example by using invariant-based inverse

engineering [10, 11, 72]) and time-dependent perturbation theory. We label the

STA solutions {|χn(t)⟩}, with |χn(t)⟩ = U0,⃗0(t, 0)|χn(0)⟩. The time evolution

operator of the STA system can be written as

U0,⃗0(t, s) =
∞∑
n=0

|χn(t)⟩⟨χn(s)|. (5.7)

The time evolution of a general Hµ can be expanded using time-dependent

perturbation theory as

Uµ,λ⃗(t, s) = U0,⃗0(t, s) +
∞∑
n=1

U
(n)

µ,λ⃗
(t, s), (5.8)

where

U
(n)

µ,λ⃗
(tf , 0) =

(
− i

ℏ

)n ∫ (n)

U0,⃗0 (tf , tn)∆H(tn) . . .

. . . U0,⃗0 (t2, t1)∆H(t1)U0,⃗0 (t1, 0) , (5.9)

and ∆Hµ(λ⃗, t) = Hµ(λ⃗, t)−H0(⃗0, t), with the multi-integrals defined using the

notation

∫ (n)

≡
∫ tf

0

dtn

∫ tn

0

dtn−1· · ·
∫ t3

0

dt2

∫ t2

0

dt1. (5.10)

We now set

F = ⟨χ0(tf )|Uµ,λ⃗(tf , 0)|χ0(0)⟩ =
∞∑
n=0

⟨χ0(tf )|U (n)(tf , 0)|χ0(0)⟩ = 1 +
∞∑
n=1

F (n),

(5.11)
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where we have used ⟨χ0(tf )|U0,⃗0(tf , 0)|χ0(0)⟩ = 1. Thus the fidelity becomes

F (µ, λ⃗) =
∣∣∣F(µ, λ⃗)

∣∣∣2 = [1 + ∞∑
n=1

F (n)

][
1 +

∞∑
m=1

(
F (m)

)∗]

= 1 + 2
∞∑
n=1

Re
[
F (n)

]
+

∞∑
n=1

∞∑
m=1

Re
[
F (n)

(
F (m)

)∗]
. (5.12)

Now we define

Γn,m(t) = ⟨χn(t)|∆Hµ(λ⃗, t)|χm(t)⟩, (5.13)

and by repeated use of Eq. (5.7) we have

F (n) =

(
−i
ℏ

)n ∞∑
m1=0

· · ·
∞∑

mn−1=0

∫ (n) n−1∏
l=0

Γml+1,ml
(tl+1) , (5.14)

where m0 = mn = 0 and the factors in the product commute.

The advantage of this notation is that F (n) breaks the time interval into n

nested integrals, and we can collect the integrals up to second order and obtain

F (1) =− i

ℏ

∫ tf

0

dt1Γ0,0(t1),

F (2) =− 1

ℏ2

∫ tf

0

dt2

∫ t2

0

dt1

∞∑
m=0

Γ0,m(t2)Γm,0(t1). (5.15)

If we consider the fidelity up to double integrals (i.e. n = 2), we can write

F
(
µ, λ⃗

)
≈ 1+

1

ℏ2

∣∣∣∣∫ tf

0

dt Γ0,0(t)

∣∣∣∣2
− 2

ℏ2

∫ tf

0

dt2

∫ t2

0

∞∑
m=0

Re
[
Γ∗
m,0(t2)Γm,0(t1)

]
, (5.16)

which can be simplified to

F
(
µ, λ⃗

)
≈ 1− 1

ℏ2
∞∑

m=1

∣∣∣∣∫ tf

0

dt Γm,0(t)

∣∣∣∣2 . (5.17)
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We derive the gradient approximation by directly taking the derivative of Eq.

(5.17),

∂F

∂λk
≈ − 1

ℏ2
∞∑

m=1

[∫ tf

0

dt
∂

∂λk
Γ∗
m,0(t)

∫ tf

0

ds Γm,0(s)

+

∫ tf

0

dt Γ∗
m,0(t)

∫ tf

0

ds
∂

∂λk
Γm,0(s)

]

= − 2

ℏ2
∞∑

m=1

Re
[∫ tf

0

dt
∂

∂λk
Γ∗
m,0(t)

∫ tf

0

ds Γm,0(s)

]
. (5.18)

We derive an approximation to the Hessian in the same way,

∂2F

∂λl
∂λk

≈ − 2

ℏ2
∞∑

m=1

Re
[ ∫ tf

0

dt
∂2

∂λl∂λk
Γ∗
m,0(t)

∫ tf

0

ds Γm,0(s)

+

∫ tf

0

dt
∂

∂λk
Γ∗
m,0(t)

∫ tf

0

ds
∂

∂λl
Γm,0(s)

]
. (5.19)

Note that higher order terms in these approximations are obtained using Eq.

(5.12) and taking appropriate derivatives. We highlight that Eq. (5.14) allows

one in principle to calculate the fidelity approximation to any order n, which

will improve the approximations in Eq. (5.4) that are used to construct eSTA.

One could even consider higher orders beyond the second order in Eq. (5.3),

but this would require calculating more terms in the fidelity expansion of Eq.

(5.12) and evaluating further derivatives of Eq. (5.12).

To calculate eSTA1 (Eq. (5.5)) and eSTA2 (Eq. (5.6)) explicitly, we write

the fidelity and gradient approximations in terms of the notation from [132],

F
(
µs, 0⃗

)
≈ 1− 1

ℏ2
N∑

n=1

|Gn|2 =: f, (5.20)

where

Gn =

∫ tf

0

dt Γn,0(t)

∣∣∣∣
µ=µs,λ⃗=0⃗

, (5.21)
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and the gradient approximation is given by

∇F
(
µs, 0⃗

)
≈ − 2

ℏ2
N∑

n=1

Re
(
G∗

nK⃗n

)
=: v⃗, (5.22)

where the kth component of K⃗n given by

(
K⃗n

)
k
=

∫ tf

0

dt
∂

∂λk
Γn,0(t)

∣∣∣∣
µ=µs,λ⃗=0⃗

, (5.23)

and we have truncated the infinite sums to the first N terms. We define

(Wn)l,k =

∫ tf

0

dt
∂2

∂λl∂λk
Γ∗
n,0(t)

∣∣∣∣
µ=µs,λ⃗=0⃗

, (5.24)

and the entries of the Hessian approximation in Eq. (5.6) are then given by

Hess
[
F (µs, 0⃗)

]
l,k

=
∂2F

∂λl
∂λk

∣∣∣∣
µ=µs,λ⃗=0⃗

≈

− 2

ℏ2
N∑

n=1

Re
[
Gn (Wn)l,k −

(
K⃗∗

n

)
k

(
K⃗n

)
l

]
=: Hl,k. (5.25)

Using Eq. (5.20), Eq. (5.22) and Eq. (5.25) we can write convenient forms for

the eSTA corrections, with the improved control vector using eSTA1 (Eq. (5.5))

λ⃗(1)s = 2 (1− f)
v⃗

∥v⃗∥2
, (5.26)

and for eSTA2 (Eq. (5.6)), we have

λ⃗(2)s = − v⃗ ∥v⃗∥2

v⃗ T H v⃗
. (5.27)

In the next section we apply both schemes to anharmonic trap expansion and

compare the results.
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5.4 Anharmonic trap expansion

We now apply eSTA to anharmonic trap expansion and compare control proto-

cols designed using STA, eSTA1 and eSTA2. Our goal is to transfer the ground

state of the trap with initial trapping frequency ω0, to the ground state of the

trap with final frequency ωf with ωf < ω0. We consider two trapping potentials,

a Gaussian trap and an accordion lattice. Since both potentials can be approx-

imated by a harmonic trap near their minima, we can use a harmonic trap as

the STA system from which we construct eSTA for the anharmonic systems.

5.4.1 Trap potentials

We define the accordion lattice potential as

VL(x, t) = sgn[ωL(t)
2] AL sin

2 [kL(t)x] , (5.28)

where we write the potential with sgn[ωL(t)
2] so that negative ωL(t)

2 corre-

sponds to the potential changing from confining to repulsive. For the accor-

dion lattice the wavenumber kL(t) = |ωL(t)| /
√
2AL is time dependent and the

amplitude constant is AL = α[ℏkL(0)]2/2m with α a dimensionless constant

fixing the size of the recoil energy. Negative ωL(t)
2 could be implemented

physically up to a global phase factor using a simple π/2 phase shift, i.e.

−AL sin
2[kL(t)x] = AL

{
sin2[kL(t)(x− π/2)]− 1

}
.

We define also the Gaussian potential as a one-dimensional approximation

to an optical dipole trap [159], given by

VG(x, t) = AG(t)
[
1− exp

(
−kGx2

)]
. (5.29)

The amplitude is time dependent, with AG(t) = 1/4mw2ωG(t)
2, kG = 2π/λG =

2/w2, m is the mass, w the beam width and λG is the trapping laser wavelength.
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Using a series expansion of either potential, we have

V0,G/L(x, t) =
1

2
mωG/L(t)

2x2 +O
(
x4
)
. (5.30)

The natural choice for the STA system in the eSTA formalism for both potentials

is the corresponding harmonic trap with Hamiltonian

H0 =
p2

2m
+

1

2
mωG/L(t)

2x2. (5.31)

Note that as the trap depth is increased for both potentials they approach the

limiting case of a harmonic trap.

5.4.2 STA system and eSTA parametrisation

The Hamiltonian for the STA system in Eq. (5.31) has a Lewis-Leach type

potential with known Lewis-Riesenfeld invariant [11, 72]

I(t) =
1

2

[
x2

b(t)2
mω2

0 +
π(t)2

m

]
, (5.32)

where π = b(t)p − mḃx is the momentum conjugate to x/b(t) and ω0 is an

arbitrary constant, chosen to be ω(0) for convenience. For I(t) to be a dynamical

invariant, b(t) must satisfy the Ermakov equation

b̈+ ω(t)2b =
ω2
0

b3
. (5.33)

We are free to choose any b(t) that satisfies the appropriate boundary con-

ditions given by [H(t), I(t)] = 0 at t = 0, tf :

b(0) = 0, ḃ(0) = 0, b̈(0) = 0,

b(tf ) = γ =

√
ω0

ωf

, ḃ(tf ) = 0, b̈(tf ) = 0. (5.34)
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Here we use a simple polynomial ansatz for b(t) from [72],

b(t) = 6(γ − 1)ξ5 − 15(γ − 1)ξ4 + 10(γ − 1)ξ3 + 1, (5.35)

where ξ = t/tf . Then ω(t) can be reverse-engineered using Eq. (5.33) and we

obtain [72]

ω(t)2 =
ω2
0

b4
− b̈

b
. (5.36)

Solutions of the Schödinger equation iℏ∂/∂tΨ(x, t) = H0Ψ(x, t) can be written

as,

Ψ(x, t) =
∞∑
n=0

cne
iθn(t)ψn(x, t), (5.37)

where ψn(x, t) are orthonormal eigenstates of the invariant I satisfying

I(t)ψn(x, t) = λnψn(x, t), (5.38)

and cn are constants, with the Lewis-Riesenfeld phase given by

θn(t) =
1

ℏ

∫ t

0

⟨ϕ(t′, n)|iℏ ∂

∂t′
−H0(t

′)|ϕ(t′, n)⟩dt′. (5.39)

For harmonic trap expansion, a single mode in Eq. (5.37) is given by

χn(x, t) = eiθn(t)eiβn(x,t)
ϕn (x/b)

b1/2
(5.40)

where

θn(t) = −(n+ 1/2)

∫ t

0

dt′
ω0

b(t′)2
,

βn(x, t) =
m

2ℏ
ḃ

b(t)
x2, (5.41)
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Figure 5.2: Examples of ω2(t)/ω2
0 using γ = 10, with ω0tf =

10 (solid-red), 15 (dashed-blue), and 30 (dotted-green). Inset:
Example of Ω with τL = 26 for fast lattice expansion using
eSTA2, with black dots indicating M = 8 parameterisation of

Eq. (5.43).

with λn = (n+ 1/2)ℏω0, and ϕn(x) are harmonic energy eigenstates.

In Fig. 5.2, ω2(t)/ω2
0 is shown for several different final times tf . Note

that even though the trap frequency can become negative, there are techniques

that allow negative potentials to be implemented experimentally [72]. From

Eq. (5.36) we obtain the STA solution ω(t)2 that we use as a starting point to

construct the eSTA solution

ω̃(t)2 = ω(t)2 + Ω(λ⃗, t), (5.42)

where for convenience we choose the eSTA correction Ω to be a polynomial

that satisfies Ω(λ⃗, 0) = 0 and Ω(λ⃗, tf ) = 0. We parameterise Ω by the vector

λ⃗ = (λ1, . . . , λM), where

Ω

(
λ⃗,

j tf
M + 1

)
= λj, j = 1, . . . ,M, (5.43)
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and M is the number of components in λ⃗.

Now we use eSTA to calculate the value of λ⃗ that improves the fidelity. In

detail, we calculate λ⃗(1)s using Eq. (5.26) (eSTA1) and λ⃗
(2)
s using Eq. (5.27)

(eSTA2). These formulae require calculating Eq. (5.21), Eq. (5.23) and Eq.

(5.25).

First we calculate Gn from Eq. (5.21) using

Gn =

∫ tf

0

dt Γn,0(t)
∣∣∣
µ=µs,λ⃗=0⃗

=

∫ tf

0

dt ⟨χn(t)|∆Hµs (⃗0, t)|χ0(t)⟩, (5.44)

where |χn(t)⟩ is given by Eq. (5.40) and ∆Hµs = Hµs − H0 = VG/L − V0,G/L,

with H0 from Eq. (5.31), VG/L from Eq. (5.29) and Eq. (5.28), and V0,G/L from

Eq. (5.30). To calculate the kth component of K⃗n from Eq. (5.23), we have

(
K⃗n

)
k
=

∫ tf

0

dt
∂

∂λk
Γn,0(t)

∣∣∣∣
µs,λ⃗=0⃗

=

∫ tf

0

dt ⟨χn(t)|
∂

∂λk
∆Hµs(λ⃗, t)

∣∣∣∣
λ⃗=0⃗

|χ0(t)⟩

=

∫ tf

0

dt ⟨χn(t)|
∂

∂λk
VG/L

∣∣∣∣
λ⃗=0⃗

|χ0(t)⟩. (5.45)

In a similar manner we evaluate Eq. (5.25) that is required only for calculating

λ⃗
(2)
s . An example of the resulting eSTA correction Ω(λ⃗, t) for fast expansion of

the accordion lattice using λ⃗(2)s with M = 8 components is shown in the inset

of Fig 5.2.

5.4.3 Fidelity Results: Accordion Lattice Expansion

We first apply eSTA to the expansion of an accordion lattice with a single

trapped 133Cs atom in the ground state. We set the lattice parameters using

values from an experimentally implemented optical lattice [76], where the initial

wavenumber is kL(0) = 2π/λL and using Eq. (5.30) we have that ω0,L =

ωL(0) = 4
√
απ2ℏ/mλ2L. We use numerical values λL = 866nm and recoil energy
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parameter α = 150 [76]. We set the dimensionless final time τL = ω0,Ltf and

have that AL/ℏω0,L ≈ 6.12.

We calculate the fidelity for different expansion times τL. In Fig. 5.3 (a)

the results for STA, eSTA1 and eSTA2 are shown. For both λ⃗
(1)
s and λ⃗

(2)
s we

use M = 1 and M = 8 components (M = 1 and M = 8 in Eq. (5.43) resp.).

Calculating eSTA requires truncating the sums in Eq. (5.21), Eq. (5.23) and

Eq. (5.24). For the results in this chapter we use the first four non-zero terms.

We find that eSTA2 gives improvement over eSTA1 and STA as expected.

The 8 component schemes show improvement over 1 component schemes, for

both eSTA1 and eSTA2. This demonstrates that λ⃗s with only a few components

can produce significant fidelity improvement, particularly when using eSTA2.

In the derivation of eSTA1 it was assumed that the system could achieve

maximum fidelity, i.e. F (µs, λ⃗
(1)
s ) = 1. The inset of Fig. 5.3 (a) demonstrates

that this can lead to overshooting, which we previously illustrated schemati-

cally in Fig. 5.1; here we consider eSTA1 and eSTA2 with only 1 component,

for τL = 25. The true fidelity landscape (solid-green), eSTA1 (dotted-blue) and

eSTA2 (dashed-red) fidelity approximations are shown, with the eSTA1 scheme

minimally overshooting the optimal ϵs. We find that ϵ(1)s from eSTA1 is approx-

imately 1.5 × ϵ
(2)
s . Note that both versions of eSTA would agree if the fidelity

for both λ⃗
(1)
s and λ⃗

(2)
s was exactly 1. We note that calculating eSTA1 may be

simpler than calculating eSTA2 in certain settings, and that the utility of either

eSTA approach will depend on the given system dynamics.

5.4.4 Fidelity Results: Gaussian Trap Expansion

We consider Gaussian trap expansion and use similar values to the Gaussian

approximation of a single trapped 87Rb atom in an optical dipole trap in [158,

159], with inverse unit of time ω0,G = 2π × 2500Hz, AG/ℏω0,G ≈ 2418, laser
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wavelength λlaser = 1060nm, a beam waist of 20λlaser and set the expansion time

τG = ω0,Gtf .

We simulate Gaussian trap expansion for different expansion times τG and

the results are shown in Fig. 5.3 (b), using the STA scheme (solid-green line),

eSTA1 (dotted and solid blue lines) and eSTA2 (dashed and solid red lines).

As with the optical accordion, we consider eSTA1 and eSTA2 with two pa-

rameterisations of λ⃗(1)s and λ⃗(2)s , a 1 component scheme (dotted-blue, dashed-red)

and an 8 component scheme (solid blue, solid red). We find that eSTA1 and

eSTA2 are an improvement over STA, and that the 1 and 8 component schemes

produce very similar results for both eSTA1 and eSTA2. This is an indication

that the polynomial form of Ω(λ⃗, t) allows a large class of improved schemes.

The inset of Fig. 5.3 (b) demonstrates again that the original eSTA scheme

can minimally overshoot the optimal ϵs (compare again to Fig. 5.1), with the

parabola calculated using eSTA2 matching the true fidelity well.

5.4.5 ESTA Sensitivity

In this section we consider errors in the trapping potentials and calculate the

sensitivity to these errors using the STA, eSTA1 and eSTA2 schemes introduced

earlier. For the lattice potential we consider an error in the amplitude

V L
err(x, t) = sgn[ωL(t)

2] AL(1 + δ) sin2 [kL(t)x] , (5.46)

and for the Gaussian potential we also consider an amplitude error, given by

V G
err(x, t) = AG(1 + δ)

{
1− exp2

[
−kG(t)x2

]}
. (5.47)

We define the error sensitivity by

S :=

∣∣∣∣∂F∂δ ∣∣∣δ=0

∣∣∣∣ , (5.48)



Chapter 5. Improved anharmonic trap expansion through eSTA 120

(a)

10 15 20 25 30

0.7

0.8

0.9

1.

0. 0.5 1. 1.5 2.

0.990

0.995

1.000

(b)
2 4 6 8 10 12 14 16

0.8

0.85

0.9

0.95

1.

0. 0.5 1. 1.5 2.

0.990

0.995

1.000

Figure 5.3: Fidelity vs. expansion time τL/G. (a) Lattice
expansion; STA (solid green), eSTA1 with M = 8 components
(solid blue) and M = 1 (dotted blue), eSTA2 M = 8 (solid
red) and M = 1 (dashed red). Lattice parameters as in Section
5.4.3 for this plot and the inset. Inset: Fidelity vs ϵ/ϵ

(2)
s for

lattice expansion with τL = 25; true fidelity landscape (solid
green), eSTA1 (dotted blue) and eSTA2 (dashed red) parabola
approximations. (b) Gaussian trap expansion; same labeling as
(a), with M = 1 and M = 8 results indistinguishable (solid lines
omitted). Physical values given in Section 5.4.4. Inset: Same

labeling as (a) with τG = 13.

and calculate this quantity numerically using a multi-point discrete approxima-

tion to the derivative. Note that a lower sensitivity S means a given scheme is
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more robust against error.

Heuristically we expect that eSTA will simultaneously improve fidelity and

robustness: for µ = 0 both eSTA and STA give fidelity 1, and as µ increases the

eSTA fidelity is always higher than the STA fidelity, i.e. the slope of the eSTA

fidelity is expected to be smaller than the slope of the STA scheme. Assuming

that this slope is approximately proportional to the error sensitivity S, we also

expect lower error sensitivity for eSTA than STA.

In the following we look at the numerical error sensitivity. In Fig 5.4 (a) the

sensitivity of lattice expansion is shown, with STA (dot-dashed green), eSTA1

(M = 1 dotted-blue, M = 8 solid blue) and eSTA2 (M = 1 dashed-red, M = 8

solid red). Each line is marked at the point where F ≥ 0.95, with eSTA1 and

eSTA2 still achieving this fidelity for lower τL than STA. In this high fidelity

regime, both eSTA schemes are generally less sensitive (smaller S) to error

than the STA scheme for τL ≳ 15, in agreement with the heuristic argument

from above. The eSTA2 scheme generally gives the highest fidelities and lowest

sensitivities, as shown in Fig. 5.3 (a) and Fig. 5.4 (a). Interestingly, the single

component (M = 1) eSTA2 scheme (dashed-red line) has lower sensitivity than

the 8 component (M = 8) eSTA2 scheme (solid-red line).

For Gaussian trap expansion, see Fig. 5.4 (b), there is negligible difference in

sensitivity between choosing a single or 8 component scheme, for either eSTA1

or eSTA2. Again, the points for which F ≥ 0.95 is first achieved are marked

on each line. For these high fidelities eSTA1 and eSTA2 outperform STA, in

agreement with the heuristic argument outlined earlier. In this case eSTA2 has

generally the highest fidelity, as shown in Fig. 5.3 (b), as well as the lowest

sensitivity in Fig. 5.4 (b). A convenient eSTA scheme can be chosen depending

on the required fidelity or sensitivity.
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Figure 5.4: Trap expansion sensitivity S = |∂F/∂δ| vs. τL/G
Same parameters and labeling as Fig 5.3. (a) Lattice expansion,
with first τL for which F > 0.95 marked on each line. Inset:
Time averaged energy (Eq. (5.49)) of the eSTA schemes scaled
by the STA scheme (dot-dashed green), Ẽ vs. τL. (b) Gaussian
trap expansion sensitivity S vs. τG, again with first τG for which

F > 0.95 shown.

We also consider the time averaged energy

E(λ⃗) =
1

tf

∫ tf

0

dt ⟨Hµs(λ⃗, t)⟩, (5.49)

and define Ẽ = E(λ⃗)/E (⃗0) such that the different eSTA protocols are in direct

comparison with the STA scheme. The insets in Fig. 5.3 (a) and (b) show Ẽ
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for eSTA1 and eSTA2. The values of Ẽ of the eSTA schemes are close to 1 (i.e.

close to the STA scheme), demonstrating that little additional time averaged

energy is required for improvement. In both lattice and Gaussian expansion,

the 1 component STA schemes have a lower time averaged energy than STA

(Ẽ < 1), while using more components (M = 8) has a higher value (Ẽ > 1).

5.5 Conclusion

The main result in this chapter is a generalisation of the original eSTA deriva-

tion in [132], and the construction of an alternative eSTA scheme. This alter-

native eSTA scheme allows the removal of an assumption of the original eSTA

method, at the expense of calculating an additional Hessian term. Both eSTA

schemes are applied to anharmonic trap expansion, resulting in higher fidelity

and improved robustness.

Generally, there are several important advantages that the eSTA formalism

has to offer; the derivation is analytic, applicable to a wide variety of quantum

control problems and the control schemes are expected to have enhanced ro-

bustness against noise. In addition, eSTA can offer insight into a given control

problem , for example by first considering low dimension parameterisations of

the control scheme. There is also significant freedom in choosing how to param-

eterise the control scheme for either approach; for example, we can choose to

preserve the symmetry of the original STA scheme, or use a form of the eSTA

improvement that lends itself to certain conditions e.g. a Fourier sum with

fixed bandwidth. Analytic eSTA control schemes that are outside the class of

STA solutions can be derived, and they could give improved starting points for

numerical optimisation. As an outlook, higher order eSTA schemes can be con-

structed using the formalism presented in this chapter which would be useful if

some lower order terms vanish.
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Chapter 6

Lattice transport of two

Coulomb-interacting ions via eSTA

6.1 Introduction

The physical platform of trapped ions manipulated with coherent light is one of

the most promising quantum computing architectures [170]. A critical compo-

nent of trapped ion quantum computers is shuttling of ions between regions of

memory storage and computation [66]. In particular, shuttling of single atom

and atomic clouds using STA have been studied extensively [133]. Fast trans-

port of two Coulomb-interacting ions using invariant-based inverse engineering

has also been considered in [124], and single atom fast transport in anharmonic

traps using reverse engineering has been studied in [171]. In this chapter we use

eSTA to design control schemes for transporting two Coulomb-interacting ions

in a lattice potential, in contrast to the Gaussian potential used in Section 3.6.

We consider amplitude noise in the lattice and show that the quantum derived

eSTA scheme even works for the equivalent classical system.
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6.2 System Hamiltonian

Our goal is to transport the groundstate of a lattice potential with two equal-

mass Coulomb-interacting ions. The time-dependent Schrödinger equation in

the lab frame is given by

−iℏ ∂
∂t
ψ(q1, q2, t) = H(t) ψ(q1, q2, t), (6.1)

with Hamiltonian

H(t) =
p21
2m

+
p22
2m

+ V [q1 −Q(t), q2 −Q(t)] +
C

|q1 − q2|
, (6.2)

where qj are the position operators of each ion, pj = −iℏ ∂
∂qj

(j = 1, 2) are the

corresponding momentum operators, and Q(t) is the trajectory of the potential

minimum. The Coulomb constant is given by C = e2/(4πϵ0) where e is the

electron charge, and ϵ0 is the dielectric vacuum permittivity constant. The

potential is given by

V (q1, q2, t) = a sin2
{
mω2

0q1/
√
2a
}
+ a sin2

{
mω2

0q2/
√
2a
}
. (6.3)

It is convenient to transform Eq. (6.1) to dimensionless units. To achieve this,

we define a unit of length L =
√

ℏ/mω0 and unit of time ω−1
0 , giving dimension-

less spatial coordinates q̃j = qj/L and time t̃ = ω0t. The corresponding unit of

energy is ℏω0, with the dimensionless trap depth parameter given by ã = a/ℏω0.

The dimensionless trap trajectory is Q̃(t̃) = Q(ω0t)/L and the dimensionless

Coulomb constant is C̃ = C
√
m/ω0ℏ3. For notational convenience we now drop

the tilde notation and the dimensionless Hamiltonian in the lab frame is given

by

H =
p21
2

+
p22
2

+ a sin2

{
[q1 −Q(t)]√

2a

}
+ a sin2

{
[q2 −Q(t)]√

2a

}
+

C

q1 − q2
. (6.4)
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Note that for practical values of masses, trap depths and transport times con-

sidering here, there is no overlap of the two ion’s wavefunctions and we can

treat the particles as distinguishable and assume q1 > q2.

We now transform Eq. (6.4) to a center of mass (c) and relative (r) motion

frame, defined by

xc =
1

2
(q1 + q2), xr =

1

2
(q1 − q2),

pc = p1 + p2, pr = p1 − p2. (6.5)

The lattice Hamiltonian of Eq. (6.4) then becomes

Hc,r =
p2c
4

+
p2r
4

+ a sin2

[
xc −Q(t) + xr√

2a

]
+ a sin2

[
xc −Q(t)− xr√

2a

]
+

C

2xr
.

(6.6)

Our goal is to transport the groundstate of Eq. (6.6) a distance d in a given

transport time tf , by designing the appropriate transport function Q(t).

6.3 Approximate STA Hamiltonian

To calculate eSTA we must first approximate the lattice Hamiltonian Eq. (6.6)

by a Hamiltonian for which a STA scheme q0(t) can be derived using invariant-

based inverse engineering. Our ultimate goal will be to design Q(t) = q0(t) +

∆Q(t), where ∆Q(t) is the calculated eSTA correction that improves the lattice

transport in Hamiltonian Eq. (6.6). However, first we derive a STA transport

function q0(t) for the approximated Hamiltonian.

In this particular example we can directly consider a second-order Taylor

series of Eq. (6.6) by setting Q(t) = q0(t), and expanding the series in xc−q0(t)
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and xr given by

Hc,r ≈
p2c
4

+
p2r
4

+ [xc − q0(t)]
2 + x2r +

C

2xr
. (6.7)

Note that this is equivalent to considering a harmonic approximation in the lab

frame given by

H0,lab(t) =
p21
2

+
p22
2

+
1

2
[q1 − q0(t)]

2 +
1

2
[q2 − q0(t)]

2 +
C

q1 − q2
, (6.8)

and performing the same coordinate transformation steps from Eq. (6.6), which

again gives Eq. (6.7). We now set H0(t) = H0,c(t) +H0,r, with

H0,c(t) =
p2c
4

+ [xc − q0(t)]
2, (6.9)

H0,r =
p2r
4

+ x2r +
C

2xr
. (6.10)

The key point here is that the transport motion only affects the xc coordinate,

hence we can simplify the problem of designing the trap trajectory q0(t) for

two particles, to designing q0(t) for an effective single particle transport in the

center-of-mass coordinate.

We now apply invariant-based engineering in the same manner as in Section

2.2.3. For completeness we consider a separable invariant I(t) = Ic(t) ⊗ Ir of

Eq. (6.7), which must satisfy the invariant condition now given by

(
∂

∂t
Ic −

i

ℏ
[H0,c, Ic]

)
⊗ Ir + Ic ⊗

(
∂

∂t
Ir −

i

ℏ
[H0,r, Ir]

)
= 0. (6.11)

For simplicity we can choose Ir = H0,r since H0,r is time independent. Then

the instantaneous eigenstates of Ir are simply the energy eigenstates of H0,r,

which we assume are discrete and non-degenerate and denote by χr,n(xr). For

the center-of-mass component we can use the single particle harmonic transport



Chapter 6. Lattice transport of two ions via eSTA 128

invariant from Section 2.2.3, which in the dimensionless quantities used here is

Ic(t) =
1

4
(pc − 2q̇c)

2 + (xc − qc)
2 , (6.12)

where the tap trajectory q0(t) is given by the auxiliary equation (see Section

2.2.3), given by

q0(t) = q̈c(t) + qc(t). (6.13)

The instantaneous eigenstates of Ic(t) are given by

χc,n(xc, t) = e2iq̇cxcϕn(xc − qc), (6.14)

where ϕn(x) are solutions to the stationary Schrödinger equation with the

center-of-mass Hamiltonian Eq. (6.9) at t = 0 (i.e. stationary harmonic eigen-

states). We can now write the instantaneous eigenstates of I(t) = Ic(t) ⊗ Ir

as

Φn,n′(xc, xr, t) = χc,n(xc, t)χr,n′(xr), (6.15)

from which we can construct solutions to the Schrödinger equation Eq. (6.6),

given by

Ψn,n′(xc, xr, t) = Φn,n′(xc, xr, t)e
iαn(t)eiγn′ (t), (6.16)

where γn′(t) = −En′t is the associated dynamical phase of χr,n′(xr) and En′

the energy eigenvalue of χr,n′(xr). The Lewis-Riesenfeld phase αn(t) associated

with χc,n(xc, t) is given by

αn(t) = −i(n+ 1/2)t+

∫ t

0

q̇c
2dt′. (6.17)
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Following Section 2.2.3, we now apply invariant-based inverse engineering

to Eq. (6.9). We assume the ions are at rest at their equilibrium distance at

t = 0, so that the initial state is a groundstate of Eq. (6.7). As discussed in

Section 2.2.3, by considering the commutator [H0(t), I(t)] = 0 at t = 0, tf , we

obtain boundary conditions on qc(t) given by

qc(0) = 0, qc(tf ) = d, q̇c0(t
′) = 0, q̈c0(t

′) = 0, (6.18)

for t′ = 0, tf . We further impose q(3)c (t′) = q
(4)
c (t′) = 0 for t′ = 0, tf , so that

q̇0(t
′) = q̈0(t

′) = 0. Once we choose a qc(t) satisfying the boundary conditions

in Eq. (6.18), we can inverse engineer q0(t) from the auxiliary equation Eq.

(6.13). We again choose a polynomial ansatz for qc(t) as in Section 2.2.3,

qc(t) = ds5
(
70s4 − 315s3 + 540s2 − 420s+ 126

)
, (6.19)

where s = t/tf .

In summary, by choosing qc(t) given in Eq. (6.19), we obtain the trap

trajectory q0(t) from Eq. (6.13), that will transport the ground state of Eq.

(6.7) a distance d in a given transport time tf , with fidelity 1.

6.4 Calculation of eSTA correction

We now calculate the eSTA trap trajectory Q(t) = q0(t) + ∆Q(t) in Eq. (6.6),

where q0(t) is the initial STA scheme from Eq. (6.13). We choose the eSTA

correction Q(t) to be a polynomial of degree M + 1, which we parameterise by

a vector λ⃗ = (λ1, . . . , λM) with ∆Q(0) = 0 and ∆Q(tf ) = 0, and

∆Q

(
k tf
M + 1

)
= λk, k = 1, . . . ,M, (6.20)
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where M is the number of components in λ⃗ which we choose to be M = 6 here.

An example of ∆Q(t) is shown in the inset of Fig. 6.1.

We use the original formulation of eSTA from Section 2.2.3, where the eSTA

control vector λ⃗ is then given by

λ⃗s = −

(∑N
n=1 |Gn|2

) [∑N
n=1 Re

(
G∗

nK⃗n

)]
∣∣∣∑N

n=1 Re
(
G∗

nK⃗n

)∣∣∣2 , (6.21)

with

Gn,n′ =

∫ tf

0

dt⟨Ψn,n′(t)|
[
Hcom,rel(λ⃗ = 0⃗; t)−H0(t)

]
|Ψ0,0(t)⟩, (6.22)

and

K⃗n,n′ =

∫ tf

0

dt ⟨Ψn,n′(t)|∇λ⃗Hcom,rel(λ⃗ = 0⃗; t)|Ψ0,0(t)⟩, (6.23)

where the states |Ψn,n′(t)⟩ are given by Eq. (6.16).

To calculate Gn,n′ , we first simplify the integral using xc 7→ xc + q0, set

β(t) = q0 − qc giving

Gn,n′ =

∫ tf

0

dt ei(α0−αn)tei(γ0−γn′ )t

∫ ∞

−∞
dxr

∫ ∞

−∞
dxc χc,n(xc, t)

∗χr,n′(xr)
∗×{

a sin2

[
xc + β(t) + xr√

2a

]
+ a sin2

[
xc + β(t)− xr√

2a

]
− [xc + β(t)]2 − x2r

}
×

χc,0(xc, t)χr,0(xr), (6.24)

where χc,n(xc, t) are from Eq. (6.14) and χr,n′(xr) are energy eigenstates of

H0,r. We now make the approximation that the relative motion remains in

the relative groundstate χr,0(xr) during transport, and that χr,0(xr) is strongly

peaked about xr ≈ l/2, where l is the equilibrium distance of the ions. Hence



Chapter 6. Lattice transport of two ions via eSTA 131

we can approximate Gn,n′ ≈ Gn,0 and set Gn = Gn,0 given by

Gn = a

∫ tf

0

dt eint
∫ ∞

−∞
dxc ϕn(xc)ϕ0(xc)×{

sin2

[
xc + β(t) + l/2√

2a

]
+ sin2

[
xc + β(t)− l/2√

2a

]
− [xc + β(t)]2 −

(
l

2

)2
}
.

(6.25)

where ϕn(t) are given in Eq. (6.14). The integral in the xc coordinate can

be done analytically and then only the time integral needs to be evaluated

numerically. In a similar manner, we can also simplify the K⃗n,n′ integrals,

where the mth component of K⃗n := K⃗n,0 is given by

(Kn)m =

√
a

2

∫ tf

0

dt eint
∂

∂λm

∣∣∣
λ⃗=0⃗

Q(t)

∫ ∞

−∞
dxc ϕn(xc)ϕ0(xc)×{

sin2

[√
2

a
(xc + β + l/2)

]
+ sin2

[√
2

a
(xc + β − l/2)

]}
. (6.26)

Again, the integral over xc can be done analytically and only the time integral

needs to be evaluated numerically.

In Fig. 6.1 the fidelity is shown for both the STA trap trajectory q0(t)

(dashed blue), and the eSTA trap trajectory Q(t) = q0(t) + ∆Q(t) (solid or-

ange). We find significant improvement in the transport fidelity using eSTA in

comparison with STA, particularly for fast transport times (τ = ω0tf < 16).

For longer transport both schemes give very high fidelities.

6.5 Robustness of eSTA to systematic errors

We now consider a systematic amplitude error given by the potential

V A = a(1 + δ) sin2

[
xc + xr + l/2√

2a

]
+ a(1 + δ) sin2

[
xc − xr − l/2√

2a

]
, (6.27)
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Figure 6.1: Fidelity vs transport time τ = ω0tf , for lattice
transport of two Coulomb-interacting ions with ω0 = 4π×104Hz,
ã = 107, and C̃ = 7.35 × 107 and a transport distance of d̃ =
1562; STA q0(t) (dashed-blue), eSTA Q(t) (solid-orange). Inset:
Example of eSTA correction ∆Q(t) for τ = 10. Black arrows

indicate the 6 components of λ⃗ at tf/7 intervals.

where δ is the strength of the amplitude error. In a similar manner to Section

4.6, we evaluate the sensitivity

S =

∣∣∣∣∂F∂δ ∣∣∣δ=0

∣∣∣∣ , (6.28)

for both the STA and eSTA schemes. The sensitivity measures the response of

the system to a systematic error δ in the potential. A large value of S indi-

cates that a given control scheme is sensitive to perturbations in the potential

parameter a(1+ δ), while a smaller value of S indicates robustness against such

perturbations. In Fig. 6.2 the sensitivity is evaluated for different transport

times τ for both the STA (dashed blue) and eSTA (solid orange) schemes.

Starting from τ ≈ 11.8, we find eSTA gives significant improvement over

STA as demonstrated by the much lower values of S that the eSTA scheme

produces. The eSTA scheme also has the useful property that the sensitivity is

very low for the range of transport times shown with τ > 13. This robustness
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against perturbations across a range of protocol times, makes eSTA particularly

useful in an experimental setting.

We now compare Fig. 6.2 with the corresponding fidelity plot Fig. 6.1. It

can be seen that for τ ≥ 11.5 the eSTA scheme gives both improved fidelity

and sensitivity over the STA scheme. For τ < 11.5, the situation is less clear

since the STA scheme gives a lower sensitivity than the eSTA scheme, however

the fidelity is also smaller as shown in Fig. 6.1. As discussed in Section 4.6.2,

this motivates the definition of a systematic error bound that takes into account

both the fidelity and the sensitivity.

We define the exact systematic error bound BE as the largest value of |δ|

for which F (δ) > FR, where FR is a chosen reference fidelity. To calculate

BE, one would need to numerically evaluate F (δ) until F < FR. This is a

computationally expensive task, and so we consider a linear approximation B ≈

BE. Assuming a linear dependence of F on δ, we consider

S =

∣∣∣∣∂F∂δ ∣∣∣δ=0

∣∣∣∣ ≈ |F (δ = 0)− F (δ)|
|δ|

, (6.29)

which can be written

|δ| ≈ |F (δ = 0)− F (δ)|
S

≤ |F (δ = 0)− FR|
S

. (6.30)

This motivates the definition

B =


F (δ=0)−FR

S
: F (δ = 0) > FR

0 : F (δ = 0) ≤ FR

, (6.31)

giving a measure that naturally incorporates both the fidelity and an approxi-

mation of the sensitivity for a given control scheme. For a given transport time,

the approximate systemic error bound B gives the largest the magnitude of the

error δ can be, such that the fidelity is greater than FR.
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A large value of B means that a large range of δ < |δ| achieves the refer-

ence fidelity, while a smaller value of B indicates that only a narrow range of

δ < |δ| meet the minimum fidelity requirement. Essentially this means that

higher values of B indicate that a given control scheme has high fidelity and low

sensitivity. This is in contrast to evaluating a control scheme using the sensitiv-

ity alone, where a smaller value of the sensitivity indicates good performance

but tells us nothing about the fidelity value. Note that the approximation in

Eq. (6.30) requires that δ is small, and if a given scheme is very stable S can

become arbitrarily small leading to very large unphysical values of B. Hence,

for very stable stable schemes B may take values much larger than the true

range of δ that achieves fidelities above FR.

The inset of Fig. 6.2 shows B with FR = 0.95 plotted on a Log scale

versus transport time τ = ω0tf , with eSTA (solid orange) giving significant

improvement over STA (dashed blue) for all transport times. Note that the

values of B become very large for the eSTA scheme from τ = 13, which can be

understood immediately from the very low sensitivity eSTA has in comparison

with STA as shown in Fig. 6.1.

One limitation of the approximation B ≈ BE is that for schemes with a very

small sensitivity S, the value of B can become very large. Since Eq. (6.30)

assumes a small value of δ, control schemes with very low sensitivity cause B

to diverge, and give unphysical values for the range of δ that give fidelities

above the reference fidelity of FR. While BE can be numerically calculated, it

requires considerable computational cost. To overcome this limitation of B, we

now introduce an alternative measure ηQ that also incorporates the fidelity and

sensitivity of a given control scheme Q(t). We define this measure by

ηQ =

√
c1 (1− F )2 + c2 (S)

2, (6.32)
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Figure 6.2: Sensitivity S versus transport time τ = ω0tf ;
STA (dashed-blue), eSTA (solid-orange). Inset: Error bound B
with log scale versus τ ; STA (dashed-blue), eSTA (solid-orange).

Same parameters as in Fig 6.1.

where 1 − F is the infidelity of a given transport scheme Q(t), S is the cor-

responding sensitivity and c1 and c2 are chosen constant weights. We use the

infidelity and sensitivity since they are both quantities that we wish to min-

imise, making Eq. (6.32) a natural measure of deviation from perfect control

with fidelity F = 1 and sensitivity S = 0. For c1 = 1 and c2 = 0 we recover the

infidelity (infidelity version of Fig. 6.1), and for c1 = 0 and c2 = 1 we recover

the sensitivity (Fig. 6.2). The further ηQ is away from zero, the higher the

infidelity and sensitivity. In Fig. 6.3 ηQ is shown using c1 = 1 and c2 = 1 for

the transport times considered, where we can immediately see that the STA

scheme breaks down quickly for τ < 16. We have seen this previously from Fig.

6.2 and Fig. 6.1, but the advantage here is that a single quantity can be used

to identify high fidelity and low sensitivity schemes. Note that the constants c1

and c2 can be chosen to ensure that 1−F and S are evaluated on a useful scale

for a given problem.
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Figure 6.3: Plot of ηQ versus transport time τ , STA (dashed-
blue) and eSTA (solid orange).

6.6 Classical comparison

For transport of two equal masses in a one dimensional trap, it is known that

if there is minimal motional squeezing of the wavepacket during transport then

the dynamics of the corresponding classical system agree very well with the

dynamics of the quantum system [66]. We now investigate if eSTA transport

trajectory calculated for the quantum system also improves the corresponding

classical system. In Fig. 6.4 we use λ⃗ calculated for the quantum system with

the classical system (solid orange), and both schemes overlap almost exactly for

the physical parameters considered.

Note that an alternative method to optimise Q(t) (but a computationally

more expensive strategy than applying eSTA), is to first numerically optimise

the corresponding classical system and then implement the resulting protocols

on the quantum system. To optimise λ⃗ in the classical setting, we calculate the

gradient with respect to the classical energy excitation and perform a simple

line search in the direction of the gradient to find the first fidelity maximum.
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Figure 6.4: Classical lattice transport of two ions includ-
ing Coulomb interaction with same parameters as Fig 6.1 STA
(dashed-blue), eSTA (solid-orange) and numerically optimised
(dot-dashed black). Inset: Norm of λ⃗ calculated using eSTA
(solid orange) and norm of λ⃗ calculated numerically (dashed

black).

The classical energy excitation is just the Hamiltonian, with

E(λ⃗, tf ) = H
[
q0(tf ) + ∆Q(λ⃗, tf )

]
. (6.33)

We approximate the gradient by

∇E (⃗0, tf ) ≈
1

δ

[
E(λ⃗, tf )− E (⃗0, tf )

]
, (6.34)

where we choose δ by halving an initial guess until the numerical derivative is

unchanged in the sixth significant figure. The line search was extended beyond

the first maximum to investigate the fidelity landscape, and for these parameters

only a single maximum was found for each tf during this search. In Fig. 6.4 the

classical excitation of system is shown for the STA (dashed blue) numerically

calculated gradient search (dot-dashed black).

The inset of Fig. 6.4 shows the norms of λ⃗, for the numerical gradient search
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case (dashed black) and eSTA for the quantum system (solid orange), with the

norms being very similar for the physical parameters considered here.

6.7 Conclusion

In this Chapter we have used eSTA to construct improved lattice transport

schemes. We have shown that eSTA produces control schemes with both high

fidelity and strong robustness against systematic amplitude noise. The system-

atic error bound B from Chapter 4 was discussed and evaluated, and a further

performance measure ηQ was introduced. Finally, the eSTA scheme was shown

to also give good results for the corresponding classical Hamiltonian.
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Chapter 7

Summary and Outlook

In this thesis we have introduced the eSTA formalism and applied it to a number

of quantum systems to achieve fast and robust quantum control schemes. We

now summarise the main topics of the preceding chapters and give an outlook

on possible avenues of future research.

7.1 Summary

In this section the previous chapters are summarised, concluding with an overview

of the key properties of eSTA.

Enhanced Shortcuts to Adiabaticity: In Chapter 3 we presented an an-

alytic technique to extend STA quantum control methods to problems beyond

their current scope. The eSTA formalism uses STA solutions for a known sys-

tem, together with time-dependent perturbation theory, to construct solutions

to problems that do not have STA solutions. We demonstrated the effectiveness

of eSTA using several examples, relevant to many current quantum technologies.

We first considered a system with finite dimension, namely population inver-

sion without the rotating wave approximation. Using an STA scheme already

optimised for systematic errors in the Rabi frequency, an eSTA scheme was con-

structed that gave improved fidelity. We then applied eSTA to the transport

of a neutral atom in a Gaussian potential, and found improved fidelity for a

range a trap depths. Finally we used eSTA to design improved schemes for the
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transport of two Coulomb interacting ions in a Gaussian trap, and again showed

the improvement offered by eSTA for a range of trap depths.

Robustness of enhanced Shortcuts to Adiabaticity: By examining

the robustness of the eSTA control schemes, in Chapter 4 we found that eSTA

protocols can result in higher fidelity and improved robustness against several

types of systematic and noise errors. We demonstrated these improvements

using the practical setting of atom transport in an optical lattice potential,

near a quantum speed limit [76].

We provided a general heuristic argument that the eSTA schemes should re-

sult in higher fidelities and improved stability compared with the original STA

schemes. We also provided strong numerical evidence of this claim, by con-

sidering noise and systematic errors in the lattice potential. We quantified the

increase in robustness by defining new measures beyond the standard sensitivity

measure, such as an eSTA-specific evaluation tool CQ that allows possible con-

trol functions to be evaluated without full numerical treatment, and a practical

error bound B that combines fidelity and sensitivity such that eSTA and STA

control functions can be compared quantitatively.

Improved anharmonic trap expansion through eSTA: The main re-

sult of Chapter 5 was a generalisation of the original eSTA derivation in Chapter

3, that naturally leads to an alternative eSTA method. This alternative eSTA

method allows the removal of an assumption of the original eSTA method, at

the expense of calculating an additional Hessian term. Both eSTA methods

were applied to two examples of one-particle anharmonic trap expansion, ex-

pansion of a Gaussian trap and expansion of a lattice potential. The resulting

eSTA schemes resulted in both higher fidelity and improved robustness against

systematic amplitude error, over the corresponding STA schemes.

Lattice transport of two ions via eSTA: In Chapter 6 we applied eSTA

to transport of two Coulomb-interacting ions in a lattice potential. We first

derived an approximate STA Hamiltonian from which we could calculate the
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eSTA scheme. We found that eSTA resulted in much higher fidelities than the

STA scheme and that the eSTA scheme had much improved robustness against

systematic lattice amplitude error than the corresponding STA scheme.

Summary of eSTA properties: We now present a general summary of

eSTA, where we highlight several advantages that make the eSTA formalism a

useful tool for quantum control. The derivation of eSTA is analytic, meaning

that the resulting control schemes can offer physical insight into a given con-

trol problem and that they can be chosen to satisfy any necessary experimental

constraints. It is expected that eSTA control schemes will have enhanced ro-

bustness against noise, which is a critically important attribute in practical

experimental settings. There is significant freedom in choosing how to param-

eterise the eSTA control scheme, allowing the design of experimentally feasible

schemes (such as those with a fixed bandwidth or with certain symmetries).

There are many future possible applications of eSTA, since many systems can

be approximated by systems with existing STA solutions but do not have STA

solutions themselves. We now explore some of these future possible applications

of eSTA.

7.2 Outlook

In this outlook we will consider possible future applications of eSTA.

Counterdiabatic driving: Counterdiabatic driving has a natural exten-

sion using eSTA, since the instantaneous eigenstates from the counterdiabatic

scheme can be used to construct eSTA. We start with a system with a Hamil-

tonian H = H0+µH1, where H0 is a system that has a counterdiabatic scheme

such that H0 +HCD achieves the required state transfer and µ is a parameter

that we assume to be small. Then we can construct an improved control scheme

for H using the known states from HCD = iℏ
∑

n (⟨∂tϕn|ϕn⟩ − ⟨ϕn|∂tϕn⟩⟨ϕn|) .

Counterdiabatic driving has been applied in many settings, from faster STIRAP
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to control of many body systems. Hence there are many opportunities to use

counterdiabatic driving as a starting point and then apply the eSTA formalism.

Open quantum systems: Another area where eSTA can have applications

is open quantum systems. For example, suppose an open quantum system has

the Lindblad form ∂
∂t
ρ(t) = [L0(t) + µL1(t)] ρ(t) where L0 = − i

ℏ [H0, ρ(t)]. If

there exist an STA technique for L0 and we are able to write the time evolu-

tion operator in terms of known solutions, then we can use eSTA to construct

improved control schemes for L0(t)+µL1(t). Note that in this setting the max-

imal attainable fidelity may be less than one for a given L1, due to dissipation.

Thus in this setting, the alternative approach using the Hessian approximation

discussed in Chapter 5 will be a more appropriate eSTA method to use in an

open system context.

Numerical optimisation: Finding optimal control schemes numerically

can be computationally expensive, and it is often advantageous to initialise

the problem with a control scheme that is close to an optimal scheme. This

allows faster convergence to an optimal scheme and one can use knowledge of

the approximately optimal scheme to streamline the optimisation process. For

example, if the approximate optimal scheme has a certain symmetry, it may be

possible to reduce the number of control parameters by assuming the optimal

scheme will also have this symmetry. While STA can be used as a starting

point for such optimisation, eSTA may offer a competitive advantage. While

eSTA will have generally a higher fidelity, crucially we also expect eSTA to have

increased robustness (as discussed in Chapter 4). This improved robustness can

be a major advantage for practical implementation of control schemes.

Many body quantum systems: Designing control schemes for many body

quantum systems is an area of active research, in particular for state preparation

and implementing quantum neural networks and machine learning. STA have

been used to design control schemes in many-body systems, for example spin

chain systems such as the Ising model [172], the LMG model [46] and the
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Heisenberg spin chain [153]. Using STA to control many body systems can

require approximations to be made, and in principle there is scope for eSTA

to improve existing STA state preparation schemes. Inverse engineering and

FAQUAD have been used to speed up quantum perceptrons in an Ising model

[173]. It would be interesting to see if eSTA could provide a way to speed up

and improve robustness in designing quantum perceptrons.

Classical systems: STA have been applied to classical systems [33, 34,

174], and using classical time-dependent perturbation theory there is scope to

apply eSTA to a variety of classical systems. Again, the key advantage eSTA

can offer is improved fidelity and robustness without a large computational

cost. Note that when there is correspondence between a classical and quantum

system, one could calculate eSTA in either setting and use the resulting control

scheme on either system. For example, in Chapter 6 we calculated eSTA in

the quantum system and showed that the resulting eSTA scheme worked very

well on the corresponding classical system. This approach could be very useful

when calculating eSTA in one setting is significantly easier than in the other

setting. Another interesting possibility would be to calculate eSTA for a many

body quantum system by using a semi-classical or classical approximation to

the full quantum system.

Given the broad applicability of STA methods, we expect that there will

be many applications of eSTA in the future, across a wide variety of quantum

systems.
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