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Abstract

We consider steady periodic water waves with vorticity which propa-
gate over a flat bed with a specified fixed mean-depth d > 0. Following
a novel reformulation of the governing equations, we use global bifur-
cation theory to establish a global continuum of solutions throughout
which the mean-depth is a fixed quantity. Furthermore, we estab-
lish the limiting behaviour of solutions in this continuum, which in-
clude the existence of weak stagnation points, that are characteristic
of large-amplitude steady periodic water waves.

Keywords: Global bifurcation, stagnation points, steady periodic waves, vor-
ticity, fixed-depth flows.
AMS Subject Classification (2000): 35Q31, 35J25.

1 Introduction

In the following paper we rigorously prove the existence of large-amplitude
steady periodic water waves, which propagate over a flat bed with a speci-
fied fixed mean-depth d > 0, and which have a general vorticity distribution.
The distinguishing feature of this paper is that we maintain the fixedness of
the mean-depth d throughout the continuum of solutions. Recently, follow-
ing the seminal paper of Constantin and Strauss [13], the existence of large
amplitude water waves with vorticity was proven to exist for discontinuous
vorticity distributions, stratification, and surface tension, cf. [16, 50, 51]. In
all of these works the mass-flux p0, defined in (5) below, is a fixed constant
throughout the global bifurcation procedure, and accordingly no a priori con-
trol or determination of the mean-depth d is possible for the resulting global
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continuum of solutions which are proven to exist. Indeed, recent numerical
investigations in [39, 40] show that the mean-depth d varies throughout the
continuum of solutions [13] for fixed mass-flux p0. However, both intuitively
and physically, it is more natural, and indeed desirable, to have solutions for
which the mean-depth d is fixed, rather than having the mass-flux p0 fixed. In
the current paper we address this issue, and gain control on the mean-depth
d by employing a novel reformulation of the governing equations which origi-
nated in [31]. The reformulation is achieved by performing a semi-hodograph
change of variable, and introducing a modified-height function— a procedure
which, although redolent of the standard Dubreil-Jacotin [20] transform em-
ployed in [13, 16, 50, 51], now allows us to control the mean-depth d once we
take care of some additional mathematical complications.

The question of establishing the existence of solutions to the water wave
problem has occupied the minds of researchers for centuries, presumably
since the field of hydrodynamics was rigorously established in the 18th cen-
tury. Nevertheless, due to the intractability of the governing equations for
water waves, there are only a handful of explicit solutions which are known
to exist. For deep-water gravity waves, in 1802 Gerstner [24] found an ex-
plicit solution in the Lagrangian formulation of the full water wave equations
(which was later independently discovered by Rankine). The resulting wave
is a periodic travelling wave with a specific vorticity distribution (see [5, 7, 28]
for a modern treatment of Gerstner’s wave), and although the prescription
of the flow is quite specific and rigid, remarkably this flow has been recently
adapted to describe a wide-variety of interesting, and physically varied, water
waves (cf. [7, 6, 8, 47]).

In spite of the fact that Gerstner’s wave, which is one of the few ex-
plicit water wave solutions known, is intrinsically rotational, most of the
rigorous analytical work concerning the existence of water waves had, at
least until recently, focused on the irrotational case (see [52] for a survey
of this work). The reason for this, no doubt, is that the presence of vor-
ticity adds significant intrinsic mathematical complications to the problem.
While irrotational flows may be regarded as being suitable for modelling
waves which enter a body of still water [35, 42], more physically compli-
cated and realistic flows generally possess vorticity, for example flows which
model wave-current interactions [36, 48] or flows generated by wind-shear
[38]. In 1934 Dubreil-Jacotin [20] used power series to show the existence of
small-amplitude waves with vorticity, however a rigorous proof of the exis-
tence of large amplitude waves proved elusive until the breakthrough paper
of Constantin and Strauss [13] in 2004 (a noteworthy first approach to this
question, using numerical simulations, is given in [19]). This breakthrough
was followed by a wide body of work on flows with vorticity, establishing such
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properties as stability of solutions [15], the symmetry of solutions [9, 10, 11],
the analyticity of the surface profile and the streamlines for waves with vor-
ticity [12, 30, 29, 32, 33, 44, 45] and extending the proof of the existence
of small-amplitude solutions to more general rotational flows, such as flows
which experience surface tension, have critical layers or stagnation points, or
flows with discontinuous vorticity [4, 14, 16, 17, 22, 34, 43, 49, 51].

The aim of this paper is to rigorously prove the existence of large-amplitude
steady periodic water waves, which propagate over a flat bed with a speci-
fied fixed mean-depth d > 0, and which have a general vorticity distribution
which satisfies (16). In doing so, we extend the work of the author in [31],
where the existence of small-amplitude waves with fixed-depth and vorticity
is proven using local bifurcation theory. We will extend the local bifurcation
curve of [31] to a global continuum of solutions using the global bifurcation
theory of Rabinowitz [46], which we implement with the generalised Leray-
Schauder degree developed by Healey and Simpson [27], which is applicable
to operators which are not compact perturbations of the identity, and which
have nonlinear boundary conditions. In so doing, we prove the existence of
large-amplitude waves, as detailed in the main result of this paper, which we
state as follows. Here the functions (u, v, η) represent the horizontal speed,
the vertical speed, and the free-surface of the flow respectively, and Ck,α

per rep-
resents the usual Hölder spaces, with the subscript per indicating functions
which exhibit periodicity and evenness in the q−variable.

Theorem 1.1. Let the wave speed c > 0, the wavelength L and the fixed
mean-depth d > 0 be given. For α ∈ (0, 1) let the vorticity function γ ∈
C1,α(−1, 0) satisfy (16). Then there exists a continuum S0 of solutions
(u, v, η)∈ C2,α

per (Dη) × C2,α
per (Dη) × C3,α

per (R) of the water wave equations (3)
such that

(i) u, v, η have period L in the x−variable;

(ii) within each period the (non-flat) wave profile η has a single maximum
and minimum;

(iii) if x = 0 is the location of the wave crest, then u, η are symmetric,
while v is anti-symmetric about the line x = 0, with v(x, ·) > 0 for
x ∈ (0, π), y > −d;

(iv) the wave profile is strictly decreasing from crest to trough;

(v) the flow beneath each wave has no stagnation points, that is, u < c
throughout the fluid.
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Furthermore, the continuum S0 contains a single laminar flow (where all
streamlines, including the wave surface, are flat horizontal lines), and there
is a sequence (un, vn, ηn) for which

either lim
n→∞

{

max
Dηn

un

}

= c or lim
n→∞

{

min
Dηn

un

}

= −∞. (1)

We remark that if the mass flux is bounded throughout S0, then in fact
the first limiting behaviour in (1) must occur, implying the existence of a
sequence of solutions which possess, in the limit, a weak stagnation point.
This behaviour is precluded for the small-amplitude waves which were proven
to exist in [31], and it is in this sense that the resulting waves are of large-
amplitude. In the following section we outline some results, and notation,
from the paper [31] which are relevant here, while Theorem 1.1 is then proven
in Section 3.

2 Preliminaries

We consider steady periodic travelling surface waves propagating over water
of depth d > 0, where d is fixed, and where the external restoration force
is gravity. If we fix the undisturbed water surface to be located at y = 0,
then this fixes the location of the flat bed to be y = −d, and furthermore if
η(x, t) represents the free surface of the wave for any fixed time t, then we
must have the mean of η equal to zero, that is

∫

η(x, t)dx = 0, (2)

where we integrate over an interval the size of a wavelength. The free surface
η is a priori undetermined and is therefore an unknown in the problem. We
assume that the steady travelling waves move with a constant wavespeed
c > 0, and so all functions have a x, t relationship of the form x − ct, and
we transform to a new reference frame moving alongside the wave by using
the change of coordinates (x− ct, y) 7→ (x, y). In this frame the flow is time
independent. Let us denote the closure of the fluid domain by Dη = {(x, y) ∈
R

2 : −d ≤ y ≤ η(x)}. The governing equations for the motion of the perfect
(inviscid and incompressible) fluid take the form of Euler’s equation, together
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with boundary conditions, as given by

ux + vy = 0, in Dη (3a)

(u− c)ux + vuy = −Px, in Dη (3b)

(u− c)vx + vvy = −Py − g, in Dη (3c)

v = (u− c)ηx on y = η(x), (3d)

P = Patm on y = η(x), (3e)

v = 0 on y = −d, (3f)

where P (x, y) is the pressure distribution function, Patm is the constant at-
mospheric pressure and g is the gravitational constant of acceleration. For
two-dimensional motion, the vorticity is given by

ω = uy − vx. (3g)

We now make the additional assumption that there are no weak-stagnation
points, that is,

u < c (3h)

throughout the fluid. This is a physically reasonable assumption for water
waves, without underlying currents containing strong non-uniformities, and
which are not near breaking [42]. The non-stagnation condition is also es-
sential mathematically in our reformulations of the water wave equations, as
we see below. We work with periodic waves, and we choose the period to be
2π without loss of generality. For suppose we are dealing with water waves
of wavelength L in the governing equations (3a)–(3f), then after performing
the following scaling of variables

(x, y, t, g, ω, η, u, v, P, c) 7→ (κx, κy, κt, κ−1g, κ−1ω, κη, u, v, P, c)

where κ = 2π
L

is the wavenumber, we end up with a 2π−periodic system in
the new variables identical to (3) except g, ω are replaced by κ−1g, κ−1ω. We
define the stream function ψ up to a constant by

ψy = u− c, ψx = −v, (4)

and we fix the constant by setting ψ = 0 on y = η(x). Relations (3d) and
(3f) tell us that ψ is constant on both boundaries of Dη, and so it follows
from integrating (4) and using (3h) that ψ = −p0 on y = −d, where

p0 =

∫ η(x)

−d

(u(x, y)− c)dy < 0 (5)
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is the relative mass flux. For a given solution (u, v, η) of the water wave
problem (3) the mass-flux is constant, since, from (3a) and (3d) we get

dp0
dx

= (u(x, η(x))− c)η′(x)− v(x, η(x)) = 0.

However, the value of this constant may vary for different solutions of the
system (3), since in this paper we do not force p0 to be fixed along the
continuum of solutions. Regarding how p0 may vary for different solutions,
let (uj, vj, ηj), j = 1, 2 be two solutions of the water wave problem (3), then
we have

p01 − p02 =

∫ η1(x)

−d

(u1(x, y)− u2(x, y)) dy −
∫ η2(x)

η1(x)

(u2(x, y)− c)dy (6)

and so the values of the mass-flux p0j will converge if the solutions (uj, vj , ηj)
converge in the L∞ norm. The following inequalities will be useful:

inf
−d≤y≤η(0)

(c− u(0, y)) · d ≤ |p0| ≤ sup
−d≤y≤η(π)

(c− u(π, y)) · d, (7)

since η(π) < 0 < η(0). We can reformulate the governing equations in the
moving frame in terms of the stream function [7, 31] as follows:

∆ψ = ω in − d < y < η(x), (8a)

|∇ψ|2 + 2g(y + d) = Q on y = η(x), (8b)

ψ = 0 on y = η(x), (8c)

ψ = −p0 on y = −d. (8d)

Here Q, the hydraulic head, is a constant of motion for each flow, and it will
play a significant role in our global bifurcation analysis. The next step in
reworking the governing equations is to transform the fluid domain Dη, with
the unknown free boundary η, into the fixed semi-infinite rectangular strip
R = R×[−1, 0]. We achieve this by applying the semi-Lagrangian hodograph
transformation, which was first introduced in [31], defined by

(x, y) 7→ (q, p) := (x, ψ(x, y)/p0). (9)

We can see clearly now that the non-stagnation condition (3h) is vital in
order to ensure that the change of variables (9) represents an isomorphism.
In the following it will be useful to represent the top and the bottom of the
closed rectangle R by

T = {(q, p) : q ∈ [−π, π], p = 0}, B = {(q, p) : q ∈ [−π, π], p = p0}.
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We remark that the transformation (9) has a singular advantage over the
standard Dubreil-Jacotin transformation, which featured in [13], insofar as
it will allow us to reexpress the system (8) in the form (12) below which
enables us to fix concretely the value of the depth d > 0 when we engage
in bifurcation theory in later sections. The reformulation is achieved by
the following procedure. Firstly, it can be easily shown [31] that ωq = 0,
and so the vorticity is a function of p alone: ω = γ(p), where γ will be
referred to as the vorticity function [31]. Following the transformation (9)
we can reformulate the governing equations (8) in terms of the modified-
height function,

h(q, p) =
y

d
− p, (10)

where h(q,−1) = 0 for all q ∈ (−π, π), the condition (31a) takes the form

∫ π

−π

h(q, 0)dq = 0,

and
hp + 1 =

p0
d(u− c)

, hq =
v

d(u− c)
. (11)

The reformulation of (8) takes the form [31]:

(

1

d2
+ h2q

)

hpp − 2hq(hp + 1)hpq + (hp + 1)2hqq +
γ(p)

p0
(hp + 1)3 = 0,

in − 1 < p < 0, (12a)

1

d2
+ h2q +

(hp + 1)2

p20
[2gd(h+ 1)−Q] = 0, p = 0, (12b)

h = 0, p = −1, (12c)

where the mass-flux p0 = p
(h)
0 is constant for each solution h, the depth d > 0

is a constant which is fixed throughout, and the non-stagnation condition
(3h) is equivalent (by (11)) to

hp + 1 > 0. (12d)

It was shown in [31] that the systems (3), (8) and (12) are equivalent to
each other, and a solution of (12) is given by h ∈ C3,α

per (R). We note that

(6) and (11) imply that the value of the mass-flux p
(hj)
0 converges to p

(h)
0 if

the sequence {hj} converges to h in the C1
per(R) norm. In the following, for

notational convenience, unless the precise value of the mass-flux has a direct
impact on our considerations, we will suppress the superscript and simply
write p0.
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2.1 Existence of nonlinear waves of small amplitude

We now outline briefly how the existence of small-amplitude wave solutions
to system (12), for general classes of vorticity functions, is rigorously proven
in [31] using local bifurcation theory. The trivial laminar flow solutions
H(p) of the modified-height system (12) (that is, solutions which have no
q−dependence and where the streamlines of the resulting flow are horizon-
tal) take the form

H(p) =

∫ p

0

ds
√

λ+ Γ(s)
+

1

2gd

[

Q− p20
d2
λ

]

− (p+ 1), −1 < p ≤ 0,

where

Γ(p) = 2
d2

p0

∫ p

0

γ(s)ds, −1 ≤ p ≤ 0,

and

λ =
1

(1 +Hp)2

∣

∣

∣

∣

p=0

=
d2(u− c)2

p20

∣

∣

∣

∣

on the flat surface

,

with
Γmin = min

p∈[−1,0]
Γ(p) ≤ 0, (13)

and λ > −Γmin. In [31] we apply the Crandall-Rabinowitz local bifurcation
theorem [18] to prove, for a quite general class of vorticity functions, the
existence of small amplitude solutions to (12) of the form

h(q, p) = H(p;λ) + ǫm(q, p),

where 0 6≡ m ∈ C3,α
per (R). These small-amplitude nontrivial solutions to (12)

are in the form of a localised curve of non-laminar solutions bifurcating from
the curve of trivial laminar solutions. The existence of this bifurcating curve
is intrinsically tied to the question of the existence of a function m(q, p) =
m(p) cos(q), where m(p) satisfies the weighted Sturm-Liouville problem

(a3mp)p = d2am, −1 < p < 0, (14a)

a3mp =
gd3

p20
m, p = 0, (14b)

m = 0 p = −1. (14c)

We associate to (14) the minimisation problem:

µ(λ) = inf
φ∈H1(−1,0), φ(−1)=0, φ 6≡0

F(φ, λ), (15)

with F(φ, λ) =
−gd3φ2(0) + p20

∫ 0

−1
a3φ2

pdp

p20d
2
∫ 0

−1
aφ2dp

,
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where the Hilbert space H1(−1, 0) is the standard Sobolev space of square
summable functions on [−1, 0] whose first derivative is also square summable
[21]. In [31] we show that a solution m(p) of (14) exists precisely when
there is a critical value λ∗ for which µ(λ∗) = −1 in (15). Furthermore,
such a groundstate m(p), which we normalise to have m(0) = 1, is unique,
for suppose the difference of the two is denoted M(p). Then M(p) satisfies
the system (14), with M(0) = Mp(0) = 0, and by the uniqueness property
of solutions to linear second order differential equations [26] we must have
M(p) ≡ 0. The following lemma establishes a property of the groundstate
m(p) which will be used in later discussions.

Lemma 2.1. Let m(p) be the unique solution of (14), which has m(0) = 1,
then m(p) > 0 for p ∈ (−1, 0).

Proof. Suppose m(p∗) = 0 for some p∗ ∈ (−1, 0). Then multiplying (14a) by
m and integrating on [p∗, 0] we get

gd3

p20
m2(0) =

∫ 0

p∗
a3m2

pdp+

∫ 0

p∗
d2am2dp.

Therefore we can see that

m1 =

{

m(p) p ∈ [p∗, 0],
0 p ∈ [−1, p∗],

satisfies (15), and so also represents a groundstate of (14). By the uniqueness
properties of the groundstate [31] this implies that m(p) ≡ m1(p), and in
particular m(−1) = mp(−1) = 0. However, by uniqueness properties of
solutions [26] to the linear differential equation (14), this implies thatm(p) ≡
0, which is a contradiction. The boundary condition at p = 0 then implies
that m(p) > 0 for p ∈ (−1, 0).

In the course of proving the existence of small-amplitude water waves in
[31] we obtain the following result, which provides us with a condition which
is sufficient for local bifurcation to occur.

Proposition 2.2 ([31]). Suppose that

√
2

3
γ

3
2∞|p0|

1
2 |p1|

1
2 +

2
√
2

5
γ

1
2∞|p0|

3
2 |p1|

3
2 < g, (16)

where γ∞ = ‖γ‖C[−1,0] and p1 = min{p ∈ [−1, 0] : Γ(p) = Γmin}, where Γmin

is defined in (13). Then there exist non-trivial solutions to the linearised
problem (14).
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Remark We note that p1 = 0 for γ ≥ 0 and so in this case we easily see
that (16) holds.

For vorticity functions γ which satisfy condition (16), Proposition (2.2) proves
the existence of critical values λ∗ such that µ(λ∗) = −1, thereby proving the
existence of solutions to the linearisation (14) of the water wave problem (12).
In turn, in [31], using the local bifurcation theory of Crandall-Rabinowitz we
prove that there exists some ǫ0 > 0 such that there is a local bifurcation
curve C = {(λ(s), hs) ∈ R × X : |s| < ǫ0} of nontrivial solutions to the full
water wave system (12). We remark that the considerations of [31] prove
also that this critical value λ∗ is, in fact, unique.

For local bifucation λ is the appropriate bifurcation parameter, however
in the global bifurcation setting it is more fruitful to take Q as our parameter.
This is a valid choice since

Q(λ) = 2gd

∫ 0

−1

ds
√

λ+ Γ(s)
+
p20
d2
λ > 0, (17)

it follows that Q is a positive, convex function of λ, with minimum occurring
at the unique value λ0 > 0 where

p20
gd3

=

∫ 0

−1

ds

(λ0 + Γ(s))
3
2

.

Therefore Q(λ) is monotonically decreasing for −Γmin < λ < λ0 and mono-
tonically increasing for λ > λ0, and therefore there is a suitable bijective
correspondence between values of λ and Q(λ) near the critcal point λ∗. If
we define the Banach spaces

X =

{

h ∈ C3,α
per (R) :

∫

T

h(q, 0)dq = 0, h = 0 on B

}

, Y = C1,α
per (R)×C2,α

per (T ),

then, restricting the bifurcating curve if necessary, local bifurcation theory
[31] ensures that there is a local curve of solutions Cloc = {(Q(s), hs) ∈ R×X :
|s| < ǫ0} with (Q(0), h0) being the laminar flow solution (Q∗, H∗). In the
following we denote

C+
loc = {(Q(s), hs) ∈ R×X : 0 ≤ s < ǫ0}, (18a)

C−
loc = {(Q(s), hs) ∈ R×X : −ǫ0 < s ≤ 0}. (18b)

The small-amplitude wave solutions of (12) take the form [31]

hs(q, p) = H(p;Q(s)) + sm(p) cos(q), (19)

and so we see that the solutions of (12) which are located on C+
loc correspond

to waves with their crest located at x = 0, while those located on C−
loc have

their troughs located at x = 0.
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3 Global bifurcation theory

The water wave system (12) can be represented in terms of the operator
G = (G1,G2) : R×X → Y = Y1 × Y2, where

G1(Q, h) =

(

1

d2
+ h2q

)

hpp − 2hq(hp + 1)hpq + (hp + 1)2hqq +
γ(p)

p0
(hp + 1)3,

(20a)

G2(Q, h) =
1

d2
+ h2q +

(hp + 1)2

p20
[2gd(h+ 1)−Q]. (20b)

For 0 < δ < 1 define the set Oδ ⊂ R×X by

Oδ =

{

(Q, h) ∈ R×X : hp + 1 > δ in R, h+ 1 <
Q− δ

2gd
on T, δ < |p0| <

1

δ

}

.

By its definition, and following from (12d), the operator h 7→ G1(Q, h) is uni-
formly elliptic on Oδ and the boundary operator G2(Q, h) remains uniformly
oblique (that is, it has a non-tangential component on T ). Define S0

δ to be

the connected component of {(Q, h) ∈ Oδ : G(Q, h) = 0, hq 6≡ 0} ⊂ R × X
which contains (Q∗, H∗). Hence S0

δ contains the local bifurcation curve Cloc
for δ > 0 small enough. Our first goal in this section is to prove the following.

Theorem 3.1 (Global Bifurcation Theorem). Let δ > 0 be small enough.
Then one of the following alternatives holds:

1. S0
δ is unbounded in R×X.

2. S0
δ contains another trivial point (Q(λ), H(λ)) with λ 6= λ∗.

3. S0
δ contains a point (Q, h) ∈ ∂Oδ.

Furthermore, there exists a continuous curve Kδ in R ×X for which C+
loc ⊂

Kδ ⊂ S0
δ and at each point Kδ has a locally analytic reparametrization. Simi-

lar to the alternatives above, either Kδ is unbounded in R×X, or it contains
a point (Q, h) ∈ ∂Oδ, or else Kδ is a closed loop.

The proof of the above theorem follows exactly along the lines of the
global bifurcation theorem of Rabinowitz [46]. However Rabinowitz’s theory,
which utilises the Leray-Schauder degree, applies only to operators which are
compact perturbations of the identity, and the water wave problem formu-
lation (20) does not belong to this category of operators. We must instead
employ a variant of this degree which is applicable to certain nonlinear oper-
ators that we say are “admissible”. This generalised Leray-Schauder degree
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was initially developed by Kielhöfer [37] for linear boundary conditions, and
then further extended by Healey and Simpson [27] to allow for nonlinear
boundary conditions. The first implementation of this generalised degree in
the analysis of water waves with vorticity was in the breakthrough paper
of Constantin and Strauss [13] where they proved the existence of large-
amplitude water waves with vorticity which have a fixed mass-flux. In short,
a nonlinear operator is an admissible mapping if it satisfies the criteria of
Lemmas 3.2, 3.3 and 3.4 in the next section. Given an admissible operator,
it can be shown, exactly as in Rabinowitz’s global bifurcation theory except
using the generalised degree of Healey-Simpson, the first two alternatives in
Theorem 3.1 must hold. The third alternative in Theorem 3.1 arises from
the possibility that the continuum of solutions S0

δ touches the boundary of
O, in which case either the uniform ellipticity of the operator (20a), or the
uniform obliqueness of the boundary operator (20b), break down, or the
mass-flux vanishes or blows-up. The existence of the real-analytic curve Kδ

follows from real-analytic global bifurcation theory [3].
The layout of the remainder of this paper will be structured as follows.

In the next section we prove that the operator (20) is admissible in the
sense of Healey and Simpson, from which Theorem (3.1) follows. Following
this, we will establish nodal properties which are intrinsic to all solutions in
the continuum S0

δ and the curve Kδ, and rule out the second alternative in
Theorem 3.1. The nodal properties inherited by the solutions lead to the
proof of statements (iii) and (iv) of Theorem 1.1. In the final section we
prove that the remaining alternatives in Theorem 3.1 lead to the limiting
behaviour of the solutions in S0

δ and Kδ as outlined in Theorem 1.1.

3.1 On the admissibility of G
In the following three lemmas we establish the admissibility of the operator
(20), in the sense of [27], thereby proving Theorem 3.1.

Lemma 3.2 (Proper map). If K ⊂ Y is compact and D is a closed bounded
set in Oδ, then G−1(K) ∪D is compact in R×X.

Proof. Let {(fj, gj)} be a convergent sequence in Y = Y1×Y2 with G(Qj, hj) =
(fj, gj), that is, G1(Qj, hj) = fj ,G2 = (Qj, hj) = gj, for (Qj, hj) ∈ Oδ such
that {hj} is bounded in X and {Qj} is bounded in R. We want to prove that
there exists a convergent subsequence of {(Qj, hj)} in R×X. For θj = ∂qhj
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we have
(

1

d2
+ (∂qhj)

2

)

∂2pθj − 2(∂qhj)(∂phj + 1)∂2pqθj + ((∂phj) + 1)2∂2qθj

= Fj + ∂qfj in R,
(21a)

(∂qhj)∂qθj + [2gd(hj + 1)−Q]
((∂phj) + 1)

p20
∂pθj = Gj +

1

2
∂qgj on p = 0,

(21b)

θj = 0 on p = −1.
(21c)

where Fj(∂qh, ∂ph, ∂
2
qh, ∂

2
qph, ∂

2
ph) is a cubic polynomial and Gj(∂qh, ∂ph) =

−((∂phj) + 1)2gd(∂qhj)/p
2
0. Now, the sequence {Fj(∂qh, ∂ph, ∂

2
qh, ∂

2
qph, ∂

2
ph)}

is uniformly bounded in C1,α
per (R), while the sequence {fj} converges in C0,α

per (R),

therefore the right-hand side of (21a) is compact in C0,α
per (R). The right-

hand side of (21b) is similarly compact in C1,α
per (T ). By choosing subse-

quences and relabelling, let us assume that these sequences are convergent
in C0,α

per (R), C
1,α
per (T ) respectively. Taking differences we get from (21a)–(21c)

that
(

1

d2
+ (∂qhj)

2

)

∂2p(θj − θk)− 2(∂qhj)(∂phj + 1)∂2pq(θj − θk)

+((∂phj) + 1)2∂2q (θj − θk) = Fjk in R,

(∂qhj)∂q(θj − θk) + [2gd(hj + 1)−Q]
((∂phj) + 1)

p20
∂p(θj − θk) = Gjk on T,

θj − θk = 0 on B,

where

Fjk := Fj − Fk + fj − fk − [((∂phj) + 1)2 − ((∂phk) + 1)2]∂2qθk

+ 2[(∂qhj)(∂phj + 1)− (∂qhk)(∂phk + 1)]∂2pqθk −
(

(∂qhj)
2 − (∂qhk)

2
)

∂2pθk,

Gjk := Gj −Gk +
1

2
∂qgj −

1

2
∂qgk + (∂qhj − ∂qhk)∂qθk

−
(

[2gd(hj + 1)−Q]
((∂phj) + 1)

p20
− [2gd(hk + 1)−Q]

((∂phk) + 1)

p20

)

∂pθk,

and it follows from the compactness considerations discussed above that
‖Fjk‖C0,α

per(R), ‖Gjk‖C1,α
per(T ) → 0 as j, k → ∞.

13



Since the system is periodic in the q variable, this allows us to bypass the
apparent nonsmoothness of the boundary of R. We now apply Schauder es-
timates for θj − θk, applying the estimates for homogeneous Dirchlet bound-
ary conditions [25, Thm. 6.6] and oblique boundary conditions [25, Thm.
6.30] (this approach is valid since these estimates are local, and the different
boundary conditions occur on separated parts of the boundary). It follows
that

‖θj − θk‖C2,α
per(R) ≤ C

(

‖θj − θk‖C0
per(R) + ‖Fjk‖C0,α

per(R) + ‖Gjk‖C1,α
per(T )

)

, (22)

with C > 0 independent of j, k. The above estimate implies the convergence

‖θj − θk‖C2,α
per(R) → 0 as j, k → ∞.

Therefore all third order derivatives of hj (except perhaps ∂
3
phj) form Cauchy

sequences in Cα
per(R). However, since we may express ∂3phj in terms of the

other derivatives of hj, up to third order (by differentiating the equation
G1(Qj, hj) = fj with respect to p) we may infer that {∂3phj} is also a Cauchy

sequence in Cα
per(R). We have thus shown that {hj} has a subsequence which

converges in X, and since G2(Qj, hj) = gj the corresponding subsequence
{Qj} must converge in R also.

Lemma 3.3 (Fredholm map). For each (Q, h) ∈ Oδ the linearised operator
Gh(Q, h) is a Fredholm operator of index 0 from X to Y .

Proof. We take the Fréchet derivative of (20) to get

G1h(Q, h) =

(

1

d2
+ h2q

)

∂2pp − 2hq(hp + 1)∂2pq + (hp + 1)2∂2qq + 2hqhpp∂q

− 2(hp + 1)hpq∂q − 2hqhpq∂p + 2(hp + 1)hqq∂p +
γ(p)

p0
3(hp + 1)2∂p,

(23a)

G2h(Q, h) = 2hq∂q + 2
(hp + 1)

p20
[2gd(h+ 1)−Q]∂p +

(hp + 1)2

p20
2gd. (23b)

By the definition of Oδ, and from (12d), we can see that the linear operator
G1h is uniformly elliptic (in both the (q, p)−variables in R as well as for
(Q, h) ∈ Oδ) while the linear operator G2h is strictly oblique. For fixed
(Q, h) ∈ Oδ, let L denote the Fréchet derivative operator Gh(Q, h):

L : X0 → Y0,
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where

X0 =

{

h ∈ C2,α
per (R) :

∫

T

h(q, 0)dq = 0, h = 0 on B

}

, Y0 = C0,α
per (R)×C1,α

per (T ),

are Banach spaces. Since the outward normal ν = (0, 1) on T , and
supq∈[−π,π] 2gd(h(q, 0) + 1)−Q < 0, if we choose

σ > sup
q∈[−π,π]

(hp(q, 0) + 1)2

p20
2gd,

then the operator Lσ : X0 → Y0, defined by

Lσw := Lw − σ(w,w|T ),
satisfies the following existence theorem [25, Thm. 6.31]: for any F = (f, g) ∈
Y0, Lµw = F has a unique solution wF ∈ X0. Furthermore, similar to (22),
we have the Schauder estimate

‖w‖C2,α
per(R) ≤ C0

(

‖w‖C0
per(R) + ‖G1h(Q, h)w‖C0,α

per(R) + ‖G2h(Q, h)w‖C1,α
per(T )

)

,

(24)
where the constant C0 > 0 depends only on ‖h‖C2,α

per(R). Therefore the inverse

mapping L−1
µ : F 7→ wF is bounded from Y0 to X0, and since C2,α

per (R) is

compactly embedded in both C0,α
per (R) and C1,α

per (T ), we may regard L−1
µ as

a compact map from Y0 to Y0. Given F ∈ Y0, a function w ∈ X0 solves
Lw = F if and only if

1

σ
w + (Lµ)

−1w =
1

σ
(Lµ)

−1 F.

Furthermore, the operator defined by w 7→ 1
σ
w + (Lµ)

−1w from Y0 to Y0
is Fredholm, since it is the compact perturbation of the Fredholm operator
w 7→ 1

σ
w. As a consequence, ker(L) ⊂ X0 must be finite-dimensional and

ran(L) ⊂ Y0 is closed with finite co-dimension, implying that Gh(Q, h) :
X0 → Y0 is a Fredholm operator.

We now show that Gh(Q, h) : X → Y is a Fredholm operator of index
zero, noting that the considerations of the previous paragraph imply that
Gh(Q, h) has a finite dimensional kernel in X, and furthermore the range
of Gh(Q, h) must have finite co-dimension in Y . In order to prove that the
range is closed in Y we work as follows. Given w ∈ X, then taking the
q−derivatives of Gh(Q, h)w and using the classical Schauder estimates [25,
Thm. 6.30], there is a constant C1 > 0, independent of w, such that

‖wq‖C2,α
per(R)

≤ C1

(

‖wq‖C0
per(R) + ‖∂qG1h(Q, h)w‖C0,α

per(R) + ‖∂qG2h(Q, h)w‖C1,α
per(T )

)

.
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From (23a) we get the relation

∂3pw = d2∂p

(

G1h(Q, h)w + F (wq, wp, wqp, wqq)
(

1 + d2h2q
)

)

where F is a cubic polynomial expression, together with the Schauder esti-
mate above, to get an estimate for ‖wppp‖C0,α

per(R), with the end effect that we
have

‖w‖C3,α
per(R) ≤ C

(

‖w‖C1
per(R) + ‖G1h(Q, h)w‖Y1 + ‖G2h(Q, h)w‖Y2

)

(25)

for all w ∈ X, and the constant C depends solely on ‖h‖X . The fact that
the range of Gh(Q, h) is closed now follows, for if {wn} is a sequence such
that Gh(Q, h)wn = Fn → F in Y , then (24) and (25) imply that {wn} form
a Cauchy sequence in X, and clearly its limit w satisfies Gh(Q, h)w = F .
Therefore, Gh(Q, h) is a Fredholm operator, and since the index of a Fredholm
operator is a continuous function, it is constant on the open and connected
set Oδ, and the value must be zero since the index of Gh(Q, h) is zero at the
local bifurcation point.

Lemma 3.4 (Spectral properties).

(i) For every M > 0 there exist constants c1, c2 > 0 such that for all
(Q, h) ∈ Oδ with |Q|+ ‖h‖X ≤M , we have

c1‖ψ‖X ≤ µ
α
2 ‖(A− µ)ψ‖Y1 + µ

1+α
2 ‖Bψ‖Y2

for all ψ ∈ X and for all real µ ≥ c2, where A = A(Q, h) = G1h(Q, h)
and B = B(Q, h) = G2h(Q, h).

(ii) Define the spectrum

Σ(Q, h) = {µ ∈ C : A− µ not isomorphic from X0 = {ψ ∈ X : Bψ = 0},
endowed with the norm ‖ψ‖Y1 + ‖Aψ‖Y1 , onto Y1}

Then Σ(Q, h) consists entirely of eigenvalues of finite multiplicity with
no finite accumulation points. Furthermore, there is a neighbourhood
N of [0,∞) in the complex plane such that Σ(Q, h)∪N is a finite set.

(iii) For all (Q, h) ∈ Oδ, the boundary operator G2h(Q, h) : X → Y2 is onto.

Proof. The proof of (i) follows what the standard argument of Agmon [2]
(see also [7, 27]). We introduce the independent variable t ∈ (−2, 2) to the
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problem, and consider the elliptic operator A + ∂2t over the cylindrical do-
main Ωt = R × (−2, 2) ⊂ R

3, with a homogeneous Dirichlet condition on
the additional boundary corresponding to t = ±2. The new operator is uni-
formly elliptic and furthermore satisfies the complementing condition of [1]
on the boundary of Ωt (see [1, 7, 27] for a description of the complement-
ing condition). Therefore, from [1] it follows that Schauder-type estimates
similar to (24) apply to this operator on the augmented domain Ξ with top
boundary T × [−2, 2]. Using a standard trick [7, 13, 27] we insert the func-
tion w(q, p, t) = ei

√
µtφ(t)ψ(q, p) into the modified version of estimate (24)

(where ψ ∈ X, and φ is a smooth cut-off function, with support in (−2, 2)
and φ(t) = 1 for t ∈ [−1, 1]), giving us

‖w‖
C2,α

per(Ω
t
)
≤ C

(

‖w‖
C0

per(Ω
t
)
+ ‖(A+ ∂2t )w‖C0,α

per(Ω
t
)
+ ‖Bw‖C1,α

per(T×[−2,2])

)

.

(26)
We wish to derive Schauder-type estimates, in terms of the original domain
R and top boundary T , from the above estimate concerning the augmented
cylindrical domain. To this end, we note that

(A+ ∂2t )w = ei
√
µt {φ(t)(a− µ)ψ + [2i

√
µφ′(t) + φ′′(t)]ψ} ,

and straightforward, if laborious, calculations show that there exist constants
C1, C2, C3, C4 > 0 which are independent of µ > 1 and ψ ∈ X such that

‖ei
√
µtφ(t)ψ‖

C2,α
per(Ω

t
)
≥ C0

(

‖ψ‖C2,α
per(R) + µ‖ψ‖C0,α

per(R)

)

,

‖ei
√
µtφ(t)ψ‖

C0,α
per(Ω

t
)
≤ C1µ

α/2‖ψ‖
C0,α

per(Ω
t
)
,

‖ei
√
µt[2i

√
µφ′(t) + φ′′(t)]ψ‖C0,α

per(R) ≤ C2µ
(α+1)/2‖ψ‖

C0,α
per(Ω

t
)
,

‖(A− µ)ei
√
µtφ(t)ψ‖C0,α

per(R) ≤ C3µ
α/2‖(A− µ)ψ‖C0,α

per(R),

‖Bei
√
µtφ(t)ψ‖C1,α

per(T×[−2,2]) ≤ C4µ
(α+1)/2‖Bψ‖C1

per(T ).

Combining these inequalities with (26) gives

C0

C(C3 + C4)
‖ψ‖C2,α

per(R) ≤ µα/2‖(A−µ)ψ‖C0,α
per(R)+µ

(α+1)/2‖Bψ‖C1
per(T ), ψ ∈ X,

provided that C0µ
(1−α)/2 ≥ C(C1 + C2), and a similar inequality may be

derived for ∂qψ. Statement (i) now follows, for µ > 1 sufficiently large, by
expressing ∂2pψ in terms of (A + ∂2t )ψ and the derivatives of ψ of order less
than two.

For statement (ii), following the argumentation of Lemma 3.3, we find
that (A− µ,B) is a Fredholm operator of index zero from X to Y . Part (i)
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ensures that it has a trivial kernel, and hence it is one-to-one and onto if µ
is sufficiently large. Furthermore, (i) ensures that X0 is a Banach space and
A : X0 → Y1 is a bounded linear operator. If µ ≥ c2, then (A−µ) : X0 → Y1
is bijective, with compact inverse due to the compact embedding X ⊂ Y1.
Applying Riesz-Schauder theory we have proven (ii). Finally, the existence
of a value of µ such that (A− µ,B) maps X onto Y ensures that B maps X
onto Y2, proving part (iii).

We have now established that the operator G is admissible in the sense
of Healey-Simpson [27]. The results of Theorem 3.1 concerning the structure
of S0

δ now follows exactly as for the global bifurcation theorem of Rabi-
nowitz [46], but using the generalised degree of Healey-Simpson in place of
the Leray-Schauder degree. Additionally, the existence of the real-analytic
curve Kδ follows from real-analytic global bifurcation theory [3], thereby
proving Theorem 3.1.

3.2 Nodal patterns of solutions

In this section we prove that the nodal configuration of all solutions h in the
set S0

δ , and along the curve Kδ, is inherited from the linearised eigenfunction
at the local bifurcation point (Q∗, H∗). These nodal properties, expressed in
(27) below, will be used to eliminate the second alternative in Theorem 3.1,
and which additionally rules out Kδ being a closed loop. Furthermore, state-
ment (iii) of Theorem 1.1 follows as a consequence of the nodal properties
(27), coupled with (3h) and (11).

Let Ω be the open set (0, π)×(−1, 0), and let us denote its sides (excluding
the corners) as

∂Ωt = {(q, 0) : q ∈ (0, π)}, ∂Ωb = {(q,−1) : q ∈ (0, π)},
∂Ωl = {(0, p) : p ∈ (−1, 0)}, ∂Ωr = {(p, π) : p ∈ (−1, 0)}.

We will prove that all (Q, h) ∈ S0
δ with hq 6≡ 0 satisfy either

hq < 0 in Ω ∪ ∂Ωt, hqp < 0 on ∂Ωb, hqq < 0 on ∂Ωl, hqq > 0 on ∂Ωr,
hqqp(0,−1) < 0, hqqp(π,−1) < 0, hqq(0, 0) < 0, hqq(π, 0) > 0,

(27)

or else the exact opposite inequalities hold. In particular, the inequalities
(27) will hold for (Q, h) on C+

loc close to the bifurcation point (Q∗, H∗), and
the opposite inequalities hold for points (Q, h) on C−

loc close to (Q∗, H∗). By
it definition (10), we have h = 0 on ∂Ωb, and since h is even and periodic in
q we have hq = 0 on ∂Ωl ∪ ∂Ωr.
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Lemma 3.5. The inequalities (27) hold in a small neighbourhood of (Q∗, H∗)
in R×X, along the curve C+

loc\(Q∗, H∗) coming out of (Q∗, H∗).

Proof. In the neighbourhood of the bifurcation point (Q∗, H∗), it is easier
to work with (λ,w) rather than (Q, h), where w = h − H(λ, p), with the
laminar solution H(λ, p) independent of q. To prove this the lemma we will
show that the inequalities (27) hold for w along Cloc. We know from local
bifurcation theory [31] (see the discussion preceeding (19)) that, for ǫ > 0
small enough, along C+

loc we have

wǫ(q, p) = ǫM(p) cos q + o(ǫ) in C3,α(Ω), (28)

where M ∈ C3,α[−1, 0] is the solution to the Sturm-Liouville system (14).
Since M is the ground state for the Sturm-Liouville problem, we know from
Lemma 2.1 that M(p) 6= 0 for p ∈ (−1, 0), in fact we have

M(p) > 0, p ∈ (−1, 0),

and also M ′(−1) > 0. Hence, from M(0) = 1,M ′(−1), and differentiating
(28), we get that (27) holds for ǫ > 0 small enough.

We note that the opposite inequalities hold for points (Q, h) on C−
loc which

are close to (Q∗, H∗)— see the remark following (19).

Lemma 3.6. For any (Q, h) ∈ S0
δ with hq 6≡ 0, either the inequalities (27)

or their exact opposites hold.

Proof. The set S0
δ is connected in R×X. Furthermore, the set of (Q, h) ∈ Oδ

which satisfy the inequalities (27) is a nonempty (by Lemma 3.5) open set in
R×X. If the statement were false, then there exists some (Q, h) ∈ S0

δ , with
hq 6≡ 0, for which one of the inequalities in (27) is an equality, even though
it is the limit of a sequence of elements for which the inequalities (27) are
strict, or the exact opposites of (27) are strict. Without loss of generality, we
assume that (Q, h) is a limit of the sequence {(Qn, hn)} whereby (27) holds
for each hn. If we differentiate the system (12) with respect to q, we get the
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following system for φ = hq:
(

1

d2
+ h2q

)

φpp − 2hq(hp + 1)φpq + (hp + 1)2φqq + [2hqhpp − 2(hp + 1)hpq]φq

+[3
γ(p)

p0
(hp + 1)2 − 2hqhpq + 2(hp + 1)hqq]φp = 0 in Ω,

(29a)

2hqφq + 2
(hp + 1)

p20
[2gd(h+ 1)−Q]φp +

2gd(hp + 1)2

p20
φ = 0, p = 0,

(29b)

φ = 0, p = −1.
(29c)

The above system is uniformly elliptic with an oblique boundary condition
on the top boundary. Now, since ∂qhn < 0 in Ω for each n, we have must
have φ ≤ 0 in Ω. Since hq 6≡ 0, the strong maximum principle implies that
φ = hq < 0 in Ω, and on the boundaries ∂Ωl ∪ ∂Ωb ∪ ∂Ωr the Hopf inequality
[23] holds for φ (which attains its maximum, zero, on these boundaries),
thereby proving the second, third and fourth inequalities in (27). We now
show that φ < 0 on ∂Ωt. Suppose otherwise, let φ = 0 at some point (q0, 0),
for q0 ∈ (0, π). Then Hopf’s boundary inequality implies that φp > 0 at
(q0, 0), which violates the boundary condition (29b) on foot of the definition
of Oδ.

We now need to prove the four inequalities on the bottom row of (27).
At the top right corner, (π, 0), we have hq = hqqq = hqp = hqpp = 0, since
h is even in q and periodic. We proved above that hqq(π, p) > 0 for p ∈
(−1, 0), and so hqq(π, 0) ≥ 0 by continuity. Let us assume that hqq(π, 0) =
0, then differentiating (29b) with respect to q and evaluating at (π, 0) we
get (2(hp + 1)[2gd(h + 1) − Q]/p20)φpq = 0, which implies that φpq(π, 0) =
0. Therefore, all first and second derivatives of φ vanish as (π, 0), which
contradicts Serrin’s Edge Point Lemma [23]. Hence hqq(π, 0) > 0. A similar
treatment using Serrin’s Edge Point Lemma derives the inequalities for the
other corners.

To this point we have proven that, throughout S0
δ , the nodal pattern

(27) (or its exact opposite) must hold, unless there is a laminar flow solu-
tion. We now rule out the possibility of there being a laminar flow solution
(Q(λ), H(λ)) apart from (Q∗, H∗), thereby eliminating the second alternative
in Theorem 3.1.

Lemma 3.7. The only solution in S0
δ that is independent of q is the bifur-

cation point (Q∗, H∗).
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Proof. Let us suppose that (Qn, hn) ∈ S0
δ is a sequence converging to

(Q(λ), H(·, λ)) ∈ S0
δ , such that ∂qhn 6≡ 0 and the inequalities (27) hold.

Let φn = ∂qhn/‖∂qhn‖C2,α
per(R), and take a subsequence {φnk

} which con-

verges to some φ ∈ C2
per(R) (and which, we infer from regularity theory

for the uniformly elliptic oblique boundary problem (29), therefore converges
in C2,α

per (R)). It follows that the limit φ is a function of the form ∂qm, with

both m and ∂qm in C2,α
per (R), and for which ‖∂qm‖C2,α

per(R) = 1. Taking the

limit nk → ∞ in the system (29) we get

1

d2
φpp + (Hp + 1)2φqq + 3

γ(p)

p0
(Hp + 1)2φp = 0, in Ω, (30a)

2
(Hp + 1)

p20
[2gd(H + 1)−Q]φp +

2gd(Hp + 1)2

p20
φ = 0, p = 0, (30b)

φ = 0, p = −1. (30c)

Expanding in a sine series, we have

φ(q, p) =
∞
∑

k=1

sin(kq)fk(p),

where fk ∈ C2([−1, 0]) is given by

fk(p) =
2

π

∫ π

0

sin(kq)φ(q, p)dq, k ≥ 1.

Now, Hp(0) + 1 = 1√
λ
, λ = d2

p20
(Q − 2gd(H(0) + 1), and multiplying (30) by

sin(q) and integrating over [−π, π] we get

(a3∂pf1)p = d2af1 in (−1, 0), (31a)

λ3/2f ′
1(0) =

gd3

p0
f(0), (31b)

f1(−1) = 0. (31c)

Therefore f1 is an eigenvalue of (14) with eigenvalue µ = −1. Now, since
∂qhnk

< 0 in Ω (by (27)) and equals zero on p = −1, we have φ ≤ 0 in Ω,
with φ(q,−1) = 0, and so the strong maximum principle implies that φ < 0
in Ω, giving us

f1(p) < 0, p ∈ (−1, 0).

This non-vanishing condition implies that f1 is a groundstate (for otherwise
it has nodes where it vanishes), that is, µ = −1 is the lowest eigenvalue. It
now follows from the considerations of [31], where we prove the uniqueness
of the critical value λ∗ giving µ(λ∗) = −1 in (15), that λ = λ∗.
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The results of this Section can be summarised as follows:

Proposition 3.8. The connected set S0
δ is either unbounded in R × X or

contains a point (Q, h) ∈ ∂Oδ (similarly for the curve Kδ). Furthermore,
any solution h in S0

δ ,Kδ, which is different from the local bifurcation solution
(Q∗, H∗), inherits the nodal properties (27).

3.3 Uniform regularity and bounds in S0
δ
,Kδ

In this section we complete the proof of Theorem 1.1, in particular Lemma
3.11 establishes the limiting behaviour (1) of solutions in the continuum S0

δ .
For the subsequent considerations we note that, due to the periodicity in q of
the functions which we consider, we can ignore the apparent nonsmoothness
of the boundary at the lateral sides of the domain R. Also, although we
have an oblique boundary condition on the top, and a homogeneous Dirich-
let condition on the bottom, due to the local nature of the estimates which
we will employ, and the seperatedness of the respective boundaries, we may
justifiably combine estimates which apply to the different boundary condi-
tions. Key among these estimates are the Schauder-type estimates which
were developed by Liebermann and Trudinger [41], and accordingly we will
present their regularity theorem in a little detail. Let us consider the oblique
nonlinear elliptic boundary value problem

F (h,Dh,D2h) = 0 in R, (32a)

G(h,Dh) = 0 on p = 0, (32b)

h = 0 on p = −1. (32c)

Here F ∈ C2(R×R
2 ×S,R) and G ∈ C2(R×R

2,R), with Dh the gradient,
D2h the Hessian matrix, and S the space of 2×2 real symmetric matrices. We
say that F is elliptic at a point (h, ξ, r) if the matrix Fr = [∂F/∂rij ]1≤i,j≤2 is
positive definite at this point. If Λ1,Λ2 denote the minimum and maximum
eigenvalue of Fr, respectively, then F is uniformly elliptic if Λ2/Λ1 is bounded.
The boundary operator G is oblique at a point (q, 0) if the normal derivative
χ = Gξ · (0,−1) is positive for all (h, ξ) ∈ R× R

2.

Theorem 3.9 (Liebermann-Trudinger). Let h ∈ C2(R) be a solution, of
period 2π in q, of the boundary value problem (32), with |h| + |Dh| ≤ K in
R, for some constant K > 0. Suppose that for some M > 0 the functions
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F (h, ξ, r) and G(h, ξ) satisfy the structure conditions

Λ2 ≤MΛ1, (33a)

|F |, |Fξi | ≤MΛ1, i = 1, 2, (33b)

Frr ≤ 0, (33c)

|G|, |Gh|, |Gξi |, |Ghh|, |Ghξi |, |Gξiξj | ≤Mξ, i, j = 1, 2, (33d)

for all (h, ξ, r) ∈ (R×R
2 × S) such that |h|+ |ξ1|+ |ξ2| ≤ K. Then there are

positive constant µ(M) < 1 and C(K,M) such that h ∈ C2,µ(R) and

‖h‖C2,µ
per(R) ≤ C.

We are now in a position to prove the following uniform regularity result.

Lemma 3.10. If suph∈S0
δ
{‖h‖X} = ∞, then suph∈S0

δ
{Q + ‖hp‖L∞(R)} = ∞.

Similarly, if suph∈Kδ
{‖h‖X} = ∞, then suph∈Kδ

{Q+ ‖hp‖L∞(R)} = ∞.

Proof. Since the proofs are similar, we just show the second statement holds.
That is to say, if suph∈Kδ

{Q+‖hp‖L∞(R)} is bounded, then so is suph∈Kδ
{‖h‖X}.

Since |p0| =
∫ η(0)

−d
(c− u)dy ≥ infDη

{c− u}[η(0) + d], we get

0 ≤ h(q, p) =
y

d
− ψ

p0
≤ 1

d
[y+d] ≤ 1

d
[η(0)+d] ≤ |p0|

d infDη
{c− u} = sup

R

{hp+1}.

Therefore h is bounded along Kδ. The bound for hq follows by considering
the system (29), which is uniformly elliptic for φ = hq. Applying the strong
maximum principle [25], we deduce that φ must attain its maximum on the
boundary of R. So φ attains its maximum either on p = −1, where φ = 0,
or p = 0, where

p20h
2
q = (hp + 1)2[Q− 2gd(h+ 1)]− p20

d2
≤ (hp + 1)2Q− p20

d2
.

Since infh∈Kδ
|p0| > δ, we must have suph∈Kδ

{‖hq‖L∞(R)} < ∞, and so h in

bounded in C1
per(R) along Kδ. We now may apply the additional a priori

Schauder-type estimates that Theorem 3.9 offers us, as follows. We have

F (h, ξ, r) =

(

1

d2
+ ξ21

)

r22 − 2ξ1(ξ2 + 1)r12 + (ξ2 + 1)2r11 +
γ(p)

p0
(ξ2 + 1)3,

G(h, ξ) =
1

d2
+ ξ21 +

(ξ2 + 1)2

p20
[2gd(h+ 1)−Q].
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By using cut-off functions, we may apply Theorem 3.9 to a subset of C2
per(R)

where hp +1 > δ in R, and Q− 2gd(h+1) > δ on p = 0. Here, we easily see
that (33a) and (33b) holds, while Frr ≡ 0, giving us (33c). We have

χ =
2(ξ2 + 1)

p20
[Q− 2gd(h+ 1)] =

2
(

1
d2

+ ξ21
)

1 + ξ2
≥ δ0 > 0,

since supR hp <∞ for all h and additionally we have hp+1 > δ. This implies
that (33d) holds, and so the C2,µ

per(R) norm of the solution h ∈ X is uniformly
bounded along Kδ.

To prove that the C3,µ
per(R) norm of the solution h ∈ X is uniformly

bounded along Kδ, we notice that φ = ∂qh satisfies (29), and applying stan-
dard Schauder estimates ([25][Theorem 6.30]) for the oblique derivative prob-
lem and the C2,µ

per(R) bounds for h ∈ Kδ give us the uniform boundedness of

the C2,µ
per(R) norm of hq along Kδ. This gives us uniform bounds in C0,µ

per(R)
of all the third derivatives of h along Kδ, except hppp. To bound this deriva-
tive, we can express hpp in terms of the other derivatives of h of order less
than or equal to two using equation (12a). It then follows that ‖hpp‖C1,µ

per(R)

is uniformly bounded along Kδ, which in turn implies that ‖h‖C3,µ
per(R), and

also ‖h‖C2,α
per(R), is uniformly bounded along Kδ. Finally, to show that ‖h‖X

is uniformly bounded along Kδ, we repeat the procedure of this paragraph,
replacing α instead of µ.

We now set S0 =
⋃

δ>0 S0
δ , noting that S0

δ increases in as δ > 0 decreases.
All the considerations to this point, from the alternatives of Theorem 3.1,
which were refined in Proposition (3.8), coupled with the previous lemma,
tell us that for any δ > 0, the following alternatives must hold:

Alt. 1 There exists a sequence {(Qn, hn)} ∈ S0
δ with limn→∞Qn = ∞;

Alt. 2 There exists a sequence {(Qn, hn)} ∈ S0
δ with limn→∞ |maxR ∂phn| =

∞;

Alt. 3 There exists a (Q, h) ∈ S0
δ with ∂ph+ 1 = δ somewhere in R;

Alt. 4 There exists a (Q, h) ∈ S0
δ with Q− 2gd(h+ 1) = δ somewhere on T .

Alt. 5 There exists a (Q, h) ∈ S0
δ with

∣

∣

∣
p
(h)
0

∣

∣

∣
= δ, or

∣

∣

∣
p
(h)
0

∣

∣

∣
= 1/δ.

The next lemma distils the above alternatives into two separate possibilities:

Lemma 3.11. We have either supDηn
{un} → c or infDηn

{un} → −∞ along

some sequence in S0.
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Proof. We prove the lemma working with each of the five alternatives above
in their turn. Suppose alternative 1 holds for some δ > 0. It follows from
Bernouilli’s identity, and the fact that η(π) < 0 at the trough, that

Q = (c− u(π, η(π)))2 + 2g(η(π) + d) ≤ (c− u(π, η(π)))2 + 2gd.

Therefore infDηn
{un} → −∞. Now suppose alternative 2 holds for some

δ > 0, then ∂phn+1 =
|p0(hn)|
d(c−un)

→ ∞. Since
∣

∣p0
(hn)
∣

∣ is bounded above by 1/δ,

then we must have supDηn
{un} → c. If alternative 3 holds for a sequence of

δn ↓ 0, then there exists a corresponding sequence (Qn, hn) ∈ S0 such that

infR{∂phn + 1} = infDηn

|p0(hn)|
d(c−un)

→ 0. Since
∣

∣p0
(hn)
∣

∣ is bounded below by

δ > 0, we must have infDηn
{un} → −∞. If alternative 4 holds for a sequence

of δn → 0, then there exists a corresponding sequence (Qn, hn) ∈ S0 such
that infT [Qn − 2gd(hn + 1)] → 0. The nonlinear boundary condition on T
gives us

(un − c)2 =

(

p
(hn)
0

)2

d2(∂phn + 1)2
≤

(

p
(hn)
0

)2

(1 + d2(∂qhn)
2)

d2(∂phn + 1)2

= [Qn − 2gd(hn + 1)] → 0,

and so infDηn
{c − un} → 0. Finally, we suppose Alternative 5 holds for a

sequence of δn ↓ 0, then there exists a corresponding sequence (Qn, hn) ∈ S0

such that either limn→∞
∣

∣p0
(hn)
∣

∣ = 0 or limn→∞
∣

∣p0
(hn)
∣

∣ = ∞. If limn→∞
∣

∣p0
(hn)
∣

∣ =
0, then since

|p(hn)
0 | =

∫ ηn(0)

−d

(c− un(0, y))) dy ≥ d · inf
−d≤y≤ηn(0)

(c− un(0, y))

we must have infDηn
{c − un} → 0. If however limn→∞

∣

∣p0
(hn)
∣

∣ = ∞ then,
since

|p(hn)
0 | =

∫ ηn(π)

−d

(c− un(π, y)))dy ≤ sup
−d≤y≤ηn(π)

(c− un(π, y)) · d

we must have infDηn
{un} → −∞.

Remark We remark that, if the mass flux is bounded for a sequence of
solutions where infDηn

{un} → −∞, that is limn→∞ |pn0 | < ∞, then we can
show that in fact supDηn

{un} → c for this sequence. Therefore, if the mass

flux is bounded throughout the global continuum of solutions S0, then there
is sequence of solutions which possess in the limit a weak stagnation point.
The boundedness of the mass-flux throughout S0 appears to be physically
reasonable supposition, however it remains to be verified mathematically.
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