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ON THE ELLIPTIC SINH-GORDON EQUATION WITH INTEGRABLE

BOUNDARY CONDITIONS

M. KILIAN AND G. SMITH

Dedicated to Ulrich Pinkall on the occasion of his 65th birthday.

Abstract. We adapt Sklyanin’s K-matrix formalism to the sinh-Gordon equation, and prove
that all free boundary constant mean curvature (CMC) annuli in the unit ball in R3 are of
finite type.

1. CMC immersions and the sinh-Gordon equation

Let Ω ⊆ C be an open subset with smooth boundary ∂Ω. For r > 0, let Br(0) denote the open
ball of radius r about the origin in R3. A minimal or CMC immersion f : Ω→ Br(0) is said to
have free boundary whenever it meets Sr(0) := ∂Br(0) orthogonally along ∂Ω. Free boundary
minimal and CMC surfaces have attracted the interest of geometric analysts since the work
[9, 10] of Fraser–Schoen. The purpose of this paper is to open the way to applying integrable
systems techniques to the study of free boundary CMC annuli.

In order to better explain the ideas studied in the sequel, we briefly review the case of CMC
tori in R3. Here, the modern use of integrable systems techniques traces its roots to Wente
[20], and further developed by Abresch [1]. These ideas were extended by Pinkall–Sterling
[17] by showing that, modulo closing conditions, the study of immersed CMC tori in R3 is
equivalent to the study of real, doubly-periodic solutions of the elliptic sinh-Gordon equation.
Independently, a similar technique was developed by Hitchin [14] for classifying all harmonic
tori in the 3-sphere. In this paper, we will follow Pinkall–Sterling’s approach.

Pinkall–Sterling proceed as follows. Let f : C→ R3 be a smooth, doubly-periodic immersion of
non-zero constant mean curvature H (where here we define the mean curvature to be equal to
the algebraic mean of the two principal curvatures). We suppose that f is conformal, so that
the metric it induces over Ω is given by

(1.1) g := e2ωdzdz,

for some smooth, real-valued function ω, which we call the conformal factor of f . Recall from
[15] that the Hopf differential

Q := φdzdz

of f is constant. Thus, upon rescaling the domain and the codomain if necessary, we may
suppose that

(1.2) H =
1

2
and |φ| = 1

4
,

and the Gauss–Codazzi equations for f are then equivalent to

(1.3) ωzz +
1

8
sinh(2ω) = 0,

which is the elliptic sinh–Gordon equation.
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2 M. KILIAN AND G. SMITH

Conversely, by the fundamental theorem of surface theory, given H and Q satisfying (1.2) and
a doubly-periodic function ω : C→ R satisfying (1.3), there exists, up to rigid motions of R3, a
unique CMC-(1/2) immersion f : C→ R with Hopf differential Q and conformal factor ω. This
immersion is, furthermore, a torus provided that two further closing conditions are satisfied.
This gives the desired equivalence, modulo closing conditions, between immersed CMC tori on
the one hand, and doubly periodic solutions of the elliptic sinh–Gordon equation, on the other.

2. Finite type solutions

Bobenko [3] observes that the key steps in both Pinkall–Sterling’s and Hitchin’s work lie in
showing that all doubly-periodic solutions of the elliptic sinh–Gordon equation over C are
of finite type. Heuristically, this means that all such solutions are completely determined
by polynomial data (c.f. [14]). However, the formal statement of the finite-type property is
rather technical, with different authors using different definitions. In this paper, we adopt
the perspective of Adler–Kostant–Symes theory (c.f. [4] and [5]). Recall first that the elliptic
sinh–Gordon equation translates into the integrability condition of the Lax pair

(2.1)
αz(λ, γ) =

1

2
ωzσ0 +

i

4λ
eωσ+ +

iγ

4
e−ωσ− and

αz(λ, γ) = −1

2
ωz σ0 +

i

4γ
e−ωσ+ +

iλ

4
eωσ−,

where

(2.2) σ0 :=

(
1 0
0 −1

)
, σ+ :=

(
0 1
0 0

)
and σ− :=

(
0 0
1 0

)
,

and λ, γ ∈ C∗ are non-zero complex parameters called the spectral respectively torsion param-
eters. A Killing field of ω is defined to be a map Φ : C∗×C∗ → C∞(Ω, sl2(C)) which solves the
system of partial differential equations

(2.3) dΦ(λ, γ) = [Φ(λ, γ), α(λ, γ)],

where

(2.4) α(λ, γ) := αz(λ, γ) dz + αz(λ, γ) dz.

We say that a Killing field is polynomial whenever it takes the form

(2.5) Φ(λ) =
∑

(m,n)∈A

Φm,nλ
mγn,

for some finite subset A of Z×Z where, for all (m,n), Φm,n : Ω→ sl2(C) is a smooth function.
A solution ω of the elliptic sinh–Gordon equation is of finite type if it admits a polynomial
Killing field.

3. Free boundary CMC annuli

We will show that conformal factors of free boundary CMC annuli are finite type solutions of the
sinh-Gordon equation (1.3). Consider therefore a periodic, conformal CMC immersion f defined
over the ribbon Ω := R× [−T, T ] with free boundary in Br(0). By classical surface theory, the
Hopf differential Q of f has constant argument along each of the boundary components. It
follows by the Schwarz reflection principle that it extends to a bounded, holomorphic form over
the whole of C which, by Liouville’s theorem, is constant. The conformal factor ω satisfies the
non-linear boundary condition

(3.1) ωy =
ε

r
eω,
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where ε is equal to +1 along the upper boundary component and −1 along the lower boundary
component. More generally, non-linear boundary conditions of the form

(3.2) ωy = Aeω +Be−ω,

where A and B are constant along each boundary component, are known as integrable boundary
conditions, first considered for the sine-Gordon equation by Ghoshal-Zamolodchikov [12], and
subsequently for other integrable equations, e.g [7, 8].

We show

Theorem 1. If ω : R × [−T, T ] → R is a singly-periodic solution of the elliptic sinh–Gordon
equation with integrable boundary conditions, then ω is of finite type.

Our proof also yields deeper information about the structure of the polynomial Killing fields of
such ω. First, we say that a Killing field Φ satisfies the Sklyanin condition for fields whenever,
at every point of ∂Ω,

(3.3) K(λ, γ)Φ(λ, γ) = Φ(λ, γ)
t
K(λ, γ),

for all λ, γ ∈ C∗, where

(3.4) K(λ, γ) :=

4Aγ − 4Bλ
λ

γ
− γ

λ
λ

γ
− γ

λ

4A

γ
− 4B

λ


is Sklyanin’s K-matrix (see [18, 19], see also [16] for an excellent treatment of Sklyanin’s ideas).
Theorem 1 follows from the following theorem, proven in Section 11.

Theorem 2. If ω : R× [−T, T ]→ R is a periodic solution of the elliptic sinh–Gordon equation,
then ω satisfies the integrable boundary conditions if and only if it admits a polynomial Killing
field Φ which satisfies the Sklyanin condition for fields.

4. Killing fields

As before, let Ω := R× [−T, T ] and let ω : Ω→ R be a real solution of the elliptic sinh–Gordon
equation. Throughout the current chapter, we will consider λ as a variable and γ as a constant.
Let X be a manifold. Let E be a complex vector space. For k ∈ Z, a series of degree k over X
taking values in E is defined to be a (formal) series of the form

Φ(λ) :=
∞∑
m=k

Φmλ
m,

where, for all m, Φm is a smooth function over X taking values in E and Φk is non-zero. We
say that the trivial series Φ = 0 is a series of degree +∞. Let L(X,E) denote the space of such
series over X taking values in E. In addition, denote

(4.1) L(X) := L(X,C) and L := L({x} ,C),

where {x} denotes the manifold consisting of a single point. We readily verify

Lemma 4.1.

(1) L(X,E) is a complex vector space;
(2) L(X) is a unitary commutative algebra;
(3) L is an algebraic field; and
(4) L(X,E) is a module over L(X) and a vector space over L.
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For k ≤ l ∈ N, a polynomial of bidegree (k, l) over X is a finite series of the form

Φ(λ) :=

l∑
m=k

Φmλ
m,

where Φk and Φl are non-zero. Again we call the trivial series Φ = 0 a polynomial of bidegree
(+∞,+∞). Let P(X,E) denote the space of finite series over X taking values in E.

The Lax pair (2.1) defines the 1-form (2.4) over Ω which maps vector fields into P(Ω, sl(2,C)).
A (formal) Killing field of ω over Ω is a series Φ ∈ L(Ω, sl(2,C)) which satisfies

(4.2) dΦ = [Φ, α]

at every point of Ω (c.f. [4]). Upon evaluating (4.2) term by term, we obtain (see [13])

Lemma 4.2. Let ω be a solution of the sinh–Gordon equation. Let

Φ :=

∞∑
m=k

(
um eωtm
eωsm −um

)
λm

be a series over Ω taking values in sl(2,C). Then Φ is a Killing field if and only if, at every
point of Ω and for all m,

4um,z + ie2ωsm+1 − iγtm = 0,(4.3)

4um,z + iγ−1sm − ie2ωtm−1 = 0,(4.4)

4ωztm + 2tm,z − ium+1 = 0,(4.5)

2eωtm,z − iγ−1e−ωum = 0,(4.6)

2eωsm,z + iγe−ωum = 0 and(4.7)

4ωzsm + 2sm,z + ium−1 = 0.(4.8)

5. The space of Killing fields

Let K(Ω) denote the space of Killing fields of ω over Ω. It is non-trivial as Pinkall–Sterling [17]
construct an explict, non-trivial Killing field of ω over Ω, which we henceforth refer to as the
Pinkall–Sterling field1. We need their iteration to construct this field. First, define

(5.1) u0 := 0 and ψ0 := −1

2
.

Next, after having determined u1, · · · , um and ψ1, · · · , ψm−1, define

(5.2) ψm :=


γu2

k + 2
k−1∑
n=1

θn,m−n if m = 2k − 1, and

γukuk+1 + θk,k + 2
k−1∑
n=1

θn,m−n if m = 2k,

and

(5.3) um+1 :=
1

γ

(
− 4um,zz + 4iωzψm

)
,

where, for all p and for all q,

(5.4) θp,q := γupuq+1 + 4up,zuq,z + ψpψq.

1We remark that the formalism of [17] is slightly different from our own, but can be transformed into our own
by replacing their variable z with the variable ζ := iz/2 so that ∂ζ = −2i∂z and ∂ζ = 2i∂z.
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The sequences tm and sm are now determined by

(5.5) tm :=
1

γ

(
− 2ium,z − ψm) and sm := e−2ω

(
2ium−1,z − ψm−1

)
.

The Pinkall–Sterling field is then the series

(5.6) Φ :=
∞∑
m=0

(
um eωtm
eωsm −um

)
λm.

We now show that K(Ω) is 1-dimensional over L. To this end, we show

Lemma 5.1. Let

Φ :=
∞∑
m=0

(
um eωtm
eωsm −um

)
λm

be a Killing field of ω over Ω. For all m,

(1) if um = 0, then tm and sm are constant;
(2) if um = tm = 0, then sm+1 = um+1 = 0; and
(3) if um = sm = 0, then um−1 = tm−1 = 0.

Proof. Suppose that um = 0. By (4.6), we have tm,z = 0. Next, by (4.3),

eωsm+1 = γe−ωtm,

and by (4.7),

γe−ωum+1 = 2ieωsm+1,z = 2i(eωsm+1)z − 2iωze
ωsm+1

= 2iγ(e−ωtm)z − 2iγωze
−ωtm = 2iγe−ωtm,z − 4iγωze

−ωtm,
.

Hence by (4.5), we obtain tm,z = 0. Thus tm is constant. In the same manner sm is constant,
and (1) follows. If um = tm = 0, then it follows by (4.3) and (4.5) that sm+1 = um+1 = 0, and
(2) follows. If sm = um = 0, then it follows by (4.4) and (4.8) that um−1 = tm−1 = 0, and (3)
follows. This completes the proof. �

Lemma 5.2. K(Ω) is the 1-dimensional vector space over L generated by the Pinkall–Sterling
field.

Remark 5.3. In particular in the present framework a solution of the elliptic sinh–Gordon
equation is of finite type if and only if its space of Killing fields is generated by a finite series.

Proof. Let Φ be an arbitrary Killing field of ω over Ω and let Ψ be the Pinkall–Sterling field.
We construct recursively a series f such that

Φ = fΨ.

Let k be the degree of Φ. As Ψ has degree 0, the series f must also be of degree k. Suppose we
have already determined the coefficients fk, fk+1, ..., fk+l−1 in such a manner that the series

Φ̃ := Φ− f(l)Ψ

is of degree k + l, where

f(l) :=

k+l−1∑
m=k

fmλ
m.

For all m, denote

Φ̃m :=

(
um eωτm
eωσm −um

)
.

As Φ̃ is also a solution of the Killing field equation, it follows by Lemma 5.1 that sk+l = uk+l = 0
and τk+l = c is constant. The result now follows by setting fk+l := 2c. �
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6. The determinant

We now characterise the Pinkall–Sterling field amongst all Killing fields of ω over Ω. Observe
first that, since elements of K(Ω) are 2 × 2 matrices with coefficients in L(Ω), they have well-
defined determinants which are also elements of L(Ω).

Lemma 6.1. For every Killing field Φ of ω over Ω, Det(Φ) is constant over Ω, that is,

Det(Φ) ∈ L.

Proof. Indeed, dDet(Φ) = Tr(Adj(Φ)dΦ) = Tr(Adj(Φ)[Φ, α]) = 0, as desired. �

Lemma 6.2. For all γ, the Pinkall–Sterling field is, up to a choice of sign, the unique Killing
field Φ of ω over Ω such that

(6.1) Det(Φ) = − λ

4γ
.

Proof. Let Φ be the Pinkall–Sterling field. We first show uniqueness. Let Ψ be another Killing
field of ω over Ω which satisfies (6.1). Since K(Ω) is generated by Φ, there exists f ∈ L such
that Ψ = fΦ. In particular,

− λ

4γ
= Det(Ψ) = Det(αΦ) = − λ

4γ
f2.

Since L is an algebraic field, it follows that f = ±1, and uniqueness follows.

We now show that Φ satisfies (6.1). To this end, denote

U :=

∞∑
k=0

ukλ
k, S :=

∞∑
k=0

skλ
k, T :=

∞∑
k=0

tkλ
k and Ψ :=

∞∑
k=0

ψkλ
k,

where ψm is the sequence constructed in (5.2). By (5.5)

T =
1

γ

(
− 2iUz −Ψ

)
and S = λe−2ω

(
2iUz −Ψ

)
,

so that

Det(Φ) = −U2 − e2ωST = −U2 +
λ

γ
(2iUz −Ψ)(2iUz + Ψ)

= −U2 − 4
λ

γ
U2
z −

λ

γ
Ψ2.

Since the coefficients of the expression

−U2 − 4
λ

γ
U2
z −

λ

γ
Ψ2 = − λ

4γ

are precisely the recurrence relations (5.2) and (5.4), the result follows. �

7. The Sklyanin matrix

We now recall how Sklyanin translates the integrable boundary conditions into boundary con-
ditions for the Lax pair (c.f. [18] and [19]). The real component of the Lax pair is

(7.1) αx = − i
2
ωyσ0 +

(
i

4λ
eω +

i

4γ
e−ω

)
σ+ +

(
iγ

4
e−ω +

iλ

4
eω
)
σ−.

We say that αx satisfies the Sklyanin condition for Lax pairs at a point of ∂Ω whenever

(7.2) K(λ, γ)αx(λ, γ) = αx
(
λ−1, γ−1

)
K(λ, γ)

at this point, for all λ, γ ∈ C∗, where K(λ, γ) is Sklyanin’s K-matrix, given by (3.4).
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Lemma 7.1. The function ω satisfies the boundary condition

ωy = Aeω +Be−ω

at a point of ∂Ω if and only if the real part αx of its Lax pair satisfies the Sklyanin condition
for Lax pairs at this point.

Proof. Make the ansatz K := a Id + b σ0 + c (σ+ + σ−) where the coefficients a, b and c only
depend on γ and λ. The relation (7.2) holds if and only if

cωy +

(
(a+ b)

4λ
− (a− b)λ

4

)
eω +

(
(a+ b)

4γ
− (a− b)γ

4

)
e−ω = 0.

Setting

a+ b := 4Aγ − 4Bλ, , a− b :=
4A

γ
− 4B

λ
and c :=

λ

γ
− γ

λ
,

we see that (7.2) is satisfied at a point of ∂Ω if and only if

ωy = Aeω +Be−ω

at this point, which is precisely our integrable boundary condition. Finally, substituting a, b
and c into the ansatz for K yields (3.4) as desired. �

8. The Sklyanin condition

We conclude this chapter by showing that if ω satisfies the integrable boundary conditions on
∂Ω, then its Pinkall–Sterling field satisfies the Sklyanin condition for fields on ∂Ω. To this end,
let ∂Ω0 be one of the two connected components of ∂Ω. We define a Killing field of ω on ∂Ω0

to be a series Φ in L(∂Ω0, sl(2,C)) which satisfies the Lax equation

(8.1) Φx = [Φ, αx].

Let K(∂Ω0) denote the space of Killing fields of ω over ∂Ω0. Trivially, every Killing field of
ω over Ω restricts to a Killing field of ω over ∂Ω0. In the one-dimensional case, we have the
following weaker version of Lemma 5.1.

Lemma 8.1. Let

Φ :=

∞∑
m=0

(
um eωtm
eωsm −um

)
λm

be a Killing field of ω over ∂Ω0. If

tk−2 = sk−1 = uk−1 = tk−1 = 0,

then sk = uk = 0, and tk is constant.

Proof. By (7.1) and (8.1), for all m,

um,x =
iγ

4
tm +

i

4
e2ωtm−1 −

i

4
e2ωsm+1 −

i

4γ
sm,(8.2)

eωsm,x = −2eωωzsm −
iγ

2
e−ωum −

i

2
eωum−1, and(8.3)

eωtm,x = −2eωωztm +
i

2
eωum+1 +

i

2γ
e−ωum.(8.4)
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By (8.2) and (8.4), We obtain sk = uk = 0. These three relations together yield

e2ωsk+1 = γtk,

uk+1 =
1

γ

(
2ie2ωsk+1,x + 4ie2ωωzsk+1

)
, and

eωtk,x = −2eωωztk +
i

2
eωuk+1.

It follows that

uk+1 = 2ie2ω(e−2ωtk),x + 4iωztk = −4iωxtk + 2itk,x + 4iωztk,

so that eωtk,x = −2eωωztk+2eωωxtk−eωtk,x−2eωωztk. Thus tk,x = 0, completing the proof. �

Via the same argument as in Sections 5 and 6, this yields

Lemma 8.2.
(1) K(∂Ω0) is the one-dimensional vector space over L generated by the Pinkall–Sterling field.
(2) The restriction of the Pinkall–Sterling field to ∂Ω0 is, up to a choice of sign, the unique
Killing field Φ of ω over ∂Ω0 which satisfies

Det(Φ) = − λ

4γ
.

Given a Killing field Φ of ω over ∂Ω0, denote

(8.5) Φ̃(λ, γ) := K(λ, γ)−1Φ(λ, γ)
t
K(λ, γ).

Observe that Φ̃ is also a Laurent series over ∂Ω0.

Lemma 8.3. If the real part αx of the Lax pair of ω satisfies the Sklyanin condition for Lax
pairs along ∂Ω0, then Φ̃ satisfies the Killing field equation (8.1) along ∂Ω0.

Proof. Observe that

αx(λ
−1
, γ−1)

t

= −αx(λ, γ),

K(λ
−1
, γ−1) = D(λ, γ)K(λ, γ)−1 and

K(λ−1, γ−1) = D(λ, γ)K(λ, γ)−1,

where
D(λ, γ) := Det(K(λ, γ)).

Moreover,

D(λ, γ) = D(λ−1, γ−1) = D(λ
−1
, γ−1).

Upon applying the Killing field equation (8.1), we therefore obtain

Φ̃(λ, γ)x = K(λ, γ)−1Φ(λ, γ)x
t
K(λ, γ)

= K(λ, γ)−1
[
Φ(λ, γ), αx(λ, γ)

]t
K(λ, γ)

= K(λ, γ)−1
[
αx(λ, γ)

t
,Φ(λ, γ)

t]
K(λ, γ)

= −K(λ, γ)−1
[
αx(λ−1, γ−1),Φ(λ, γ)

t]
K(λ, γ)

= K(λ, γ)−1
[
Φ(λ, γ)

t
, αx(λ−1, γ−1)

]
K(λ, γ)

=
[
K(λ, γ)−1Φ(λ, γ)

t
K(λ, γ),K(λ, γ)−1αx(λ−1, γ−1)K(λ, γ)

]
= [Φ̃(λ, γ), αx(λ, γ)],
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and the result follows. �

Lemma 8.4. If the real part αx of the Lax pair of ω satisfies the Sklyanin condition for Lax
pairs along ∂Ω0, then the Pinkall–Sterling field Φ of ω satisfies the Sklyanin condition for fields
along ∂Ω0, that is, for all λ, γ ∈ S1,

(8.6) Φ(λ, γ) = Φ̃(λ, γ) = K(λ, γ)−1Φ(λ, γ)
t
K(λ, γ)

along ∂Ω0.

Proof. By Lemma 8.3, Φ̃ is a Killing field of ω over ∂Ω0. However, for all λ and for all γ,

Det(Φ̃(λ, γ)) = Det
(
K(λ, γ)−1Φ(λ, γ)

t
K(λ, γ)

)
= Det

(
Φ(λ, γ)

)
= − λ

4γ
.

It follows by Lemma 8.2 that Φ = ±Φ̃. Explicitly calculating the first non-zero term of each of
these two series yields the claim. �

9. Robin boundary conditions

As before, let Ω := R× [−T, T ] and let ω : Ω→ R be a real solution of the elliptic sinh–Gordon
equation. In this chapter, we transform the Sklyanin condition for fields into a sequence of
equations that allow us to recover the finite type property. Thus, let Φ be the Pinkall–Sterling
field of ω. In order to better capture the symmetries of the problem, it now becomes convenient
to treat this field as a (formal) series in λ and γ. We thus denote

(9.1) Φ(λ, γ) :=
∑
m,n

(
um,n eωtm,n
eωsm,n −um,n

)
λmγn.

Observe that, for all λ, γ ∈ S1,

(9.2) α(λ, γ) = e−
θ
2
σ0 α

(
λγ−1, 1

)
e
θ
2
σ0 ,

where θ ∈ R satisfies
e2iθ = γ.

It follows upon applying this gauge transformation that

(9.3) Φ(λ, γ) =
∞∑
m=0

(
um γ−1eωtm

γeωsm −um

)
λmγ−m,

where
∞∑
m=0

(
um eωtm
eωsm −um

)
λm := Φ(λ, 1)

is the Pinkall–Sterling field of ω with torsion γ = 1. In this framework, Lemma 4.2 becomes

Lemma 9.1. The sequences um,n, tm,n and sm,n satisfy, for all m and for all n,

4um,n,z + ie2ωsm+1,n − itm,n−1 = 0,(9.4)

4um,n,z + ism,n+1 − ie2ωtm−1,n = 0,(9.5)

4ωztm,n + 2tm,n,z − ium+1,n = 0,(9.6)

2eωtm,n,z − ie−ωum,n+1 = 0,(9.7)

2eωsm,n,z + ie−ωum,n−1 = 0 and(9.8)

4ωzsm,n + 2sm,n,z + ium−1,n = 0.(9.9)

As far as the Sklyanin condition for fields is concerned, upon equating every coefficient of
(KΦ− Φ̃K) with zero, we obtain
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Lemma 9.2. Along ∂Ω, the sequences um,n, tm,n and sm,n satisfy, for all m and for all n,

Im
(
eωsm−1,n+1 − eωsm+1,n−1 + 4Aum,n−1 − 4Bum−1,n

)
= 0,(9.10)

Im
(
eωtm−1,n+1 − eωtm+1,n−1 − 4Aum,n+1 + 4Bum+1,n

)
= 0,(9.11)

Re
(
2Aeωtm,n−1 − 2Beωtm−1,n − 2Aeωsm,n+1 + 2Beωsm+1,n

)
(9.12)

= Re
(
um−1,n+1 − um+1,n−1

)
and

Im
(
Atm,n−1 −Btm−1,n +Asm,n+1 −Bsm+1,n

)
= 0.(9.13)

Lemma 9.3. The pair of systems of equations (9.10) and (9.11) is equivalent to the following
pair of systems of equations:

Im
(
eωtm−1,n − 4Aum,n + eωsm+1,n

)
= 0 and(9.14)

Im
(
eωtm,n−1 − 4Bum,n + eωsm,n+1

)
= 0.(9.15)

Proof. Indeed, suppose that the equations (9.10) and (9.11) are satisfied for all m and for all
n. Then, upon applying recursively (9.10), we obtain the finite sum

Im
(
eωsm,n

)
= Im

(
4Aum−1,n − 4Bum−2,n+1 + 4Aum−3,n+2 − · · ·

)
.

In the same manner, (9.11) yields

Im
(
eωtm,n

)
= Im

(
4Bum,n+1 − 4Aum−1,n+2 + 4Bum−2,n+3 − · · ·

)
.

If we now denote these equations respectively by α(m,n) and β(m,n), then α(m + 1, n) and
β(m−1, n) together yield (9.14) whilst α(m,n+1) and β(m,n−1) together yield (9.15). Since
the converse is trivial, this completes the proof. �

The integrability of boundary conditions is itself remarkable, since many classical boundary
conditions do not have this property, see e.g. [2].

Lemma 9.4. For all m and for all n, the imaginary part of the function um,n satisfies the
following Robin boundary condition:

(9.16) Im(um,n)y = AeωIm(um,n)−Be−ωIm(um,n).

Proof. Indeed, by (9.4) and (9.5),

eωsm+1,n − e−ωtm,n−1 = 4ie−ωum,n,z and

eωtm−1,n − e−ωsm,n+1 = −4ie−ωum,n,z.

The sum of (9.14) and (9.15) then yields

Im
(
4Aum,n − 4Be−2ωum,n

)
= Im

(
eωtm−1,n + eωsm+1,n − e−ωtm,n−1 − e−ωsm,n+1

)
= Im

(
4ie−ωum,n,z − 4ie−ωum,n,z

)
= 4e−ωRe

(
(um,n − um,n)z

)
= 4e−ωRe

(
2iIm(um,n)z

)
= 4e−ωIm(um,n)y,

and the result follows. �

10. The solution is of finite type

We now show that the solution is of finite type. Let Φ be as in the previous section. Recall
that, upon applying the gauge transformation (9.2) if necessary, we may henceforth suppose
that γ = 1. We first recall a few elementary lemmas.
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Lemma 10.1. Let

Ψ :=

∞∑
m=0

(
um eωtm
eωsm −um

)
λm

be a Killing field. If uk = 0 then there exists f ∈ L of degree k such that

Ψ− fΦ =
k−1∑
m=0

(
um eωtm
eωsm −um

)
λm +

(
0 0

eωsk 0

)
λk.

In particular, (Ψ− fΦ) is a polynomial Killing field.

Proof. We construct f by recurrence. Suppose that the coefficients fk, · · · , fk+l−1 have already
been determined such that if

Ψ̃ := Ψ− f(l)Φ :=
∞∑
m=0

(
ũm eω t̃m
eω s̃m −ũm

)
λm,

where

f(l) :=
k+l−1∑
m=k

fmλ
m,

then,

ũm = 0 ∀k ≤ m ≤ k + l,

t̃m = 0 ∀k ≤ m ≤ k + l − 1 and

s̃m = 0 ∀k + 1 ≤ m ≤ k + l.

Since Ψ̃ is also a Killing field, by Lemma 5.1,

t̃k+l = c

is constant. By Lemma 5.1 again, the result follows upon setting fk+l := −2c. �

Lemma 10.2. The solution ω is of finite type if and only if there exists a finite-dimensional
vector space E ⊆ C∞(Ω,C) such that, for all m and for all n,

um,n ∈ E.

Proof. This condition is trivially necessary. We now show that it is sufficient. Suppose again
that γ = 1. In particular, by (9.3), for all m, um = um,m ∈ E. If d := Dim(E), then there
exists f ∈ P of bidegree (0, d− 1) such that if

fΦ :=
∞∑
m=0

(
ũm eω t̃m
eω s̃m −ũm

)
λm,

then ũd = 0, and the result follows by Lemma 10.1. �

Lemma 10.3. For all m, n the function um,n satisfies the linearised sinh–Gordon equation

(10.1) ∆um,n + cosh(2ω)um,n = 0.

Proof. Indeed, differentiating (9.4) yields 4um,n,zz + i(e2ωsm+1,n)z − itm,n−1,z = 0. Applying
(9.7) and (9.9) then yields

4um,n,zz +
1

2
e2ωum,n +

1

2
e−2ωum,n = 0,

as desired. �
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Lemma 10.4. If ϕ : Ω→ C is a periodic, holomorphic function which satisfies

Im(ϕ)|∂Ω = 0,

then ϕ is constant.

Proof. Indeed, by Cauchy’s reflection principle, ϕ extends to a bounded holomorphic function
over C and the result now follows by Liouville’s theorem. �

Theorem 3. If ω : Ω → R is a periodic solution of the sinh–Gordon equation with integrable
boundary conditions, then ω is of finite type.

Proof. Let Φ be the Pinkall–Sterling field of ω and let (um,n), (tm,n) and (sm,n) be as in (9.1).
By Lemmas 7.1 and 8.4, Φ satisfies the Sklyanin condition for fields along ∂Ω. It follows by
Lemma 9.4 that, for all m and for all n,

Im(um,n),y = AeωIm(um,n)−Be−ωIm(um,n),

along ∂Ω. Since Im(um,n) also satisfies the linearised sinh–Gordon equation, it follows by the
classical theory of elliptic operators over compact manifolds with boundary (see [11]) that there
exists a finite-dimensional subspace E1 ⊆ C∞(Ω,R) such that, for all m and for all n,

Im(um,n) ∈ E1.

By (9.6) and (9.9), for all m and for all n,(
e2ωsm+1,n − e2ωtm−1,n

)
z

= − i
2
e2ω
(
um,n − um,n

)
= e2ωIm(um,n) ∈ e2ωE1,

and, by (9.14), along ∂Ω,

Im
(
e2ωsm+1,n − e2ωtm−1,n

)
= −4AeωIm(um,n) ∈ eωE1|∂Ω.

It follows by Lemma 10.4 that there exists a finite-dimensional subspace E2 ⊆ C∞(Ω,C) such
that, for all m and for all n,

e2ωsm+1,n − e2ωtm−1,n ∈ eωE2.

In a similar manner, we show by (9.7) and (9.8), that there exists a finite-dimensional subspace
E3 ⊆ C∞(Ω,C) such that, for all m and for all n,

sm,n+1 − tm,n−1 ∈ e−ωE3.

Finally, by (9.12), along ∂Ω, for all m and for all n,

Re
(
um+1,n−1 − um−1,n+1

)
= 2Be−ωRe

(
e2ωsm+1,n − e2ωtm−1,n

)
− 2AeωRe

(
sm,n+1 − tm,n−1

)
∈ Re(E2 + E3).

It follows by induction that, along ∂Ω, for all m and for all n,

Re(um,n) ∈ Re(E2 + E3).

Finally, since Re(um,n) also satisfies the linearised sinh–Gordon equation, it follows again by
the classical theory of elliptic operators over compact manifolds with boundary that there exists
a fourth finite-dimensional subspace E4 ⊆ C∞(Ω,R) such that, for all m and for all n,

Re(um,n) ∈ E4.

The result now follows by Lemma 10.2. �
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11. Polynomial Killing fields

Finally, we construct polynomial Killing fields of ω over Ω that also satisfy the Sklyanin condi-
tion for fields. As in Section 10 we restrict ourselves again to the case where γ = 1.

Lemma 11.1. Let

Ψ :=
∞∑
m=0

(
um eωtm
eωsm −um

)
λm

be a Killing field of ω over Ω which satisfies the Sklyanin condition for fields. If uk = 0 and
if tk /∈ R then there exists a polynomial Killing field of ω over Ω of bidegree (0, 4) which also
satisfies the Sklyanin condition for fields.

Proof. Let Φ be the Pinkall–Sterling field. By Lemma 10.1, there exist f, g ∈ L with real
coefficients such that

Ψ− (f + ig)Φ = P,

where P is a polynomial Killing field of ω over Ω. We therefore denote

Ψ1 := gΦ.

Since Φ satisfies the Sklyanin condition for fields, and since g has real coefficients, Ψ1 also
satisfies the Sklyanin condition for fields, that is, for all λ ∈ C∗,

K(λ, 1)Ψ1(λ, 1)−Ψ1(λ, 1)
t
K(λ, 1) = 0

along ∂Ω. Next, since Φ and Ψ both satisfy the Sklyanin condition for fields, and since f has
real coefficients, we also have, for all λ ∈ S1,

iK(λ, 1)Ψ1(λ, 1) + iΨ1(λ, 1)
t
K(λ, 1) = Q(λ, 1)

along ∂Ω, where

Q(λ, 1) := K(λ, 1)P (λ, 1)− P (λ, 1)
t
K(λ, 1).

It follows that

K(λ, 1)Ψ1(λ, 1) = − i
2
Q(λ, 1)

⇔ D(λ, 1)Ψ1(λ, 1) = − i
2
K(λ−1, 1)Q(λ, 1),

where
D(λ, 1) := Det(K(λ, 1)).

We thus denote
Ψ′(λ, 1) := λ2−kD(λ, 1)Ψ1(λ, 1).

Since D(λ, 1) is a finite series with real coefficients, Ψ′ is also a Killing field of ω over Ω which
satisfies the Sklyanin condition for fields. Finally, we verify that Q(λ, 1) is a polynomial of
bidegree (k − 1, k + 1), and the result follows. �

Proof of Theorem 2. In order to prove the existence of a polynomial Killing field of ω over
Ω which satisfies the Sklyanin condition for fields, it suffices to repeat the construction of
Lemmas 10.1 and 10.2 using only series with real coefficients. The only possible obstruction to
this construction is precisely the case studied in Lemma 11.1, where there nonetheless exists
a polynomial Killing field of ω over Ω which satisfies the Sklyanin condition for fields. This
proves existence.

Conversely, suppose that there exists a polynomial Killing field of ω over Ω

Ψ :=
k∑

m=0

(
um eωtm
eωsm −um

)
λm
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which satisfies the Sklyanin condition for fields. Then, by Lemma 5.1, s0 = u0 = 0. By (9.11),
we may suppose that t0 = 1/2 and, by (9.12),

Re
(
u1 + 2Aeωt0 + 2Beωs1

)
= 0.

By (5.1), (5.3) and (5.5), we get u1 = −2iωz, t0 = 1
2 and s1 = 1

2e
−2ω, yielding the claim. �
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