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Interactions of vegetable proteins with other polymers
(proteins or polysaccharides) lead to different structures.

Different structures have different impact on food
properties and influence applications of vegetable proteins.

in the food industry.
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Abstract 23 

 24 

Background: In recent years, there has been increasing interest in vegetable proteins, 25 

due to their various health beneficial functions and wide applications in the food 26 

industry. Vegetable proteins combined with other edible polymers can be used to 27 

improve the quality and nutritional value of food products. In these complex food 28 

systems, interactions between different components are inevitable, and these 29 

interactions have a significant influence on the structure and functions of food 30 

products. 31 

Scope and approach： This study reviews the current status of knowledge of 32 

interactions between vegetable proteins and other polymers (proteins or 33 

polysaccharides) in food systems and the structure of complexes formed by these 34 

interactions. The study also provides a comprehensive review of the applications of 35 

the complexes. 36 

Key findings and conclusions: Vegetable proteins display different types of 37 

interactions with other polymers (e.g., polysaccharides, or animal proteins) under 38 

different conditions, thus forming a variety of complexes with different structures 39 

(e.g., double networks, mosaic textures and cross-linked structures), which showed 40 

different impact on properties of the final food products and their applications (e.g., 41 

substitution for fat, or encapsulation for bioactive ingredients) in the food industry. 42 

However, previous studies mainly focused on leguminous proteins and vegetable 43 

protein based mixtures of two polymers, further studies on other vegetable proteins 44 
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and more complex food systems containing vegetable proteins and other polymers are 45 

required. 46 

 47 

Keywords: Vegetable protein; Polysaccharide; Interaction; Structure; Function; 48 

Application 49 

 50 
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1. Introduction 67 

 68 

Proteins are a very important component of the human diet, as they are essential 69 

to the maintenance of muscle mass, immune responses, cell signaling and repair of 70 

damaged cells (Henley, Taylor, & Obukosia, 2010). Animal and vegetable proteins are 71 

two main sources of proteins in the diet. However, excessive consumption of animal 72 

proteins may lead to obesity (Bujnowski, et al., 2011), coronary heart disease (Clifton, 73 

2011), high blood pressure (Elliott, et al., 2006) and increased serum and urine uric 74 

acid (Tracy, et al., 2014). Many researches indicated that vegetable proteins had many 75 

health benefits, e.g., nutritional support to cirrhotic patients (Bianchi, et al., 1993), 76 

improving obesity-induced metabolic dysfunction (Wanezaki, et al., 2015), 77 

anti-cardiovascular disease (Lichtenstein, 1998) and anti-cancer activities (Lauerman, 78 

1998). 79 

As shown in Fig. 1, there are three main types of vegetable proteins: leguminous 80 

proteins, oil seed proteins and cereal proteins (Zraly, et al., 2006). Based on various 81 

health benefits of these vegetable proteins, many efforts have been made to develop 82 

vegetable proteins based food-grade films, hydrogels, emulsions, or foams for a 83 

variety of applications in food, nutrition, biology and pharmaceutical industries 84 

(Reddy & Yang, 2011). However, vegetable proteins are sensitive to processing and 85 

environment. The denaturation of vegetable proteins may happen during extraction, 86 

food processing or storage, which potentially can influence their performance in food 87 

systems (e.g., in emulsions and foams). 88 
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In addition, the location of the proteins inside plan seeds can influence the 89 

extraction of proteins (Kasai & Ikehara, 2005). In order to improve protein 90 

extractability, different extraction processes such as microwave heating (Choi, Choi, 91 

Chun, & Moon, 2006) and ultrasound technology (Karki, et al., 2010) were 92 

investigated, which may cause the protein denaturation (Fukase, Ohdaira, Masuzawa, 93 

& Ide, 1994; Hafez, Mohamed, Hewedy, & Singh, 1985). During the extraction of 94 

proteins, many factors (e.g., the types of the solvent, the temperature and pH of the 95 

reaction system, the agitation speed and extraction time) can be optimized to recover 96 

proteins and prevent the loss of their solubility (Karaca, Low, & Nickerson, 2011; Wu, 97 

Wang, Ma, & Ren, 2009). 98 

Many strategies have been developed to prevent the denaturation of proteins 99 

during food processing or storage, such as molecular modification of vegetable 100 

proteins (Wang, Wang, & Sun, 2005) or mixing vegetable proteins with other 101 

polymers (Liang, Wong, Pham, & Tan, 2016). In these multi-components food 102 

systems, the interactions between vegetable proteins and other components will 103 

inevitably take place in a variety of ways. These interactions can potentially have 104 

great influences on the structures and properties of these food products (Zhao, Dong, 105 

Li, Kong, & Liu, 2015). However, very limited information about an overall 106 

summarization of the interaction between vegetable protein and other biopolymers 107 

was known. Therefore, this study provides an overview of the current status of 108 

knowledge about the interactions of vegetable proteins with food macromolecules, 109 

structure-function relationships of vegetable-protein-based biopolymers and their 110 
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applications in the food industry. 111 

 112 

2. Formation and structure of vegetable-protein-based complexes 113 

 114 

When vegetable proteins are exposed to heating, ultrasonic, high pressure, 115 

extreme pH or electrical force, they always denature and the hydrophobic groups 116 

buried in the native state are exposed to the surface (Jacoba, Harry Gruppen, & Ton 117 

van Vliet, 2002; Nishinari, Fang, Guo, & Phillips, 2014). . Denatured vegetable 118 

proteins can form films or gels, which can be used as package and encapsulation 119 

materials for food products (Berghout, Boom, & van der Goot, 2015; Guerrero & de 120 

la Caba, 2010; Liu, Tellez-Garay, & Castell-Perez, 2004). Vegetable proteins can also 121 

be used as emulsifiers in oil-in-water (O/W) emulsions or air-in-water dispersions, 122 

due to their amphiphilic properties (Karaca, et al., 2011; Matemu, Kayahara, 123 

Murasawa, Katayama, & Nakamura, 2011; Morales, Martinez, Pizones 124 

Ruiz-Henestrosa, & Pilosof, 2015). 125 

However, the structures of single protein formed gels or films are always fragile 126 

(Pan, Jiang, Chen, & Jin, 2014; Pan, et al., 2015) and the stabilities of single protein 127 

stabilized emulsions or forms are usually poor (Kasran, Cui, & Goff, 2013; 128 

Ventureira, Martínez, & Añón, 2012). The utilization of vegetable proteins combined 129 

with other biopolymers, e.g., polysaccharides or animal proteins, to form functional 130 

complexes is widely considered as one of the best methods for improving the 131 

functionalities of vegetable proteins (Table 1). 132 
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 133 

2.1. Protein-protein complexes 134 

Protein-protein interactions have been well investigated with the objectives of 135 

clarifying structure-function relationships, improving food quality, and developing 136 

new products (Sarbon, Badii, & Howell, 2015). Interactions of proteins at oil-water or 137 

air-water interfaces can maintain the stability of emulsions or foams, respectively 138 

while the interactions between protein molecules in proteins solutions are essential to 139 

the formation of protein gels and films. 140 

 141 

2.1.1. Formation and structure of protein-protein complexes at interfaces 142 

Single food protein stabilized emulsions are always sensitive to temperature, salt 143 

and pH (Mcclements, 2004). Compounded utilization of two types of proteins with 144 

different structures as emulsifier is a simple and controllable way to improve the 145 

stability of single protein stabilized emulsions (Liang, et al., 2016; Ventureira, et al., 146 

2012). The study of Ji et al. (2015) can be used as a good example to clarify the 147 

structures of mixed proteins at oil-water interfaces. Sodium caseinate (SC) and soy 148 

protein isolate (SPI) were shown to bind to oil-water interfaces to form negatively 149 

charged compact interface structures at pH6.8 (Fig. 2), while pH and ionic strength 150 

were shown to affect the surface charge and the particle size of a SC-SPI-stabilized 151 

emulsion (Pizones Ruiz-Henestrosa, Martinez, Carrera Sánchez, Rodríguez Patino, & 152 

Pilosof, 2014). Further investigations on the effect of concentration, mixture ratio, or 153 

structure of proteins on the protein-protein interactions at oil-water interfaces are 154 
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needed. 155 

 156 

2.1.2. Formation and structure of protein-protein complexes in solutions 157 

Protein-protein interactions in protein solutions follow three main pathways: 158 

phase separation, synergistic interaction and aggregation (Firoozmand & Rousseau, 159 

2015). In most cases, a mixture of two or more different proteins will lead to phase 160 

separation, e.g., coagulation and segregation. When phase separation occurs, two or 161 

more proteins form independent phase-separated networks, and they may disturb the 162 

assembly of a uniform network structure (Chronakis & Kasapis, 1993; Sarbon, et al., 163 

2015). A mixture of two oppositely charged proteins can result in aggregation induced 164 

by electrostatic attraction (Sarbon, et al., 2015). Synergistic interactions can lead to 165 

better products with a uniform structure than those formed by each individual material 166 

alone (Ngarize, Adams, & Howell, 2004). Denavi et al. (2009) found that the presence 167 

of 25% (w/w) SPI led to conformational changes of gelatin, which produced a twofold 168 

effect: self-aggregation of the gelatin polypeptide α-chains, and a certain degree of 169 

intermolecular associations via C=O bonds between gelatin and SPI. 170 

The type of protein has an enormous effect on protein-protein interactions in 171 

solutions. The primary sequence and secondary and tertiary structures of proteins 172 

influence the interactions between proteins. Taking SPI and myofibrillar protein 173 

isolate (MPI) as an example, these proteins have different denaturation temperatures 174 

due to differences in their subunit composition. Hence, it is difficult for them to 175 

interact with each other and form a uniform and compact structure under the same 176 
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heating condition, but an interwoven structure can be formed between SPI and MPI 177 

by controlling reaction conditions (Bainy, Corredig, Poysa, Woodrow, & Tosh, 2010; 178 

Denavi, et al., 2009). 179 

The molecular weight of proteins is also one of the most important factors that 180 

can significantly influence the protein-protein interactions in solutions (Ersch, et al., 181 

2016). Proteins with low molecular weights can embed themselves in the matrix but 182 

have different effects on the network structures formed by protein-protein interactions, 183 

while proteins with high molecular weights may disturb the assembly of a network 184 

structure or form an interwoven structure depending on their properties or reaction 185 

conditions (Chen & Dickinson, 1999). Taking whey protein and blood plasma proteins 186 

as an example of low molecular weight proteins, whey protein could occupy the 187 

interaction sites of collagen molecules, weakening the ordered structure of collagen 188 

networks (a crater-shaped form) (Walkenström & Hermansson, 1995); however, blood 189 

plasma proteins could form a uniform network structure with collagen (Oechsle, 190 

Häupler, Gibis, Kohlus, & Weiss, 2015). In terms of high molecular weight proteins, 191 

e.g., gluten and SPI, phase separation occurred in mixture of collagen and gluten 192 

while SPI could form an interwoven structure with collagen. By contrast, when the 193 

concentrations of these co-gelling proteins were low, they could only fill in the pores 194 

of collagen networks and had no significant effect on microstructure of collagen (Fig. 195 

3) (Ahmad, Nirmal, Danish, Chuprom, & Jafarzedeh, 2016; Oechsle, et al., 2015). 196 

Furthermore, protein-protein interactions and the resulting texturization (e.g., 197 

gelation and film formation) depend greatly on the protein concentration. Low 198 
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concentrations frustrate sufficient contact between protein molecules. High 199 

concentrations lead to a poor dispersity of proteins, and mixing or shearing forces 200 

may be then needed to favor a better dispersion of proteins, and form a favorable 201 

network structure (Grabowska, Tekidou, Boom, & van der Goot, 2014). Thus, in 202 

protein solutions, at least one of the proteins should be at an appropriate concentration 203 

to form a continuous network structure, while other proteins will fill in the gaps in the 204 

network in a continuous or dispersed manner depending on their properties. 205 

Moreover, the pH can affect the surface charge and solubility of protein 206 

molecules and thus their interactions. Proteins molecules are nearly neutrally charged 207 

at pH values close to their isoelectric point (pI) and tend to aggregate, but can form a 208 

fine network structure at pH values far above or below their pI (Bengoechea, Romero, 209 

Aguilar, Cordobés, & Guerrero, 2010). For example, whey proteins can form 210 

aggregated particulate networks at pH values near their pI, but form fine-stranded 211 

networks at higher or lower pH values than pI (Alu’datt, Alli, & Nagadi, 2012). 212 

 213 

2.2. Protein-polysaccharide complexes 214 

Proteins and polysaccharides can form fine complexes in two ways: covalent 215 

bond and/or non-covalent bond (Ji, et al., 2015). The covalent bond mainly refers to 216 

the Maillard reaction, which is a non-enzymatic glycosylation reaction between free 217 

amino groups of proteins and aldehyde group of reducing sugars (Liu, Ru, & Ding, 218 

2012). This method usually involves thermal denaturing of a protein solution, and 219 

adding a polysaccharide solution as a Maillard-type cross-linking agent (Caillard, 220 
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Remondetto, & Subirade, 2009). The non-covalent bond includes hydrogen bond and 221 

electrostatic attraction. Generally, uncharged polysaccharides can form complexes 222 

with proteins mainly by hydrophobic interactions, whereas for ionic polysaccharides, 223 

the complexes mainly are formed by electrostatic interactions (Chang, Li, Wang, Bi, 224 

& Adhikari, 2014; Wan, et al., 2014). 225 

 226 

2.2.1. Formation and structure of protein-polysaccharide complexes at interfaces 227 

Protein-stabilized emulsions or foams are susceptible to environmental 228 

conditions because proteins are easy to denature under exposure to some extreme 229 

conditions (Martínez, Ganesan, Pilosof, & Harte, 2011). Adding polysaccharides to 230 

emulsions can increase their stability by forming protein-polysaccharide complexes at 231 

oil-water interface layers (Liu, Zhao, Zhao, Ren, & Yang, 2012; Martinez, 232 

Carrerasanchez, Pizonesruizhenestrosa, Rodriguezpatino, & Pilosof, 2007; Yang, et 233 

al., 2015). Surface activity, concentration and particle size of polysaccharides have 234 

significant effects on the structures of protein-polysaccharide complexes (Baeza, 235 

Sanchez, Pilosof, & Patino, 2004, 2005; Carp, Bartholomai, & Pilosof, 1999). For 236 

instance, Wan et al. (2014) have shown that when stevioside at low concentration (0.1 237 

wt%) was added to SPI-stabilized O/W emulsion, SPI still occupied the most part of 238 

the droplet surface. Stevioside could only bind to the gaps between protein molecules. 239 

When increasing the concentration to 0.25 wt%, stevioside showed stronger 240 

interaction with SPI, thereby resulting in partial dissociation of the protein’s rigid 241 

structure. When the concentration of stevioside reached 2 wt%, a considerable number 242 
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of stevioside molecules bound to the droplet surface by replacing SPI-stevioside 243 

complexes due to their small particle size (Fig. 4). 244 

 245 

2.2.2. Formation and structure of protein-polysaccharide complexes in solutions 246 

There are three different equilibrium situations in solutions containing mixed 247 

proteins/hydrocolloids, namely miscibility, thermodynamic incompatibility and 248 

complex coacervation (Giancone, Torrieri, Masi, & Michon, 2009). Formation of 249 

protein-polysaccharide complexes in solution follows two main pathways, phase 250 

separation and formation of synergistic networks. 251 

Thermodynamic incompatibility between proteins and polysaccharides often 252 

leads to separation (Li, et al., 2009), but two separate network structures formed by 253 

segregation can still form a rigid structure by physically or chemically driven 254 

intertwining (Zhao, et al., 2016). Hou et al. (2015) used a two-step enzymatic 255 

sequential cross-linking method to form a protein-polysaccharide double network 256 

structure. The first layer of network was formed by laccase-induced cross-linking of 257 

sugar beet pectin (SBP). After adding and mixing an equal volume of soy glycinin 258 

(SG) dispersion, the double network was formed under the action of microbial 259 

transglutaminase (MTGase) in a water bath at 45℃ for 4 h (Fig. 5). Pires Vilela, 260 

Cavallieri, and Lopes da Cunha (2011) mixed denatured SPI solution and heated 261 

gellan gum solution together to form a homogeneous double-network structure by 262 

using calcium chloride or potassium chloride as cross-linker. This double 263 

protein-polysaccharide network structure was firmer than single network structure 264 
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formed by pure protein or polysaccharide. It has a wide range of promising 265 

applications in the food industry, such as use as controlled delivery systems for 266 

nutraceuticals (Nakayama, et al., 2004). 267 

In most cases, mixing proteins with polysaccharides leads to phase separation 268 

(Li, et al., 2009). The amount of branched chains and the molecular weight of 269 

polysaccharide can affect their continuity and dispersity in this mixed systems (Min & 270 

Yang, 2010). Polysaccharides with more branched chains and lower molecular weight 271 

usually show better dispersity than those with few branched chains and higher 272 

molecular weight, which are easy to agglutinate and form a continuous and 273 

heterogeneous structure (Li, et al., 2008; Monteiro, Rebelo, da Cruz e Silva, & 274 

Lopes-da-Silva, 2013). In addition, polysaccharides at low concentration can increase 275 

the density of protein-polysaccharide aggregates, while polysaccharides at high 276 

concentration may destroy the continuous network formed by proteins, because it is 277 

hard to form a rigid structure by intertwining two independent networks (Chang, et 278 

al., 2014; Li, Yeh, & Fan, 2007). 279 

Miscibility and coacervation of proteins and polysaccharides are beneficial to the 280 

formation of an associative structure. Miscibility of protein and polysaccharide can 281 

form Maillard conjugates by covalent bonds while coacervation can form 282 

protein-polysaccharide complexes by electrostatic attraction (Giancone, et al., 2009; 283 

Yuan, Wan, Yang, & Yin, 2014). Polysaccharides can be used as a cross-linker to 284 

produce a protein network structure by linking denatured protein molecules (Fig. 6) 285 

(Caillard, Remondetto, & Subirade, 2010). Maillard reactions between SPI and 286 
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carboxymethyl konjac glucomannan (CMKGM) have been demonstrated by FTIR; 287 

meanwhile, FTIR results also suggested the coexistence of strong hydrogen bond 288 

interaction between SPI and CMKGM (Wang, et al., 2014). Maillard reactions 289 

between vegetable proteins and carboxymethyl cellulose (CMC) (Su, Huang, Yuan, 290 

Wang, & Li, 2010; Su, et al., 2012), glyceraldehyde (Caillard, et al., 2010), 291 

glutaraldehyde (Caillard, et al., 2009), ribose and sucrose (Gan, Cheng, & Easa, 2008) 292 

in solutions have also been reported. However, for polysaccharides with a high degree 293 

of polymerization, the Maillard reaction is slow. A novel method can be used to attach 294 

functional groups to the polysaccharide surfaces using surface modification, followed 295 

by using crosslinking agents to obtain protein-polysaccharide complexes (La Wang, 296 

Li, Zhang, & Shi, 2016). For example, the chemical-crosslinking structure formed by 297 

SPI, modified cellulose nanocrystal (MCNC), and ethylene glycol diglycidyl ether 298 

(EGDE) could enhance mechanical properties and water resistance of the 299 

SPI/EGDE/MCNC film, compared to the un-modified SPI/EGDE film (Fig. 7) 300 

(Zhang, et al., 2016). 301 

Properties of proteins and polysaccharides (e.g., charge density, molecular 302 

weight and branched chain) and their concentrations or ratio have a big influence on 303 

the protein-polysaccharide network structures (Ma, Dang, & Xu, 2016). 304 

Polysaccharides can be classified as negatively-charged (e.g., xanthan gum (XG) and 305 

pectin), naturally-charged (e.g., guar gum and galactomannans), and 306 

positively-charged (e.g., chitin) polysaccharides. At high pH values (pH>pI), 307 

negatively-charged proteins and negatively-charged polysaccharides can form a stable 308 
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dispersion due to electrostatic repulsion between protein and polysaccharide; at low 309 

pH (pH < pI), positively-charged proteins and negatively-charged polysaccharides can 310 

form protein-polysaccharide complexes by electrostatic attraction (Chang, et al., 311 

2014; Lam, Shen, Paulsen, & Corredig, 2007). In addition, different proteins are 312 

differently charged at the same pH value, resulting in different strengths of 313 

electrostatic attractions with polysaccharides. For example, glycinin can form a more 314 

stable complex structure than β-conglycinin with chitin at a wide pH range, because 315 

glycinin carries greater positive charge than β-conglycinin at the same pH value 316 

(Yuan, et al., 2014). 317 

Therefore, the environmental pH must be properly controlled to ensure that the 318 

proteins and polysaccharides are oppositely charged, which is essential for the 319 

formation of a stable protein-polysaccharide complex by electrostatic attraction 320 

(Spada, Marczak, Tessaro, & Cardozo, 2015; Yuan, et al., 2014). In addition, salts 321 

(e.g., sodium, potassium, calcium and magnesium chloride) can influence the 322 

structures of protein-polysaccharide complexes formed by electrostatic attractions, as 323 

salts can shield charged-sites of both protein and polysaccharide molecules and 324 

disrupt electrostatic attractions between them (Yuan, et al., 2014). Meanwhile, the 325 

way of adding salts can affect the reaction rate and the final structures of 326 

protein-polysaccharide complexes; slow diffusion of salts into protein and 327 

polysaccharide solutions through a permeable membrane leads to a slower formation 328 

of protein-polysaccharide complexes than the direct addition of the same amount of 329 

salts. Slow diffusion of salts contributes to a sufficient interaction between proteins 330 
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and polysaccharides, which may be helpful in forming a homogeneous structure (Li, 331 

et al., 2009; Pires Vilela, et al., 2011; Yuan, et al., 2014). 332 

 333 

3. Structure-function relationships of vegetable-protein-based complexes 334 

 335 

3.1. Film formation 336 

Films are a kind of material with a unique function in selectively separating 337 

compounds, which can be used in food packaging (Fabra, López-Rubio, & Lagaron, 338 

2016). The most commonly used materials for film formation are polyvinyl chloride 339 

(PVC), polyethylene (PE), polypropylene (PP) and polystyrene (PS) (Yabannavar & 340 

Bartha, 1993). However, films formed by these synthesized polymers have serious 341 

environmental concerns because they are not easy to degrade and remain intact in the 342 

environment for long periods of time (Weng & Zheng, 2015). Thus, it is of interest to 343 

develop renewable, biodegradable and nontoxic film-forming biopolymers, such as 344 

natural biopolymers (e.g., starch, cellulose and proteins), bio-derived monomers (e.g., 345 

polylactate) and polymers produced by microorganisms (e.g., polyhydroxybutyrate 346 

and polyhydroxyvalerate) (Guerrero, Nur Hanani, Kerry, & de la Caba, 2011). 347 

Solvent casting and extrusion are two technologies used to prepare polymer films 348 

(Echeverría, Eisenberg, & Mauri, 2014; Guerrero, Beatty, Kerry, & de la Caba, 2012). 349 

Polymer films must have good barrier properties for gas and water (e.g., low water 350 

vapor permeability, WVP), mechanical properties (e.g., thickness, tensile strength, 351 

elastic modulus, deformability and elongation) and physical properties (e.g., colour 352 
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and thermal stability). Based on these requirements, vegetable proteins are an ideal 353 

source of film-forming materials. The properties of films formed by SPI, peanut 354 

protein and zein have been well studied (Liu, et al., 2004; Song, Zhou, Fu, Chen, & 355 

Wu, 2013; Wang, Marcone, Barbut, & Lim, 2012). Films made from vegetable 356 

proteins show good mechanical and optical properties but high WVP (Otoni, 357 

Avena-Bustillos, Olsen, Bilbao-Sainz, & McHugh, 2016). Mixing different proteins 358 

together or mixing proteins with polysaccharides to form protein-protein or 359 

protein-polysaccharide complexes is an effective way to improve barrier and 360 

mechanical properties of protein-based films (Table 2) (Koshy, Mary, Thomas, & 361 

Pothan, 2015; Wihodo & Moraru, 2013). 362 

 363 

3.1.1. Film formation based on protein-protein interactions 364 

Two or more types of vegetable proteins can be mixed together to form films 365 

with improved barrier and mechanical properties compared with films formed by 366 

single protein (Cho, Lee, & Rhee, 2010; Li, et al., 2015; Wang, et al., 2016). In 367 

addition, vegetable proteins are often used to replace a portion of animal proteins, 368 

which can reduce the cost and improve physical, mechanical or barrier properties of 369 

films (Cao, Fu, & He, 2007; Denavi, et al., 2009; Gómez-Guillén, et al., 2009; 370 

Oechsle, et al., 2016; Weng & Zheng, 2015). The addition of vegetable proteins can 371 

improve the tensile strength, breaking forces or extent of elongation of films without 372 

influencing their thickness (Denavi, et al., 2009; Oechsle, et al., 2016). Compared 373 

with pure animal protein films, films formed by synergistic interactions of mixed 374 
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vegetable and animal proteins showed decreased WVP (Denavi, et al., 2009) while 375 

films formed by phase separation of mixed vegetable and animal proteins showed 376 

increased WVP (Weng & Zheng, 2015). 377 

 378 

3.1.2. Film formation based on protein-polysaccharide interactions 379 

Many polysaccharides, e.g., cellulose, starch, gums and carboxymethyl konjac 380 

glucomannan (CMKGM), can be used to prepare films in combination with vegetable 381 

proteins due to their good film-forming ability, biocompatibility and biodegradability 382 

(Fabra, et al., 2016; González & Alvarez Igarzabal, 2015; Pedro Guerrero, Garrido, 383 

Leceta, & de la Caba, 2013; Jensen, Lim, Barbut, & Marcone, 2015; Li, Zhu, et al., 384 

2015; Li, et al., 2015; Piazza, Dürr-Auster, Gigli, Windhab, & Fischer, 2009; Sun, 385 

Sun, & Xiong, 2013; Wang, et al., 2014). Polysaccharides can improve the tensile 386 

strength of films, but decrease the extent of elongation at breaking due to their 387 

relatively dense and compact structures, unless they undergo complexation or 388 

formation of network structure by Maillard reactions (González & Alvarez Igarzabal, 389 

2015; Sun, et al., 2013). In protein-polysaccharide films, synergistic interactions 390 

contribute to improved water vapor and oxygen barrier properties because of chemical 391 

crosslinking or Maillard reactions between proteins and polysaccharides (Jensen, et 392 

al., 2015; Li, Zhu, et al., 2015; Wang, et al., 2014). Meanwhile, phase separation is 393 

also conducive to improving water vapor, in a different manner from that in 394 

protein-protein films (Sun, et al., 2013). Possibly because interwoven compact 395 
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structures between proteins and polysaccharides have been formed, which inhibits the 396 

penetration of water into matrixes (González & Alvarez Igarzabal, 2015). 397 

 398 

3.2. Gelation 399 

Gels are a kind of special decentralized systems in which molecules are 400 

connected to each other and form a network structure under certain conditions. Gaps 401 

in the networks may be filled with liquid or gas as a dispersed phase. Proteins and 402 

polysaccharides are mainly responsible for gelation, and for this reason play important 403 

roles in the food industry (Ersch, et al., 2016). Properties of gels formed by vegetable 404 

proteins have been well studied (Berghout, et al., 2015; Dahesh, Banc, Duri, Morel, & 405 

Ramos, 2016; Kim, Varankovich, & Nickerson, 2016; Rui, et al., 2016; Shand, Ya, 406 

Pietrasik, & Wanasundara, 2007; Sun, et al., 2015); however, there are many good 407 

reasons to mix different polymers to form favorable gels. Firstly, combined use of 408 

different polymers (e.g., vegetable proteins and polysaccharides) could be an 409 

attractive way to develop new food products with balanced nutritional value (Bainy, et 410 

al., 2010; Chang, et al., 2014; Li, et al., 2007; Monteiro, et al., 2013; Sun & Arntfield, 411 

2012). Secondly, gels formed by mixed polymers usually have better mechanical 412 

properties than those formed by a single polymer due to the reactions between 413 

different polymers and the formation of compact structures (Gan, Latiff, Cheng, & 414 

Easa, 2009; Guo, et al., 2014; Hou, et al., 2015). 415 

 416 

3.2.1. Gelation based on protein-protein interactions 417 
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Mixing different vegetable proteins to form gels is a good way to improve the 418 

sensory and nutritional values of food (Alu’datt, et al., 2012; Bainy, et al., 2010). 419 

However, inappropriate combinations or concentrations of proteins may lead to poor 420 

mechanical properties of gels (Sun & Arntfield, 2012). The concentration of one 421 

protein in protein-protein mixtures should be high enough to act as filler to fill the 422 

gaps in the networks formed by the other protein. However, the concentration of this 423 

filler protein should also not be so high that it will disturb network formation of the 424 

other protein (Table 3) (Sun, Wu, Xu, & Li, 2012). In addition, some vegetable 425 

proteins (e.g., black bean and mung bean protein isolate) can act as enzyme inhibitors 426 

rather than co-gelling agents or binders at low concentration, and they may prevent 427 

the disintegration of the gel structures and improve the quality of food (e.g., surimi) 428 

(Kudre, Benjakul, & Kishimura, 2013). 429 

 430 

3.2.2. Gelation based on protein-polysaccharide interactions 431 

Understanding the structures and properties of protein-polysaccharide gels is 432 

very important for designing products with desired properties and for developing new 433 

products with novel textures (Chang, et al., 2014; Li, et al., 2007; Monteiro, et al., 434 

2013). As shown in Table 3, the properties and concentration of polysaccharides had 435 

great influences on the structures and properties of protein-polysaccharide gels. 436 

Several strategies can be used to strengthen the mechanical properties of 437 

protein-polysaccharide gels,. For example, MTGase-mediated ε-(γ-glutamyl)lysine 438 

isopeptide bonding and Maillard reaction-induced cross-linking between proteins and 439 
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polysaccharides can improve the mechanical properties and microstructures of gels 440 

(Gan, Latiff, et al., 2009; Guo, et al., 2014; Hou, et al., 2015). 441 

 442 

3.3. Emulsification 443 

Vegetable proteins (e.g., SPI, pea protein and gluten) and dairy proteins (e.g., 444 

casein and whey) are widely used as emulsifiers (Fernández-Ávila, Escriu, & Trujillo, 445 

2015; Karaca, et al., 2011). There is a growing interest in mixing vegetable proteins 446 

with animal proteins or utilizing vegetable proteins instead of animal proteins in 447 

emulsification (Karaca, et al., 2011). The heat stability of mixed protein stabilized 448 

emulsions can be increased due to protein-protein interactions (Liang, et al., 2016). 449 

However, emulsions stabilized by mixed proteins are still sensitive to extreme 450 

conditions. For example, after heating at 90  for 15 min℃ , casein/pea protein-stabilized 451 

emulsions formed solid gels due to protein denaturation (Liang, et al., 2016). 452 

Emulsions stabilized by proteins combined with polysaccharides usually show 453 

better heat stability than those stabilized by only proteins (Zhao, et al., 2015). 454 

Generally, polysaccharides cannot adsorb onto the surface of oil droplets and 455 

accordingly cannot stabilize emulsions. However, they can improve the stability of 456 

emulsions in association with proteins (Yin, Deng, Xu, Huang, & Yao, 2012). The 457 

emulsification properties of protein-polysaccharide conjugates, e.g., peanut protein 458 

isolate/dextran (Liu, et al., 2012), peanut protein isolate/maltodextrin (Chen, Chen, 459 

Wu, & Yu, 2016), soy protein isolate/soy soluble polysaccharide (Yang, et al., 2015) 460 

and soy protein isolate/fenugreek gum (Noshad, Mohebbi, Shahidi, & Koocheki, 461 
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2015) have been widely studied. Emulsions stabilized by these conjugates showed 462 

good stability in extreme environments (e.g., heating, ultrasonic, high pressure, 463 

extreme pH or electrical force) (Fuguo Liu, Ma, Mcclements, & Gao, 2016). 464 

Formation of protein-polysaccharide conjugates by the Maillard reaction 465 

generally requires a long reaction times at a suitable temperature and humidity (Liu, et 466 

al., 2012). Compared with Maillard reaction, layer-by-layer deposition method and 467 

electrostatic reaction are simpler, more effective and environment friendly strategies 468 

to form protein-polysaccharide complex as emulsifiers (Yin, et al., 2012). The 469 

layer-by-layer electrostatic deposition technique usually creates a multilayer coating 470 

around oil droplets (Mcclements & Li, 2010). Noshad et al. (2015) found that the 471 

emulsions with oil droplets coated by a three-component interfacial layers consisting 472 

of SPI, octenyl-succinate starch (OSA starch) and chitosan, were more stable than 473 

those coated with either a one (SPI) or two (SPI-OSA starch) component layer. 474 

Another strategy to produce a protein-polysaccharide complex is that mixing proteins 475 

and polysaccharides with opposite net charges by adjusting the pH value to form 476 

dispersible complexes (Evans, Ratcliffe, & Williams, 2013). In this technology, 477 

polysaccharide could interact with protein via electrostatic attractions and 478 

hydrophobic interactions, meanwhile the neutral side chains of the polysaccharide 479 

could stabilize the protein/polysaccharide complexes in aqueous solution (Wan, et al., 480 

2014; Yin, et al., 2012). 481 

 482 

3.4. Foamability 483 
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Among vegetable proteins, SPI is most frequently used protein as a foaming 484 

stabilizer due to its favorable foaming ability and potential health benefits. Peanut 485 

protein isolate (PPI) can also be employed as stabilizer of foam systems, but its 486 

foaming ability is not as good as that of SPI (Liu, et al., 2012). Mixing different 487 

proteins together sometimes can improve their foam ability and surface activities 488 

(Ventureira, et al., 2012). For instance, mixing soy globulin and β-lactoglobulin gave 489 

better foaming ability than soy globulin or β-lactoglobulin alone (Pizones 490 

Ruiz-Henestrosa, et al., 2014). Additionally, pH was shown to affect the surface 491 

charge of proteins and electrostatic interaction between them, thus affecting the 492 

structure and properties of foams (Pizones Ruiz-Henestrosa, et al., 2014). Interactions 493 

between proteins and polysaccharides at interfaces can enhance of the foamability of 494 

proteins adsorbed onto interfaces (Baeza, Sanchez, Patino, & Pilosof, 2005; Carp, 495 

Bartholomai, Relkin, & Pilosof, 2001). The molecular weight of polysaccharides has 496 

a significant influence on the foam ability of proteins-polysaccharide complex. 497 

Polysaccharides with low molecular weight have better foam stability, because they 498 

have better dispersibility than those with high molecular weight (Martínez, et al., 499 

2011). 500 

 501 

4. Applications of vegetable proteins in the food industry 502 

 503 

4.1. Use of vegetable proteins as fillers 504 

Vegetable proteins, used as substitutions for fat (Brewer, 2012; Guardeno, 505 
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Hernando, Llorca, Hernandez-Carrion, & Quiles, 2012; Kumar, et al., 2011) or animal 506 

proteins (Luo, Shen, Pan, & Bu, 2008), can make food healthier. For example, SPI 507 

can be used to decrease the fat, lactose and calorie contents in food; however, adding 508 

too much SPI may affect food flavor because of its beany flavor (Khiari, Pietrasik, 509 

Gaudette, & Betti, 2014). Therefore, some other flavorful food ingredients (e.g., milk 510 

powder and sugar) should be mixed with SPI to improve the sensory characteristics 511 

(e.g., appearance, flavor and mouth feel) of final products (Sai Manohar, Urmila Devi, 512 

Bhattacharya, & Venkateswara Rao, 2011). 513 

In addition, vegetable proteins are commonly used as fillers or fat stabilizers to 514 

improve the textures of meat products, such as surimi, pork meat gels and meat batters 515 

(Luo, et al., 2008; Pietrasik, Jarmoluk, & Shand, 2007; Youssef & Barbut, 2011). 516 

Meanwhile, in order to improve qualities of food products involving vegetable 517 

proteins, it is becoming increasingly common to modify vegetable proteins by 518 

different ways (e.g., by transglutaminase-catalyzed cross-linking, high pressure, 519 

ultrasound, or microwave treatment) (Feng, et al., 2014; Guan, et al., 2011; He, et al., 520 

2014; Jambrak, Lelas, Mason, Krešić, & Badanjak, 2009; Pietrasik, et al., 2007). 521 

However, the addition of vegetable proteins has a great influence on the texture and 522 

sensory quality of food; inclusion of large amounts of vegetable proteins may destroy 523 

the textures of meat products and introduce undesirable flavors (Luo, et al., 2008). 524 

 525 

4.2. Use of vegetable proteins in extrusion 526 

Extrusion cooking has been widely used in the food industry due to its high 527 
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nutrient retention rate. Food products prepared by extrusion showed porous structures 528 

and high digestibility (Kręcisz, Wójtowicz, & Oniszczuk, 2015). However, extruded 529 

food products always contain low levels of protein and fiber (Yu, Ramaswamy, & 530 

Boye, 2013). Vegetable proteins can be used to improve the protein content and thus 531 

nutritive value of extruded food products (Kasprzak, et al., 2013; Konstance, et al., 532 

1998; Yu, et al., 2013). Vegetable proteins also have a great influence on the flavor of 533 

extruded foods. Variety of interactions between different ingredients in foods (e.g., the 534 

Maillard reaction) during extrusion processing can lead to production of various food 535 

flavors (Solina, Johnson, & Whitfield, 2007). The addition of vegetable proteins 536 

requires particular attention, because high level of vegetable proteins (>20% w/w) can 537 

destroy the continuity, decrease the expansion ratio and increase the density of final 538 

food products (Jin, Hsieh, & Huff, 1995; Zhu, et al., 2010). 539 

 540 

4.3. Use of vegetable proteins in flour products 541 

During bread making, sulfhydryl (SH) oxidation and SH/SS exchange reactions 542 

occur between glutenins and gliadins to form a disulfide network (Deleu, Wilderjans, 543 

Van Haesendonck, Brijs, & Delcour, 2016), but gluten in wheat flour can cause 544 

allergic reactions and coeliac disease (Ziobro, Witczak, Juszczak, & Korus, 2013). 545 

Thus, there has been an increasing interest in gluten-free breads, which incorporate 546 

rice, corn, potato or cassava starch (Crockett, Ie, & Vodovotz, 2011; Ronda, Oliete, 547 

Gómez, Caballero, & Pando, 2011). Gluten-free breads are usually characterized by 548 

low nutritional value, so vegetable proteins (e.g., SPI, PPI and lupin isolate protein) 549 
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are often used to improve the nutritional as well as sensory properties of gluten-free 550 

breads and traditional breads (Cadioli, Rodas, Garbelotti, Marciano, & Taipina, 2011; 551 

Paraskevopoulou, Chrysanthou, & Koutidou, 2012; Villarino, et al., 2015; Ziobro, et 552 

al., 2013). 553 

In general, vegetable proteins can reduce the density, hardness, chewiness and 554 

springiness of breads due to their high viscosity and water-holding capability (Ziobro, 555 

et al., 2013). High level of vegetable proteins may increase the hardness of final 556 

products (Crockett, et al., 2011; Ziobro, et al., 2013). The effect of vegetable proteins 557 

on the volume of breads depends on the type of starch used in the formula (Ronda, et 558 

al., 2011). Using modified vegetable proteins (e.g., by glycosylation or thermal 559 

modification) is an effective method to reduce the adverse impact of vegetable 560 

proteins (Campbell, Euston, & Ahmed, 2016). 561 

Vegetable proteins can also be utilized to improve the quality of noodles or 562 

spaghetti. For example, soy globulins can cross-link semolina proteins during pasta 563 

making by disulphide linkages, and roasted soy flour is more effective in improving 564 

the quality of noodles or spaghetti than defatted soy flour, because the toasting 565 

process converts the free -SH groups into disulphide bonds (Lamacchia, et al., 2010). 566 

This reaction improves the tensile strength and elasticity of final products, but 567 

decreases the solubility of proteins (Gan, Ong, Wong, & Easa, 2009). 568 

 569 

4.4. Vegetable-proteins-based encapsulation systems for bioactive ingredients 570 

Some food ingredients need to be encapsulated because of their instability, 571 
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unfavorable flavors, and the desire for their potential controlled release. Some gums 572 

and food proteins can be used as encapsulation materials. In recent years, there is an 573 

increasing interest in using vegetable proteins as encapsulation materials due to their 574 

renewability, biodegradability and health benefits (Tang & Li, 2013). Emulsions, 575 

spray-drying, films and cold-set hydrogels are the main technologies that involve the 576 

utilization of vegetable proteins as encapsulation materials. 577 

Many lipophilic bioactive ingredients, e.g., omega-3 fatty acids, phytosterols and 578 

carotenoids, can be encapsulated into vegetable proteins stabilized emulsions. For 579 

example, SPI- and PPI-stabilized emulsions could effectively protect conjugated 580 

linoleic acid from oxidation during storage and in vitro digestion (Fernandez-Avila, 581 

Arranz, Guri, Trujillo, & Corredig, 2016). However, these conventional single 582 

emulsions are not very stable under extreme conditions (e.g., after heating, ultrasonic, 583 

high pressure, extreme pH or electrical force) (Cui, Chen, Kong, Zhang, & Hua, 2014; 584 

Ji, et al., 2015). Thus, multilayer emulsions stabilized by vegetable proteins and other 585 

polymers were developed. Xiang, Lyu, and Narsimhan (2016) found that, at pH 3.0, 586 

positively-charged soy protein and negatively-charged pectin can form a double-layer 587 

structure at oil-water interfaces by electrostatic attraction. An oil-in-water (O/W) 588 

emulsion stabilized by a SPI-resveratrol complex showed better oxidative stability (of 589 

encapsulated molecules or oil alone) than that stabilized only by SPI, due to the 590 

antioxidant activity of resveratrol and the complexation of SPI with resveratrol (Wan, 591 

Wang, Wang, Yuan, & Yang, 2014). 592 

Spray-drying is another widely used encapsulation technology for a variety of 593 
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food ingredients such as flavors, lipids and carotenoids. Many vegetable proteins such 594 

as SPI (Chen, Li, & Tang, 2015), zein (Shukla & Cheryan, 2001), red bean isolate 595 

proteins and mung bean isolate proteins (Fu Liu, Chen, & Tang, 2014) have been used 596 

as encapsulation materials in spray-drying. 597 

In order to develop multi-functional products and improve the functional 598 

properties of vegetable proteins, some methods have been developed such as chemical 599 

(e.g., glycosylation, acylation and cationization), enzymatic (e.g., hydrolysis and 600 

cross-linking) or physico-chemical (e.g., preheating) modification. Emulsions 601 

stabilized by these modified vegetable proteins showed reduced droplet size and 602 

viscosity. Meanwhile, powders derived from these modified protein stabilized 603 

emulsions also showed improved retention efficiency, dispersity and thermal stability 604 

(Li, Wang, et al., 2015; Alla Nesterenko, Alric, Silvestre, & Durrieu, 2012; 605 

Nesterenko, Alric, Silvestre, & Durrieu, 2014; Nesterenko, Alric, Violleau, Silvestre, 606 

& Durrieu, 2014; Tang & Li, 2013; Zhang, et al., 2015). In addition, mixing several 607 

different encapsulation materials together could also increase the encapsulation 608 

efficiency. Mixing vegetable proteins with gelatin, gum arabic or stevioside has been 609 

proved to produce stable dispersions and fine spray-dried powders from the stable 610 

dispersions (Favaro-Trindade, Santana, Monterrey-Quintero, Trindade, & Netto, 611 

2010; Porras-Saavedra, et al., 2015; Wan, Wang, Yang, Wang, & Wang, 2016). Wan et 612 

al. (2016) found that SPI-stevioside complex could be rapidly absorbed onto the 613 

surface of oil droplets, increase the nucleation rate and produce emulsions with small 614 

droplet size. Furthermore, stevioside has a lower molecular weight than SPI, so it 615 
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could fill the gaps between SPI molecules in the interfacial layer and form a compact 616 

interface layer, which could improve the stability of emulsion and thus the stability of 617 

emulsion-encapsulated bioactive ingredients. 618 

Compared to spray-drying, cold-set gel delivery systems are more suitable for 619 

thermosensitive bioactive components (Lingyun Chen, Remondetto, & Subirade, 620 

2006). This process consists of two distinct steps: first, preheating a protein solution 621 

to obtain unfolded globular proteins with exposed reactive group, then adding 622 

bioactive ingredients and cross-liners (e.g., calcium salts) (Maltais, Remondetto, 623 

Gonzalez, & Subirade, 2005). Ca2+ can neutralize electrostatic repulsion and form salt 624 

bridges between protein aggregates, allowing them to form a space-filling network. 625 

Thus, this approach can achieve the encapsulation of nutrients at room temperature, 626 

which is helpful in maintaining the chemical stability of encapsulated heat-sensitive 627 

bioactive compounds (Hu, et al., 2015; Maltais, Remondetto, & Subirade, 2009, 628 

2010). 629 

 630 

5. Conclusions 631 

Vegetable proteins can interact with other polymers in different ways, depending 632 

on their own molecular properties (e.g., molecular weight, particle size, or charge) and 633 

interaction conditions (e.g., initial concentration and ratio, pH, ionic strength or 634 

temperature). Accordingly, a variety of different structures (e.g., double networks, 635 

mosaic textures and cross-linked structures) can be formed to improve the mechanical, 636 

sensory, and functional properties of food products. Nowadays research about the 637 
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interaction of vegetable proteins with other biopolymers referred to very limited 638 

source of vegetable proteins (e.g., leguminous proteins) and mainly focused on the 639 

simple mixtures of two different types of vegetable proteins or mixtures of vegetable 640 

protein with polysaccharides. Furthermore, along with the rapid growing of the 641 

healthy and functional foods markets, there is an increasingly demand for the safe, 642 

nutritional and health-beneficial food products. Therefore, new sources of vegetable 643 

proteins and more complex food systems based on vegetable proteins for food 644 

industry applications are highly worth to be further developed. 645 
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Fig. 1. The classification of vegetable proteins commonly used in the food industry. 

Fig. 2. Structure of a sodium caseinate and soy protein isolate (SC-SPI) co-stabilized emulsion 

droplet (pH 6.8, distilled water) loaded with vitamin A (VA) (Ji, et al., 2015). 

Fig. 3. Influence of co-gelling proteins on the structures and storage modulus (G’) of collagen 

matrices. Whey protein isolate and blood plasma proteins embedded in the surface of collagen, while 

whey protein isolate may interrupt the collagen interconnections and weaken the structure; blood 

plasma proteins could not increase G’ value of collagen. Gluten led to phase separation in mixed 

systems. SPI formed a mixed interwoven structure with collagen (Oechsle, et al., 2015). 

Fig. 4. Bulk and interfacial behaviors of soy protein isolate-stevioside (SPI-STE) mixtures with 

different stevioside concentrations at the oil/water interface. Stevioside at low concentration (0.1 wt%) 

can only bind to the gaps between protein molecules. Stevioside at intermediate concentration (0.25-1 

wt%) can induce a partial dissociation of the protein’s rigid structure with SPI. Stevioside at high 

concentration (2 wt%) can replace SPI-STE complexes due to their smaller particle size (Wan, et al., 

2014). 

Fig. 5. Possible mechanism of the formation of hierarchical microstructure in sugar beet pectin/soy 

glycinin (SBP/SG) double network gels (Hou, et al., 2015). 

Fig. 6. Schematic of Maillard reaction induced formation of soy protein gels (Caillard, et al., 2010). 

Fig. 7. Reaction among SPI, modified cellulose nanocrystal (MCNC), and ethylene glycol diglycidyl 

ether (EGDE). (a) SPI; (b) EGDE; (c) MCNC; (d) crosslinking networks in SPI -based films (Zhang, 

et al., 2016). 
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Table 1 

Summarize of interactions between vegetable proteins and other polymers. 

Table 2 

Selected examples of structures and properties of films formed by vegetable proteins and other 

polymers. 

Table 3 

Selected examples of structures and properties of gels formed by vegetable proteins and other 

polymers. 
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Table 1 
Summarize of interactions between vegetable proteins and other polymers. 
 

Group Interactions Main Influence Factors References 

Protein-Protein Phase separation 
Synergistic interaction 
Aggregation 

Protein sources (the structure and molecular weight 
of proteins ) determine the denaturation 
temperature, dispersibility and functionality of 
proteins. 

(Bainy, Corredig, Poysa, Woodrow, & Tosh, 
2010; Denavi, et al., 2009; Oechsle, 
Häupler, Gibis, Kohlus, & Weiss, 2015) 

Protein concentration affects the dispersibility and 
texturization of proteins. 

(Grabowska, Tekidou, Boom, & van der 
Goot, 2014) 

The pH value and ionic strength of reaction system 
affect the surface charge and solubility of proteins 
and thus protein-protein interactions. 

(Alu’datt, Alli, & Nagadi, 2012; 
Bengoechea, Romero, Aguilar, Cordobés, & 
Guerrero, 2010; Pizones Ruiz-Henestrosa, 
Martinez, Carrera Sánchez, Rodríguez 
Patino, & Pilosof, 2014) 

Protein-Polysaccharide Miscibility 
Thermodynamic 
incompatibility  
Complex coacervation 

Properties of polysaccharides (e.g., charge density, 
molecular weight and branched chain) and proteins 
(e.g., charge density) affect the continuity, dispersity 
and electrostatic attractions in the mixed system. 

(Chang, Li, Wang, Bi, & Adhikari, 2014; 
Lam, Shen, Paulsen, & Corredig, 2007; Ma, 
Dang, & Xu, 2016; Yuan, et al., 2014) 

Concentration or mixture ratio affects the 
competitive adsorption of two molecules at 
interfaces and the dispersity of polymers in 
solutions. 

(Chang, et al., 2014; Li, Yeh, & Fan, 2007; 
Wan, et al., 2014) 

The pH value of reaction system affects the surface 
charge of proteins and thus protein-polysaccharide 
interactions. 

(Spada, Marczak, Tessaro, & Cardozo, 
2015; Yuan, et al., 2014) 

Salts can shield charged-sites of both protein and 
polysaccharide molecules, and the means of adding 
salts can affect the reaction rate. 

(Li, et al., 2009; Pires Vilela, et al., 2011; 
Yuan, et al., 2014) 
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Table 2 
Selected examples of structures and properties of films formed by vegetable proteins and other polymers. 

Compositions Conditions Observations Contrast Structure References 

Protein-Protein 

SPI-Corn zein(CZ) Pouring the heated 
CZ solution onto a 
dried SPI film; 
casting. 

Mechanical properties: Tensile strength (TS) increased but percentage 
elongation at break (EBA) decreased dramatically. 
Barrier properties: Lower water vapor permeability (WVP) but higher 
oxygen permeability (OP). 
Physical properties: Yellowness increased. 

SPI film CZ layer 
laminated on 
SPI film 

(Cho et al., 2010) 

SPI/Zein + 
microwave 

Different ratios of 
SPI to zein (3:1, 
2:1, 1:1, 1:2, 1:3 
and 0:1); pH 12.0; 
casting. 

Mechanical properties: TS and breaking distance increased; microwave 
treatment could increase mechanical properties. 
Barrier and physical properties: None. 

Zein film Phase 
separation 

(Wang et al., 
2016) 

SPI/Gelatin Different ratios of 
SPI to gelatin 
(0:100, 25:75, 
50:50, 75:25 and 
100:0); pH 10.5; 
casting. 

Mechanical properties: Higher breaking forces at ration of 50S:50G 
and 25S:75G; similar thickness. 
Barrier properties: Lower WVP. 
Physical properties: Yellowish colour increased. 

Gelatin 
film 

Synergistic 
networks 

(Denavi et al., 
2009) 

SPI/Gelatin + 
transglutaminase 

MTGase was 
added to the gelatin 
solution with or 
without SPI; 
casting. 

Mechanical properties: Similar thickness; TS decreased, while EAB 
increased markedly in the absence of MTGase. 
Barrier properties: WVP increased slightly (P < 0.05). 
Physical properties: No significant changes (P > 0.05) in the colour. 

Gelatin 
film 

Phase 
separation 

(Weng & Zheng, 
2015) 

SPI/Collagen 
or Gluten/Collagen 

Collagen (2.75%) 
with SPI or gluten 
(1.25%); extrusion. 

Mechanical properties: Thickness decreased slightly and TS increased.  
Barrier and physical properties: None. 

Collagen 
film 
(2.75%) 

Phase 
separation 

(Oechsle et al., 
2016) 

Protein-Polysaccharide 

SPI/CMKGM Mixing CMKGM 
and SPI solutions; 
pH 8.0; casting. 

Mechanical properties: TS and EAB increased. 
Barrier properties: OP decreased; the water adsorption reduced and the 
surface wettability improved with the increase of CMKGM. 
Physical properties: The roughness decreased with the increase of 
CMKGM. 

SPI or 
CMKGM 
film 

Synergistic 
networks 
(Maillard 
reaction and 
hydrogen 
bonding) 

(Wang et al., 
2014) 
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SPI/Cellulose 5 g of fiber: 95 g of 
SPI; pH 12; 
casting. 

Mechanical properties: TS and Young's modulus (YM) increased but 
EAB decreased. 
Barrier properties: Lower OP. 
Physical properties: None. 

SPI film Synergistic 
networks 
(chemical 
reaction) 

(Jensen et al., 
2015) 

SPI/Starch 
nanocrystals 

SPI with 0, 2, 5, 
10, 20 and 40% of 
SNC; casting. 

Mechanical properties: TS and EAB increased but YM decreased. 
Barrier properties: MVP increased. 
Physical properties: None. 

SPI film Phase 
separation 

(González & 
Alvarez 
Igarzabal, 2015) 

PPI/Peanut starch PS and PPI were 
mixed at different 
ratios (10:0, 8:2, 
6:4, 5:5 and 0:10); 
casting. 

Mechanical properties: Thickness and TS decreased; EBA increased. 
Barrier properties: WVP and water-vapor transmission rate (WVTR) 
dropped markedly. 
Physical properties: The opacity slightly elevated and colour 
intensified. 

PS film Phase 
separation 

(Sun et al., 2013) 

PPI/Gum Arabic PPI: Gum Arabic 
1:1; pH 8.0; 
casting. 

Mechanical properties: TS increased but EBA decreased. 
Barrier properties: MVP decreased. 
Physical properties: None. 

PPI film Synergistic 
network 
(disulfide 
bonds) 

(Li, W. Zhu et 
al., 2015) 
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Table 3 
Selected examples of structures and properties of gels formed by vegetable proteins and other polymers. 

Compositions Conditions Observations  Structure References 

Protein-Protein 

Pea protein/Myofibrillar 
protein isolate (MPI) 

4% total protein level 
with or without MTG; 0.6 
M NaCl; pH 6.0. 

Storage modulus (G’) decreased as pea protein level increased. MTG 
increased G’ and peak force values. 

Phase 
Separation 

(Sun & Arntfield, 
2012) 

PPI/Chicken 
salt-soluble proteins 
(SSP) 

Mixing SSP and PPI (0%, 
2%, 2.5%, 3%, 3.5%); 0.6 
M NaCl; pH 6.8. 

Water-holding capacity (WHC) increased as PPI level increased. Breast and 
thigh SSP showed the highest strength and springiness on addition of 2.5% 
and 3.5% PPI, respectively. PPI also could increase G’ value of gels. 

Phase 
Separation 

(Sun et al., 2012) 

Protein-Polysaccharide 
SPC/Corn starch (CS) CS and SPC mixed at 

ratios of 0, 0.2, 0.3, 0.4, 
0.6, 0.8, and 1. 

G’ value decreased and the continuous phase changed from SPC to CS with 
increasing CS level. 

Phase 
Separation 

(Li et al., 2007) 

SPI/Galactomannans Mixing SPI (6-10%) and 
galactomannans 
(0.2%-0.5%); pH 7.0. 

Galactomannans with less branching could decrease the gelling temperature 
and increase G’ value more significantly. 

Phase 
Separation 

(Monteiro et al., 
2013) 

SPI/Gellan Gum Mixtures contained 8.0 
wt.% SPI and 0.3 wt.% 
gellan gum; 200 mM 
KCl; 30 U/g SPI 
MTGase. 

Fracture strain and stress of the mixed gels were higher than that of gellan 
gum gels but lower than that of SPI gels; trend for Young's modulus was the 
opposite. The mixed gels were firmer with increasing gellan gum level 
(0-0.4%). 

Phase 
Separation 

(Guo et al., 2014) 

SPI/Xanthan gum or 
Guar gum 

Mixing SPI (4%, 6% and 
8%) with XG (0- 0.2%) 
or GG (0-0.3%). 

The apparent viscosity, and G’ and G’’ values of the mixed gels increased 
with the increase in the gum (XG, GG) concentration. 

Phase 
Separation 

(Chang et al., 
2014) 

SPI/Ribose or Sucrose Mixing 
MTGase-incubated or 
non- MTGase-incubated 
SPI (0.1 g/mL) with 2% 
ribose or 2% sucrose. 

Mixed gels produced by pre-cross-linked SPI showed higher G’ values than 
those produced by non-pre-cross-linked SPI. SPI-ribose gels showed lower 
G’ values than SPI-sucrose gels. 

Synergistic 
networks 
(Maillard 
reaction) 

(Gan, Latiff, et al., 
2009) 

Sugar beet pectin 
(SBP)/Soy glycinin 
(SG) 

Mixing SG with SBP 
with or without laccase (4 
U/g SBP); 20 U/g SG 
MTGase; pH 7.0. 

The double network gel formed by SG-SBP with laccase had higher G’ 
value and mechanical toughness (fracture strain and stress) than the single 
network gel formed by SG-SBP without laccase. 

Phase 
Separation 

(Hou et al., 2015) 
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Fig. 1. The classification of vegetable proteins commonly used in the food industry.
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Fig. 2. Structure of a sodium caseinate and soy protein isolate (SC-SPI) co-stabilized emulsion droplet (pH 6.8, 
distilled water) loaded with vitamin A (VA) (Ji et al., 2015).
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Fig. 3. Influence of co-gelling proteins on the structures and storage modulus (G’) of collagen matrices. Whey 
protein isolate and blood plasma proteins embedded in the surface of collagen, while whey protein isolate may 
interrupt the collagen interconnections and weaken the structure; blood plasma proteins could not increase G’ value 
of collagen. Gluten led to phase separation in mixed systems. SPI formed a mixed interwoven structure with 
collagen (Oechsle et al., 2015).
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Fig. 4. Bulk and interfacial behaviors of soy protein isolate-stevioside (SPI-STE) mixtures with different stevioside 
concentrations at the oil/water interface. Stevioside at low concentration (0.1 wt%) can only bind to the gaps 
between protein molecules. Stevioside at intermediate concentration (0.25-1 wt%) can induce a partial dissociation 
of the protein’s rigid structure with SPI. Stevioside at high concentration (2 wt%) can replace SPI-STE complexes 
due to their smaller particle size (Wan et al., 2014).
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Fig. 5. Possible mechanism of the formation of hierarchical microstructure in sugar beet pectin/soy glycinin 
(SBP/SG) double network gels (Hou et al., 2015).
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Fig. 6. Schematic of Maillard reaction induced formation of soy protein gels (Caillard et al., 2010).
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Fig. 7. Reaction among SPI, modified cellulose nanocrystal (MCNC), and ethylene glycol diglycidyl ether (EGDE). 
(a) SPI; (b) EGDE; (c) MCNC; (d) crosslinking networks in SPI -based films (Zhang et al., 2016). 
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Highlights 
 
• Many factors can affect the interaction of vegetable proteins with food macromolecules. 
• The structure-function relationship of vegetable proteins based biopolymers or materials is 
discussed. 
• Understanding structures of complex food systems containing vegetable proteins has an 
important implication for applications of vegetable proteins. 
 
 
 


