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Interactions of vegetable proteins with other polymers
(proteins or polysaccharides) lead to different structures.

Different structures have different impact on food
properties and influence applications of vegetable proteins.

Protein 1
Protein 2
Polysaccharide

Driving Forces/Bonds
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Abstract

Background:In recent years, there has been increasing intereggetable proteins,
due to their various health beneficial functionsl amde applications in the food
industry. Vegetable proteins combined with otheibledpolymers can be used to
improve the quality and nutritional value of foodbg@ucts. In these complex food
systems, interactions between different compones inevitable, and these
interactions have a significant influence on theudtire and functions of food
products.

Scope and approach This study reviews the current status of knowledde
interactions between vegetable proteins and othetyngers (proteins or
polysaccharides) in food systems and the struatfireomplexes formed by these
interactions. The study also provides a comprekensview of the applications of
the complexes.

Key findings and conclusionsVegetable proteins display different types of
interactions with other polymers (e.g., polysacites, or animal proteins) under
different conditions, thus forming a variety of colexes with different structures
(e.g., double networks, mosaic textures and ciioged structures), which showed
different impact on properties of the final foocbg@ucts and their applications (e.g.,
substitution for fat, or encapsulation for bioaetimgredients) in the food industry.
However, previous studies mainly focused on legmomsnproteins and vegetable

protein based mixtures of two polymers, furtherdss on other vegetable proteins
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and more complex food systems containing vegetaioiieins and other polymers are

required.

Keywords. Vegetable protein; Polysaccharide; Interactiong&tre; Function;

Application
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1. Introduction

Proteins are a very important component of the hudiet, as they are essential
to the maintenance of muscle mass, immune respooskssignaling and repair of
damaged cells (Henley, Taylor, & Obukosia, 2010)irdal and vegetable proteins are
two main sources of proteins in the diet. Howeeagessive consumption of animal
proteins may lead to obesity (Bujnowski, et al.1P0 coronary heart disease (Clifton,
2011), high blood pressure (Elliott, et al., 20@8d increased serum and urine uric
acid (Tracy, et al., 2014). Many researches indiat#hat vegetable proteins had many
health benefits, e.g., nutritional support to aitrb patients (Bianchi, et al., 1993),
improving obesity-induced metabolic dysfunction (Waaki, et al.,, 2015),

anti-cardiovascular disease (Lichtenstein, 1998 amti-cancer activities (Lauerman,

1998).
As shown in Fig. 1, there are three main typesegfetable proteins: leguminous
proteins, oil seed proteins and cereal proteinalyZet al., 2006). Based on various

health benefits of these vegetable proteins, méfioyte have been made to develop
vegetable proteins based food-grade films, hydspgemulsions, or foams for a
variety of applications in food, nutrition, biologgnd pharmaceutical industries
(Reddy & Yang, 2011). However, vegetable proteires sensitive to processing and
environment. The denaturation of vegetable proteiay happen during extraction,
food processing or storage, which potentially a#tuence their performance in food

systems (e.g., in emulsions and foams).
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In addition, the location of the proteins insidarplseeds can influence the
extraction of proteins (Kasai & lkehara, 2005). émder to improve protein
extractability, different extraction processes sashmicrowave heating (Choi, Choi,
Chun, & Moon, 2006) and ultrasound technology (Karét al., 2010) were
investigated, which may cause the protein denaturgFukase, Ohdaira, Masuzawa,
& lde, 1994; Hafez, Mohamed, Hewedy, & Singh, 1983)iring the extraction of
proteins, many factors (e.g., the types of the estivthe temperature and pH of the
reaction system, the agitation speed and extrattio®) can be optimized to recover
proteins and prevent the loss of their solubilikaiaca, Low, & Nickerson, 2011; Wu,
Wang, Ma, & Ren, 2009).

Many strategies have been developed to preventdématuration of proteins
during food processing or storage, such as moleamladification of vegetable
proteins (Wang, Wang, & Sun, 2005) or mixing vebktaproteins with other
polymers (Liang, Wong, Pham, & Tan, 2016). In thesalti-components food
systems, the interactions between vegetable psotaimd other components will
inevitably take place in a variety of ways. Thesteliactions can potentially have
great influences on the structures and properfiegsese food products (Zhao, Dong,
Li, Kong, & Liu, 2015). However, very limited inforation about an overall
summarization of the interaction between vegetgtdein and other biopolymers
was known. Therefore, this study provides an oesvvof the current status of
knowledge about the interactions of vegetable prstavith food macromolecules,

structure-function relationships of vegetable-preteased biopolymers and their
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applications in the food industry.

2. Formation and structure of vegetable-protein-based complexes

When vegetable proteins are exposed to heatingasolhiic, high pressure,
extreme pH or electrical force, they always dereatand the hydrophobic groups
buried in the native state are exposed to the cirfdacoba, Harry Gruppen, & Ton
van Vliet, 2002; Nishinari, Fang, Guo, & Phillip014). . Denatured vegetable
proteins can form films or gels, which can be ussdpackage and encapsulation
materials for food products (Berghout, Boom, & \der Goot, 2015; Guerrero & de
la Caba, 2010; Liu, Tellez-Garay, & Castell-Pei@204). Vegetable proteins can also
be used as emulsifiers in oil-in-water (O/W) emuis or air-in-water dispersions,
due to their amphiphilic properties (Karaca, et, &011; Matemu, Kayahara,
Murasawa, Katayama, & Nakamura, 2011; Morales, ezt Pizones
Ruiz-Henestrosa, & Pilosof, 2015).

However, the structures of single protein formel$ ge films are always fragile
(Pan, Jiang, Chen, & Jin, 2014; Pan, et al., 2@b8l) the stabilities of single protein
stabilized emulsions or forms are usually poor ¢(Eas Cui, & Goff, 2013;
Ventureira, Martinez, & Aidn, 2012). The utilizatiof vegetable proteins combined
with other biopolymers, e.g., polysaccharides amaih proteins, to form functional
complexes is widely considered as one of the besthods for improving the

functionalities of vegetable proteins (Table 1).



133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

2.1. Protein-protein complexes

Protein-protein interactions have been well ingzggd with the objectives of
clarifying structure-function relationships, impmg food quality, and developing
new products (Sarbon, Badii, & Howell, 2015). liakgrons of proteins at oil-water or
air-water interfaces can maintain the stabilityemhulsions or foams, respectively
while the interactions between protein moleculeprteins solutions are essential to

the formation of protein gels and films.

2.1.1. Formation and structure of protein-protemngplexes at interfaces

Single food protein stabilized emulsions are alwsgfssitive to temperature, salt
and pH (Mcclements, 2004). Compounded utilizatibrivap types of proteins with
different structures as emulsifier is a simple aadtrollable way to improve the
stability of single protein stabilized emulsiongaig, et al., 2016; Ventureira, et al.,
2012). The study of Ji et al. (2015) can be used g®od example to clarify the
structures of mixed proteins at oil-water inter&ac8odium caseinate (SC) and soy
protein isolate (SPI) were shown to bind to oil-evainterfaces to form negatively
charged compact interface structures at pH6.8 @igwhile pH and ionic strength
were shown to affect the surface charge and thiclgasize of a SC-SPI-stabilized
emulsion (Pizones Ruiz-Henestrosa, Martinez, Carg&nchez, Rodriguez Patino, &
Pilosof, 2014). Further investigations on the dffgicconcentration, mixture ratio, or

structure of proteins on the protein-protein intdcns at oil-water interfaces are
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needed.

2.1.2. Formation and structure of protein-proteomaplexes in solutions

Protein-protein interactions in protein solutiordldw three main pathways:
phase separation, synergistic interaction and gggjcn (Firoozmand & Rousseau,
2015). In most cases, a mixture of two or moreedét proteins will lead to phase
separation, e.g., coagulation and segregation. Vphase separation occurs, two or
more proteins form independent phase-separatedorietywand they may disturb the
assembly of a uniform network structure (ChrondkiKasapis, 1993; Sarbon, et al.,
2015). A mixture of two oppositely charged protetas result in aggregation induced
by electrostatic attraction (Sarbon, et al., 20B3)nergistic interactions can lead to
better products with a uniform structure than thimsmed by each individual material
alone (Ngarize, Adams, & Howell, 2004). Denavi le{2009) found that the presence
of 25% (w/w) SPI led to conformational changes elagn, which produced a twofold
effect: self-aggregation of the gelatin polypeptidehains, and a certain degree of
intermolecular associations via C=0 bonds betwetatigo and SPI.

The type of protein has an enormous effect on prgietein interactions in
solutions. The primary sequence and secondary anidry structures of proteins
influence the interactions between proteins. Tak8f and myofibrillar protein
isolate (MPI) as an example, these proteins haffereint denaturation temperatures
due to differences in their subunit composition.net® it is difficult for them to

interact with each other and form a uniform and pact structure under the same
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heating condition, but an interwoven structure banformed between SPI and MPI
by controlling reaction conditions (Bainy, CorrediRpysa, Woodrow, & Tosh, 2010;
Denavi, et al., 2009).

The molecular weight of proteins is also one of iin@st important factors that
can significantly influence the protein-proteindractions in solutions (Ersch, et al.,
2016). Proteins with low molecular weights can ethtieemselves in the matrix but
have different effects on the network structuresnfed by protein-protein interactions,
while proteins with high molecular weights may drst the assembly of a network
structure or form an interwoven structure dependingtheir properties or reaction
conditions (Chen & Dickinson, 1999). Taking wheptein and blood plasma proteins
as an example of low molecular weight proteins, ywpeotein could occupy the
interaction sites of collagen molecules, weakerihrggordered structure of collagen
networks (a crater-shaped form) (Walkenstréom & Harsson, 1995); however, blood
plasma proteins could form a uniform network stwuetwith collagen (Oechsle,
Haupler, Gibis, Kohlus, & Weiss, 2015). In termshagh molecular weight proteins,
e.g., gluten and SPI, phase separation occurradixture of collagen and gluten
while SPI could form an interwoven structure witbllagen. By contrast, when the
concentrations of these co-gelling proteins weve they could only fill in the pores
of collagen networks and had no significant effactmicrostructure of collagen (Fig.
3) (Ahmad, Nirmal, Danish, Chuprom, & Jafarzedd)i, & Oechsle, et al., 2015).

Furthermore, protein-protein interactions and thsulting texturization (e.qg.,

gelation and film formation) depend greatly on thetein concentration. Low
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concentrations frustrate sufficient contact betweprotein molecules. High
concentrations lead to a poor dispersity of pratesnd mixing or shearing forces
may be then needed to favor a better dispersioprateins, and form a favorable
network structure (Grabowska, Tekidou, Boom, & wder Goot, 2014). Thus, in
protein solutions, at least one of the proteinsukhbe at an appropriate concentration
to form a continuous network structure, while otpeateins will fill in the gaps in the
network in a continuous or dispersed manner depgnat their properties.

Moreover, the pH can affect the surface charge soldbility of protein
molecules and thus their interactions. Proteinsecdes are nearly neutrally charged
at pH values close to their isoelectric point @md tend to aggregate, but can form a
fine network structure at pH values far above doweaheir pl (Bengoechea, Romero,
Aguilar, Cordobés, & Guerrero, 2010). For examphhey proteins can form
aggregated particulate networks at pH values nwear pl, but form fine-stranded

networks at higher or lower pH values than pl (Ahit, Alli, & Nagadi, 2012).

2.2. Protein-polysaccharide complexes

Proteins and polysaccharides can form fine compgleretwo ways: covalent
bond and/or non-covalent bond (Ji, et al., 201Be Tovalent bond mainly refers to
the Maillard reaction, which is a non-enzymaticoglgylation reaction between free
amino groups of proteins and aldehyde group of aiedusugars (Liu, Ru, & Ding,
2012). This method usually involves thermal denatuof a protein solution, and

adding a polysaccharide solution as a Maillard-tgpess-linking agent (Caillard,

10
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Remondetto, & Subirade, 2009). The non-covalentdbonludes hydrogen bond and
electrostatic attraction. Generally, uncharged gmtgharides can form complexes
with proteins mainly by hydrophobic interactiondiereas for ionic polysaccharides,
the complexes mainly are formed by electrostatieractions (Chang, Li, Wang, B,

& Adhikari, 2014; Wan, et al., 2014).

2.2.1. Formation and structure of protein-polysaaetie complexes at interfaces
Protein-stabilized emulsions or foams are susceptito environmental
conditions because proteins are easy to denatuter lexposure to some extreme
conditions (Martinez, Ganesan, Pilosof, & Harte]lD)0 Adding polysaccharides to
emulsions can increase their stability by formimgt@in-polysaccharide complexes at
oil-water interface layers (Liu, Zhao, Zhao, Ren, ¥ang, 2012; Martinez,
Carrerasanchez, Pizonesruizhenestrosa, Rodrigiezpédt Pilosof, 2007; Yang, et
al., 2015). Surface activity, concentration andtiplar size of polysaccharides have
significant effects on the structures of proteitypaccharide complexes (Baeza,
Sanchez, Pilosof, & Patino, 2004, 2005; Carp, Rdotinai, & Pilosof, 1999). For
instance, Wan et al. (2014) have shown that wheviagide at low concentration (0.1
wt%) was added to SPI-stabilized O/W emulsion, &Hloccupied the most part of
the droplet surface. Stevioside could only binthi® gaps between protein molecules.
When increasing the concentration to 0.25 wt%, isgidle showed stronger
interaction with SPI, thereby resulting in partditsociation of the protein’s rigid

structure. When the concentration of steviosidehed 2 wt%, a considerable number

11
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of stevioside molecules bound to the droplet serfay replacing SPI-stevioside

complexes due to their small particle size (Fig. 4)

2.2.2. Formation and structure of protein-polysaaetie complexes in solutions

There are three different equilibrium situationssimlutions containing mixed
proteins/hydrocolloids, namely miscibility, thermagmic incompatibility and
complex coacervation (Giancone, Torrieri, Masi, &chbn, 2009). Formation of
protein-polysaccharide complexes in solution foloiwo main pathways, phase
separation and formation of synergistic networks.

Thermodynamic incompatibility between proteins goalysaccharides often
leads to separation (Li, et al., 2009), but twoasafe network structures formed by
segregation can still form a rigid structure by ghbglly or chemically driven
intertwining (Zhao, et al., 2016). Hou et al. (2Dlfsed a two-step enzymatic
sequential cross-linking method to form a protedtypaccharide double network
structure. The first layer of network was formedlagcase-induced cross-linking of
sugar beet pectin (SBP). After adding and mixingegnal volume of soy glycinin
(SG) dispersion, the double network was formed uorttie action of microbial
transglutaminase (MTGase) in a water bath at 46r 4 h (Fig. 5). Pires Vilela,
Cavallieri, and Lopes da Cunha (2011) mixed deedtu8PI solution and heated
gellan gum solution together to form a homogenedmsble-network structure by
using calcium chloride or potassium chloride as ss#inker. This double

protein-polysaccharide network structure was firrttean single network structure

12
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formed by pure protein or polysaccharide. It haswide range of promising
applications in the food industry, such as use @#rolled delivery systems for
nutraceuticals (Nakayama, et al., 2004).

In most cases, mixing proteins with polysaccharidesls to phase separation
(Li, et al., 2009). The amount of branched chaing #he molecular weight of
polysaccharide can affect their continuity and disfiy in this mixed systems (Min &
Yang, 2010). Polysaccharides with more branchethstand lower molecular weight
usually show better dispersity than those with fermnched chains and higher
molecular weight, which are easy to agglutinate dadn a continuous and
heterogeneous structure (Li, et al., 2008; MonieRebelo, da Cruz e Silva, &
Lopes-da-Silva, 2013). In addition, polysaccharidebw concentration can increase
the density of protein-polysaccharide aggregatelilewpolysaccharides at high
concentration may destroy the continuous networknéal by proteins, because it is
hard to form a rigid structure by intertwining tviredependent networks (Chang, et
al., 2014; Li, Yeh, & Fan, 2007).

Miscibility and coacervation of proteins and polysiaarides are beneficial to the
formation of an associative structure. Miscibiliy protein and polysaccharide can
form Maillard conjugates by covalent bonds whileacervation can form
protein-polysaccharide complexes by electrostdtia@ion (Giancone, et al., 2009;
Yuan, Wan, Yang, & Yin, 2014). Polysaccharides banused as a cross-linker to
produce a protein network structure by linking dared protein molecules (Fig. 6)

(Calllard, Remondetto, & Subirade, 2010). Maillarglactions between SPI and
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carboxymethyl konjac glucomannan (CMKGM) have béemonstrated by FTIR;
meanwhile, FTIR results also suggested the coexistef strong hydrogen bond
interaction between SPI and CMKGM (Wang, et al.1480 Maillard reactions
between vegetable proteins and carboxymethyl csléu(CMC) (Su, Huang, Yuan,
Wang, & Li, 2010; Su, et al.,, 2012), glyceraldehy(eaillard, et al., 2010),
glutaraldehyde (Caillard, et al., 2009), ribose androse (Gan, Cheng, & Easa, 2008)
in solutions have also been reported. Howevermpédysaccharides with a high degree
of polymerization, the Maillard reaction is slow.n&vel method can be used to attach
functional groups to the polysaccharide surfacésgusurface modification, followed
by using crosslinking agents to obtain protein-patcharide complexes (La Wang,
Li, Zhang, & Shi, 2016). For example, the chemimalsslinking structure formed by
SPI, modified cellulose nanocrystal (MCNC), andy&the glycol diglycidyl ether
(EGDE) could enhance mechanical properties and rwassistance of the
SPI/EGDE/MCNC film, compared to the un-modified &3DE film (Fig. 7)
(Zhang, et al., 2016).

Properties of proteins and polysaccharides (e.garge density, molecular
weight and branched chain) and their concentratowmatio have a big influence on
the protein-polysaccharide network structures (Maang, & Xu, 2016).
Polysaccharides can be classified as negativelsggedale.g., xanthan gum (XG) and
pectin), naturally-charged (e.g., guar gum and gajalannans), and
positively-charged (e.g., chitin) polysaccharides high pH values (pH>pl),

negatively-charged proteins and negatively-chapgsysaccharides can form a stable
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330

dispersion due to electrostatic repulsion betwemtem and polysaccharide; at low
pH (pH < pl), positively-charged proteins and negdy-charged polysaccharides can
form protein-polysaccharide complexes by electtastattraction (Chang, et al.,
2014; Lam, Shen, Paulsen, & Corredig, 2007). Initedd different proteins are
differently charged at the same pH value, resultingdifferent strengths of
electrostatic attractions with polysaccharides. &ample, glycinin can form a more
stable complex structure th@aconglycinin with chitin at a wide pH range, becaus
glycinin carries greater positive charge thgeonglycinin at the same pH value
(Yuan, et al., 2014).

Therefore, the environmental pH must be properiytradled to ensure that the
proteins and polysaccharides are oppositely chargddch is essential for the
formation of a stable protein-polysaccharide comphly electrostatic attraction
(Spada, Marczak, Tessaro, & Cardozo, 2015; Yuaml.e2014). In addition, salts
(e.g., sodium, potassium, calcium and magnesiunorida) can influence the
structures of protein-polysaccharide complexes &ty electrostatic attractions, as
salts can shield charged-sites of both protein palysaccharide molecules and
disrupt electrostatic attractions between them fYw&t al., 2014). Meanwhile, the
way of adding salts can affect the reaction ratel &me final structures of
protein-polysaccharide complexes; slow diffusion sélts into protein and
polysaccharide solutions through a permeable membieads to a slower formation
of protein-polysaccharide complexes than the diaelctition of the same amount of

salts. Slow diffusion of salts contributes to afisiént interaction between proteins
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and polysaccharides, which may be helpful in fogrgnhomogeneous structure (Li,

et al., 2009; Pires Vilela, et al., 2011; Yuanalet2014).

3. Sructure-function relationships of vegetable-protein-based complexes

3.1. Film formation

Films are a kind of material with a unique functionselectively separating
compounds, which can be used in food packagingréalmpez-Rubio, & Lagaron,
2016). The most commonly used materials for filrmfation are polyvinyl chloride
(PVC), polyethylene (PE), polypropylene (PP) antygtgrene (PS) (Yabannavar &
Bartha, 1993). However, films formed by these sgsired polymers have serious
environmental concerns because they are not eadggt@de and remain intact in the
environment for long periods of time (Weng & ZheB@15). Thus, it is of interest to
develop renewable, biodegradable and nontoxic fidming biopolymers, such as
natural biopolymers (e.g., starch, cellulose aradgins), bio-derived monomers (e.g.,
polylactate) and polymers produced by microorgarigeg., polyhydroxybutyrate
and polyhydroxyvalerate) (Guerrero, Nur Hanani,ri¢ef de la Caba, 2011).

Solvent casting and extrusion are two technologsesl to prepare polymer films
(Echeverria, Eisenberg, & Mauri, 2014; GuerrercatBe Kerry, & de la Caba, 2012).
Polymer films must have good barrier propertiesgas and water (e.g., low water
vapor permeability, WVP), mechanical propertiegy.(ethickness, tensile strength,

elastic modulus, deformability and elongation) aigysical properties (e.g., colour
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and thermal stability). Based on these requiremerggetable proteins are an ideal
source of film-forming materials. The properties fdins formed by SPI, peanut
protein and zein have been well studied (Liu, et2004; Song, Zhou, Fu, Chen, &
Wu, 2013; Wang, Marcone, Barbut, & Lim, 2012). Klmfmade from vegetable
proteins show good mechanical and optical properteit high WVP (Otoni,
Avena-Bustillos, Olsen, Bilbao-Sainz, & McHugh, B)1Mixing different proteins
together or mixing proteins with polysaccharides fiorm protein-protein or
protein-polysaccharide complexes is an effectivey ia improve barrier and
mechanical properties of protein-based films (Table(Koshy, Mary, Thomas, &

Pothan, 2015; Wihodo & Moraru, 2013).

3.1.1. Film formation based on protein-protein natetions

Two or more types of vegetable proteins can be dhiogether to form films
with improved barrier and mechanical properties garad with films formed by
single protein (Cho, Lee, & Rhee, 2010; Li, et &015; Wang, et al., 2016). In
addition, vegetable proteins are often used toacegpl portion of animal proteins,
which can reduce the cost and improve physical,haugical or barrier properties of
films (Cao, Fu, & He, 2007; Denavi, et al., 2009n&z-Guillén, et al., 2009;
Oechsle, et al., 2016; Weng & Zheng, 2015). Thetmadof vegetable proteins can
improve the tensile strength, breaking forces demixof elongation of films without
influencing their thickness (Denavi, et al., 20@&echsle, et al., 2016). Compared

with pure animal protein films, films formed by smgistic interactions of mixed
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vegetable and animal proteins showed decreased {W¥Ravi, et al., 2009) while
films formed by phase separation of mixed vegetarid animal proteins showed

increased WVP (Weng & Zheng, 2015).

3.1.2. Film formation based on protein-polysacctarinteractions

Many polysaccharides, e.g., cellulose, starch, gants carboxymethyl konjac
glucomannan (CMKGM), can be used to prepare filmsombination with vegetable
proteins due to their good film-forming ability,dsiompatibility and biodegradability
(Fabra, et al., 2016; Gonzalez & Alvarez IgarzaBall5; Pedro Guerrero, Garrido,
Leceta, & de la Caba, 2013; Jensen, Lim, Barbuk&cone, 2015; Li, Zhu, et al.,
2015; Li, et al., 2015; Piazza, Durr-Auster, GigNindhab, & Fischer, 2009; Sun,
Sun, & Xiong, 2013; Wang, et al., 2014). Polysacicles can improve the tensile
strength of films, but decrease the extent of ehtiog at breaking due to their
relatively dense and compact structures, unlesy tmedergo complexation or
formation of network structure by Maillard reactsofGonzalez & Alvarez Igarzabal,
2015; Sun, et al.,, 2013). In protein-polysacchariil@s, synergistic interactions
contribute to improved water vapor and oxygen lkeaproperties because of chemical
crosslinking or Maillard reactions between proteamsl polysaccharides (Jensen, et
al., 2015; Li, Zhu, et al., 2015; Wang, et al., 2DIMeanwhile, phase separation is
also conducive to improving water vapor, in a digf@ manner from that in

protein-protein films (Sun, et al., 2013). Possilldgcause interwoven compact
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structures between proteins and polysaccharides Ibeen formed, which inhibits the

penetration of water into matrixes (Gonzalez & Abmlgarzabal, 2015).

3.2. Gelation

Gels are a kind of special decentralized systemswlich molecules are
connected to each other and form a network streatader certain conditions. Gaps
in the networks may be filled with liquid or gas aglispersed phase. Proteins and
polysaccharides are mainly responsible for gelatmal for this reason play important
roles in the food industry (Ersch, et al., 2016pderties of gels formed by vegetable
proteins have been well studied (Berghout, e8ll5; Dahesh, Banc, Duri, Morel, &
Ramos, 2016; Kim, Varankovich, & Nickerson, 2016i,Ret al., 2016; Shand, Ya,
Pietrasik, & Wanasundara, 2007; Sun, et al., 20b&)yever, there are many good
reasons to mix different polymers to form favoragkds. Firstly, combined use of
different polymers (e.g., vegetable proteins andygamcharides) could be an
attractive way to develop new food products wittabeed nutritional value (Bainy, et
al., 2010; Chang, et al., 2014; Li, et al., 2007Gntiro, et al., 2013; Sun & Arntfield,
2012). Secondly, gels formed by mixed polymers lgusave better mechanical
properties than those formed by a single polymes tlu the reactions between
different polymers and the formation of compacustures (Gan, Latiff, Cheng, &

Easa, 2009; Guo, et al., 2014; Hou, et al., 2015).

3.2.1. Gelation based on protein-protein interanso
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Mixing different vegetable proteins to form gelsaggood way to improve the
sensory and nutritional values of food (Alu'datt,ad., 2012; Bainy, et al., 2010).
However, inappropriate combinations or concentregtiof proteins may lead to poor
mechanical properties of gels (Sun & Arntfield, 2D1The concentration of one
protein in protein-protein mixtures should be hgiough to act as filler to fill the
gaps in the networks formed by the other proteioweler, the concentration of this
filler protein should also not be so high that itlwisturb network formation of the
other protein (Table 3) (Sun, Wu, Xu, & Li, 2012) addition, some vegetable
proteins (e.g., black bean and mung bean protelate can act as enzyme inhibitors
rather than co-gelling agents or binders at lowceotration, and they may prevent
the disintegration of the gel structures and imprthwe quality of food (e.g., surimi)

(Kudre, Benjakul, & Kishimura, 2013).

3.2.2. Gelation based on protein-polysacchariderattions

Understanding the structures and properties ofeprgiolysaccharide gels is
very important for designing products with desipgdperties and for developing new
products with novel textures (Chang, et al., 2014t al., 2007; Monteiro, et al.,
2013). As shown in Table 3, the properties and eotration of polysaccharides had
great influences on the structures and propertfeprotein-polysaccharide gels.
Several strategies can be used to strengthen thehamieal properties of
protein-polysaccharide gels,. For example, MTGasétated ¢-(y-glutamyl)lysine

isopeptide bonding and Maillard reaction-induceakstlinking between proteins and
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polysaccharides can improve the mechanical praggsednd microstructures of gels

(Gan, Latiff, et al., 2009; Guo, et al., 2014; Heual., 2015).

3.3. Emulsification

Vegetable proteins (e.g., SPI, pea protein andeg)uand dairy proteins (e.qg.,
casein and whey) are widely used as emulsifiersy@rlez-Avila, Escriu, & Trujillo,
2015; Karaca, et al., 2011). There is a growingredt in mixing vegetable proteins
with animal proteins or utilizing vegetable protimstead ofanimal proteins in
emulsification (Karaca, et al., 2011). The heabititg of mixed protein stabilized
emulsions can be increased due to protein-proteggractions (Liang, et al., 2016).
However, emulsions stabilized by mixed proteins atd sensitive to extreme
conditions. For example, after heating at90 foniif, casein/pea protein-stabilized
emulsions formed solid gels due to protein denéturdLiang, et al., 2016).

Emulsions stabilized by proteins combined with galscharides usually show
better heat stability than those stabilized by opipteins (Zhao, et al., 2015).
Generally, polysaccharides cannot adsorb onto théace of oil droplets and
accordingly cannot stabilize emulsions. Howeveeytlean improve the stability of
emulsions in association with proteins (Yin, DeXg, Huang, & Yao, 2012). The
emulsification properties of protein-polysaccharictnjugates, e.g., peanut protein
isolate/dextran (Liu, et al.,, 2012), peanut protsiolate/maltodextrin (Chen, Chen,
Wu, & Yu, 2016), soy protein isolate/soy solubldysaccharide (Yang, et al., 2015)

and soy protein isolate/fenugreek gum (Noshad, MbheShahidi, & Koocheki,
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2015) have been widely studied. Emulsions stalilibg these conjugates showed
good stability in extreme environments (e.g., hagtiultrasonic, high pressure,
extreme pH or electrical force) (Fuguo Liu, Ma, Mguoents, & Gao, 2016).
Formation of protein-polysaccharide conjugates Ime tMaillard reaction
generally requires a long reaction times at a blateemperature and humidity (Liu, et
al., 2012). Compared with Maillard reaction, lajpgHayer deposition method and
electrostatic reaction are simpler, more effecawnel environment friendly strategies
to form protein-polysaccharide complex as emulsfi€Yin, et al., 2012). The
layer-by-layer electrostatic deposition techniqeeally creates a multilayer coating
around oil droplets (Mcclements & Li, 2010). Noshetdal. (2015) found that the
emulsions with oil droplets coated by a three-congmb interfacial layers consisting
of SPI, octenyl-succinate starch (OSA starch) amitbsan, were more stable than
those coated with either a one (SPI) or two (SPAGSarch) component layer.
Another strategy to produce a protein-polysaccleacimimplex is that mixing proteins
and polysaccharides with opposite net charges kst the pH value to form
dispersible complexes (Evans, Ratcliffe, & Willigm&013). In this technology,
polysaccharide could interact with protein via #lestatic attractions and
hydrophobic interactions, meanwhile the neutrak sithains of the polysaccharide
could stabilize the protein/polysaccharide compgeixeaqueous solution (Wan, et al.,

2014; Yin, et al., 2012).

3.4. Foamability
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Among vegetable proteins, SPI is most frequentlgduprotein as a foaming
stabilizer due to its favorable foaming ability apdtential health benefits. Peanut
protein isolate (PPI) can also be employed as lstabiof foam systems, but its
foaming ability is not as good as that of SPI (Lat,al., 2012). Mixing different
proteins together sometimes can improve their fadoiity and surface activities
(Ventureira, et al., 2012). For instance, mixing gtobulin andp-lactoglobulin gave
better foaming ability than soy globulin op-lactoglobulin alone (Pizones
Ruiz-Henestrosa, et al., 2014). Additionally, pHswshown to affect the surface
charge of proteins and electrostatic interactiotwben them, thus affecting the
structure and properties of foams (Pizones Ruizeldnsa, et al., 2014). Interactions
between proteins and polysaccharides at interfe@esnhance of the foamability of
proteins adsorbed onto interfaces (Baeza, Sandtetino, & Pilosof, 2005; Carp,
Bartholomai, Relkin, & Pilosof, 2001). The moleaulgeight of polysaccharides has
a significant influence on the foam ability of prwis-polysaccharide complex.
Polysaccharides with low molecular weight have dyefibam stability, because they
have better dispersibility than those with high ewoillar weight (Martinez, et al.,

2011).

4. Applications of vegetable proteinsin thefood industry

4.1. Use of vegetable proteins as fillers

Vegetable proteins, used as substitutions for Brewer, 2012; Guardeno,
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Hernando, Llorca, Hernandez-Carrion, & Quiles, 20d@mar, et al., 2011) or animal
proteins (Luo, Shen, Pan, & Bu, 2008), can makel fbealthier. For example, SPI
can be used to decrease the fat, lactose andecalomients in food; however, adding
too much SPI may affect food flavor because ob#any flavor (Khiari, Pietrasik,
Gaudette, & Betti, 2014). Therefore, some otherditul food ingredients (e.g., milk
powder and sugar) should be mixed with SPI to im@rthe sensory characteristics
(e.g., appearance, flavor and mouth feel) of fpralducts (Sai Manohar, Urmila Devi,
Bhattacharya, & Venkateswara Rao, 2011).

In addition, vegetable proteins are commonly usediliers or fat stabilizers to
improve the textures of meat products, such asnsupork meat gels and meat batters
(Luo, et al., 2008; Pietrasik, Jarmoluk, & Shan@p?2 Youssef & Barbut, 2011).
Meanwhile, in order to improve qualities of foodogucts involving vegetable
proteins, it is becoming increasingly common to ifodegetable proteins by
different ways (e.g., by transglutaminase-catalyzedss-linking, high pressure,
ultrasound, or microwave treatment) (Feng, et2fl14; Guan, et al., 2011; He, et al.,
2014; Jambrak, Lelas, Mason, Kies& Badanjak, 2009; Pietrasik, et al., 2007).
However, the addition of vegetable proteins haseatgnfluence on the texture and
sensory quality of food; inclusion of large amouotvegetable proteins may destroy

the textures of meat products and introduce unal@sifflavors (Luo, et al., 2008).

4.2. Use of vegetable proteins in extrusion

Extrusion cooking has been widely used in the fomtustry due to its high
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nutrient retention rate. Food products prepareéxigusion showed porous structures
and high digestibility (Kgcisz, Wojtowicz, & Oniszczuk, 2015). However, extedl
food products always contain low levels of protamd fiber (Yu, Ramaswamy, &
Boye, 2013). Vegetable proteins can be used toawgthe protein content and thus
nutritive value of extruded food products (Kasprzekal., 2013; Konstance, et al.,
1998; Yu, et al., 2013). Vegetable proteins alseelegreat influence on the flavor of
extruded foods. Variety of interactions betweeffedént ingredients in foods (e.g., the
Maillard reaction) during extrusion processing ¢eed to production of various food
flavors (Solina, Johnson, & Whitfield, 2007). Thdd#ion of vegetable proteins
requires particular attention, because high let/gkegetable proteins (>20% w/w) can
destroy the continuity, decrease the expansion &aid increase the density of final

food products (Jin, Hsieh, & Huff, 1995; Zhu, et 2010).

4.3. Use of vegetable proteins in flour product

During bread making, sulfhydryl (SH) oxidation a8#l/SS exchange reactions
occur between glutenins and gliadins to form altideinetwork (Deleu, Wilderjans,
Van Haesendonck, Brijs, & Delcour, 2016), but ghute@ wheat flour can cause
allergic reactions and coeliac disease (Ziobro,c¥¥k, Juszczak, & Korus, 2013).
Thus, there has been an increasing interest iremginee breads, which incorporate
rice, corn, potato or cassava starch (Crockett&I&pdovotz, 2011; Ronda, Oliete,
Gbomez, Caballero, & Pando, 2011). Gluten-free sem@ usually characterized by

low nutritional value, so vegetable proteins (eSP], PPI and lupin isolate protein)
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are often used to improve the nutritional as welsansory properties of gluten-free
breads and traditional breads (Cadioli, Rodas, €attp, Marciano, & Taipina, 2011;
Paraskevopoulou, Chrysanthou, & Koutidou, 2012tavitho, et al., 2015; Ziobro, et
al., 2013).

In general, vegetable proteins can reduce the tyemsirdness, chewiness and
springiness of breads due to their high viscogiy water-holding capability (Ziobro,
et al.,, 2013). High level of vegetable proteins niagrease the hardness of final
products (Crockett, et al., 2011; Ziobro, et ab12). The effect of vegetable proteins
on the volume of breads depends on the type dflsiased in the formula (Ronda, et
al., 2011). Using modified vegetable proteins (elmy glycosylation or thermal
modification) is an effective method to reduce tmverse impact of vegetable
proteins (Campbell, Euston, & Ahmed, 2016).

Vegetable proteins can also be utilized to imprtive quality of noodles or
spaghetti. For example, soy globulins can crods$i@emolina proteins during pasta
making by disulphide linkages, and roasted soyrflsunore effective in improving
the quality of noodles or spaghetti than defattegd 8our, because the toasting
process converts the free -SH groups into disugpbiohds (Lamacchia, et al., 2010).
This reaction improves the tensile strength andtieity of final products, but

decreases the solubility of proteins (Gan, Ong, §¥&nEasa, 2009).

4.4. Vegetable-proteins-based encapsulation sysi@nigoactive ingredients

Some food ingredients need to be encapsulated $ecalltheir instability,

26



572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

unfavorable flavors, and the desire for their pogtrcontrolled release. Some gums
and food proteins can be used as encapsulatiorriaigtén recent years, there is an
increasing interest in using vegetable proteinsrempsulation materials due to their
renewability, biodegradability and health benefifang & Li, 2013). Emulsions,
spray-drying, films and cold-set hydrogels areriegn technologies that involve the
utilization of vegetable proteins as encapsulathaterials.

Many lipophilic bioactive ingredients, e.g., omejfatty acids, phytosterols and
carotenoids, can be encapsulated into vegetableipsostabilized emulsions. For
example, SPI- and PPI-stabilized emulsions coufécg¥ely protect conjugated
linoleic acid from oxidation during storage aimdvitro digestion (Fernandez-Avila,
Arranz, Guri, Trujillo, & Corredig, 2016). Howevethese conventional single
emulsions are not very stable under extreme camdit(e.g., after heating, ultrasonic,
high pressure, extreme pH or electrical force) (Qhien, Kong, Zhang, & Hua, 2014;
Ji, et al., 2015). Thus, multilayer emulsions diabd by vegetable proteins and other
polymers were developed. Xiang, Lyu, and Narsim{Z@16) found that, at pH 3.0,
positively-charged soy protein and negatively-ckdrgectin can form a double-layer
structure at oil-water interfaces by electrostatttraction. An oil-in-water (O/W)
emulsion stabilized by a SPI-resveratrol compleowsrd better oxidative stability (of
encapsulated molecules or oil alone) than thatilstath only by SPI, due to the
antioxidant activity of resveratrol and the compigan of SPI with resveratrol (Wan,
Wang, Wang, Yuan, & Yang, 2014).

Spray-drying is another widely used encapsulatemhnology for a variety of
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food ingredients such as flavors, lipids and caroigs. Many vegetable proteins such
as SPI (Chen, Li, & Tang, 2015), zein (Shukla & Gha, 2001), red bean isolate
proteins and mung bean isolate proteins (Fu LierCB& Tang, 2014) have been used
as encapsulation materials in spray-drying.

In order to develop multi-functional products anghprove the functional
properties of vegetable proteins, some methods bese developed such as chemical
(e.g., glycosylation, acylation and cationizatioe))zymatic (e.g., hydrolysis and
cross-linking) or physico-chemical (e.g., prehegtinmodification. Emulsions
stabilized by these modified vegetable proteinswab reduced droplet size and
viscosity. Meanwhile, powders derived from thesedified protein stabilized
emulsions also showed improved retention efficienégpersity and thermal stability
(Li, Wang, et al.,, 2015; Alla Nesterenko, Alric, M&stre, & Durrieu, 2012,
Nesterenko, Alric, Silvestre, & Durrieu, 2014; Nasinko, Alric, Violleau, Silvestre,
& Durrieu, 2014; Tang & Li, 2013; Zhang, et al.,1&). In addition, mixing several
different encapsulation materials together couldoaincrease the encapsulation
efficiency. Mixing vegetable proteins with gelatogym arabic or stevioside has been
proved to produce stable dispersions and fine sgigg powders from the stable
dispersions (Favaro-Trindade, Santana, Monterreyt®w, Trindade, & Netto,
2010; Porras-Saavedra, et al., 2015; Wan, Wangy,¥alang, & Wang, 2016). Wan et
al. (2016) found that SPI-stevioside complex cobéd rapidly absorbed onto the
surface of oil droplets, increase the nucleatida ead produce emulsions with small

droplet size. Furthermore, stevioside has a loweleaular weight than SPI, so it
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could fill the gaps between SPI molecules in therfacial layer and form a compact
interface layer, which could improve the stabitifyemulsion and thus the stability of
emulsion-encapsulated bioactive ingredients.

Compared to spray-drying, cold-set gel deliverytays are more suitable for
thermosensitive bioactive components (Lingyun ChBemondetto, & Subirade,
2006). This process consists of two distinct stéipst, preheating a protein solution
to obtain unfolded globular proteins with exposezhative group, then adding
bioactive ingredients and cross-liners (e.g., cafcisalts) (Maltais, Remondetto,
Gonzalez, & Subirade, 2005). €&an neutralize electrostatic repulsion and forth sa
bridges between protein aggregates, allowing therform a space-filling network.
Thus, this approach can achieve the encapsulafiomitaents at room temperature,
which is helpful in maintaining the chemical stépilof encapsulated heat-sensitive
bioactive compounds (Hu, et al., 2015; Maltais, Bedetto, & Subirade, 2009,

2010).

5. Conclusions

Vegetable proteins can interact with other polymerdifferent ways, depending
on their own molecular properties (e.g., moleculaight, particle size, or charge) and
interaction conditions (e.g., initial concentratiamd ratio, pH, ionic strength or
temperature). Accordingly, a variety of differertustures (e.g., double networks,
mosaic textures and cross-linked structures) cdorged to improve the mechanical,

sensory, and functional properties of food produblswadays research about the
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interaction of vegetable proteins with other bigmoérs referred to very limited
source of vegetable proteins (e.g., leguminouseprs} and mainly focused on the
simple mixtures of two different types of vegetapteteins or mixtures of vegetable
protein with polysaccharides. Furthermore, alonghwhe rapid growing of the
healthy and functional foods markets, there isrameiasingly demand for the safe,
nutritional and health-beneficial food products.efiéfore, new sources of vegetable
proteins and more complex food systems based oetalele proteins for food

industry applications are highly worth to be furtdeveloped.
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Fig. 1. The classification of vegetable proteins commarsdgd in the food industry.

Fig. 2. Structure of a sodium caseinate and soy protelatis (SC-SPI) co-stabilized emulsion

droplet (pH 6.8, distilled water) loaded with vitamd (VA) (Ji, et al., 2015).

Fig. 3. Influence of co-gelling proteins on the structuaes storage modulus (G) of collagen

matrices. Whey protein isolate and blood plasméaeprte embedded in the surface of collagen, while

whey protein isolate may interrupt the collagemiobnnections and weaken the structure; blood

plasma proteins could not increase G’ value ofagmh. Gluten led to phase separation in mixed

systems. SPI formed a mixed interwoven structuth weéllagen (Oechsle, et al., 2015).

Fig. 4. Bulk and interfacial behaviors of soy protein &elstevioside (SPI-STE) mixtures with

different stevioside concentrations at the oil/watéerface. Stevioside at low concentration (Ot¥%)v

can only bind to the gaps between protein molec@&ioside at intermediate concentration (0.25-1

wt%) can induce a partial dissociation of the préserigid structure with SPI. Stevioside at high

concentration (2 wt%) can replace SPI-STE complelxesto their smaller particle size (Wan, et al.,

2014).

Fig. 5. Possible mechanism of the formation of hierardhitiarostructure in sugar beet pectin/soy

glycinin (SBP/SG) double network gels (Hou, et 2015).

Fig. 6. Schematic of Maillard reaction induced formatidrsoy protein gels (Caillard, et al., 2010).

Fig. 7. Reaction among SPI, modified cellulose nanocry@@NC), and ethylene glycol diglycidyl

ether (EGDE). (a) SPI; (b) EGDE; (c) MCNC; (d) alirsking networks in SPI -based films (Zhang,

et al., 2016).
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Table 1

Summarize of interactions between vegetable pret@iml other polymers.

Group

I nteractions

Protein-Protein

Protein-Polysaccharide

Phase separation
Synergistic interaction
Aggregation

Miscibility
Thermodynamic
incompatibility
Complex coacervation

Main Influence Factors References

Protein sources (the structure and molecular weigkBainy, Corredig, Poysa, Woodrow, & Tosh,
of proteins ) determine the denaturation 2010; Denavi, et al., 2009; Oechsle,
temperature, dispersibility and functionality of H&aupler, Gibis, Kohlus, & Weiss, 2015
proteins.

Protein concentration affects the dispersibilitdan (Grabowska, Tekidou, Boom, & van der
texturization of proteins. Goot, 2013

The pH value and ionic strength of reaction systenfAlu’datt, Alli, & Nagadi, 2012;

affect the surface charge and solubility of pragein Bengoechea, Romero, Aguilar, Cordobés, &

and thus protein-protein interactions. Guerrero, 2010; Pizones Ruiz-Henestrosa,
Martinez, Carrera Sanchez, Rodriguez
Patino, & Pilosof, 2014

Properties of polysaccharides (e.g., charge densityChang, Li, Wang, Bi, & Adhikari, 2014,

molecular weight and branched chain) and proteinsam, Shen, Paulsen, & Corredig, 2007; Ma,

(e.g., charge density) affect the continuity, disfig Dang, & Xu, 2016; Yuan, et al., 2014

and electrostatic attractions in the mixed system.

Concentration or mixture ratio affects the (Chang, et al., 2014; Li, Yeh, & Fan, 2007,
competitive adsorption of two molecules at Wan, et al., 2014

interfaces and the dispersity of polymers in

solutions.

The pH value of reaction system affects the surfacgpada, Marczak, Tessaro, & Cardozo,
charge of proteins and thus protein-polysaccharide015; Yuan, et al., 20)4

interactions.

Salts can shield charged-sites of both protein and (Li, et al., 2009; Pires Vilela, et al., 2011;
polysaccharide molecules, and the means of addin@an, et al., 201y

salts can affect the reaction rate.




Table 2

Selected examples of structures and propertiehes formed by vegetable proteins and other polgner

Compositions Conditions Observations Contrast  Structure References
Protein-Protein
SPI-Corn zein(CZ2) Pouring the heatedMechanical properties: Tensile strength (TS) insegldbut percentage SPI film CZ layer (Cho et al., 2010
CZ solution onto a elongation at break (EBA) decreased dramatically. laminated on
dried SPI film; Barrier properties: Lower water vapor permeabiliy\VP) but higher SPI film
casting. oxygen permeability (OP).
Physical properties: Yellowness increased.
SPI/Zein + Different ratios of Mechanical properties: TS and breaking distanceeased; microwave Zein film  Phase (Wang et al.,
microwave SPI to zein (3:1, treatment could increase mechanical properties. separation 2019
2:1,1:1,1:2,1:3 Barrier and physical properties: None.
and 0:1); pH 12.0;
casting.
SPI/Gelatin Different ratios of Mechanical properties: Higher breaking forces ibraof 50S:50G Gelatin Synergistic (Denavi et al.,
SPI to gelatin and 25S:75G; similar thickness. film networks 2009
(0:100, 25:75, Barrier properties: Lower WVP.
50:50, 75:25 and  Physical properties: Yellowish colour increased.
100:0); pH 10.5;
casting.
SPI/Gelatin + MTGase was Mechanical properties: Similar thickness; TS deseeawhile EAB Gelatin Phase (Weng & Zheng,
transglutaminase added to the gelatin increased markedly in the absence of MTGase. film separation 2015
solution with or Barrier properties: WVP increased slightly (P <5).0
without SPI; Physical properties: No significant changes (PG5Qin the colour.
casting.
SPI/Collagen Collagen (2.75%) Mechanical properties: Thickness decreased sliginty TS increased. Collagen  Phase
) . . o . . (Oechsle et al.,
or Gluten/Collagen  with SPI or gluten Barrier and physical properties: None. film separation 201§
(1.25%); extrusion. (2.75%)
Protein-Polysaccharide
SPI/CMKGM Mixing CMKGM Mechanical properties: TS and EAB increased. SPIl or Synergistic (Wang et al.,
and SPI solutions; Barrier properties: OP decreased; the water adsarpgduced and the CMKGM  networks 2014
pH 8.0; casting. surface wettability improved with the increase dKKGM. film (Maillard
Physical properties: The roughness decreased hétmtrease of reaction and
CMKGM. hydrogen

bonding)




SPI/Cellulose

SPI/Starch
nanocrystals

PPI/Peanut starch

PPI/Gum Arabic

5 g of fiber: 95 g of Mechanical properties: TS and Young's modulus (YiMjeased but

SPI; pH 12;
casting.

SPIwith 0, 2, 5,
10, 20 and 40% of
SNC,; casting.

PS and PPI were
mixed at different
ratios (10:0, 8:2,
6:4, 5.5 and 0:10);

casting.

PPI: Gum Arabic

1:1; pH 8.0;
casting.

EAB decreased.

Barrier properties: Lower OP.

Physical properties: None.

Mechanical properties: TS and EAB increased butdédreased.
Barrier properties: MVP increased.

Physical properties: None.

Mechanical properties: Thickness and TS decreds®4;increased.

Barrier properties: WVP and water-vapor transmissaie (WVTR)
dropped markedly.

Physical properties: The opacity slightly elevaded colour
intensified.

Mechanical properties: TS increased but EBA deemttas

Barrier properties: MVP decreased.

Physical properties: None.

SPI film

SPI film

PS film

PPI film

Synergistic
networks
(chemical
reaction)
Phase
separation

Phase
separation

Synergistic
network
(disulfide
bonds)

(Jensen et al.,
2015

(Gonzélez &
Alvarez
Igarzabal, 201p
(Sun et al., 2013

(Li, W. Zhu et
al., 2019




Table 3

Selected examples of structures and propertiesleffgrmed by vegetable proteins and other polymers

Compositions Conditions Observations Sructure References
Protein-Protein

Pea protein/Myofibrillar 4% total protein level Storage modulus (G’) decreased as pea proteinilestedased. MTG Phase (Sun & Arntfield,
protein isolate (MPI) with or without MTG; 0.6 increased G’ and peak force values. Separation 2012

PPI/Chicken

salt-soluble proteins

(SSP)

Protein-Polysaccharide
SPC/Corn starch (CS)

SPI/Galactomannans

SPI/Gellan Gum

SPI/Xanthan gum or

Guar gum

SPI/Ribose or Sucrose

Sugar beet pectin

(SBP)/Soy glycinin

(SG)

M NacCl; pH 6.0.

Mixing SSP and PPI (0%, Water-holding capacity (WHC) increased as PPI lévaleased. Breast andPhase
2%, 2.5%, 3%, 3.5%); 0.6 thigh SSP showed the highest strength and sprisgioe addition of 2.5% Separation
M NacCl; pH 6.8. and 3.5% PPI, respectively. PPl also could incr&isalue of gels.

CS and SPC mixed at G’ value decreased and the continuous phase chdrae®&PC to CS with Phase
ratios of 0, 0.2, 0.3, 0.4, increasing CS level. Separation
0.6, 0.8, and 1.

Mixing SPI (6-10%) andGalactomannans with less branching could decréasgelling temperature Phase

galactomannans and increase G’ value more significantly. Separation
(0.2%-0.5%); pH 7.0.
Mixtures contained 8.0 Fracture strain and stress of the mixed gels wigitgeh than that of gellan Phase

wt.% SPI and 0.3 wt.%
gellan gum; 200 mM
KCI; 30 U/g SPI
MTGase.
Mixing SPI (4%, 6% and The apparent viscosity, and G’ and G” values @f thixed gels increased Phase
8%) with XG (0- 0.2%)  with the increase in the gum (XG, GG) concentration Separation
or GG (0-0.3%).
Mixing
MTGase-incubated or

gum gels but lower than that of SPI gels; trendvimung's modulus was theSeparation
opposite. The mixed gels were firmer with increggiellan gum level
(0-0.4%).

Mixed gels produced by pre-cross-linked SPI shohiger G’ values than Synergistic
those produced by non-pre-cross-linked SPI. SRiselgels showed lower networks

non- MTGase-incubated G’ values than SPI-sucrose gels. (Maillard
SPI (0.1 g/mL) with 2% reaction)
ribose or 2% sucrose.

Mixing SG with SBP The double network gel formed by SG-SBP with laedzed higher G’ Phase

with or without laccase (4 value and mechanical toughness (fracture strairstteds) than the single Separation
U/g SBP); 20 U/g SG network gel formed by SG-SBP without laccase.
MTGase; pH 7.0.

(Sun et al., 2012

(Li et al., 2007
(Monteiro et al.,
2013

(Guo et al., 2014

(Chang et al.,
2019

(Gan, Latiff, et al.,
2009

(Hou et al., 201p
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Fig. 1. The classification of vegetable proteins commardgd in the food industry.
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Fig. 2. Structure of a sodium caseinate and soy proteiatis (SC-SPI) co-stabilized emulsion droplet (pid, 6
distilled water) loaded with vitamin A (VA) (Ji et., 2015).
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Fig. 3. Influence of co-gelling proteins on the structuessl storage modulus (G’) of collagen matrices. Whe
protein isolate and blood plasma proteins embedddtie surface of collagen, while whey protein &el may
interrupt the collagen interconnections and weakenstructure; blood plasma proteins could notdase G’ value
of collagen. Gluten led to phase separation in thisgstems. SPI formed a mixed interwoven structuité
collagen (Oechsle et al., 2015).
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of the protein’s rigid structure with SPI. Stevidsiat high concentration (2 wt%) can replace SHE-8dmplexes
due to their smaller particle size (Wan et al., 201
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Fig. 6. Schematic of Maillard reaction induced formatidrsoy protein gels (Caillard et al., 2010).
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Highlights

» Many factors can affect the interaction of vepttgroteins with food macromolecules.

* The structure-function relationship of vegetgteteins based biopolymers or materials is
discussed.

* Understanding structures of complex food systeomgaining vegetable proteins has an
important implication for applications of vegetapl®teins.



