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Pro-Inflammatory Flagellin Proteins of Prevalent Motile
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Abstract

Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota
of healthy adults. These flagellate species contribute ‘‘cell motility’’ category genes to the intestinal microbiome and
flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of
six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus
organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species
harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from
E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were
almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell
lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be
pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the b- and c-
proteobacteria. Many fliC genes were deduced to be under the control of s28. The relative abundance of the target
Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the
flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current
depth of coverage used for metagenomic sequencing (3.13–4.79 Gb total sequence in our study) insufficiently captures the
functional diversity of genomes present at low (#1%) relative abundance. E. rectale and R. inulinivorans thus appear to
synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing,
improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in
silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.
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Introduction

The mammalian colon is one of the most densely populated

microbial ecosystems known [1]. The microorganisms that occupy

this niche, which are collectively known as the colonic microbiota,

can influence the health and well-being of the host by affecting

physiological and immune functions [2–7]. In particular, microbial

metabolites, structural molecules and released cellular components

are potential antigens and microbe-associated molecular patterns

(MAMPs) that may stimulate the immune system [8]. The

collection of genomes from the members of a microbial

community is known as a microbiome. The genes and functions

encoded by the intestinal microbiome therefore govern which

bacterial and food-derived immunomodulatory molecules are

likely to be present in the intestine.

The genomes of bacteria from many different lineages encode

genes for flagellum assembly, and the distribution of these genes

among bacteria has been considered previously [9,10]. Many

genes are required for the synthesis of a functional flagellum

[10,11]. Flagellin is the major structural protein in the flagellar

filaments of motile bacteria [12]. Flagellins and the genes encoding

them are variably abundant in the intestines [13–15] and the ‘‘cell

motility’’ category has been reported as a low-abundance

microbial function in this niche [16,17]. Motile bacteria bear

significant immunostimulatory potential because humans and

other animals harbor cell-surface and cytoplasmic pattern

recognition receptors which respond to extra- and intra- cellular

flagellin molecules respectively [18–20].

Particular motile Eubacterium and Roseburia species are among the

most prevalent bacterial species in the human intestinal microbiota
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[16,21–24]. These commensals are also notable as producers of

the short chain fatty acid, butyrate, in the gut [25,26]. To date, the

genetic basis for flagellum biogenesis among these Eubacterium and

Roseburia species has not been formally characterized, nor has the

potential immune response to their flagellin proteins been

established. However, it is known that heat-killed Eubacterium

rectale cells can induce nuclear factor-kB (NF-kB) by signalling

through TLR2 and TLR5 [13]. Conditioned media from Roseburia

cultures significantly stimulated and enhanced NF-kB activation in

HT-29 and Caco-2 cells, while conditioned medium from E. rectale

had an inhibitory effect on NF-kB activation [27]. The authors of

this study attributed the immunomodulatory properties of these

strains to flagellin and also to butyrate production, (which was

shown to be positively correlated with NF-kB activity in TNF-a
treated cell lines) [27]. Furthermore, flagellin proteins from

members of Clostridium cluster XIV, which includes some of the

species examined here, have been circumstantially implicated in

the development of Crohn’s disease and murine colitis [28,29].

The genera Roseburia and Eubacterium are members of the

phylum Firmicutes [30]. While the genus Eubacterium is large and

heterogeneous, the genus Roseburia is small and homogeneous

[31,32]. The reclassification of Eubacterium species to other genera

is quite common [33]. Indeed, E. rectale could be more

appropriately classified as a Roseburia species on the basis of 16S

rRNA gene analyses and phenotypic properties [31], but to date its

classification and nomenclature have not been revised. Each of the

Roseburia species isolated has been described as either flagellate or

motile [31,34]. Not all Eubacterium species are motile. Species for

which motility has been reported include E. acidaminophilum, E.

cellulosolvens, E. combesii, E. desmolans, E. eligens, E. fissicatena, E.

moniliforrme, E. multiforme, E. plautii, E. plexicaudatum, E. rectale, E. yurii

subsp. yurii, E. yurii subsp. margaretiae and E. yurii subsp. schtitka [35]

and E. siraeum [35].

In this study, we describe the genetic basis for flagellum

biogenesis in six of the motile Eubacterium and Roseburia species

commonly isolated from the human gastrointestinal (GI) tract. We

performed genome annotation and comparative genomics, focus-

ing on the motility loci within the genomes of these species. The

pro-inflammatory potential of their flagellin proteins was predicted

in silico, and was also experimentally tested for flagellin proteins

isolated from E. rectale and R. inulinivorans strains. We also aimed to

determine if the present depth of sequencing used in the

preparation of metagenome databases is sufficient to detect

specific target genes from particular species. We focused on the

detection of flagellum biogenesis genes from selected Eubacterium

and Roseburia species in the datasets from an intestinal metage-

nomics project (ELDERMET) [34].

Results

Improvement of genome annotation and comparative
genomics of Eubacterium and Roseburia motility loci

Initially the annotation of the genetic locus responsible for

motility in each of these genomes was inspected, verified and

improved as required (given that these annotations had previously

been performed by automated means only). Open reading frames

(ORFs) that had not been detected by the automated annotation

system were included in our improved annotation, while genes

with potential frame-shifts or contig breaks were identified.

Frameshifts were corrected in the fliJ gene (RO-

SEINA2194_00946–00947) and the flagellar operon protein

(FOP) (ROSEINA2194_00953–00954) genes in R. inulinivorans,

fliH (ROSINTL182_07396–07395) in R. intestinalis and fliF (locus

tag not assigned) in R. hominis. As these strains were shown to be

motile, it is likely that these frameshifts are technical artefacts

arising from sequencing or assembly errors. The primary motility

locus was split over two contigs in the R. intestinalis genome

assembly. The contig break occurred in the flhA gene.

The gene content and genetic organization of the largest

motility loci of six Eubacterium and Roseburia species were then

compared (Figure 1, Table S1). Three motility loci, flgB-fliA, flgM-

flgN/fliC and mbl-flgJ were identified in E. rectale, E. eligens and the

three Roseburia genomes examined. The flgB-fliA locus of the

Lachnospiraceae family contained at least 34 contiguous genes and

spanned 30.5–31.5 kb (Figure 1, panel A, Table S1). The

corresponding motility locus of E. siraeum V10Sc8a, a member

species of the family Ruminococcaceae was smaller (,26.3 kb) and

included fewer genes (29) overall with a slightly different

arrangement. Additionally, in the E. siraeum V10Sc8a genome,

flgF and flgG were located within the flgB-fliA motility locus

(Figure 1) and the genetic arrangement mbl-flgF-flgG-flgJ was not

identified.

The arrangement of genes from flgB to flgE is generally well

conserved in the Eubacterium and Roseburia genomes studied

(Figure 1, panel A). Except for the E. rectale and R. hominis

genomes, a flbD gene was present immediately downstream of flgE

in each genome. The motAB gene pair was followed by fliLMY in

each genome except the E. siraeum genome. The arrangement of

genes between fliO and pilZ was conserved in E. rectale, E. eligens

and all of the Roseburia genomes examined. This locus was

interrupted by a fliA-flgF-flgG gene translocation in E. siraeum. A

cheY-like chemotaxis gene immediately preceded the fliO-pilZ gene

cluster in each genome except E rectale A1-86.

A set of five contiguous chemotaxis genes organized as

cheBAWCD were located immediately downstream of pilZ in E.

rectale, E. eligens and all of the Roseburia genomes studied. The

equivalent E. siraeum V10Sc8a motility locus only contained the

last two of these five chemotaxis genes. The fliA gene was the most

distal gene at this locus for all species of the family Lachnospiraceae

examined. In the E. siraeum genome, cheD is the most distal gene of

this motility cluster and fliA is located between flhA and flgF.

A single flgM-flgN/fliC motility locus occurs in four of the six

genomes studied (Figure 1, panel C; Table S1). In R. inulinivorans

A2-194 and E. rectale A1-86, this locus is divided into two separate

gene clusters, the flaG-flgN/fliC gene cluster and the flgM-csrA gene

cluster. Nevertheless, the genetic organization of each of these

clusters is consistent with the organization of the single locus in the

other genomes. Noteworthy features include the presence of two

consecutive non-identical copies of flgK in five out of six genomes

examined, the inclusion of a predicted transposase gene between

fliD and fliS in R. intestinalis L1-82 and the absence of the flagellin

gene (fliC) from this locus in E. rectale A1-86 and E. siraeum

V10Sc8a. The E. rectale M104/1 genome also lacks a fliC gene at

this locus (FP929043.1; ERE_13960–ERE_13910). Neither the

separation of the E. rectale and R. inulinivorans flgM-csrA and flaG-

flgN/fliC gene clusters from each other, nor the absence of flagellin

genes from these genomic loci in E. rectale and E. siraeum were due

to breaks in the respective draft genome assemblies.

A four-gene motility operon was also present in four of these

genomes (Figure 1, panel B). This operon included homologs of

flgF and flgG, two genes which encode structural proteins of the

flagellar rod and which were flanked by an MreB-like gene (mbl) to

the 59 end, and flgJ, a muramidase, to the 39 end. This operon was

absent from the E. siraeum genome, because flgF and flgG were

within the largest of the motility loci beside the other genes

encoding structural components of the basal body. The E. rectale

genome included a flgF-flgG-flgJ arrangement, but lacked an mbl

homolog at this locus.

Flagellin Proteins in the Intestinal Microbiome
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The extent of sequence conservation across these motility loci

was examined with Artemis Comparison Tool (ACT) plots. The

motility loci of E. rectale, E. eligens and the three Roseburia species

were similar. Although the genetic organization of the E. siraeum

motility loci was comparable to those of the other species studied,

it was the most distinct, reflecting the different phylogenetic

grouping of this species. The primary sequence of this region was

less well conserved, illustrated by the lower level of sequence

relatedness visible in Figure S1.

Isolation, size determination and amino-terminal
sequencing of the flagellin proteins of E. rectale and R.
inulinivorans

Separation of the flagellin proteins recovered from E. rectale A1-

86 and M104/1 by SDS-PAGE revealed a single, major protein

band at ,50 kDa. In contrast, three major protein bands ranging

in size from ,28 kDa to ,50 kDa were identified in the R.

inulinivorans A2-194 flagellin preparation (Figure 2). The first ten

residues at the amino-terminus of these candidate flagellin protein

bands from E. rectale A1-86 and R. inulinivorans A2-194 (four bands

in total) were sequenced and were found to be almost identical

(Table S2). These sequences were compared to the translated fliC

sequences from each genome.

Five fliC genes were annotated in the E. rectale A1-86 genome

and the predicted molecular masses of these flagellin proteins were

similar, ranging from ,47 to ,53 kDa (Table 1). Five proteins of

such similar molecular weights would not have been separated

under the SDS-PAGE conditions used here. The first ten residues

of four of these predicted flagellin proteins are identical, and

matched the chemically determined amino-terminal sequence of

Figure 1. Gene order plot of major motility gene loci in Eubacterium and Roseburia genomes. Genes are represented by labelled arrows.
Genes that are found consecutively at a single locus (A–C) are indicated by a horizontal line. The distances between the genes at these loci were
modified in this schematic diagram so that homologous genes from different genomes could be aligned. Hypothetical genes are indicated by gray
arrows with? symbols. A physical gap in the R. intestinalis genome assembly occurs in the flhA gene (Panel A, light red). A transposase gene (Tnp) is
present between fliD and fliS in R. intestinalis (Panel C). The flaG-flgN/fliC gene cluster is not located immediately downstream of the flgM-csrA gene
cluster in R. inulinivorans and E. rectale (Panel C). Colours were arbitrarily assigned to assist visual interpretation of gene rearrangements.
doi:10.1371/journal.pone.0068919.g001

Figure 2. Flagellin proteins from E. rectale and R. inulinivorans
separated on Coomassie stained SDS-PAGE gels. Arrows indicate
the proteins for which amino terminal sequence data is available. The
broad-range, pre-stained protein marker used (P7708S) was purchased
from New England Biolabs.
doi:10.1371/journal.pone.0068919.g002

Flagellin Proteins in the Intestinal Microbiome
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the ,50 kDa protein band exactly. The flagellin protein encoded

by the coding DNA sequence (CDS) EUR_28730, is similar in size

(,50.78 kDa), but only four of its amino terminal residues were

conserved with respect to the other proteins.

Four fliC genes were annotated in the genome of E. rectale

M104/1. The estimated sizes of the translated products of CDSs

ERE_14590 (,48 kDa), ERE_14720 (,53 kDa) and ERE_01930

(,50 kDa) are consistent with the size of the major protein

product at ,50 kDa on the SDS-PAGE gel. The CDS

ERE_12290 is proximally truncated by a break in the draft

genome assembly, and was thus selectively excluded from further

analyses.

Six fliC genes were annotated in the R. inulinivorans A2-194

genome. The predicted molecular masses of these candidate

flagellin proteins ranged from ,29 kDa to ,53 kDa (Table 1). It

appears that the translated product of CDS RO-

SEINA2194_00384 corresponds to the protein product at

,29 kDa in the SDS-PAGE gel. The products of CDSs

ROSEINA2194_00549 and ROSEINA2194_01473 have predict-

ed molecular masses of ,42 kDa. These may correspond to the

protein product migrating at ,43 kDa on the SDS-PAGE gel.

Indeed, the sequence of the flagellin product of CDS RO-

SEINA2194_00549 corresponds to this protein band, while the

product of CDS ROSEINA2194_01473 differs only at residue 7.

Flagellin products of CDSs ROSEINA2194_01954, RO-

SEINA2194_02155 and ROSEINA2194_00754 have predicted

molecular masses of ,47 ,49 and ,50 kDa respectively, and they

may be present in the protein band of ,50 kDa on the SDS-

PAGE gel.

In silico flagellin promoter analysis
The nucleotide sequences upstream of the fliC genes in each

genome of interest were inspected to identify potential promoter

sequences and to infer which sigma factors might direct

transcription from each promoter (Table 1). Promoters under

the direction of either s28 or s43 were identified by comparison to

the consensus sequences identified for these promoters in

Butyrivibrio fibrisolvens [36], and to the bacterial consensus sequences

for promoters controlled by these sigma factors. B. fibrisolvens

promoter sequences were selected as reference sequences for

promoter analysis, because on the basis of 16S rRNA gene

relatedness, this species is closely related to the Roseburia group

[22].

The outcomes of this promoter analysis are reported with

reference to the clades in the phylogenetic tree based on flagellin

proteins, shown in Figure S2. CDSs corresponding to the flagellins

in clades A, D and E were under the presumptive control of s28,

with the exception of CDSs ROSINTL182_05608 and EU-

BELI_00264 which were apparently also controlled by s43. Both

s28 and s43 consensus sequences were identified for the CDSs

encoding the E. siraeum flagellin proteins (clade B), but the s28

sequences were closer than the s43 sequences to the predicted start

codons of these CDSs. Potential promoters could not be identified

for every CDS with a corresponding protein in clade F. The CDSs

for which promoters could be identified were mostly under the

control of s43.

The inferred s28 and s43 promoters varied considerably in their

distance from the predicted CDS start codons, (s28: range, 47–

375 bp; mean = 139 bp. s43: range, 0–258 bp; mean = 108 bp).

The unconventional spacing between the predicted 235 and 210

recognition sequences, and the lack of absolute conservation in the

predicted recognition sequences, suggests that if the predicted s28

promoters of ROSEINA2194_01954 and ROSEINA2194_02155

are functional, transcription from these promoters could be

suboptimal. This could explain the variable abundance of flagellin

proteins in R. inulinivorans cultures (see later section). Promoter

analysis in E. rectale M104/1 was hindered because the regions

upstream of the target CDSs were often disrupted by gaps in the

draft genome assembly. No potential s28 or s43 promoter

sequences were identified upstream of fliC CDS EUBELI_00422,

ROSINTL182_09568 or ROSINTL182_08635.

In silico and in vitro analysis of the pro-inflammatory
potential of flagellin proteins from Eubacterium and
Roseburia species

To predict if the Eubacterium and Roseburia flagellin proteins were

likely to be pro-inflammatory, these proteins were aligned to a

consensus sequence (11 residues long) derived from a region of the

pro-inflammatory flagellins of the b- and c- proteobacteria

[37,38]. Residues L87, R89, L93 and Q96 of the Eubacterium

and Roseburia flagellin proteins inspected here were absolutely

conserved with respect to the consensus sequence (Figure 3). These

residues are critical for TLR5 signalling and flagellin polymeriza-

tion [37,38]. Another residue, Q88, that is critical for signalling

and polymerisation, is also completely conserved in each of the

Eubacterium and Roseburia sequences with respect to the b- and c-

proteobacteria flagellin consensus sequence, except for the

translated products of CDSs ROSINTL182_05608 and

RHOM_00820, in which a Q88D substitution is evident. On

the basis of their overall similarity to the consensus sequence, these

proteins were predicted to have pro-inflammatory properties.

Two human intestinal epithelial cell lines (IECs), T84 and HT-

29, were exposed to the flagellin proteins isolated from R.

inulinivorans A2-194 and E. rectale strains A1-86 and M104/1. Both

of these cell lines are suitable for the measurement of IL-8

secretion in response to flagellin preparations, and have been used

for this purpose previously [39]. Increased IL-8 secretion by the

IECs in response to these flagellin preparations was taken as

evidence of a pro-inflammatory response. Significantly more IL-8

was secreted from T84 cells and from HT-29 cells treated with

each of the Eubacterium and Roseburia flagellin preparations than

from the untreated control cells (one-tailed Mann-Whitney U test,

P#0.01, n = 5; n = 6 respectively) (Figure 4).

Identification of selected Eubacterium and Roseburia
species in 27 individual metagenomes

MetaPhlAn [40] was used to determine the relative abundance

of 5 of the 6 species of interest in a metagenome database derived

from the faecal microbiotas of 27 elderly individuals [41]. The

relative abundance of R. hominis was not considered using this

method because its genome was not included as part of the

Integrated Microbial Genomes system, upon which the MetaPh-

lAn clade-specific marker database was based [40]. Metagenomes

EM039 and EM173 were excluded from the MetaPhlAn analysis.

These two metagenomes were prepared using alternative sequenc-

ing and assembly strategies, which meant that the MetaPhlAn

results generated from these two metagenomes were not directly

comparable to those from the other 25 metagenomes [41].

According to MetaPhlAn’s read-based classification, 23 of the

25 metagenomes harboured at least one of the five species of

interest at a relative abundance $0.5% (Table S3). Twenty of the

25 metagenomes harbored at least one species of interest at a

relative abundance of $1%. The relative abundances of each

species varied considerably across the metagenomes, and the range

of E. siraeum relative abundance in particular, was quite large

(0.01% (EM191) –31.59% (EM305)). Five of the individuals

Flagellin Proteins in the Intestinal Microbiome
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harbored this species at a relative abundance .3%. Eight people

harboured E. siraeum at a predicted relative abundance of #0.1%.

Significant differences were found in relative abundance for E.

rectale (Kruskal-Wallis test, H = 10.095, 2 df, P,0.01) and R.

intestinalis (Kruskal-Wallis test, H = 10.263, 2 df, P,0.01) in the

community versus long-stay settings, with significantly higher

relative abundances (P,0.05) of these species being recorded in

community dwelling individuals, (E. rectale, 0.92% community

versus 0.045% long-stay; R. intestinalis, 0.65% community versus

0.095% long-stay, median values). The relative abundance values

of E. rectale were also significantly higher for individuals from the

rehabilitation setting than from long-stay, (E. rectale, 1.075%

rehabilitation versus 0.045% long-stay, median values). Relative

abundance values of R. intestinalis were significantly greater in

individuals from the community than in rehabilitation (R.

intestinalis 0.65% community versus 0.11% rehabilitation, median

values). As E. rectale and R. intestinalis are important butyrate-

producing species, these observations are consistent with the

findings of a previous study which determined that gene counts for

butyrate, acetate and propionate production were significantly

greater in the metagenomes representing individuals from the

community and rehabilitation settings than from those in long-stay

[34]. The relative abundances of E. eligens, E. siraeum and R.

intestinalis that were predicted by MetaPhlAn were concordant with

the relative abundances of these species that were previously

predicted in this cohort by analysis of sequencing reads from the

V4 region of the bacterial 16S rRNA gene [21]. It was not possible

to deduce the relative abundances of the other target species by

Figure 3. Multiple alignment of the consensus region of the
flagellin proteins of b and c proteobacteria that is recognized
via TLR5 with the corresponding regions of predicted flagellin
proteins from the Roseburia and Eubacterium species studied.
Residues that are critical for TLR5 recognition are indicated with an
asterisk. Alignment was performed with ClustalW in BioEdit. Flagellin
proteins from the various species are labelled with a locus tag. A gap in
the draft genome assembly meant that positional information could not
be included for the sequence fragment of CDS ERE_12290 in this
alignment. ROSINTL182 = R. intestinalis L1-82, RHOM = R. hominis A2-
183, ROSEINA2194 = R. inulinivorans A2-194, EUBELI = E. eligens
ATCC27750, ES1 = E. siraeum V10Sc8a, EUBSIR = E. siraeum DSM15702,
EUS = E. siraeum 70/3, EUR = E. rectale A1-86, ERE = E. rectale M104/1.
doi:10.1371/journal.pone.0068919.g003

Figure 4. IL-8 secretion from T84 cells (A) and HT-29 cells (B) in
response to flagellin preparations from E. rectale and R.
inulinivorans. Concentrations of IL-8 as determined by ELISA were
converted to proportions (as described in materials and methods) for
statistical analysis. Boxplots show the median value and interquartile
range. Outliers are indicated by a black dot. Horizontal bars with the **
symbol indicate that significantly more IL-8 was secreted from the cells
treated with flagellin preparations than from the untreated control cells,
P-value ,0.01, one-tailed Mann-Whitney U test, n = 5 for T84 cells, n = 6
for HT-29 cells.
doi:10.1371/journal.pone.0068919.g004
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this 16S rRNA gene analysis because the V4 region did not offer

sufficient resolution at a species level.

The 16S rRNA gene based, strict species abundance values

were used however, to test for an association with TNF-a levels in

these elderly individuals using Spearman’s rank correlation. A

significant association of species abundance and TNF-a was

confirmed only for E. siraeum, rho value = 20.54, P-value = 0.007,

(P-value = 0.034 after adjustment for multiple testing), although

five species of interest were tested. These results were replicated

when the MetaPhlAn-derived relative abundance data rather than

the 16S rRNA gene based relative abundance data were used in

the analysis. Serum TNF-a levels were lower in individuals that

harbored E. siraeum at greater than 0.15% (strict species 16S rRNA

gene analysis) or 0.25% (MetaPhlAn prediction) relative abun-

dance, depending on the relative abundance measure used

(Figure S3).

Recruitment plots of the whole genome sequences of the species

of interest aligned to each of the individual metagenomes indicated

that the genomes of species present at less than 1% relative

abundance were incompletely represented in the metagenomes

(data not shown). For some species present at more than 1%

relative abundance, discrete genomic regions were apparently not

represented in the database. These could represent strain-specific

hypervariable sequences, genomic regions that were lost from the

non-laboratory strains of these species, or they could represent

genomic regions that were excluded from the metagenome

assembly. The sequencing coverage for each genome of interest

was calculated as a function of metagenome sequencing depth,

average target genome size and the predicted relative abundance.

The species of interest were often represented at less than 10 fold

coverage in these metagenomes (Table S4). This level of genome

coverage would probably be insufficient to represent the genomes

of interest completely [21,42,43].

Identification of Eubacterium and Roseburia motility
genes in the faecal metagenomes of 27 elderly
individuals

The detection of motility CDSs from raw reads was a function

of target CDS length and species relative abundance (Figure S4).

The number of mapped reads per CDS was normalized to account

for sequencing depth differences in each metagenome (see

Materials and Methods). The number of raw reads that were

mapped to each target CDS increased with both CDS length and

the relative abundance of the species of interest in each

metagenome. Thus, long CDSs could be detected at lower species

relative abundances than short CDSs (Figure S4).

In general, at a species relative abundance of ,0.1% or greater,

,10 (Log101) reads (normalized value) were mapped to most of

the target genes from each species (Figure S4), and the target DNA

sequence was considered as ‘‘present’’ in the sequenced metagen-

omes. At species relative abundance values greater than or equal

to ,0.4%, more than ,32 reads (Log101.5) (normalized value)

mapped to each target CDS, strongly suggesting that the target

DNA sequences were present in the database. In general,

homology based methods could identify target genes from

assembled metagenomes only when the larger of these species

abundance thresholds was exceeded (Table S5). However, motility

CDSs were not always detected from raw read databases when a

species occurred at a relative abundance $0.4%. For example, the

species R. inulinivorans was estimated at 1.41% relative abundance

in EM251 and the corresponding heat-plot suggests that many of

the unassembled reads from this metagenome mapped to the

target motility CDSs (Figure S4). However, no genes of the flgB-

fliA motility locus were detected in the assembled metagenome

database for this individual by either the homology and annotation

or recruitment plot methods (Table S5, Data not shown).

Similarly, metagenome EM326 appeared to harbor a complete

set of motility genes for E. eligens, a species which occurred at

1.54% relative abundance in this metagenome (Figure S4).

However, a recruitment plot indicated that few genes at the flgB-

fliA motility locus of this species were present in the assembled

EM326 metagenome (Data not shown).

The heat-plots also show that the genomes of interest were

sometimes incompletely represented by the raw unassembled

reads. For example, zero or very few reads mapped to the E. rectale

flgB-fliA motility locus in metagenomes EM148, EM175, EM205

and EM232, even though E. rectale was determined to occur at

high relative abundances (.0.9%) in these metagenomes. Simi-

larly, target E. eligens motility genes were non-uniformly detected in

the metagenomes examined, even when this species occurred at

high (.1%) relative abundance.

Homology searches and gene context information were used to

determine if motility genes of the flgB-fliA and flaG-flgN/fliC

motility loci from the species of interest could be identified from

assembled metagenomes. At least some of these Eubacterium and

Roseburia motility genes of interest from the flgB-fliA or flaG-flgN/

fliC motility loci were identified in 23 of the 27 assembled

metagenomes (Table S5). E. siraeum motility CDSs were identified

in 11 of these 23 metagenomes. Motility CDSs from two or more

of the target species were detected in 11 of these 23 metagenomes.

No single metagenome appeared to harbor complete motility gene

sets for all the bacterial species (Table S5).

There was overall correspondence in the detection of E. siraeum,

R. intestinalis and R. inulinivorans motility genes from raw and

assembled reads (Figure S4, Table S5), though target motility

CDSs could be detected at lower species relative abundances when

using raw reads compared to when using assembled metagenomes

according to the search criteria used. Our inability to detect the

motility genes of species that are apparently present in the

metagenome database could be a consequence of the incomplete

representation of the genome of interest in the metagenome

database arising from a non-uniform distribution of sequencing

coverage across a target genome, DNA degradation prior to

metagenome library sequencing, or the loss or divergence of these

regions in intestinal strains of these species.

To evaluate the overall abundance of cell motility genes in these

assembled metagenomes, the number of ‘‘cell motility’’ clusters of

orthologous groups (COG) (category N) associated with each

metagenome was investigated (Table S6). This category includes

96 individual COGs which specify functions involved in flagellum

biogenesis, chemotaxis and pilus assembly (Table S7). [44]. The

number of ‘‘cell motility’’ COGs represented by each assembled

metagenome varied considerably, ranging from 2 COGs (EM227)

to 19 COGs (EM283). Accordingly, the proportion of COGs

assigned to this functional category varied across the metagen-

omes, and ranged from 0.13% (EM227) to 0.87% (EM205,

EM326) of total COGs assigned to any category per metagenome.

Thus, the function of ‘‘cell motility’’ was not abundantly encoded

in any of these assembled metagenomes.

Identification of Eubacterium, Roseburia flagellin genes
and proteins in the assembled faecal metagenomes of 27
elderly individuals

The presence of flagellin proteins in each of the 27

metagenomes was evaluated with fragment recruitment plots

(Figure S5) and also by BLAST searches. The recruitment plots

revealed that the flagellin proteins of the species of interest were

present in 8 of the 27 metagenomes. Two of the four full-length R.
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intestinalis flagellins (ROSINTL182_05608 and RO-

SINTL182_07256) were only represented in metagenome

EM268. Of the six R. inulinivorans flagellins, only the product of

fliC CDS ROSEINA2194_00754 was identified, and was repre-

sented in two metagenomes, EM268 and EM175. Partial matches

to R. inulinivorans flagellin proteins encoded by RO-

SEINA2194_00754 and ROSEINA2194_01954 were identified

in metagenome EM173.

The protein product of E. rectale CDS ERE_01930 was the only

E. rectale flagellin represented in 5 metagenomes (EM039, EM205,

EM251, EM268, EM219). The protein encoded by CDS

ERE_01930 is 99% similar to EUR_28730, and would explain

why a non-identical, but highly similar homolog of EUR_28730

occurs in every metagenome that also encodes an identical match

to ERE_01930. The E. siraeum 70/3 flagellin protein encoded by

CDS EUS_23890 was present only in metagenome EM039.

Homologs of this flagellin which are 74% and 88% identical to

EUS_23890 respectively from other E. siraeum strains were not

identified in any of the metagenomes examined. However, a

protein similar to the E. siraeum flagellin encoded by CDS

ES1_07000 was identified in metagenome EM176. E. eligens

flagellin proteins were not identified in any of the metagenomes by

this method. Recruitment plots could not be constructed for

metagenomes EM208, EM227, EM238 or EM275 because no

informative alignment data were returned by the analysis,

indicating that these flagellin proteins were not represented in

the recruitment plots above the thresholds used (which is

consistent with results presented above). When a flagellin protein

of interest was detected at 100% similarity by the recruitment plot

method, the other flagellin proteins of this species were not also

detected. Filtered tBLASTn searches ($90% minimum identity,

E-value #1.061028, $250 residues long) suggested that Eubacte-

rium and Roseburia flagellins were represented in 8 metagenomes

(EM039, EM175, EM204, EM205, EM209, EM219, EM351 and

EM268). EM268 harbored sequences which aligned to five

flagellins (ROSINTL182_07256, ROSINTL182_05608, RO-

SINTL182_05247, ROSEINA2194_00754 and one sequence

that aligned to both ERE_01930 and EUR_28730). The

equivalent E. rectale flagellin homologs from two different strains

(ERE_01930 and EUR_28730) aligned to sequences in 5

metagenomes, (EM039, EM205, EM219, EM251, EM268). The

E. siraeum flagellin EUS_23890 aligned only to EM039. Flagellin

proteins ROSINTL182_05247, ROSEINA2194_00384 and RO-

SEINA2194_00754 aligned to metagenomes EM209, EM204 and

EM175 respectively. Flagellins ROSEINA2194_00754, RO-

SINTL182_05608, ROSINTL182_07256 and RO-

SINTL182_05247 also aligned to EM268 under the thresholds

used.

Sequences that could be assigned to COG1344, which

represents ‘‘flagellin and related hook-associated proteins’’, were

present in 23 of the 27 assembled metagenomes (Table S6).

Because this analysis was performed on assembled metagenomes,

it only indicates the presence or absence of the target COGs in the

metagenome databases, and does not provide the overall

abundance of particular COGs. Metagenomes EM148, EM204,

EM227 and EM308 did not harbor any sequences that could be

assigned to this COG category. This automated functional analysis

therefore suggests that ‘‘flagellin and related hook-associated

proteins’’ are variably represented in these metagenome databases.

In the gut, the genes encoding flagellin are unevenly distributed

among the various lineages of intestinal bacteria. When flagellin

proteins from either Bacillus subtilis (NP_391416.1) or Salmonella

enterica subsp. enterica serovar Typhimurium (NP_460912.1) were used

as BLASTp queries to search a collection of publically available

human gut bacterial genomes [16] for flagellin orthologs, only

species of the genera Anaerobaculum, Anaerotruncus, Butyrivibrio,

Citrobacter, Clostridium*, Enterobacter, Escherichia, Eubacterium*, Helico-

bacter, Listeria, Roseburia, Providencia, yielded positive matches

according to the threshold values used to define orthologs (at

least 30% identity over at least 80% of the query length). (Not all

target species of the genera marked with an asterisk harbored a

flagellin ortholog).

Discussion

Due to their production of flagella, the motile Eubacterium and

Roseburia species have considerable immunostimulatory potential.

While motility may be a colonization factor for enteric Roseburia

species [45,46], the expression of flagellin proteins that are

recognized by human TLR5 nevertheless confers a pro-inflam-

matory capacity upon these species [29]. By in silico analysis, the

flagellin proteins of the Eubacterium and Roseburia species studied

here were all predicted to be pro-inflammatory, and this pro-

inflammatory capacity was experimentally supported for the

flagellin proteins isolated from strains of E. rectale and R.

inulinivorans. These findings are consistent with those of previous

studies, which demonstrated that whole cells and conditioned

media from species of this phylogenetic cluster could activate NF-

kB or expression from an NF-kB reporter construct [13,27].

Although NF-kB is often activated in response to pathogenic

infections, its activation is not necessarily undesirable, and the pro-

inflammatory flagellin proteins characterized here could contrib-

ute favourably to gut health by promoting intestinal epithelial

homeostasis and by preventing cell-death and disease [2,47,48].

The flagellum biogenesis pathway in bacteria is hierarchically

regulated. The basal-body and hook are synthesized before the

filament is assembled [49,50]. Specific intermediate stages in the

flagellum assembly pathway serve as checkpoints which coordinate

the expression of flagellum biogenesis genes [50]. Thus, the

arrangement of genes in operons and/or transcriptional units

which reflect the order of their temporal expression is a common

feature of bacterial flagellar systems which contributes to the

efficient regulation of flagellum biogenesis [51,52]. The genetic

organization of motility genes in the Eubacterium and Roseburia

genomes was consistent with that found in other motile species of

the phylum Firmicutes [10]. Gene order is known to become less

conserved with increasing genetic distance between species [53].

Consistent with this, the genetic organization of the major motility

loci were very similar among the Lachnospiraceae genomes

investigated, but the E. siraeum motility locus was quite different

to the others at a sequence level and with respect to gene content,

reflecting its phylogenetic positioning in Ruminococcaceae.

The Eubacterium and Roseburia motility genes were found at

various loci throughout each genome, as is the case with several

Clostridium and Bacillus species. The genes in the largest of the

Eubacterium and Roseburia motility loci encode the structural and

regulatory components of the basal-body and hook. These are

expected to be transcribed early in the flagellum biogenesis

pathway to anchor the flagellum in the cell membrane. The

organization of the genes for the structural, chaperone and

regulatory functions involved in flagellar filament formation at

another motility locus (flgM-flgN/fliC) may enable the efficient

regulation and timely expression of these genes. In support of this

hypothesis, a similar gene arrangement occurs in a number of

other bacterial lineages [54].

In four of the genomes studied, two genes encoding structural

rod proteins, flgF and flgG, which transmit torque from the motor

to the hook and filament were found in a separate four gene
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operon, with mbl and flgJ located immediately up- and down-

stream of the flgF- flgG gene pair respectively. The mbl gene

encodes an MreB-like protein which has a role in determining cell

morphology and polarity [55]. The FlgJ protein is a rod-specific

muramidase with peptidoglycan hydrolyzing ability that is

exploited during the construction of transmural flagellar structures

[56]. In some Firmicutes species [10] including E. siraeum V10Sc8a,

flgF and flgG are found in an operon with the genes for other basal

body and rod proteins [10]. However, the mbl-flgF-flgG-flgJ genetic

arrangement described here is also found in the genomes of several

closely related Butyrivibrio and Clostridium species from Lachnospir-

aceae and Clostridiaceae families and in Alkaliphilus oremlandii (also

family Clostridiaceae) and Abiotrophia defectiva (class Bacilli). The E.

rectale FlgF and FlgG proteins are 54% (154/282 aa) and 50%

(141/282 aa) similar to Bacillus subtilis subsp. subtilis FlhO

(CAB05950.1) and FlhP (CAB05941.1) respectively, suggesting

that these proteins are homologous. The mbl-flhO-flhP gene

arrangement occurs in Bacillus, Geobacillus and Oceanobacillus

species. The functional and evolutionary significance of the mbl–

flgJ genetic arrangement is presently unknown.

Flagellin expression is known to occur at higher levels in R.

inulinivorans A2-194 when it is grown on starch rather than on

glucose, inulin or fructan substrates [46]. This nutritional control

of motility gene expression implies that pleiotropic global

regulators may direct motility gene transcription or translation

in Roseburia species. Under nutrient rich conditions, CodY

represses flagellin expression in B. subtilis [57]. A codY homolog

was identified immediately upstream of the flgB-fliA motility locus

in the E. rectale, E. eligens, R. hominis and R. intestinalis genomes

examined. In R. inulinivorans, the CDS encoding the predicted codY

homolog (ROSEINA2194_0938) is apparently fused to the 39 end

of a CDS encoding a protein with DNA topoisomerase I function.

CsrA, a global regulator that inhibits flagellin gene expression in B.

subtilis [58], but which is necessary for motility and flagellum

biosynthesis in E. coli [59] was also found at the flgM-flgN/fliC

motility locus of all genomes examined. In other species, the

activities of CodY and CsrA can be modulated by changes in

intracellular guanosine tetraphosphate (ppGpp), guanosine nucle-

oside triphosphate (GTP) or branched chain amino-acid pools

[57,60]. Unfavourable environmental conditions such as nutrient

limitation, induce a stringent response in some bacteria which

leads to either motility gene expression or repression by altering

intracellular concentrations of these effector molecules [60].

Further experiments would be required to determine which, if

any of these effector molecules, modulate motility gene transcrip-

tion via CodY or CsrA in motile Eubacterium and Roseburia species

during growth on different carbohydrate substrates.

In silico analysis of promoter consensus sequences suggested that

the fliC genes in the Eubacterium and Roseburia genomes of interest

were mostly under the control of s28, although some s43

dependent promoters were also identified. In B. fibrisolvens,

transcription of one fliC gene is driven from two different

promoters, yielding two transcripts with alternative transcription

start-sites [36]. For the Eubacterium and Roseburia fliC genes with

potentially more than one promoter, it is not yet clear if

transcription proceeds from both. The presence of two promoters

for a single fliC gene, one of which is under the presumptive

control of a housekeeping sigma factor, suggests that there may be

a requirement for constitutive fliC transcription at a basal level in

these species. It also suggests that post-transcriptional or post-

translational control mechanisms, such as those that have been

described for other motile species [54,58,61] might additionally

regulate flagellin expression in these species.

The motile Eubacterium and Roseburia species bear subterminal

flagella [25,62] and the annotation of several flagellin proteins in

the genomes of these Eubacterium and Roseburia species suggests that

these bacteria might produce complex flagella in which the

filament is composed of several different flagellin proteins. This

inference is supported by the recovery of at least three flagellin

proteins from R. inulinivorans cultures. It is possible that E. rectale

also produces complex flagella, but the sizes and amino-terminal

sequences of its flagellins were insufficiently unique to determine

which of its flagellins were expressed. In contrast, only one flagellin

gene was annotated in each of the genomes of three E. siraeum

strains, so this species presumably produces flagella composed of a

single flagellin protein. Gene gain by duplication or horizontal

gene transfer could explain the occurrence of multiple genes

encoding flagellin in the genomes of these species of interest.

We attempted to identify motility CDSs of specific motile,

enteric Eubacterium and Roseburia species from the raw read and

assembled metagenome datasets generated by the ELDERMET

project [41]. These databases were selected for analysis because

the average N50 size of the assembled metagenomes was large,

,24 kb. (The average N50 for individuals from different

community settings varied considerably from ,16.4 kb (commu-

nity) to ,339.5 kb (long-stay), depending on the diversity of the

intestinal microbiota present [41]). This average contig N50 value

exceeded the N50 values reported for the assembled metagenomes

of another intestinal metagenome database [16]. Due to these

fundamental differences in metagenome structure, target gene

detection in other metagenome databases was not considered.

Our heat-plots showed that the identification of motility CDSs

from databases of unassembled reads was a function of both target

gene length, gene context and target species relative abundance.

Longer CDSs would, therefore, be detected at lower species

relative abundances than shorter CDSs (Figure S4–A). At species

relative abundances of ,0.1%, unassembled reads mapped non-

uniformly to the target motility loci (Figure S4), implying an

uneven depth of sequencing coverage of the target genome at this

level of species relative abundance.

The proportion of raw sequencing reads returned for any given

genome in a metagenome database corresponds to the relative

abundance of the target species in the sampled environment, and

to its genome size. Abundant species are therefore expected to

have greater genome coverage than less abundant species. Species

with larger genomes are expected to have less genome coverage

than species with smaller genomes, assuming that their relative

abundances in a specific metagenome, are the same. For example,

in metagenome EM175, E. rectale occurs at 2.06% relative

abundance, and has a predicted coverage of 28.12 fold. In the

same metagenome, R. inulinivorans is more abundant (2.23%), but

has less genome coverage (26.28 fold) due to its larger genome size.

Notwithstanding the effect of genome size on sequencing

coverage, the heat-plots (Figure S4) show that target genes were

more readily detected in metagenomes when these species were

present at a high relative abundance. This was attributed to the

greater depth of sequencing coverage of these high abundance

genomes. Deeper genome coverage would therefore be expected

to improve gene detection in low abundance species, or in species

with very large genomes. Nevertheless, the depth of sequencing

used in the preparation of these metagenomes is comparable to

those used in another intestinal metagenomics project [16].

In metagenomes that were thought to include E. rectale at high

($1%) species relative abundances, the apparent absence of the E.

rectale flgB-fliA motility locus was unexpected. Technical issues,

such as DNA degradation or a DNA sequence composition which

was refractory to sequencing might explain the lower than
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expected coverage of this region in databases of raw reads.

Alternatively, the divergence or loss of this region in enteric E.

rectale strains would also preclude the detection of these target

motility genes by comparison to the reference genome of a

laboratory strain.

We suspect that incomplete sequence coverage of the target

bacterial genomes also imposed a limitation on our ability to

identify specific genes or pathways from the assembled metagen-

omes. The assembly status of the query genome and the

metagenome database may also influence the outcome, because

more fractured assemblies yield shorter alignments. Thus, even at

the large sequencing depths (3317 to 4798 Mb) and metagenome

contig lengths (2050 bp #N50 #64999 bp) used here [41], these

metagenomes appear to incompletely capture the total functional

diversity encoded at a species level in these faecal microbial

communities.

Consistent with earlier studies [17], our recruitment plot and

COG analyses suggest that genes encoding cell motility functions

occur at variable and low abundances in the human gut

microbiome. Indeed, orthologs of flagellin proteins were identified

in the genomes of only a subset of human gut bacteria. Poor

coverage of low abundance genomes is a known current limitation

of metagenomics [63] and gene finding from assembled, but

fragmented sequences is a recognized challenge for pathway

reconstruction from metagenomes [64]. Our attempt to identify

genes involved in bacterial motility from specific high-abundance

target species from databases of raw reads and assembled

metagenomes, highlights the need for a greater depth and

evenness of sequencing or improved metagenome assembly from

short reads to improve gene detection and pathway reconstruction.

In summary, we have demonstrated the pro-inflammatory

nature of the flagellins of some of the most abundant motile

commensal bacteria in the human GI tract in vitro and we have

investigated the potential regulation of these genes by in silico

means. We also highlight the need for greater depth and evenness

of sequencing in the preparation of metagenome databases to

ensure that the genetic functionality encoded by an ecosystem is

fully captured at species level.

Materials and Methods

Strains and genomes studied
Three Eubacterium species (E. eligens, E. rectale and E. siraeum) and

three Roseburia species (R. hominis, R. inulinivorans and R. intestinalis)

were the focus of this study. The specific strains studied are

mentioned in Table S8. A summary of the genome assembly

statistics for each genome studied is also provided in Table S8.

The genomes of E. rectale A1-86, E. rectale M104/1, R. intestinalis

L1-82, and E. siraeum 70/3 were sequenced at the Sanger Institute

as part of the MetaHit project, http://www.sanger.ac.uk/

pathogens/metahit/.

Culture conditions
The three strains (E. rectale A1-86, E. rectale M104/1 and R.

inulinivorans A2-194) were previously isolated from human faecal

samples [65,66]. The growth medium used was anaerobic

M2GSC, prepared as in reference [67]. This medium was divided

into 7.5 ml aliquots in Hungate tubes, sealed with butyl rubber

septa (Bellco Glass) or 500 ml aliquots in 1 litre laboratory bottles

(Duran Group), with specially modified airtight caps. All cultures

were inoculated using the anaerobic methods described by Bryant,

1972 [68] and incubated anaerobically at 37uC without agitation.

In brief, carbon dioxide gas was diffused through the growth

medium before dispensing and sealing in an airtight vessel.

Carbon dioxide was pumped into the overnight cultures and into

the fresh medium to maintain the anaerobic conditions during

inoculation.

In order to obtain sufficient quantities of flagellin protein, large

batches of bacterial culture were grown anaerobically: Two

overnight 7.5 ml cultures of M2GSC broths were used to inoculate

each single anaerobic bottle containing 500 ml M2GSC. Dupli-

cate bottles were prepared for each strain. These subcultures were

incubated for 16–18 hours before harvesting the flagellin proteins

using methods outlined previously [39].

SDS-PAGE, staining, quantification and amino-terminal
sequencing of flagellin proteins

Flagellin proteins were electrophoresed on 10% SDS-PAGE

gels and were visualized by staining with Coomassie blue stain

followed by destaining with ‘‘destain solution’’ (methanol: acetic

acid: water, 454: 92: 454).

Proteins separated by electrophoresis were transferred to

Immobilon membrane for amino-terminal sequencing. Transfer

of proteins was performed at 40 mA for 50 mins in transfer buffer

(16 CAPS (Sigma, Catalog No., C2632); 100 ml methanol;

800 ml water). The membrane was stained and destained post-

transfer to visualize the proteins. The protein bands of interest

were excised from the membrane and the first ten residues of each

protein band were amino-terminally sequenced by AltaBioscience,

Birmingham, UK.

Proteins were quantified using the BCA protein assay (Thermo-

Scientific Pierce Catalog No., 23225) according to the microplate

procedure outlined by the manufacturer.

Stimulation of intestinal epithelial cells and IL-8 ELISA
HT-29 (ATCC HTB-38) and T84 (ATCC CCL-248) cells were

routinely cultured in Dulbecco’s Modified Eagle Medium

(DMEM) (Sigma Catalog No., D6429) supplemented with 10%

foetal bovine serum (Sigma Catalog No., F9665) and 1%

penicillin/streptomycin antibiotics (Sigma Catalog No., P4333)

stock concentrations: 10,000 U penicillin and 10 mg streptomy-

cin/ml) and were incubated at 37uC in a 5% CO2 atmosphere.

IECs were seeded at a density of 26104 cells/well of a sterile 96

well plate. After seeding, IECs were allowed to adhere overnight

before flagellin treatment.

Flagellin proteins were added to each well to a final

concentration of 0.1 mg/well. Flagellin suspensions of the desired

concentration were prepared in DMEM. Exposure of the IECs to

flagellin proteins took place for 12 hours. Supernatants were

subsequently recovered. The interleukin-8 (IL-8) concentration in

these supernatants was measured with the IL-8 ELISA Duo kit

(R&D systems) according to the manufacturer’s instructions.

Experimental replicates were performed on different days. The

same concentration of flagellin was used as a stimulant in each

independent experiment. For statistical analysis, the raw IL-8

values were converted to proportions by dividing the IL-8

concentration for each treatment in a single experiment by the

sum of the IL-8 concentrations for all of the treatments from the

same experiment. A one-tailed Mann-Whitney U test was

performed on the transformed values.

TNF-a levels in blood samples were determined previously

using microplates from Meso Scale Diagnostics [41]. Associations

between species relative abundance and TNF-a levels were

assessed using the Spearman correlation coefficient.
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Genome annotation and improvement, comparative
genomics, metagenome assembly

Draft and complete genome sequences were downloaded from

the nucleotide database on the National Center for Biotechnology

Information website (Table S8). Several of these genomes had

previously been annotated by automated procedures. These auto-

annotations of motility genes at the major motility loci in the E.

rectale A1-86 and R. inulinivorans A2-194 genomes were inspected.

The motility gene arrangements in the other genomes of interest,

specifically E. eligens, E. siraeum, R. hominis and R. intestinalis

(Table S8), were examined with respect to the major motility loci

of the E. rectale and R. inulinivorans genomes. Additional open

reading frames that were not previously identified in the auto-

annotation of these draft genomes were inferred on the basis of

their genetic neighborhood and BLASTp similarity to character-

ized homologs. The CDSs that represented fragments of genes

that apparently included frameshift mutations were merged. Start

positions of genes encoding flagellin proteins were adjusted to

correspond to the amino-terminal sequence derived for the

flagellin proteins that were recovered from E. rectale and R.

inulinivorans.

Assembled metagenomes representing the intestinal micro-

biomes of 27 elderly Irish individuals from one of three community

settings (community, rehabilitation and long-stay) were generated

previously [41] and each included on average 4.6 Gb of sequence

information. The MG-RAST accession numbers for each of these

metagenomes are included in Table S6. Twenty-five of these

metagenomes were constructed from libraries of 91 bp paired-end

Illumina reads with an insert size of 350 bp. Two of these

metagenomes (EM039 and EM173) were assembled using two

different types of sequencing technologies, specifically paired-end

Illumina reads that were 101 bp in length with a 500 bp insert size

in combination with 551,726 and 665,164 454 Titanium

sequencing reads for EM039 and EM173 respectively.

Analyses of presence or absence, relative abundance and
extent of genome coverage of Eubacterium and
Roseburia species of interest in metagenomes

MetaPhlAn 1.6.0 [40] was used to infer the relative abundances

of the target species in the 27 metagenomes. The ‘‘MetaPhlAn

script’’ and the ‘‘BowTie2 database of the MetaPhlAn markers’’

were downloaded from http://huttenhower.sph.harvard.edu/

metaphlan. Unfiltered paired-end reads were combined in a

FASTQ file which was converted to FASTA format using

FASTQ-to-FASTA (FASTX-Toolkit: http://hannonlab.cshl.

edu/fastx_toolkit/commandline.html). The output file was sub-

jected to MetaPhlAn analysis using default parameters.

The differences in species relative abundance across the three

community settings were investigated by non-parametric analysis

methods. A Kruskal Wallace test was performed on the relative

abundance values predicted by MetaPhlAn for each species across

the three community settings. A Tukey test was performed on the

Kruskal Wallace output to determine significant differences in the

relative abundances of specific species across the three community

groups.

The estimated coverage of each target genome in each of the

metagenomes was calculated as a function of the metagenome size,

the average size of the target species’ genomes and the

MetaPhlAn-predicted relative abundance of the species of interest

according to the following formula: ((Metagenome size (Mb) 6
Rel. Abundance (%))/(Target genome size (average) (Mb)) [63].

Average genome sizes were calculated from all genomes sequences

available for each species.

Identification and annotation of motility proteins of
Eubacterium and Roseburia species in metagenomes

Two approaches, based on either raw sequencing reads or reads

assembled into contigs, were adopted for the identification of

motility genes from the target species of interest in the

ELDERMET metagenomes. Bowtie 2 [69] was used with default

settings (end-to-end read alignment, –sensitive -D 15 –R 2 –N 0 –

L 22 –i S,1,1.25) to map raw sequencing reads from each

metagenome to the Eubacterium and Roseburia ORFs and CDSs of

interest. The number of mapped reads was normalized according

to the following calculation: (No. mapped reads) 6 (Mean

sequencing depth/Sequencing depth per metagenome). The mean

sequencing depth was taken as 4.796109 bases per metagenome.

The total sequencing depth for each metagenome was reported as

part of the supporting information accompanying an earlier

publication [41].

Heat plots were created with an edited ‘‘Heatplot’’ function as

part of the Made4 package [70] for R. These plots were based on

the normalized number of mapped reads per gene per metagen-

ome, the MetaPhlAn [40] derived species relative abundance

values and target CDS lengths (bp). For metagenomes EM039 and

EM173, species relative abundance values were inferred by

calculating the relative abundance value that was mid-way

between the MetaPhlAn predicted relative abundance values for

the species of interest in the metagenomes that occurred

immediately adjacent to EM039 and EM173 after all the

metagenomes were ranked in order of increasing total number

of normalized mapped sequencing reads. Target CDSs were

considered as present at a minimum threshold of ,10 normalized

reads mapped per gene (Log 101).

A selection of 177 Eubacterium and Roseburia motility proteins

(excluding genes encoding flagellin proteins) which represented the

flgB-fliA and flgM-flgN/fliC motility loci of eight different species (E.

cellulosolvens, E. eligens, E. rectale, E. siraeum, E. yurii subsp. margaretiae,

R. hominis, R. intestinalis, R. inulinivorans) were used as tBLASTn

queries to search the database of assembled metagenomes for

contigs which likely harbored motility genes from the species of

interest. The genes encoding flagellins were excluded from this

analysis because flagellin domain sequences are often conserved

across species [71]. This conservation of amino-acid sequence was

expected to yield non-specific BLAST matches. Furthermore, the

genes encoding flagellin proteins were often dispersed throughout

the genomes, so detection of a flagellin would not always lead to

the target flgB-fliA or flgM-flgN/fliC operon. The metagenome

contigs that yielded alignments which were $90% identical to the

query proteins were retrieved from the database. These contigs

were viewed and all potential ORFs were called using Artemis

[72]. These ORFs were annotated on the basis of BLASTp

homology to proteins in the non-redundant protein database (NR)

available from NCBI, and also by a general inspection of their

genetic neighborhood. The motility genes of a target species were

considered to be present in a target metagenome if the best

BLASTp hits for at least half of the motility CDSs on each contig

occurred with identity $90% to homologs from only one of the

target species.

COG category analysis
The 27 assembled metagenomes [41] are publically available on

the MG-RAST website [73]. COG classifications were determined

via MG-RAST for each metagenome using default parameters

($60% identity, $15 aa alignment length, E-value #1610–5).

Data were viewed in tabular output format and were filtered at

‘‘level 2’’ to limit results to ‘‘cell motility’’ COGs. The proportion
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of COGs assigned to this category was expressed as a percentage

of total COGs (total number of COGs returned before filtering).

BLASTp analysis of publically available human gut
bacteria genomes

Flagellin protein sequences from Bacillus subtilis subsp. subtilis

168 (NP_391416.1) and Salmonella enterica subsp. enterica serovar

Typhimurium LT2 (NP_460912.1) were used to query the genomes

from a list of 194 publically available human gut bacteria genomes

(Supporting Information Table 5 in reference [16]) that were

available in the NCBI BLAST database (April 2013). A genome

was considered to contain a flagellin ortholog if a BLASTp hit to

either of the query sequences occurred with at least 30% identity

over at least 80% of the query length.

Generation of recruitment plots
Recruitment plots were constructed using PROmer 3.07 [74] to

align the query sequences to the database of assembled

metagenomes. Query sequences were typically complete or draft

genome sequences, genomic fragments representing a motility

locus of interest or a multi-fasta file representing genes of interest.

The PROmer delta output file was filtered using mummerplot 3.5

(part of the MUMmer package) [75]. The plots were generated

with a range of 80–100% similarity represented on the Y axis.

Comparative genomics
Nucleotide and amino-acid alignments were performed with

MUSCLE [76] or ClustalW in BioEdit. Artemis Comparison Tool

was used to view the conservation and arrangement of large

genome segments across species [77]. The comparison files were

generated in tabular format using tBLASTx [78]. A minimum

identity threshold of 30% was imposed on the alignments for

visualization purposes.

Phylogenetic analysis
Phylogenies constructed from protein sequences were first aligned

using MUSCLE [76]. A rooted flagellin protein phylogenetic tree was

constructed using PHyML 3.0 [79] with the LG substitution matrix.

Modelgenerator [80] was used to choose the most appropriate

substitution model. Alignment columns that included gaps were

removed before constructing the maximum likelihood tree.

Promoter sequence analysis
The nucleotide sequences upstream of the genes encoding

flagellin proteins were inspected to identify potential sigma factor

consensus sequences and ribosome binding sites (RBS). The

promoter sequences of the housekeeping sigma (s43) factor (235:

TTtACA, 210: cATAAT) and the flagellar (s28) sigma factor

(235: TAAA 210: MCGATAa) of Butyrivibrio fibrisolvens (another

motile species of Clostridium cluster XIVa) were used as reference

sequences [36]. Ribosome binding sites were expected to occur

within 20 bp of the predicted start-codon [81], and to conform to

the sequence AGGAGG.

Supporting Information

Figure S1 ACT alignments of flgB-fliA (top) and flgM-
flgN/fliC (bottom) motility loci. Locus tags indicate which

genomic region is represented. A minimum threshold of 30%

identity was imposed on the alignments. Alignments involving E.

rectale and R. inulinivorans flgM-csrA and flaG-flgN/fliC are on bottom

left and right respectively.

(TIF)

Figure S2 Phylogenetic tree of flagellin proteins. The

flagellin tree was constructed from flagellin protein sequences

using PHYML with model LG. Numbers at each node are

bootstrap values. Locus tags were used to label flagellin proteins.

Strongly supported clades (bootstrap $55) are surrounded by

coloured boxes and are labelled with a letter A–F. RO-

SINTL182 = R. intestinalis L1-82, RHOM = R. hominis A2-183,

ROSEINA2194 = R. inulinivorans A2-194, EUBELI = E. eligens

ATCC27750, ES1 = E. siraeum V10Sc8a, EUBSIR = E. siraeum

DSM15702, EUS = E. siraeum 70/3, EUR = E. rectale A1-86,

ERE = E. rectale M104/1.

(TIF)

Figure S3 Association between E. siraeum relative
abundance and serum TNF-a concentration. Boxplot

showing median serum TNF-a concentration which is greater in

individuals that harbor E. siraeum at ,0.15% relative abundance

(n = 14), than in individuals that harbor this organism at .0.15%

relative abundance (n = 10). Boxplots show the median and

interquartile range. Outliers are indicated by o symbols.

Significance was assessed using the Spearman correlation

coefficient.

(TIF)

Figure S4 Heat-plots showing the relationship between
the normalized number of reads mapped to target
motility CDSs as a function of CDS length and target
species relative abundance. Heat-plots labelled ‘‘A’’ show

that the normalized number of reads that mapped to each target

gene increases with increasing CDS length and species relative

abundance. Heat-plots labelled ‘‘B’’ show that the normalized

number of reads that mapped to target CDSs varied depending on

gene context. For each species, heat-plots A and B present the

same data, but differ due to alternative arrangements of the CDSs

on the X axis. In heat-plots labelled ‘‘A’’, CDSs are arranged

according to increasing length, while in heat-plots labelled ‘‘B’’,

motility loci were organized by motility locus/gene context. CDSs

without a locus tag were grouped together and not with the other

CDSs of their respective motility loci (heat-plots B). The standard

locus tags for R. intestinalis L1-82 and R. inulinivorans A2-194 have

been shortened to ‘‘L182_’’ and ‘‘A2194_’’ respectively for the

preparation of these heat-plots.

(PDF)

Figure S5 Recruitment plots demonstrating the pres-
ence or absence of the flagellin proteins of interest in 27
metagenomes. A: Community dwelling individuals. B: Individ-

uals from rehabilitation (EM219-EM238) and long-stay (EM173-

EM308) community settings. Each plot shows matches with 80–

100% similarity to the query flagellin sequence, which are labelled

with locus tags. Matches in red are in the same orientation as the

query sequence. Matches in blue are inverted relative to the query

sequence. No matches were detected for four long-stay individuals,

EM208, EM227, EM238 or EM275, so no plots could be

constructed.

(PDF)

Table S1 Locus tags for motility loci from genomes of
interest.

(DOC)

Table S2 Amino-terminal sequences of E. rectale A1-86
and R. inulinivorans A2-194 flagellin proteins.

(DOC)
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Table S3 Relative abundance (%) of each target species
in 25 of the shotgun metagenomes of interest, as
calculated by MetaPhlAn.

(DOC)

Table S4 Estimated target genome coverage in each
metagenome.

(DOC)

Table S5 Summary of the number of ORFs per
assembled metagenome identified as a motility gene
or gene fragment from a species of interest.

(DOC)

Table S6 ‘‘Cell motility’’ COG category analysis for
assembled metagenomes.

(DOC)

Table S7 Description of COGs within Cell Motility
Category N.
(DOC)

Table S8 Strains and genomes used in this study.
(DOC)
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