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Abstract 26 

Both neuroinflammation and adult hippocampal neurogenesis (AHN) are implicated in many 27 

neurodegenerative disorders as well as in neuropsychiatric disorders, which often become 28 

symptomatic during adolescence. A better knowledge of the impact that chronic 29 

neuroinflammation has on the hippocampus during the adolescent period could lead to the 30 

discovery of new therapeutics for some of these disorders. The hippocampus is particularly 31 

vulnerable to altered concentrations of the pro-inflammatory cytokine interleukin-1β (IL-1β), 32 

with elevated levels implicated in the aetiology of neurodegenerative disorders such as 33 

Alzheimer’s and Parkinson’s, and stress-related disorders such as depression.  The effect of 34 

acutely and chronically elevated concentrations of hippocampal IL-1β have been shown to 35 

reduce AHN in rats and mice. However, the effect of exposure to chronic overexpression of 36 

hippocampal IL-1β during adolescence, a time of increased vulnerability, hasn’t been fully 37 

interrogated. Thus, in this study we utilized a lentiviral approach to induce chronic 38 

overexpression of IL-1β in the dorsal hippocampus of adolescent male Sprague Dawley rats 39 

for 6 weeks, during which time its impact on cognition and hippocampal neurogenesis were 40 

examined. A reduction in hippocampal neurogenesis was observed along with a reduced level 41 

of neurite branching on hippocampal neurons. However, there was no effect of IL-1β 42 

overexpression on cognitive performance. Our study has highlighted that chronic IL-1β 43 

overexpression in the hippocampus during the adolescent period exerts a negative impact on 44 

neurogenesis and neurite branching.  45 

 46 

Key words:  adolescence, hippocampus, neurogenesis, behavior, inflammation, IL-1β 47 

48 
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1.0 Introduction  49 

Neuroinflammation is a key contributing factor to neurodegenerative and neuropsychiatric 50 

disorders (Freeman and Ting, 2016; Miller and Raison, 2016; Raison et al., 2006), and has been 51 

consistently demonstrated to exert a detrimental effect on hippocampal-dependent processes 52 

(Amor et al., 2010; Green and Nolan, 2014; Nolan et al., 2013; Ryan and Nolan, 2016). In 53 

particular, chronically elevated concentrations of IL-1β, which is produced predominantly by 54 

microglia, has a substantially negative impact on hippocampal-dependent learning and memory 55 

processes (Pugh et al., 2001; Yirmiya and Goshen, 2011), and has been implicated in the 56 

pathophysiology of both Alzheimer’s disease (AD) (Griffin and Mrak, 2002) and depression 57 

(Koo and Duman, 2009; Maes et al., 2012; Raison et al., 2006). While low levels of IL-1β are 58 

necessary for memory formation (Yirmiya and Goshen, 2011), transgenic overexpression of 59 

IL-1β has been shown to induce impairments in both spatial and contextual fear memory (Hein 60 

et al., 2010; Moore et al., 2009). Further, increased concentrations of IL-1β have been shown 61 

to impair long-term potentiation (LTP; a vital process for memory formation (Morris et al., 62 

1986) in the hippocampus (Murray and Lynch, 1998; Vereker et al., 2000)). 63 

 64 

As well as influencing the function of mature neurons, it is now established that both acutely 65 

and chronically elevated levels of IL-1β negatively affect adult hippocampal neurogenesis 66 

(AHN) (Hueston et al., 2018; O'Léime et al., 2017; Ryan et al., 2013), a process in which 67 

neurons are generated from neural progenitor cells (NPCs) in the subgranular zone (SGZ) of 68 

the dentate gyrus (DG) of the hippocampus throughout life (Kempermann et al., 2008). AHN 69 

is essential for cognitive functioning such as spatial learning and memory, contextual fear 70 

conditioning and pattern separation (Clelland et al., 2009; Jessberger et al., 2009; Ryan and 71 

Nolan, 2016; Santarelli et al., 2003). AHN has also been implicated in anxiety, stress resilience 72 

(Levone et al., 2014; Revest et al., 2009; Snyder et al., 2011) and antidepressant action 73 
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(Santarelli et al., 2003). Recent evidence demonstrated that chronically elevated levels of 74 

hippocampal IL-1β in the adult rat hippocampus impaired pattern separation, which was 75 

coupled with a decrease in AHN (Hueston et al., 2018). 76 

 77 

During the adolescent period of life, there is a higher density of granule cells in rodents, and 78 

up to four-fold more neurogenesis occurring during this time compared to adulthood (Curlik et 79 

al., 2014; Hueston et al., 2017a; Yassa et al., 2011b). It is not yet clear however, if these newly 80 

born cells serve the same function in the adolescent brain as they do in the adult brain. This is 81 

an important area of research because adolescence is a critical period for brain development 82 

and maturation, and the brain is especially sensitive to perturbations such as inflammatory 83 

stressors during this time  (Hueston et al., 2017a). For example, it  has been demonstrated in 84 

vitro that hippocampal NPCs derived from adolescent mice (PND 21) show increased levels of 85 

cell proliferation when exposed to IL-1α, while there was no effect of IL-1α on NPCs from 86 

adult mice (McPherson et al., 2011). Disruptions in hippocampal neurogenesis have been 87 

implicated either directly or indirectly to various neuropsychiatric disorders, such as major 88 

depression and schizophrenia (Kempermann et al., 2008), which also exhibit 89 

neuroinflammation (Miller and Raison, 2016; Müller et al., 2015). Interestingly, these disorders 90 

tend to first become evident during adolescence, and can have both cognitive and emotional 91 

elements (Kempermann et al., 2008). Given the role of AHN in the adult brain and the higher 92 

rate of hippocampal neurogenesis in the adolescent brain, it is plausible that perturbations of 93 

neurogenesis during adolescence might be involved in these neuropsychiatric disorders. 94 

However, there is a paucity of data on the effects of IL-1β on hippocampal neurogenesis during 95 

the adolescent period. Thus, the aim of this study was to examine the impact of chronic 96 

hippocampal IL-1β overexpression during adolescence on neuronal differentiation and 97 

morphology of recently-born neurons, as well as on cognitive function.  98 
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2.0 Methods 99 

       2.1 Animals and Experimental Design 100 

Adolescent (4 week old) male Sprague-Dawley rats were bred in-house (Biological Services 101 

Unit, University College Cork) under veterinary supervision. All rats were pair housed in a 102 

colony maintained at 22 ± 1°C, with a 12:12 hour light-dark cycle (lights on 0630-1830). All 103 

animal procedures were performed under authorizations issued by the Health Products 104 

Regulatory Authority (HPRA, Ireland), in accordance with the European Communities Council 105 

Directive (2010/63/EU) and approved by the Animal Experimentation Ethics Committee of 106 

University College Cork. The animals were injected with either a lentivirus overexpressing 107 

mCherry-tagged IL-1β (LVIL-1βmCherry, n=10) or mCherry alone (LVmCherry, n=10) into the dorsal 108 

hippocampus for six weeks (Figure 1).  All animals underwent behavioural testing three weeks 109 

following viral injection as per the timeline in Figure 1.  110 

 111 

2.2 Preparation and Intrahippocampal Administration of Lentivirus Overexpressing IL-1β 112 

The purified lentiviral particles expressed a full-length Open Reading Frame (ORF) clone on a 113 

feline immunodeficiency virus (FIV) backbone, containing a DNA insert encoding for the full 114 

length of the IL-1β gene (from start codon to stop codon without the 5` and 3` end untranslated 115 

regions or introns; gene accession NM_008361; LVIL-1βmCherry) or an empty vector (LVmCherry) 116 

as control. Expression efficiency was driven by a cytomegalovirus (CMV) promoter with 117 

puromycin resistance used as a selection marker. Both plasmids carried an mCherry reporter 118 

gene clone driven by IRES promoter. Lentiviral particles were produced and packaged by 119 

Genecopoeia (LVIL-1βmCherry: Cat #LP-Mm03282-Lv80-0205-cs; LVmCherry: Cat# LP-NEG-120 

Lv80-0205-cs) with titers of > 1x107 transfection units per mL (Genecopoeia, Rockville, MD, 121 

USA). It should be noted that some studies have incorporated a signal peptide at the end of the 122 

5’ end of the mature IL-1β cDNA (Shaftel et al., 2007). We have not utilized a signal peptide 123 
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in our virus as we have characterized it in our previous studies (Hueston et al., 2018), and in 124 

the present study through immunohistochemistry using an IL-1β antibody raised in mouse, not 125 

rat, to ensure that only viral IL-1β was detected. Rats were anaesthetized with isoflurane, placed 126 

into a stereotaxic frame, and 3µL of either the LVmCherry or LVIL-1βmCherry was bilaterally injected 127 

into the dorsal hippocampus using the  coordinates AP: -3.3, ML: +/- 2.0, DL: 2.7-3.0 128 

(dependent on weight) relative to bregma at a rate of 1µL/min followed by a 5 min diffusion 129 

period (Kozareva et al., 2019).  Following lentiviral injection, incisions were sutured, treated 130 

with antibacterial ointment (Fucithalmic® 10mg/g), and rats were administered the analgesic 131 

carprofen (Rimadyl® 5 mg/kg, s.c., Zoetis Ireland Ltd) and a 5% glucose solution.  132 

 133 

2.3 Modified Spontaneous Location Recognition Test  134 

Three weeks following surgery, the rats underwent the modified spontaneous location 135 

recognition test that assesses behavioural pattern separation. This was a modified version of 136 

the standard novel location recognition task in which animals underwent two consecutive 137 

location discrimination tests where the inter-stimulus distances between the novel and familiar 138 

locations have been varied to create a state of either high or low contextual overlap. Previous 139 

studies have demonstrated that performance during conditions of high contextual overlap 140 

require intact hippocampal neurogenesis (Bekinschtein et al., 2014). The task was conducted 141 

in an open field arena, covered with bedding under dim light conditions (20 lux) as described 142 

previously (Bekinschtein et al., 2013; Hueston et al., 2018). The testing room had three 143 

proximal spatial cues and distal standard furniture. Rats were habituated to the arena for 10 144 

minutes per day for 5 consecutive days before testing. Rats were exposed to three identical 145 

objects for 10 minutes, in either a large separation condition (three objects (O1, O2, and O3) 146 

separated by 120° angles) or a small separation condition (two of the objects separated by a 147 

50° angle (O2, O3), and the third placed at an equal distance between the two (O1)). Twenty-148 
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four hours following acquisition, object O4 was placed in the same position as O1, while object 149 

O5 was placed halfway between the acquisition locations of O2 and O3 and rats were allowed 150 

to explore for 5 minutes. The objects and order of testing were counterbalanced within and 151 

between groups. Time spent with the objects was recorded, and a discrimination index (DI) of 152 

object recognition was calculated as DI = (seconds with O5 - seconds with O4)/ (seconds with 153 

O4 + seconds with O5). The arena and objects were cleaned with a 70% ethanol solution 154 

between exposures of each animal to the arena to remove odour cues.   155 

 156 

2.4 Object Recognition Test  157 

The object recognition test, a hippocampal-perirhinal cortex-dependent task, was carried out 158 

as described previously (Bevins and Besheer, 2006). Rats were habituated to an empty chamber 159 

(40.5cm L x 36.5cm W x 28.0cm H) under dim light (20 lux) for 10 minutes. Twenty-four 160 

hours later, rats were exposed to 2 identical objects (either ceramic mugs or glass bottles) for 161 

10 minutes, followed by a 3-hour inter-trial interval. After the delay, recognition memory was 162 

tested with a 5-minute exposure to one novel object and one familiar object. All behaviors were 163 

recorded, and videos were scored to determine the amount of time the rats spent attending to 164 

the novel vs. familiar objects. Objects were counterbalanced between groups. Time spent with 165 

the objects was recorded, and a discrimination ratio (DR) of object recognition was calculated 166 

as DR = seconds with novel object/(seconds with novel object + seconds with familiar object).  167 

 168 

2.5 Spontaneous Alternation Test  169 

Spontaneous alternation behavior is used as a measure of hippocampal-dependent working 170 

memory (Hughes, 2004). The Y maze consisted of three arms 120° from each other (40 x 10 x 171 

20 cm; made in house). Each animal was allowed to explore the maze for five minutes (adapted 172 

from Senechal et al., 2007). The number and order of arm entries were recorded. An arm entry 173 
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was defined as all four paws entering the arm (four paw criteria). An alternation was determined 174 

as the number of consecutive entries into the three maze arms. Alternations were divided by 175 

the total number of entries during the five-minute test period. The percentage of alternations 176 

was calculated as % = Alternations/(Entries-2).  177 

 178 

2.6 Confirmation of IL-1β Overexpression  179 

Rats were euthanized with an intraperitoneal injection of Sleep-Away (1.0mL/kg) and 180 

transcardially perfused using phosphate-buffered saline (PBS) solution, followed by 4.0% 181 

paraformaldehyde in PBS. Brains were post-fixed in 4% formaldehyde in PBS overnight, 182 

before being transferred to a 30% sucrose solution. Coronal sections from the brains were cut 183 

at 40μm and mounted onto gelatin-coated slides in a 1:6 series. Virus validation and 184 

confirmation of IL-1β overexpression was carried out as previously described (Hueston et al., 185 

2018). Sections were washed in PBS before being blocked in 10% donkey serum blocking 186 

solution (G9023 Sigma) in PBS with 0.3% Triton-X (0.3% PBS-T), followed by overnight 187 

incubation at 4˚C with a primary antibody against mCherry (1:2000 Abcam, rabbit polyclonal 188 

ab167453) and IL-1β (goat polyclonal anti-mouse IL-1β 1:500 AF-401-NA R&D Systems) 189 

diluted in 0.3% PBS-T with 5% donkey serum. Sections were incubated with secondary 190 

antibodies (AlexaFluor 488 donkey anti-rabbit IgG A11055 Abcam and AlexaFluor 594 191 

donkey anti-goat IgG A21207 Abcam) in 0.3% PBS-T and coverslipped with Vectashield 192 

mounting medium. To ensure that only viral-mediated and not endogenous IL-1β was detected, 193 

the primary antibody used was raised in mouse, not rat. 194 

 195 

2.7 Ionized calcium binding adapter molecule-1 (IBA-1) and Doublecortin (DCX) 196 

Immunohistochemistry  197 
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Cells that were immunopositive for IBA-1 (microglia) and DCX (immature neurons) were 198 

identified in the granule cell layer (GCL) of the DG of the hippocampus. Rehydrated sections 199 

were treated with 1% hydrogen peroxide (216763 Sigma) in methanol to block endogenous 200 

peroxidases, followed by blocking with 10% normal goat serum for IBA-1 staining, or 10% 201 

normal rabbit serum (R9133 Sigma) for DCX staining, prepared in 0.3% or 0.1% PBS-T 202 

respectively. For IBA-1 staining, sections were incubated overnight at 4°C in rabbit polyclonal 203 

anti-IBA-1 (1:500 019-19741 WAKO) in 0.1% PBS-T and 5% normal goat serum in PBS. For 204 

DCX-staining, sections were incubated overnight at 4°C in goat polyclonal anti-DCX (1:100 205 

sc-8066 Santa Cruz) in 0.3% PBS-T and 5% normal rabbit serum. The following day, IBA-1 206 

sections were rinsed with PBS and incubated in the secondary antibody solution containing 207 

biotinylated goat anti-rabbit (1:200 pk-6101 Vector Laboratories) in 0.1% PBS-T and 1.5% 208 

normal rabbit serum. DCX-sections were rinsed with PBS, and incubated in biotinylated rabbit 209 

anti-goat IgG (1:200 pk-6105 Vector Laboratories), 0.3% PBS-T and 1.5% normal rabbit 210 

serum. Detection of the secondary antibodies was enhanced using the Vectastain ABC Elite kit 211 

(PK-6105/PK-6101 Vector Laboratories), followed by incubation with 3,3′-Diaminobenzidine 212 

(DAB) activated with 0.3% hydrogen peroxide. Slides were cover-slipped using DPX 213 

mounting medium.  214 

 215 

2.8 Image Acquisition and Analysis  216 

DAB staining was visualized at 10x and 20x magnification using the brightfield channel on an 217 

Olympus AX70 upright microscope (BioSciences Imaging Centre, Department of Anatomy 218 

and Neuroscience, UCC), while fluorescent staining was captured using the green fluorescent 219 

channel on the same microscope. Images were acquired across a 1:6 series using Olympus 220 

cellSens Entry software and analyzed using the NeuronJ plugin (Meijering et al., 2004) for 221 

Image J software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, 222 
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Maryland, USA, https://imagej.nih.gov/ij/, 1997-2016).  To quantify IL-1β staining through 223 

the DG, mean fluorescence intensity was measured across a randomly selected area of the same 224 

dimensions within the DG, and the mean background fluorescence intensity was measured 225 

across a randomly selected area of the same size outside of the DG. IL-1β staining was 226 

expressed as the ratio between fluorescence within to fluorescence outside of the DG.  227 

 228 

2.9 Quantification and Morphological Analysis of Cells 229 

A modified stereological approach was performed to estimate the number of IBA-1+ and DCX+ 230 

cells in the GCL of the DG. Cells were counted through the whole DG on both hemispheres of 231 

each section in 1:6 series (240μm apart). The area of each section of the DG was obtained using 232 

the ImageJ programme (Schneider et al., 2012). Measurements were obtained in pixels and 233 

converted to µm² using a scaled micrometer and ImageJ software (Schneider et al., 2012). Data 234 

were expressed as the number of cells per µm². To assess the degree of microglial activation in 235 

response to the IL-1β treatment, the somal size of IBA-1+ microglial cells in the DG was 236 

observed at 60x magnification on the Olympus AX70 microscope. Ten randomly selected cells 237 

were sampled per animal, thus there were 30 microglia analyzed per experimental group. The 238 

area of the soma was measured using ImageJ and expressed as μm2.  239 

 240 

DCX+ neurons and associated neurites were observed at 20x magnification on the Olympus 241 

BX40 microscope and were traced to paper using an attached Camera Lucida drawing tube 242 

(Wollaston, 1807). Ten randomly selected DCX+ neurons were sampled per animal, based on 243 

them having minimal overlap with neurites of adjacent neurons, thus there were 30 neurons 244 

analyzed per experimental group.  The tracings were scanned onto a personal computer and 245 

analyzed using the NeuronJ plugin for ImageJ. The length of primary, secondary, tertiary, and 246 

quaternary neurites per neuron were measured, with the sum of these being taken as the total 247 
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length. The extent of neurite branching was determined by counting the number of neurite 248 

branch points (nodes) per neuron.   249 

 250 

2.10 Statistical Analysis  251 

A two-tailed t-test was used for all analyses. An alpha level of 0.05 was used as criterion for 252 

statistical significance.  All data are presented as mean plus/minus standard error of the mean 253 

(SEM).   254 
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3.0 Results 255 

3.1 Confirmation of lentiviral transduction of the hippocampus 256 

Immunopositive staining for mCherry was evident in the GCL of the DG of both the dHi 257 

(Figure 2A-C) of all animals at six weeks following surgery, demonstrating successful 258 

transduction of cells in the GCL of the DG by the lentivirus. Indeed, a similar level of 259 

fluorescence intensity of mCherry was observed in the DG of all animals with no significant 260 

difference in expression levels between groups (p > 0.05; Figure 2A-C).  261 

 262 

3.2 Lentiviral transduction of the adolescent rat hippocampus resulted in IL-1β overexpression 263 

and microglial activation 264 

Representative images of immunopositive staining for non-endogenous IL-1β in the GCL of 265 

the DG of the hippocampus are shown in (Figure 2D-E). There was a significant increase in 266 

the fluorescence intensity of IL-1β in the DG of animals injected with the LVIL-1βmCherry virus 267 

compared to those injected with LVmCherry control virus ([t = 3.435, p = 0.0264]; Figure 2F), 268 

thus demonstrating successful transduction of cells by the lentivirus overexpressing mouse IL-269 

1β at five weeks following surgery. Five weeks of IL-1β overexpression in the hippocampus 270 

significantly increased the number of microglia (IBA-1+ cells)/μm² in the GCL of the DG ([t = 271 

4.911, p = 0.008]; Figure 2G-I) and increased the somal size of IBA-1+ cells in the GCL of the 272 

hippocampi in these animals ([t = 5.305, p = 0.0131]; Figure 2J-L).  273 

 274 

3.3 IL-1β overexpression in the adolescent rat hippocampus decreased hippocampal 275 

neurogenesis  276 

IL-1β overexpression in the hippocampus significantly decreased the number of DCX+ 277 

cells/μm² in the GCL of the DG ([t = 3.637, p = 0.0220]; Figure 3A-C). IL-1β overexpression 278 

also significantly decreased the number of branch points (nodes) on DCX+ cells ([t = 5.024, p 279 
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= 0.0074]; Figure 3D-F), however it did not affect the average total neurite length, nor the 280 

length of primary, secondary or tertiary neurites in the hippocampus (all p > 0.05; Figure 3G).  281 

 282 

3.4 IL-1β overexpression in the hippocampus during adolescence had no effect on performance 283 

in hippocampus-dependent cognitive tasks  284 

Changes in AHN have been reported to affect performance in some cognitive tasks. Thus, we 285 

examined the effects of five weeks of hippocampal IL-1β overexpression in the adolescent 286 

brain on three tests of hippocampal-dependent memory (spontaneous alternation in the Y-287 

maze, pattern separation and novel object recognition). Despite the IL-1β -induced decrease in 288 

hippocampal neurogenesis we observed, IL-1β overexpression during adolescence did not 289 

affect hippocampal-dependent memory, as measured by these behavioral tests (Figure 4). 290 

Specifically, hippocampal overexpression of IL-1β did not affect the percentage of alternations 291 

made in the Y-Maze ([t(18) = 0.2102, p = 0.8358]; Figure 4A) nor the number of entries made 292 

into the different arms ([t(18) = 0.1739, p = 0.8639]; Figure 4B). All animals explored the 293 

objects equally during acquisition small separation (Figure 4C) and acquisition large separation 294 

(Figure 4D), respectively.  All animals were able to differentiate the novel from familiar 295 

location when tested on small ([t(18) = 0.9942, p = 0.3333]; Figure 4E) and large pattern 296 

separation ([t(18) = 0.5223, p = 0.6078]; Figure 4E) thus there was no effect of hippocampal 297 

IL-1β overexpression on pattern separation as assessed using the modified spontaneous 298 

location recognition test. Performance in the novel object recognition task was also unaffected 299 

by hippocampal overexpression of IL-1β ([t(18) = 0.9943, p = 0.3333]; Figure 4F). 300 

 301 

 302 

303 
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4.0 Discussion 304 

Given the current paucity of data on the effects of IL-1β during the adolescent period on 305 

hippocampal neurogenesis, we aimed to examine the impact of chronic hippocampal IL-1β 306 

exposure during adolescence on hippocampal-associated cognitive function and the neuronal 307 

differentiation and morphology of recently-born neurons. We found that five weeks of 308 

hippocampal IL-1β overexpression induced a significant reduction in neurogenesis and 309 

neuronal complexity, but had no impact on cognitive performance.  310 

 311 

We report that five weeks of hippocampal IL-1β during adolescence significantly reduced the 312 

number of DCX+ cells in the hippocampus. This is in agreement with what has been reported 313 

when IL-1β is overexpressed during adulthood, whereby there is a decline in the number of 314 

new neurons (Hueston et al., 2018; Koo and Duman, 2008; Ryan et al., 2013). Newly-born 315 

neurons are more sensitive to inflammatory insults than mature neurons (Felderhoff-Mueser et 316 

al., 2005; Kole et al., 2013), and this has been demonstrated through various methods of chronic 317 

hippocampal overexpression of IL-1β in adulthood including infusion of IL-1β through a 318 

cannula in rats (Koo and Duman, 2008), transgenic murine overexpression in a IL-1βXAT 319 

model (Wu et al., 2013), or treatment of adult rat hippocampal neurosphere cultures with a 320 

LVIL1β virus (Ryan et al., 2013). Further, we found that the complexity of newly-born neurons 321 

(as measured by the number of branch points on DCX+ cells) was negatively impacted by IL-322 

1β in the hippocampus, while the length of neurites on these DCX+ cells was unaffected. 323 

Previous studies have shown that treatment of embryonic rat hippocampal NPCs with IL-1β 324 

reduced neurite length on DCX+ cells in vitro (Green et al., 2012) and that chronic hippocampal 325 

overexpression of IL-1β in adulthood in rats reduced the neurite length of DCX+ cells (Hueston 326 

et al., 2018). These results indicate a differential effect of neuroinflammation on neurite length 327 

induced by IL-1β overexpression during the embryonic period, adolescence and adulthood. 328 
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While we focused on the use of DCX to identify the differentiation of new neurons as an 329 

indicator of neurogenesis, identification of the proliferation or survival of new neurons or glia, 330 

could be carried out in future studies by injecting the thymidine analogue BrdU to rats at 331 

relevant time points and performing immunohistochemistry with markers for mature neurons 332 

and glial cells. Measures could also be taken to identify cells that are undergoing apoptotic 333 

death in order to get a complete picture of the effects of neuroinflammation on the neurogenic 334 

process.  335 

 336 

We show that five weeks of hippocampal IL-1β during adolescence had no effect on 337 

performance in cognitive tasks. Pattern separation is believed to be dependent on AHN 338 

(Bekinschtein et al., 2013), and although we observed that hippocampal IL-1β overexpression 339 

during adolescence significantly reduced neurogenesis, pattern separation wasn’t impacted by 340 

this reduction in new neurons. This may be an age-dependent effect, since it has been well 341 

documented that reduced neurogenesis in adulthood impairs cognitive performance on 342 

hippocampal-dependent tasks, including pattern separation and spatial and object recognition 343 

(Hueston et al., 2018; Jessberger et al., 2009). This is especially likely given the differential 344 

effect of neuroinflammation induced by IL-1β overexpression across the lifespan as discussed 345 

above. New neurons born in younger stages of life are much the same as those born in later life 346 

in terms of their morphological structure (van Praag and Christie, 2015), however it has been 347 

reported that the maturation of these new neurons and their successful integration into the 348 

existing neuronal circuitry is impaired with age (Trinchero et al., 2017). One possible 349 

explanation for this is that age-dependent inflammation is involved (Kuhn et al., 2018), and IL-350 

1β is now established as one of the cytokines playing a key role in “inflammaging” (Franceschi 351 

et al., 2018). A decline in hippocampal-dependent cognitive functioning with age is well 352 
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documented (Yassa et al., 2011a), with the level of AHN also found to be related to cognitive 353 

performance in both humans and non-human primates (Aizawa et al., 2009).  354 

 355 

We injected IL-1β into the dorsal hippocampus since lesion studies in rodents have shown that 356 

the dorsal hippocampus plays a more predominant role in spatial learning and memory than the 357 

ventral region which is predominantly involved in regulating anxiety (Bannerman et al., 2002). 358 

For example, dorsal hippocampal lesions in rats hindered spatial memory acquisition on the 359 

Morris water maze (Moser et al., 1995), and impaired spatial memory on the radial arm maze 360 

(Pothuizen et al., 2004). On the other hand, ventral hippocampal lesions appear to have minimal 361 

impact on spatial memory tasks, but instead decrease behaviors linked to anxiety (Bannerman 362 

et al., 2014). In parallel, it has been reported that hippocampal neurogenesis might also be 363 

functionally segregated along its longitudinal axis whereby neurogenesis in the ventral 364 

hippocampus rather than the dorsal hippocampus is preferentially affected by stress and 365 

antidepressant drugs (O’Leary and Cryan, 2014; Tanti and Belzung, 2013).  As such, we 366 

hypothesized that any impact of IL-1β on neurogenesis in the dorsal region would in turn affect 367 

cognitive processes that are dependent on hippocampal neurogenesis (i.e. pattern separation) 368 

and that also have a spatial component (i.e. pattern separation, y-maze) and where previous 369 

studies have reported that lesions of the dorsal hippocampus disrupt performance in such tests 370 

(Hammond et al., 2004; Josey and Brigman, 2015; Lee et al., 2005). While it is somewhat 371 

surprising we that found no impact of IL-1β overexpression in the dorsal hippocampus on these 372 

cognitive tasks, we previously found that chronic IL-1β overexpression in the dorsal 373 

hippocampus of adult rats impaired behavioural pattern separation but had no effect on   374 

spontaneous alternation and novel object recognition, hippocampus dependent tasks not 375 

associated with neurogenesis.  Considering the role of inflammation and neurogenesis in stress-376 

related psychiatric disorders (Goshen et al., 2008; Hueston et al., 2017b; Levone et al., 2014; 377 



 
 

17 
 

Pereira et al., 2019; Yun et al., 2016) and the role of the ventral hippocampus in the regulation 378 

of anxiety and the stress response, it will be of interest for future studies to determine the impact 379 

of Il-1β overexpression in the ventral hippocampus on neurogenesis in this region and anxiety 380 

related behaviour. We report no impact of IL-1β on neurite length of newly-born hippocampal 381 

neurons; it is therefore possible that the unaffected neurite length in these animals may have 382 

conferred a degree of resilience to the effects of chronic IL-1β on cognitive tasks. 383 

 384 

Adolescence is a period during the lifespan when the brain is particularly vulnerable to 385 

perturbations such as stress (Hueston et al., 2017), and the long-lasting negative  386 

effects of disruptions during this time may leave individuals more susceptible to  387 

developing neurological disorders later in life (Mirescu et al., 2004), although further study is 388 

needed to validate this. Our current results are important given the clinical relevance of 389 

inflammation in disorders with impaired AHN (Ryan and Nolan, 2016). Neurodegenerative 390 

disorders such as Alzheimer’s and Parkinson’s disease, and neuropsychiatric disorders such as 391 

major depression, are linked with chronic neuroinflammation (Ben Menachem-Zidon et al., 392 

2008; Dursun et al., 2015; Maes et al., 2012), and have been shown to have modified levels of 393 

AHN (Winner and Winkler, 2015). Specifically, IL-1β has been found to be increased in the 394 

cerebrospinal fluid (CSF) of patients with severe depression (Levine et al., 1999) and in women 395 

with perinatal depression (Miller et al., 2019). There is some discrepancy in the literature 396 

however about whether IL-1β is increased (Blum-Degen et al., 1995) or unchanged (Martinez 397 

et al., 2012) in the CSF of AD patients compared to healthy individuals. However, IL-1β has 398 

been linked to the pathology of AD and has been shown to surround plaques of amyloid-beta 399 

in the brain, as well as aiding the deposition of plaques (Griffin et al., 1995; Heneka et al., 400 

2015).  It is also plausible that such local increases of IL-1β in the hippocampus would further 401 

stimulate other immune cells, thus inducing cytokine release and resulting in an overall chronic 402 
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inflammatory state (Netea et al., 2010), including in the CSF. Further, psychiatric disorders 403 

such as schizophrenia, which first become symptomatic during adolescence, have also been 404 

associated with alterations in AHN (Iannitelli et al., 2017), as well as inflammation (Müller et 405 

al., 2015).   406 

 407 

5.0 Conclusion 408 

Our data demonstrate that chronic inflammation during adolescence, a critical developmental 409 

period during the lifespan, has detrimental effects on hippocampal neurogenesis, but not on 410 

associated cognitive functions, nor on the length of neurites on newly-born neurons. We 411 

propose that newly-born neurons in the developing hippocampus during adolescence may 412 

confer resilience to inflammatory-mediated insults, such that hippocampal-associated 413 

cognitive function is not impacted. Harnessing newly-born neurons during adolescence for 414 

therapeutic gain is an exciting area for future research.  415 

 416 
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Figures 428 

 429 

Figure 1: Experimental timeline. Rats were injected with lentivirus overexpressing LVIL-430 

1βmCherry or LVmCherry alone as control. All rats underwent behavioral testing at weeks 4 and 5. 431 

 432 

Figure 2: Confirmation of viral transduction and microglial activation in response to IL-1β 433 

overexpression. Fluorescence intensity of mCherry (C) and IL-1β (F) and representative 434 

images of mCherry (A-B) and IL-1β (D-E; scale bar represents 100µm) five weeks after 435 

lentiviral injection with an IL-1β-overexpressing LVIL-1βmCherry virus. The number of IBA-1+ 436 

cells/µm2 (G) and representative images of IBA-1+ cells (H-I, scale bar represents 100µm) five 437 

weeks after viral injection. The somal size of IBA-1+ cells (J) and representative images (K-L, 438 

scale bar represents 5µm) are shown. *p<0.05, **p<0.001 relative to the control group; two-439 

tailed t-test, n=3.  440 

 441 

Figure 3: Overexpression of IL-1β reduced the number of DCX+ hippocampal neurons and 442 

negatively impacted on their complexity. The number of DCX+ cells/µm2 (A) and 443 

representative images of the number of DCX+ cells in the hippocampus five weeks after 444 

lentiviral injection (B-C, scale bar represents 100µm). The number of nodes/DCX+ cell (D) 445 

and tracings of the length of neurites on DCX+ cells (E-F, scale bar represents 10µm). The 446 

neurite length of DCX+ cells (G). *p<0.05, **p<0.001 relative to the control group; two-447 

tailed t-test, n=3.  448 

  449 

Figure 4: Five weeks of IL-1β overexpression in the hippocampus during adolescence had no 450 

effect on hippocampal-dependent memory processes. The number of alternations made in the 451 

Y-maze (A), the number of entries made into different arms of the Y-maze (B), performance 452 
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on a small (C) and large (D) acquisition separation, and discrimination in the modified 453 

spontaneous location recognition test (E), and novel object recognition (F). P > 0.05; two-tailed 454 

Student’s t-test; n = 10. 455 

 456 
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