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Abstract: Savannas are extremely important socio-economic landscapes, with pastoralist societies
relying on these ecosystems to sustain their livelihoods and economy. Globally, there is an increase of
woody vegetation in these ecosystems, degrading the potential of these multi-functional landscapes
to sustain societies and wildlife. Several mechanisms have been invoked to explain the processes
responsible for woody vegetation composition; however, these are often investigated separately at
scales not best suited to land-managers, thereby impeding the evaluation of their relative importance.
We ran six transects at 15 sites along the Kalahari transect, collecting data on species identity, diversity,
and abundance. We used Poisson and Tobit regression models to investigate the relationship among
woody vegetation, precipitation, grazing, borehole density, and fire. We identified 44 species across
78 transects, with the highest species richness and abundance occurring at Kuke (middle of the rainfall
gradient). Precipitation was the most important environmental variable across all species and various
morphological groups, while increased borehole density and livestock resulted in lower bipinnate
species abundance, contradicting the consensus that these managed features increase the presence of
such species. Rotating cattle between boreholes subsequently reduces the impact of trampling and
grazing on the soil and maintains and/or reduces woody vegetation abundance.

Keywords: conservation; fire; grazing; savanna; woody vegetation

1. Introduction

Unprecedented changes in climate, urbanization, and economic development are increasing the
pressures that societies are enforcing on ecosystems [1]. Developing sustainable ecosystem services is
subsequently a priority for conservation management, with savanna ecosystems a landscape of primary
concern. Savannas are mixed plant communities comprised of grasses and woody vegetation that cover
approximately a quarter of the Earth’s land surface, including roughly half of the African continent [2].
Savannas are an extremely important socio-economic landscape in Africa, with over 80% of savanna land
used to raise livestock [3], underpinning the economic stability of many countries [4,5]. The dynamic
nature of savannas means they are susceptible to changes, particularly shifts in plant community
composition associated with an increase in woody vegetation [6,7]. A particularly concerning aspect of
this increased density of woody vegetation is the reduction of grasses and herbs by encroaching woody
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species. These negative impacts are occurring at an increasingly frequent rate worldwide [8–10], which
is a major threat to the ecosystem stewardship of these economically important landscapes.

The transition of savanna ecosystems to open shrubland across Botswana, and in particular the
western part of the Kalahari, presents a considerable threat to the conservation of the economically
important ranching industry. In order to develop adaptive management strategies, the underlying
environmental drivers of woody vegetation species need to be better understood. By understanding the
environmental drivers responsible for the diversity and abundance of woody vegetation, we can develop
predictive models to identify ‘high-risk’ areas, and provide managers, farmers, and governments with
decision support across savanna landscapes. Previous research addressing the ecological processes
responsible for the observed vegetation patterns have often found conflicting results regarding the
importance and significance of these environmental drivers [11–15], thus limiting the use of this
knowledge as the basis for decision-making at a landscape scale. These differences will be discussed
below in the context of savanna ecosystems.

1.1. Precipitation

Rainfall affects water availability, and this factor has been described as the most important
determinant describing woody vegetation communities, particularly as it limits the amount of primary
productivity within an area [16–20]. For example, in a continental study of African savannas,
Sankaran et al. [16] identified that woody cover increased linearly with mean annual precipitation
(MAP) above 150 mm until maximum woody cover was reached at 650 mm. Similarly, in a pot
experiment studying the growth of Acacia (new Senegalia and Vachellia classifications) species, Kraaij
and Ward [19] found that rainfall frequency was the most important factor affecting both germination
and survival of seedlings. Joubert et al. [21] also found that at least two successive seasons of favorable
rainfall was required for seed recruitment in Senegalia mellifera. While precipitation intensities [22],
season lengths [23], and interactions with other factors (e.g., grazing [24]) all influence woody
vegetation cover, the consensus is that MAP is the primary factor contributing to woody vegetation
cover [10,16–20].

1.2. Grazing

The influence of grazing pressure as a driver for increased woody vegetation cover is a long
established theory. Walter’s [25] two-layered hypothesis proposes that in savannas, grasses dominate
the top-most soil layers, while tree roots dominate lower layers. When grazing removes the grass cover,
tree roots begin to dominate the upper layers and prevent the grasses from reestablishing. Studies
have proven inconclusive for the two-layer hypothesis, finding evidence both in support [26–28] and
in opposition [29–31]; however, while this theory is still accepted, the current consensus is that this
hypothesis is too simplistic to represent the complex dynamic savanna processes [17].

1.3. Trampling

Another explanation for the increased abundance of woody vegetation is the effect of trampling.
Trampling from the high frequency and density of pastoral farming causes significant declines in
cyanobacterial soil crust [32,33]. Savannas are characterized by low soil nutrient content [34–36],
although many areas have biological soil crusts that increase soil surface stability, thereby reducing
nutrient loss by erosion and atmospheric nitrogen fixation [33]. Studies have found that the soil crust
is greatly influenced by this pastoral trampling within 2 to 8 km of boreholes [37], and that Acacia (new
Senegalia and Vachellia classifications) species are often found in higher abundances within areas closer
to boreholes, due to their low palatability and the positive species-specific association between canopy
and soil crust development [38]. Boreholes are narrow shafts drilled into the ground in order to extract
water and are the primary source of water for livestock farmers in southern Africa. Furthermore,
cattle rarely stray more than 13–18 km from these water sources in Africa [39], meaning areas closer to
boreholes may have increased woody vegetation cover.
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1.4. Fire

Fire is a factor that restricts woody vegetation diversity and abundance, preventing the formation
of canopies [40–42] as well as removing seedlings and subsequently preventing the establishment of
new trees [43]. Furthermore, for certain species fire can also kill the larger trees [44,45]. Seymour and
Huyser [45] found that infrequent fires were enough to kill established Vachellia erioloba trees, which
are an important keystone species in the region, meaning an increase in fire frequency could have
implications on biodiversity. In unmanaged areas, the build-up of large quantities of grass biomass in the
understory results in high-intensity fires that are capable of destroying juvenile trees [46]. For example,
Sankaran et al. [11] studied the effect of fire return intervals on the percentage of woody cover in African
savannas and found that a shorter return interval reduced established woody cover, which kept the
community in a juvenile state by ‘top-killing’ seedlings. In managed landscapes, fires are not as frequent
or intense enough to have a discernible impact on mature trees [40], and a common feature of savannas is
the reduction of fires due to mitigation strategies [47]. However, Joubert et al. [48] note that fire is crucial
to disrupt transition from grassy savanna to thicket, and that managers who prevent fires at this stage
are likely to experience bush thickening in the future.

1.5. Research Gap and Questions

Variation in species characteristics is fundamental to understanding biogeographic patterns [49].
One reason for the possible lack of conclusive evidence explaining the main drivers of different
woody vegetation patterns in previous research is the variation in how vegetation has been measured
(e.g., single species, multiple species, richness, percent woody cover), as well as the differences in
spatial scales of the previous studies (ranging from garden experiments to coarse continental extents).
Assessing diversity as total species richness does not always adequately characterize the way in which
species differ from each other, and it is these differences in traits, which often indicate that species
respond in different ways to changes in the environment [50,51]. Alternatively, studying only one
species in isolation could lead to species-specific results that are not generalizable to the larger system
or to other species. Several mechanisms (outlined above) have been invoked to explain the processes
responsible for woody vegetation composition; however, these are often investigated separately at
scales not best suited to land-managers, thereby impeding the evaluation of their relative importance.

Subsequently, this study focuses on the vegetation composition of the Botswana Kalahari, with the
aim to investigate the relative influence of the environmental drivers of woody vegetation at a regional
scale. By classifying species into morphological groups based on shared physiological traits, the drivers
of woody vegetation richness and abundance can be interpreted more meaningfully at a regional
scale that is more appropriate for landscape management decisions. This study will explore three
main questions: (1) what is the woody vegetation composition of the Kalahari in western Botswana?
(2) What are the environmental drivers of woody species richness? and (3) what are the environmental
drivers of woody species abundance?

2. Materials and Methods

2.1. Study Area

We conducted our research in western Botswana between 2009 and 2011 (Figure 1). We created
a 950 km transect following the observed rainfall gradient along the western part of the Kalahari.
This transect ran from Shakawe in the northwest of the country to Bokspits in the southwest of the
country. Rainfall along the transect decreases from the north to south, ranging from a MAP of 550 mm
to 350 mm [52]. Along this transect, we identified 15 regions (Figure 1) where we conducted multiple
vegetation surveys. We selected regions on their accessibility and a minimum distance of 75 km to the
previous region.
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Figure 1. Location of the 15 regions along the Kalahari Transect where fieldwork was undertaken. 

2.2. Data Collection 

Vegetation was surveyed using the line interception transect (LIT) method. Within each region, 
we fixed six 100 m transects radially from a center point. For the dry season, the direction of the first 
transect was determined by a random number (between 0 and 360), and the further two transects 
were offset by 120 degrees. Transects of the wet season were spaced exactly between dry season 
transects, resulting in an offset of 60 degrees from the very first transect laid. Transects were placed 
200 m from the center point to avoid over-sampling a small area. See Krebs [53] for a further 
description of the LIT methodology. We recorded all woody vegetation that was taller than 25 cm 
following the nomenclature provided by Palgrave [54], whereby average height, distance covered 
over the transect line, and distance and direction of the stem(s) were documented. Species richness 
and abundance were recorded at all transects, and species identity were recorded at all sites, with the 
exception of the wet season transects at Sites 1, 3, 4, and 5 due to uncertain species identification 
resulting from missing leaves. The results of the vegetation survey meant we had data from 78 
transects for use in the statistical analysis. 

Species were categorized into five morphological groups based on the classification guidelines 
outlined by Meyer et al. [55]. Morphological group I consisted of species characterized by bipinnate 
leaf structures and growth form ranging from multi-stemmed shrub like appearance to single-
stemmed trees. Morphological group II included broad leaf species forming dense canopy structures 
where the majority of the growth form is either multi-stemmed (generally less than five stems) or 
single-stemmed. Morphological group III contained multi-stemmed broad leaf shrubs with closed 
canopies, seldom exceeding 2 m in height. In contrast, morphological group IV contained shrub 
species characterized by open canopies. Morphological Group V included relatively short shrub 
species (<1.5 m) with small, open canopies (<0.5 m in diameter). We also obtained data on 
precipitation, fire frequency, cattle density, and borehole locations that represent the possible drivers 
of diversity and abundance of woody vegetation (Table 1). 
  

Figure 1. Location of the 15 regions along the Kalahari Transect where fieldwork was undertaken.

2.2. Data Collection

Vegetation was surveyed using the line interception transect (LIT) method. Within each region,
we fixed six 100 m transects radially from a center point. For the dry season, the direction of the first
transect was determined by a random number (between 0 and 360), and the further two transects were
offset by 120 degrees. Transects of the wet season were spaced exactly between dry season transects,
resulting in an offset of 60 degrees from the very first transect laid. Transects were placed 200 m
from the center point to avoid over-sampling a small area. See Krebs [53] for a further description
of the LIT methodology. We recorded all woody vegetation that was taller than 25 cm following the
nomenclature provided by Palgrave [54], whereby average height, distance covered over the transect
line, and distance and direction of the stem(s) were documented. Species richness and abundance
were recorded at all transects, and species identity were recorded at all sites, with the exception of
the wet season transects at Sites 1, 3, 4, and 5 due to uncertain species identification resulting from
missing leaves. The results of the vegetation survey meant we had data from 78 transects for use in the
statistical analysis.

Species were categorized into five morphological groups based on the classification guidelines
outlined by Meyer et al. [55]. Morphological group I consisted of species characterized by bipinnate
leaf structures and growth form ranging from multi-stemmed shrub like appearance to single-stemmed
trees. Morphological group II included broad leaf species forming dense canopy structures where the
majority of the growth form is either multi-stemmed (generally less than five stems) or single-stemmed.
Morphological group III contained multi-stemmed broad leaf shrubs with closed canopies, seldom
exceeding 2 m in height. In contrast, morphological group IV contained shrub species characterized by
open canopies. Morphological Group V included relatively short shrub species (<1.5 m) with small,
open canopies (<0.5 m in diameter). We also obtained data on precipitation, fire frequency, cattle
density, and borehole locations that represent the possible drivers of diversity and abundance of woody
vegetation (Table 1).
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Table 1. Description of the environmental drivers used to explore the diversity and abundance of
woody vegetation in western Botswana.

Variable Description Source

Mean Annual Precipitation We derived mean annual precipitation (MAP) from the isopleth
vector data representing rainfall conditions across the Kalahari. [56]

Fire Frequency
We derived fire frequency using the MODIS direct broadcast burned

area product (MCD64A1) as described in Giglio et al. [57]. Fire
frequency product and generation outlined in Appendix A.

[58]

Grazing
We identified density of cattle using the latest available Department
of Wildlife and National Parks aerial counts of wildlife. This survey

was conducted during the dry season of 2005.
[59]

Borehole Density We counted the number of boreholes within an eight-kilometer
(based on Dougill et al. [37]) radius. [60]

2.3. Data Analysis

We performed regression analysis in order to explore the environmental drivers of woody species
richness and species abundances. Environmental variables were checked for multicollinearity using
variance inflation factor, then standardized using z-scores in order to compare their relative influence
on the ecological indicators. We performed all regression analyses using R 3.3.0. [61]. We selected
regression analyses based on a preliminary evaluation of the data and their error distribution. Histogram
exploration identified a mixture of Poisson and censored Gaussian distributions. We subsequently
used a combination of generalized linear models with Poisson error distributions and Tobit regression
models to analyze our data. For data that had a Poisson distribution, a Generalized Linear Model
procedure with a Poisson error distribution and a log link function was used:

log(y) = β0 + β1X1 + . . .+ βnXn (1)

where y is the abundances, Xn is the nth predictor, and βn is the Poisson regression coefficient.
A censored Gaussian distribution represents a dataset that has a normal error distribution, but has

some limit, either from below or above. Ecological data is often collected with a large proportion of
the observations just above zero, while data cannot extend below zero or above certain thresholds
(e.g., percentage cover). Tobit regression overcomes this bias and has been shown to perform better
than ordinary least squares (OLS) (e.g., [62]) and is widely used in criminology (e.g., [63]) and land use
change research (e.g., [64]). Species richness of woody vegetation is censored at zero (i.e., there cannot
be a species richness of −1), and so any parameter estimates obtained by conventional OLS would
be biased. Developed by Tobin [65], the Tobit regression model fits a set of parameters to where the
dependent variable is left-censored at zero:

y∗i = xiβ+ εi (2a)

yi =

{
0 if y∗i ≤ 0
y∗i if y∗i > 0

(2b)

where the subscript i = 1, 2, 3 . . . n, indicates the observation, y∗i is an unobservable variable, xi is
a vector of explanatory variables, β is a vector of unknown parameters, and εi is the error term.
To estimate the censored regression models, we used the censReg [66] and MaxLik [67] packages.
Final models were selected based on Akaike Information Criterion (AIC) using both forwards and
backwards stepwise selection of models. We investigated third and fourth order interactions, but these
did not improve the final models. Therefore, our final models only include main effects and second
order interactions.
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3. Results

3.1. Woody Vegetation Surveys

We identified 44 woody plant species across the 78 transects where taxonomic information was
recorded. We recorded the highest diversity at Kuke (site 7), with 21 species found in all six transects in
the region (Figure 2a), and 13 species found along transect four during the wet season. In general, both
richness and abundance decreased as data collection moved southwards which follows the precipitation
gradient, although Kuke is the notable exception. We recorded the lowest total abundances for all six
transects at NG5 (Site 6) and Bokspits (Site 15) and the highest abundances at Quangwa (Site 4) and
Kuke (Site 7) (Figure 2b). Supplementary Information provides the data which includes geographic
location (WGS 1984), a list of species recorded, and their morphological classification. We recorded
eight species in Morphological Group I (bipinnate leaf structure), fourteen species in Morphological
Group II (tall dense canopies), fifteen species in Morphological Group III (small dense canopy species),
five species in Morphological Group IV (tall open canopies), and two species in Morphological Group
V (small open canopies). Due to the low number of species recorded in Morphological Group V, these
were withheld from the statistical analysis to prevent any generalization or over-fitting of the models.
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Figure 2. Total (a) woody vegetation species richness and (b) woody vegetation species abundance
summed across the six transects at each of the 15 zones across the Kalahari Transect, plotted against
annual precipitation (mm). Sites listed (1) Shakawe, (2) Tsodilo, (3) Gumare, (4) Quangwa, (5) Drotsky’s
Caves, (6) Ng 5, (7) Kuke, (8) Ghanzi, (9) Ghanzi South, (10) Bere, (11) Tshane, (12) Tshane South,
(13) Mabuasehube, (14) Tsabong, and (15) Bokspits.
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3.2. Regression Analysis

Our results indicated a number of important drivers of woody vegetation species richness and
abundance (Table 2). Precipitation was the most important environmental variable when we considered
all species together for both richness and abundance with borehole density and fire included in the
final models. When species were deconstructed into morphological groups, we observed a variety of
significant environmental drivers and interactions between these variables (** significant at α < 0.01,
* significant at α < 0.05). The relative importance of each environmental driver often changed when
we compared the regression models for richness and abundance of the same morphological group,
indicating that the processes that determine diversity are different from those determining abundance.
Boreholes were the most important driver for morphological groups II abundance and III richness,
while livestock was the most important driver for morphological group IV abundance.

Table 2. Regression output for species richness (SR) and abundance (AB) for the four Morphological
Groups (MG). ** significant at α < 0.01, * significant at α < 0.05. Tobit (T) and Poisson (P) regression
analysis undertaken based on distribution of data.

Total SR Total AB MG I
SR

MG I
AB

MG II
SR

MG II
AB

MG III
SR

MG III
AB

MG IV
SR

MG IV
AB

Regression T T T P T P T P P P

AIC 319.72 597.98 218.54 398.95 223.60 588.33 226.76 450.45 126.61 488.37

Intercept 5.66 ** 20.05 ** 0.92 ** −1.81 1.18 ** −0.05 1.00 0.34 −40.69 −4.67

PPT 1.32 ** 11.07 ** −0.40 ** 1.71 ** 3.51 ** 2.36 ** 0.92 ** −0.01 −27.03 −4.32

Boreholes −0.57 ** −1.85 ** −0.31 4.06 ** −1.65 ** −3.24 ** −2.78 ** −2.51 ** 51.60 −0.04

Livestock −12.97 1.14 ** 2.04 ** 1.62 ** 1.87 ** −132.0 −10.02

Fire −3.16 ** −0.20 −9.96 −0.60 ** −0.61 ** 0.39 −14.52 0.13

PPT * Boreholes 0.56 ** 5.80 ** −2.83 ** 56.83

PPT * Livestock −2.59 ** 4.17 ** 2.37 ** 0.79 1.68 ** −109.8 −8.30

PPT * Fire −0.46 ** 0.28 0.29 ** −2.44

Boreholes * Livestock −5.05 ** 1.86 ** 1.31 2.82 **

Boreholes * Fire −0.76 1.19 −27.79

Livestock * Fire −18.08

logSigma 0.57 ** 2.28 ** −0.01 0.27 ** 0.07

Precipitation and borehole density were included in all final models for every morphological
group, while livestock was not important when all species were considered together, but included for
all morphological groups (both richness and abundance) with the exception of morphological group I
richness. Similarly, fire frequency was included for most morphological groups, with the exception of
morphological group III and total species richness. Several two-way interactions were returned across
the different models, and these were often significant. Morphological groups I and III abundance
had the most interactions among all variables, suggesting these species have a complex and dynamic
relationship with the environment.

Precipitation was a significant variable in all final regression models for species richness and
abundance for all but three morphological groups, and it was the most important variable for total
species richness and abundance, and morphological group I richness (Table 2). Precipitation had
a positive relationship with species richness for morphological groups II and III, and abundance
for morphological group II. This relationship was expected since these groups are characterized by
dense canopy broad leaf species resulting in higher Leaf Area Index (LAI) and hence higher water
requirements [68]. A negative relationship for morphological group I (bipinnate species) richness
and rainfall was identified. This could be due to the fact that in xeric environments such species
outcompete the majority of broad-leaved vegetation due to their general morphological characteristics
and ecological traits (such as long root traps [69]), meaning the diversity of these species increases in
arid areas where other water-dependent species simply cannot survive.
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Livestock density was not included in the final model as selected by AIC when all species
were considered together, but it had a positive relationship with morphological groups II and III
(Table 2). Small dense canopy species such as Grewia spp, Rhus tenuivirus and Ziziphus mucronata notably
have relatively low palatability [70]. Thus, if these species were already established when grazing
increased in the area, they would not be affected by livestock. It was also the most important variable in
determining abundance of morphological group IV (tall open canopy), reporting a negative relationship.
Borehole density also had the most influence in determining both abundance of morphological group
II and richness of morphological group III, forming a negative relationship with both ecological
indicators. Boreholes also had a negative relationship with all response variables with the exception
of morphological group I abundance. However, the interaction between boreholes and livestock
density was significant for morphological group I abundance, indicating a negative relationship.
This interaction was also significant for morphological groups II and III (although positive). These
findings contradict previous research, and indicate that broad leaf species thrive in locations where
there are more cattle and boreholes, while bipinnate species decrease. Fire had a negative influence on
both richness and abundance at a regional scale (Table 2). Fire was generally negatively correlated to the
overall abundance of woody species, but had a positive relationship with abundance of morphological
groups III and IV, albeit not significant.

4. Discussion

Following the global trend in the conversion of savanna landscapes to woodier landscapes [7,27],
the aim of this research was to investigate the variables responsible for woody vegetation composition
in the western Kalahari, in particular those that cause high diversity and abundance of these species.
We identified a variety of environmental drivers that are responsible for high diversity and abundance
of woody vegetation, most notably precipitation, borehole density, grazing, and fire.

Our results generally agree with the observation that the rainfall gradient of the Kalahari is
associated with an increase in woody vegetation [16–20]. Interestingly, the highest species richness
was recorded at Kuke (Figure 1—Site 7), where the annual precipitation is 450 mm (in the middle of the
rainfall gradient). The substantially higher species richness at Kuke can be explained by the site being
located in an area buffering the Ghanzi farm-block to the south and the wildlife areas to the north.
Both livestock and wildlife numbers are low here, and furthermore, fires have not occurred in this area
due to both fire prevention strategies and the existence of the veterinary cordon fences acting as fire
breaks. Therefore, our results indicate that while rainfall has a strong influence on woody vegetation,
other factors also contribute significantly.

Our findings corroborate the positive association of bipinnate abundance (morphological group
I) in areas close to boreholes [38], as well as an overall reduction in woody vegetation cover [71].
The negative relationship with small dense species is intuitive, as trampling loosens the soil and
prevents these species from rooting. However, when grazing is high, the significant negative interaction
between borehole density and grazing with bipinnate abundance contradicts the existing theories
behind woody vegetation patterns. This relationship is a result of the fact that a higher number of
boreholes and cattle represent more managed commercial ranches where cattle are routinely rotated
between fields, and the regular use of multiple boreholes by the livestock negates the impact of
trampling on the soil. This subsequently reduces the rate of bush encroachment by the unpalatable and
thorny bipinnate species, and a positive relationship with other morphological groups is observed.

The negative relationship between fire frequency and woody vegetation corroborates observations
from other dryland ecosystems [9,41] and supports a mechanistic understanding of the effect of fires
in mixed tree-grass plant communities [40,72–74]. These findings support the observations at Kuke,
that absence of fire does increase vegetation diversity and abundance (particularly for smaller species),
and that the removal of fire from a landscape could increase bush thickening [49]. However, when fire
was included in the models, it was seldom the most important variable (Table 2), with the exception of
a positive interaction between livestock and fire when modelling morphological group I abundance
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(albeit not significant). While diversity and abundance did decrease, the lesser impact compared to
the other environmental variables suggests that frequent fires may not have such severe implications
on the ecosystem’s biodiversity as proposed [45]. However, the MODIS MCD64A1 product used in
this study ([57]; Appendix A) does not account for fire intensity which could still negatively impact
the landscape.

The deconstruction of species into morphological groups that are internally homogenous provided
an opportunity for an improved understanding of the processes that underlie the patterns [50]. Despite
this, in savanna ecosystems, research has focused on individual species (e.g., [21,24,45]) where findings
are generally not always scalable to the wider ecosystem as species do exhibit idiosyncratic responses
to the environment [75]. Subsequently, we feel that our analysis has related the importance of
environmental drivers on the structure and physiological properties of the species, while it is not so
specific that we cannot generalize processes to a scale that is useful for land managers.

It should also be noted that other factors may influence woody vegetation patterns. Topographic
heterogeneity [76], atmospheric carbon [46], and harvesting [77] have all been found to influence
woody vegetation communities. These factors were excluded due to the topographically homogenous
landscape under study, and the fact that regional data on carbon and harvesting are difficult to obtain;
however, future research should continue to explore the impact of these factors. We also investigated
time since last fire as a variable in the regression analysis; however, fire frequency was found to have
more influence on woody vegetation patterns and was subsequently the only fire variable retained
in the final models to prevent any issues of multicollinearity. Similarly, we measured grazing as
density of cattle recorded from aerial surveys, although grazing could be represented using intensity
(e.g., quantification of herbaceous tissue removal or an assessment of high, medium, or low). However,
available data on such features was not available to this study. Recently, the statistical effects of spatial
autocorrelation have been noted [78] and methods to incorporate and explore this into regression
models have become more common [79–81]. However, we made the decision not to incorporate spatial
autocorrelation in our analysis so that discussion could focus specifically on the environmental factors
across the transect.

We used a combination of generalized linear models with Poisson error distributions and Tobit
regression models to analyze our data. Biodiversity indicators such as species richness and abundance
often exhibit distributions that are unsuitable for a number of statistical techniques. The literature
surrounding the use of statistical analyses that do not account for lower limits to explore ecological
questions is perhaps part of the reason we still have ambiguity surrounding the drivers of woody
vegetation in savanna ecosystems. While our results corroborate the existence of well-established
biodiversity-environment relationships (e.g., positive relationship with MAP), we also identified several
novel biodiversity-environment relationships from the Tobit models (e.g., positive relationships with
livestock). Subsequently, research should continue to explore more suitable statistical methodologies
with which to analyze ecological data so that any management strategies implemented from findings
are better informed.

5. Conclusions

Savannas are an extremely important socio-economic landscape in Africa. These landscapes are
inherently multi-functional, balancing the needs of pastoral societies with conservation of these dynamic
ecosystems. Global trends of savanna to shrubland conversion [6,7] will have important ecological
and economic consequences. Here we investigated the impact of regional scale environmental drivers
(a scale that is more relevant to governments and land managers across Africa and beyond) on woody
vegetation diversity and abundance. Data on over 44 species was collected over a two-year period at
fifteen sites along the Kalahari transect. At each site, six 100 m transects recorded diversity ranging
from one species to thirteen species, and abundance ranging from two individuals to 62 individuals.
A mixture of Poisson and Tobit regression models identified that rainfall was the most important
environmental variable when all species were considered equally, corroborating previous research
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conducted at continental [11,16] and garden [17,19] scales. Interestingly, bipinnate species abundance
decreased with increasing boreholes and livestock. These results contradict the consensus that borehole
density and grazing increase the presence of such species, and suggest that by rotating cattle between
boreholes, the impact of trampling and grazing on the soil is reduced and savanna landscapes are
maintained. The deconstruction of species into different morphological groups provided better
insights into the differences in the ways woody vegetation responds to environmental factors, and
this deconstruction could aid in reconciling the divergent hypotheses surrounding woody vegetation
patterns in savanna ecosystems, as all variables had a significant relationship with richness and
abundance across all morphological groups. The results of this research should support land managers,
governments and researchers working in transitional savanna landscapes worldwide.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-445X/8/8/122/s1, Data.
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Appendix A Derived Burned Area Product

The MODIS MCD64A1 (LP DAAC 2010b) burned area product as described by Giglio et al. (2009)
was used to determine the fire locations and fire frequency across Botswana from year 2001 to 2011.
Fire frequency was calculated on a per pixel basis based on MODIS derived fire events, with frequency
ranging from no fire to a maximum of eleven fires recorded for the northern part of the country along
the northern border with Namibia. Due to fire frequency having more influence on vegetation than
time since last fire, the estimated uncertainty in date of burn was not incorporated in the fire frequency
product as this does not impact the output. Figure A1 shows that most areas that burned have a fire
frequency between one fire and three fires for the observed time frame. Most of these areas are located
in the northern and central parts of the region. Across all field sites, fire frequency ranged from 0–6,
with a total of eight sites having been affected at least once during the time period. Return intervals for
fire occurrences seem to be higher at the northern site locations (sites 1–6) while all central to southern
sites (sites 7–15) with the exception the Bere and Tshane South (site 10 and 12) were unaffected by fire.
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