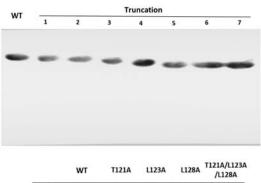
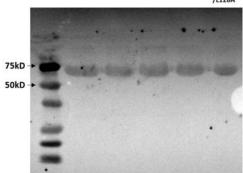
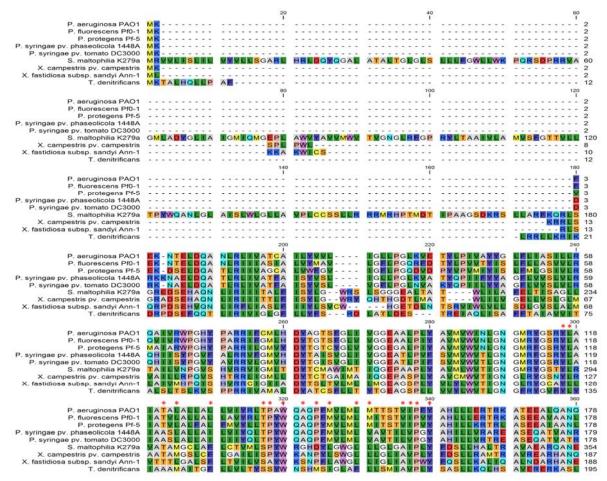


Title	Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues
Authors	An, Shi-qi;Murtagh, Julie;Twomey, Kate B.;Gupta, Manoj K.;O'Sullivan, Timothy P.;Ingram, Rebecca;Valvano, Miguel A.;Tang, Ji-liang
Publication date	2019-05-27
Original Citation	An, Sq., Murtagh, J., Twomey, K. B., Gupta, M. K., O'Sullivan, T. P., Ingram, R., Valvano, M. A. and Tang, J. L. (2019) 'Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues', Nature Communications, 10, 2334 (11pp). doi: 10.1038/ s41467-019-10271-4
Type of publication	Article (peer-reviewed)
Link to publisher's version	10.1038/s41467-019-10271-4
Rights	© 2019, the Authors. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ - https:// creativecommons.org/licenses/by/4.0/
Download date	2025-04-17 17:37:21
Item downloaded from	https://hdl.handle.net/10468/8613

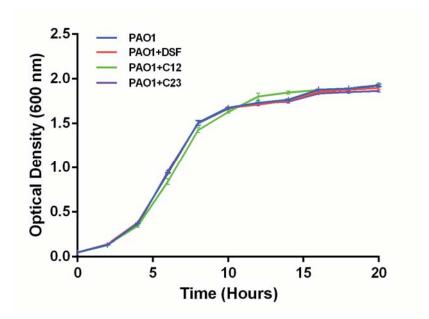

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

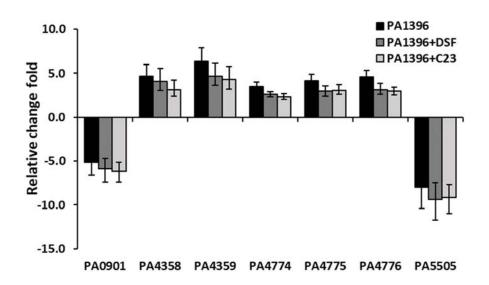

Supplementary Information

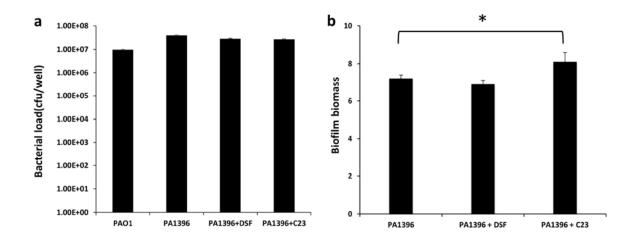
Modulation of antibiotic sensitivity and biofilm formation in *Pseudomonas aeruginosa* by interspecies signal analogues

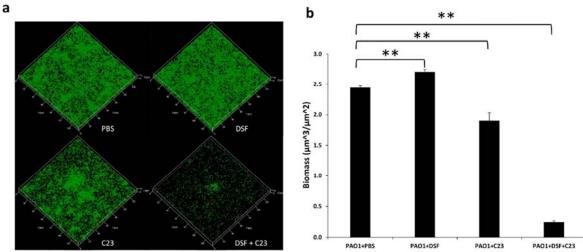

Shi-qi An, et al.

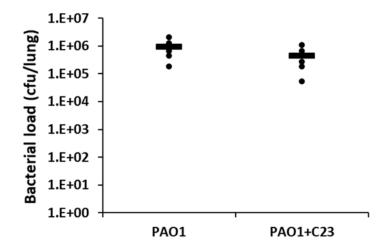
*Correspondence: s-q.an@soton.ac.uk (SA); m.valvano@qub.ac.uk (MAV); jltang@gxu.edu.cn (JLT)

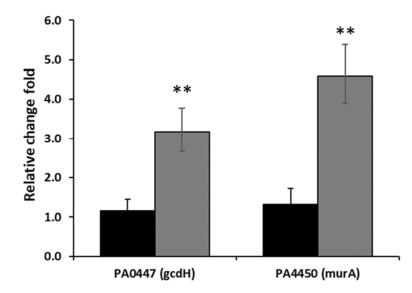


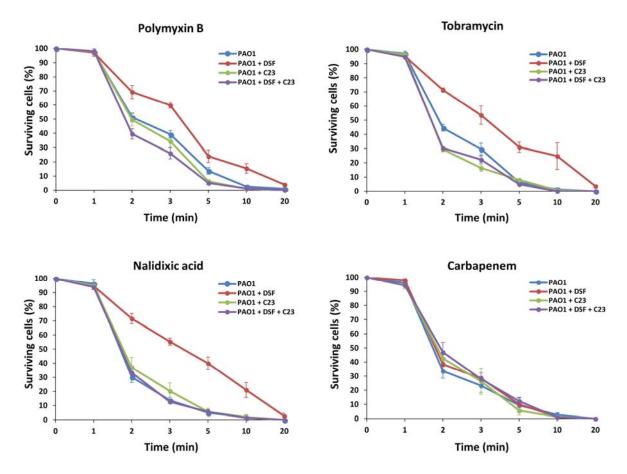

Supplementary Figure 1. Western blot analysis with an anti-His₆ antiserum (abcam, ab1187, 1:1000 dilution) shows that all variant and truncated PA1396 proteins are expressed in *Pseudomonas aeruginosa*. Top panel: Lanes: 1, PAO1 (PA1396His₆); 2, PAO1 (PA1396-035His₆); 3, PAO1 (PA1396-040His₆); 4, PAO1 (PA1396-082His₆); 5, PAO1 (PA1396-104His₆); 6, PAO1 (PA1396-136His₆); 8, PAO1 (PA1396-143His₆). Bottom panel: Lanes: 1, PAO1 (PA1396-His₆); 2, PAO1 (PA1396-136His₆); 3, PAO1 (PA1396-His₆); 2, PAO1 (PA1396-T121A-His₆); 3, PAO1 (PA1396-L123A-His₆); 4, PAO1 (PA1396-T121A/L123A/L128A-His₆).

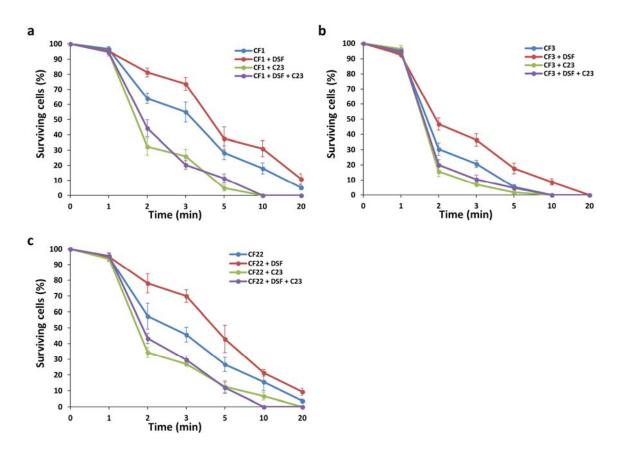

Supplementary Figure 2. Amino acid sequence comparisons between the input domain (amino acid residues 1–187) of RpfC from *Xcc* strain 8004, which is implicated in DSF perception, with input domains of sensor kinases from other bacteria including PA1396 of *P. aeruginosa*. The sequences were obtained from both complete and incomplete microbial genomes using the website at The Institute for Genomic Research (TIGR) at <u>http://www.tigr.org</u>, and were aligned using CLC workbench software. Residues with similar properties are boxed within the same colour. Residues with asterisks indicate those that were altered to alanine to test for a role in DSF perception.

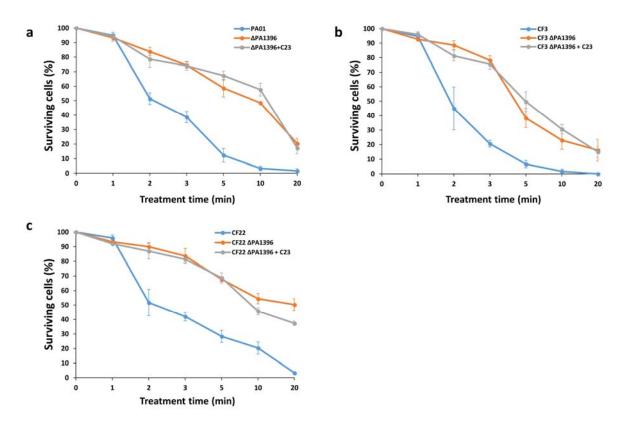

Supplementary Figure 3. Effects of DSF or DSF analogues on growth of *P. aeruginosa* PAO1 as measured by OD at 600 nm. Bacteria were grown in minimal medium at 37 °C with shaking in the presence of 10 μ M of the different compounds. The observed values were not significantly different from the appropriate wild-type (p<0.05, ANOVA).

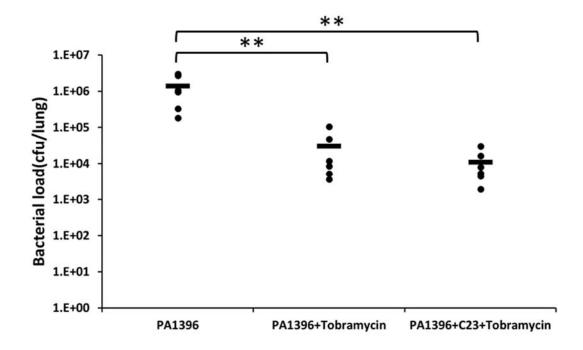

Supplementary Figure 4. Effects of addition of DSF or C23 on expression levels of selected genes in the *PA1396* mutant as measured by qRT-PCR. The genes studied (*PA0901*, *PA4358*, *PA4359*, *PA4774-PA4776* and *PA5505*) were previously implicated in the response of the wild-type to DSF. The qRT–PCR data were normalised to *proC* and are presented as the fold change with respect to the wild-type for each gene. Data (means \pm standard deviation) are representative of three independent experiments. The observed values were not significantly different from the appropriate wild-type (p<0.05, Student's t test).


Supplementary Figure 5. (a) Effect of DSF and C23 on attachment of the *PA1396* mutant to CFBE epithelial cells. For these experiments, compounds (0.5 μ M) were added to the co-culture at 1h and bacterial attachment to the CFBE epithelial cells was measured after 24 h (see Materials and Methods). (b) Effect of DSF and C23 (0.5 μ M) on attachment of the *PA1396* mutant on to a glass surface as assessed by crystal violet staining. Biofilm biomass is measured as a ratio of absorbance at 550 and 600 nm. Data (means ± standard deviation) are representative of three independent experiments. The means and standard deviations of triplicate measurements are shown. A *p* value of <0.05 was considered statistically significant and is designated in the figures with an asterisk. Double asterisks indicate *p* values of <0.01.


Supplementary Figure 6. Effect of DSF and C23 on biofilm formation of PAO1 developed in µ-well chambers. For these experiments, compounds (0.5 µM) were added to in ABTGC media and biofilms were developed for 16 h in µ-well chambers. (a) Confocal laser scanning microscopy images of biofilms. (b) The biofilm biomass was quantified using COMSTAT. Data are presented as the average of four technical replicates, with error bars representing the standard deviation of the data. A p value of <0.05 was considered statistically significant and is designated in the figures with an asterisk. Double asterisks indicate p values of <0.01.


Supplementary Figure 7. Administration of C23 to mouse airway infection by *P. aeruginosa* PAO1. Here C57BL/6 mice were infected intranasally with 1×10^7 CFU PAO1 and treated by inhaling PBS with or without 50 μ M of C23. After 24 hours infection, the mice were harvested, and bacterial loads were determined in lung homogenates. Each data point shows the results from an individual mouse. The observed values were not significantly different from the appropriate wild-type (p<0.05, Student's t test).


Supplementary Figure 8. Effect of addition of C23 to wild-type *P. aeruginosa* on expression levels of selected genes implicated in virulence and biofilm formation as measured by qRT-PCR. Transcript levels of *gcdH* (PA0447) and *murA* (PA4450) were examined. The qRT–PCR data were normalised to *proC* and is presented as the fold change with respect to the wild-type for each gene. Data (means \pm standard deviation) are representative of three independent experiments. A *p* value of <0.05 was considered statistically significant and is designated in the figures with an asterisk. Double asterisks indicate *p* values of <0.01.


Supplementary Figure 9. Effect of addition of DSF and C23 alone or in combination on tolerance of *P. aeruginosa* PAO1 to antibiotics. Time-courses of killing of *P. aeruginosa* by polymyxin B $(4 \ \mu g \ ml^{-1})$, tobramycin $(2 \ \mu g \ ml^{-1})$, nalidixic acid $(10 \ \mu g \ ml^{-1})$ and carbapenem $(10 \ \mu g \ ml^{-1})$ were established for bacteria suspended in sodium phosphate buffer. Bacteria for these experiments were grown in BM2 medium with glucose supplemented with 2 mM Mg²⁺. DSF and C23 were added to these cultures to a final concentration of 50 μ M. Data (means ± standard deviation) are representative of three independent experiments. The observed values of addition of DSF and C23 were significantly different from the appropriate wild-type with addition of DSF in polymyxin B, Tobramycin, Nalidixic acid treatment. (p<0.05, ANOVA).

Supplementary Figure 10. Effect of addition of DSF analogues on the tolerance to polymyxin B of selected *P. aeruginosa* clinical isolates CF1 (a), CF3 (b) and CF22 (c). Time-courses of killing by $4 \ \mu g \ ml^{-1}$ polymyxin B were established for bacteria suspended in sodium phosphate buffer. Bacteria for these experiments were grown in BM2 medium with glucose supplemented with 2 mM Mg²⁺. When required, DSF was added to these cultures to a final concentration of 50 μ M. Data (means \pm standard deviation) are representative of three independent experiments. The observed values of addition of DSF and C23 were significantly different from the appropriate wild-type addition of DSF in all cases (p<0.05, ANOVA).

Supplementary Figure 11. Effects of administration of C23 to clinical isolates of *P. aeruginosa* carrying a *PA1396* mutated gene on tolerance to polymyxins. Time-courses of killing of *P. aeruginosa* PAO1-*PA1396* (a), CF3-*PA1396* (b), CF22-*PA1396* (c) by 2 μ g ml⁻¹ polymyxin B were established for bacteria suspended in sodium phosphate buffer. Data (means ± standard deviation) are representative of three independent experiments. The observed values of Δ PA1396 and C23 were not significantly different from the Δ PA1396 in all cases (p>0.05, ANOVA).

Supplementary Figure 12. Effects of administration of C23 on infection of the *PA1396* mutant strain of *P. aeruginosa* from the mouse airway in the presence of tobramycin. C57BL/6 mice were infected intranasally with 1×10^7 CFU *PA1396* mutant and treated by inhaling PBS with or without 50 μ M C23. After 24 hours infection, the mice were harvested, and bacterial loads were determined in lung homogenates. Each data point shows the results from an individual mouse. A *p* value of <0.05 was considered statistically significant and is designated in the figures with an asterisk. Double asterisks indicate *p* values of <0.01.

Fusion ^a	LacZ activity ^b	PhoA activity ^c
E4	N.D. ^d	62 ± 5.6
N6	N.D.	49 ± 1.9
G66	N.D.	39 ± 2.2
A70	N.D.	57 ± 3.3
A137	N.D.	28 ± 12.1
Q139	N.D.	67 ± 4.9
Q141	N.D.	22 ± 9.1
V37	490 ± 50	N.D.
E38	730 ± 30	N.D.
G107	910 ± 70	N.D.
G109	870 ± 120	N.D.
L205	580 ± 40	N.D.
T240	640 ± 60	N.D.
L300	720 ± 80	N.D.
L381	850 ± 120	N.D.

Supplementary Table 1. Enzyme activities of PA1396-LacZ and PA1396-PhoA constructs.

^a The β -galactosidase and alkaline phosphatase activities were measured in strain E. coli containing the plasmid encoded PA1396-lacZ or PA1396-phoA fusion. All enzyme assays were done in triplicate.

^b LacZ activity is expressed as micromoles of ONPG hydrolyzed per minute per milligram of protein. The LacZ activity of strain without fusions is equal to zero.

^c PhoA activity is expressed as micromoles of pNPP hydrolyzed per minute per microgram of protein. The PhoA activity of strain without fusions is equal to zero.

^dN.D. – Not detected.

Protein	- DSF	+ DSF	+ C23	+ DSF + C23
PA1396	1 (± 0.02)	3.5 (± 0.13)	1 (± 0.67)	1.3 (± 0.15)
PA1396- T121A/L123A/L128A	1 (± 0.07)	1 (± 0.21)	1 (± 0.31)	1 (± 0.09)

Supplementary Table 2. Auto-phosphorylation of PA1396 in response to DSF and analogues.

Densitometric quantification of level of phosphorylation in protein bands was done using the Image J software. The levels of protein phosphorylation were quantified as mean \pm s.d. (n = 6) and are presented as values relative to the value seen with PA1396 alone (which was set at 1).

ORF ^a	Category or class or gene/protein name ^a	Fold changes ^b	
	-	WT+DSF	WT+DSF+C23
PA0162	histidine porin OpdC	-1.25	
PA0281	sulfate transporter CysW	1.44	1.35
PA0283	sulfate-binding protein	1.45	1.38
PA0284	hypothetical protein	1.48	1.4
PA0494	acetyl-CoA carboxylase biotin carboxylase subunit		-1.25
PA0495	hypothetical protein		-1.2
PA0512	hypothetical protein		-1.29
PA0513	transcriptional regulator		-1.30
PA0524	nitric-oxide reductase subunit B	-1.27	1.5
PA0525	dinitrification protein NorD	1.2,	-1.2:
PA0534	hypothetical protein		1.20
PA0612	repressor PtrB	1.36	
PA0613	hypothetical protein	1.41	
PA0614	hypothetical protein	1.41	
PA0615	hypothetical protein	1.34	
PA0616	hypothetical protein	1.29	
PA0617	bacteriophage protein	1.38	
PA0618	bacteriophage protein	1.32	
PA0619	bacteriophage protein	1.27	
PA0620	bacteriophage protein	1.34	
PA0621	hypothetical protein	1.34	
PA0622	bacteriophage protein	1.30	
PA0624	hypothetical protein	1.25	
PA0625	hypothetical protein	1.27	
PA0626	hypothetical protein	1.26	
PA0627	hypothetical protein	1.36	
PA0628	hypothetical protein	1.28	
PA0629	hypothetical protein	1.28	
PA0630	hypothetical protein	1.35	
PA0631	hypothetical protein	1.31	
PA0632	hypothetical protein	1.31	
PA0633	hypothetical protein	1.28	
PA0634	hypothetical protein	1.36	
PA0635	hypothetical protein	1.30	
PA0636	hypothetical protein	1.30	
PA0637	hypothetical protein	1.37	
PA0638	bacteriophage protein	1.29	
PA0639	hypothetical protein	1.32	
PA0641	bacteriophage protein	1.27	

Supplementary Table 3. *P. aeruginosa* genes differentially regulated during infection in the presence of DSF or DSF with C23.

PA0643	hypothetical protein	1.27	
PA0644	hypothetical protein	1.48	
PA0645	hypothetical protein	1.26	
PA0802	hypothetical protein		1.27
PA0806	hypothetical protein	1.27	
PA0887	acetyl-CoA synthetase	1.28	
PA0910	hypothetical protein	1.42	
PA0911	hypothetical protein	1.39	
PA1183	C4-dicarboxylate transporter DctA		1.25
PA1318	cytochrome o ubiquinol oxidase subunit I		-1.32
PA1319	cytochrome o ubiquinol oxidase subunit III		-1.29
PA1320	cytochrome o ubiquinol oxidase subunit IV		-1.26
PA1325	hypothetical protein		1.42
PA1326	threonine dehydratase	1.31	1.53
PA1425	ABC transporter ATP-binding protein		1.26
PA1600	cytochrome C		-1.32
PA1601	aldehyde dehydrogenase		-1.34
PA1602	oxidoreductase		-1.32
PA1709	translocator outer membrane protein PopD	-1.28	
PA1797	hypothetical protein	1.68	1.63
PA2009	homogentisate 1,2-dioxygenase		1.35
PA2018	multidrug efflux protein	1.36	1.42
PA2019	periplasmic multidrug efflux lipoprotein	1.34	1.39
PA2204	ABC transporter	1.43	1.28
PA2322	gluconate permease		-1.30
PA2357	NADH-dependent FMN reductase MsuE	1.39	1.43
PA2358	hypothetical protein	1.51	1.50
PA2485	hypothetical protein		1.31
PA2655	hypothetical protein	1.68	1.71
PA2659	hypothetical protein	1.26	
PA2663	psl and pyoverdine operon regulator, PpyR	-1.29	-1.28
PA2664	nitric oxide dioxygenase	-1.33	-1.34
PA3190	sugar ABC transporter substrate-binding protein		-1.28
PA3445	hypothetical protein	1.28	1.20
PA3446	NAD(P)H-dependent FMN reductase	1.20	1.46
PA3450	antioxidant protein	1.49	1.40
PA3530	hypothetical protein	1.49	1.38
PA3780	hypothetical protein		1.40
PA3841	exoenzyme S	-1.28	1.31
PA3875	hypothetical protein	-1.28	
PA3876	nitrite extrusion protein 2	-1.39	
PA3931	hypothetical protein	-1.39	1.39
PA3932	transcriptional regulator		1.39
PA4138	tyrosyl-tRNA synthetase	1.39	1 20
PA4193	ABC transporter permease	1 20	1.28
11111/J	All's numperior permease	1.30	

PA4194	ABC transporter permease	1.27	
PA4195	ABC transporter	1.50	1.31
PA4290	chemotaxis transducer	1.31	1.25
PA4359	ferrous iron transporter A	1.29	1.27
PA4599	resistance-nodulation-cell division (RND) multidrug efflux membrane fusion protein MexC		1.31
PA4685	hypothetical protein		-1.55
PA4777	two-component regulator system signal		1.55
	sensor kinase PmrB	1.34	
PA4823	hypothetical protein	1.25	1.43
PA4824	hypothetical protein		1.26
PA4825	Mg(2+) transport ATPase	1.51	1.66
PA5445	coenzyme A transferase		1.26
PA5470	peptide chain release factor-like protein		1.46
PA5471	hypothetical protein		1.33

^a From *P. aeruginosa* genome website, http://www.pseudomonas.com.

^b Regulation (*n*-fold) of genes differentially expressed during *P. aeruginosa* infection with DSF or DSF + C23 compared to wild-type; a positive number indicates an up-regulation of the gene and a negative number indicates a down-regulation of the gene.

Strain	Relevant genotype or description	Reference or source
Pseudomonas aeruginosa		
PAO1	Wild-type	www.pseudomonas.cc
		m
PA1396	PA1396::Gm ^r mutant of PAO1	1
	derivative created using pEX18Gm	
PA1396	PA1396 delection mutant of PAO1	2
	derivative created using pEX18Gm	
PAO1 pmr-gfp fusion	GFP expression from the reporter	3
1 0/1	fusion	
PA1396 pmr-gfp fusion	GFP expression from the reporter	2
1 6/1	fusion	
CF1	CF patient from University College	2
	Cork	
CF3	CF patient from University College	2
	Cork	
CF22	CF patient from University College	2
	Cork	
CF1-PA1396	PA1396::Gm ^r mutant of CF3	2
	derivative created using pEX18Gm	_
CF3-PA1396	PA1396::Gm ^r mutant of CF3	2
CE22 D 4 120/	derivative created using pEX18Gm	2
CF22-PA1396	PA1396::Gm ^r mutant of CF22	2
	derivative created using pEX18Gm	
Xanthomonas campestris		
8004	Wild type; Rif ^r	4
8523	<i>rpfF</i> mutant; DSF–	4
Escherichia coli		
JM109	endA recA1 gyrA96 thi-1 hsdR17	Promega
	lacIqZM15 relA1	
BL21 (DE3)	fhuA2 [lon] ompT gal (λ DE3) [dcm]	Sigma
	$\Delta hsdS$	
	$\lambda DE3 = \lambda sBamHIo \Delta EcoRI-B$	
	int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5	
DH5a	endA, hsdR, supE44, thi-1, recA1,	Promega
	gyrA, relA Δ , (lacZYA-argF), U169	U
	$[\Phi 80 \operatorname{dlac}\Delta(lacZ) \operatorname{M15}] phoA$	
Plasmids		-
pEX18Gm	Broad-host-range allelic exchange	5
pBBR1MCS	vector; Gm ^r Broad host range cloning vector, Cm ^r	5
рылись	Divad nost range civining vector, Cill	5

Supplementary Table 4. Bacterial strains and plasmids used in this study.

pBAD/Myc-HisA	C-terminal polyhistidine (6xHis) tag and <i>c-myc</i> epitope expression vector	Life technologies
PA1396FL-pBAD/Myc-His	pBAD-MycHis expressing PA1396	This study
PA1396T-pBAD/Myc-His	pBAD-MycHis expressing truncation (1-250aa) of PA1396	This study
pRMCD28	<i>E. coli pho</i> A low-copy number topology vector. Amp^{R}	4
pRMCD70	<i>E. coli lac</i> Z low-copy number topology vector. Amp ^R	4
pET47b+	Expression vector. Amp ^R	Novagen

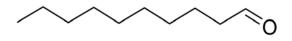
PrimerCommentSequence (5' to 3')P1396FPrimers used to construct5'-CTCGAGATGAAGTTCGAGAAGAATACC-3'P1396RPA1396 construct5'-CTCGAGATGGACGTGGCGGCGGC-3'P1-35FPrimers used to construct5'-CTCGAGATGGCCGCCGCCGGCGG-3'P1-40FPrimers used to construct5'-CTCGAGATGGCCGCGTGCCGGCGGT-3'P1-40RPA1396 1-40 truncation5'-AAGCTTGGAAGCGTGGCGGCGGT-3'P1-40RPA1396 1-40 truncation5'-CTCGAGATGACCTCGTTCGGCCGATCGTCCACTA-3'P1-82FPrimers used to construct5'-CTCGAGATGACCTGGGCGGCGGCGGT-3'P1-104FPrimers used to construct5'-CTCGAGATGAACCTGGGCAACGGCATGCGCTA-2'P1-104RPA1396 1-104 truncation5'-AAGCTTGGAAGCGTGGCTGCCGCT-3'P1-114FPrimers used to construct5'-CTCGAGATGCACCTGGCCACCGCGCGCGT-3'P1-114FPrimers used to construct5'-CTCGAGATGGCTGGCGGCGGCGGT-3'P1-136FPrimers used to construct5'-CTCGAGATGGCTGGCGGCGGCGGT-3'P1-137Primers used to construct5'-CTCGAGATGGCTGGCGGCGGCGGT-3'P1-138FPrimers used to construct5'-CTCGAGATGGCTGGCGGCGGCGGT-3'P1-138FPrimers used to construct5'-CTCGAGATGGTGCTGATGGCGGCGGCGGT-3'P1-138FPrimers used to construct5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-138FPrimers used to construct5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-138FPrimers used to construct5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-1438PA1396 1-143 truncation5'-CTCGAGATGGTGCTGATGGCGGCGGCGAC-3'PA1396PA1396 cloned into pBAD/Myc-HisCTCGAGGAGTCGAC	3' Г- 3 '
P1396RPA1396 construct5'-AAGCTTGGAAGCGTGGCTGGCGGCGT-3'P1-35FPrimers used to construct5'-CTCGAGATGGCCTGCTGCCGGCGGT-3'P1-35RPA1396 1-35 truncation5'-AAGCTTGGAAGCGTGGCGGCGGCGGCGG'-3'P1-40FPrimers used to construct5'-CTCGAGATGCTGCCGATCGTTGCCTACTA-3'P1-40RPA1396 1-40 truncation5'-AAGCTTGGAAGCGTGGCGGCGGCGGT-3'P1-82FPrimers used to construct5'-CTCGAGATGACCTCGTTCGGCCGGCGT-3'P1-82RPA1396 1-82 truncation5'-AAGCTTGGAAGCGTGGCGGCGGCGGCGT-3'P1-104FPrimers used to construct5'-CTCGAGATGAACCTGGGCAACGGCATGCGCTA-P1-104RPA1396 1-104 truncation5'-AAGCTTGGAAGCGTGGCGGCGGCGGT-3'P1-114FPrimers used to construct5'-CTCGAGATGCGCTACCTGGCCATCGCCACCG-3'P1-114RPA1396 1-114 truncation5'-CTCGAGATGGCTGGCGGCGGCGGT-3'P1-136FPrimers used to construct5'-CTCGAGATGGCCTGGCGGCGGCGGT-3'P1-143FPA1396 1-336 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGCGT-3'P1-143RPA1396 1-143 truncation5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-143RPA1396 1-143 truncation5'-CTCGAGATGGTGCTGATGGCGGCGGT-3'P1-143RPA1396 1-143 truncation5'-CTCGAGAAGCTGGAGGCTGGCGGCG-3'PA1396PA1396 cloned into pBAD/Myc-HisCTCGAGGAAGTTCGAGAAGAATACCGAGCTGGCCGCCGGGGCCACCTGCTGCCGCCGGCGCAGGCCAGCGCTGGCGGGGCCACACCTGGCTGCCGCCGCCGGGCCACGGCCACGGCCCCCCCC	3' Г- 3 '
P1-35F P1-35RPrimers used to construct PA1396 1-35 truncation5'-CTCGAGATGGCCTGCTGCCGGCCTG-3' 5'-AAGCTTGGAAGCGTGGCGGCGGCGGT-3'P1-40F 	3' Г- 3 '
P1-35RPA1396 1-35 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGT-3'P1-40FPrimers used to construct5'-CTCGAGATGCTGCCGATCGTTGCCTACTA-3'P1-40RPA1396 1-40 truncation5'-AGCTTGGAAGCGTGGCTGGCGGGT-3'P1-82FPrimers used to construct5'-CTCGAGATGACCTCGTTCGGCCGGT-3'P1-82RPA1396 1-82 truncation5'-CTCGAGATGAACCTGGGCGGCGGCGGCGGCGGCP1-104FPrimers used to construct5'-CTCGAGATGAACCTGGGCAACGGCATGCGCTACP1-104RPA1396 1-104 truncation5'-CTCGAGATGACCTGGCCACCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGC	3' Г- 3 '
P1-40RPA1396 1-40 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGT-3'P1-82FPrimers used to construct5'-CTCGAGATGACCTCGTTCGGCCTGATC-3'P1-82RPA1396 1-82 truncation5'-CTCGAGATGAACCTGGGCAACGGCATGCGCTA-3'P1-104FPrimers used to construct5'-CTCGAGATGAACCTGGGCAACGGCATGCGCTA-3'P1-104RPA1396 1-104 truncation5'-CTCGAGATGAACCTGGGCAACGGCATGCGCTA-3'P1-114FPrimers used to construct5'-CTCGAGATGCGCTACCTGGCCATCGCCACCG-3'P1-114RPA1396 1-114 truncation5'-CTCGAGATGGCGTGGCTGGCGGCT-3'P1-136FPrimers used to construct5'-CTCGAGATGGCTGGCGGCTGGCGGCT-3'P1-136RPA1396 1-336 truncation5'-CTCGAGATGGTGGCGGTGGCGGCGGC-3'P1-143RPA1396 1-143 truncation5'-CTCGAGATGGTGGCGGTGGCGGCGGT-3'P1-143RPA1396 1-143 truncation5'-CTCGAGATGGTGGCGGTGGCGGCGGC-3'PA1396PA1396 cloned into pBAD/Myc-HisCTCGAGGAAGTTCGAGAAGAATACCGAGCTGGACG GCCAACCTGCGACTGATCGTCGCCGCCGCCGCGCGCACTACCTGCCGCCACCTGCCGCACTACCTGCCGCCACCTGCCGCACTACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCGCCACCTGCCGCGCCACCTGCCGCGCCACCTGCCGCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCCACCTGCCGCGCCACCTGCCGCGCCACCTGCCGCGCCGCGCCACCTGCCGCGCCACCTGCCGCGCCACCTGCCGCGCCACCTGCCGCGCCACCTGCCGCGCCACCTGCCGCCACCTGCCGCCGCGCCACCTGCCGCGCCACCTGCCGCGCCACCTGCCGCCGCGCCACCTGCCGCCGCGCGCCACCCCGCGCCACCTGCCGCGCCGCGCGCACCTGCCGCGCGCG	3' Г- 3 '
P1-82FPrimers used to construct5'-CTCGAGATGACCTCGTTCGGCCTGATC-3'P1-82RPA1396 1-82 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGC43'P1-104FPrimers used to construct5'-CTCGAGATGAACCTGGGCAACGGCATGCGCTA- 5'-AAGCTTGGAAGCGTGGCTGGCGGC43'P1-104RPA1396 1-104 truncation5'-CTCGAGATGCGCTGGCGGCGGC3'P1-114FPrimers used to construct5'-CTCGAGATGCGCTGGCGGCGGC3'P1-114RPA1396 1-114 truncation5'-CTCGAGATGCGCTGGCGGCGGCGGC3'P1-136FPrimers used to construct5'-CTCGAGATGGCCTGGCGGCGGCGGCGGCGGT-3'P1-136RPA1396 1-336 truncation5'-CTCGAGATGGCCTGGCGGCGGCGGCGGCGGT-3'P1-143FPrimers used to construct5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-143RPA1396 1-143 truncation5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'PA1396PA1396 cloned into pBAD/Myc-HisCTCGAGGAAGTTCGAGAAGAATACCGAGCTGGACG GTCAGGGGCGGCGACTACCTGCGCCACCTGCGCGCAC 	3' Г- 3 '
P1-82RPA1396 1-82 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGT-3'P1-104FPrimers used to construct5'-CTCGAGATGAACCTGGGCAACGGCATGCGCTA-P1-104RPA1396 1-104 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGCGT-3'P1-114FPrimers used to construct5'-CTCGAGATGCGCTACCTGGCCATCGCCACCG-3'P1-114RPA1396 1-114 truncation5'-CTCGAGATGGCCTGGCAGGCTGGCGGCGT-3'P1-136FPrimers used to construct5'-CTCGAGATGGCCTGGCAGGCTGGCGGT-3'P1-136RPA1396 1-336 truncation5'-CTCGAGATGGCCTGGCAGGCTGGCGGT-3'P1-143FPrimers used to construct5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-143RPA1396 1-143 truncation5'-CTCGAGATGGTGGCGGCGGCGGT-3'P1-143RPA1396 cloned into pBAD/Myc-HisCTCGAGGAAGTTCGAGAAGAATACCGAGCTGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCG	3' Г- 3 '
P1-104FPrimers used to construct5'-CTCGAGATGAACCTGGGCAACGGCATGCGCTA-P1-104RPA1396 1-104 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGCG-3'P1-114FPrimers used to construct5'-CTCGAGATGCGCTACCTGGCCATCGCCACCG-3'P1-114RPA1396 1-114 truncation5'-CTCGAGATGGCCTGGCGGCGGCG-3'P1-136FPrimers used to construct5'-CTCGAGATGGCCTGGCGGCGGCGT-3'P1-136RPA1396 1-336 truncation5'-CTCGAGATGGCCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGG	3' Г- 3 '
P1-104RPA1396 1-104 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGT-3'P1-114FPrimers used to construct5'-CTCGAGATGCGCTACCTGGCCATCGCCACCG-3'P1-114RPA1396 1-114 truncation5'-AAGCTTGGAAGCGTGGCGGCGGCGGCGGCGGT-3'P1-136FPrimers used to construct5'-CTCGAGATGGCCTGGCAGGCTCAGCCGTTCAT-3'P1-136RPA1396 1-336 truncation5'-CTCGAGATGGTGCTGATGGCGGGGGGGGGGGGGGGGGGG	3' Г- 3 '
P1-10-IACPrimers used to construct5'-CTCGAGATGCGCTACCTGGCCATCGCCACCG-3'P1-114RPA1396 1-114 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGCGGT-3'P1-136FPrimers used to construct5'-CTCGAGATGGCCTGGCAGGCTCAGCCGTTCATP1-136RPA1396 1-336 truncation5'-CTCGAGATGGTGCTGATGCTGACGCGGT-3'P1-143FPrimers used to construct5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-143RPA1396 1-143 truncation5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-143RPA1396 1-143 truncation5'-AAGCTTGGAAGCGTGGCGGCGGCGGT-3'PA1396PA1396 cloned into pBAD/Myc-HisCTCGAGGAAGTTCGAGAAGAATACCGAGCTGGAC GCCAACCTGCGACTGATCGTGGCCACCTGCGGCCACCTGCGCGCAC GTCGAGACCTACCTGCCGATCGTTGCCTACTACGC GTCCTGATGCCCCCCATACTGCTGCCCAGGCCA TCTACGTGGCCGGCGCACCTCCGTGCCCAGGCCA TCTGCATGCTGCACCACCACCTGCGGCCGGCGGCGAT CTGCATGCTGCACGACTACCCGGCGCGCGCGCGCGCGCACCTCGTTCC TGATCGTGGGCGGCGAGGCAGCGCTGCCGCTGCTGCCGCCGCGCGCG	Г-3'
P1-114RPA1396 1-114 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGT-3'P1-136FPrimers used to construct5'-CTCGAGATGGCCTGGCAGGCTCAGCCGTCAT-4P1-136RPA1396 1-336 truncation5'-AAGCTTGGAAGCGTGGCGGCGGCGGT-3'P1-143FPrimers used to construct5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-143RPA1396 1-143 truncation5'-CTCGAGATGGTGGCGGCGGGCGGCGGC-3'ConstructCommentDNA fragment synthesizedpPA1396PA1396 cloned into pBAD/Myc-HisCTCGAGGAAGTTCGAGAAGAATACCGAGCTGGACGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGC	Г-3'
P1-136F Primers used to construct 5'-CTCGAGATGGCCTGGCAGGCTCAGCCGTTCAT-4 P1-136R PA1396 1-336 truncation 5'-AAGCTTGGAAGCGTGGCTGGCGGCT-3' P1-143F Primers used to construct 5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3' P1-143R PA1396 1-143 truncation 5'-CTCGAGATGGTGCTGGCGGCGGGCGGCGGCGGC-3' Construct Comment DNA fragment synthesized pPA1396 PA1396 cloned into CTCGAGGAAGTTCGAGAAGAATACCGAGCTGGAGC pBAD/Myc-His CTCGAGAACCTGCTGATCGTGGCCACCTGCGCCGCGCGCG	
P1-136RPA1396 1-336 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGT-3'P1-143FPrimers used to construct5'-CTCGAGATGGTGCTGATGCTGATGACCACC-3'P1-143RPA1396 1-143 truncation5'-AAGCTTGGAAGCGTGGCTGGCGGCGGT-3'ConstructCommentDNA fragment synthesizedpPA1396PA1396 cloned into pBAD/Myc-HisCTCGAGGAAGTTCGAGAAGAATACCGAGCTGGACGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGC	
P1-143R PA1396 1-143 truncation 5'-AAGCTTGGAAGCGTGGCTGGCGGT-3' Construct Comment DNA fragment synthesized pPA1396 PA1396 cloned into pBAD/Myc-His CTCGAGGAAGTTCGAGAAGAATACCGAGCTGGAC GCCAACCTGCGACTGATCGTGGCCACCTGCGCGA TCTACGTGGTGCTGATCGGCCTGCTGCCCGGCCAC GTCGAGACCTACCTGCCGATCGTTGCCTACTACGC GTCCTGATCGCCGGCGCGCGCGCGCGCGCA TGCGCTGGCCGGGGCACTACCCGGCCGCGCGGCGAT CTGCATGCTGCACGACTACCCGGCGCGCGCGCGCGGCGAT CTGCATGCTGCACGACTACCCGGCGCGCGCGCGCGCGAT	,
Construct Comment DNA fragment synthesized pPA1396 PA1396 cloned into CTCGAGGAAGTTCGAGAAGAATACCGAGCTGGAC pBAD/Myc-His CTCGAGGAAGTTCGAGACTGATCGTGGCCACCTGCGCGAT GCCAACCTGCGACTGATCGGCCGCTGCTGCCCGGCGCG GTCGAGACCTACCTGCCGATCGTTGCCTACTACGC GTTCCTGATCGCCGCGGCGCCAGGCCAGGCCA GTCCTGATCGCCCGCGCGCGCGGCGAT CTGCATGCTGCCGGGGCACTACCCGGCGCGGCGGAT CTGCATGCTGCACGACTACCCGGCGCGGCGAGT CTGCATGCTGCACGACTACGCCGGCACCTCGTTCC TGATCGTGGGCGGCGAGGCAGCGCTGCCGCTGTAC	
pPA1396 PA1396 cloned into pBAD/Myc-His CTCGAGGAAGTTCGAGAAGAATACCGAGCTGGAC GCCAACCTGCGACTGATCGTGGCCACCTGCGCGCGCGCGC	
pBAD/Myc-His GCCAACCTGCGACTGATCGTGGCCACCTGCGCGA TCTACGTGGTGCTGATCGGCCTGCTGCCGGCGCG GTCGAGACCTACCTGCCGATCGTTGCCTACTACGC GTTCCTGATCGCCTCCATACTGCTGCGCCAGGCCA TGCGCTGGCCGGGGGCACTACCCCGGCGCGGCG	
TACGGCTCGCGCTACCTGGCCATCGCCACCGCCC GCTGCTCGCGCTACTGGTCATCGCTACTGACGCCC GCTGCAGCGCTACCGGCATCCACCGACGCACCCA ACCACCAGTACCGTCATTCCTTCTACGCGCACCCT GCTGGAGCGCACGCGCAAGGCCACCGAGGAAGCC CAGGCGAACCAGGAGAAATCGCGCCTGCTGGGCCA CCAGCCACGACCAGGCCAGCCGATCCACTCCATC CCTGTTCACCGCCTGCGCGCGCCGCCCGCCTGC CCTGTTCACCGCCTGCTGCGCGACGCCCGCCTGC GCTGCTCAACGTCTCGCAACGTCCCATCC ACGAGGAAACGTCCAACGTCGCGCGCCTCCAACCC GCGGGTGGAACTGCGCCGCGCGCCTGCGCCCTGCGCC GCGGAGAACGCCGCCAACGCCGAAGCGGCGCCCCAACCC GCGGAGCACCGCGCCAACGCCGAAGCGCGCGCCGCGCGCGCGGGG GCGAACCGATCCGGGCGCGCCCTGCGCCCTGCGCCGCGGCG GCCGCTGCTGCGCCGCGCGCGCGCGCGCGCGCGCGCGCG	ATCC IGAAG GGCT CATCG ATCTT CGGCC CACGC CCGGC CCGGC CCGGC CCCGG CCAGG CCCGG CCAG GGCCG CCCAA CCGAC GGACC GCACG GGACC GCAG GACCG GACCG GACCG GACCG CCAG GACCG CCAG GACCG CCAG GACCG CCCGC CCACG CCCAC CCCAC CCCAC CCCAC CCCAC

Supplementary Table 5. Primers and synthesized fragments of DNA used in this study.

		CGGTGACCGCCAGCCACGCTTCCAAGCTT
pPA1396trun	PA1396 truncation	CTCGAGGAAGTTCGAGAAGAATACCGAGCTGGACCAG
-	cloned into pBAD/Myc-	GCCAACCTGCGACTGATCGTGGCCACCTGCGCGATCC
	His	TCTACGTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAG
		GTCGAGACCTACCTGCCGATCGTTGCCTACTACGGCCT
		GTTCCTGATCGCCTCCATACTGCTGCGCCAGGCCATCG
		TGCGCTGGCCGGGGCACTACCCGGCGCGGCGGATCTT
		CTGCATGCTGCACGACTACGCCGGCACCTCGTTCGGCC
		TGATCGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGC
		GGTGATGGTCTGGATCAACCTGGGCAACGGCATGCGC
		TACGGCTCGCGCTACCTGGCCATCGCCACCGCCCTGGC
		GCTGCTCGCGCTACTGGTCATCTATCGACTGACCCCGG
		CCTGGCAGGCTCAGCCGTTCATGGTGCTGATGCTGATG
		ACCACCAGTACCGTCATTCCCTTCTACGCGCACCTCCT
		GCTGGAGCGCACGCGCAAGGCCACCGAGGAAGCGTTG
		CAGGCGAACCAGGAGAAATCGCGCCTGCTGGCCCAGG
		CCAGCCACGACCTGCGCCAGCCGATCCACTCCATCGG CCTGTTCACCGCCTGCCTGCGCGACGCCCGCCTGGGCG
		ACGAGGAACGGCGCCTGGTGGACAACATCGACCGCTC
		GCTGCTCAACGTCTCGCAACTGTTCCGCTCCATTCTCG
		ATCTCTACACCCTCGACAACGGCCGGCTCCAACCCAA
		GCAGAAGCTT
E4	PA1396 fragment cloned	ATGAAGTTCGAG
1.4	into topology reporter	
	plasmids <i>phoA</i> and <i>lacZ</i>	
N6	PA1396 fragment cloned	ATGAAGTTCGAGAAGAAT
INO	e	ATOAAOTICOAOAAOAAT
	1 07 1	
1/07	plasmids <i>phoA</i> and <i>lacZ</i>	
V37	PA1396 fragment cloned	ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA
	into topology reporter	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTC
	plasmids <i>phoA</i> and <i>lacZ</i>	
E38	PA1396 fragment cloned	ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA
	into topology reporter	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC
	plasmids <i>phoA</i> and <i>lacZ</i>	GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG
C((DA1206 from and along d	AG ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA
G66	PA1396 fragment cloned	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC
	into topology reporter	GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG
	plasmids <i>phoA</i> and <i>lacZ</i>	AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC
		CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG
		CTGGCCGGGG
A70	PA1396 fragment cloned	ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA
11/0	into topology reporter	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC
	plasmids <i>phoA</i> and <i>lacZ</i>	GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG
	Fusings provi and mez	AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC
		CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG
		CTGGCCGGGGCACTACCCGGCG
G107	PA1396 fragment cloned	ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA
	into topology reporter	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC
	plasmids $phoA$ and $lacZ$	GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG
	-	AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC
		CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG
		CTGGCCGGGGCACTACCCGGCGCGGCGGATCTTCTGC
		ATGCTGCACGACTAC
		GCCGGCACCTCGTTCGGCCTGATCGTGGGCGGCGAGG CAGCGCTGCCGCTGTACGCGGTGATGGTCTGGATCAA
		CAGCGCIGCCGCIGIACGCGGIGAIGGICIGGAICAA
G109	PA1396 fragment cloned	ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA
0107	<u> </u>	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC
		GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG
	plasmids <i>phoA</i> and <i>lacZ</i>	AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC
		CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG
		CTGGCCGGGGCACTACCCGGCGGCGGATCTTCTGC
		ATGCTGCACGACTACGCCGGCACCTCGTTCGGCCTGAT
		CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG

A137 PA1396 fragment eloned into topology reporter plasmids phoA and lacZ ATCAGGACTGATCGGCACCTGGCGCAGGCCACTGCCCCA GCGTGCCTGATCGGCCACCTGGCCGGCGCGGCG			ATGGTCTGGATCAACCTGGGCAACGGC
Q139 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ Q142 PA1396 fragment cloned into	A137	into topology reporter	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG
20139 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ ATGATCTGGACTACCGGCCCCCCCCCCCGGCCCTGACGCCCACGGCCC CTGGCCCTCCTACTGGTCATCGACCAGGCCCAAGGCCC AGACCTACCTGGCCACCGGCCCCCGGCGCCGCGTGTC CGTGGTCGCCCCCCCCTCATCGGCCCCGCGCCGCG			CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG CTGGCCGGGGCACTACCCGGCGCGGCG
PA1396 PA1396 fragment cloned into topology reporter plasmids pho.4 and lac.Z TGAAGTTCGAGAAGATACCGAGCTGGACCAGGCA ACCTGCGACTACTGCTGCCCAGCCATCTTAC GTGGTCTGATCACCGGCGCAGCCATCGTCCC CTGGCCGGGGCACTACTGCGGCGCATCTTCTGC AGACCTACCTGCGGGCAGCACTGGCCGCGCGCATCTTCTGC ATGCTGCACGACTACCGGGGCGCGCGCGCGCCCTGTCGCGCG GCTGGCGGGGCGCAGCCCCCGCGCGCGCGCGCGCGCG GCTGGCGCTACTGGCCCACCGCCGCGCGCGCGCGCGCGCG			CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG
into topology reporter plasmids pho/1 and lacZ ACCTGCGACTGGTGCGCCGGCCCGGACTCCTTAC GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG AGACCTACCTGCCGGACGCTTGCCCACTGGCCGCGCCTGTC CTGCGCGGGGGAGCACCCGGCCGCGCGCGCGCCTGTC CTGCGCGGGGGAGCACCCGGCCGCGCGCGCGCGCGCGCGC			
Plasmids pho1 and lat 2 AGACCTACCTGCCGATCGTGCCACCTAGGCCTGTGC AGACCTACTGCCGATCGTGCCCCACGCCATGGCCTGGC CTGGCCGGGCACACGCCCTGTTCGCCTGGC CGTGGCCGGCACGCCCACCTGCGTCGCCGGGC CGTGGCCGGCACGCCCACCGCCTGGCCGGGC Q141 PA1396 fragment cloned ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA into topology reporter plasmids pho.4 and lacZ AGGACTTACCGCGCACGCCCGGCGGCGCGCGCGCGCGCGC	Q139	into topology reporter	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC
2141 PA1396 fragment cloned into topology reporter plasmids phoA and lacZ ATGATGCTGAGAGAAACTCCGAGCTGGACCAGGCCAGGC		plasmids <i>phoA</i> and <i>lacZ</i>	AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC
1240 ATGGTCTGGATCAACCTGGCATCGGCATCGGCATCGGCGTGGCGTGGCTGCGCGCGC			CTGGCCGGGGCACTACCCGGCGCGGGGGATCTTCTGC ATGCTGCACGACTACGCCGGCACCTCGTTCGGCCTGAT
Q141PA1396 fragment cloned into topology reporter plasmids pho.4 and lacZIGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA ACCTGCGACTGATCGTGGCCACCGCGGCATCCTCTGC CTGGCTGGGCGCCGCCGCGCGGCGGCGCGCGCGGCGGCGG			ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG
into topology reporter plasmids phoA and lacZACCTGCGACTGATCGTGGCCACCTGCGGCGAGCCTGAAGGTG GGGGCCTGCCGGCTGCCGGCCGGCGCGCGGCCGCTGCGGCG			CTCGCGCTACTGGTCATCTATCGACTGACCCCGGCCTG
IntermediationGTGGTGCTGATCGGCCTGCTGCCGGCCTGAAGGTCG AGACCTACCTGCCGGATCGTTGCTGCCTACTACGGCCTGTTC GCCGCACCTCCTCATCGGCCGGCGGCGGCGGAGG CTGGCCGGGCACCTCCTGGCCGGCGGCGGGGGGGGGGGG	Q141	e	
1240 AGACCIACCIGCCGCGAICGTIGCCIACTACGGCCIGGCG 1205 PA1396 fragment cloned AGGACTACTGGCCCCGCTGGCCGGCGGCGGCGGCGCGCGC			
1240PA1396 fragment cloned into topology reporter plasmids pho.A and lacZCTGGCCGGCACTACCGGCCTGCCGCTGCAGGCTGACGGCTAC GCCGCCCGCGCCACCGGCCTGCCCCGGCCGGCAGGCCCAGGCC ACCTGCGACGACCACCTGGTCCCGGCCTGCACGGCT CATCTATCGACTGATCGTGGCCACCGGCCCGAAGGCCA ACCTGCGACGCCCCGGCCGGCCGAAGGCCAGGCCAGGCC		plasmids phoA and lucz	
1240PA1396 fragment cloned into topology reporter plasmids phoA and lacZATGCTGCACGACTCGGCCTGGCGCGGCGCGCGCGCGCGCG			
1240PA1396 fragment cloned into topology reporter plasmids phoA and lacZCAGCGCTGCGGCTGCGGCATGCGGCAGCGGCAGGCCAGGCCA GCCTGCGGCACCGGCCTGCGGCATCCTGGCAGGCCTGAG GTGGTGGCTGATCGGCCGGCGCGCGGCGGCCGGCGGCGGCGGGGGCATCTCTGC CTGGCCGGGGCACTACCCGGCGCGCGCGGGGGCATCTCTGC CTGGCCGGGGCGCAGGCCAGGCCAGGCCAGGCCAGGCCA			
1205PA1396 fragment cloned into topology reporter plasmids pho.A and lacZATGAAGTTCGAGAAGAATACCGAGCTGGCAGGCAAGGCCA ACCTGCGACTGGCCAGCTGGCCAGCCTGGCCAGGCCAGG			
1205PA1396 fragment cloned into topology reporter plasmids pho.A and lacZATGAAGTTCGAGAGAAAAACCGGGCCGGGCCGGACCAGGCCA ACCTGCGCACTGCGCCATCGTGGCCACGCCGGATCCTCTAC GTGGTGCTGATCGTGGCCACGCGGCCGAGCCAGGCGATCCTCTGC CTGATCGCCGCGGCGCGCGGCGCCGAGGCCAGGC CCGGCCGGGGCACTACCCGGCGCGGCGCAGGCACGGGG CCGGCCGGGGCACTACCCGGCGCGGCGCAGGCAAGGCCATCGTGG CCGGGCGGGCGCACCCGGCGCGCGCGGCGCAGGCACGGGGAGCAAGGGCTGC CCGCGGGCGCACGCGCGCGCGCGCGGCGCGGGCGCGGGCACGGGCACGGCGG			
InterpretationCATCTATCGACTGACCCCGGCCTGGCAGGCTCAGL205PA1396 fragment cloned into topology reporter plasmids pho.A and lacZATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA ACCTGCGCTGATCGGCCTGCTGCCCGCGCCTGAAGGTCG GGGGCGCACTACTGCGCGCCGCTGACCGGCGCTGATC CTGGCCGGGGCACTACCTGGCGCAGGCCATCGTGCC CTGGCCGGGGCACTACCCGGCGCGCGCGCGCGCGCGCGCG			
intotopologyreporter plasmidsACCTGCGACTGATCGTGGCCACCTGCGCGGATCCTCTAC GTGGTGCTGATCGGCCTGCTGCCGGCCTGAAGGCCG AGACCTACCTGCCGATCGTGCCGACTACGGCCGCGAAGGCCG AGACCTACCTGGCGGCGGCGGCGGCGGCGACCTCCGTGCG CTGGCCGGGCGAGGCACCGCGCGGCGGCGGCGACCTCCGTCGCG CTGGCCGGGCGAGGCAGCGCTGCGCGCGGCGGCGGCGGCGGCGGCGGGCG			
International laczGTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTCGC CTGGCCGGGCACCTCCTTCTGCGCCTGCGCCATCGCGCCAGGCCAGGCCACCGGCCAGGCCAGGCCACCGGCCAGGCCGGGCGAGGCAGGCAGGCAGGCAGGCCAGGCGGGGCAGGGCAGGCAGGCAGGCAGGGCAGGC	L205		
Plasmids phoA and lat2AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC CTGATCGCCTCCATACTGCGCCCGGCCGCGCGCGCGCGCG			
T240PA1396 fragment cloned into topology reporter plasmids phoA and laczATGAAGTTCGAGAGAAATACCGAGCGTGAGCCACCTCGTCGGCCA ATGATCGACCGACCGCCTGCCGCCACCGCCCGCCACGCCCA ATGATCGACCGGCCACCGCCACCGCCCAGGCCA ATGACTCGACCGCCACCGAAGGCCACCGCACCGAGCCACCCA ACCAGTACCGTCATCCCTTCTACGCGCACCCACGCAGCCC ACCAGTACCGCCAGCCGCAGGCCACCCCAGGCCACCCCAGGCCA ACCCAGTACCGCCAGCCCACCGAGAGAAGCGTTGCA GGCAGCCACGGCCAGCCCACCCGAGGCACCCCAGGCC ACCCAGTACCTGCGCCAGCCCACCCGAGCCACCCGAGGCCACCCCAGGCC AGCCACGACCTGCGCCAGCCCACCCGAGCCACCCGAGCCACCCAGGCCA AGCCACGACCTGCGCCAGCCGATCCACTCCATCCGCCAGGCCACCTGCGCCAGGCCACCTGCGCCAGGCCACCTGCGCCAGGCCACCTGCTGCC AGCCACCGCCGACCCGCAGCCGCAGCCCGCGCGCGCGCG		plasmids <i>phoA</i> and <i>lacZ</i>	
ATGCTGCACGACTACGCCGGCACCTCGTTCGGCCTGAT CGTGGGCGGCGAGGCAGCGCTGCCGCGCGCGCGCGGCG GCTCGCGCTACTGGCCATCGGCCACCGCCCTGGCGCTACG GCTCGCGCTACTGGTCATCGACCGACCGCCCTGGCCCTGGCCCCGGCCG GCAGGCTCAGCCGTTCATCGACCACCGCCCTGGCCCACCGGCCGCG GCAGGCCACGGCCAGGCCACCGCAGGCCAGCCCAGGCCACCGCGCCAGCCACCGCGCCAGCCACCGCGCCAGCCACGCCAGGCCACCGCGCCAGCCCGGCGG			
CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTGATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACGGCTCGCGCTACTGGCCATCGCCACCGCCTGGCGCTGCTCGCGCTACTGGTCATCTATCGACTGATGCTGATGACCACCAGTACCGTCATCCTTCTACGCGCACCTCCTGCTGGAGCGCACGCCAAGGCCACCGAGGAAGCGTTGCAGGCGAACCAGGAGAAATCGCGCCTGCTGGCCCAGGCCAGCCACGACCAGCGCCAGCGCAGCCAACGCCAGGCCAAGCCACGACCTGCCGCCTGCT240PA1396 fragment clonedinto topology reporterplasmids phoA and lacZATGAAGTTCGAGAAGAATACCGAGCCTGCGCCAGGCCAAGGCCACCTGCGCCTGCTGCCCGGCTGAAGGTCGAGACCTACCTGCCCAACCGGCCAGGCCAACGGCCACCTGGCCGATCCTCTCCCTGGCCGGGGCACTACCCGGCGCGGCCGGATCCTCTCCCTGGCCGGCGCAGGCCACCCGGCCGGCCTGAAGGTCGAAGACCTACCTGCCGATCGTGCCCAGGCCAGGCCATCGTGCGCTGGCCGGGCACTACCCGGCCAGGCCATCGTGCGCTGGCCGCGAGGCACTACCCGGCCGGCGAGCCTTCTCCATGCTGCACGACTACCCGGCCAGGCCATCGTGCGCTGGCGCGAGGCACTACCCGGCCAGGCCTGCCGCTGATCGTGGGCGCGAGGCACTCGCGCCGCTGAACGCGTGCCGCTGATCGTGGCGCGCGAGGCACCCGCCGCCGCCGCCTGAACGGCTACGGCTCGCGCTACTGGCCATCGGCCACCGCCTGGCCCAGGCCTGCCGCTGCGCTCGCGCTACTGGCCATCGGCCACCGCCTGGCCCTGCGCCTGCGCCTGGCCCGCTGCCTCGCGCTACTGGCCATCGCCCCCGGCCTGACCCCGGCCTGCCCCGCCTGGCCCTGCCCCGCCTGGCCCCGCCTGGCCCTGCCCCGCCCTGGCCCCCGCCTGCCTCGCCCTACTGGCCATCGCCACCGCCCTGGCCCTGCCCGCCTGCCTCGCGCTACTGGCCATCGCCACCGCCCTGGCCCTGCCCCGCCTGCCTCGCCCTACTGGCCATCGCCACCCGCCCTGGCCCTGCCCTGGCCTGCCCCGCCTGCCTCGCCCTACTGGCCATCGCCCCCGCCCTGGCCCTGCCCTGGCCTGCCCTGCCCTGGCCTGCCCCTGCCCCGCCTGCCTCGCCCTACTGGCCATCGCCACCCGCCCCGGCCTGCCTCGCCCTACTGGCCATCGCCACCCCCCCGCCCTGGCCCTGCCCCGCCTGCCTCGCCCTACCGCCTCCCCCCCCCCGCCCGCCTGCCTCGC			
ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG GCTCGCGCTACTGGCCATCGCCACCGCCTGGCGCTG GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC ACCAGTACCGTCATCCTTCTACGCGCACCGCCAGGCCTG GGAGCGCACGGCAAGGCCACCGAGGAAGCGTTGCA GGCGAACCAGGAGAAATCGCGCCTGCTGGCCCAGGCC AGCCACGACCAGGAGAAATCGCGCCGCGGCCAGGCC AGCCACGACCAGGAGAATCCGAGCCAACCGAGGAAGCATTCCATCGCC TGTCACCGCCTGCTGT240PA1396 fragment cloned into topology reporter plasmids <i>phoA</i> and <i>lacZ</i> ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA ACCTGCGCTGCTGCCGCCTGCTGCCCGGCCTGAAGGTCG AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGCTGCC CTGGCCGGGGCACTACCCGGCGCGCGCGCTGAAGGTCG AGACCTACCTGCCGACCGGCGCGCCGCAGCCATCGTCGC CTGGCCGGCGAGGCACTACCCGGCGCGGCAGCACTCGTCGC CTGGCGGCGAGGCACTACCCGGCCGCGCGCTGAACGCGTGAT CGTGGGCGGCGAGCACTACCGGGCAACGGCATCGCGCGAGC CTGGCCGGCGAGGCACTGCGCCGCTGAACGCGCTACG ATGGTCTGGATCAACCTGGCCAACGGCATGCCCGCTGACG CTCGCGCTACTGGCCACCGCCCGCCTGAACGCCTGCG CTCGCGCTACTGGCCACCGCCCCGCCTGAACGCCTGCC CTGGCCGGCAAGGCACTGCCCGCCGCCGCCGCCTGAACGCCTGCGCCACC CCTGCCGCTACTGGCCAACGGCATGCCCCGCCTGCCCGCCTGACGCCCCGCCTG CCTCGCGCTACTGGCCACCGCCCCGCCCGGCCCGCCTGCCCGCCGCCTG CCTCGCGCTACTGGCCATCGGCCAACGGCCTGCCCCGCCTGGCCCGCCTG CCTCGCGCTACTGGCCATCGGCCAACGGCCATGCCCCGCCTGGCCTGC CCTCGCGCTACTGGCCATCGGCCACCGCCCTGGCCCGCCTG CCTCGCGCTACTGGCCATCGGCCACCCCCCCGGCCTG CCTCGCGCTACTGGCCATCGGCCACCGCCCTGGCCCTGCCCCGCCTG CCTCGCGCTACTGGCCATCGGCCACCCCCGGCCTG CCTCGCGCTACTGGCCATCGGCCACCGCCCTGGCCCGCCTG CCTCGCGCTACTGGCCATCGGCCACCGCCCTGGCCCTGCCCGCCTG CCTCGCGCTACCTGGCCACCGCCCCGCCCTGGCCCTGCCCTGGCCCACCGCCTGGCCTGCCCCCGCCTG CCTCGCGCTACCGGCCACCGCCCCGCCCCGGCCTG CCTCGCCCACCCCCCCCGGCCCGCCCGCCCGCCTG CCCCGCCCCCCCGGCCCCCCGGCCTG CCCCGCCCCCCGGCCCCCGGCCGCCCCGCCCGCCCCGCCCGCCCGCCCGCCGCCCGCCCGCCCGCCCGCCCGCCCC			
CTCGCGCTACTGGTCATCTATCGACTGACCCCGGCCTGGCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACCACCAGTACCGTCATTCCCTTCTACGCGCACCTCCTGCTGGAGCGCACGCGCAAGGCCACCGAGGAAGCGTTGCAGGCGAACCAGGAGAAATCGCGCCTGCTGGCCCAGGCCAGCCACGACCTGCGCCAGCCGATCCACTCCATCGGCCT240PA1396 fragment clonedinto topology reporterplasmids phoA and lacZAGCCACGACCTGCCGCTGCTGCCGGCCAGGCCAAGGCCAAGGCCAAGCCTACCTGCCGATCGTGCCCGGCCTGAAGGTCGAGACCTACCTGCCGATCGTGCCCAGGCCACTCGTGCCCTGGCCGGGGCACTACCGGCGGCGGATCTTCTGCATGGTGCGCCGCGCGGCGCGCGGCGGATCTTCTGCATGGTGCGCCGCGGCGGCGCGCGCGCGCGCGCGGCGGCGGC			
Image: construct of the second seco			
ACCAGTACCGTCATTCCCTTCTACGCGCACCTCCTGCT GGAGCGCACGCGCAAGGCCACCGAGGAAGCGTTGCA GGCGAACCAGGAGAAATCGCGCCTGCTGGCCCAGGCC AGCCACGACCTGCGCCAGCCGATCCACTCCATCGGCC TGTTCACCGCCTGCTGT240PA1396 fragment cloned into topology reporter plasmids <i>phoA</i> and <i>lacZ</i> ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA ACCTGCGACTGATCGTGCCGCCGGCCTGAAGGTCG GTGGTGCTGATCGCCGACCTGCTGCCCGGCCTGAAGGTCG CTGGCCGGGGCACTACCGGCGCGGCGGCGATCTTCTGC CTGGCCGGGGCGAGCACCACCTGGCGCGCGGCGATCCTCTGC CTGGCCGGGGCACTACCGGCGCGCGGCGGCGCTGACGGCGAGGCAGCCTGCTGAT CGTGGGCGGCGAGGCAGCGCGCGCGCGCGCGCGCGCGCGGCGAGGCAGCCGCGCGCGGCG			
GGCGAACCAGGAGAAATCGCGCCTGCTGGCCCAGGCC AGCCACGACCTGCGCCAGCCGATCCACTCCATCGGCC TGTTCACCGCCTGCTGT240PA1396 fragment cloned into topology reporter plasmids phoA and lacZATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA ACCTGCGACTGATCGTGGCCACCTGCGCGGCGGATCCTCTAC GTGGTGCTGATCGCCGATCGTTGCCTACTACGGCCTGTTC CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG CTGGCCGGGGCACTACCCGGCGCGGCGAGACTACTCGGCCTGAT CGTGGGCGGCGAGGCAGCGCGCGCGCGCGCGCGCGCGGCG GCTCGCGCGCACCACCGCCTGGCCCTGGCCCGCGCGCGCG			
AGCCACGACCTGCGCCAGCCGATCCACTCCATCGGCC TGTTCACCGCCTGCTGT240PA1396 fragment cloned into topology reporter plasmids phoA and lacZATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA ACCTGCGACTGATCGTGGCCACCTGCGCGGCTGAAGGTCG GGGCGGGGCACTACTGCTGCCGCCGGCCTGAAGGTCG CTGGCCGGGCGCGCGCGCGCGCGCGCGCGCGCGGCGGATCTTCTGC CTGGCCGGGCGGCGCGCGCGCGCGCGGCGCGATCTTCTGC ATGCTGCACCGACCACCGCGCGCGCGCGCGCGGCGATC CGTGGCCGGCGCGGCGAGCCATCGCCGCGCGCGCGGCGATC CGTGGGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG			
T240PA1396 fragment cloned into topology reporter plasmids phoA and lacZATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCAC GTGGTGCTGATCGGCCGGCCGGCGCGGAGCCTGAAGGTCG CCGACCGACCGCCGGCGCGGCGGACCACCTGGCG CCGGCCGGGGCACTACCGGCGCGGCGGACCACCTCGTCGCC CCGGGCGGGGCGAGCCACCCCGCGCGGCGATCCTCGC CGTGGCCGGGCGAGGCAGCGCGCGCGCGCGCGCGGCGATC CCGGGGCGGCGAGGCACCCCGCGCGCGCGCGCGCGCGGCG			
T240PA1396 fragment cloned into topology reporter plasmids phoA and lacZATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA ACCTGCGACTGATCGTGGCCACCTGCGCGCGATCCTCAC GTGGTGCTGATCGCCGATCGTTGCCTACTACGGCCTGAAGGTCG AGACCTACCTGCCGATCGTTGCCTACTACGGCCAGGCCA			
mito_topology_report GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG plasmids phoA and lacZ GTGGTGCTGCTGCCGCCTGCTGCCCGGCCTGAAGGTCG AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTCC CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG CTGGCCGGGGCACTACCCGGCGCGGCGGCGATCTTCTGC ATGCTGCACGACTACCCGGCGCGGCGGCGGATCTTCTGC ATGCTGCACGACTACGCCGGCACCTCGTTCGGCCTGAT CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG GCTCGCGCTACTGGCCATCGCCACCGCCCTGGCGCTG CTCGCGCTACTGGTCATCTATCGACCCCGGCCTG GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC	T240		ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA
AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG CTGGCCGGGGCACTACCCGGCGCGGGGATCTTCTGC ATGCTGCACGACTACGCCGGCACCTCGTTCGGCCTGAT CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG GCTCGCGCTACTGGCCATCGCCACCGCCCTGGCGCTG CTCGCGCTACTGGTCATCTATCGACCCGGCCTG			
CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG CTGGCCGGGGCACTACCCGGCGCGGCGATCTTCTGC ATGCTGCACGACTACGCCGGCACCTCGTTCGGCCTGAT CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG GCTCGCGCTACTGGCCATCGCCACCGCCTGGCGCGCG GCTCGCGCTACTGGCCATCGACCGCCTGGCGCTG CCTCGCGCTACTGGTCATCTATCGACCCCGGCCTG GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC		plasmids <i>phoA</i> and <i>lacZ</i>	
ATGCTGCACGACTACGCCGGCACCTCGTTCGGCCTGAT CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG GCTCGCGCTACTGGCCATCGCCACCGCCCTGGCGCTG CTCGCGCTACTGGTCATCTATCGACTGACCCGGCCTG GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC			CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG
CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG GCTCGCGCTACCTGGCCATCGCCACCGCCCTGGCGCTG CTCGCGCTACTGGTCATCTATCGACTGACCCGGCCTG GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC			
ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG GCTCGCGCTACCTGGCCATCGCCACCGCCCTGGCGCTG CTCGCGCTACTGGTCATCTATCGACTGACCCCGGCCTG GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC			
CTCGCGCTACTGGTCATCTATCGACTGACCCCGGCCTG GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC			
GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC			GCTCGCGCTACCTGGCCATCGCCACCGCCCTGGCGCTG
			ACCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC

	1	
		GGAGCGCACGCGCAAGGCCACCGAGGAAGCGTTGCA
		GGCGAACCAGGAGAAATCGCGCCTGCTGGCCCAGGCC
		AGCCACGACCTGCGCCAGCCGATCCACTCCATCGGCC
		TGTTCACCGCCTGCCTGCGCGACGCCCGCCTGGGCGA
		CGAGGAACGGCGCCTGGTGGACAACATCGACCGCTCG
		CTGCTCAACGTCTCGCAACTGTTCCGCTCCATTCTCGA
		TCTCTACACC
L300	PA1396 fragment cloned	ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA
	into topology reporter	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC
	plasmids $phoA$ and $lacZ$	GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG
	1 1 1 1 1 1 1 1	AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC
		CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG
		CTGGCCGGGGCACTACCCGGCGCGGGGGGATCTTCTGC
		ATGCTGCACGACTACGCCGGCACCTCGTTCGGCCTGAT
		CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG
		ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG
		GCTCGCGCTACCTGGCCATCGCCACCGCCCTGGCGCTG
		CTCGCGCTACTGGTCATCTATCGACTGACCCCGGCCTG
		GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC
		ACCAGTACCGTCATTCCCTTCTACGCGCACCTCCTGCT
		GGAGCGCACGCGCAAGGCCACCGAGGAAGCGTTGCA
		GGCGAACCAGGAGAAATCGCGCCTGCTGGCCCAGGCC
		AGCCACGACCTGCGCCAGCCGATCCACTCCATCGGCC
		TGTTCACCGCCTGCCTGCGCGACGCCCGCCTGGGCGA
		CGAGGAACGGCGCCTGGTGGACAACATCGACCGCTCG
		CTGCTCAACGTCTCGCAACTGTTCCGCTCCATTCTCGA
		TCTCTACACCCTCGACAACGGCCGGCTCCAACCCAAG
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC
		TGGTCCGGCGCAACGCCGAAGCGGCGCGCTGGGCCGG
		GGTGGAACTGCGCCTGCGCCCTTGCCGCCTGTGGACG
		CGAACCGATCCGGGGCTGCTGTCGACCATGCTGCAGA
1.201		ACCTG
L381	PA1396 fragment cloned	ATGAAGTTCGAGAAGAATACCGAGCTGGACCAGGCCA
	into topology reporter	ACCTGCGACTGATCGTGGCCACCTGCGCGATCCTCTAC GTGGTGCTGATCGGCCTGCTGCCCGGCCTGAAGGTCG
	plasmids <i>phoA</i> and <i>lacZ</i>	AGACCTACCTGCCGATCGTTGCCTACTACGGCCTGTTC
		CTGATCGCCTCCATACTGCTGCGCCAGGCCATCGTGCG
		CTGGCCGGGGCACTACCCGGCGCGCGGGGGATCTTCTGC
		ATGCTGCACGACTACGCCGGCACCTCGTTCGGCCTGAT
		CGTGGGCGGCGAGGCAGCGCTGCCGCTGTACGCGGTG
		ATGGTCTGGATCAACCTGGGCAACGGCATGCGCTACG
		GCTCGCGCTACCTGGCCATCGCCACCGCCCTGGCGCTG
		CTCGCGCTACTGGTCATCTATCGACTGACCCCGGCCTG
		GCAGGCTCAGCCGTTCATGGTGCTGATGCTGATGACC
		ACCAGTACCGTCATTCCCTTCTACGCGCACCTCCTGCT
		GGAGCGCACGCGCAAGGCCACCGAGGAAGCGTTGCA
		GGCGAACCAGGAGAAATCGCGCCTGCTGGCCCAGGCC
		AGCCACGACCTGCGCCAGCCGATCCACTCCATCGGCC
		TGTTCACCGCCTGCCTGCGCGACGCCCGCCTGGGCGA
		CGAGGAACGGCGCCTGGTGGACAACATCGACCGCTCG
		CTGCTCAACGTCTCGCAACTGTTCCGCTCCATTCTCGA
	1	
1		TCTCTACACCCTCGACAACGGCCGGCTCCAACCCAAG
		TCTCTACACCCTCGACAACGGCCGGCTCCAACCCAAG CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC
		TCTCTACACCCTCGACAACGGCCGGCTCCAACCCAAG CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC TGGTCCGGCGCAACGCCGAAGCGGCGCGCGCGGCGGG
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC TGGTCCGGCGCAACGCCGAAGCGGCGCGCGGGCCGG GGTGGAACTGCGCCTGCGCCCTTGCCGCCTGTGGACG
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC TGGTCCGGCGCAACGCCGAAGCGGCGCGCGGGGCCGG GGTGGAACTGCGCCTGCGCCCTTGCCGCCTGTGGACG CGAACCGATCCGGGGCTGCTGTCGACCATGCTGCAGA
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC TGGTCCGGCGCAACGCCGAAGCGGCGCGCGGGCCGG GGTGGAACTGCGCCTGCGCCCTTGCCGCCTGTGGACG
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC TGGTCCGGCGCAACGCCGAAGCGGCGCGCTGGGCCGG GGTGGAACTGCGCCTGCGCCCTTGCCGCCTGTGGACG CGAACCGATCCGGGGCTGCTGTCGACCATGCTGCAGA ACCTGCTCTCCAACAGCTTCAAGTACGCCGCCGAGCG
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC TGGTCCGGCGCAACGCCGAAGCGGCGCGCTGGGCCGG GGTGGAACTGCGCCTGCGCCCTTGCCGCCTGTGGACG CGAACCGATCCGGGGCTGCTGTCGACCATGCTGCAGA ACCTGCTCTCCAACAGCTTCAAGTACGCCGCCGAGCG CCCGCTGCTGATCGGCGTGCGGCGGCGAGGCGA
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC TGGTCCGGCGCAACGCCGAAGCGGCGCGCGCGGGG GGTGGAACTGCGCCTGCGCCCTTGCCGCCTGTGGACG CGAACCGATCCGGGGCTGCTGTCGACCATGCTGCAGA ACCTGCTCTCCAACAGCTTCAAGTACGCCGCCGAGCG CCCGCTGCTGATCGGCGTGCGGCGGCGAGGCGA
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC TGGTCCGGCGCAACGCCGAAGCGGCGCGCGCGGG GGTGGAACTGCGCCTGCGCCCTTGCCGCCTGTGGACG CGAACCGATCCGGGGCTGCTGTCGACCATGCTGCAGA ACCTGCTCTCCAACAGCTTCAAGTACGCCGCCGAGCG CCCGCTGCTGATCGGCGTGCGGCGGCGAGGCGA
		CAGGAGAACGTCCACCTGGGCGAGTTGCTGCGCGACC TGGTCCGGCGCAACGCCGAAGCGGCGCGCGCGGGGCCGG GGTGGAACTGCGCCTGCGCCCTTGCCGCCTGTGGACG CGAACCGATCCGGGGCTGCTGTCGACCATGCTGCAGA ACCTGCTCTCCAACAGCTTCAAGTACGCCGCCGAGCG CCCGCTGCTGATCGGCGTGCGGCGGCGAGGCGA


Supplementary Note 1

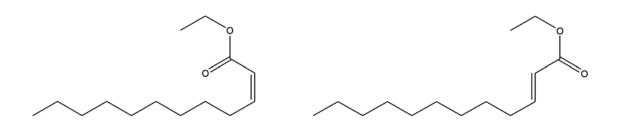
Experimental Procedures and Spectroscopic Data for Compounds

All synthetic procedures and analytical data for compounds used in this study are detailed below or the ChEBI identifiers are provided. Compounds not synthesized were purchased from Sigma-Aldrich, Cayman Chemical, Chemieliva Pharmaceutical Co., Ltd, New Chem, SynCom and HEOWNS.

Preparation of BDSF

Decanal

Synthetic scheme:


A solution of anhydrous DMSO (1.44 mL, 20.22 mmoL) in anhydrous CH_2Cl_2 (25 mL) was treated with oxalyl chloride (0.87 mL, 10.11 mmoL) and stirred for 30 minutes at -78°C. Decanol (1.2 mL, 6.30 mmoL) was added and the reaction mixture stirred for 1.5 h at -78°C. Triethylamine (4.23 mL, 30.33 mmoL) was added and the reaction warmed to rt. The reaction mixture was re-cooled to 0°C, $NH_4Cl_{(sat.)}$ (10mL) added and partitioned between CH_2Cl_2 (25 mL). The aqueous layer was re-extracted with CH_2Cl_2 (2 x 25 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by column chromatography on silica gel eluting with Hex:EtOAc (96:4) gave the product as a colourless oil (0.863 g, 87 %).

¹H NMR (400 MHz, CDCl₃) δ : 9.76 (s, 1H, CHO), 2.41 (td, 2H, J = 15.4, 9.2, 1.9 Hz) 1.66 - 1.58 (m, 2H), 1.33 -1.22 (m, 12H), 0.86 (t, 3H, J = 7.0 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 202.5, 43.8, 31.8, 29.3, 29.3, 29.2, 29.1, 22.6, 22.0, 13.9.

IR (NaCl disk): 3330.38, 2926.66 cm⁻¹.

Ethyl (Z)-dodec-2-enoate and Ethyl (E)-dodec-2-enoate

Synthetic scheme:

To a solution of sodium hydride (95%) (451 mg, 17.9 mmoL) in anhydrous THF (130 mL) was added ethyl[bis(2,2,2-trifluoroethoxy)phosphyl]acetate (2.13 mL, 8.95 mmoL) which was stirred for 45 minutes at 0°C. Decanal (1.39 g, 8.91 mmoL) was added dropwise and stirred for 30 minutes at - 78°C. H₂O (20 mL) was added and the reaction stirred for 30 minutes at rt. The solvent was removed under reduce pressure and partitioned between EtOAc (40 mL) and H₂O (40 mL). The organic layer was re-extracted with EtOAc (2 x 40 mL) and washed with brine (40 mL). The combined organic layers were dried over MgSO₄ and evaporated to dryness to yield the crude product as colourless oil. Purification using preparative thin layer chromatography eluting with Hex:EtOAc (96:4) gave the product as a mixture of the Z-isomer (1.29 g, 64%) and the *E*-isomer (0.211 g, 10%)

Ethyl (Z)-dodec-2-enoate:

¹H NMR (400 MHz, CDCl₃) δ : (**5a**) 6.21 (td, 1H, J = 11.5, 7.5 Hz), 5.75 (td, 1H, J = 12.3, 1.7 Hz), 4.16 (q, 2H, J = 7.1 Hz), 2.64 (dt, 2H, J = 14.8, 5.7, 1.6 Hz), 1.46 – 1.38 (m, 2H), 1.43-1.31 (m, 15H), 0.87 (t, 3H, J = 6.6 Hz).

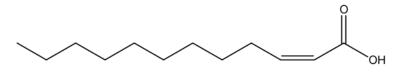
¹³C NMR (125 MHz, CDCl₃) δ: (**5a**) 166.5, 150.6, 119.5, 59.7, 31.8, 29.5, 29.4, 29.3, 29.3, 29.0, 29.0, 22.6, 14.2, 14.11.

HRMS [M+H]⁺: 227.2011, C₁₄H₂₇O₂⁺ requires, 227.2012.

ES-MS: *m/z* 227.3 [M+H]⁺, C₁₄H₂₇O₂⁺.

IR (NaCl disk): 2926, 1723, 1183 cm⁻¹

Ethyl (*E*)-dodec-2-enoate:


¹H NMR (400 MHz, CDCl₃) δ : 6.95 (td, 1H, J = 15.5, 7.0 Hz), 5.79 (td, 1H, J = 15.7, 1.52 Hz), 4.17 (q, 2H, J = 7.1 Hz), 2.18 (dq, 3H, J = 14.5, 7.0, 1.5 Hz), 1.47 – 1.40 (m, 2H), 1.33 – 1.23 (m, 15H), 0.86 (t, 3H, J = 6.6 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 166.8, 149.5, 121.1, 60.1, 32.2, 31.9, 29.5, 29.4, 29.3, 29.1, 28.0, 22.6, 14.2, 14.1.

HRMS [M+H]⁺: 227.2011, C₁₄H₂₇O₂⁺ requires, 227.2000.

ES-MS: *m/z* 227.3 [M+H]+, C₁₄H₂₇O₂⁺.

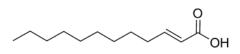
C2: (Z)-2-Dodecenoic acid (BDSF)

Synthetic scheme:

A solution of ethyl (*Z*)-dodec-2-enoate (0.327 g, 1.44 mmoL) in THF:MeOH (2:1) (4 mL) was treated with lithium hydroxide (0.332 g, 14.45 mmoL) in H₂O (2.5 mL) 0°C and then stirred at rt for 24 h. The reaction mixture was cooled to 0°C, H₂O (10 mL) added and the pH was adjusted to 1. The solvent was removed under reduced pressure and partitioned between CH₂Cl₂ (20 mL) and H₂O (20 mL). The aqueous layer was re-extracted with CH₂Cl₂ (2 x 20 mL), and the combined organics dried over MgSO₄ and evaporated to dryness. Purification *via* column chromatography on silica gel eluting with Hex:EtOAc (85:15) gave the product as a colourless oil 0.28 g, 98 %.

¹H NMR (400 MHz, CDCl₃) δ: 11.64 (bs, 1H), 6.35 (dt, 1H, *J* = 11.4, 7.6 Hz), 5.77 (dt, 1H, *J* = 11.5, 1.6 Hz), 2.65 (dt, 2H, *J* = 14.8, 7.5, 1.96 Hz), 1.47 – 1.40 (m, 2H), 1.34-1.26 (m, 12H), 0.88 (t, 3H, *J* = 6.7 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 171.9, 153.5, 118.9, 31.8, 29.7, 29.5, 29.4, 29.2, 29.2, 28.9, 22.6, 14.08.


HRMS [M+H]⁺: 199.1698, C₁₂H₂₃O₂⁺, requires 199.1706.

ES-MS: *m/z* 199.6 [M+H]⁺, C₁₂H₂₃O₂⁺.

IR (NaCl disk): 2926, 1698, 1456, 1241 cm⁻¹.

ChEBI identifier: 38372

C15: (E)-Dodec-2-enoic acid (trans-BDSF)

Synthetic scheme:

A solution of ethyl (*E*)-dodec-2-enoate (80 mg, 0.35 mmoL) in THF:MeOH (2:1) (3 mL) was treated with lithium hydroxide (84 mg, 3.53 mmoL) in H₂O (1 mL) at 0°C and then stirred for 24 h at rt. The reaction mixture was cooled to 0°C, H₂O (10 mL) added and acidified to pH 1. The solvent was removed under reduced pressure and partitioned between CH₂Cl₂ (20 mL) and H₂O (20 mL). The aqueous layer was re-extracted with CH₂Cl₂ (2 x 20 mL), and the combined organics dried over MgSO₄ and evaporated to dryness. Purification *via* silica gel eluting with Hex:EtOAc (85:15) gave the product as a colourless oil 59 mg, 85 %.

¹H NMR (400 MHz, CDCl₃) δ : 11.2 (bs, 1H), 7.08 (dt. 1H, J = 19.8, 7 Hz), 5.84-5.79 (m, 1H), 2.25 – 2.19 (m, 2H), 1.50 – 1.41 (m, 2H), 1.34 – 1.21 (m, 12H), 0.87 (t, 3H, J = 6.6 Hz).

HRMS [M+H]⁺: , C₁₂H₂₃O₂⁺, requires 199.0276.

```
ES-MS: m/z 199.3 [M+H]<sup>+</sup>, C<sub>13</sub>H<sub>22</sub>O<sub>2</sub><sup>+</sup>.
```

Preparation of DSF

9-Methyldecan-1-ol

`OH

Synthetic scheme:

A solution of Mg turnings (403 mg, 16.57 mmoL) and *i*-pentyl bromide (2.5 g, 16.57 mmoL) were stirred in anhydrous THF (7 mL). The mixture was treated with solution of 6-bromohexan-1-ol (0.722 mL, 5.52 mmoL) and Li₂CuCl₄ (0.1 M, 2.1 mL in THF) and stirred for 1 h at rt. $HCl_{(conc.)}$ (5 mL) and Et₂O (10 mL) were added. The sticky solid was washed with Et₂O (3 x 10 mL), stirred and decanted. The organic layer was washed with NaHCO₃ (30 mL) and brine (30 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by column chromatography on silica gel eluting with Hex:EtOAc (2:1) gave the product as a colourless oil (0.505 g, 53 %).

¹H NMR (400 MHz, CDCl₃) δ : 3.63 (t, 2H, J = 6.6 Hz), 1.62 - 1.46 (m, 4H), 1.36 - 1.20 (m, 9H), 1.17 - 1.12 (m, 2H), 0.86 (t, 6H, J = 6.6 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 63.1, 39.0, 32.8, 29.8, 29.6, 29.4, 27.9, 27.3, 25.7, 22.6.

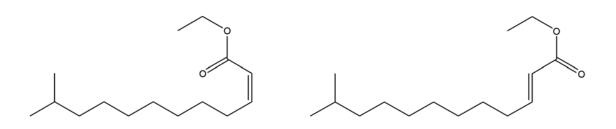
ES-MS: *m*/*z* 171.4 [M-H]⁻, C₁₁H₂₃O⁻.

IR (NaCl disk): 3440, 2925 cm⁻¹.

ChEBI identifier: 87138

9-Methyldecanal

Synthetic scheme:


A solution of anhydrous DMSO (1.24 mL, 17.53 mmoL) in anhydrous CH_2Cl_2 (25 mL) was treated with oxalyl chloride (0.75 mL, 8.78 mmoL) and stirred for 30 minutes at -78°C. 9-Methyldecan-1-ol (0.95 g, 5.5 mmoL) was added and the reaction mixture stirred for 1.5 h at -78°C. Triethylamine (3.7 mL, 26.3 mmoL) was added and the reaction warmed to rt. The reaction mixture was re-cooled to 0°C, NH₄Cl_(sat.) (10 mL) added and partitioned with CH₂Cl₂ (25 mL). The aqueous layer was re-extracted with CH₂Cl₂ (2 x 25 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by column chromatography on silica gel eluting with Hex:EtOAc (96:4) gave the product as a colourless oil (0.691 g, 74 %).

¹H NMR (400 MHz, CDCl₃) δ: 9.76 (s, 1H, CHO), 2.42 (dt, 2H, *J* = 9.2, 7.4, 1.8 Hz), 1.63 (q, 2H, J = 7.3, 14.6 Hz), 1.46 – 1.56 (m, 1H), 1.34 – 1.26 (m, 8H), 1.17 – 1.12 (m, 2H), 0.86 (d, 6H, *J* = 6.6 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 202.9, 43.9, 38.9, 29.6, 29.3, 29.1, 27.9, 27.3, 22.6, 22.0.

IR (NaCl disk): 2927, 1729 cm⁻¹.

C26: Ethyl (Z)-11-methyldodec-2-enoate and Ethyl (E)-11-methyldodec-2-enoate

Synthetic scheme:

To a solution of sodium hydride (95%) (204 mg, 8.1 mmoL) in anhydrous THF (60 mL) was added ethyl[bis(2,2,2-trifluoroethoxy)phosphinyl]acetate (962 μ L, 4.05 mmoL) which was stirred at 0°C for 45 minutes. 9-Methyldecanal (0.69 g, 4.05 mmoL) was added drop-wise and stirred for 30 minutes at -78°C. H₂O (50 mL) was added and the reaction stirred for at rt 30 minutes. The solvent was removed under reduced pressure and partitioned between EtOAc (60 mL) and H₂O (60 mL). The organic layer was re-extracted with EtOAc (2 x 60 mL) and washed with brine (60 mL). The combined organic layers were dried over MgSO₄ and evaporated to dryness to yield the crude product as colourless oil. Purification using preparative thin layer chromatography eluting with Hex:EtOAc (96:4) gave the product as a mixture of the Z-isomer (0.472 g, 48%) and *E*-isomer (0.173 g, 17%)

Ethyl (Z)-11-methyldodec-2-enoate

¹H NMR (400 MHz, CDCl₃) δ : 6.21 (td, 1H, J = 11.5, 7.6 Hz), 5.75 (td, 1H, J = 11.5, 1.5 Hz), 4.16 (q, 2H, J = 7.2 Hz), 2.64 (dq, 2H, J = 14.9, 7.3, 1.5 Hz), 1.34 – 1.58 (m, 3H), 1.31 – 1.25 (m, 11H), 1.16 - 1.12 (m, 2H), 0.85 (d, 6H, J = 6.6 Hz).

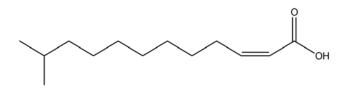
¹³C NMR (75 MHz, CDCl₃) δ: 166.5, 150.7, 119.5, 59.7, 39.0, 29.8, 29.4, 29.3, 29.0, 29.0, 27.9, 27.3, 22.6, 14.2.

HRMS [M+H]⁺: 241.2168, C₁₅H₂₉O₂⁺ requires, 241.2172.

ES-MS: *m/z* 241.3 [M+H]+, C₁₅H₂₉O₂⁺.

IR (NaCl disk): 2926, 1723, 1183 cm⁻¹.

Ethyl (E)-11-methyldodec-2-enoate


¹H NMR (400 MHz, CDCl₃) δ : 6.96 (td, 1H, J = 15.6, 6.9 Hz), 5.80 (td, 1H, J = 15.6, 1.5 Hz), 4.18 (q, 2H, J = 7.1 Hz), 2.27 (dq, 2H, J = 12.8, 7.5, 1.4 Hz), 1.54 - 1.41 (m, 3H), 1.33 - 1.24 (m, 11H), 1.16 - 1.11 (m, 2H), 0.85 (d, 6H, J = 6.6 Hz).

¹³C NMR (75 MHz, CDCl₃) δ: 166.8, 149.5, 121.1, 60.1, 39.0, 32.2, 29.7, 29.4, 29.1, 28.0, 27.9, 27.3, 22.6, 14.2.

HRMS [M+H]⁺: 241.2158, C₁₅H₂₉O₂⁺ requires, 241.2168.

ES-MS: *m/z* 241.3 [M+H]⁺, C₁₅H₂₉O₂⁺.

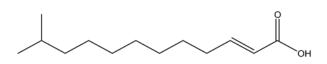
C1: (Z)-11-Methyl-2-dodecenoic acid (DSF)

Synthetic scheme:

A solution of ethyl (Z)-11-methyldodec-2-enoate (377 mg, 1.57 mmoL) in THF:MeOH (2:1) (10 mL) was treated with lithium hydroxide (306 mg, 15.65 mmoL) in H₂O (3 mL) 0°C and then stirred at rt for 24 h. The reaction mixture was cooled to 0°C, H₂O (10 mL) added and the pH was adjusted to 1. The solvent was removed under reduced pressure and partitioned between CH₂Cl₂ (20 mL) and H₂O (20 mL). The aqueous layer was re-extracted with CH₂Cl₂ (2 x 20 mL), and the combined organics dried over MgSO₄ and evaporated to dryness. Purification by silica gel chromatography with Hex:EtOAc (85:15) as eluant gave the product as a colourless oil 292 mg, 88 %.

¹H NMR (400 MHz, CDCl₃) δ : 12.0 (bs, 1H), 6.35 (td, 1H, J = 11.5, 7.0 Hz), 5.79 (td, 1H, J = 11.5, 1.7 Hz) 2.66 (dq, 2H, J = 7.44, 1.7 Hz), 1.56 - 1.41 (m, 3H), 1.36 - 1.22 (m, 8H), 1.17 - 1.12 (m, 2H), 0.86 (d, 6H, J = 6.6 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 171.2, 153.6, 118.7, 39.0, 29.8, 29.4, 29.2, 29.2, 28.9, 27.9, 27.3, 22.6.


HRMS [M+H]⁺: 213.1855, C₁₃H₂₅O₂⁺ requires, 213.1854.

ES-MS: *m*/*z* 213.1 [M+H]⁺, C₁₃H₂₅O₂⁺.

IR (NaCl disk): 2926, 1697, 1436, 1242 cm⁻¹.

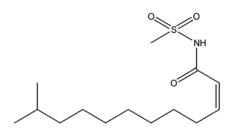
ChEBI identifier: 81585

C14: (E)-11-Methyldodec-2-enoic acid (trans-DSF)

Synthetic scheme:

A solution of ethyl (Z)-11-methyldodec-2-enoate (0.127 g, 0.53 mmoL) in THF:MeOH (2:1) (4 mL) was treated with lithium hydroxide (0.145, 6.26 mmoL) in H₂O (2 mL) at 0°C and then stirred at rt for 24 h. The reaction mixture was cooled to 0°C, H₂O (10 mL) added and adjusted to pH 1. The solvent was removed under reduced pressure and partitioned between CH₂Cl₂ (20 mL) and H₂O (20 mL). The aqueous layer was re-extracted with CH₂Cl₂ (2 x 20 mL), and the combined organics dried over MgSO₄ and evaporated to dryness. Purification *via* column chromatography on silica fel eluting with Hex:EtOAc (85:15) gave the product a colourless oil 0.107 g, 95 %.

¹H NMR (400 MHz, CDCl₃) δ : 11.2 (bs, 1H), 7.12 – 7.05, (m, 1H), 5.84 – 5.80 (m, 1H), 2.25 – 2.20 (m, 2H), 1.56 – 1.42 (m, 3H), 1.32 – 1.23 (m, 8H), 1.17–1.11 (m, 2H), 0.86 (d, 6H, J = 5.7 Hz).


¹³C NMR (125 MHz, CDCl₃) δ: 172.1, 152.5, 120.5, 39.0, 32.3, 29.7, 29.4, 29.2, 29.1, 27.9, 27.8, 27.3, 22.6.

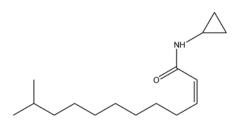
HRMS [M+H]⁺: 213.1855, C₁₃H₂₅O₂⁺ requires, 213.1854.

ES-MS: *m/z* 213.4 [M+H]⁺, C₁₃H₂₅O₂⁺.

Preparation of DSF analogues

C23: (Z)-11-Methyl-N-(methylsulfonyl)dodec-2-enamide

Synthetic scheme:


A solution of (*Z*)-11-methyl-2-dodecenoic acid (DSF) (27.8 mg, 0.131 mmol) in anhydrous DCM (5 ml) at 0°C was treated with dimethylaminopyridine (4.9 mg, 0.04 mmol), EDCI (34.9 mg, 0.183 mmol) and methanesulfonamide (35.9 mg, 0.378 mmol) and then stirred at room temperature for 24 hours. Saturated NaHCO₃ solution (10 ml) was added. The organic layer was separated and volatiles evaporated. Initial purification by silica chromatography (0-10% MeOH in DCM), followed by reverse phase HPLC (5-95% MeCN in 0.1% NH4OH) yielded the desired product as a colourless oil (0.5 mg, 0.001 mmol, 1.2%).

¹H NMR (500 MHz, CDCl₃) δ: 7.08 - 7.06 (1H, m), 5.81 (1H, d, J=15.3 Hz), 3.33 (3H, s), 2.24 (2H, q, J=6.7 Hz), 1.52 (2H, m), 1.47 (2H, m), 1.28 (9H, dd, J=4.1, 18.8 Hz), 1.18 - 1.14 (2H, m), 0.87 (6H, d, J=6.6 Hz);

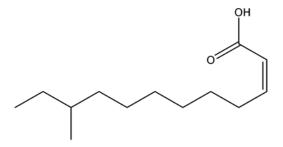
ES-MS: *m*/*z* 290.1 [M+H]+, C₁₄H₂₈NO₃S+.

ChEBI identifier: 87144

C24: (Z)-N-Cyclopropyl-11-methyldodec-2-enamide

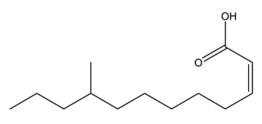
A solution of (*Z*)-11-methyl-2-dodecenoic acid (DSF) (25mg, 0.117 mmol) in anhydrous DCM (5 ml) at 20°C was treated with cyclopropylamine (24.5 uL. 0.353 mmol), DIPEA (41 uL, 0.235 mmol) and propylphosphonic anhydride solution (50% in EtOAc, 2.4 ml) then stirred at room temperature for 24 hours. Saturated NaHCO₃ solution (10 ml) was added. The organic layer was separated and volatiles evaporated. Initial purification by silica chromatography (0-10% MeOH in DCM), followed by reverse phase HPLC (5-95% MeCN in 0.1% NH4OH) yielded the desired product as a colourless oil (14.4 mg, 0.054 mmol, 46%).

¹H NMR (500 MHz, CDCl₃) δ: 6.01 - 5.95 (1H, m), 5.63 - 5.54 (2H, m), 2.78 - 2.73 (1H, m), 2.68 - 2.62 (2H, m), 1.54 - 1.40 (1H, m), 1.32 - 1.23 (8H, m), 1.15 (2H, q, J=6.9 Hz), 0.87 - 0.85 (10H, m), 0.54 - 0.50 (2H, m);.

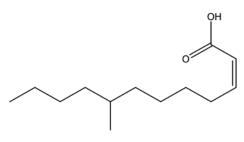

¹³C NMR (125 MHz, CDCl₃) δ: 168.0, 146.3, 121.7, 39.1, 29.8, 29.5, 29.4, 28.8, 28.0, 27.4, 22.7, 22.4, 6.7.

ES-MS: *m/z* 252.2 [M+H]+, C₁₆H₃₀NO+.

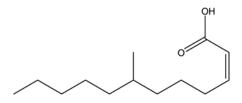
ChEBI identifier: 87143

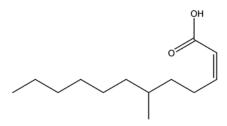

Other analogues

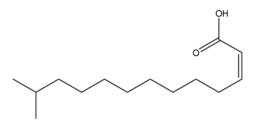
C3: (Z)-10-Methyldodec-2-enoic acid

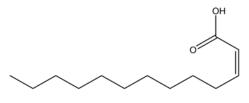


PubChem CID: 129730386

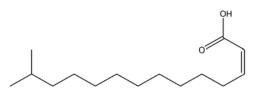

C4: (Z)-9-Methyldodec-2-enoic acid


C5: (Z)-8-Methyldodec-2-enoic acid

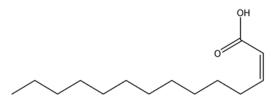

C6: (Z)-7-Methyldodec-2-enoic acid


C7: (Z)-6-Methyldodec-2-enoic acid

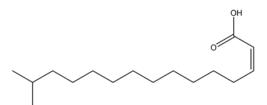
C8: (Z)-12-Methyltridec-2-enoic acid



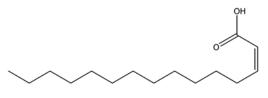
C9: (Z)-Tridec-2-enoic acid


PubChem CID: 5356766

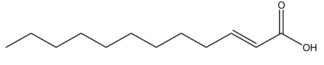
C10: (Z)-13-Methyltetradec-2-enoic acid


ChEBI identifier: 87148

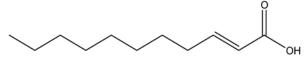
C11: (Z)-Tetradec-2-enoic acid


PubChem identifier: 5362743

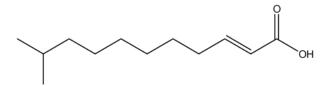
C12: (Z)-14-Methylpentadec-2-enoic acid


CHEBI:87146

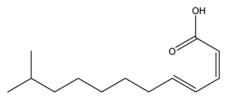
C13: (Z)-Pentadec-2-enoic acid


PubChem CID: 53887649

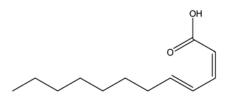
C15: (E)-Dodec-2-enoic acid


ChEBI identifier: 37162

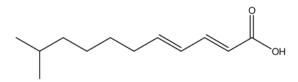
C16: (E)-Undec-2-enoic acid


ChEBI identifier: 39450

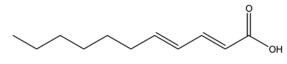
C17: (E)-10-Methylundec-2-enoic acid


PubChem identifier: 53804867

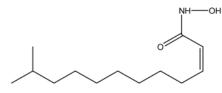
C18: (2Z, 4E)-11-Methyldodeca-2,4-dienoic acid



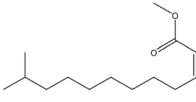
PDB: 0W5


C19: (2Z,4E)-Dodeca-2,4-dienoic acid

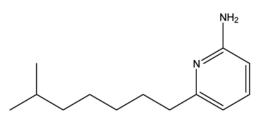
C20: (2E, 4E)-10-Methylundeca-2,4-dienoic acid



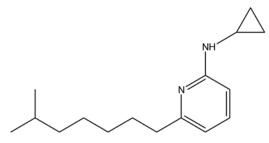
C21: (2E,4E)-Undeca-2,4-dienoic acid


PubChem CID: 5312374

C22: (Z)-N-hydroxy-11-methyldodec-2-enamide


ChEBI identifier: 87145

C25: (Z)-Methyl 11-methyldodec-2-enoate



ChEBI identifier: 87151

C27: 6-(6-Methylheptyl)pyridin-2-amine

C28: N-Cyclopropyl-6-(6-methylheptyl)pyridin-2-amine

CHEBI: 38785

Supplementary References

- 1. Ryan, R. P. et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol. Microbiol. (2008). doi:10.1111/j.1365-2958.2008.06132.x
- 2. Twomey, K. B. et al. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa. ISME J. (2012). doi:10.1038/ismej.2011.167
- 3. Chew, S. C. et al. Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Pseudomonas aeruginosa during Dual-Species Biofilm Development with Staphylococcus aureus. MBio 9, e00585-18 (2018).
- Haagensen, J. A. J. et al. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacteriol. (2007). doi:10.1128/JB.00720-06
- Cunneen, M. M. & Reeves, P. R. Membrane topology of the Salmonella enterica serovar Typhimurium Group B O-antigen translocase Wzx. FEMS Microbiol. Lett. (2008). doi:10.1111/j.1574-6968.2008.01295.x
- An, S. Q. et al. High-resolution transcriptional analysis of the regulatory influence of cellto-cell signalling reveals novel genes that contribute to Xanthomonas phytopathogenesis. Mol. Microbiol. (2013). doi:10.1111/mmi.12229