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Structural Damage Detection and Calibration Using Wavelet-

Kurtosis Technique 

V. Pakrashi, B. Basu and A. O’ Connor 

Department of Civil, Structural and Environmental Engineering, Trinity College Dublin 

 

Abstract  

Some key factors in the field of damage detection of structures are the efficient and 

consistent detection of the presence, location and the extent of damage. A detailed 

numerical study has been performed in this paper addressing these issues for a beam 

element with an open crack. The first natural modeshape of the beam with an open crack 

has been simulated using smeared, lumped and continuous crack models involving 

various degrees of complexity. The static deflected shape of the same beam has also been 

simulated under vertical static loading. Gaussian white noise of different intensities has 

been synthetically introduced to both the simulated damaged modeshape and the static 

deflected shape. Wavelet analysis has been performed on the simulated modeshape and 

the static deflected shape for locating the damage. A new wavelet-kurtosis based 

calibration of the extent of damage have been performed for different crack depth ratios 

and crack positions including the effects of varying signal to noise ratio. An experimental 

validation of this method has been carried out on a damaged aluminium beam with open 

cracks of different extent. The damaged shape has been estimated by using a novel video 

camera based pattern recognition technique. The study in this paper shows that wavelet 

analysis in conjunction with a kurtosis based damage calibration can be useful in the 
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identification of damage to structures and is applicable under the presence of 

measurement noise.  
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1. Introduction 
 
Identification of change in natural frequencies and modeshapes of a freely vibrating 

damaged beam with respect to its undamaged state has traditionally been a popular 

method for damage identification. These changes are often quite small and the method 

performs poorly when measurements are contaminated by noise. Analysis of damaged 

modeshapes by wavelet transform provides a better and more robust methodology for the 

identification of damage. A sharp change in the wavelet coefficients at different scales 

near the damage location indicates the presence and the location of the damage while the 

magnitude of the local extrema of the wavelet coefficients at the location of damage can 

be related to the extent of the damage. The principles behind such wavelet based damage 

detection are associated with the detection of singularities in a function or in any of its 

derivatives. Hence, information about the beam in its undamaged state is not required.       

The aspect of singularity detection through wavelets has been discussed in details 

by Mallat [1]. Gentile and Messina [2] have discussed the criteria for a proper selection 

of wavelet basis functions to efficiently identify the damage in a beam with an open crack 

in the presence of measurement noise and have demonstrated the performances of 

Gaussian and Symlet wavelets in the detection process. Loutridis et al [3], Chang and 

Chen [4] and Okafor and Dutta [5] have considered the problem of the identification of 

open cracks in a beam as well, but with a single type of wavelet basis function for 

analysing the damaged modeshapes. Melhem and Kim [6] have analysed the response of 

concrete structures and have shown the effectiveness of using wavelet transform over 

traditional Fourier transform in identification of damage. Kim and Melhem [7] have 

demonstrated the versatile use of the wavelet based method through application on 
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damages related to mechanical gears and rollers. Spatial response data from beam 

structures have been successfully analysed by wavelets to detect damage by Wang and 

Deng [8]. Hou et al. [9] have employed a wavelet analysis based scheme to detect 

accumulated damage occurrence in a structure modelled by a multiple breakable spring 

and validated it with the application of a recorded ground accelerogram of the 1971 San 

Fernando earthquake. Basu [10] demonstrated that a wavelet based structural health 

monitoring technique for a stiffness degrading structure is very effective and can be used 

even without any a-priori knowledge of the original structural system. In this regard, a 

modified form of Littlewood Paley basis function was employed for the analysis and 

examples were presented for a bi-linear structure with breakable springs and a hysteretic 

system with continuous variation of stiffness with nonlinearity involving displacement 

and velocity response.  Advantages of wavelet analysis over the usual eigenvalue analysis 

for a simply supported beam with a non-propagating open crack have been shown by 

Liew and Wang [11]. Moyo and Brownjohn [12] have used wavelet analysis on a bridge 

structure to improve structural health monitoring since this method successfully detects 

abrupt changes and gradual change at the beginning and at the end of an event.   

It is observed that although the detection of an open crack in a beam has been 

comparatively well dealt with, few studies have been performed to calibrate the extent of 

damage. Hadjileontiadis et al. [13, 14] tried to detect and quantify the damage by fractal 

dimension analysis and by a kurtosis crack detection scheme for a cantilever with an open 

crack. The schemes were comprised of analysing each part of the modeshape signal with 

sliding overlapping windows of a certain width along the spatial data.  However, to have 

a successful identification of damage the number of the windows, the width of each 
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window and the overlapping of windows were empirically chosen. This requires prior 

knowledge about the crack and the calibration is only possible after a proper empirical 

choice of windows. The resistance to the effect of noise was not calibrated either. Hence, 

there is a necessity of quantifying the extent of damage in a robust and efficient way apart 

from detecting the damage location correctly. 

This paper considers a simply supported Euler Bernoulli beam with an open crack. 

Different crack models involving various levels of complexity have been considered to 

illustrate the potential use of a wavelet based method. This proposed method is 

independent of any chosen damage model as long as there is a sharp local change in the 

resulting damaged shape or in any of its derivatives. The popular lumped crack model 

that considers a rotational spring at the location of damage has been considered as per 

Narkis [15], Masoud et al [16], Dado [17], Hadjileontiadis et al [13, 14] and Loutridis et 

al [3]. A much more complex and sophisticated continuous cracked beam modelling 

based on Hu – Washizu – Barr mixed variational principle has been performed following 

Carneiro [18, 19], which is a modification of the model considered by Shen and Pierre 

[20] and Christides and Barr [21]. In addition to these two damage models, a third and 

more simplistic smeared crack model has been considered by treating the open crack as a 

reduced moment of inertia over the damaged width. 

A new wavelet-kurtosis based approach has been proposed to identify and 

calibrate the damage. Wavelet analysis has been performed on the simulated modeshape 

and static deflected shape data considering the effects of windowing and presence of 

noise, followed by kurtosis analysis. Cracks of different sizes and locations have been 

used in the presented examples. The proposed method has been validated experimentally 
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by performing wavelet analysis on the damaged shape of a simply supported freely 

vibrating aluminium beam.  

 

2. Damage Modelling 

2.1 Lumped Crack Model 

A simply supported Euler Bernoulli beam with an open crack is modelled as two 

uncracked beams connected through a rotational spring at the location of crack. The 

length of the beam is L with the damage located at a distance of ‘a’ from the left hand 

support of the beam. The crack depth is taken as c and the overall depth of the beam is h. 

The free vibration equation for both the beams on either side of the crack can be written 

as 

                                     
4 2

4 2

y y
EI ρA 0

x t

 
 

 
     (1) 

where E, I, A and  are the Young’s modulus, the moment of inertia, the cross sectional 

area and the density of the material of the beam on either side of the crack. The 

displacement of the beam from its static equilibrium position is y(x,t), at a distance of x 

from the left hand support along the length of the beam at time t. It is assumed that the 

effects of the crack are applicable in the immediate neighbourhood of the crack location 

and are represented by a rotational spring. By separation of variables in Equation 1 and 

solving the characteristic equation, a general solution of the modeshapes is found as 

          L 1L 2L 3L 4LC Sin( x) C Cos( x) C Sinh( x) C Cosh( x) 0 x a            (2.1) 

and 

          R 1R 2R 3R 4RC Sin( x) C Cos( x) C Sinh( x) C Cosh( x) a x L            (2.2)          
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for the sub-beams on the left and the right side of the rotational spring respectively. The 

terms C(.) are integration constants arising from the solution of the separated fourth order 

differential equation in space. The term  is expressed as 

2
1/ 4A

( )
EI

 
                                     (3) 

where the natural frequency of the cracked beam is  Both the displacement and the 

moment at the two supports of the beam are zero. Hence 

                           L (0) 0   , L (0) 0  ,  R (L) 0   and R (L) 0                   (4.1) 

The continuity in displacement, moment and shear are assumed at the location of crack. 

These conditions can be expressed as 

                          L R(a) (a)   , L R(a) (a)    and L R(a) (a)                       (4.2)                    

A slope discontinuity is introduced at the crack location. The slope condition is modelled 

as 

                                                 R L R(a) (a) L (a)                                                (4.3) 

In equation 4.3, the term  is the non-dimensional crack section flexibility dependent on 

the crack depth ratio,(=a/h). As per Narkis [15], the term  is considered to be a 

polynomial of  as 

                   2 2 3 46 (h / L)(0.5033 0.9022 3.412 3.181 5.793 )                          (5)            

The boundary conditions are substituted in the general modeshape equation and a system 

of eight linear equations is formed. The natural frequency of the cracked beam may be 

found by setting the determinant of the matrix derived from the system of equations to 

zero, expanding it and solving for the roots of  numerically. In this paper, the roots were 
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found using Brent’s method in MATLAB. The coefficient C1L is normalized to unity, 

being consistent with the fact that for an undamaged beam the maximum of the first 

modeshape is equal to unity. The other coefficients are then found with respect to C1L.  

 

2.2 Continuous Crack Model 

The continuous crack model is derived by Carneiro [18, 19] from the stationarity of Hu-

Washizu-Barr functional [21] and is a refined version of the proposed model by Shen and 

Pierre [20] ensuring the self-adjointness of the differential operator for a symmetric 

matrix representation after the discretization of the free vibration equation. The model is 

described briefly in this section for the sake of completeness. The functional is 

represented as  

2

1 1 2

t

i i i ij ij i, j j,i ij i i 1 i i i 2

t V S S

1ˆJ { [ p u T(p ) W( ) ( (u u )) }dV g u dS (u u )g dS ]}dt
2

                 (6) 

In equation 6, the terms u(.), p(.) (.) (.) , (.) (.) , g(.),  W(.) and T̂(.)  represent the 

displacements, velocities, strains, stresses, surface tractions, strain energy density and 

kinetic energy density of the beam respectively. The prescribed values are denoted by 

overbars and are defined over complementary surfaces S1 and S2 for traction and 

displacements respectively for the beam of volume V. The indexes i and j represent 

directions with respect to the origin and denote the Cartesian coordinates represented by 

the subscripts 1,2 and 3 respectively. The origin is at the extreme left hand corner and 

equidistant from the top and bottom surface of the beam. The coordinate axes x and y and 

z denote directions along the length, the width and the depth of the beam respectively. 

The stationarity of the functional is considered between two arbitrarily chosen time 
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instants t1 and t2. The first variation of the functional is set to zero with respect to 

independent variations of ui, pi, ij  and ij . For a rectangular cross section, the stress-

strain and the displacement functions are assumed to be locally disturbed in the vicinity 

of the crack. The effect of the crack is considered maximum at the crack tip and decays 

exponentially away from it. The stress/strain disturbance function is assumed to be 

           
1
|x a|

h / 2
1 1f (x, z) [z m (z c / 2)H(h / 2 c z)]e




                             (7.1) 

where m1 is a factor computed considering the continuity of bending moment in the 

cracked section and denotes the stress decay parameter. The term H(.) is the Heaviside 

step function. The displacement disturbance function is similar and considered as 

                                         
1
|x a|

h / 2
2f (x, z) [z (z c / 2)H(h / 2 a z)]e




                   (7.2) 

The decay factor  is much steeper than that of the stress/strain disturbance function. 

The equation of motion for the free vibration of the beam considering these kinematic 

assumptions is given as 

                          2 1E[p (x) (x, t) ] E[p (x) (x, t) ] A (x, t) 0                                        (8) 

where (x,t) is the vertical displacement of the beam and the primes and overdots 

represent differentiation with respect to the space and time respectively. The terms p1(x) 

and p2(x) are given in Appendix1. Separation of variables is performed and a Galerkin 

approximate solution is sought to the eigenvalue problem by expanding the transverse 

deflection as a combination of N number of mutually orthogonal uncracked modes of 

vibration. Thus, 

    (x, t) W(x) (t)         (9.1) 
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N

i
i 1

i x
W(x) C Sin( )

L


                                             (9.2)  

 

In equation 9.1, W(x) and (t) denote the spatial and the temporal part of the lateral 

displacement respectively. Substituting equation 9.2 in equation 8 and considering the 

orthogonality of the modeshapes, the mass and the stiffness matrix for the system can be 

written as 

L

ij

0

i x j x
[M ] ASin( )Sin( )dx

L L

 
      (10.1) 

L

ij

0

i x j x
[K ] ( Sin( ))Sin( )dx

L L

 
       (10.2)  

 

where the operator  is 

2 2

2 12 2
E ([p (x) ]) E ([p (x) ])

x x x x

   
  

   
   (11.1) 

and  

(W(x)) ( A)W(x)   


       (11.2) 

where 


 is the eigenvalue of the problem and is the square of the natural frequency. 

 

2.3 Smeared Crack Model 

The smeared crack model is relatively simple and considers an open crack reducing the 

moment of inertia over an affected width. The governing free vibration equation is 

exactly the same as in equation 1. The damaged beam is analysed as an assembly of three 

sub-beams, the damaged sub-beam being positioned in between the two undamaged ones. 
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Continuity in deflection, slope, moment and shear are assumed on both left and right ends 

of the damaged zone. The boundary conditions considering a simply supported beam can 

thus be expressed as 

L L R R(0) 0, (0) 0 ,  (L) 0, (L) 0             (12.1) 

L 1 D 1 L 1 D 1 L 1 D 1 L 1 D 1(x ) (x ), (x ) (x ), (x ) (x ), (x ) (x )                   (12.2) 

          R 2 D 2 R 2 D 2 R 2 D 2 R 2 D 2(x ) (x ), (x ) (x ), (x ) (x ), (x ) (x )                  (12.3) 

where x1 and x2 denote the coordinates of the near and the far ends of the damaged zone 

respectively with reference to the origin situated on the extreme left hand side of the 

beam. The system of equations corresponding to the modeshapes and the continuity 

conditions give rise to a characteristic matrix, the determinant of which can be set to zero 

and solved for the natural frequencies of the damaged beam. The coefficients are found in 

the same way as of the lumped crack model. The width of the crack is computed 

according to the formula by Bovsunovsky and Matveev [22] as 

                               6 2
2 1 3

0.3675h(1 )
x x x [(1 ) 3(1 ) 2]

1 (1 )

 
         

  
                      (13) 

 

A discontinuity in the modeshape or in any of its derivatives is present in a 

damaged beam for any model of crack. Since a wavelet transform can successfully detect 

singularities in a signal or its derivatives, a wavelet based damage identification scheme 

is considered to be model independent and robust. Simulations of the first modeshape are 

used since it is convenient to measure the fundamental modeshape for real structures. 
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3. Static Deflection 

Rucka and Wilde [23] have experimentally shown that the static deflection profile of a 

damaged beam can be analysed using wavelet transform to identify the location of the 

damage. Hence, instead of the modeshapes the static deflection profile of the beam with 

an open crack using the smeared and the lumped crack models have also been studied in 

this paper for the detection of damage. 

Let the curvature of the beam be a piecewise integrable function (x). The static 

deflection y(x) can thus be found as 

         L 1 2y (x) ( (x)dx)dx C x C         (14.1) 

        R 3 4y (x) ( (x)dx)dx C x C         (14.2) 

where Ci are the constants of integration. A system of algebraic equations can be arrived 

at by satisfying the boundary conditions and the constants Ci may be solved from the 

following relationship 

          

1

L2

3

4 a

0C0 1 0 0
( ( (x)dx)dx) |C0 0 L 1

Ca 1 a 1 0

C1 0 1 0 L( ( (x)dx)dx) |

                                 

 

 

                      (15) 

where |(.) denotes the evaluation of the integral at the location indicated within the 

parentheses. The solution of the static deflected shape introduces a singularity in its 

derivatives and can be expected to be identified by wavelet analysis. It can thus be 

concluded that the wavelet analysis can be helpful for both dynamic (mode) and static 

deflected shape.  

4. Wavelet and Kurtosis Analysis 
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4.1 Wavelet Analysis 

In a square integrable function space, a wavelet is a zero average function [6] satisfying 

      (x)dx 0




                                                          (16.1)  

A wavelet family of functions may be obtained by considering 

  b,s

1 x b
(x) ( )

ss
  

                                                 (16.2) 

where s is the scale and b is the translation parameter. The continuous wavelet transform 

of a function f(x) in the same square integrable space can be represented as 

      *1 x b
Wf (b,s) f (x) ( )dx

ss







                                       (16.3) 

where *  is the complex conjugate of .  

The Calderon-Grossman-Morlet theorem [1] requires a weak admissibility condition to 

ensure the completeness of the wavelet transform and to maintain energy balance. 

Mathematically, it is represented as 

                                                     
2

0

ˆ ( )
d

 






                                                    (16.4) 

The identification of a discontinuity in a function or any of its derivatives can be linked 

with the number of vanishing moments of the wavelet basis function chosen for analysis. 

A wavelet has m number of vanishing moments if 

kx (x)dx 0




 ,  k=0,1,2…m-1                                    (17)           

For a wavelet with no more than m number of vanishing moments, it can be shown that 

for very small values of s in the domain of interest, the continuous wavelet transform of a 
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function f(x) can be related to the mth derivative of the signal [6]. For any wavelet x) 

with m vanishing moments, there exists a fast decaying function (x) satisfying: 

                                                    
m

m
m

d (x)
(x) ( 1)

dx


                                                  (18.1) 

 Under this condition, the relationship between the continuous wavelet transform of f(x) 

and its mth derivative can be expressed as 

 
m

s 0 m 1/ 2 m

Wf (b,s) d f (x)
lim K

s dx                                          (18.2) 

where: 

                                                          (x)dx K 0




                                                  (18.3) 

It is possible for a wavelet to detect singularities in a signal or its derivatives through the 

incorporation of a basis function having an appropriate number of vanishing moments 

according to the discontinuity present at the location of damage in the damaged beam 

model [2, 22]. For example, considering a lumped crack model, a basis function with one 

vanishing moment (like Haar) would introduce a jump at the damage location in the 

wavelet coefficients, whereas a basis function with more than one vanishing moment 

would generate an extremum. As per Mallat [1], a Gaussian function or its derivatives are 

guaranteed to detect the singularities even at very fine scales. In this paper however, 

Coiflet basis functions have been used and very good results have been obtained. The 

calibration of damage can be associated with the absolute value of the maxima of wavelet 

coefficients at different scales at the location of damage in the beam. 

An alternative way of damage calibration is related to evaluating the kurtosis of the 

fundamental modeshape. Since the effect of the crack is local, the fundamental 



 15

modeshape and its central moments change very little. However, the kurtosis is affected 

even by the small change in modeshape comparatively more for the same amount of 

change in the modeshape itself and is thus considered suitable for calibrating the damage 

extent. 

 

4.2 Kurtosis 

Kurtosis represents the degree of peakedness of a dataset and is represented as a ratio of 

the fourth central moment of the data to its squared variance.  This normalized form of 

the fourth central moment for the modeshape can be expressed as 

                                               

L
4

0
L

2 2

0

(x ) (x)dx

( (x ) (x)dx)

 
 

 




                                                (19) 

where   represents the mean value of the modeshape. Considering the ith moment of a 

function to be i, it can be shown that 

        
2

4 2 2 4 2
4

2

2

x

      


 
                                        (20) 

to compare the sensitivity of  the kurtosis measure with the different moments of a 

function. A test function Y(x) = Sin(x) considered within limits 0 and 1. The first ten 

moments of this function and their partial derivatives with respect to x are given in Table 

1 along with the values of kurtosis and its derivative. It is observed that the measure of 

kurtosis is more suitable to describe a small change in the function in comparison with 

the central moments. Since the first modeshape of a damaged beam is close to a sinusoid 
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with some small additive terms affecting the function locally near the damaged region, it 

is expected that the kurtosis based damage quantification is appropriate and effective. 

With the introduction of damage, a slope discontinuity is introduced in the signal. For a 

significant change in slope, a change in kurtosis is observed as well [14]. 

 

4.3 Signal to Noise Ratio (SNR) 

Wavelet based and kurtosis based calibrations are required to be consistent and stable in 

the presence of measurement noise to be efficient and robust. The effect of the presence 

of noise in the modeshape data has been studied by introducing synthetic Gaussian white 

noise to the simulated modeshape. Performance of the damage detection schemes are 

studied for different signal to noise ratio (SNR) values.  

The SNR is defined as 

                                                 Signal
10

Noise

P
SNR=10log ( )

P
                                                  (21.1) 

and is expressed in decibels. The term P with the subscripts in Equation 20.1 denotes 

power and is computed as 

S
2N 1

(.) i
i 0S

1
P f (x )

N





                                            (21.2) 

where NS denotes the number of discrete points in a sampled signal f(x). 

 A high signal to noise ratio indicates that the presence of noise is very low and vice versa. 

 

5. Wavelet Based Damage Detection 

5.1 Wavelet Analysis of Modeshape 
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Damaged modeshape data is simulated and Gaussian white noise is synthetically 

introduced. The length of the beam is taken as 1 m. The cross sectional area (A), depth 

(h) and the moment of inertia (I) of the square beam are taken as 0.0001 m2, 0.01 m and 

8.33x10-10 m4 respectively. The Young’s modulus (E) and the density of the beam () are 

assumed to be 190x109 N/m2 and 7900 kg/m3. The modeshape is analysed by Coif4 

wavelet basis function, which has eight vanishing moments, and hence is suitable for 

damage detection. The modeshape data is multiplied by a Hanning window of length 

equal to that of the modeshape data to reduce edge effects and enhance the performance 

of wavelet based identification of damage location under the presence of noise.  

Identification of small and edge cracks usually pose a major problem in damage detection. 

Figures 1.1 to 1.4 show the performance of wavelet based damage identification 

techniques for different crack depth ratios and locations with modeshapes simulated 

considering different crack models. Both fine (2, 3 and 4) and coarse (16, 32, and 64) 

scales have been considered for the purpose of identification. The SNR is kept at 125 dB 

to illustrate the efficiency of the wavelet based damage detection on a relatively pure 

signal.  The high value of SNR ensures efficiencyIt is observed that the wavelet based 

identification of the damage location is efficient and consistent irrespective of the crack 

model chosen as long as it can identify a sudden local change in the signal. Figure 1.1 

serves the purpose of illustrating the sensitivity of wavelet based damage location 

identification. Detection of such small edge cracks ensures successful identification of 

structurally more important cracks (Figure 1.3).  Wavelet analysis on the modeshape 

derived from the smeared crack model identifies an open crack located in between the 
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position of the two local extrema of the wavelet coefficients and thus provides an upper 

bound of the estimate of the width of the damaged region (Figure 1.4). 

 It is observed from Figures 1.1 to 1.4 for different crack models, that an 

extremum of the wavelet coefficients is formed at the damage location, but the magnitude 

of it is extremely small in the case of small, edge cracks and it is thus very difficult to 

identify the damage. The lower scales are more sensitive to small changes in the damage 

level and identify the damage location very accurately. However, the lower scales are 

more prone to the effect of masking under the presence of noise and the detection is 

expected to become difficult when noise is present. The higher scales have a 

comparatively poor sensitivity and localisation property with regard to the identification 

of damage, but they are more robust against noise.  

The effects of the presence of noise have been discussed in the following sections. 

For the rest of the analysis in this paper a lumped cracked model has been considered. 

 

5.2 Partial Windowing 

The modeshape is simulated from the lumped crack model, partially windowed by a 

Hanning window and then analysed as described in Section 5.1. An edge crack with 

=0.35 is considered at a distance 0.1m from the left edge. It is assumed that no prior 

information about the location of crack is present. The modeshape has been analysed 

according to the methodology described in Appendix 2. Hanning window has been used 

for partial windowing together with Coif4 wavelet basis function. Since a central crack is 

more important structurally for the structure under consideration, the partial windowing is 

performed first in the central region and is then gradually moved away. This ensures the 
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detection of important cracks in a lesser number of trials. The symmetric partitioning also 

ensures that the number of searches span half the length of the beam. However, a wavelet 

analysis has to be done separately for each partition. Analysis of the entire modeshape by 

wavelets would give rise to large extrema of wavelet coefficients at the ends of the 

partitioned sections and would thus lead to difficulties in identification of damage by 

undermining the actual damage. Hence, only the partially windowed sections should be 

analysed. Figures 2.1 and 2.2 illustrate the improvement in damage identification by 

partial windowing for the present damage condition for SNR equal to 120 dB for scales 4 

and 16 respectively. Figure 2.1 represents the analysis of the partitioned section at scale 4 

as opposed to its non-partitioned counterpart and the local maxima of the wavelet 

coefficients are seen to be about an order higher in the case of partitioned analysis. Once, 

the damage location is found in this way, the absolute value of the maxima can be 

improved by centering the damage location around an arbitrarily thinner section of the 

multiplying window and repeating the wavelet analysis. However, a calibration based on 

such method would be dependent upon the choice of the centered thinner sections. It is 

also seen that for such centering, the finer scales respond considerably better through a 

significant increase in the local maxima value of the wavelet coefficients at the damage 

location. Partial windowing also works in the presence of noise even when the analyses 

involving finer scales are masked and the coarser scales (8, 16 and 32) are able to identify 

the damage location.  

 

6. Damage Calibration 

6.1 Wavelet Based Calibration 
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Since the magnitude of the local extremum at the damage location of the wavelet 

coefficients can be related to the extent of damage, a wavelet based calibration against 

crack depth ratio is performed by finer and coarser scales. Figure 3.1 considers a central 

crack located at 0.4m from the left hand support with 120dB SNR and is calibrated using 

Coif4 wavelet basis. It is seen that the relationship between the magnitude of local 

maximum and the crack depth ratio is consistent and stable. An edge crack, situated at 

0.1m from the left edge however, gives inconsistent results at finer scales as shown in 

Figure 3.2. The level of noise is increased and the SNR is kept at 95dB next. For a central 

crack at a distance of 0.4m from the left hand support (Figure 3.3), the calibration with 

Coif4 basis at finer scales becomes inconsistent as masking effect substantially sets in. 

The effects of an edge crack at a distance 0.1m from the left support for the same basis 

and SNR are illustrated in Figure 3.4. It is observed that a complete masking takes place 

and the wavelet based calibration is unsuitable. It has also been found by considering 

several wavelet basis functions that the choice of the basis function does not affect the 

inconsistency under noise significantly, although the calibration values are different. 

Hence, it may be concluded that the wavelet based calibration is appropriate in the 

presence low noise. It is not robust, consistent or stable in the presence of high SNR. 

However, in terms of determining the crack location the wavelet based method is found 

to be very efficient. 

 

6.2 Kurtosis Based Calibration 

A kurtosis based calibration is investigated next. It is assumed that the location of the 

crack has been successfully identified by a wavelet based technique and only the extent 
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of damage needs to be calibrated. The kurtosis of the entire modeshape is first calculated 

as opposed to partitioning the modeshape by preselected and empirically adjusted 

overlapping windows of a certain width and then calculating the kurtosis of each section. 

Different crack depths and locations are considered under no noise and the crack depth 

ratio is calibrated against the kurtosis value, as shown in Figure 4. The calibration curves 

are found to be monotonic. However, the nature of monotonocity changes with the 

damage location and it is possible to find a point of damage location where the kurtosis 

values become insensitive to the increasing crack depth ratio. This is essentially because 

of the fact that the fundamental modeshape itself has a maximum value between the 

supports. A cantilever, on the other hand has the maximum value at its end and it is not 

possible to get a damage location where the kurtosis may become insensitive to the 

change of crack depth. Thus, the suitability of a kurtosis based damage calibration 

depends on the support conditions of the structure.  

The kurtosis of a quarter of the modeshape multiplied by an appropriately and 

empirically placed Hanning window of width equal to that of the partial modeshape is 

computed next for a beam with lumped crack model for calibrating the extent of damage. 

The damage is located correctly at 0.15m from the left hand support of the beam by 

wavelet analysis with Coif4 wavelet basis function using finer scales. The SNR is 115dB. 

A comparison on the relative change of the kurtosis of the damaged modeshape with 

respect to the undamaged condition for both full and partial modeshapes for different 

crack depth ratios are presented in Table 2. It is observed that the percentage change in 

the kurtosis value of the partial modeshape is less than that of the entire modeshape. The 

problem of non-detection of damage extent in certain cases can, in principle be solved by 
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computing the kurtosis on a part of the modeshape, but that would make the calibration 

extremely case specific.  

The efficiency of the kurtosis based calibration in the presence of noise is checked for 

different SNR and the position of the crack for crack depth ratios 0.35 and 0.05 

respectively. The results are given in Figures 5.1 and 5.2 respectively. It is seen that a 

kurtosis based calibration is extremely stable and consistent against noise to a large 

degree. For SNR as low as about 35dB, the calibration is found to be stable and 

consistent. The values of the kurtosis are however, small since the modeshape geometry 

does change significantly due to the local effects of an open crack. 

Since the extrema values of the wavelet coefficients at different scales 

consistently increase with the increase in damage extent in the beam, the kurtosis is 

computed directly on the transformed partial modeshapes multiplied with a Hanning 

window at a certain scale after wavelet analysis. The windows are empirically placed so 

that the central region matches with vicinity of the damaged location. Figures 6.1 and 6.2 

show the calibration for the damaged beam for different damage locations, crack depth 

ratios and SNR at scale 4 using Coif4 wavelet basis function.  A calibration based on the 

values of kurtosis of the wavelet transformed modeshapes is more sensitive towards the 

extent of damage and the SNR. The calibration of damage is observed to be dependent on 

the position, the type and extent of the damage, the support conditions of the structure, 

the signal to noise ratio, the width and the position of the window multiplied with the 

damaged shape and the type and the scale of the wavelet basis function used to analyse 

the damaged shape.  
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7. Experimental Validation 

It is observed in principle that a wavelet-kurtosis based damage calibration can be useful 

to detect, isolate and identify an open crack. The noise present in the deflected shape 

affects the performance of the detection process. Experimental studies on damage 

detection with wavelets from static and dynamic deflected shape have been performed by 

Rucka and Wilde [23] and Patsias and Staszewski [24] using a camera based optical 

measurement technique. In this paper, we employ a video camera based damage detection 

technique followed by an intelligent pattern recognition procedure to identify, calibrate 

and compare the extent of damage using wavelet-kurtosis based methods. A simply 

supported aluminium beam of 1m length is employed for this purpose. The open crack is 

created by sawing a notch into the lower section of the beam of cross section 10mm x 

10mm. The location of the damage is situated at 0.3m from the left hand support of the 

beam. The beam is vibrated freely by an arbitrary initial excitation and is simultaneously 

subjected to a static weight at the centre. The free vibration of the beam is recorded by an 

Olympus  800 digital camera. An appropriate deflected shape was chosen by running 

the video recording using a commercial software Ulead Video Studio 6 and freezing a 

single frame, a method similar to that employed by Hartman and Gilchrist [25]. The 

frame was converted and saved as a bitmap image of size 240 x 320 pixels and 

subsequently converted to black and white binary images by thresholding and the edges 

of the images were found using the Sobel method [26] incorporating the MATLAB 7.0 

signal processing toolbox. The lower edge of the beam was detected from the image by 

an intelligent pattern recognition scheme. Figure 7.1 illustrates the general arrangement 

of the test. Figure 7.2 shows a thresholded and edge identified binary image representing 
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the partial deflected shape of a beam with an open crack (0.5) of 2mm width at a 

certain instant of time during free vibration. The image consists of the deflected shape of 

the beam and some spurious environmental effects like the presence of shadow and 

experimental devices. The deflected shape is estimated from an intelligent pattern 

recognition process by isolating it from the spurious images. A wavelet analysis using 

Coif4 basis function and Hanning window is performed on the estimate of the deflected 

partial modeshape and the result of the analysis is presented in Figure 7.3. The horizontal 

axis of the observed value is pre-calibrated against the beam length and the damage is 

seen to be detected in the vicinity of 0.3m from the left hand side of the beam. The 

kurtosis of the transformed wavelet coefficients at scale 4 of the partial deflected shape is 

computed to be 34.37, which is in agreement with the theoretically calibrated value of 

38.77. Hence, the proposed damage detection scheme is validated for real data and the 

method is proved independent of a damage model as long as the local changes near the 

damaged region can be measured by any sensor.  

 

8. Conclusions 

A detailed study has been presented regarding the importance of efficient and robust 

calibration of evaluating the position and extent of damage in structures. The presence 

and the location of damage have been found out by wavelet analysis performed on the 

first assumed natural mode of a simply supported beam with an open crack. Simulations 

based on the first modeshape and the static deflected have been used since it is 

convenient to measure the fundamental modeshape and the static deflected shape of real 
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structures. For obtaining the modeshape and the static deflected shape damage models of 

different levels of complexity have been used. 

It is observed that a wavelet analysis technique on the mode or the static deflected 

shape of a structure can successfully identify the presence and the location of the damage. 

Partial windowing of the deflected shapes and consequent wavelet analysis of the 

segments is found to improve the local maximum values of wavelet coefficients to a 

certain extent.  

A wavelet based calibration of damage is found to be prone to masking effect in 

the presence of noise. The finer scale calibrations are seen to be affected at a lower level 

of SNR as compared to the coarser scales. Even for moderate presence of noise, the 

calibration based on wavelet analysis is found to be inconsistent and unstable and is thus 

not suitable for use. A kurtosis based damage calibration is found to be stable and 

consistent in the presence of much higher amount of noise. The sensitivity of the values 

of the kurtosis based damage calibration has been improved by considering the kurtosis 

of the wavelet coefficients of the analysed deflected shape. The breakdown point of a 

kurtosis based measurement of the extent of damage has also been identified by 

calibrating against the SNR values. A novel, simple and inexpensive video camera based 

experiment has been performed on a simply supported aluminium beam with an open 

crack to illustrate the efficiency of the proposed theoretical method on real data.  

It is observed that although a wavelet based method is suitable for identifying the 

damage presence and location efficiently, a kurtosis based damage calibration is 

comparatively much more suitable and robust. Hence, a wavelet based damage detection 

process in conjunction with a kurtosis based damage calibration is deemed practical and 
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useful considering the presence of measurement noise in the static or dynamic deflected 

shape data of a structure. 
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Appendix 1 
 
Coefficients p1(x) and p2(x) for the continuous cracked model. 
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Appendix 2 

Scheme of Partial Windowing Method for Efficient Wavelet Based Damage Detection  

1. Acquire the damaged modeshape/deflected shape from simulation or experiment. 

2. Divide the modeshape into a finite number of partition equal to 2i starting with the 

value i=1.  

3. Multiply an appropriate window of length equal to length of the finite partition to 

each of the finite partitions. 

4. Construct a system of 2i+1-1 overlapping windowed partition covering the entire 

length of the beam. The central partition is symmetric about the centre of the 

beam and the other 2i+1-2 partitions are symmetrically placed about the centre 

with the end point of each partition coinciding with the maxima value of the other 

except at the two ends where they coincide with the supports of the beam. 

5. Analyze each partially windowed shape using an appropriate wavelet basis. 

6. Repeat the process of increasing the number of partitions till crack/cracks is/are 

identified or a preselected value of partitioning is reached indicating no damage is 

present. 

7. Once a crack is identified at a particular section, the width of the window is 

centrally adjusted about the location of the identified damage and a wavelet 

analysis is performed on that section to obtain an improved value of a local 

extremum/extrema at the damaged location(s) of the wavelet coefficients. 

 

 

 


