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Abstract: 

Despite studies demonstrating that inhibition of cyclooxygenase-2 (COX-2)-derived 

prostaglandin E2 (PGE2) has significant chemotherapeutic benefits in vitro and in vivo, 

inhibition of COX enzymes is associated with serious gastrointestinal and cardiovascular 

side-effects, limiting the clinical utility of these drugs. PGE2 signals through four different 

receptors, (EP1 –EP4), and targeting individual receptor(s) may avoid these side-effects, 

whilst retaining significant anti-cancer benefits. Here we show that targeted inhibition of the 

EP1 receptor in the tumor cells and the tumor microenvironment resulted in the significant 

inhibition of tumor growth in vivo. Both dietary administration and direct injection of the EP1 

receptor-specific antagonist, ONO-8713, effectively reduced the growth of established CT26 

tumors in BALB/c mice, with suppression of the EP1 receptor in the tumor cells alone less 

effective in reducing tumor growth. This anti-tumor effect was associated with reduced FasL 

expression and attenuated tumor-induced immune suppression. In particular, tumor 

infiltration by CD4
+
CD25

+
Foxp3

+
 regulatory T cells was decreased while the cytotoxic 

activity of isolated splenocytes against CT26 cells was increased. F4/80
+
 macrophage 

infiltration was also decreased, while there was no change in macrophage phenotype.  These 

findings suggest that the EP1 receptor represents a potential target for the treatment of colon 

cancer.  
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Introduction 

Numerous studies have demonstrated a link between chronic inflammation and cancer. One 

such inflammatory mediator is prostaglandin E2 (PGE2) 
1
. PGE2 is derived from arachidonic 

acid as a result of the activity of cyclooxygenases (COXs). Numerous mouse models of 

cancer have demonstrated that COX-2-derived PGE2 promotes tumor growth 
2, 3

, with 

increased expression of COX-2 and PGE2 being found in various human malignancies. 

Moreover inhibition of COX-2-derived PGE2 has significant chemotherapeutic benefits in 

vitro and in vivo 
1, 4-6, 7

. However, despite these anti-cancer benefits, inhibition of COX 

enzymes has been found to be associated with serious gastrointestinal and cardiovascular 

side-effects 
4, 7

, limiting the clinical utility of these drugs.  

PGE2 activates four different G-protein-coupled receptors – EP1, EP2, EP3 and EP4, with 

targeting of the receptors offering the potential of anti-neoplastic activity with fewer side-

effects. Although most studies to date have identified the EP2 and EP4 receptors as being 

responsible for the tumor-promoting effects of PGE2 
8
, the EP1 receptor may also be an 

effective target against colon cancer. Human colon cancer cells express the EP1 receptor in 

vivo 
9, 10

, while EP1 receptor knockout mice have significantly fewer azoxymethane (AOM)-

induced aberrant crypt foci (ACF) 
11

 and colon cancer development 
12

. Furthermore, ONO-

8711, a selective EP1 antagonist, significantly reduced AOM-induced ACF and intestinal 

polyp formation in APC
Min

 mice 
11, 13

.  Moreover, Kitamura et al showed that the EP1 and 

EP4 receptor subtypes may have separate intrinsic roles and, to some extent, contribute to 

different aspects of colon tumorigenesis 
14

. The EP4 antagonist was found to be more 

effective at reducing polyp size, whereas the EP1 antagonist was more effective at reducing 

polyp number 
14

. Targeting the EP1 receptor was also shown not to affect prostacyclin 

production in human endothelial cells 
15

, important given that inhibition of prostacyclin 
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production by COX-2 selective inhibitors was shown to be one of the major contributors to 

the cardiovascular side-effects of these drugs 
16

.  

Despite these promising findings, the mechanisms by which the EP1 receptor promotes 

tumorigenesis are unclear. Signalling through the EP1 receptor on colon tumor cells was 

recently shown by us to upregulate expression of Fas ligand (FasL/CD95L) in vitro, and may 

represent one potential mechanism 
9
. We and others have shown that expression of FasL or 

its receptor Fas on tumor cells promotes tumor growth in vivo 
17, 18

. However, whether 

induction of tumor-expressed FasL in response to signalling through the EP1 receptor occurs 

in vivo is unclear. Moreover, the EP1 receptor is expressed by both tumor cells and multiple 

immune cell types. Thus, the pro-tumorigenic effects of the EP1 receptor could be due to 

PGE2 signalling through EP1 not on the tumor cells directly but rather on immune cells in the 

tumor microenvironment. For instance, PGE2 suppresses the effector functions of helper T 

(Th) cells, cytotoxic T cells (CTLs) and natural killer (NK) cells, and enhances the 

accumulation of regulatory T (Treg) cells 
19

. PGE2 also plays a role in the differentiation of 

monocytes towards an immunosuppressive or ‘M2-like’ phenotype 
20

. Such tumor-associated 

macrophages (TAM) can play an important role in tumor progression. Whether signalling 

through the EP1 receptor suppresses the anti-tumor immune response in vivo is unknown but 

has been explored in the present study.  

The findings of this study suggest that the EP1 receptor is a potential therapeutic target for 

the treatment of colon cancer. Blocking EP1 receptor signalling in established tumors was 

found to inhibit tumor growth in vivo. Suppression of tumor growth required inhibition of 

EP1 receptor signalling in both the tumor cells and non-tumor cells in the tumor 

microenvironment, and was associated with a reduction in FasL expression, reduced Treg cell 

infiltration and an improved anti-tumor immune response.  
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Materials and Methods 

Chemicals 

Unless stated otherwise, all chemicals were purchased from Sigma-Aldrich (St. Louis, MO). 

The EP1 receptor antagonist ONO-8713 was a generous gift from Ono Pharmaceuticals Co. 

Ltd., Osaka, Japan. 

Mice and Tumor Model 

Female BALB/c mice (4-6 wk) were obtained from Harlan UK Ltd. (Oxon, United Kingdom) 

and maintained in a pathogen-free environment in the animal facility of University College 

Cork. Animal experiments were performed in accordance with institutional guidelines using 

an Animal Research Committee-approved protocol. CT26 cells, a murine colon cancer cell 

line of BALB/c origin, was kindly provided by Dr. Stephen Todryk (Northumbria University, 

UK). Cells were maintained in vitro at 37C in a 5% CO2 humidified atmosphere in DMEM 

supplemented with 100µg/ml streptomycin, 100U/ml penicillin and 10% fetal bovine serum. 

To establish s.c. tumors, mice were injected into the right flank with 2.0x10
5
 tumor cells re-

suspended in 100µl PBS. Tumor growth was monitored by regular measurement of tumor 

length (a) and width (b) using a Vernier calliper, and the volume was calculated as ½ (a x b
2
).  

Animals were sacrificed after 48 days.  

Generation of FasL
Low/negative 

and EP1 
Low/negative 

colon cancer cells 

Cells were transfected with lentiviral particles containing 3 target-specific shRNAs against 

FasL (sc-35358-V), EP1 (sc-40170-V) or control lentiviral particles containing scrambled 

shRNA (sc-108080) (Santa Cruz Biotechnology, Santa Cruz, CA), according to the 

manufacturers’ instructions. Briefly, cells were seeded in 24-well plates at a concentration of 

2x10
5
 cells/ml. Cells were infected 24hrs later with lentiviral particles in the presence of 
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5µg/ml polybrene. Cells were cultured in selection medium containing puromycin until 

resistant clones could be identified. Resistant clones were selected by limiting dilution. 

Knockdown of FasL and EP1 expression was determined by real-time reverse transcription 

polymerase chain reaction (RT-PCR) and Western blotting. The clones with the lowest level 

of FasL or EP1 expression were designated as CT26
FasL shRNA

 and CT26
EP1 shRNA

, respectively, 

while the clone transfected with scrambled RNA was designated as CT26
scr shRNA

.  

Proliferation assay 

Cell proliferation was measured by resazurin reduction 
21

. Cells were seeded at 2x10
5
cells/ml 

in 96-well plates. After incubation for 24h, media supplemented with 44µM resazurin was 

added and resazurin reduction to resorufin measured fluorometrically using a GENios plate 

reader (TECAN, Grodig, Austria) and Xfluor spreadsheet software. Results obtained were 

expressed in fluorescence units (FU) and the percentage viability calculated as follows: (FU 

treated/ FU control) x 100.  

Tumor cell and tumor-associated macrophage isolation 

Tumors were sliced into 1-3 mm
3
 pieces and incubated for 1hr at 37C with 

collagenase/dispase solution (Roche Diagnostics, Mannheim, Germany). After washing in 

PBS, a single cell suspension was obtained by passing the cells through a cell strainer 

(Benton Dickonson, Franklin Lakes, NJ). Tumor-associated macrophages were isolated by 

seeding the cell suspension on 24 well plates at a concentration of 0.5x10
5
 cells/ml. Cells 

were washed 3hr later with PBS to remove non-adherent cells. The adherent population was 

characterised by immunofluorescence and morphological criteria. 

Splenocyte isolation 
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Single cell suspensions were obtained by mechanical disruption with a syringe plunger in 

RPMI 1640 medium supplemented with 10% FCS. The suspensions were then passed 

through a cell strainer and red cells lysed using red cell lysis buffer. Cells were then washed 

and resuspended in complete media. 

Autologous mixed lymphocyte-tumor reaction. 

Splenocytes were stimulated with IL-2 and irradiated CT26 tumor cells (6.2 Gy at 3 Gy/min) 

at a ratio of 12:1. After 5 days in culture, the in vitro stimulated splenocytes were collected 

and tested for their cytotoxic activity against CT26 cells using the Ziva Tox Ultrasensitive 

Cytotoxicity Assay (Jaden BioScience Inc., San Diego, CA), according to the manufacturer’s 

instructions. Briefly, BrdU was added for the last 4hr of incubation, cells were fixed, washed 

and incubated with stringency solution. Cells were then incubated with anti-BrdU antibody 

conjugate solution, washed, followed by incubation with preparation solution prior to 

addition of the CDP*Star®Chemiluminescent substrate.  Chemiluminescense was detected 

using a Glomax multi-detection system luminometer (Promega, Madison, WI). 

Flow Cytometry. 

Single cell suspensions from tumor tissue were prepared. Monoclonal antibodies to CD8, 

F4/80 (BD Biosciences, New Jersey, USA), CD4 and CD25 (eBioscience, San Diego, USA) 

were used to label the cells for phenotypic analysis.  Antibodies to the transcription factor 

Foxp3 (eBioscience, San Diego, USA) were used to label permeabilized cells. Debris and 

dead cells were excluded from flow cytometric analysis using a selection gate on forward 

scatter and side scatter cellular properties. The frequency of Treg cells was assessed by gating 

CD4
+
 cells only and subsequently plotting CD25

+
 cells against Foxp3

+
 cells. Cell populations 

were assessed using the Accuri C6 Flow Cytometer System and CFlow commercial software. 
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Western blotting. 

Tumor cells were lysed for 1hr on ice in ice-cold lysis buffer containing 50 mM Tris-HCl (pH 

8.0), 150mM NaCl and 1% Triton-X 100, supplemented with complete protease inhibitors 

(Roche Diagnostics). Equal amounts of protein were separated on a 10% SDS-

polyacrylamide gel and transferred to nitrocellulose membranes. Membranes were blocked 

for 1hr at room temperature with 5% non-fat dry milk in PBS containing 0.1% Tween-20. 

Membranes were probed overnight at 4C with anti-FasL specific antibody (Abcam, 

Cambridge, UK), or anti-EP1, anti-EP2, anti-EP3 or anti-EP4 specific antibodies (Cayman 

Chemical, Ann Arbor, MI). Membranes were washed and incubated with the appropriate 

secondary antibody conjugated with HRP (Dako Corp.,Carpinteria, CA, USA). Results were 

visualised by chemiluminescence detection (Millipore, Billerica, MA). As an internal control, 

all membranes were subsequently stripped of the first antibody and reprobed with anti-β-

actin-specific antibody (Sigma-Aldrich).  

RT-PCR 

Total cellular RNA was isolated using the GenElute Mammalian Total RNA Mini kit 

according to the manufacturer’s instructions. cDNA was synthesised using the SuperScript 

Vilvo kit (Invitrogen, Carlsbad, CA, USA). RT-PCR was performed using an Applied 

Biosystems PRISM 7500 PCR system (Applied Biosystems, Foster City, CA, USA) and 

Syber Green Jumpstart Taq ReadyMix. All samples were run in triplicate and relative 

quantitation calculated using the 2
-Ct

 method. 

PGE2 ELISA 
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Tumor cells were isolated and seeded at 0.5x10
5
cells/ml. After 24hrs supernatants were 

harvested and PGE
2
 levels determined in triplicate by ELISA (Arbor Assays, Ann Arbour, 

MI). 

Statistical Analysis 

Means with SEM are represented in each graph. Statistical analysis was performed using 

GRAPHPAD PRISM version 5.0 for Windows (GraphPad Software, San Diego, CA). P-

values were calculated using the unpaired Student’s t-test with p< 0.05 considered 

statistically significant.  
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Results  

Blocking EP1 receptor suppresses tumor growth in vivo. 

In vivo studies to date on the role of the EP1 receptor in colon tumorigenesis have 

investigated whether suppressing EP1 receptor signalling prior to tumor development, either 

using an EP1 receptor antagonist or EP1 receptor knockout mice, is effective in preventing 

tumorigenesis 
11, 12

. However, whether targeting the EP1 receptor has therapeutic potential for 

the treatment of established tumors is unknown. To investigate this, BALB/c mice were 

injected subcutaneously with CT26 cells. Beginning either 20 days (n=8) after tumor cell 

inoculation, at which time all mice had palpable tumors, or after 27 days (n=8), the specific 

EP1 receptor antagonist ONO-8713 was administered orally as a powder mixed into their 

daily feed at 1000ppm. 1000ppm was selected based on the findings of a preliminary study 

using 500ppm and 1000ppm (supplemental Fig.S1). ONO-8713 is a potent second generation 

EP1 receptor antagonist 
22

. Consistent with having a Ki binding value for the EP1 receptor of 

0.3nM and a Ki value of greater than 1000nM for the other EP and IP receptor subtypes, it 

has been shown not to have agonistic or antagonistic actions on the other prostanoid receptors 

22
.  Oral administration was used since this was successful in reducing ACF formation and 

intestinal polyp formation in APC
Min

 mice 
11

. Moreover, therapeutically this is an ideal means 

of drug administration. Food consumption was monitored every second day, with no 

difference between the groups seen. Since there was the possibility that the antagonist would 

not reach the site of tumor inoculation, ONO-8713 was administered by direct injection into 

the tumors of one group of mice (n=5) three times a week (30mg/kg per injection) beginning 

at day 27. Although twice weekly injection of established tumors was used in the preliminary 

study (supplemental Fig.S1), this was increased to thrice weekly to determine if this would 

result in a greater reduction in tumor growth.  
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As shown in figure 1A, blocking the EP1 receptor suppressed tumor growth in vivo. 

Beginning ONO-8713 administration at day 20 (when the average tumor size was 0.26cm
3
) 

significantly suppressed tumor growth by 65% (p=0.023). Delaying the start of 

administration until day 27 when the tumors were larger (average size 0.5cm
3
) also reduced 

tumor growth (42% reduction), although this was not significant. Direct injection of 

established tumors (average size 0.5cm
3
) with ONO-8713 suppressed tumor growth by 78% 

(p=0.023), with three of the five established tumors actually regressing in size. There was 

extensive necrosis, however, present in these injected tumors.  

This reduction in tumor growth in vivo could be due to suppression of the EP1 receptor either 

on the tumor cells or non-tumor cells in the tumor microenvironment. To evaluate this and to 

control for the effect of EP1 receptor expression by tumor cells, the EP1 receptor was 

suppressed in CT26 tumor cells prior to s.c. inoculation. Numerous clones were generated 

and the clone with the greatest reduction was selected for in vivo analysis (Fig.1B). 

Suppressing tumor expression of the EP1 receptor had no effect on tumor development but 

did result in a decrease in tumor growth (20%) in vivo (Figure 1A), suggesting that inhibition 

of tumor cell growth in vivo is predominantly due to effects of the EP1 receptor antagonist on 

the host, rather than on the tumor cells directly. Indeed the ex vivo growth of tumor cells 

isolated from the tumor-bearing mice was unaffected by EP1 receptor antagonism (Fig.1C).  

However, CT26
EP1 shRNA

 cells still expressed the EP1 receptor (Fig.1B); albeit at a much 

lower level. This lower level of expression may still be capable of transducing a pro-

tumorigenic signal.  

CT26 cells secrete PGE2 and express all four EP receptors (supplemental Fig.S2). Changes in 

the level of PGE2 in the tumors could thus affect signalling through the other receptors. To 

determine whether the reduced tumor growth correlated with changes in the level of PGE2, 

endogenous PGE2 levels in the tumors were determined by ELISA (Fig.1D). Although PGE2 
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levels were slightly lower in treated tumors, there was no significant difference between the 

groups, suggesting that the reduced tumor growth was not due to alterations in PGE2-

mediated signalling through the other EP receptors. 

Inhibition of EP1 receptor suppresses expression of FasL by colon tumors. 

We have previously shown that PGE2 signalling through the EP1 receptor increases FasL 

expression in human colon tumor cells 
9
, and that suppressing FasL expression by tumor cells 

reduces tumorigenesis in vivo 
17

. Consistent with these findings, both knockdown of the EP1 

receptor by shRNA or treatment with ONO-8713 suppressed FasL expression in CT26 cells 

in vitro (Fig.2A) and in tumors in vivo (Fig.2E). Moreover, both tumor development (Fig. 2C) 

and growth (Fig.2D) was significantly suppressed when the inoculated tumors had FasL 

expression suppressed in advance by shRNA (Fig.2B). A third of the mice inoculated with 

CT26
FasL shRNA

 did not develop tumors (Fig.2C), and in the mice that did develop tumors 

(7/11), the growth of the tumors was significantly reduced (p<0.007) (Fig.2D). Interestingly, 

although the initial appearance of the tumors was delayed, by day 48 however, CT26
FasL shRNA

 

tumors that did develop were similar in size to those that were treated with ONO-8713 

beginning at day 20, with no statistical difference between them.  

Incorporation of ONO-8713 into the diet of CT26
FasL shRNA

 tumor-bearing mice beginning at 

day 27 did not result in a further significant reduction in tumor volume (Fig.2D). Given that 

the growth of CT26
FasL shRNA

 tumors was already greatly reduced, it was perhaps unsurprising 

that ONO-8713 administration did not have any additive effects. From day 36 on, however, 

tumor growth was halted in these mice, in contrast to the slow increase in tumor growth seen 

in non-treated CT26
FasL shRNA

 tumors (Fig.2D). Moreover, although FasL was not reduced to 

the same extent in the CT26 
EP1 shRNA

 clones in vitro compared to the ONO-8713-treated cells 

and the CT26 
FasL shRNA

 clones, FasL mRNA and protein levels were reduced in the CT26
EP1 
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shRNA
 -derived tumors in vivo (Fig.2E). Despite this, growth of these tumors was significantly 

greater than that of CT26
FasL shRNA

 tumors (p<0.0179). Together these findings suggest that 

PGE2 may have additional effects on cells in the tumor microenvironment that are affected by 

ONO-8713 treatment. 

Blocking EP1 receptor signalling enhances intratumoral CD8
+
 T cells, suppresses 

intratumoral CD4
+
 T cells and Treg cells, and increases CTL activity. 

To assess whether blocking PGE2-EP1 signalling affects T cell recruitment, tumors excised 

after 48 days were dissociated with collagenase/dispase, and single cell suspensions were 

analysed by flow cytometry. Infiltration of the tumors by CD4
+
 T cells was significantly 

decreased in all groups on blocking EP1 receptor signalling (Fig.3B). In contrast, CD8
+
 T cell 

infiltration was increased, although this was not significant (Fig.3B). Antagonising the EP1 

receptor also reduced the number of CD4
+
CD25

+
Foxp3

+
 Treg cells present in the tumors, 

with a significant reduction occurring following oral administration of ONO-8713 beginning 

at day 20 and direct injection of ONO-8713 into the tumors (Fig.3B). In contrast, the level of 

Treg cells in CT26
EP1 shRNA

 tumors was increased, suggesting that EP1 receptor signalling in 

cells in the tumor microenvironment, rather than the tumor cells themselves, plays an 

important role in Treg cell recruitment and/or expansion. Given that Treg cells are potent 

suppressors of the anti-tumor immune response 
23

, failure to CT26
EP1 shRNA

 tumors to block 

the expansion of Treg cells may account for the enhanced growth of these tumors in vivo 

relative to ONO-8713-treated mice. 

CTLs are a critical component of the immune response to tumors, with CTL activity 

declining with progressive tumor growth. To determine if blocking the EP1 receptor affects 

PGE2-mediated suppression of CTL activity, CTL were generated from tumor-bearing mice 

and examined for cytotoxic activity against CT26 cells (Fig.3C). CTL from CT26
scr shRNA
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tumor-bearing mice had an average CTL activity of 33%, while CTL from non-tumor-bearing 

mice exhibited a cytotoxicity of 85%. Cytotoxicity was significantly increased in effector 

cells generated from tumor-bearing mice orally administered ONO-8713 beginning at day 20 

(83%) (p=0.0031) and directly injected with ONO-8713 (92%) (p<0.0001), relative to those 

derived from untreated CT26
scr shRNA

 tumor-bearing mice. Although CTL generated from 

CT26
EP1 shRNA

 tumors (70%) (p< 0.0001) and tumor-bearing mice orally administered ONO-

8713 beginning at day 27 (77%) (p< 0.0001) exhibited increased CTL activity relative to 

those generated from non-treated tumor-bearing mice (33%), interestingly this CTL activity 

was significantly less than that of the PBS control mice (85%), p=0.0029 and p<0.0001, 

respectively.  

Blocking EP1 alters TAM infiltration but does not play a role in the polarisation of tumor-

associated macrophages (TAM). 

Cytokines implicated in the differentiation of macrophages towards an immunosuppressive 

M2-like phenotype include PGE2 and IL-6 
20

. Given the important role played by TAM in 

tumor development, the effect of blocking the EP1 receptor on TAM infiltration and 

polarisation was determined. Analysis revealed significantly reduced levels of F4/80
+
 cells 

within the tumors when administration of the antagonist began at day 20, or following direct 

injection of the antagonist (Fig.4A). In contrast, TAM levels were comparable to that of 

control tumors when the initiation of antagonist administration was delayed until day 27 

when the tumors were larger, and when EP1 was directly suppressed in the tumor cells.   

These macrophages retained characteristics of the M2-like phenotype. They were IL-12
low

, 

IL-6
low

 and nitric oxide synthase (NOS)
low

 (Fig.4B), with no change in PGE2 secretion (Fig. 

4C). Although macrophages from ONO-8713 injected tumors were IL-12
high

, IL-6
high

, 

NOS
high

 and secreted significantly less PGE2, suggestive of a more anti-tumorigenic M1-like 
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phenotype, this may be due to the high level of necrosis present in these injected tumors. 

Indeed, ingestion of necrotic cells has been shown to increase the transcription of several 

cytokines by macrophages 
24

. 
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Discussion 

PGE2 is the most abundant prostaglandin found in a variety of human malignancies, 

facilitating tumor progression by stimulating cell proliferation and angiogenesis, and 

suppressing the anti-tumor immune response 
1, 19

. PGE2 released from apoptotic tumor cells 

may also help to repopulate tumors following chemo- and radio-therapeutic regimens, with 

PGE2 being shown to stimulate the growth of therapy-resistant tumor cells 
25

. Despite being 

one of the PGE2 receptors implicated in tumorigenesis 
11, 12

, the pro-tumorigenic effects of the 

EP1 receptor are very poorly understood. Importantly from a therapeutic standpoint, in the 

current study we demonstrate that targeting the EP1 receptor significantly retards the growth 

of established tumors in vivo. This inhibition of tumor growth was unlikely due to direct 

inhibition of PGE2-induced tumor cell growth, as suppressing EP1 receptor expression in 

tumor cells alone was far less effective in reducing tumor growth in vivo than when multiple 

cell types within the tumor microenvironment were affected. Moreover, growth of the tumor 

cells in vitro was unaffected by suppression of the receptor.  

One of the potential mechanisms by which the EP1 receptor mediates its pro-tumorigenic 

effects is upregulation of FasL expression in tumor cells 
9
. Fas signalling in response to 

binding of FasL has been shown to have numerous pro-tumorigenic effects, with expression 

of Fas and FasL by malignant cells being associated with enhanced tumor growth, 

inflammation, metastases and apoptotic depletion of tumor-infiltrating lymphocytes in vivo 
26, 

27
. Indeed, suppressing EP1 receptor signalling was found to effectively suppress FasL 

expression by tumor cells in vitro and in vivo. However, despite exhibiting reduced FasL 

expression, the reduction in growth of CT26 
EP1 shRNA

 tumors was far less than that of CT26 

FasL shRNA
 tumors or ONO-8713-treated tumors. Although CT26 

EP1 shRNA
 clones exhibited 

reduced FasL expression, the level of expression was greater than that seen in the CT26 
FasL 

shRNA
 clones and following treatment with ONO-8713 in vitro. Oligomerization of FasL is 



17 
 

required for triggering of Fas signalling 
28

, and thus the threshold of FasL expression may 

play a role in determining whether FasL promotes tumorigenesis, with the CT26 
EP1 shRNA

 

tumor cells exhibiting a level of FasL expression sufficient to mediate the pro-tumorigenic 

effects of FasL. Alternatively, the greater reduction in tumor growth seen in ONO-8713-

treated tumors may be due to the affect of the antagonist on PGE2/EP1 receptor signalling in 

cells in the tumor microenvironment.     

Immune cells are a prominent component of solid tumors. Such cells, if appropriately 

activated, can mediate tumor rejection 
20

. The EP receptors are expressed by multiple 

immune cell types 
29

, and thus the EP1 antagonist could potentially suppress EP1 receptor 

signaling in these cells. In our study we found that the pro-tumorigenic effects of the EP1 

receptor are also immunological in nature. Blocking EP1 receptor signalling reduced the level 

of intratumoral CD4
+
 T cells and increased the level of CD8

+
 T cells. CD4

+
 and CD8

+
 T cell 

recruitment was also altered in CT26
EP1 shRNA

 tumors, suggesting that this alteration in T cell 

recruitment may be due to changes in secretion of T cell chemotactic factors by the tumor 

cells. For instance, both IL-16 and CCL5 (RANTES) have preferential effects on CD4
+
 T cell 

chemotaxis 
30

. Alternatively, this difference in the level of the intratumoral CD4
+
 and CD8

+
 T 

cells could be due to differences in the sensitivity of the T cell subsets to the anti-proliferative 

effects of PGE2, with CD8
+
 T cells being shown to be more susceptible to PGE2-mediated 

inhibition of proliferation than CD4+ T cells 
31

. Although EP2 and EP4 receptors have been 

shown to predominantly mediate the anti-proliferative activity of PGE2 on lymphocyte 

proliferation 
29

, this study did not subdivide the lymphocytes into CD4
+
 and CD8

+
 cells.  

CD8
+
 T cells, if appropriately activated, can mediate tumor rejection, with CD8

+
 CTL among 

the major anti-tumor effector mechanisms 
32, 33

. Such anti-tumor activity is strongly 

suppressed by Treg cells 
23

. Together with altered T cell infiltration, blocking EP1 receptor 
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signalling was also associated with reduced levels of Treg cells within the tumors and 

enhanced cytotoxic activity of T cells. Indeed mice with the greatest reduction in tumor 

growth in vivo also had the greatest reduction in Treg cells and the highest CTL activity. 

Changes in the level of Treg cells and CTL activity are likely due to effects of the antagonist 

on non-tumor cells in the tumor microenvironment, as the level of Treg cells remained high 

in CT26 
EP1 shRNA

 tumors. CTL generated from splenocytes from these mice also exhibited the 

least CTL activity of all the treatment groups. Indeed, this change in the level of Treg cell 

infiltration represents one of the major differences between ONO-8713-treated tumor cells 

and EP1-suppressed CT26 
EP1 shRNA

 tumor cells, suggesting that PGE2 acts in a paracrine 

fashion to recruit Treg cells to tumors.  

How blocking the EP1 receptor alters Treg cell infiltration and/or expansion is unclear. 

Induction of Treg cells and suppression of CTL activity in response to PGE2 have previously 

been ascribed to activation of cAMP/protein kinase A (PKA) by EP2 and EP4 
34, 35

. The EP1 

receptor has traditionally been associated with the activation of Ca
2+

 signalling through 

coupling to Gq and the activation of phospolipase C (PLC). A recent study, however, has 

shown that the EP1 receptor can also activate PKA, independently of cAMP 
36

, which may 

potentially accounting for this previously unknown role for the EP1 receptor in the induction 

of Treg cells in the tumor microenvironment.  

The level of TAM present within the tumors was also suppressed on blocking of the EP1 

receptor in the tumor microenvironment. TAM are a major constituent of the leukocyte 

infiltrate in solid tumors and are recruited to tumors by tumor-derived chemotactic factors 
37

. 

Such TAM have been shown to be skewed in tumors towards an immunosuppressive or 

‘M2’-like phenotype by environmental cues such as PGE2, IL-10 and IL-6 
20, 38, 39

. Skewing 

of TAM towards this M2 phenotype favors tumor progression by suppressing T cell 

proliferation, stimulating tumor cell proliferation, angiogenesis, tumor cell migration and 
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increasing stroma reaction. Consistent with the ability of TAM to promote tumor progression, 

those tumors which showed the greatest suppression of tumor growth also showed the 

greatest reduction in TAM. This reduction in TAM was not due to alterations in CCL2 (data 

not shown), suggesting other macrophage-chemotactic factors may play a more important 

role in this model. Moreover, although the level of PGE2 present in the tumor 

microenvironment following blocking of the EP1 receptor was unaltered, the macrophages 

retained an M2-like phenotype, suggesting that the EP1 receptor is involved in TAM 

recruitment but not polarisation.  

In conclusion, we have shown that the EP1 receptor mediates several of the pro-tumorigenic 

effects of PGE2 and that EP1 receptor antagonism is effective in reducing the growth of 

established tumors. Given that we have previously shown that human colon tumors in vivo 

express the EP1 receptor 
9
,  and that EP1 receptor antagonists inhibit chemically induced 

breast cancer development in rats 
40

 and reduce the number of skin tumors per mouse 

following UVB exposure 
41

, EP1 receptor antagonists may be good candidates as 

chemotherapeutic agents for not only colon, but also other cancers.  
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Figure Legends 

Figure 1. Inhibiting EP1 receptor signalling reduces the growth of pre-established tumors in 

vivo. (A) 2x10
5
 CT26 colon tumor cells were s.c. inoculated into BALB/c mice. Tumor cells 

inoculated and treatments are indicated. Unless otherwise indicated, ONO-8713 was 

administered in the basal diet. Tumor growth was monitored as described in the Materials 

and Methods. Data points represent the mean value +/- SEM and show the findings of one 

tumor challenge experiment. (B) EP1 receptor expression was suppressed in CT26
EP1 shRNA

 

cells. The efficiency of suppression of EP1 receptor was assessed by RT-PCR and Western 

blotting. For the RT-PCR, data was normalised to β-actin and analysed using the 2
-CT

 

method. Immunoblotting for β-actin was used as the loading control. (C) Proliferation of 

tumors cells ex vivo was unaffected by EP1 receptor expression or EP1 receptor signalling. 

Cell proliferation was determined by resazurin reduction. Proliferation was normalised to 

tumors cells isolated from CT26
scr shRNA

 tumors. Data shown are the findings from three 

independent experiments. (D) Blocking EP1 receptor signalling doesn’t affect PGE2 secretion 

by tumor cells. Tumor cells were isolated from all tumor-bearing mice and cultured ex vivo 

for 24hr. Cell culture supernatants were harvested and the level of PGE2 measured in 

triplicate by ELISA.   

Figure 2. Signalling through the EP1 receptor upregulates FasL expression in vivo. (A) CT26 

cells were treated with increasing concentrations of ONO-8713 for 24hr, or FasL and EP1 

receptor expression was suppressed in CT26 
FasL shRNA

 and CT26 
EP1 shRNA

 cells, respectively. 

FasL expression was determined by Western blotting. Expression of the housekeeping gene 

β-actin was used as an internal control. Results shown are representative of three independent 

experiments. (B) FasL expression was suppressed in CT26
FasL shRNA

 cells. The efficiency of 

suppression of FasL was assessed by RT-PCR and Western blotting. RT-PCR data was 
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normalised to β-actin and analysed using the 2
-CT

 method. (C) Suppression of FasL 

expression reduces tumor development in vivo. Cells were s.c. inoculated into BALB/c mice. 

Mice were palpated thrice weekly to detect tumors. Data shown are the percentage of mice 

remaining tumor free on the indicated day.  (D) Suppression of FasL expression reduces 

tumor growth in vivo. 2x10
5
 CT26

scr shRNA
 or

 
CT26

FasL shRNA
 were s.c. inoculated into BALB/c 

mice. ONO-8713 was administered in the basal diet with the day of initiation of treatment 

indicated. Tumor growth was monitored as described in the Materials and Methods. Data 

points represent the mean value +/- SEM and show the findings of one tumor challenge 

experiment. (E) Blocking EP1 signalling suppresses FasL expression in vivo. Tumors were 

excised after 48 days. FasL expression in the excised tumors was analysed by RT-PCR and 

Western blotting. For Western blotting, 30µg of protein from all tumors per treatment group 

was pooled. 

Figure 3. Blocking EP1 receptor signalling alters the intratumoral immune cell population. 

(A) Flow cytometric analysis revealed that suppressing EP1 receptor signalling significantly 

reduces the percentage of CD4
+
 T cells and increases the percentage of CD8

+
 T cells within 

the tumors. Data points represent the mean +/- SEM; n≥5 mice/group. (B) Representative dot 

plots show the gating strategy for the identification of Treg cells within the tumor tissues. 

Treg cells were characterised as the ratio of CD25
+
 Foxp3

+
 cells in the CD4 gate. Treg cell 

infiltration was suppressed by EP1 receptor antagonism. Data points represent the mean +/- 

SEM; n≥5 mice/group. (C) CTL activity is recovered in ONO-8713-treated tumor-bearing 

mice and in mice inoculated with CT26
EP1 shRNA

 tumor cells. Splenocytes were isolated and 

after 5 days in vitro stimulation with irradiated CT26 cells and IL-2, cytotoxic activity was 

assessed as described in the Materials and Methods. Data represents splenocytes from one or 

two mice per treatment group and is representative of three to five independent experiments. 

(**** p<0.0001; *** p<0.001; ** p<0.01). 
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Figure 4. Antagonising the EP1 receptor reduces macrophage infiltration but does not alter 

macrophage polarisation.  (A) Flow cytometric analysis revealed that suppressing EP1 

receptor signalling reduces the percentage of F4/80
+
 cells within the tumors. Data points 

represent the mean +/- SEM; n≥5 mice/group. (B) The EP1 receptor doesn’t play a role in 

TAM polarisation. Macrophages were isolated from a minimum of five excised tumors per 

treatment group as described in the Materials and Methods. RNA was isolated, pooled and 

changes in transcription of IL-12, IL-6 and NOS2 determined by RT-PCR. Data was 

normalised to β2-microglobulin and analysed using the 2
-CT

 method. Results represent the 

mean +/- SEM. (C) Blocking signalling through the EP1 receptor doesn’t alter secretion of 

PGE2 by TAM. Isolated macrophages (n=3 per group) were cultured ex vivo for 24hr. Cell 

culture supernatants were harvested and the level of PGE2 measured in triplicate by ELISA.   
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Supplementary Figure S1: ONO-8713 administration reduces the growth of pre-established 

tumors in vivo. (A) 4x10
5
 CT26 colon tumor cells were s.c. inoculated into BALB/c mice. 

ONO-8713 was administered in the basal diet at a final concentration of either 500 or 

1000ppm, or directly injected into tumors twice weekly once they had reached a size of 

0.5cm
3
. Tumor growth was monitored by measurement of tumor length (a) and width (b) 

using a vernier caliper, and the volume was calculated as ½ (a x b
2
). Data points represent the 

mean value +/- SEM; n=3 mice/group and show the findings of one tumor challenge 

experiment. (B) After 25 days animals were sacrificed and the final tumor volume was 

recorded. 

 

Supplementary Figure S2: CT26 cells express all four EP receptors and secrete PGE2. 

Expression of the receptors is unaffected by PGE2. (A) Cells were treated with 1µM PGE2 for 

24hr and EP receptor expression detected by Western blotting. Expression of the 

housekeeping gene β-actin was used as an internal control. Results are representative of three 

independent experiments (B) Suppressing the EP1 receptor or FasL expression does not alter 

PGE2 secretion in vitro. Cells were cultured for 24 hrs with or without 10µM ONO-8713 as 

indicated. Cell culture supernatant was collected and PGE2 levels were determined in 

triplicate by ELISA. 
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