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A B S T R A C T

The amount and quality of available biomass is a key factor for the sus-

tainable livestock industry and agricultural management related decision

making. Globally 31.5% of land cover is grassland while 80% of Ireland’s

agricultural land is grassland. In Ireland, grasslands are intensively man-

aged and provide the cheapest feed source for animals. This dissertation

presents a detailed state of the art review of satellite remote sensing of

grasslands, and the potential application of optical (Moderate–resolution

Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series

imagery to estimate the grassland biomass at two study sites (Moorepark

and Grange) in the Republic of Ireland using both statistical and state of

the art machine learning algorithms. High quality weather data available

from the on-site weather station was also used to calculate the Growing

Degree Days (GDD) for Grange to determine the impact of ancillary data

on biomass estimation.

In situ and satellite data covering 12 years for the Moorepark and 6 years

for the Grange study sites were used to predict grassland biomass using

multiple linear regression, Artificial Neural Networks (ANN) and Adaptive

Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate

that a dense (8-day composite) MODIS image time series, along with high

quality in situ data, can be used to retrieve grassland biomass with high

performance (R2 = 0.86, p < 0.05, RMSE = 11.07 for Moorepark). The

model for Grange was modified to evaluate the synergistic use of vegeta-
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tion indices derived from remote sensing time series and accumulated GDD

information. As GDD is strongly linked to the plant development, or pheno-

logical stage, an improvement in biomass estimation would be expected. It

was observed that using the ANFIS model the biomass estimation accuracy

increased from R2 = 0.76 (p < 0.05) to R2 = 0.81 (p < 0.05) and the root

mean square error was reduced by 2.72%.

The work on the application of optical remote sensing was further de-

veloped using a TerraSAR-X Staring Spotlight mode time series over the

Moorepark study site to explore the extent to which very high resolution

Synthetic Aperture Radar (SAR) data of interferometrically coherent pad-

docks can be exploited to retrieve grassland biophysical parameters. After

filtering out the non-coherent plots it is demonstrated that interferometric

coherence can be used to retrieve grassland biophysical parameters (i. e.,

height, biomass), and that it is possible to detect changes due to the grass

growth, and grazing and mowing events, when the temporal baseline is

short (11 days). However, it not possible to automatically uniquely identify

the cause of these changes based only on the SAR backscatter and coherence,

due to the ambiguity caused by tall grass laid down due to the wind.

Overall, the work presented in this dissertation has demonstrated the

potential of dense remote sensing and weather data time series to predict

grassland biomass using machine-learning algorithms, where high quality

ground data were used for training. At present a major limitation for na-

tional scale biomass retrieval is the lack of spatial and temporal ground

samples, which can be partially resolved by minor modifications in the ex-

isting PastureBaseIreland database by adding the location and extent of
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each grassland paddock in the database. As far as remote sensing data re-

quirements are concerned, MODIS is useful for large scale evaluation but

due to its coarse resolution it is not possible to detect the variations within

the fields and between the fields at the farm scale. However, this issue will

be resolved in terms of spatial resolution by the Sentinel-2 mission, and

when both satellites (Sentinel-2A and Sentinel-2B) are operational the re-

visit time will reduce to 5 days, which together with Landsat-8, should

enable sufficient cloud-free data for operational biomass estimation at a

national scale.

The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible

if there are enough coherent interferometric pairs available, however this

is difficult to achieve due to the temporal decorrelation of the signal. For

repeat-pass InSAR over a vegetated area even an 11 days temporal baseline

is too large. In order to achieve better coherence a very high resolution is

required at the cost of spatial coverage, which limits its scope for use in

an operational context at a national scale. Future InSAR missions with pair

acquisition in Tandem mode will minimize the temporal decorrelation over

vegetation areas for more focused studies.

The proposed approach complements the current paradigm of Big Data

in Earth Observation, and illustrates the feasibility of integrating data from

multiple sources. In future, this framework can be used to build an opera-

tional decision support system for retrieval of grassland biophysical param-

eters based on data from long term planned optical missions (e. g., Land-

sat, Sentinel) that will ensure the continuity of data acquisition. Similarly,

vi



Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity

of TerraSAR-X and COSMO-SkyMed.
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P R O J E C T B A C K G R O U N D A N D L I T E R AT U R E
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1
I N T R O D U C T I O N

Sitting quietly, doing nothing, spring comes, and the grass grows by itself.

— a Zenrin poem

The biosphere is known as the life zone on the Earth’s surface, and

without this Earth is no different from lifeless planets like Mars

and Venus. The biosphere is responsible for food production

and the air that we breathe. Grasslands cover the major proportion of the

terrestrial land cover and are broadly defined as "ground cover by vegetation

dominated by grasses, with little or no tree cover" (Suttie et al., 2005). Due

to their role in food security and climate change (O’Mara, 2012), precise
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4 introduction

assessment of grassland biomass at both regional and global scales is very

important. Understanding of vegetation health, status (see Table 1) and the

changes caused by climate and humans (Barnosky et al., 2012) is required.

Globally, grasslands are one of the biggest terrestrial ecosystems. With 181

Mg/ha, they are the second highest carbon stock after forests (210 Mg/ha),

and together, forests, croplands, and grasslands play a crucial role in the

regulation of the global carbon cycle (see Table 1 for details). Land cover

transformations caused by biomass burning and agricultural intensification

contribute significantly to greenhouse gas emissions (Chuvieco, 2008).

Table 1: Grasslands, forests and croplands global coverage and carbon stocks.

Carbon stocks (Mg/ha) (Franzluebbers, 2010)

Biome Coverage (%) (Latham

et al., 2014)

Above

ground

Soil Total

Grasslands/Herbaceous 31.5 21 160 181

Forests 27.7 97 113 210

Croplands 12.6 2 80 82

In relation to global greenhouse gas emissions it is very important to

monitor the biosphere at a large scale in order to fully understand the

impact caused by change in vegetation area and hence biomass amount.

Conventional ground-based methods (e. g., rising plate meter, cut and dry,

visual assessment) have been used for decades for field or farm scale mon-

itoring of grassland biomass. All these methods are very time consuming,

laborious and are applicable to a very small scale. A possible solution to

these limitations is the use of remote sensing technologies. Remote sensing
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technologies can be used to monitor ground targets at a regional to global

scale on a regular basis. The use of such technologies for biomass estima-

tion of different vegetation types (grasslands, forests, croplands) has been

on-going for many years, and many studies have contributed to the de-

velopment of remote sensing methodologies and implementation schemes.

Scientists (e. g., Gordon (1974)) have demonstrated an interest in satellite-

based biomass quantification from the time of the launch of Landsat-1 (orig-

inally called "Earth Resource Technology Satellite 1") in 1972.

1.1 importance of grasslands

Grasslands are not only important for their wide spread coverage (see Ta-

ble 2) but they also play a substantial role in food security and other ecosys-

tem services. Below are highlighted some of the key roles grasslands are

playing in our life and environment :

I dairy products constitute a major proportion of our daily intake. In

order to meet the global demand for food, especially milk and meat,

a sustainable dairy farming system is very important. Globally grass-

lands cover a major proportion (≈ 31.5%) of the terrestrial land cover of

the Earth’s surface (Latham et al., 2014), as shown in Table 2 and their

adaptation to climate changes will be variable (O’Mara, 2012). Statis-

tics show that the area of permanent pasture cover at a global scale is

decreasing except in Africa and America, however, in Europe the area
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(179 Millions of hectares) is quite stable and has been consistent for the

last three decades (FAOSTAT, 2014).

II soil covered by grass has more potential to store carbon than forests

and crops as shown in Table 1.

III grasslands are helpful in the struggle against erosion (their leaves in-

tercept rainfall and their roots bind the soil) and for the regularizing

of water regimes (Carlier et al., 2009).

IV Borer et al. (2014) has reported that biodiversity across grasslands can

be maintained by fertilizing and controlled grazing.

Grassland/pasture is the only crop able to fulfil so many tasks and to fit so

many requirements (e. g., environmental, development of the countryside)

(Carlier et al., 2009)

Table 2: Global status of permanent pastures (in millions of hectares) [Statistics
source: (FAOSTAT, 2014)]. Overall globally pasture cover has decreased
in the last two decades, however, at a continental scale the trends vary
for different regions e. g., consistent increase in pasture cover in Africa
and America, continuous decrease in Asia and Oceania. For the last three
decades pasture cover in Europe is quite stable.

Time period

Region 1994 2004 2012

Africa 881 898 904

Asia 1102 1099 1080

Europe 179 180 178

Oceania 435 404 369

America 797 811 827

World 3395 3395 3359
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1.2 agriculture and climate change

1.2.1 Global context

"Human influence on the climate system is clear, and recent anthropogenic emis-

sions of greenhouse gases are the highest in history. Recent climate changes have

had widespread impacts on human and natural systems" (IPCC, 2014). Maintain-

ing the carbon budget–the estimated amount of carbon dioxide the world

can emit while still having a likely chance of limiting global temperature

rise to 2
◦C above pre-industrial levels (IPCC, 2014)–is crucial for the sus-

tainable future of planet Earth. 52% of the available estimated global CO2

budget has already been burnt, and if the greenhouse gas (GHG) emissions

continue at the current rate the remaining 48% will be used by 2045 (IPCC,

2014). After consuming half of the carbon budget, the world is already ex-

periencing catastrophic events due to more extreme weather events and

climate changes, for example:

• global sea level rise

• forest fires

• heavy precipitation events

• longer and more intense droughts
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Carbon dioxide constitutes the major proportion of total annual anthro-

pogenic GHG emissions by gases, as compared to methane, nitrous oxide

and other gases as shown in Figure 1.

Figure 1: Total annual anthropogenic GHG emissions by gases 1970–2010 (IPCC,
2014).

With the increase of every degree of warming above 2
◦C, modelling

demonstrates that the situation will not improve and that disastrous events

will be more frequent in future. For example, if the GHG emissions con-

tinue unabated, global sea levels could be nearly 1 meter higher by 2100

(IPCC, 2014). To address these issues policy and decision makers have been

attempting to reach a consensus on the global climate change policy frame-

work. Finally, after 20 years of hard work, discussions and negotiations, on

December 12
th

2015 the participants from 195 countries signed the global



1.2 agriculture and climate change 9

climate change pact, the Paris Agreement1, to reduce greenhouse gas emis-

sions. The aim of the Agreement is described in Article 2, "enhancing the

implementation" of the United Nations Framework Convention on Climate

Change (UNFCCC) through2

(a) "Holding the increase in the global average temperature to well below

2
◦C above pre-industrial levels and to pursue efforts to limit the tem-

perature increase to 1.5◦C above pre-industrial levels, recognizing that

this would significantly reduce the risks and impacts of climate change;

(b) Increasing the ability to adapt to the adverse impacts of climate change

and foster climate resilience and low greenhouse gas emissions devel-

opment, in a manner that does not threaten food production;

(c) Making finance flows consistent with a pathway towards low green-

house gas emissions and climate-resilient development."

Countries furthermore aim to reach the global peak of greenhouse gas emis-

sions as soon as possible.

Efforts to reduce the emissions are of relevance to the agriculture sec-

tor, as the world population is set to increase from 7.4 billion (2016) to 8.9

billion by 2050, and meeting the food requirements for the growing popu-

lation will result in emissions of additional greenhouse gases (particularly

methane and nitrous oxide). Growing populations and wealth will increase

the global demand for meat and dairy products, and in return the agricul-

ture sector will also be impacted by climate change. Events (e. g., flood,

1 http://newsroom.unfccc.int/unfccc-newsroom/finale-cop21/
2 http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

http://newsroom.unfccc.int/unfccc-newsroom/finale-cop21/
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
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drought and changes in precipitation patterns) caused by extreme weather

and climate will challenge the worldwide capacity to produce food. In or-

der to avoid future humanitarian food crises there is a need to stabilise the

concentration of GHG in the atmosphere.

During the Conference of Parties (COP) 21 meeting of the United Na-

tions Framework Convention on Climate Change (UNFCCC) in Paris, gov-

ernments and food and agriculture organizations joined at the Lima-Paris

Action Agenda (LPAA) focus on agriculture to respond to urgent climate

challenges facing agriculture with cooperative initiatives that will protect

the long-term livelihood of millions of farmers and reduce greenhouse gas

emissions3. Globally agriculture is contributing 24% of the greenhouse gas

emissions4 and in return it is seriously affected by extreme climates. The

following four initiatives were on the agenda list:

i soils in agriculture sector,

ii the livestock sector,

iii food losses and waste, and

iv sustainable production methods and resilience of farmers.

The UN Secretary General’s special representative for food security and

nutrition Mr. David Nabarro highlighted the potential of these initiatives

for sustainable agricultural development in future: "The time has come to

reshape agriculture but it must be of the right type: regenerative, smallholder cen-

tered, focused on food loss and waste, adaptation, soils management, oceans and

3 http://newsroom.unfccc.int/lpaa/agriculture/
4 http://www3.epa.gov/climatechange/ghgemissions/global.html

http://newsroom.unfccc.int/lpaa/agriculture/
http://www3.epa.gov/climatechange/ghgemissions/global.html


1.2 agriculture and climate change 11

livestock". At the Action Agenda, the following six major initiatives sup-

porting farmers included:

1. The "4/10005 Initiative: Soils for Food Security and Climate": Officially

launched by a hundred partners, including both developed and de-

veloping states, international organizations, private foundations, non-

governmental organizations (NGOs) and farmers’ organizations. By

knowing that soil can store huge amounts of carbon, the aim of the

4/1000 initiative is to protect and increase carbon stocks in soils.

2. Live Beef Carbon: Farmers from four European countries took the ini-

tiative to reduce the carbon footprint of the livestock sector. Initially

launched in October 2015, the "Live Beef Carbon" initiative aims at

developing innovative livestock farming systems for sustainable beef

farming in order to reduce the contribution of livestock production to

GHG emissions. The end target is to reduce the beef carbon footprint

by 15% over 10 years in France, Ireland, Italy and Spain.

3. Adaptation for Smallholder Agriculture Programme (ASAP): In order to in-

crease the agricultural production and to reduce agriculture’s carbon

footprint, the International Fund for Agricultural Development (IFAD)

committed to invest in poor smallholder farmers in developing coun-

tries.

4. 15 West-African Countries Transitioning to Agro-ecology: With the sup-

port of the World Bank, European Union, and the New Partnership

5 What does "4 per 1000" mean? A "4%" annual growth rate of the soil carbon stock would
make it possible to stop the present increase in atmospheric CO2. For more details: http:
//4p1000.org/understand

http://4p1000.org/understand
http://4p1000.org/understand
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for African’s Development (NEPAD) of the African Union, this initia-

tive is aimed to deliver both adaptation and emission mitigation ben-

efits. It will allow the adoption of agro-ecological practices by 25 mil-

lion householders by 2025.

5. The "Global Initiative on Food Loss and Waste Reduction – SAVE FOOD":

In order to reduce the global food waste and loss which accounts

for 3.3 Gt of CO2 equivalent per year, this initiative aims to drive

innovations and promote interdisciplinary dialogue to reduce food

loss and waste.

Approximately 24% of our greenhouse gas emissions come from agri-

culture (Gilbert, 2012), for example, globally rice crops accounts for 19%

of anthropogenic methane emissions (Chen and Prinn, 2006). Similarly the

agriculture (or grass crop) based dairy sector is also contributing signif-

icantly (2.2 CO2 eq/kg Fat and Protein Corrected Milk (FPCM) at farm

gate) to greenhouse gas emissions. Regions like East Asia, West Asia &

North Africa, Central & South America and Sub Saharan Africa are pro-

ducing less milk (compared to the developed countries) but generate high

GHG emissions due to the poor management (e. g., poor nitrogen fertiliser

management) as shown in Figure 2 (the complete report is available at

http://www.fao.org/docrep/012/k7930e/k7930e00.pdf).

http://www.fao.org/docrep/012/k7930e/k7930e00.pdf
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Figure 2: Relative contribution of world regions to milk production and GHG
emissions associated with milk production, processing and transporta-
tion (source: http://www.fao.org/docrep/012/k7930e/k7930e00.pdf).

1.2.2 Irish context

In the Irish economy agriculture plays a very important role, as agricul-

ture and the Irish food industry provide 230, 000 jobs and contribute ap-

proximately e25 billion to the Irish economy (2016 report)6. Most of the

revenue (e10 billion) is generated through the exports of dairy products

and ingredients. Grasslands in Ireland are intensively managed–receiving

artificial fertiliser and other treatments such as liming and re-seeding to

optimise grass productivity–and are the backbone of the Irish livestock in-

dustry (O’Brien, 2007).

6 http://www.irishexaminer.com/business/growing-potential-of-the-food-industry-\
in-ireland-374226.html

http://www.fao.org/docrep/012/k7930e/k7930e00.pdf
http://www.irishexaminer.com/business/growing-potential-of-the-food-industry-\in-ireland-374226.html
http://www.irishexaminer.com/business/growing-potential-of-the-food-industry-\in-ireland-374226.html
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EU member states, including Ireland, are working on short, medium and

long term plans to mitigate the effects of climate change by minimizing the

emissions of greenhouse gases (see Figure 3 for GHG emissions by sector

in Ireland). In Ireland the agriculture sector is a major source of green-

house gas emissions. From 1990 (20.83 Mt CO2eq/annum) to 2013 (19.04

Mt CO2eq/annum) a significant decrease (8.59%) in emissions is reported

in the agriculture sector7, while in the case of the transport sector the per-

centage has increased from 9.0% to 19.5% during this period. Historically it

has been established that there is a strong connection between local climate

and local vegetation, and therefore gross changes to local ecosystems are

expected (Prentice et al., 1992). In the case of Ireland, climate change will

result in changes in land use, potentially agricultural land abandonment

in some places and changes from livestock to crops or vice versa (Lennon,

2015).

1.2.2.1 GHG emissions from the agriculture sector

In the Irish agriculture sector the emissions of greenhouse gases are mainly

from natural processes but are also due to land cover change. The main

gases are8:

• Methane from ruminants from the breakdown of plant material

• Methane from stored manure

7 Ireland’s GHG Emission Projections (May 2015 report): https://www.epa.ie/pubs/
reports/air/airemissions/irelandsghgemissions2014-2035.html#.Vrc0HzaLTGI

8 http://www.agriculture.gov.ie/ruralenvironment/climatechangebioenergybiodiversity/
agricultureclimatechange/

https://www.epa.ie/pubs/reports/air/airemissions/irelandsghgemissions2014-2035.html#.Vrc0HzaLTGI
https://www.epa.ie/pubs/reports/air/airemissions/irelandsghgemissions2014-2035.html#.Vrc0HzaLTGI
http://www.agriculture.gov.ie/ruralenvironment/climatechangebioenergybiodiversity/agricultureclimatechange/
http://www.agriculture.gov.ie/ruralenvironment/climatechangebioenergybiodiversity/agricultureclimatechange/
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Figure 3: Ireland: greenhouse gas emissions in 1990 and 2014 by sector (EPA, 2014).

• Nitrous oxide from soils

In addition to this, 5% of CO2 emission from the agriculture sector is due to

the farm combustion of fuels. From the management perspective, grassland

re-seeding or land-use change requires ploughing, which may enhance car-

bon dioxide emissions from soil (Willems et al., 2011).

1.2.2.2 Trends in GHG emissions from agriculture sector

Due to the small industrial base and large dairy exports, Ireland’s major

proportion of total national emissions is from the agricultural sector, Fig-

ure 3 shows a reduction in GHG emissions in agriculture sector. This reduc-

tion in emissions was mainly due the improvement in efficiency without

compromising the production scale and quality.
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1.2.2.3 Mitigating GHG emissions from the agriculture sector

Overall the target is to reduce global GHG emissions by 50% by 2050. Due

the increasing population of the world, and increasing demand for dairy

and meat products, it is very difficult to reduce or maintain the level of

global agricultural emissions. Ireland’s agriculture system is very well de-

veloped and is one of the most technologically advanced and carbon effi-

cient systems in the world. However, reforms in greenhouse gas account-

ing methods are required for better assessment of agricultural greenhouse

gas emissions (O’Brien et al., 2014). Styles and Jones (2008) have reported

that energy-crop heat production has greater potential to reduce green-

house emission compared to agricultural de-stocking. Nitrous oxide (N2O)

emissions from grassland-based agriculture is an important component of

greenhouse gases and legume based grasslands have lower N2O emissions

than fertilizer-based systems. N2O emissions can be mitigated by reducing

manure nitrogen inputs according to need and by restricting grazing by

reducing grazing time (Li et al., 2013).

1.3 irish agricultural trends

Due to its temperate climate Ireland has suitable grass growing conditions,

including regions (southern part) with a year round growing season (Fis-

cher et al., 2000). Agricultural land makes up about 62% of Ireland’s ter-

restrial area, and 80% of this area is grassland. Over time there have been

substantial and inexorable changes in Irish agricultural structure. Some of
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the significant changes in Irish agricultural trends are listed below (Kear-

ney, 2010):

farm size and structure : In the mid 1960s, before joining the EU, the

number of farms in Ireland was about 239,000 and by the mid 1970s

this number decreased by 4.6% to 228,000. According to the Census of

Agriculture, in 1991 there were 170,600 farms in Ireland and by end of

2007 the number declined to 128,200 (24.8% decrease). A similar trend

was observed across the European Union. The trend of increasing

farm size is also very consistent, in 1991 an average farm size was

about 26 hectares which was increased by 24.2% to 32.3 hectares in

2007.

land renting : An increasing trend in renting agricultural land/farms

is evident in the Irish agricultural system. In 1991 21% of total farms

were rented and this percentage was increased to 33% in 2007.

land fragmentation : Over the period of time (1991–2007) a signifi-

cant change in number of parcels–an individual piece of land that

can be sold separately–per farm has been reported. The average num-

ber of parcels per farm was 3.5 in 2007 as compared to 1.9 parcels in

1991.

part-time farming : The trend of part-time farming is increasing in

smaller farming systems (e.g., cattle and sheep farming) due to the

increasing trend of getting off-farm jobs. The percentage of part-time

farmers was increased from 33% to 42% from 1990 to 2000.
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land use : Since 1970 agricultural/crop land has reduced by about 24.8%

and most of this land has been diverted to forestry.

land prices : Before joining the EU in 1973, the average agricultural land

price in Ireland was e524 per hectare but subsequently there was a

rapid increase in land prices, for example e4292 per hectare in 1980,

e12665 per hectare in 2000 and e50508 per hectare in 2007.

1.4 milk quota – economic value

A milk quota was one of the measures used by governments in the Eu-

ropean Union to intervene in agriculture to bring rising milk production

under control. Milk quotas were attached to land holdings, and they rep-

resented a cap on the amount of milk that a farmer could sell every year

without paying a levy. The introduction of the milk quota in 1984 was a ma-

jor setback for both the dairy sector and Irish economy, and that was a diffi-

cult time for the Irish agriculture sector. After more than 30 years European

Union milk quotas were lifted in March 2015. A study by the Irish Farmers

Association (IFA) estimated the ending of quotas would create 9500 extra

jobs in Ireland, and upwards of 1.3 billion Euro annual additional export

revenue (www.independent.ie, 2015). But at the same time, optimization of

the carbon footprint of milk and economic output of dairy farms is also

very important for mitigating GHG emissions. O’Brien et al. (2015) per-

formed a detailed analysis by using 221 nationally representative samples

of grass-based Irish dairy farms in order to relate the carbon footprint of
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milk to farms’ economic performance. It was concluded that extending the

length of the grazing season and increasing milk production per hectare or

per cow reduced the carbon footprint and increased farm profit. However,

the use of concentrate feeding affected the carbon footprint of milk and

economic performance by increasing both costs and off-farm emissions.

1.5 current situation

Food Wise 2025, the Report of the 2025 Agri Food Strategy Committee in

Ireland sets out a cohesive, strategic plan for the development of an agri-

food sector over the next decade. The report emphasizes the development

of a sustainable export-led, smart economy. On the basis of available data,

the Committee believes that the following growth projections are achiev-

able by 2025 (FoodWise-2025, 2015)

• Increasing the value of agri-food exports by 85% to e19 billion.

• Increasing the value added in the agri-food, fisheries and wood prod-

ucts sector by 70% to in excess of e13 billion.

• Increasing the value of primary production by 65% to almost e10

billion.

• The creation of an additional 23,000 direct jobs in the agri-food sector

all along the supply chain from primary production to high value

added product development.
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Apart from maximizing the economic output from the farms, at the same

time it is also important to protect the ecological aspects of these grassland

farms. One of the European Rural Development policy’s objectives is to

identify and protect the High Nature Values (HNV) farmland. However,

in grass-based farmland (e. g., in Ireland) it is difficult to distinguished be-

tween fine-scale biodiversity features of different grassland types. For these

type of investigations, field-scale survey work is required along with very

high resolution remote sensing and information from Corine Landcover

Classification Sullivan et al. (2010).

1.6 motivation for this work

Almost two-thirds of Ireland’s land cover is grassland, consistent moni-

toring of which is of utmost importance in the context of national agri-

culture initiatives. For proper management and monitoring more efficient

and scientifically reliable models are required for grass growth estimation.

Grass-based intensive systems demand constant intervention on a daily

and weekly basis by the farmer, and estimation of pasture cover (biomass)

is the most important variable in these decisions which play a vital role in

paddock and herd management (Edirisinghe et al., 2012; Clark et al., 2013;

Boschetti et al., 2007).

In addition, EU member states are required to adhere to a growing num-

ber of environmental and agricultural directives, and it is essential that

individual member states have the independent capacity to provide input
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to these. No Earth Observation studies of grasslands have been undertaken

in Ireland for grassland biomass estimation. As such, little is known about

the spatial, temporal and spectral requirements necessary to develop a na-

tional monitoring strategy based on Remote Sensing. Moreover, as agricul-

tural environments respond to changing climate conditions (e. g., an earlier

start and later finish to the growing season) it is imperative to develop ro-

bust approaches which will permit both contemporary and historic capture

of the grassland condition.

Currently in Ireland, mostly the farmers are using visual (eye ball), ris-

ing plate meter and cut and dry methods9 to evaluate grass stocks. This is

clearly a very time consuming approach and the estimates are also not very

accurate as shown by O’Donovan and Dillon (1999) who compared visual

and mechanical methods. Both visual and rising plate meter methods do

not perform as well as the cutting technique (Pavlu et al., 2009). Grassland

biomass estimations available in the "PastureBaseIreland" database from Tea-

gasc’s10 farms (e. g., Moorepark, Curtins, Grange) are determined using the

cut and dry method, a strip of approximately three meters long and one

meter wide is clipped and dried to calculate the Dry Matter (DM) kg/ha as

shown in Figure 4. "PastureBaseIreland" has very high quality, long term in-

situ measurements of grassland biophysical parameters for some Teagasc

farms (e. g., Moorepark, Grange, Curtins), but now more farms are being

added to the database (with georeferenced information of geo-referencing)

9 The details of these methods is given in next chapter.
10 Teagasc is the agriculture and food development authority in Ireland. Its mission is to

support science-based innovation in the agri-food sector and the broader bioeconomy that
will underpin profitability, competitiveness and sustainability.
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in order to increase the number and country wide spatial distribution of

these farms.

Figure 4: Teagasc grassland biomass estimation method (Photographs were taken
during the Curtins (Teagasc farm) field campaign).

1.7 remote sensing technology – scope and potential

To feed the growing population of the planet and to avoid food shortage

related humanitarian crises, it is very important to monitor crops and agri-

cultural activities on a consistent basis. At a global scale, this type of mon-

itoring is important for understanding the influence of climate change on

vegetation health. At the same time, it is equally important to monitor

agricultural fields at the farm and paddock scale in order to assess their

production and performance-related biophysical parameters.
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Optical satellite imagery is currently being used in the field of agricul-

ture for the discrimination of crop types (e. g., Löw and Duveiller (2014))

and to address more challenging tasks such as calculation of Net Primary

Production (NPP) (Rossini et al., 2012). Knowledge of the spatial distribu-

tion of different agricultural land covers and their annual growth cycle is

important, not only for predicting annual yields, but also for accurately cal-

culating carbon reserves which are key inputs for international greenhouse

gas accounting tools (Lin et al., 2012).

At present, the remote sensing community is benefiting from advances in

technology that are allowing for the acquisition of data with higher spatial,

temporal, and spectral resolutions. This influx of big-data from satellites is

giving birth to many new research fields and application domains (Caval-

laro et al., 2015; Ma et al., 2015). In the context of agricultural monitoring,

satellite remote sensing has been employed since the launch of Landsat-1

in 1972. Classification of the land cover types is a typical application of

remote sensing datasets. There is a common consensus that space borne

optical remote sensing is a more feasible approach for vegetation moni-

toring than microwave radar remote sensing. This may be due to (1) the

fact that there exists a long history of dedicated investigations, and, there-

fore a wider appreciation of the optical approach; (2) the availability of

the high number of spectral bands, with spectral responses linked to well

understood phenological stages; and (3) the rapid improvement in spatial

resolution. However, with the increasing availability of very high resolution

spaceborne SAR data the trend is now changing. TerraSAR-X Staring Spot-

light mode (Mittermayer et al., 2014) can acquire data with 0.25m spatial
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resolution which may revolutionize the monitoring of ground targets from

space (Gutjahr et al., 2015).

Since the dawn of satellite remote sensing, significant advances in tech-

nological development have occurred and new applications are continu-

ously being identified. Within the last decade alone (2005-2015), many

new sensors (e. g., SAR: Sentinel-1, ALOS, COSMO-SkyMed, TerraSAR-X,

Radarsat-2, Tandem-X. Optical: Landsat-8, RapidEye, SPOT-7, Sentinel-2,

WorldView) with high spatial, temporal and spectral resolution have been

developed and launched. At the same time, a paradigm shift has occurred,

whereby we have moved on from simple land cover classification and map-

ping to the retrieval of more complex essential biophysical parameters. The

rapid and revolutionary development in spatial, temporal and spectral reso-

lution has triggered this shift. For example, currently available high spatial

resolution spaceborne optical (e. g., WorldView-3 with a spatial resolution

of 1.24m; panchromatic band at 0.31m) and SAR (e. g., TerraSAR-X Staring

Spotlight mode has 0.25m spatial resolution) data has great potential to

track inter and intra field variations. With these developments, new state

of the art operational decision support systems for various ecosystems have

been, and need to be, developed.

Despite the fact that optical remote sensing has great potential in the

monitoring and retrieval of vegetation/crop biophysical parameters, a ma-

jor drawback of this approach is that it is limited by cloud cover. The

microwave radar remote sensing data acquisition technique, on the other

hand, is advantageous in that it is possible to acquire data at any time due

to the ability of microwaves to penetrate through cloud cover, haze and
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dust. While optical sensors can acquire cloud-free data in different regions

of the world throughout the year, microwave sensors may be useful in areas

with consistent cloud cover (e. g., Northern Europe) where it is not possible

to acquire high spatial resolution cloud-free optical data on a regular basis.

This is important for precision agriculture or crop monitoring because it is

crucial to have a dense and temporally consistent time series in order to

trace the plant’s phenological developments.

Studies (Immerzeel et al., 2009; Rocchini, 2015) have shown that the satel-

lite remote sensing approach is the most feasible and economical way of

monitoring large ecosystems from the local to global scale. This approach

has significantly helped scientists to understand the functionality and dy-

namics of terrestrial ecosystems. Monitoring and estimation of grassland

production are of great importance for animal feed production and cal-

culating the national contribution of land cover types to carbon budgets,

including the utilization of space borne satellite data-driven VI for the esti-

mation of grassland’s biomass.

The techniques of monitoring grasslands and nature conservation sites

from space are now quite mature and widely used. The VI (e. g., NDVI, En-

hanced Vegetation Index (EVI) and Soil Adjusted Vegetation Index (SAVI))

are being effectively used for agricultural monitoring and crop discrimi-

nation in a number of countries, but still their integration with machine

learning algorithms/models for grassland biomass estimation is very lim-

ited. Climate variables and features extracted from climate data also have

a very strong relationship with the growth dynamics of vegetation or plant

phenology. Similarly, synergistic use of remote sensing derived parameters
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(e. g., NDVI, EVI, SAVI) and features such as GDD derived from climate data

have never been tested for grassland biomass retrieval. Work has been done

on the fusion of VI and GDD for surface temperature (Hassan and Rahman,

2013) or wetness estimation using linear methods but to the best of our

knowledge the fusion of VI and GDD for grassland biomass retrieval using

a machine learning approach has not yet been reported in the literature.

1.8 objectives

There is a critical need for quantitative spatial and temporal information

on agricultural land use at a national scale within Ireland to assist with

agricultural monitoring, as an input to national carbon budget reporting

requirements, and to inform agri-environmental policy development. The

aim of this study is to investigate the capability of retrieving grassland

biomass in an intensively11 managed environment using multi-temporal

space borne optical (2001 – 2012) and radar (July, 2014 – July, 2015) remote

sensing time series. Specifically, the objectives are to:

1. undertake a detailed state of the art review of published literature in

order to determine the current status of grassland monitoring globally

based on satellite remote sensing data

11 The term "intensive" is meant to describe livestock and grass management practices that
focus on increased levels of manager involvement, increased forage quality, increased meat
production per unit area, and more uniform forage utilization.
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2. explore the potential application of satellite–driven VI for grassland

biomass estimation for selected Irish sites using a machine learning

approach

3. investigate the fusion of VI and GDD in order to analyse the contri-

bution of climate variables for grassland biomass and growth rate

estimation at a selected Irish site

4. evaluate the potential and limitations of using repeat-pass InSAR to re-

trieve grassland biophysical parameters at an Irish site using X-band

TerraSAR-X time series

5. make recommendations for the development of a nation wide opera-

tional decision support system

1.9 chapter overview

chapter—2 : This chapter12 gives a detailed state of the art review of

satellite remote sensing of grasslands. The first part provides a com-

prehensive overview of the global presence of grassland and describes

the most commonly employed applications of remotely sensed data

for classification and mapping. The second part covers the monitoring

of managed grasslands’ properties such as growth rate, biomass, pas-

ture quality and grazing intensity. Finally, research gaps are identified

and potential solutions to these issues suggested.

12 Chapter—2 title: "Satellite remote sensing of grasslands"
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chapter—3 : In this chapter13 the development of machine learning mod-

els (ANN and ANFIS) for grassland biomass estimation is described.

Their performance is compared with the conventional and most com-

monly used statistical approach, Multiple Linear Regression (MLR).

The chapter also describes how the developed methodology was tested

on two different test sites (Moorepark and Grange) using 12 years and

6 years time series of MODIS remote sensing data.

chapter—4 : This chapter14 presents the inclusion of weather data into

the developed model (ANFIS) as a proxy to predict and improve biomass

estimation. The relationship between NDVI and the minimum/maxi-

mum temperature is explained. Our results, which show that fusion

of remote sensing VI and accumulated growing degree-days tempera-

ture has improved the biomass rate and yield estimation performance

for the Grange site, are presented.

chapter—5 : This chapter15 investigates the potential of repeat-pass syn-

thetic aperture radar interferometry (InSAR) to retrieve biophysical

parameters over intensively managed pastures. It describes initial find-

ings based on the highest resolution space borne TerraSAR- X Star-

ing Spotlight time series for Moorepark, which demonstrate the pos-

sibility, under certain conditions, of detecting changes due to grass

growth, grazing and mowing by using interferometric coherence in-

formation.

13 Chapter–3 title: "Modelling biomass estimation of managed grasslands"
14 Chapter–4 title: "Fusion of remote sensing and weather data to retrieve grassland biomass and

growth rate"
15 Chapter–5 title: "Retrieval of grassland biophysical parameters using SAR interferometry"
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chapter—6 : The final chapter16 summarizes the general findings of the

present work, and outlines directions for future research.

16 Chapter–6 title: "Conclusion and future research"







2
S AT E L L I T E R E M O T E S E N S I N G O F G R A S S L A N D S

Literature is air, and I’m suffocating in mediocrity.

— Armand Assante

chapter publication :

This chapter has been published as a review article in Journal of Plant Ecol-

ogy:

Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; and Green, S.; 2016, "Satellite

remote sensing of grasslands: from observation to management—a review", Jour-

nal of Plant Ecology, doi: 10.1093/jpe/rtw005
1. [IF: 2.646]

1 Online available at: http://jpe.oxfordjournals.org/content/early/2016/02/02/jpe.
rtw005.abstract?sid=37fbd6ed-e24a-4ce7-9992-8c7457cbced6
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2.1 paper—1

2.1.1 Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; and Green, S.; 2016, "Satellite

remote sensing of grasslands: from observation to management—a review",

Journal of Plant Ecology, doi: 10.1093/jpe/rtw005. [IF: 2.646]

This state of the art review paper covers the different aspects of the ap-

plication of remote sensing technology for retrieval of biophysical param-

eters which are used for grassland management related decision making

(for graphical abstract see Figure 5). This review starts with conventional

field methods (e. g., clipping, Rising Plate Meter) used for grassland mon-

itoring (e. g., biomass, height and status) and their limitations. In order to

overcome these limitations, the use of optical and radar remote sensing

approaches are discussed. Due to the widespread presence of grasslands

on the terrestrial land cover of the Earth, the global context of grasslands

and the applications of remote sensing technologies for large scale moni-

toring of grasslands are discussed in this review. The classical application

of remote sensing data (i. e., mapping, classification) is discussed and crit-

ically analysed. The next part of the review is focused on the application

of remote sensing methods to retrieve grassland biomass and management

strategies (e. g., grazing impacts, grazing capacity, pasture quality, growth

rate and status). Grasslands in Ireland are mainly intensively managed,

therefore it is very important to critically evaluate the potential of remote

sensing technologies in this context. Operational and technical challenges
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of the remote sensing approach to monitoring grasslands are discussed and

examples are also given in this context. At the end, this review concludes

with some suggestions on current challenges and future directions.
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Abstract 

Aims 

Grasslands are the world’s most extensive terrestrial ecosystem, and are a major feed 

source for livestock. Meeting increasing demand for meat and other dairy products in a 

sustainable manner is a big challenge. At a field scale, GPS and ground based sensor 

technologies provide promising tools for grassland and herd management with high 

precision. With the growth in availability of spaceborne remote sensing data it is therefore 

important to revisit the relevant methods and applications that can exploit this imagery. In 

this article we have reviewed the (1) current status of grassland monitoring/observation 

methods and applications based on satellite remote sensing data, (2) the technological and 

methodological developments to retrieve different grassland biophysical parameters and 

management characteristics (i.e., degradation, grazing intensity), and (3) identified the key 

remaining challenges and some new upcoming trends for future development.  

Important Findings 

The retrieval of grassland biophysical parameters have evolved in recent years from 

classical regression analysis to more complex, efficient and robust modelling approaches, 

driven by satellite data, and are likely to continue to be the most robust method for deriving 
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grassland information, however these require more high quality calibration and validation 

data.We found that the hypertemporal satellite data are widely used for time series 

generation, and particularly to overcome cloud contamination issues, but the current low 

spatial resolution of these instruments precludes their use for field-scale application in many 

countries. This trend may change with the current rise in launch of satellite constellations, 

such as RapidEye, Sentinel-2 and even the microsatellites such as those operated by 

Skybox Imaging. Microwave imagery has not been widely used for grassland applications, 

and a better understanding of the backscatter behaviour from different phenological stages 

is needed for more reliable products in cloudy regions. The development of hyperspectral 

satellite instrumentation and analytical methods will help for more detailed discrimination of 

habitat types, and the development of tools for greater end-user operation. 

Keywords:remote sensing; agricultural grassland; grassland biomass; pasture 

management; grazing intensity 

 

BACKGROUND 

Global grasslands 

Grasslands are one of the most prevalent and widespread land cover vegetation types, 

covering 31.5% of the global landmass (Latham et al., 2014). After forests, grasslands are the 

largest terrestrial carbon sink (Anderson, 1991; Derner and Schuman, 2007) and, as such, 

they play a vital role in regulating the global carbon cycle(Franzluebbers, 2010; Scurlock and 

Hall, 1998), as well as supporting plant and animal biodiversity(Bergman et al., 2008; 

Pokluda et al., 2012; Punjabi et al., 2013; van Swaay, 2002). From an agricultural 

perspective, grasslands provide the cheapest feed source for the livestock industry, however 

they contribute both directly and indirectly to climate change through the emission of 

greenhouse gases (FAO, 2014). As a result, a restriction on a maximum level of grassland 

intensification (animal stocking) is required in order to minimize the environmental risks 
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 3 

(Soussana and Lemaire, 2014). During the period of 1994to2012,global permanent pasture 

cover declined by approximately 1% from 3395x106ha to 3359 x106ha (FAOSTAT, 2014), as 

a result of urbanization, overgrazing (Piñeiro et al., 2006b; Han et al., 2008), industrial 

development (Wang et al., 2008), intensive management practices and climate change 

(Thorvaldsson et al., 2004). Grassland degradation results in increased carbon emissions, has 

serious repercussions for society (Cardinale et al., 2012), and leads to more complex 

interactions between grassland ecosystems, management practices and climate change. These 

human activities, coupled with unfavorable environmental conditions, are major causes of 

changes in the productivity of grasslands (Xu et al., 2008). 

 

Definition and distribution of managed grasslands 

Three distinct categories of managed grasslands are recognised: 

Human–generated pastures/meadows/grasslands or improved grasslands: These 

grasslands are typically created by the conversion of natural landscapes (e.g.forests) into 

pastures or grassland paddocks (Foley et al., 2005; Hill, 2004).These grasslands 

areintensively managed in order to maximize production (dairying, meat, wool), for 

example through regular application of fertilizer, intensive grazing, cutting of silage for 

winter–feeding and reseeding every few years. Improved grasslands arewidely found in 

parts ofNorthern Europe, New Zealand and Australia. 

Highly managed natural grasslands: In this category natural grasslands are modified 

and managed to support intensive grazing for thelivestock industry e.g. the semi–

improved natural grasslands of eastern Australia, and fescue prairie of Alberta, Canada 

(Breymeyer, 1990; Hill, 2004). 

Rangelands: Based on their species composition, rangelands are different from pastures 

due to the presence of native herbaceous/shrubby vegetation which are a feed source for 
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both domestic and wild herbivores e.g. tallgrass prairies (e.g.North American Great 

Plains), steppes, desert shrublands, shrub woodlands and savanas. Management of 

rangelands is solely through controlling the number of grazing units and length of the 

grazing season. 

Figure 1 gives an overview of grasslands as a proportion of land cover, with the major 

managed pastures, grasslands and rangelands areas (Hill, 2004) of the world highlighted. 

 

Grassland monitoring and feasibility of remote sensing technologies 

Grassland monitoring, either through in-situ field observation or remote sensing, requires 

data on the current status of the grass and of the potential offered by the immediate 

environment, such as soil, weather and human activities. The current status of the grass 

includes aspects such as sward height, biomass,quality, phenological stage, productivity 

level, species composition and change in each of these since a previous recording stage 

(earlier in the same season or in a previous season). In situ methods, from visual analysis to 

techniques such as a rising plate meter, to cutting and laboratory analysis, can be extremely 

informative at a local scale, but they are labour intensive and not feasible for large-scale 

coverage. Remote sensingand modelling approachesallow for large scale monitoring, 

quantification and prediction(Gao, 2006) of different phenomena (e.g. land use and land 

cover, biodiversity, impacts of climate change) occurring on the surface of the Earth at 

varying spatial and temporal resolutions(Nordberg and Evertson, 2003).The integration of 

multispectral and multi-temporal remote sensing data with local knowledge and simulation 

models has been successfully demonstrated as a valuable approach to identifying and 

monitoring a wide variety of agriculturally related characteristics (Yiran et al., 2012; Oliver 

et al., 2010). In the context of global food security and to avoid food shortages, estimated 

yield production prior to harvest is needed for planners and decision makers, and remote 
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sensing platforms are increasingly recognized as essential tools for this task(Boschetti et al., 

2007). An early and accurate indication of a decrease in fodder production is especially 

important for agriculture-dependent developing economies, however, to date, little work has 

been undertaken on grass–based food security. Recently Svoray et al. (2013) has published a 

detailed review on remote sensing of rangelands, so this review focused on managed 

grasslands and pastures for their greater relevance to agriculture, livestock and the concept of 

precision farming from space (precision agriculture). 

 

Objectives and scope of the review 

This article will review the application of satellite remote sensing for grassland and its 

transition from grassland mapping to grassland/pasturemonitoring and management. The 

aims of this review are to examine the extent of satellite remote sensing applications in the 

field of grasslands and pastures, and to identify the contemporary trends and future potential 

of these data and methods. The main objectives of this paper are: 

to provide an overview of satellite remote sensing (optical andmicrowave) technological 

and methodological developmentsto retrieve different grassland biophysical parameters 

and management characteristics  

to identify trends and gaps in the work done to date resulting in recommendations for 

future research and operational systems. 

 

APPROACHES TO GRASSLAND MONITORING 

Grassland monitoring approaches are broadly categorized into two groups: (i) ground-based, 

and (ii) remote sensing methods. The term “grassland management” in the context of this 

research includes weed control, removing dead plants, mowing, clipping, assessment of 
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biomass and growth rate, extent, grazing length, and utilization of grassland (incorporating 

elements of herd management)(Hybu Cig Cymru, 2008). 

 

Ground based measurements for validation of remotely sensed data 

Ground-based grass monitoring techniques heavily depend on an infrastructure which 

includes in situ data collection stations, measurement devices and frequent field surveys (del 

Pozo et al., 2006). Current methods used for the retrieval of grassland biophysical parameters 

and other management related information include: 

Visual: visual assessment by human eye (expert or farmer), this method is spatially 

sparse with limited performance for different management strategies (Newnham, 2010).  

Cut and dry (clipping): grass harvested from the paddock is dried and weighed to get 

the dry matter (DM) yield, as well as a laboratory assessment of grass quality and 

nutrient status(Xie et al., 2009). 

Rising plate meter (RPM): both mechanical and electronic plate meters work on the 

principle of a plate rising up and down the shaft taking measurements of grass height 

(Castle, 1976; Hakl et al., 2012; Hejcman et al., 2014). This method is most commonly 

used for accurate biomass and grass height estimation at a point but is very time 

intensive. 

Field spectrometry:reflectance spectra are collected using a spectrometer held at 

waistheight and are calibrated against in situ samples, with species discriminatedusing 

local field data or spectral libraries. Based on the reflectance at red and near infrared 

wavelengths, vegetation indices (VIs) are calculated, from which biophysical parameters 

such as above ground biomass and leaf area index can be retrieved (Flynn et al., 2008; 

Psomas et al., 2011a). Flynn et al. (2008) used a ground-based sensor to calculate the 

Normalized Difference Vegetation Index (NDVI) in order to investigate the within-field 
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variability in biomass and assess the potential for the application of NDVI for pasture 

management activities. They found that NDVI showed a good correlation with biomass 

(�� � 0.68) and with the results from the rising plate meter (�� � 0.54), however as 

noted by Todd et al. (1998), possible relationships between such indices and the 

vegetation biomass are influenced by the ground-based sampling methods, for example 

biomass can be underestimated due to the presence of non–photosynthetically active 

plant material. 

Table 1 gives the summary comparison of different ground-based methods. 

While these ground–based methods are very useful for grassland monitoring on a local scale, 

and for providing values for model development and calibration of ex situ data, they are 

subjective, time consuming and are only feasible (or applicable) for small scale assessment 

(Xu et al., 2008).  

For remote sensing studies, high quality ground truth data are of great importance for cross 

validation and algorithm training. All these ground-based methods are equally applicable for 

this purpose, and data collected using these methods have proven very useful. For example 

forest inventory, crop yield and grassland (Xu et al., 2008)data collected in past is currently 

being used by the remote sensing scientists for forest change detection and development of 

yield estimation models. 

 

Remote sensing methods 

As highlighted in the field spectrometry discussion of section 2.1, measurement of the 

reflectance at visible and infrared wavelengths can enable discrimination of different 

grassland species and status.These principles are equally applicable forlocal scale mapping 

and monitoringfrom optical sensors mounted on eddy covariance towers, unmanned aerial 

vehicles,aircraft and spaceborne platforms. It is these spaceborne platforms that can collect 
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data at spatial scales from 25cm to 1km, for regional, national and global studies, that are the 

focus of this review. The last 20-30 years have seen many technological developments that 

enable economically cost effective, statistically reliable and consistent, and operationally 

robust tools for remote monitoring of grassland sites and acquisition of data on their 

behavior. 

 

Optical remote sensing 

Discrimination of different terrestrial ecosystem types andmeasurement of their productivity 

primarily relies on vegetation indices (VI) that combine reflectance values at two or more 

wavelengths, selected to accentuate particular features of the spectral signature, such as 

greenness, water content or light use efficiency(Song et al., 2013). Given the similar 

composition, and therefore spectral signature, of many grassland sites, data at multiple 

wavelengths allows more robust characterization of grassland speciesand their biophysical 

parameters. This has been facilitated by the trend in recent years for satellite sensors to record 

a higher number of carefully selected wavelengths, e.g. the yellow band of Worldview-3is 

designed to detect ripening or dying plants. The red–edge, where there is a rapid increase in 

reflectance from the red to NIR reflectance (around 680-730nm), has been shown to have a 

strong correlation with the grass chlorophyll content of the canopy (r � 0.93) and the leaves 

(r � 0.86) (Pinar and Curran, 1996). Inclusion of measurements made in a red-edge channel 

are thus a reliable indicator of foliar chlorophyll content and vegetation stress (Dawson and 

Curran, 1998), and are also useful for assessment of plant chlorophyll concentration, leaf area 

index and therefore nutritional status (Filella and Penuelas, 1994). With the launch of 

RapidEye, the first high-resolution multispectral satellite system that operationally provides a 

red edge channel, Schuster et al. (2012) reported a higher classification accuracy for managed 

grassland typesthan could be achieved without inclusion of measurements at this 
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wavelength.Hyperspectral remote sensing data, which record a larger number of wavelength 

bands, therefore offer the opportunity of defining new vegetation indices that can be tailored 

to a particular species and/or parameter application(Clevers et al., 2007). 

Although increased spectral resolution offers significant benefits to resolving species 

composition at a single point in time, it is recognised that a time series of imagery acquired 

through the growing season provides maximum information on yields and management. 

Phenological stages of grasslands can progress rapidly during the growing season as a 

function of factors including weather, germination, management strategies, grazing 

pressure/intensity, hydrological processes and nutrient input.Huang and Geiger 

(2008)demonstrated that inclusion of grass phenological stages increased the accuracy of 

mapping grass cover, andButterfield and Malmström (2009)showed that understanding of 

grassland dynamics could be improved through looking at biomass-NDVI relationships at 

different phenological stages. An increased temporal frequency of image acquisition is 

advantageous in countries with cloud-dominated climates where multiple overpasses fail to 

generate an image of the ground.O’Connor et al. (2012)highlighted the benefits offered by a 

dense time series of 10-day compositesfor mapping spatial variability in vegetation 

seasonality in Ireland, with landcover classes separated on the basis of their start of season 

greening. The benefits of timely imagery are recognised for yield estimation from crops 

(Morel et al., 2014),and with an increased number of spaceborne sensors available in a 

constellation, there is an increased potential to acquire more frequent, cloud-free imagery 

coincident with key stages in the grass growth season. 

There is typically an inverse relationship between the frequency of image acquisition and the 

swath width of the sensor and its spatial resolution, which results in the sensors that acquire 

daily images doing so at resolutions of 300-1000m. While this may be sufficient for large 

rangeland areas, it is often too coarse for imaging intensively managed grasslands, and where 
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the pasture paddock size is smaller than the sensor resolution cell, inconsistency and 

discrepancies with in situ data validation arise in averaging and aggregation during up and 

down scaling for multi sensor data integration (Hill, 2004). Due to the small size of many 

managed agricultural grassland paddocks, access to high spatial resolution imagery is 

essential in determining inter- and intra-field variations. Figure 2shows the false color 

composite of a managed grassland areawhere small-scale differences in growth are more 

evident in the 2.4m Quickbird image than the 6.5m RapidEye image, and almost impossible 

to detect in the 30m Landsat–8 scene.  

A number of high and very high-resolution sensors have been launched in the last 10 years 

which enable such intra-field variations to be detected, and when multiple identical 

instruments are in a constellation a time series of cloud-free imagery can be maintained. 

However thescale of imaging remains a very complex and dynamic topic in the context of 

remote sensing, with Wu and Li (2009) and Quattrochi and Goodchild (1997) providing more 

detailed discussion on this topic. 

 

Microwave remote sensing 

The use of optical instruments for vegetation mappingis common practice, with a good 

understanding of the relationship between reflectance and biophysical information, however 

it is limited to periods when the target is illuminated by the sun under cloud-free conditions. 

In recent years there has been a growing interest in the potential offered by microwave 

spaceborne instruments which measure the strength of the backscattered signal from the 

surface under almost all weather and light conditions, allowing frequent repeat measurements 

throughout the growing season. While the number of wavelengths utilized by active 

microwave instruments is relatively limited, synthetic aperture radar (SAR) instruments offer 

a number of different acquisition modes, with different polarizations, incidence angles and 

 at U
niversity C

ollege C
ork on A

pril 9, 2016
http://jpe.oxfordjournals.org/

D
ow

nloaded from
 

46 satellite remote sensing of grasslands



 11

orbital directions (ascending/descending). The backscatter signal from vegetated surfaces is a 

function of the soil surface, the radar system, and the biophysical parameters of the scatterers 

in the vegetation that can influence the depth to which the radar wave penetrates. Different 

theoretical approaches have been developed to interpret the backscatter signal, for example 

the water cloud model in which the total backscatter signal comprises components from the 

soil, vegetation and attenuation(Attema and Ulaby, 1978).A number of SAR instruments have 

been launched during the 21st century that have allowed advancement of microwave remote 

sensing of vegetation phenology, for example TerraSAR-X, with a very high resolution (up to 

1m) X-band sensor, and the COSMO–SkyMed constellation of four X-band platforms which 

were used by Hajj et al. (2014) to investigate the sensitivity of radar signals to soil moisture 

and vegetation within irrigated grassland plots. The Japanese ALOS and ALOS-2 L-band 

instruments, and European Space Agency ASAR and Sentinel–1 C–band platforms have a 

lower spatial resolution but the longer wavelength can be more sensitive to vegetation 

volume, as shown by Barrett et al. (2014) in discriminating between grassland types in 

Ireland. A number of studies have been undertaken to compare the sensitivity of the different 

wavelengths to vegetation conditions (e.g.Gao et al., 2013; Inoue et al., 2002), with Metz et 

al. (2012) demonstrating how the most accurate discrimination of European Natura 2000 

protected sites and high nature value habitats could be achieved with combined use of a 

TerraSAR–X and Radarsat–2 time series.In addition to using different wavelengths for 

different applications, the different polarimetric acquisition capabilities can be exploited e.g. 

Voormansik et al. (2013) used a TerraSAR–X dual polarimetric SAR time series to detect 

grassland cutting practices, and Buckley and Smith (2010) used a combination of multi angle 

Radarsat–2 quad-polarisation images, demonstrating improved grassland classification results 

when compared to the individual incidence angles.  
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However, a number of limitations have constrained the work done in the microwave domain, 

predominantly the difficulty of distinguishing the signal response associated with vegetation 

cover from moisture and acquisition conditions. The inherent speckle of SAR imagery also 

requires processing that reduces the spatial resolution, and thus can lose some of the detail 

that may be present at the scale at which the image is acquired. To overcome these limitations 

and derive conclusive results has typically required intensive ground-based measurements 

(Moran et al., 1997). 

Several studies have been carried out to compare the outputs from optical and microwave 

instruments. Smith and Buckley (2011) did a comparative analysis of Radarsat–2 and 

Landsat–5 TM for the classification of cultivated crops, summer fallow, improved and native 

grassland. Even though the classification accuracy for Radarsat–2 (kappa: 0.65) was less than 

that for Landsat–5 TM (kappa: 0.81), due to the backscattering similarities between native 

and improved grasslands, it was able to successfully discriminate between the cultivated 

crops and grasslands. By contrast, in a recent study Dusseux et al. (2014) reported 

classification results of fully polarimetric Radarsat–2 (98% accuracy) that outperformed the 

optical imagery (SPOT–5 and Landsat–5 TM, 81% accuracy). 

It is apparent that there have been many developments in the use of remote sensing for 

vegetation monitoring, mapping and management in recent years, with a number of reviews 

dedicated to specific aspects of agricultural and ecosystem practices (e.g., Atzberger, 2013; 

Shoshany et al., 2013).In an early review paper, Tappan (1982) highlighted some topics for 

future research using remote sensing for grassland applications e.g., biomass estimation, 

instrument calibration and use of high spatial and temporal resolution satellite platforms. To 

date however, available reviews on grasslands have focused either on a site-specific approach 

(e.g. Trotter, 2013), or on just classification and mapping of grasslands (Booth and Tueller, 

2003; Svoray et al., 2013; Xie et al., 2008). The following review broadens this focus to 
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address some of the issues raised by Tappan (1982) on spaceborne remote sensing within 

grassland environments, and the transition from grassland classification/mapping to grassland 

management. 

 

REMOTE SENSING OF MANAGED GRASSLANDS AND PASTURES 

Classification 

The motivation for grassland mapping includes distinguishing different grassland ecologies 

that may reflect management practices, grassland degradation and estimation of grassland 

productivity trends over time. Data (and/or derived products) from Landsat TM/MSS, SPOT, 

AVHRR, MODIS and RapidEye sensors amongst others have been most commonly used for 

the purpose of land cover classification and land cover change mapping, including grass–

based habitats such as rangelands, pastures and meadows. Many of the studies have been 

undertaken using optical rather than SAR sensors, which reflects their longer history of 

operation, the importance of the red and NIR bands for vegetation discrimination, and the 

availability of data at a range of resolutions, including sub–meter for field scale work and 

1km for global mapping.  

Discriminating between grassland types is usually achieved using either statistical, object-

oriented or machine learning classification approaches. The maximum likelihood 

classification approach was widely used until the 1990s, with typical overall classification 

accuracies in the range 70–90%.For exampleToivonen and Luoto (2003) mapped grasslands 

in Finland from Landsat data with an overall accuracy of 89%, although the classification 

accuracy was as low as 63% for the semi–natural grassland class. Similarly, Jadhav et al. 

(1993) achieved an overall accuracy for grassland mapping in India of 82%, and Baldi et al. 

(2006) distinguished South American grasslands with accuracies of 90–95%. While some 

studies using these statistical classifiers performed very well, in general the complexity of 
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grasslands and the spectral similarity of different grassland types limits the value of these 

approaches. Furthermore, these statistical approaches have a limited capability to determine 

boundaries between different natural grassland ecologies. Brenner et al. (2012) compared 

object and pixel classification approaches for classifying Buffel grass in Mexico from 

satellite imagery, and found that determining objects on the basis of their contiguity allowed 

for more accurate results. Decision trees permit data from different sources to be included to 

aid distinguishing between grassland classes and also to preclude some misclassification 

opportunities, as Dubinin et al. (2010) showed with a multi–sensor approach to assess annual 

burned areas in the grasslands of southern Russia, and Wang et al. (2010) discriminated 

between warm and cold season grasslands in the USA from ASTER data with an overall 

accuracy of 80%. Peña-Barragán et al. (2011) developed a hybrid classification strategy, 

combining object based image analysis with a decision tree (DT) including information on 

textural features and phenology, to classify ASTER imagery of California. While some of the 

13 classes were very reliably classified with accuracies of 95%, others remained problematic 

with only a 50% chance of being correctly labelled. A hybrid classification approach was also 

adopted by Masocha and Skidmore (2011) to map an invasive species in part of southern 

Zimbabwe. Artificial Neural Network (ANN) and Support Vector Machine (SVM) 

approaches gave accuracies of 71% and 64% respectively, but after incorporating the 

information from a GIS expert system the accuracies increased to 83% and 76% respectively. 

In addition to mapping different grassland ecologies or species, classification approaches 

have also been used to assess grassland use intensity and to monitor changes over time. Tovar 

et al. (2013) used object-based classification of Landsat imagery of Peru to analyse trends in 

land use and land cover from 1987–2007, with an overall accuracy of 80.3%, showing an 

annual decrease in the spatial extent of the Jalca grasslands of 1.5%.        
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Many grassland studies have been conducted at a local scale using high spatial resolution 

imagery, but the same methods can be applied to a national or regional scale using coarser 

spaceborne imagery (e.g. MODIS).In a recent study, Nitze et al. (2015) established the value 

and consistency of a machine learning algorithm for the classification of improved and semi-

improved grasslands in Irelandfrom a 9 year MODIS time series of NDVI and enhanced 

vegetation index(EVI) vegetation indices. In order to optimize the data acquisition period, the 

importance of different features was considered in this study, with the authors concluding that 

to achieve an accuracy of more than 90%, only 6-10 images are required per year.  

In general, optical sensors have been preferred to SAR sensors for classification of 

grasslands, exploiting the multispectral information acquired at the shorter wavelengths. For 

example, Price et al. (2002) conducted a comprehensive study to compare the use of Landsat 

TM and ERS-2 C–band SAR data in order to discriminate different grassland types under 

different treatments in eastern Kansas. In this study, Landsat TM and ERS-2 were used to 

discriminate between the cold and warm season grass species, with discriminant analysis 

showing that both types can be distinguished, with an accuracy of 90.1% using Landsat TM 

data, but only 73.2%using ERS-2 SAR data. Three management strategies were also 

classified, with an accuracy of 70.4% (Landsat TM) and 39.4% (ERS-2 SAR). The last step 

in this study was the combined use of Landsat TM and ERS-2 SAR data, and it was found 

that the SAR contribution to the discrimination of the grassland types was statistically 

significant. In another study,Smith and Buckley (2011) used Radarsat-2 C–band polarimetric 

SAR data in order to discriminate improved grasslands, native grasslands and  agriculture 

crops, and again Radarsat-2 classification results were less accurate than the Landsat TM 

(Kappa coefficient: Radarsat-2 = 0.65, Landsat TM = 0.81). Interestingly however, the latest 

generation of high resolution SAR sensors, such as TerraSAR-Xand ALOS–2, show greater 

potentialfor information retrieval from grassland pastures at smaller scales, allowing changes 
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in surface roughness and moisture, typical of different grassland regimes, to be better 

detected. Wang et al. (2013) compared satellite imagery from three different SAR (X, C and 

L-band) sensors and showed that X-band SAR data has the highest correlation with the 

vegetation indices. Barrett et al. (2014)highlighted the value of machine learning classifiers 

for discriminating different grassland types using multi–sensor C and L–band SAR data. 

In summary, classification of grassland types and formations using satellite remote sensing 

data has been successfully applied using different classifiers and sensors in different regions 

of the world.Table 2highlights a number of studies that have been done since 2000 using 

spaceborne remote sensing data for mapping different aspects of grasslands around the world. 

The majority of these studies are from optical sensors, emphasising their suitability for 

vegetation mapping and the availability of high resolution optical data (Franke et al., 2012), 

as well as a good understanding of the relationships between the data and biophysical plant 

parameters.  

 

Biomass estimation 

Gao (2006) addressed the difficulties and importance of remote sensing based quantification 

of grassland properties. For example, (i)the date of image acquisition and ground truth 

collection must be the same or very close to each other, (ii)samples must be selected 

randomly, (iii)a sufficient number of samples(at least 30) is needed, (iv)the use of GPS during 

ground truth collection so that in situ measurements and corresponding pixels correctly 

overlie each other, and (v) if the grassland is highly dynamic then high temporal resolution 

satellite time series should be used instead of a single image. Methods for remote sensing of 

grass yield estimation can be broadly grouped into three strategies: development of yield 

estimation regression models based on different satellite driven VIs, use of different machine 
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learning algorithms (e.g. ANN, SVM), and combined use of remote sensing driven vegetation 

parameters and biophysical simulation models (e.g. WOFOST, Lingra). 

 

Vegetation index based regression models 

Remote sensing of biomass estimation has been undertaken for many years, and numerous 

studies show a good correlation between in situ measurements and VIs derived from satellite 

data(e.g. Wylie et al., 1991; Anderson et al., 1993). Boschetti et al. (2007) assessed pasture 

production in an alpine region using field spectrometry and Landsat-7 imagery, with 

integration of these data, via regression analysis, supporting assessment of pasture 

production. Ullah et al. (2012) used MERIS data and analysed different VIs for the estimation 

of grassland biomass in the northern Netherlands, where NBDI (normalized band depth index 

(Mutanga and Skidmore, 2004)) produced better results than the more conventional VIs 

(NDVI, soil—adjusted vegetation index SAVI, and Transformed SAVI (TSAVI)). Xu et al. 

(2008)tested three different regression modelsusing MODIS derived NDVI and ground 

measurements of grass yield for the estimation of grass production in China, where more than 

8000 samples were collected from 17 grassland dominant provinces and regions, with the 

best correlation shown for an exponential relationship (linear�� � 0.671, power�� � 0.794 

and exponential�� � 0.805). In the north-eastern province of China, Zha et al. (2003) found 

a high correlation( �� � 0.74 ) between NDVI, derived from Landsat TM and field 

spectrometer measurements, and the percentage of grass cover. By contrast, An et al. (2013) 

used biweekly AVHRR NDVI values to predict above ground net primary production 

(ANPP) in a tall grass prairie system, but their model, validated by in situ measurements, was 

less able to predict year-to-year ANPP variations (�� � 0.54), with the coarse resolution (1 

km), and thus the influence of mixed pixels, a possible explanation for this low value of 

coefficient of determination. As plant phenology is highly influenced by inter-annual changes 
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in temperature and precipitation, Lee et al. (2002) investigated the influence of climatic 

variation on plant phenology in Inner Mongolia by analysing a 9-year (1982-1990) AVHRR 

NDVI time series and monthly mean temperature and precipitation. However they reported 

little or no change in phenological response during this period, which could again be 

attributed to the low spatial resolution of the imagery. 

A major challenge in the use of VIs to assess vegetation parameters is to minimize the 

influence of external factors and to maximize the sensitivity of the relationship between VIs 

and biophysical parameters. Many authors have tried to find the most suitable subset of VIs 

(e.g. those for best estimation of biomass for a particular type of vegetation), with some 

advocating a move away from the index-based approach. Even though many researchers have 

established significant relationships between VIs and vegetation parameters in the context of 

a single study, many such models are site or season specific, and the successful transferability 

from one site to another is variable. Based on the combined use of field spectroradiometer 

data and satellite driven indices, Boschetti et al. (2007) concluded that log-transformed 

regression analysis between soil-adjusted VIs and fresh biomass show higher correlation than 

aratio vegetation index or NDVI. Likewise,Ullah et al. (2012) showed that band depth 

analysis outperformed the use of traditional VIs when they modelled vegetation parameters 

and spectral values by simple linear regression and stepwise multiple linear regression 

(MLR), and continuum removed spectra—normalized reflectance spectra used to compare 

individual absorption features—were used to calculate band depth parameters. 

Table 3 presents a summary of several studies conducted since 1990 on grass yield estimation 

derived using vegetation index based approaches, with many of the better results achieved at 

a local to regional scale. 
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Machine learning models 

ArtificialNeural Network (ANN) models belong to a powerful class of empirical modelling 

with the capability of computing, predicting and classifying data, and are more versatile than 

linear regression models. The use of machine learning algorithms for estimating crop yields 

e.g. corn (Panda et al., 2010; Serele et al., 2000) and rice (Ji et al., 2007) has been widely 

reported, however only a limited number of studies have been described for their application 

to estimation of grassland above-ground biomass (dry matter)(Ali et al., 2015, 2014). Xie et 

al. (2009) compared the performance of ANN and MLR for above-ground grassland biomass 

in the Xilingol River Basin, Inner Mongolia. Topographic, vegetation index and spectral 

information from Landsat ETM+ were used as input data, with ANN generating a better yield 

estimation than the MLR (�� � 0.817, ���� � 42.36% compared to �� � 0.591, ���� �

53.20%). In another study,Yang et al. (2012) used a back propagation ANN algorithm for 

grassland yield estimation based on five VIs derived from MODIS satellite data, with NDVI 

and SAVI showing the best fit with the in situ sample biomass. Once again, the ANN models 

were more accurate (�� � 0.56– 0.71) than the statistical models (�� � 0.54– 0.68).  

Mountrakis et al. (2011) comprehensively reviewed the application of SVM in satellite 

remote sensingapplications but itsuse for biomass estimation is not discussed. A limited 

number ofstudies have applied SVM to biomass assessment from satellite imagery (e.g. 

Jachowski et al. (2013), for mangrove ecosystems), but there is no reference to it being used 

for grassland biomass. Thepotential of SVM forgrassland biomass estimation was established 

by Clevers et al. (2007) with a band shaving algorithm to identify highly correlated bands 

inairborne hyperspectral data and thus develop the most predictive band ratio. With the 

development of new hyperspectral satellite instruments, the potential for powerful species 

and site specific indices will be enhanced.    
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Simulation models 

For indirect vegetation biomass estimation, simulation modelling techniques are used, 

whereby remote sensing data are used as an input variable or substitute for vegetation 

parameters. In order to better understand the growth mechanism and spatial variability of 

grasslands, meteorological data driven models have been used to simulate and predict the 

grassgrowth rates (Barrett et al., 2005; Bouman et al., 1996; Moore et al., 1997; Woodward, 

2001). The precision of these models heavily depends on their ability to incorporate 

multisource data over different spatial scales for yield estimation(Hansen and Jones, 2000). 

Some authors (Brilli et al., 2013; Maselli et al., 2013, 2006)have explored the potential 

application of the parametric model C-Fix, a Monteith type parametric model driven by 

temperature, radiation and fraction of Absorbed Photosynthetically Active Radiation 

(fAPAR), for the estimation of gross primary productivity of grasslands, olive groves and 

forests in Italy. Parameters derived from satellite data and ground measurements are 

combined in order to simulate the total production. Maselli et al. (2013) compared the 

efficiency of C-Fix and the BIOME-BGC biogeochemical model for grassland productivity, 

demonstrating that the parametric model performed better, with a root mean square error of 

49.7 gDM ������ compared to 85.4 gDM ������for the BIOME-BGC model.  

In summary, regression models based on VIs have predominantly been used for grass yield 

estimation. Machine learning algorithms are proving to be powerful tools for grassland 

classification, but still need to be further developed for grass yield estimation (Mountrakis et 

al., 2011).The fusion of multi-source data into biophysical simulation models also requires 

further research in order to better exploit their suitability and transferability. 
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Grazing management 

Grazing impacts 

Degradation in grasslands and rangelands is a very complex and dynamic phenomenon 

caused by natural and anthropogenic activities (Paudel and Andersen, 2010) which can be 

assessed at a small scale by an expert opinion or visual evaluation, however, for national or 

global scale evaluationthe use of remote sensing technology is a more feasible 

approach.Tueller (1989) first described the application of aerial photography and satellite 

imageryto support management of rangeland resources, but the quality and quantity of 

satellite imagery available at the time proved a limiting factor. Tueller did however predict 

that within 20 years the majority of required management information would be available 

from satellite imagery, a prediction realised by Munyati and Makgale (2009) who used a time 

series of Landsat TM imagery to map and quantify degraded rangeland in South African 

communal grazing lands.Pickup et al. (1994) first used satellite data for the assessment of 

land degradation by combining image derived vegetation cover index values and spatial 

models of grazing density determined as a function of distance from a watering point.Trends 

in rangeland degradation (Pickup et al., 1998) were also identified from imagery,with a 

vegetation cover model built from multi-temporal remote sensing data in order to distinguish 

between natural and human impacts on degradation. With a longer time series of Landsat data 

to derive locations of persistent ground cover, Bastin et al. (2012) demonstrated that it is also 

possible to discriminate between natural and human induced grazing effects on ground cover 

in Queensland. Other studies have also exploitedmulti-temporal datasets for degradation 

assessment (Paudel and Andersen, 2010),mapping and quantification of degraded areas at 

different scales (Alves Aguiar et al., 2010), and in combination with GIS technologiesto 

investigate changes in grassland cover(Zheng et al., 2011). 
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Remote sensing technology is not only useful for the identification of degraded areas, but 

also for mapping, monitoring and quantifying restoration of such degraded land after the 

implementation of corrective measures. A ban on grazing was imposed in Ningxia province 

of China in 2003 to decrease degradation, and in a recent studyLi et al. (2013) used Landsat 

imagesto map the positive outcomes of this ban, with 59.41% restoration reported between 

1993 and  2011. Huang et al. (2013) also successfully demonstrated how such techniques 

could be used to effectively evaluate trends in degradation after the implementation of 

restoration programs using AVHRR (1982–2003) and MODIS (2000–2008) remote sensing 

images.  

In summary, remotely sensed imagery has been successfully used for detecting degradation 

and recovery of grassland areas. More research is needed to fully explore the data from newly 

launched high resolution SAR sensors because in degraded areas grass cover is sparse with 

open soil, and more work is required in order to better understand the backscatter response 

from such sites. 

 

Assessment of grazing capacity and intensity 

Grazing management strategies are directly linked to factors including grazing intensity, 

length of grazing period, grazing regimes, stocking rate and elevation(Bradley and 

O’Sullivan, 2011; Vermeire et al., 2008; Volesky et al., 2004), and vary from area to area in 

order to meet livestock grazing management goals. Grazing intensity has the most influence 

on grassland productivity, and overgrazing can cause grassland degradation (Boddey et al., 

2004) with some studies showing that light to moderate grazing intensity practices can 

enhance grassland productivity under certain environmental conditions (Luo et al., 2012). 

Remote sensing approaches can be used to monitor livestock grazing (Feng and Zhao, 2011) 

at light to moderate intensity(Xiaohui Yang et al., 2012; Yang and Guo, 2011).Kawamura et 
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al. (2005b) used NDVI derived from remote sensingdata for the quantification( �� �

0.77– 0.83) of grazing distribution in Inner Mongolian grasslands. In another study, Numata 

et al. (2007) used Landsat TM data in order to analyse the impact of grazing intensity on a 

pasture’s biophysical features, with remotely sensed non–photosynthetic vegetation showing 

the highest correlation with grazing intensity (�� � 0.70) compared to the other measured 

biophysical features e.g.above ground biomass, canopy height and water content. 

Consistent and frequent monitoring ofthe effects of grazingintensity is crucial in arid, semi–

arid and commercial grazing pasture areas, as grazing intensity influences the grassland 

ecosystem(Röder et al., 2008) both in a positive and a negative manner. An example of 

apositive influence is given by Cohen et al. (2013) for a high latitude, intensively grazed area, 

where late snow melt means the surface is protected from heating for longer, and, as snow 

has a high albedo, it can easily be analysed from image data. Studies show that at high 

latitudes where the vegetation is tall, dense snow melts earlier (Loranty et al., 2011; Marsh et 

al., 2010) compared to the short vegetation. In response to Hein's (2006), findings Retzer 

(2006) reported that high resilience after drought may be due to the precipitation dynamics 

not because of high intensity grazing as suggested by Hein (2006).  

Careful consideration of sampling scale is very important in remote sensing studies, and 

needs to be determined according to the application. Yang et al. (2011)tested the significance 

of measured biophysical parameters (canopy cover, height and LAI) to find the difference 

between grazed and ungrazed sites,where for canopy height, and ratio of photosynthetically 

active and non-active vegetation cover,the difference was significant. Among the various 

spectral vegetation indices,red and NIR based measures showed the most significant 

correlation with canopy height. This analysis was based on single dates and suggests the use 

of multitemporal remote sensingdata for evaluating pre and post-grazing vegetation 
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conditions. A combination of remote sensingand GIS models can be used for the evaluation 

and classification of study sites based on their suitabilityfor grazing (Bozkurt et al., 2011). 

In grassland management and the livestock business, grazing capacity and intensity are the 

key factors that need to be monitored consistently in order to optimize the feeding resources. 

Information extracted from satellite remote sensing has been shown to be useful 

forestimatinggrazing capacity—the maximum number of animals that can be sustained in a 

given area of pasture in a year—and intensity, which is required for nutritional planning of 

livestock. For the assessment of short–term grazing capacity at paddock level, Phillips et al. 

(2009) developed a model based on remote sensing and ground-based data on cattle nutrition. 

They observed the underestimation of grazing capacity by the model and suggest additional 

testing of the model and at multiple sites. Along with additional testing at multiple sites, use 

of very high resolution data (e.g.GeoEye–2: 1.35m, WorldView–3: 1.24m) might be valuable 

to correct this anomaly. Wu et al. (1996) proposed a physical model for simulating 

productivity in grazing ecosystems, withBénié et al. (2005)developing the model further to 

include remote sensing and socio-economic parameters in order to simulate the available 

biomass or carrying capacitywith an accuracy of 80%. The use of remote sensing data 

becomes a challenge in applications where the underlying target area is composed of sparse 

vegetation and highly reflective soil. In order to overcome this problem,Edwards et al. (1999) 

proposed a geometric optical model based on low resolution satellite imagery whose output is 

a series of change maps that can be used to estimate the final vegetation cover.  A very high 

correlation between observed and estimated vegetation cover was reported (�� � 0.837), but 

even though the approach was quite useful no further applications of this approach can be 

found. Similarly, no reference to SAR data for assessment of grazing capacity and intensity is 

evident in the literature. 
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In summary, identification of grazing capacity and intensity is required in order to avoid 

overgrazing and degradation, but there is a very fine distinction between normal grazing and 

overgrazing, and in order to better understand this transition the use of very high resolution 

optical data, SAR data, and a combination of both needs further investigation. 

 

Pasture quality and status 

Grazing capacity depends not only on the grassland spatial extent but also on the quality of 

grass, which is directly linked to livestock feeding. While the potential of remote sensing 

based classification and mapping of grassland quality has been long recognized (Giraed et al., 

1990), only a limited number of studies have been done on grassland quality assessment 

using this approach. The range of data used varies between coarse (Kawamura et al., 2005b; 

Si et al., 2012), medium (Kawamura et al., 2005b) and high (Guo et al., 2005; Si et al., 2012) 

spatial resolution. Studies show that the leaf area index (LAI) is considered as more 

appropriate for the assessment of grassland health, biomass and plant water content than the 

satellite derived NDVI (Guo et al., 2005). In a recent study, Falldorf et al. (2014) developed a 

remote sensing based tool called the Lichen Volume Estimator (LVE) to assess winter 

pasture quality (in terms of volume) by using a 2D Gaussian regression model based on a 

Normalized Difference Lichen Index (NDLI = MIR-NIR/MIR+NIR) and Normalized 

Difference Moisture Index (NDMI = NIR-MIR/NIR+MIR). The authors concluded that LVE 

could become an important tool to assist in prediction of winter grazing areas for reindeer and 

caribou herds at one location, and with further field studies it could become more widely 

applicable. Multispectral remote sensing data has also been used in combination with in situ 

data (Zerger et al., 2011) and models such as the radiative transfer model PROSAIL(Quan et 

al., 2015; Si et al., 2012) for the assessment of vegetation/grassland condition and quality. 

The inversion(Si et al., 2012) of the PROSAIL model and MERIS reflectance data (single 
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biome approach) has great potential to estimate the grassland LAI (�� � 0.70) and canopy 

chlorophyll content (�� � 0.61). Hill (2013) simulated ESA Sentinel-2 (high resolution 

optical sensor) data and showed that VIs based on these bands can be used for the 

identification of vegetation states in grassland and savannas. 

In summary, pasture quality and status are directly related to grassland management. Detailed 

investigations on the use of hyperspectral remote sensing data are required,  and to exploit the 

large number of bands different VIs at different wavelengths can be calculated in order to 

retrieve multiple vegetation parameters. 

 

Pasture growth rate assessment 

To meet the increasing demand for food, optimisation of agricultural production and effective 

resource management are critical. Precision agriculture involves real or near real-time data 

collection about the physical and/or chemical properties of the target vegetation in order to 

assist decision making through the use of predictive tools and forecasting models. For 

satellite based precision agriculture, the spatial resolution, satellite revisit frequency and 

number of spectral bands are the key factors that are related to the acquisition of a dense time 

series for consistent monitoring at a farm or paddock scale. Much of the work done to date on 

this subject has been focused on croplands using field spectrometry (Gutiérrez et al., 2008; 

Prabhakar et al., 2011; Zhang et al., 2003), airborne imagery(Epinat et al., 2001; Erives and 

Fitzgerald, 2005) and satellite data (De Benedetto et al., 2013; López-Lozano et al., 2010; 

Nahry et al., 2011; Thenkabail, 2003), and it is only very recently that grassland management 

and precision farming has been considered. The“Pastures From Space
1
”project in Australia 

is one of the most prominent, and has developed a dedicated grassland/pastures tool to deliver 

near real-time information (e.g. biomass, growth rate) at the farm and paddock level using 

                                                             
1
http://www.pasturesfromspace.csiro.au 
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high and medium resolution satellite remote sensing(Donald et al., 2004; Edirisinghe et al., 

2011; Henry et al., 2004). The techniques were developed and validated in Western Australia 

over a five year period, and then transferred and verified in Southern Australia, and the 

project is providing online (web and also software based) pasture growth rate at weekly 

regional and paddock scales. Schellberg et al. (2008) wrote a detailed review focusing on 

precision agriculture of grasslands, in which they discuss the applications of different remote 

sensingtechniques for the monitoring of physical, chemical and area-based grassland 

properties for farm related decision-making. 

Pasture growth rate is a biophysical property (monitored as kg dry matter/ha per day) which 

is related to how much grass grows on a daily basis and is an important driving factor for feed 

budgeting related decisions. Apart from management practices, climatic factors also influence 

the growth rate of grasses (Thorvaldsson et al., 2004). There is no precipitation component in 

the C-Fix model (as discussed in section 3.2.3) but the Australian “Pastures From Space” 

model differs by including precipitation as well aslight use efficiency (LUE) models (Hill et 

al., 2004; Piñeiro et al., 2006a), data integration (Hill et al., 1996; Moore et al., 1999) and 

classification (Vickery et al., 1997)tools for growth rate prediction (Donald et al., 2010), 

monitoring and mapping.Multisource (e.g., Landsat, SPOT, MODIS, AVHRR, Hyperion) 

remote sensing data with different spatial resolutions were used to successfully assess the 

growth rate at different spatial scales(Donald et al., 2004; Henry et al., 2004). 

“Pastures From Space” is an effective tool for near real–time monitoring at farm and 

paddock level in order to better manage the feed resources for livestock industries, but 

currently represents the only operational system designed specifically for pastures. Schellberg 

and Verbruggen (2014) discuss the delay in transferring techniques developed for arable land 

to grassland,although there is scope for the successful implementation of emerging 

technologies such as precision agriculture in a variety of environments. After the successful 
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implementation and validation of the“Pastures From Space” project, in2003 Fonterra 2 

formed a partnership with CSIRO in order to explore its potential in New Zealand dairy 

farming and pasture monitoring, and various studies have been done since then (Ausseil et 

al., 2011; Dymond et al., 2006; Edirisinghe et al., 2012; Mata et al., 2010). 

In summary, both airborne and spaceborne remote sensing data are being used to collect real 

time (or near real time) information on pasture yields and growth rates. Based on satellite 

remote sensing data, decision support systems can be developed for farm related management 

decisions.     

 

Transhumance 

In mountainous regions there is an annual cycle of livestock migration to the higher elevation 

pastures in warm seasons and return to lower altitudes for the rest of the year, with a 

concurrent cycle of high grazing intensity and pressure. Such transhumance, or herd mobility, 

is one of the key components for sustainable use of these upland resources (Sitters et al., 

2009) that are highly sensitive to environmental changes, and for that reason it is essential to 

monitor their land cover dynamics (Morán-Ordóñez et al., 2011). Satellite imagery has 

considerable potential to detect and map land use,their corresponding effects on livestock 

feed resources and feed deficit management strategies (Mekasha et al., 2014). Butt et al. 

(2011) used a MODIS NDVI time series from 2000–2010 in order to evaluate the gradient of 

rangeland phenology with respect to the changing latitude and its effects on the direction and 

timing of livestock movement in the Sudano–Sahelian region in West Africa. A double 

logistic function was adapted to fit the NDVI trajectories drived from 1Km resolution 

MODIS data, and a strong dependency of vegetation phenology on altitude was found. In 

another study Sulieman and Elagib (2012) used multitemporal remote sensingdata to map the 

                                                             
2
http://www.fonterra.com/global/en 
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effects of climate, land use and land cover changes along three different livestock seasonal 

migration routes in eastern Sudan.  A major conversion from natural vegetation cover to 

agricultural land is reported along with the significant increase in climate warming (based on 

68 years (1941–2009) of climate date e.g., temperature, rainfall and aridity index). Dedicated 

efforts are being made to fully detect and map the transhumance corridors using both remote 

sensing and geospatial analysis approaches (Trans, 2014). 

In summary, the potential of remote sensing to trace corridors of seasonal movement of herds 

has been established. More work needs to be done in order to exploit the use of high 

resolution optical and radar imagery in order to fully uncover the impact of these seasonal 

movements on vegetation phenology. 

 

Remote sensing of nature conservation grassland sites 

For the maintenance of biodiversity in Europe, the European Union has legislated a legal 

policy framework that includes the Habitats and Birds Directives (EEC, 1997, 1979) which 

describe the types of habitat (e.g. grassland, forest or meadow types) whose existence is in 

danger (Natura 2000) and needs to be preserved by the member states (Ali et al., 2013). Since 

the implementation of these directives,mapping, reporting and monitoring on the status of 

nature conservation sites has been a key research topic. Over time remote 

sensingmethodologies and techniques have become more sophisticated, especially for 

synoptic data acquisition, and are now being successfully used for fast, reliable and consistent 

mappingof habitats and species(Nagendra, 2001; Nagendra and Gadgil, 1999). Most 

conservation sites, including grasslands, are small in size, therefore very high-resolution 

imagery is required to monitor them, and some of the very high-resolution spaceborne 

instruments with a short revisit time of a few days, launched within the last decade have been 

proven suitable for this application(Schuster et al., 2015).  
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The nature conservation sites are monitored using both multispectral optical and SAR 

imagery, and increasingly a combination of both. Optical sensors have a long legacy of use in 

identification of location and changes in habitats (Velazquez et al., 2008), knowledge and 

object based classification mapping of Natura 2000 species (Förster et al., 2008, 2012) and 

for assessingclimatic influences on Natura 2000 habitats (Förster et al., 2014). Multi-temporal 

high resolution RapidEye data have proven particularly useful in deriving phenological 

vegetation dynamics from time series imagery, where at least three acquisition dates within a 

year are available (Franke et al., 2012). Since the launch of the very high-resolution 

TerraSAR-X and COSMO-SkyMed SAR sensors, protected sites can also be monitored using 

radar imagery, with recent studies by Ali et al. (2013) and Schuster et al. (2011) 

demonstrating the potential of both sensors for successfully identifying grassland 

management practices in protected sites. Although the combined use of SAR and optical data 

has not yet been explored in detail, Ali et al. (2013) highlighted the potential use of both data 

sources for cross validation. 

Vanden Borre et al. (2011a, 2011b) conducted a detailed review of the legal requirements for 

Natura 2000 habitat monitoring requirements and practices, and how remote sensingis being 

used to fulfil this task.  In order to enhance the utilization of remote sensing technology, field 

experts and conservation site managers suggested that the prime focus must be on data 

standardisation, development of user-friendly products, method validation and knowledge 

sharing. Since their review, work has been ongoing to resolve these issues, for example, 

Schröder et al. (2013) stress the need for pre-validation of Earth observation products for 

Natura 2000 sites before delivery.  On the other hand, Nieland et al. (2012) are working on an 

ontological approach for the integration of classification methodologies in order to overcome 

the issues of scale and the transferability of methodologies. While these studies address all 

conservation sites, the challenges raised apply equally to grasslands, and the need for 
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common data standards and methods, and accessible products for a range of end-users are of 

relevance to all aspects of grassland management. 

In summary, the applicability of multispectral and multitemporal remote sensing data for both 

monitoring and mapping of grassland conservation sites has been demonstrated. More 

research is required to overcome the limitations of site specific methodologies (Schuster et 

al., 2011) in order to make them more robust and standardised. These sites are typically small 

in size, so high resolution hyperspectral remote sensing data can be used to better explore 

species compositions. Application of SAR data in cloudy conditions is equally feasible as 

demonstrated by Ali et al. (2013). 

 

OPERATIONAL AND TECHNICAL CHALLENGES 

Overall in the domain of remote sensing the research focus for classification and retrieval of 

biophysical parameters is now shifting towards the application of machine learning 

algorithms.Object-based image classification presents a paradigm shift to gain a new 

perspective on image classification and better follow the boundaries of natural vegetation 

elements. In object-based classification, segmentation scale and classification accuracy are 

strongly linked(Liu and Xia, 2010), and careful selection of segmentation scale is required. 

Machine learning strategies are becoming more widely used within the remote sensing 

community, and methods like random forest and extremely randomized treesare now widely 

evident in the literature(Barrett et al., 2014). In future,approachessuch as deep learning and 

data assimilation will provide more insight into the integration of multisource remote sensing 

data for complex and dynamic environmental systems. These methods are based on 

supervised learning, and thus training data are required for classification and parameter 

retrieval applications. Machine learning algorithms are data driven and their performance is 

highly influenced by the number of features, sample size and data pre-processing steps. Until 
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recently it was a challenge to build a sufficiently long time series for machine learning 

applications,especially for multi-temporal analysis. For example remote sensing data from 

Landsat and MODIS are available for longer periods of time, but in situ or inventory data are 

available only for selected sites, which limits the national or global scale evaluation using 

these methods.  

Until recently, optical sensors were considered the best data source for mapping and 

monitoring small-scale variations within and among the fields due to their high spatial and 

spectral resolution.However, following the launch of high-resolution microwave radar remote 

sensing satellites (e.g., TerraSAR-X, COSMO-SkyMed, Radarsat, Sentinel-1) the application 

domain of radar sensors has widened. For example the TerraSAR-X Staring Spotlight 

acquisition mode can acquire images with a spatial resolution of up to 0.25m every 11 days. 

Achieving this high resolution from space can further support precision agriculture 

developments, especially for areas under persistent cloud cover. 

High-resolution radar remote sensing data with an improved temporal resolution will help to 

monitor crop health and will provide a mechanism for timely crop yield estimation, while in 

case of grasslands it can be used for monitoring grassland management practices as shown in 

Figure 3. Spatial resolution is a crucial component in remote sensing applications, especially 

for quantitative scientific analysis, and as Figure 3 demonstrates inter and intra paddock/field 

variations can be detected using radar data, highlighting different agricultural states. Using 

high-resolution sensors(e.g., TerraSAR-X, Radarsat, COSMO-SkyMed) it is possible to 

detect many management related activities for example grazing herds, hedges and cultivation. 

It is also possible to trace the identify poorly performing patches of the field using multi-

temporal acquisitions,but the major challenge and limitation remains inthe high data 

acquisition cost of the highest spatial resolution sensors, and their small area coverage. 

Currently most of the radar remote sensing sensors (with some exceptions) are single or dual 
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channel, and polarisation limited to two directions, but as the technology matures further 

future radar sensors will potentially provide additional information for more reliable methods 

for agricultural monitoring. 

Thus, for both optical and radar remote sensing the major limitation is the compromise 

between spatial resolution and spatial coverage. For example TerraSAR-X Staring Spotlight 

mode has the highest illumination time and spatial resolution (up to 0.25m) but the smallest 

swath size (4Km (width) x 3.7Km (length)), compared to the Spotlight mode (spatial 

resolution up to 2m: 10km (width) x 10km (length)),Asimilar comparison is true for 

WorldView and MODIS, where high spatial resolution is achieved at the cost of swath size. 

Farmers in every region follow different management strategies i.e., amount of fertilizer, use 

of pesticides, grazing season length, and measuring units (kg/tonne dry matter per hectare, 

kg/tonne dry matter per acre). With this diversification in management practices there are 

challenges in building a robust and transferable classification and reporting scheme (Figure 4 

gives an over of different remote sensing techniques their potential scope and limitations). In 

future, as more sensors are launched it is important for the community to develop a uniform 

standardized and transferable approach for monitoring farms at different geographical scales. 

For the transferability of methods it is very important to have a uniform input dataset, and 

one potential solution for this could be the development of a new ontology based data 

collection and standardization framework asundertaken by the biology community(Bard and 

Rhee, 2004).Additionally, the remote sensing community must continue to advocate the 

launch of follow-up missions of imaging satellites in order to ensure long term consistent 

monitoring.  

There is a need to train and educate the end users (farmers, land manages and policy makers) 

about the potential applications of satellite remote sensing, and with standardised methods 

this is more achievable. Current technical and scientific deliverables (e.g. project reports, 
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scientific publications) output from many research projects further discourage 

communication between the data providers and end users. One option could be forscientiststo 

develop more portable (i.e., WebGIS) and accessible (mobile apps) solutions, which are 

readily available to the end users (e.g., PastureFromSpace Australian project). The benefits 

offered by remote sensing scientists working with those in the agricultural community will 

not only help to generate more business, but also to widen the scope and application domain 

that can be achieved through the use of imaging satellites.   

 

DISCUSSION AND FUTURE PROSPECTS 

In conclusion, grasslands are one of the most widespread landcover types found globally, and 

they need to be monitored at multiple scales (gobal, regional, national, paddock) depending 

on the nature of the information required.Given the small–scale coverage of traditional 

ground–based methods of grassland monitoring, satellite remote sensing approaches are 

likely to be a significant contributor to future operational studies. Different sensor 

specifications are required depending on the application scale, for example, for global scale 

applications a sensor with large spatial coverage and coarse resolution (i.e., MODIS, 

AVHRR) would be sufficient.In the case of managed grassland related applications (at 

paddock scale) sensorswith high spatial and temporal (GeoEye: 1.35m, 3 days; RapidEye: 

6.5m, 5.5 days; QuickBird: 2.4m, 1–3.5 days) resolution are the preferred choice. During the 

growing season temporal resolution is very important and plays a critical role in near real-

time monitoringof phenological stages, and when combined with very high spatial resolution 

imagery,inter- and intra-field variations can be detected.Thus, despite some instrument biases 

(Yang et al., 2013) satellite sensors currently present the best option for long term, large 

scale, objective and repeatable studies.  
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Optical sensors are more appropriate for grass monitoring and mapping compared to radar 

data (Price et al., 2002; Smith and Buckley, 2011) at present, given the difficulty in relating 

radar backscatter to grassland properties(Hajj et al., 2014), but this may change with the 

advent of very high resolution fully polarimetric SAR sensors. Different VIs derived from 

optical remote sensing data correlate well with different vegetation biophysical parameters, 

but the biggest challenge to the use of optical imagery is cloud contamination and 

atmospheric noise. Data cleaning, by filtering or use of a cloud mask to remove noisy pixels 

is widely undertaken, but is very sensor specific and location dependent. The conservation of 

image information and removal of noisy signals is complex, and in order to construct a long 

time series of reliable values the most commonly used approaches are time-series composites 

and the integration of multi-sensor data. However, this latter approach is hindered by variable 

instrument biases, spectral response signals and spatial resolutions. Poorly designed data 

fusion algorithms that assimilate different datasets might also result in high uncertainty in the 

final output. On the other hand, modelling approaches driven by satellite remote sensing have 

proven to be a robust method for deriving grassland information, but the availability of high 

quality validation data to accurately calibrate the model can be a limiting factor as it requires 

a collection of sufficient high quality validation samples at large scales both expensive and 

laborious. Careful selection of sensors (especially in terms of spatial and temporal resolution) 

for data acquisition is also very important, for example frequently acquired and freely 

available hypertemporal remote sensing data (e.g. MODIS) are widely used to generate time 

composites and thus overcome cloud contamination issues, but they cannot be applied for 

field level mapping and monitoring in many countries due to the coarse resolution whereby 

the pixel size is greater than field size.  

To achieve the maximum benefit from satellite remote sensing for grassland related activities 

a number of issues have been identified. 
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Classification is a classical application of satellite images, and currently the focus is shifting 

from statistical to machine learning approaches, due to their ability to better identify the 

relative importance of different inputs as well as learn from repeated use. Classification of 

grassland types and formations using satellite remote sensing data has been tested by using 

different classifiers and sensors in different regions of the world. In addition to local, regional 

and national scales, an acceptable classification accuracy using medium resolution (Landsat 

TM/ETM+) data has been achieved at the global scale (Gong et al., 2013), however such an 

approach is very data and computationally intensive. Individually machine learning and 

object based classification methods perform very well but, in future, these two approaches 

may be further integrated to exploit the benefits of each, for example a random forest random 

field (RF)2classifier (Payet and Todorovic, 2010).The literature suggests that random forest 

and extremely randomized trees classifiers have the best potential and offer improved 

classification results for grassland identification, but further work on these methods is needed 

to validate new high resolution optical and SAR data and explore the transferability of these 

methods. 

Maximum separabilityofspectrally similar classes, such as different grassland types, can be 

achieved with a larger number of narrowband images,but currently the scope of spaceborne 

hyperspectral remote sensing is very limited due the fact that Hyperion is the only operational 

satellite. More detailed analysis is still to be done on the potential for grassland mapping and 

monitoring from spaceborne hyperspectral data, but this is unlikely to progress prior to the 

launch of EnMAP which has 244 spectral bands (scheduled for 2017). The use of 

hyperspectral data for grassland classification using machine learning classifiers has not been 

fully explored but studies using airborne hyperspectral remote sensing data (Chan and 

Paelinckx, 2008; Yang and Everitt, 2010; Darvishzadeh et al., 2011) suggest the potential and 

feasibility of the application of spaceborne hyperspectral remote sensing data for grassland 
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mapping. In future this might result in a paradigm shift in sensor development from 

multispectral to hyperspectral constellations. 

The advantage of using fully polarimetric SAR data over dual and single polarizations in 

terms of improvement in classification performance is well established (Lee et al., 2001). The 

inconsistencies reported in the literature (Dusseux et al., 2014; Smith and Buckley, 2011) 

indicate that SAR polarimetry applications to grasslands still require more detailed 

investigation as an understanding of SAR polarimetry theory matures and the availability of 

spaceborne fully polarimetric data increases. In coming years, especially after the launch of 

SAOCOM–1/2 (an Argentinian constellation of two L-band SAR sensors scheduled for 

launch in 2015) and the RADARSATConstellation mission (three Canadian C-band SAR 

sensors, scheduled for launch in 2018), a better understanding of the potential for fully 

polarimetric SAR data to analyse the back scattering behaviour of different habitat types at 

different polarizations will be possible.As a result, a more reliable delivery of grassland 

products in cloudy regions should be possible. 

The application of very high resolution data for remote sensing based precision agriculture 

approaches to grassland is now evolving to the same level of maturity as experienced by 

arable agriculture. As more very high-resolution sensors are launchedand work is done on 

data standarisation more reliable operational satellite based grassland management tools are 

expected. Furthermore, operational tools that are simple to understand and operate for non–

experts, such as websites or mobile applications that retrieve information from a dedicated 

data center server could become a more common practice across precision agriculture for all 

land cover types. 

Much of the research that has been done on grasslands has exploited multi-temporal datasets, 

with relatively few long term studies done except those which could exploit information 

content from Landsat or MODIS datasets. Additionally, hypertemporal time series that are 
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optimised to minimise the computational load,can enhance grassland classification, especially 

where there are rapid or distinctive phenological changes through the growing season. To 

have a consistent time series of data over many years to track long term changes in land 

cover, and especially for operational purposes, a commitment to continuity missions is 

required.MODIS is providing free data at different spatial scales for more than a decade. 

Suomi National Polar-orbiting Partnership (NPP) equipped with five sensors including 

Visible Infrared Imaging Radiometer Suite (VIIRS) was launched in 2011. Spacecraft orbits 

the Earth 14 times a day. VIIRS has the spatial resolution of 375m and 750m for Imagery and 

Moderate resolution bands respectively. NPP VIIRS data will be used to expand upon the 

MODIS applications to land, ocean and air quality. The VIIRS data will also be freely 

available to the public unlike Rapideye and Quickbird hyper-spatial data, which is not easily 

accessible and are expensive for developing countries and large scale applications. Sentinel-2 

will also provide a comparable dataset to the Landsat and SPOT missions in the optical part 

of the spectrum, and at radar wavelengths Sentinel–1 will provide C–band SAR data 

following ERS1/2 and ENVISAT ASAR, and a TerraSAR-X2 launch is planned in 2016 as a 

follow–up mission of TerraSAR-X (Janoth et al., 2012).  

Despite the complexity of grassland ecosystems, this review has demonstrated that satellite 

remote sensing technologies have been proven as effective tools for monitoring, mapping and 

quantifying different grassland types and biophysical parameters. Use of optical remote 

sensing data is the most prevalent in the literature, while the use of SAR or a combination of 

SAR and optical data has been less widely reported, although this will increase as more SAR 

missions become operational in the coming years. 

 

SUMMARY 

To conclude this review paper: 
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Satellite remote sensing can be used for the retrieval of grassland biophysical 

parameters, including biomass, quality, growth, land cover, degradation, grazing 

capacity, as well as mapping and monitoring for conservation and management. 

Optical sensors have been most widely used given the good understanding between 

reflectance and vegetation properties and the difficulty in relating radar backscatter to 

grassland biophysical properties, but this may change with the advent of very high-

resolution fully polarimetric SAR sensors. 

The use of hyperspectral data for grassland classification using machine learning 

classifiers has not been fully explored but studies using airborne hyperspectral remote 

sensing data suggest the potential and feasibility of the application of spaceborne 

hyperspectral remote sensing data for grassland mapping, and with future hyperspectral 

sensors this potential may be realised. 

The application of very high-resolution data for remote sensing based precision 

agriculture approaches to grassland is now evolving to the same level of maturity as 

experienced by arable agriculture, but more work needs to be done on communicating 

the benefits and opportunities of space to the farming community. 

Hypertemporal time series that are optimized to minimize the computational load, can 

enhance grassland classification, especially where there are rapid or distinctive 

phenological changes through the growing season 
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Figure 1. Overview of the global extent of pastures/grasslands [Modified fromFoley et 

al. (2005), grey boxes are themajor managed pastures, grasslands and rangelands areas 

(Hill, 2004)].  
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Figure 2. Spatial resolution comparison (false colour composite: R = NIR, G = RED, B = 

GREEN) among QuickBird (A), RapidEye (B) and Landsat–8 (C) covering a 

managednatural grassland conservation site west of Berlin, Germany (Courtesy: Dr. 

Michael Förster).  
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Figure 3  TerraSAR-X Staring Spotlight color composite (R: 08-06-2014, G: 19-06-2014, 

B: 11-07-2014) of Teagasc Curtin Farm. Potential of very high-resolution microwave 

radar (TerraSAR-X) data: (A) Monitoring of hedges and individual tree count, (B) 

furrow/plough lanes, (C) possibility to detect the location of grazing herds if they are 

standing close to each other, and (D) inter and intra paddock variation.  
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Figure 4 An overview of grassland monitoring technologies with their limitations and scope. 
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Table 1 Comparison among ground-based methods. 

Methods Scale Benefits Limitations Category 

Visual 
 
 

Fi
el

d/
pa

dd
oc

k–
fa

rm
 

Fast and cheap. 
 
 

Need specific expertise, 
vague estimation. 
 

Non-
destructive 
 

Clipping 
 
 
 

More accurate than visual 
assessment. 
 
 

Time consuming if 
large number of 
samples are required. 
 

Destructive 
 
 
 

RPM 
 
 

Esay to operate and cheap. 
 
 

Time consuming. 
 
 

Non-
destructive 
 

Field 
spectrometry 
 

Information on other 
biophysical parameters can 
also be retrieved. 

Trained operator and 
post processing is 
required. 

Non-
destructive 
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Table 2 Grassland mapping/classification using satellite remote sensing data (examples 

from literature are grouped according to the classifiers used) 

Classifiers Examples Advantages Disadvantages 
Unsupervised Gu et al., (2013); 

Wen et al., (2010) 
It is simple and easy to 
implement. Training (prior 
knowledge) data is not required 
for classification. It is unbiased, 
as clustering is purely based on 
pixel values. 

Does not consider the spatial 
relationships in the data and 
spectral classes do not 
represent the on ground 
features. Post classification 
interpretation can be very time 
consuming.  
 

Maximum 
likelihood 

Baldi et al., (2006); 
Miehe et al., (2011); 
Reiche et al., (2012); 
Toivonen and Luoto, 
(2003); Weiers et al., 
(2004) 

Until recently it was the most 
popular and widely used 
supervised classification 
approach. The pixels are 
classified based on their 
probability of belonging to a 
class and if the probabilities are 
not same for each class ‘weight 
factors’ can be specified. It is 
accurate for normally distributed 
datasets and considers variability 
in the data. 

In the case of large data sets 
classification is extremely 
slow. Classification results can 
be biased for small training 
samples. Normally distributed 
data assumption is not always 
true, and this might result in 
misclassification. 

Object based 
classification 

Brenner et al., 
(2012); Franke et al., 
(2012); Peña-
Barragán et al., 
(2011); Tovar et al., 
(2013) 
 

It can utilize the spatial 
information (i.e., shape, size, 
color, compactness) of high 
resolution data, and provide high 
accuracy. 

High computational cost. 
Accuracy depends on 
segmentation process for 
example scale selection, which 
is not well defined 

Principal 
component 
analysis 

Hill et al., (2005, 
1999) 

Reduces the data dimensionality 
and enhances the key features in 
the data. The new ‘components’ 
might detect the 
variations/changes. 

Assumes multi-temporal data 
are highly correlated, and 
makes very strong 
assumptions that the directions 
with the largest variance 
contain most of the 
information. 
 

Decision tree Dubinin et al., 2010; 
Peña-Barragán et al., 
2011; Wang et al., 
2010; Wen et al., 
2010) 

Simple to understand and to 
interpret. Trees can be 
visualized. Requires little data 
preparation. Fast and able to 
handle both numerical and 
categorical data. 

Decision-tree learners can 
create over-complex trees that 
do not generalize the data well 
and trees can be biased if 
some classes dominate. 
 

Machine 
learning 

Filippi and Jensen, 
(2006); Lawrence et 
al., (2004); Masocha 
and Skidmore, 
(2011) 

Often much more accurate than 
human-crafted rules as they are 
data driven. Automatic method 
to search for hypotheses 
explaining data. Flexible and can 
be applied to any learning task. 
Rich interplay between theory 
and practice, with improved 
results as datasets increase.  

Data–driven methods need a 
lot of labeled data, requiring 
extensive ground truth 
datasets. Typically require 
some programming 
knowledge. 

 

 at U
niversity C

ollege C
ork on A

pril 9, 2016
http://jpe.oxfordjournals.org/

D
ow

nloaded from
 

2.1 paper—1 111



 76

Table 3  Grassland yield estimation using satellite remote sensing data (examples from 

literature are grouped according to the models/methods applied) 

Models/methods Sensor Examples 

Linear regression Landsat TM/MSS/ETM+, 
IRS, SPOT 
VEGETATION, SPOT 
4/5, Hyperion, 
NOAA/AVHRR, 

(Bradford et al., 2005; Han, 2001; He et 
al., 2009; Kurtz et al., 2010; Loris and 
Damiano, 2006; Prince, 1991; Psomas et 
al., 2011b; Verbesselt et al., 2006; 
Williamson and Eldridge, 1993; Wylie et 
al., 2002) 
 

Exponential 
regresssion 

Landsat TM, MODIS (Xu et al., 2008, 2007), Huang et al. 
(2013) 
 

Optimal regression 
model 

MODIS, Landsat TM, 
NOAA/AVHRR 

Yu et al. (2010), Jianlong et al. (1998) 
 

Power regression MODIS (Xu et al., 2008, 2007) 
 

Logrithmic 
regression 

ERS-SAR, IRS, SPOT-5 Vescovo and Gianelle. (2008), Moreau 
and Le Toan. (2003) 
 

Advantages: The principal advantage of empirical modelling is its simplicity, 
availability, interpretability and acceptance among the scientific 
community. 
 

Disadvantages: In nonlinear dynamic environment, the data from chaotic systems do 
not corrspond to the strong assumptions of a linear model. These 
models do not havea physical basis and mostly used for site specific 
analysis or model development. 
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The literature review suggests that the domain of spaceborne remote

sensing of the biosphere is shifting (or expanding) from its classical applica-

tions (e. g., classification and mapping) to biophysical parameter’s retrieval.

With the availability of spaceborne remote sensing data with improved spa-

tial, temporal and spectral resolution the current focus is to develop opera-

tional decision support systems for farm management.

Based on the findings of this review, the potential of multi-temporal op-

tical and SAR data to retrieve grassland biophysical parameters and man-

agement strategies was explored. In this review an increasing trend of us-

ing machine learning approaches for both classification and information

retrieval is evident. The comparative analysis of various investigations per-

formed using different methods (or classifiers) shows that the linear sta-

tistical models cannot handle the complex and multidimensional dataset.

However, machine learning algorithms have the ability to learn the com-

plex patterns in the dataset, for example Barrett et al. (2014) have reported

a high performance of state of the art machine learning algorithms for im-

age classification.

For training machine learning algorithms, both the size and the quality

of training samples is very important. Machine learning algorithms that are

trained by using a high quality dataset with few anomalies (or outliers) and

missing values can learn and retrieve complex hidden patterns more effi-

ciently. In this study, high quality field measurements (biomass and growth

rate) and weather data were used to train machine learning algorithms.
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R E M O T E S E N S I N G A N D M A C H I N E L E A R N I N G
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M O D E L L I N G B I O M A S S E S T I M AT I O N O F M A N A G E D

G R A S S L A N D S

A breakthrough in machine learning would be worth ten Microsofts.

— Bill Gates (Chairman, Microsoft)

chapter publication :

This chapter has been accepted as a research article for publication in "Jour-

nal of Selected Topics in Applied Earth Observations and Remote Sensing,

IEEE":

Ali, I.; Cawkwell, F.; Dwyer, E.; and Green, S.; 2016, "Modelling managed

grassland biomass estimation by using multitemporal remote sensing data—a ma-

chine learning approach", Journal of Selected Topics in Applied Earth Obser-

vations and Remote Sensing, IEEE. [Accepted, (IF: 3.026)]
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3.1 paper—2

3.1.1 Ali, I.; Cawkwell, F.; Dwyer, E.; and Green, S.; 2016, "Modelling man-

aged grassland biomass estimation by using multitemporal remote sensing

data—a machine learning approach", IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing. [Accepted, (IF: 3.026)]

Precise assessment of available biomass is a key factor for the management

and optimization of resource allocation for the livestock industry, and as

well as sustainable agricultural development. In Ireland, grasslands are the

primary and cheapest feed source for livestock industry. In order to de-

termine the grazing capacity of a grassland farm a precise assessment of

available biomass is crucial, because overgrazing and poor management

might lead to a complete degradation.

In the Irish context, grassland management is critical to ensure adequate

grass supply, good quality feed, and spring and autumn grass availability–

optimizing resource allocation for a sustainable livestock industry. Due to

the high level of precipitation in Ireland the potential for soil compaction is

greater due to wet soil conditions. In grasslands, surface compaction occurs

due to poaching (hooves) of livestock at high stocking densities, this can be

managed through lower stocking densities or careful management such as

timing and rotation of grazing animals1.

For the development of machine learning based models to predict the

grassland biomass, a 12 (2001 – 2012) and 6 (2001 – 2005, 2007) years of

1 http://www.teagasc.ie/soil/square/compaction.asp

http://www.teagasc.ie/soil/square/compaction.asp
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satellites remote sensing (MODIS 8 day composite) time series data were

used. For the training of the machine learning algorithms, very high quality

weekly biomass in-situ data for this period is available for two different test

sites, representative of different meteorological and agricultural regimes.

In Ireland such datasets are available for only a few sites where intensive

monitoring and management has been undertaken for many years for dairy

related research, namely at the Teagasc research farms, with Moorepark in

the south of Ireland and Grange in the north-east being selected as suit-

able for this research. The purpose of this work is to analyse the feasibility

of transferring the processing chain and model developed for one site to

another site, and thus potentially to a national scale. Figure 14 shows the

graphical abstract of this paper.
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Figure 6: Graphical abstract of this paper: Ali, I.; Cawkwell, F.; Dwyer, E.; and
Green, S.; 2016, "Modelling managed grassland biomass estimation by using
multitemporal remote sensing data—a machine learning approach", IEEE Jour-
nal of Selected Topics in Applied Earth Observations and Remote Sens-
ing. [Accepted, (IF: 3.026)]
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Modeling	  managed	  grassland	  biomass	  1	  

estimation	  by	  using	  multitemporal	  remote	  2	  

sensing	  data–a	  machine	  learning	  approach	  3	  

Abstract	  4	  

More	  than	  80%	  of	  agricultural	  land	  in	  Ireland	  is	  grassland,	  which	  is	  a	  major	  feed	  source	  for	  the	  pasture	  5	  

based	   dairy	   farming	   and	   livestock	   industry.	  Many	   studies	   have	   been	   undertaken	   globally	   to	   estimate	  6	  

grassland	  biomass	  by	  using	  satellite	  remote	  sensing	  data,	  but	  rarely	  in	  systems	  like	  Ireland’s	  intensively	  7	  

managed,	   but	   small-‐scale	   pastures,	   where	   grass	   is	   grazed	   as	   well	   as	   harvested	   for	   winter	   fodder.	  8	  

Multiple	   linear	   regression	   (MLR),	   artificial	   neural	   network	   (ANN)	   and	   adaptive	   neuro–fuzzy	   inference	  9	  

system	   (ANFIS)	   models	   were	   developed	   to	   estimate	   the	   grassland	   biomass	   (kg	   DM/ha/day)	   of	   two	  10	  

intensively	  managed	  grassland	  farms	  in	  Ireland.	  For	  the	  first	  test	  site	  (Moorepark)	  12	  years	  (2001–2012)	  11	  

and	  for	  second	  test	  site	  (Grange)	  6	  years	  (2001–2005,	  2007)	  of	  in–situ	  measurements	  (weekly	  measured	  12	  

biomass)	  were	  used	  for	  model	  development.	  Five	  vegetation	   indices	  (VIs)	  plus	  two	  raw	  spectral	  bands	  13	  

(RED,	   NIR)	   derived	   from	   an	   8–day	   MODIS	   product	   (MOD09Q1)	   were	   used	   as	   an	   input	   for	   all	   three	  14	  

models.	   Model	   evaluation	   shows	   that	   the	   ANFIS	   (𝑅!""#$%&#'! = 0.85,𝑅𝑀𝑆𝐸!""#$%&#' = 11.07;	  15	  

𝑅!"#$%&! = 0.76,𝑅𝑀𝑆𝐸!"#$%& = 15.35)	  has	  produced	  improved	  estimation	  of	  biomass	  as	  compared	  to	  16	  

the	  ANN	  and	  MLR.	  The	  proposed	  methodology	  will	  help	  to	  better	  explore	  the	  future	   inflow	  of	  remote	  17	  

sensing	  data	  from	  spaceborne	  sensors	  for	  the	  retrieval	  of	  different	  biophysical	  parameters,	  and	  with	  the	  18	  

launch	  of	  new	  members	  of	  satellite	   families	   (ALOS–2,	  Radarsat–2,	  Sentinel,	  TerraSAR–X,	  TanDEM–X/L)	  19	  

the	  development	  of	  tools	  to	  process	  large	  volumes	  of	  image	  data	  will	  become	  increasingly	  important.	  20	  

	  21	  

Keywords:	  Managed	  grassland;	  biomass	  estimation;	  remote	  sensing;	  time	  series;	  machine	  learning	  22	  

1 Introduction	  23	  

Grasslands	   are	   one	   of	   the	   major	   and	   crucial	   components	   of	   the	   terrestrial	   ecosystem	   [1]	   and	   most	  24	  

prevalent	  and	  widespread	  global	  land	  cover	  types.	  Grasslands	  cover	  about	  40.5%	  of	  the	  Earth’s	  surface	  25	  

[2]–[4]	  and	  after	   forests,	  grasslands	  are	   the	  major	  source	   (about	  30%)	  of	  carbon	  sink	   [5],	   [6]	  and	  thus	  26	  

play	  a	   very	   important	   role	   in	   regulating	   the	  global	   carbon	   cycle	   [4].	   The	  demand	  and	   consumption	  of	  27	  
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dairy	  products	  is	  increasing	  globally	  [7],	  [8]	  and	  in	  order	  to	  meet	  this	  demand,	  an	  equivalent	  growth	  in	  28	  

livestock	  has	  to	  be	  maintained.	  	  	  	  29	  

Grasslands	  are	   the	  major	   feed	   source	   for	  grazing	   livestock,	  and	   the	  amount	  of	  above	  ground	  biomass	  30	  

will	  determine	  the	  pasture’s	  carrying	  capacity–the	  maximum	  number	  of	  animals	  that	  can	  graze	  a	  pasture	  31	  

for	  a	  set	  period	  without	  harming	  it.	  Grazed	  grass	  is	  the	  cheapest	  feed	  for	  livestock,	  and	  for	  that	  reason	  it	  32	  

is	  very	  important	  to	  manage	  grasslands	  because	  better	  management	  will	  result	  in	  low	  cost	  high	  quality	  33	  

grass.	   Based	   on	   these	   management	   approaches,	   grasslands	   can	   be	   categorized	   into	   broader	  34	  

management	  strategies:	  (i)	  unmanaged	  (natural)	  and	  (ii)	  managed	  (agricultural	  pastures)	  grasslands.	  The	  35	  

term	   “grassland	  management”	   in	   the	   context	   of	   this	   research	   includes	  weed	   control,	   removing	   dead	  36	  

plants,	  mowing,	  clipping,	  assessment	  of	  growth	  rate,	  grazing	  length,	  and	  utilization	  of	  grassland	  [9].	  37	  

Grassland	   biomass	   can	   be	   estimated	   by	   using	   both	   ground	   based	   conventional	  methods	   and	   remote	  38	  

sensing	  technology.	  Existing	  ground-‐based	  methods	  include:	  39	  

i. 	  Visual:	  the	  visual	  assessment	  by	  human	  eye	  (expert	  or	  farmer),	  this	  method	  is	  spatially	  sparse	  40	  

with	  limited	  performance	  [10].	  41	  

ii. Cut	  and	  dry	  (Clipping):	  grass	  is	  harvested	  from	  the	  paddock	  and	  is	  dried	  and	  weighed	  to	  get	  the	  42	  

dry	  matter	  (DM)	  yield.	  43	  

iii. Rising	   plate	   meter:	   both	  mechanical	   and	   electronic	   plate	  meters	   work	   on	   the	   same	   principle,	  44	  

where	  the	  plate	  rises	  up	  and	  down	  the	  shaft	  taking	  measurements	  of	  grass	  height	  [11]–[13].	  45	  

iv. Field	   spectrometry:	   can	   also	   be	   used	   for	   above	   ground	   biomass	   estimation	   where	   collected	  46	  

spectra	  are	  converted	  into	  reflectance	  and	  calibration	  is	  performed	  from	  biomass	  samples	  [14],	  47	  

[15].	  48	  

Conventional	   ground	   based	  methods	   are	   subjective,	   time	   consuming	   and	   are	   feasible	   (or	   applicable)	  49	  

only	  for	  small	  scale	  assessment	  and	  monitoring	  of	  grasslands	  [16].	  	  50	  

More	   advanced	   and	   spatially	   extensive	   grassland	   monitoring	   methods	   include	   the	   use	   of	   remotely	  51	  

sensed	   data.	   Remote	   sensing	   data	   can	   be	   acquired	   from	   sensors	   (optical	   and/or	   radar)	   mounted	   on	  52	  

different	  platforms	  [17],	  for	  example	  in	  the	  case	  of	  airborne	  remote	  sensing	  the	  sensor	  is	  mounted	  on	  53	  

aircraft,	   helicopters	   or	   unmanned	   aerial	   vehicles	   (UAV)	   while	   in	   case	   of	   satellite	   remote	   sensing	   the	  54	  

sensor(s)	  is	  mounted	  on	  a	  spacecraft.	  Airborne	  remote	  sensing	  is	  good	  for	  cloud	  free	  data	  acquisition	  at	  55	  

a	   small	   scale,	   as	   the	   aircraft	   can	   fly	   under	   the	   cloud	   cover	   at	   an	   optimal	   time	   for	   data	   collection.	  56	  

Airborne	  remote	  sensing	  data	  have	  been	  used	  for	  vegetation	  change	  detection	  [18]	  and	  discrimination	  57	  
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[19]	  at	  a	  local	  scale.	  Similarly,	  for	  grassland	  monitoring,	  Curran	  and	  Williamson	  [20]	  have	  used	  airborne	  58	  

multispectral	  scanner	  data	  for	  the	  mapping	  of	  leaf	  area	  index,	  while	  in	  another	  study	  Darvishzadeh	  et	  al	  59	  

[21]	   used	  hyperspectral	   airborne	   imagery.	  Despite	   the	   advantages	   (timely	   and	   flexible	   in	   acquisitions,	  60	  

high	  spatial	  resolution)	  of	  airborne	  remote	  sensing	  data,	  the	  approach	  is	  still	  considered	  expensive	  [22]	  61	  

for	   consistent	   large	   scale	   applications,	   and	   impractical	   for	   the	   development	   of	   operational	   tools.	   At	  62	  

present,	   in	   order	   to	   overcome	   these	   limitations,	   satellite	   remote	   sensing	   remains	   the	   best	   available	  63	  

alternative,	  where	  sensors	  with	  different	  microwave	  wavelengths	  (TerraSAR-‐X,	  Radarsat),	  spectral	  bands	  64	  

(Landsat,	  QuickBird,	  Hyperion),	   resolution	   and	   revisit	   time	   can	  be	  used	  operationally.	  Data	   from	  both	  65	  

optical	  and	  SAR	  instruments	  are	  being	  used	  for	  grassland	  related	  investigations	  [23],	  [24].	  	  66	  

Since	   the	   launch	   of	   Landsat–1	   in	   1972,	   satellite	   remote	   sensing	   data	   have	   been	   used	   for	   agricultural	  67	  

activities	   e.g.,	   biomass	   estimation	   [25],	   soil	   moisture	   [26],	   water	   consumption	   [27],	   discrimination	   of	  68	  

different	  crop	  types	  [28]	  and	  monitoring	  of	  agricultural	  drought	  [29].	  With	  the	  development	  of	  satellite	  69	  

sensors	  with	  high	   spatio–temporal	   resolution	  and	  wide	  area	  coverage,	  agriculture	   remote	  sensing	  has	  70	  

moved	  a	  step	  further	  towards	  “precision	  agriculture”	  whereby	  growth	  rates	  can	  be	  monitored	  [30],	  [31],	  71	  

inter	  and	   intra	   field	  variability	  mapped	   [32],	  poor/under	  performing	  areas	   identified	   [33]	  and	  decision	  72	  

support	  systems	  developed	  [34]–[37].	  73	  

Over	   the	  past	   40	   years	   a	   number	  of	  methods	  have	  been	  developed	   for	   grassland	  biomass	   estimation	  74	  

based	  on	  satellite	  remote	  sensing	  data,	  and	  the	  technology	  is	  now	  mature	  enough	  for	  the	  monitoring	  of	  75	  

detailed	   grassland	  management	   activities.	   Based	   on	   a	   review	   of	   past	   work,	   satellite	   driven	   grassland	  76	  

biomass	   estimation	  methodologies	   can	  be	   categorized	   into	   three	  broader	   groups:	   (i)	   using	   vegetation	  77	  

indices,	  (ii)	  biophysical	  simulation	  models,	  and	  (iii)	  machine	  learning	  algorithms	  [38].	  78	  

1.1 Use	  of	  vegetation	  indices	  for	  grassland	  biomass	  estimation	  79	  

The	  use	  of	   satellite	  driven	  vegetation	   indices	   in	   combination	  with	   in–situ	  measurements	   [39],	   [40]	   for	  80	  

the	  development	  of	  regression	  models	  for	  grassland	  biomass	  estimation	   is	  the	  most	  popular	  and	  well-‐81	  

studied	  approach	  [41]–[49].	  Many	  researchers	  have	  investigated	  the	  application	  of	  different	  vegetation	  82	  

indices	   derived	   from	   satellite	   imagery	   (e.g.,	   QuickBird,	   MODIS,	   Landsat)	   and	   developed	   different	  83	  

regression	   models	   (e.g.,	   linear,	   power,	   logarithmic,	   multiple	   linear)	   for	   grassland	   biomass	   estimation	  84	  

[16],	   [50]–[52].	   Very	   high	   accuracies	   of	   the	   vegetation	   index	   based	   regression	   models	   for	   biomass	  85	  

estimation	  have	  been	  reported	  in	  the	   literature	  [16],	  [53]–[59],	  but	  their	  major	   limitation	   is	  that	  these	  86	  
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models	   are	   site	   specific	   and	   do	   not	   have	   the	   capability	   to	   learn	   the	   highly	   non–linear	   and	   complex	  87	  

patterns	  in	  the	  data.	  88	  

1.2 Use	  of	  biophysical	  simulation	  models	  for	  grassland	  biomass	  estimation	  89	  

The	   LINGRA	   simulation	  model	   has	  been	  designed	   for	   the	  prediction	  of	   grassland	   (perennial	   rye	   grass)	  90	  

productivity	  in	  Europe	  [60],	  [61].	  In	  a	  recent	  study,	  Maselli	  et	  al.	  [62]	  used	  the	  C–Fix	  parametric	  model	  91	  

for	  grassland	  gross	  primary	  production	  in	  combination	  with	  in–situ	  measurements	  and	  remote	  sensing	  92	  

data.	   This	   approach	   of	   data	   assimilation	   has	   frequently	   been	   used	   for	   crop	   (i.e.,	   wheat,	   rice,	   maize)	  93	  

monitoring	  [63]–[65],	  but	  has	  not	  been	  fully	  explored	  yet	  for	  grassland	  monitoring.	  94	  

1.3 Use	  of	  machine	  learning	  algorithms	  for	  grassland	  biomass	  estimation	  95	  

Unlike	  crops	  [66]–[69]	  and	  forests	  [70]	  the	  number	  of	  studies	  on	  the	  use	  of	  machine	  learning	  algorithms	  96	  

for	  remote	  sensing	  based	  grassland	  biomass	  estimation	  is	  limited	  [71].	  Xie	  et	  al.	  [72]	  and	  Yang	  et	  al.	  [73]	  97	  

reported	   the	   successful	   application	   of	   an	   artificial	   neural	   network	   approach	   for	   grassland	   yield	  98	  

estimation	  based	  on	  utilization	  of	  satellite	  driven	  vegetation	  indices.	  In	  another	  study	  Clevers	  et	  al.	  [74]	  99	  

used	  a	   support	   vector	  machine	  approach	   for	   grassland	  biomass	  estimation	  based	  on	  airborne	   remote	  100	  

sensing	  data.	  101	  

The	   objective	   of	   this	   paper	   is	   to	   estimate	   the	   biomass	   of	   managed	   grasslands	   where	   weekly	   grass	  102	  

growth	  (kg	  DM/ha/day)	  is	  recorded	  on	  a	  regular	  basis.	  Three	  different	  methods	  were	  used	  for	  grassland	  103	  

biomass	   estimation,	   namely:	   Multiple	   Linear	   Regression	   (MLR),	   Artificial	   Neural	   Networks	   (ANN)	   and	  104	  

Adaptive–Neuro	  Fuzzy	  Inference	  Systems	  (ANFIS).	  To	  the	  best	  of	  our	  knowledge	  only	  a	  few	  studies	  [72],	  105	  

[73]	   have	   reported	   on	   the	   application	   of	   ANN	   with	   remote	   sensing	   data	   for	   grassland	   biomass	  106	  

estimation;	   and	   there	  has	  been	  no	  work	  published	   to	  date	  on	   the	  application	  of	  ANFIS	  using	   satellite	  107	  

imagery	   for	   grassland	   biomass	   estimation.	   After	   the	   publication	   of	   Jang	   [75]	   research,	   where	   the	  108	  

framework	  of	  ANFIS	  was	  introduced,	  this	  modeling	  approach	  has	  been	  used	  in	  various	  disciplines	  [76]–109	  

[83];	   and	   some	   studies	   reported	   the	   performance	   comparison	   between	   ANN	   and	   ANFIS,	   but	   not	  110	  

previously	  in	  the	  context	  of	  deriving	  biophysical	  parameters	  from	  a	  satellite	  image.	  It	  is	  evident	  from	  a	  111	  

number	  of	  previous	  studies	  that	  in	  some	  cases	  ANN	  performs	  better	  than	  ANFIS	  [84],	  but	  in	  most	  of	  the	  112	  

cases	   ANFIS	   performs	   as	   well	   as,	   or	   better	   than	   the	   ANN	   [85]–[93][94],	   [95].	   This	   trend	   of	   model	  113	  

performance	   varies	   between	   application	   domains,	   and	   performance	   also	   depends	   upon	   a	   number	   of	  114	  

factors	  e.g.,	  the	  quality	  and	  size	  of	  datasets	  and	  underlying	  problem	  formulation.	  This	  paper	  will	  explore	  115	  

some	  of	  these	  issues	  in	  more	  depth	  for	  two	  Irish	  sites	  with	  differing	  data	  inputs.	  	  	  	  116	  
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2 Materials	  and	  methods	  117	  

2.1 Study	  sites	  118	  

The	   Moorepark	   (soil	   type:	  Free-‐draining	   acid	   brown	   earth	   of	   sandy	   loam	   to	   loam	   in	   texture,	  	  119	  

aspect:	  South	   facing,	   40m	   above	   sea	   level,	   average	   paddock	   size:	   about	   5.0	   hectares,	   management:	  120	  

management	   practices	   includes	   both	   grazing	   and	   silage	   cut)	   and	   Grange	   (soil	   type:	   moderately	   well	  121	  

drained,	   aspect:	   92m	   above	   sea	   level,	   average	   paddock	   size:	   about	   2.5	   hectares,	   management:	  122	  

management	  practices	  includes	  both	  grazing	  and	  silage	  cut)	  study	  sites	  are	  Teagasc	  (the	  Irish	  agriculture	  123	  

and	  food	  development	  authority)	  research	  farms	  located	  in	  the	  south	  (50°07!	  N,	  08°16!	  W)	  and	  north	  124	  

east	  (53°30!	  N,	  06°40!	  W)	  of	  Ireland	  respectively	  (see	  Figure	  1).	  Teagasc	  research	  farms	  in	  Ireland	  have	  125	  

been	   closely	  monitored	   for	  many	   years,	   providing	   a	   valuable	   source	  of	   grassland	  biomass	   (intensively	  126	  

managed	  grassland),	  meteorological	  and	  farm	  management	  data.	  This	  study	  uses	  in-‐situ	  data	  of	  weekly	  127	  

biomass	  (kg	  DM/ha/day)	  from	  2001	  to	  2012	  for	  Moorepark	  (area:	  100	  ha)	  and	  from	  2001	  to	  2005	  and	  128	  

2007	  for	  Grange	  (area:	  71.3	  ha).	  For	  Moorepark,	  annual	  mean	  temperature	  ranges	  from	  9.4–10.1oC	  and	  129	  

for	   Grange	   it	   is	   8.8–11oC,	   while	   the	   annual	   average	   rainfall	   varies	   between	   854	   and	   1208	   mm	   for	  130	  

Moorepark	  and	  between	  601.5	  and	  1065.8	  mm	  for	  Grange	  study	  site	  (see	  Figure	  2).	  131	  

	  132	  
Figure	  1	  The	  two	  Teagasc	  research	  farm	  study	  sites	  (Blue	  stars:	  Moorepark	  and	  Grange)	  where	  weekly	  in	  situ	  data	  are	  133	  

collected.	  134	  
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	  135	  

	  136	  
Figure	  2	  The	  meteorological	  profiles	  of	  annual	  average	  temperature	  and	  annual	  maximum	  and	  total	  precipitation	  for	  137	  

Moorepark	  and	  Grange	  study	  sites.	  138	  

2.2 Data	  used	  139	  

2.2.1 Remotely	  sensed	  data	  140	  

A	   time	   series	   (46	   images	   per	   year)	   of	   250m	   MODIS	   Terra	   surface	   reflectance	   8-‐day	   composite	  141	  

(MOD09Q1),	   and	   500m	   MODIS	   Terra	   surface	   reflectance	   8-‐day	   composite	   (MOD09A1)	   images	   were	  142	  

freely	   downloaded	   from	   the	   NASA	   Land	   Process	   Distributed	   Active	   Archive	   Center	   (LPDAAC)	  143	  

(https://lpdaac.usgs.gov/lpdaac/get_data/glovis)	   for	   the	  Moorepark	   study	   site	   from	  2001	   to	  2012	  and	  144	  

for	  the	  Grange	  study	  site	  from	  2001	  to	  2007.	  For	  accurate	  estimation	  of	  the	  grass	  growth	  index	  based	  on	  145	  

satellite	   data,	   the	  date	   of	   ground	   truth	   data	   collection	   and	   satellite	   image	   acquisition	   are	   required	   in	  146	  

order	  to	  establish	  a	  true	  correlation	  between	  the	  observed	  biophysical	  parameters	  and	  satellite	  driven	  147	  

vegetation	   indicators.	   The	   day	   of	   pixel	   composite	   information	   was	   extracted	   from	   the	   MOD09A1	  148	  

product	  as	  suggested	  by	  Guindin-‐Garcia	  et	  al.	  [96]	  and	  applied	  to	  the	  250m	  product,	  which	  was	  used	  for	  149	  

the	  model	  development.	  150	  

2.2.2 Field	  data	  151	  

Both	   the	   test	   sites	   consist	   of	   managed	   grassland	   pasture	   fields,	   and	   different	   grassland	   related	  152	  

biophysical	  parameters	  have	  been	  recorded	  for	  many	  years.	  In	  this	  study	  the	  grassland	  weekly	  biomass	  153	  

(kg	   DM/ha/day)	   values	   have	   been	   used.	   For	   the	  Moorepark	   test	   site,	   12	   years	   (2001-‐2012)	   of	   in-‐situ	  154	  

measurements	  of	  grassland	  biomass	  are	  used,	  while	   for	  Grange	  6	  years	   (2001-‐2005	  and	  2007)	  of	   field	  155	  

data	  are	  analyzed.	  Biomass	  (dry	  matter)	  for	  each	  paddock	  is	  calculated	  by	  cutting	  and	  drying	  a	  grass	  strip	  156	  

of	  approximately	  1	  meter	  wide	  and	  3	  meters	  long	  (see	  Figure	  3)	  from	  which	  biomass	  and	  growth	  rate	  for	  157	  

the	  whole	   farm	  are	   calculated.	   Figure	   4	   shows	   a	   summary	  of	   ground	  data	   collected	   for	   both	   the	   test	  158	  

sites.	  159	  
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	  160	  

Figure	  3	  In–situ	  data	  collection	  for	  each	  individual	  paddock	  using	  the	  clipped	  method,	  where	  a	  strip	  of	  grass	  approximately	  1	  161	  
metre	  wide	  and	  3	  metres	  long	  is	  cut	  and	  dried	  to	  estimate	  the	  biomass	  (kg	  DM/ha/day).	  162	  

	  163	  

	  164	  

Figure	  4	  Weekly	  biomass	  measurements	  for	  (A):	  Moorepark	  12	  years	  in–situ	  measurements,	  (B)	  Grange	  6	  years	  in–situ	  165	  
measurements:	  the	  black	  line	  represents	  the	  weekly	  biomass	  (kg	  DM/ha/day)	  value	  for	  each	  year,	  and	  red	  dotted	  lines	  show	  166	  

12	  and	  6	  years	  average	  biomass	  (kg	  DM/ha/day)	  	  167	  
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2.3 Data	  preprocessing	  and	  study	  design	  168	  

Both	  MODIS	  products	  were	  downloaded	   in	  HDF	  file	   format	  and	  a	  Python	  script	  was	  written	  to	  extract	  169	  

the	  reflectance	  values	  five	  vegetation	  indices	  were	  calculated	  as	  shown	  in	  Table	  1:	  	  170	  

Table	  1	  List	  of	  vegetation	  indices	  used.	  171	  

Vegetation	  Index	   Acronyms	   Formula	   Description	   Refference	  

Normalized	  

Difference	  

Vegetation	  Index	  

NDVI	  
𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷

	  

is	  widely	  used	   for	   the	   separation	  of	  green	  vegetation	  and	  

background	  soil	  brightness	  with	  values	   ranging	   from	  -‐1	   to	  

+1,	  where,	  -‐1	  represents	  non-‐vegetative	  and	  +1	  vegetative	  

area.	  

[97]	  

Enhanced	  

Vegetation	  Index–2	  
EVI2	   2.5

𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 2.4𝑅𝐸𝐷 + 1

	  

is	  a	  modified	  form	  of	  NDVI—highly	  sensitive	  to	  vegetation,	  

capable	   of	   decoupling	   canopy	   background	   signal,	   and	  

reduces	  the	  atmospheric	  influence.	  

[98]	  

Soil	  Adjusted	  

Vegetation	  Index	  
SAVI	   (1+ 𝐿)

𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿

	  

in	   case	   of	   low	   vegetation	   cover	   soil	   noise	   causes	   a	   poor	  

estimation	   of	   vegetation	   biomass.	   In	   order	   to	   overcome	  

this	   limitation	   SAVI	   is	   used—to	  minimize	   the	   contribution	  

of	  soil	  background	  signals	  by	  using	  a	  soil	  adjustment	  factor	  

L.	   Huete	   (1988)	   suggested	   a	   value	   of	   L	   =	   0.5	   in	   most	  

conditions.	  	  

[99]	  

Modified	  Soil	  

Adjusted	  Vegetation	  

Index	  

MSAVI	  
1
2

2𝑁𝐼𝑅 + 1 − 2𝑁𝐼𝑅 + 1 ! − 8(𝑁𝐼𝑅 − 𝑅𝐸𝐷) 	  

is	   a	   modification	   of	   SAVI	   which	   has	   a	   modified	   soil	  

adjustment	  factor	  L,	  pixels	  with	  negative	  values	  represents	  

non-‐vegetative	   area	   and	   pixels	   with	   positive	   values	  

represent	  vegetative	  area.	  

[100]	  

Optimised	  Soil	  

Adjusted	  Vegetation	  

Index	  

OSAVI	  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝑋
	  

also	   belongs	   to	   the	   SAVI	   family	   of	   vegetation	   indices,	   in	  

order	   to	   minimize	   the	   background	   soil	   noise,	   here	   the	  

factor	  X	   is	   crucial	   for	   the	  minimization	  of	  background	   soil	  

noise,	  Rondeaux	  et	  al.	   (1996)	  found	  an	  optimized	  value	  of	  

X=0.16.	  

[101]	  

	  172	  

Calculated	  vegetation	   indices	  were	  filtered	  using	  the	  Savitzky-‐Golay	  algorithm,	  which	   is	  widely	  used	  to	  173	  

smooth	  high	  frequency	  variability,	  such	  as	  the	  spiky	  nature	  of	  the	  time	  series	  of	  vegetation	  indices.	  This	  174	  

process	   was	   implemented	   in	   Python	   in	   order	   to	   smooth	   out	   noise	   in	   the	   time	   series	   and	   fill	   gaps	  175	  

resulting	   from	   cloud-‐induced	   missing	   data.	   Principal	   Component	   Analysis	   (PCA)	   was	   then	   applied	   to	  176	  

reduce	  the	  data	  dimensionality	  and	  variable	  dependencies.	  The	  pixels	  covering	  the	  study	  sites	  were	  used	  177	  

to	  calculate	  mean	  value	  of	  each	  vegetation	  index.	  The	  pixels only partially intersecting the site areas were 178	  

also included in the region of interest shape file covering the study sites.	  Figure	  5	  shows	  the	  systematic	  179	  

workflow	  of	  this	  approach.	  	  180	  

3.1 paper—2 133



	   9	  

	  181	  

Figure	  5	  Study	  design	  and	  methodological	  workflow	  scheme.	  182	  

2.4 Model	  development	  183	  

2.4.1 Multiple	  linear	  regression	  model	  184	  

The	  multiple	  linear	  regression	  (MLR)	  approach	  is	  used	  where	  there	  is	  more	  than	  one	  predictor	  variable,	  185	  

and	   to	   find	   linear	   relationships	   between	   the	   dependent	   and	   independent	   variables	   [102].	   Five	  186	  

vegetation	   indices	   and	   two	   raw	   bands	   (RED,	   NIR)	   were	   used	   as	   independent	   predictor	   variables	   for	  187	  

grassland	  biomass	  (kg	  DM/ha/day).	  The	  model	  formulation	  is	  as	  follows	  (Eq.	  1):	  188	  

𝑌! =   𝛽! + 𝛽!𝑋!! +⋯+ 𝛽!𝑋!" + 𝜀! 	   	   	   	   	   	   	   	   	  	  (Eq.	  1)	  	  189	  

Where,	  190	  

𝑌! = 𝑚𝑜𝑑𝑒𝑙  𝑟𝑒𝑝𝑜𝑛𝑠𝑒,	  

𝛽! = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡,	  

𝛽!,⋯ ,𝛽! = 𝑠𝑙𝑜𝑝𝑒𝑠  𝑜𝑟  𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠,	  

𝑋!!,⋯ ,𝑋!" = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,	  

𝜀! = 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑡ℎ𝑎𝑡  𝑎𝑟𝑒  𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  𝑤𝑖𝑡ℎ  0  𝑚𝑒𝑎𝑛  𝑎𝑛𝑑  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒.	  

2.4.2 Artificial	  Neural	  Networks	  model	  191	  

Artificial	   neural	   networks	   (ANNs)	   belong	   to	   the	   family	   of	   machine	   learning	   algorithms,	   where	   the	  192	  

computational	  models	  have	  a	  great	  ability	  to	  adapt,	  learn	  and	  generalize	  the	  complex	  and	  complicated	  193	  

patterns	   hidden	   in	   the	   data.	   ANN	  works	   like	   a	   biological	   neuron	  where	   the	   information	   flows	   in	   are	  194	  
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processed	  by	  the	  neuron	  and	  the	  results	  flow	  out	  [103].	  This	  gives	  the	  neuron	  an	  ability	  to	  react	  based	  195	  

on	   previously	   learned	   patterns.	   Scientists	   replicate	   this	   by	   creating	   a	   structure	   that	   processes	  196	  

information	   like	   a	   biological	   neuron	  does,	   except	   this	   approach	   is	  mathematically	   driven	   [104],	   [105].	  197	  

Figure	  6	  shows	  the	  example	  of	  a	  single	  biological	  (A)	  and	  artificial	  neuron	  (B).	  	  198	  

	  199	  

Figure	  6	  A:	  Biological	  neuron,	  B:	  unit	  artificial	  neuron.	  200	  

A	  single	  processing	  unit	  (an	  artificial	  neuron)	  computes	  the	  weighted	  sum	  of	  input	  data	  sets	  and	  there	  is	  201	  

always	  an	  activation	  function,	  which	  gives	  the	  output	  of	  the	  unit.	  The	  mathematical	  representation	  of	  an	  202	  

artificial	  neuron	   𝑛! 	  at	  an	  instance	   𝑖! 	  and	  its	  activation	  function	  [104]	  are	  given	  by	  Eq.	  2:	  	  	  	  203	  

𝑛! 𝑖! = 𝑣!!𝑑!!
!!! + 𝑏! 𝑖! 	   	   	   	   	   	   	   	   	   	  	  (Eq.	  2)	  204	  

where,	  𝑑!,… ,𝑑!	  are	  inputs,	  𝑣!,… , 𝑣!	  are	  associated	  connection	  weights	  and	  𝑏!	   is	  the	  bias	  value,	  with	  205	  

the	  activation	  function	  sigmoid	  (Eq.	  3);	  206	  

Φ 𝑥 = !
!!!!!

	   	   	   	   	   	   	   	   	   	   	   	  	  (Eq.	  3)	  207	  

Other	  possible	  activation	  functions	  could	  be	  linear	  or	  hyperbolic	  tangent	  functions.	  208	  

For	   this	   study,	   a	   feed-‐forward	   back	   propagation	   neural	   network	   algorithm	   [104]	   was	   used,	   where	  209	  

individual	  neurons	   (processing	  units)	  are	  arranged	   in	   layers	  where	   the	   first	   layer	   takes	   inputs	  and	   last	  210	  

layer	  produces	  output(s).	  Neurons	  in	  each	  layer	  are	  connected	  to	  all	  the	  neurons	  in	  the	  next	  layer	  and	  211	  

information	  flows	  in	  the	  forward	  direction	  (hence	  “feed	  forward”),	  while	  there	  is	  no	  connection	  among	  212	  

the	   neurons	   in	   the	   same	   layer.	   Figure	   7	   shows	   the	   structure	   of	   the	   multilayer	   feed-‐forward	   back	  213	  

propagation	  algorithm.	  	  214	  
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	  215	  

Figure	  7	  Structure	  of	  multilayer	  feed–forward	  back	  propagation	  algorithm.	  216	  

Back	  propagation	  is	  a	  form	  of	  supervised	  learning	  algorithm	  where	  the	  input	  dataset	  consists	  of	  training	  217	  

samples	  and	  desired	  outputs.	  In	  back	  propagation,	  learning	  occurs	  every	  time	  an	  input	  training	  sample	  is	  218	  

fed	   to	   the	   net,	   and	   the	   output	   of	   this	   exercise	   is	   compared	  with	   the	   desired	   results	   and	   an	   error	   (or	  219	  

deviation	  from	  original	  results)	  is	  calculated.	  The	  value	  of	  error	  is	  a	  quantitative	  measure,	  which	  shows	  220	  

how	  far	  away	  the	  output	   is	   from	  the	  desired	  value.	  Using	  the	  calculated	  errors,	   the	  back	  propagation-‐221	  

training	   algorithm	   then	   follows	   the	   backward	   pass	   through	   the	   layers	   from	  output	   layer	   to	   the	   input	  222	  

layer	  in	  order	  to	  adjust	  the	  weights,	  with	  the	  ultimate	  objective	  being	  to	  minimize	  the	  error.	  	  223	  

2.4.3 Adaptive	  Neuro	  Fuzzy	  Inference	  Systems	  (ANFIS)	  model	  224	  

ANNs	  have	   the	  power	  of	   learning	  patterns,	  while	  on	   the	  other	  hand	   fuzzy	   logic	  has	   the	  capabilities	  of	  225	  

reasoning.	  ANFIS	  is	  a	  fusion	  or	  hybrid	  model	  that	  integrates	  the	  positive	  aspects	  of	  both	  ANNs	  and	  fuzzy	  226	  

logic	   in	  order	   to	  construct	  a	   robust	  model	   that	  will	  associate	   the	   independent	   (input	  values)	  variables	  227	  

with	  the	  dependent	  (target	  values)	  variables	  with	  minimum	  estimation	  error.	  	  228	  

A	   five	   layers	   ANFIS	   was	   first	   introduced	   by	   Jang	   [75],	   with	   the	   capability	   to	   incorporate	   linguistic	  229	  

knowledge	  (expert	  opinion)	  and	  human	  like	  reasoning	  based	  on	  a	  training	  data	  set	  and	  a	  set	  of	  IF-‐THEN	  230	  

fuzzy	  rules.	  A	  unit	  format	  for	  defining	  fuzzy	  rules	  is:	  231	  

𝑰𝑭 < 𝐴𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 >   𝑻𝑯𝑬𝑵 < 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 >	  

For	   illustration	  purpose,	  ANFIS	  architecture	  with	   two	   inputs	   𝑥!, 𝑥! 	   and	  one	  output	   𝑂! 	   is	   shown	   in	  232	  

Figure	  8.	  The	  corresponding	  two	  fuzzy	  IF-‐THEN	  rules	  of	  Takagi	  and	  Sugeno’s	  type	  [106]	  can	  be	  expressed	  233	  

as	  follows:	  234	  
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Rule	  1:	  𝑰𝑭  𝑥!  𝑖𝑠  𝑌!  𝑎𝑛𝑑  𝑥!  𝑖𝑠  𝑍!,𝑻𝑯𝑬𝑵  𝑓! = 𝑝!𝑥! + 𝑞!𝑥! + 𝑟!	  235	  

Rule	  2:	  𝑰𝑭  𝑥!  𝑖𝑠  𝑌!  𝑎𝑛𝑑  𝑥!  𝑖𝑠  𝑍!,𝑻𝑯𝑬𝑵  𝑓! = 𝑝!𝑥! + 𝑞!𝑥! + 𝑟!	  236	  

	  237	  

Figure	  8	  A:	  Type–3	  fuzzy	  reasoning	  and,	  B:	  equivalent	  ANFIS.	  238	  

	  239	  

Figure	  8	  (A)	  shows	  the	  type-‐3	  (two	  inputs	  and	  one	  output)	  fuzzy	  reasoning	  and	  Figure	  8	  (B)	  shows	  the	  240	  

corresponding	  ANFIS	  architecture.	  	  241	  

The	  functionality	  and	  corresponding	  mathematical	  formulation	  of	  each	  layer	  is	  as	  follows	  [75]:	  242	  

Layer	  1:	  Fuzzy	  layer:	  Every	  node	  in	  this	  layer	  is	  fixed	  and	  adaptive	  and	  membership	   𝜇 ∘ 	  of	  each	  label	  243	  

𝑌! ,𝑍! 	  is	  calculated	  by	  using	  equation	  (4)	  and	  (5):	   	  244	  

𝑈!! = 𝜇!! 𝑥! , 𝑓𝑜𝑟    𝑖 = 1, 2	   	   	   	   	   	   	   	   	   	  	  (Eq.	  4)	  245	  
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𝑈!! = 𝜇!! 𝑥! , 𝑓𝑜𝑟    𝑖 = 1, 2	   	   	   	   	   	   	   	   	   	  	  (Eq.	  5)	  246	  

where,	   𝑥!	   and	   𝑥!	   are	   inputs	   and	   𝑖	   is	   the	   node	   and	   𝑌! 	   and	   𝑍! 	   are	   the	   linguistic	   labels.	   𝜇!! 𝑥! 	   is	   a	  247	  

membership	   function	  of	  𝑌! 	  which	  gives	   the	  degree	  of	   	  membership	  of	  𝑥!	   to	  be	  part	  of	  𝑌! 	   (Eq.	  6).	   The	  248	  

parameters	   𝑎! , 𝑏! , 𝑐! ,	   referred	   to	   as	   premise	   parameters,	   determine	   the	   shape	   of	   the	   membership	  249	  

function.	  250	  

𝜇!! 𝑥! = !

!!
!!!!!
!!

! !!
	   	   	   	   	   	   	   	   	   	   	  	  (Eq.	  6)	  251	  

Layer	  2:	  Product	  layer:	  Every	  node	  in	  this	  layer	  is	  labeled	  𝑁!,	  the	  outcome	  of	  this	  layer	  is	  the	  product	  of	  252	  

incoming	  signals	  and	  is	  given	  by	  Eq.	  7.	  	  253	  

𝑤! = 𝜇!! 𝑥!   ×  𝜇!! 𝑥! , 𝑓𝑜𝑟    𝑖 = 1, 2	   	   	   	   	   	   	   	   	  	  (Eq.	  7)	  254	  

where,	  𝑤! 	  is	  the	  output	  of	  layer	  2.	  255	  

Layer	  3:	  Normalization	  layer:	  The	  third	  layer,	  labeled	  as	  𝑁!,	  is	  called	  the	  normalization	  layer,	  256	  

𝑤! =
!!

!!!!!
, 𝑓𝑜𝑟  𝑖 = 1, 2	   	   	   	   	   	   	   	   	   	  	  (Eq.	  8)	  257	  

where	  the	  ratio	  of	  each	  weight	  to	  the	  total	  weight	  is	  calculated,	  i.e.,	  𝑖!!	  node	  calculates	  the	  ratio	  of	  the	  258	  

𝑖!!	  rule’s	  firing	  strength	  (Eq.	  8).	  	  259	  

Layer	   4:	   Defuzzify	   layer:	   Every	   node	   in	   this	   layer	   is	   adaptive	   and	   it	   is	   called	   the	   defuzzification	   layer	  260	  

(labeled	  as	  𝑁!	  (Eq.	  9)),	  	  261	  

𝐷!! = 𝑤!𝑓! = 𝑤! 𝑝!𝑥! + 𝑞!𝑥! + 𝑟! 	   	   	   	   	   	   	   	   	  	  (Eq.	  9)	  262	  

where	  𝑤! 	   is	   the	   output	   of	   layer	   3,	   and	   the	   set	   of	   parameters	   𝑝! , 𝑞! , 𝑟! 	   is	   referred	   to	   as	   consequent	  263	  

parameters.	  	  264	  

Layer	  5:	  Output	  layer:	  All	  the	  incoming	  signals	  are	  summed	  in	  order	  to	  compute	  the	  overall	  output	  (Eq.	  265	  

10),	  i.e.,	  266	  

𝑂! = 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑤!𝑓!!
!!! = !!!!!

!!!
!!!

!!!
= !!!!!!!!!

!!!!!
	   	   	   	   	   	   (Eq.	  10)	  267	  

Table	  2	  shows	  the	  list	  of	  parameters	  used	  for	  in	  ANN	  and	  ANFIS	  models.	  	  268	  
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Table	  2	  Features	  of	  input	  data,	  performance	  evaluation	  criteria	  and	  architecture	  and	  parameters	  used	  in	  the	  ANFIS	  and	  ANN	  269	  
models.	  270	  

Data	   	  
	  

Standardization:	   	   0	  Mean,	  1	  Std	  
Reduction:	   	   PCA	  
Division:	   	   70%—Training	  (Moorepark:	  235,	  Grange:	  94)	  
	   	   30%—Testing	  (Moorepark:	  101,	  Grange:	  41)	  
Performance	  evaluation	  criteria	   	  

	  
𝑅!:	   	   Correlation	  coefficient	  
RMSE:	   	   Root	  Mean	  Square	  Error	  
ANN	   	  

	  
Number	  of	  layers:	   	   4	  
Neural	  net	  algorithm:	   	   Feed-‐forward	  backpropagation	  
Number	  of	  neurons:	   	   Input	  layer:	  7,	  hidden	  layer	  neurons:	  15,	  Output	  

layer:	  1	  
Initialization:	   	   Weights:	  random,	  biases:	  random	  
Training	  algorithm:	   	   Levenberg—Marquardt	  
Activation	  functions:	   	   Log–sigmoid	  
ANFIS	   	  

	  
Number	  of	  layers:	   	   5	  
Type:	   	   Sugeno-‐type	  
Input	  membership	  function	  type:	   	   Generalized	  bell-‐shaped	  membership	  function	  
Learning	  rule	   	   Hybrid	  learning	  algorithm	  
Implementation	   	   	  
Both	  ANN	  and	  ANFIS	  were	  implemented	  using	  Matlab	  library	  (2009b	  version).	  The	  number	  of	  neurons	  in	  
the	  hidden	  layer	  were	  selected	  based	  on	  trial	  and	  error	  approach.	  
	  271	  

2.4.4 Performance	  evaluation	  criteria	  272	  

Root	  mean	  square	  error	  (𝑅𝑀𝑆𝐸!"#$%!  !"#$ 	  (DM	  kg/ha/day)	  and	  coefficient	  of	  determination	  (𝑅!)	  were	  273	  

used	   as	   bench	   marks	   for	   the	   performance	   assessment	   of	   all	   models	   (MLR,	   ANN	   and	   ANFIS).	   The	  274	  

mathematical	   formulations	  of	  these	  statistical	  error/performance	  criteria	  are	  as	  follow	  (Eq.	  11	  and	  12)	  275	  

[107]:	  276	  

𝑅! =    (!!  !  !!)!!
!!! !   (!!  !  !!)!!

!!!
(!!  !!!)!!

!!!
	  	   	   	   	   	   	   	   	   (Eq.	  11)	  277	  

𝑅𝑀𝑆𝐸 =    !
!

(𝑃!   −   𝑂!)!!
!!! 	   	   	   	   	   	   	   	   	   (Eq.	  12)	  278	  
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Where,	  𝑛	   is	   the	  number	  of	  observations;	  𝑃! 	   is	   predicted/estimated	  value;	  𝑂! 	   is	   actual/observed	  value	  279	  

and	  𝑂! 	  is	  the	  mean	  of	  observed	  values.	  The	  ideal	  performance	  of	  the	  underlying	  model	  gives	  a	  value	  of	  280	  

RMSE	  close	  to	  zero	  and	  the	  value	  of	  𝑅!	  should	  be	  close	  to	  1.	  	  	  281	  

3 Results	  and	  discussion	  282	  

Three	  different	  biomass	  estimation	  models,	  including	  both	  statistical	  (MLR)	  and	  machine	  learning	  (ANN	  283	  

and	   ANFIS)	   approaches,	   were	   used	   to	   estimate	   intensively	   managed	   grassland	   biomass.	   These	   three	  284	  

models	   were	   used	   for	   both	   aforementioned	   study	   sites	   (see	   section	   2.1);	   and	   grassland	   biomass	  285	  

estimation	  models	  were	  developed	  where	  five	  VIs	  plus	  two	  spectral	  bands	  (RED,	  NIR)	  were	  used	  as	  input	  286	  

features.	   Firstly,	   the	   12–year	   time	   series	   for	  Moorepark	   was	   used	   for	   model	   (MLR,	   ANN	   and	   ANFIS)	  287	  

development,	   with	   the	   dataset	   randomly	   divided	   into	   training	   (70%)	   and	   testing	   (30%)	   subsets	   (see	  288	  

Table	  2).	  The	  evaluation	  of	  the	  models	  was	  performed	  on	  the	  entire	  datasets	  (see	  Table	  3).	  289	  

Table	  3	  Models	  development	  and	  evaluation.	  290	  

Model	  development	  
	   Moorepark	  (𝑅!)	   Grange	  (𝑅!)	  
	   Training	   Testing	   Training	   Testing	  

MLR	   0.31	   0.21	   0.39	   0.29	  
ANN	   0.65	   0.54	   0.71	   0.54	  
ANFIS	   0.88	   0.78	   0.80	   0.74	  
Model	  evaluation	  on	  entire	  data	  set	  

	   Moorepark	   Grange	  

	   𝑅!	   𝑅𝑀𝑆𝐸	  	  
(DM	  kg/ha/day)	   𝑅!	   𝑅𝑀𝑆𝐸	  

(DM	  kg/ha/day)	  
MLR	   0.29	   25.08	   0.38	   24.02	  
ANN	   0.63	   18.05	   0.59	   20.43	  
ANFIS	   0.85	   11.07	   0.76	   15.35	  
	  291	  

Figure	  9	  shows	  the	  results	  for	  Moorepark	  study	  site.	  The	  first	  approach	  to	  estimating	  grassland	  biomass	  292	  

in	  this	  study	  was	  with	  the	  MLR,	  which	  has	  been	  demonstrated	  to	  be	  very	  robust	  when	  the	  relationship	  293	  

between	  datasets	  is	  linear.	  However,	  as	  shown	  in	  Figure	  9,	  the	  value	  of	  coefficient	  of	  determination	  for	  294	  

MLR	  is	  very	  low	  (𝑅! = 0.29)	  and	  the	  value	  of	  root	  mean	  square	  error	  (𝑅𝑀𝑆𝐸 = 25.08	  DM	  kg/ha/day)	  is	  295	  

high	  compared	  to	  the	  ANN	  model	  (𝑅! = 0.63,𝑅𝑀𝑆𝐸 = 18.05  DM  kg/ha/day),	  suggesting	  a	  non-‐linear	  296	  

relationship	   between	   the	   variables.	   To	   date	   the	   use	   of	   machine	   learning	   algorithms	   for	   grassland	  297	  

biomass	  estimation	   is	  not	  very	  widespread.	  Two	  studies	   [72],	   [73]	  have	  compared	  the	  performance	  of	  298	  
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the	  MLR	   and	  ANN,	   and	   in	   every	   case	   ANN	  outperformed	   the	  MLR;	   and	   the	   results	   generated	   by	   this	  299	  

study	  endorsed	  these	  findings.	  	  300	  

The	   literature	   review	   suggests	   that	   the	   application	   of	   ANFIS	   is	   very	   powerful	   for	   estimation	   and	  301	  

prediction	   tasks	   [76]–[78],	   [80],	  but	   the	  use	  of	  ANFIS	   for	   spaceborne	  earth	  observation	  applications	   is	  302	  

only	   in	   its	   infancy	   [108],	   [109]	  and	   in	   these	   studies	  a	  high	  overall	   accuracy	  of	  ANFIS	  against	  ANN	  was	  303	  

reported.	   This	   outcome	   can	   also	   be	   seen	   here,	   as	   the	   ANFIS	   model	   gave	   better	   estimation	   results	  304	  

(𝑅! = 0.85,𝑅𝑀𝑆𝐸 = 11.07  DM  kg/ha/day)	  than	  both	  MLR	  and	  ANN	  (see	  Figure	  9).	  	  	  305	  

	  306	  

Figure	  9	  Scatter	  plots	  for	  the	  accuracy	  comparison	  of	  MLR,	  ANN	  and	  ANFIS	  estimated	  grassland	  biomass	  versus	  in–situ	  307	  
biomass	  for	  the	  Moorepark	  test	  site.	  308	  
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	  309	  

Figure	  10	  Plots	  of	  observed	  and	  modeled	  time	  series	  by	  using	  MLR,	  ANN	  and	  ANFIS	  for	  Moorepark	  study	  site.	  The	  shaded	  310	  
regions	  Z1	  (2003),	  Z2	  (2005),	  Z3	  (2009)	  and	  Z4	  (2011)	  were	  selected	  for	  more	  detailed	  analysis	  (see	  Figure	  11).	  311	  

Figure	  10,	  which	  gives	  an	  overview	  of	  the	  performance	  of	  the	  three	  models,	  shows	  that	  the	  ANN	  model	  312	  

was	  able	  to	  identify	  the	  start	  of	  the	  season	  more	  reliably	  than	  the	  MLR,	  this	  was	  further	  improved	  by	  the	  313	  

ANFIS	  model.	  The	  ANFIS	  also	  produced	  a	  closer	  seasonal	  curve	  fit	  with	  minimum	  residuals	  compared	  to	  314	  

the	  MLR	  and	  ANN,	  but	   there	  are	   still	   some	   spurious	   spikes	   that	   are	  not	  present	   in	   the	   field	  data	  and	  315	  

some	  features	  are	  not	  replicated.	  	  	  316	  
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	  317	  

Figure	  11	  Zoomed	  view	  of	  Fig.	  10	  highlighted	  parts	  (Z1,	  Z2,	  Z3	  and	  Z4).	  318	  

Figure	  11	  shows	  examples	  where	  peaks	  (higher	  biomass	  values)	  were	  not	  reached	  and	  underestimation	  319	  

is	  observed	   in	   four	  cases	   (Z1,	  Z2,	  Z3	  and	  Z4).	  The	  reason	   for	   these	  anomalies	   is	  not	  yet	  clear,	  but	  one	  320	  

potential	  cause	  could	  be	  saturation	  of	  the	  satellite	  data,	  as	  in	  all	  four	  cases	  (Z1,	  Z2,	  Z3	  and	  Z4)	  the	  overall	  321	  

general	   behavior	   of	   the	   estimated/modeled	  biomass	   curve	   is	   comparable	   for	   the	   three	  models	   (MLR,	  322	  

ANN,	  ANFIS).	  For	  example,	   in	   the	  case	  of	  Z1	  all	   three	  models	  have	  over	  estimated	  the	  biomass	  during	  323	  

the	  start	  of	  the	  season,	  underestimated	  the	  higher	  biomass	  values	  (during	  summer)	  and	  again	  at	  the	  end	  324	  

of	  the	  season	  over	  estimation	  is	  observed	  (see	  Figure	  11	  (Z1)).	  A	  similar	  trend	  is	  shown	  in	  Figure	  11	  (Z2	  325	  

and	  Z3)	  where	  higher	  biomass	   values	   are	  under	   estimated,	  while	   at	   the	  end	  of	   the	   season	  ANFIS	  has	  326	  

improved	  (reduced)	  the	  over	  estimation	  as	  compared	  to	  the	  MLR	  and	  ANN.	  In	  the	  case	  of	  Z4	  the	  overall	  327	  

trend	   of	   the	   estimated	   pattern	   of	   MLR,	   ANN	   and	   ANFIS	   is	   comparable	   and	   ANN	   and	   ANFIS	   have	  328	  

identified	  the	  start	  of	  the	  season	  quite	  well,	  although	  ANFIS	  has	  minimized	  the	  estimation	  error,	  but	  still	  329	  

it	  has	  failed	  to	  reach	  the	  peak	  (higher	  biomass	  values)	  during	  the	  mid	  of	  the	  season,	  and	  the	  anomalies	  330	  

at	   the	  end	  of	   the	  season	  are	  similar	   for	  ANN	  and	  ANFIS.	  Figure	  11	  shows	  that	  ANFIS	  has	  produced	  an	  331	  

improved	  estimation	  as	  compared	  to	  the	  MLR	  and	  ANN	  but	  still	  in	  some	  cases	  it	  has	  underestimated	  the	  332	  

high	  biomass	   values.	  Another	   reason	   for	   this	   could	  be	   the	  bias	   and	  variation	   in	  measured	  biomass	   as	  333	  

reported	  by	  Ji	  et	  al.	  [110].	  334	  

Z1 Z2 Z3 Z4 
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To	  further	  explore	  the	  functional	  relationship	  between	  the	  input	  feature	  space	  and	  the	  in–situ	  data,	  and	  335	  

also	  to	  explore	  the	  performance	  of	  the	  models,	  the	  same	  approach	  was	  applied	  to	  the	  Grange	  study	  site.	  336	  

Again	   the	   results	   show	   that	   the	  ANFIS	  model	  was	   the	  most	  accurate	  among	   the	   three	  models,	  with	  a	  337	  

higher	   value	   of	   coefficient	   of	   determination	   (𝑅! = 0.76)	   and	   low	   root	   mean	   square	   error	   (𝑅𝑀𝑆𝐸 =338	  

15.35  DM  kg/ha/day),	   followed	   by	   ANN	   (𝑅! = 0.59,𝑅𝑀𝑆𝐸 = 20.43  DM  kg/ha/day)	   and	   MLR	  339	  

(𝑅! = 0.38,𝑅𝑀𝑆𝐸 = 24.02  DM  kg/ha/day)	  (see	  Table	  3;	  Figure	  12).	  	  340	  

	  341	  

Figure	  12	  Scatter	  plots	  for	  the	  accuracy	  comparison	  of	  MLR,	  ANN	  and	  ANFIS	  estimated	  grassland	  biomass	  verses	  in–situ	  342	  
biomass	  for	  Grange	  test	  site.	  343	  

	  344	  

Figure	  13	  Plots	  of	  observed	  and	  modeled	  time	  series	  for	  Grange	  study	  site.	  345	  
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Machine	   learning	  methods	   require	   large	   data	   sets	   in	   order	   to	   better	   understand	   the	   patterns	   hidden	  346	  

inside	  the	  data,	  which	  could	  be	  a	  reason	  for	  the	  higher	  accuracy	  achieved	  for	  the	  Moorepark	  study	  site.	  347	  

Another	   reason	   for	   the	   lower	   accuracy	   at	   the	  Grange	   test	   site	   could	  be	   that	   it	   is	   under	  more	   intense	  348	  

grazing	  practices,	  indicated	  by	  the	  biomass	  curves	  for	  Grange	  (see	  Figure	  4	  (B))	  being	  more	  complex	  and	  349	  

variable,	  with	  considerable	  inter	  annual	  variation	  compared	  to	  the	  Moorepark	  in-‐situ	  data	  (see	  Figure	  4	  350	  

(A)).	  351	  

The	   issue	  of	  under	  estimation	  at	  higher	  biomass	  values	  was	  also	  observed	  at	   the	  Grange	  study	  site	   in	  352	  

some	  time	  periods,	  although	  better	  estimation	  at	   the	  start	  of	   the	  season	  can	  be	  seen	   in	  Figure	  13.	   In	  353	  

order	  to	  further	  analyze	  the	  effect	  of	  complexity	  on	  the	  models’	  performance,	  residual	  boxplots	  for	  each	  354	  

year	  were	  created	  for	  the	  Grange	  study	  site	  as	  shown	  in	  Figure	  14.	  The	  2002	  and	  2005	  residual	  boxplots	  355	  

show	   the	   highest	   variability	   and	   wide	   spread,	   especially	   for	   2005	   which	   is	   the	   most	   complex	   and	  356	  

nonlinear	  part	   of	   the	  Grange	   time	   series.	   By	   contrast,	   the	  Moorepark	   12–year	   average	   and	   individual	  357	  

yearly	  biomass	  curves	  are	  quite	  consistent	  and	  similar	  in	  data	  range	  (min–max	  values;	  see	  Figure	  4	  and	  358	  

15).	  	  359	  

	  360	  

Figure	  14	  Year	  wise	  residual	  plots	  for	  Grange	  study	  site.	  361	  
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	  362	  

Figure	  15	  Year	  wise	  residual	  plots	  for	  Moorepark	  study	  site	  363	  

3.1 Selection	  of	  input	  variables	  364	  

As	  machine-‐learning	  models	   are	   generally	   data	   driven	   and	   require	   a	   large	   amount	   of	   data	   for	   better	  365	  

performance	   all	   five	   vegetation	   indices	   along	  with	   two	   spectral	   bands	   (RED,	  NIR)	  were	   used	   as	   input	  366	  

variables	  to	  the	  PCA,	  and	  resulting	  principal	  component	  features	  were	  used	  as	  an	  input	  to	  the	  models.	  367	  

Various	   different	   combinations	   of	   inputs	  were	   tested	   (accuracy	   (𝑅!)	   for	   these	   different	   combinations	  368	  

varies	   between	   0.38	   to	   0.54)	   and	   it	   was	   shown	   that	   the	   best	   accuracy	   was	   achieved	   by	   using	   all	  369	  
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vegetation	   indices	  as	   input	  variables	   for	  both	  statistical	  and	  ANN	  models.	   In	  order	  to	  remove	  the	  high	  370	  

correlation	  between	  various	  input	  features	  a	  dimension	  reduction	  approach	  (PCA)	  was	  used.	  	  371	  

3.2 Comparison	  of	  three	  models	  performance	  on	  both	  study	  sites	  372	  

In	  terms	  of	  performance	  evaluation	  of	  the	  three	  models	  (see	  Figure	  16),	  it	  is	  evident	  that	  the	  distribution	  373	  

of	   interquartile	   range	   (IQR)	   of	   MLR	   (𝐼𝑄𝑅!""#$%&#' = 39.98,	   𝐼𝑄𝑅!"#$%& = 26.72)	   and	   ANN	  374	  

(𝐼𝑄𝑅!""#$%&#' = 17.99,	  𝐼𝑄𝑅!"#$%& = 22.37)	  residuals	  is	  quite	  large	  for	  both	  the	  test	  sites	  as	  compared	  375	  

to	  the	  distribution	  of	  interquartile	  range	  of	  ANFIS	  (𝐼𝑄𝑅!""#$%&#' = 7.78,	  𝐼𝑄𝑅!"#$%& = 10.2).	  For	  both	  376	  

the	   study	   sites	   ANFIS	   has	   less	   variability	   than	   the	   MLR	   and	   ANN,	   and	   the	   overall	   spread	   (min–max	  377	  

whisker	   range)	   of	   ANFIS	   for	   both	   the	   sites	   is	   small	   and	   symmetrical	   around	   zero.	  However	   the	  ANFIS	  378	  

scatter	  plots	   for	  both	  Moorepark	   (Figure	  9)	  and	  Grange	  (Figure	  12)	  are	  more	  unreliable	   for	   the	  higher	  379	  

biomass	   values.	   For	   example,	   for	   Moorepark	   under	   estimation	   is	   evident	   for	   the	   values	   >60	   kg	  380	  

DM/ha/day,	  similarly	  for	  Grange,	  large	  over	  and	  under	  estimation	  errors	  can	  be	  seen	  for	  the	  values	  >100	  381	  

kg	  DM/ha/day.	  	  382	  

	  383	  

Figure	  16	  Variations	  in	  residual	  for	  all	  three	  models	  (MLR,	  ANN,	  ANFIS)	  estimations.	  The	  boxplots	  show	  the	  spread,	  lower	  384	  
quartiles,	  medians	  and	  upper	  quartiles.	  The	  lines	  are	  drawn	  from	  the	  box	  (1.5	  times	  the	  interquartile	  range	  from	  the	  nearer	  385	  

quartile).	  386	  

Studies	  show	  that	  whenever	  ANN	  and	  MLR	  are	  used	  for	  grassland	  biomass	  estimation	  ANN	  has	  always	  387	  

out-‐performed	  the	  traditional	  statistical	  approach.	  For	  example,	  Xie	  et	  al.	   (2009)	  used	  a	  single	  Landsat	  388	  

ETM+	  image	  for	  above	  ground	  grassland	  biomass	  estimation	  and	  showed	  the	  superior	  performance	  of	  389	  

ANN	  (𝑅! = 0.817)	  against	  MLR	  (𝑅! = 0.591).	  Similar	  findings	  were	  reported	  by	  Yang	  et	  al.	  [73]	  where	  390	  

MODIS	   driven	   vegetation	   indices	   from	   July–September	   2005	   were	   used	   to	   model	   the	   grass	   yield	  391	  

estimation,	   and	   ANN	   models	   were	   found	   to	   be	   more	   accurate	   (𝑅! = 0.56– 0.71)	   compared	   to	   the	  392	  
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statistical	  models	  (𝑅! = 0.54– 0.68).	  The	  results	  of	  the	  current	  study	  have	  endorsed	  this	  trend	  of	  high	  393	  

performance	  for	  ANN	  against	  MLR.	  With	  respect	  to	  ANFIS	  and	  ANN,	  it	  has	  also	  been	  established	  in	  both	  394	  

non–remote	   sensing	   and	   remote	   sensing	   applications	   that	   the	   former	   generates	  more	   reliable	   results	  395	  

e.g.,	   Rajesh	   et	   al.	   [109]	   indicated	   the	   higher	   classification	   performance	   of	   ANFIS	   (overall	   accuracy:	  396	  

86.01%)	  compared	  to	  the	  ANN	  (overall	  accuracy:	  83.62%).	  397	  

3.3 Advantages	  and	  limitations	  of	  proposed	  methodology	  398	  

ANFIS	   not	   only	   integrates	   the	   strengths	   of	   ANN	   and	   fuzzy	   logic,	   but	   also	   overcomes	   some	   of	   the	  399	  

disadvantages	   of	   each	   applied	   separately	   and	   produces	   better	   results	   in	   terms	   of	   smoothness	   and	  400	  

adaptability.	   The	  presented	   framework	  of	  ANFIS	  modelling	   allows	  multiple	   inputs	   to	   produce	   a	   single	  401	  

output,	  however	  to	  achieve	  a	  higher	  level	  of	  accuracy	  a	  larger	  amount	  of	  data	  might	  be	  required	  to	  drive	  402	  

the	  model,	  with	   the	  model	   performance	   also	   dependent	   on	   the	   data	   quality	   and	   study	   design	   [111],	  403	  

[112].	  404	  

4 Conclusion	  405	  

In	  this	  paper,	  the	  estimation	  capabilities	  of	  the	  ANFIS	  approach	  are	  compared	  against	  the	  ANN	  and	  more	  406	  

commonly	   used	   MLR	   modeling	   techniques.	   Although	   well	   established	   in	   other	   scientific	   fields	  407	  

(engineering,	   expert	   systems)	   the	   potential	   of	   ANFIS	   modelling	   in	   remote	   sensing	   is	   not	   yet	   fully	  408	  

explored,	   although	   as	   demonstrated	   by	   this	   research	   it	   is	   a	   technique	   that	   holds	   promise	   for	   future	  409	  

studies.	  Five	  MODIS	  derived	  VIs	  and	  two	  spectral	  bands	  (RED,	  NIR)	  along	  with	  the	  in–situ	  measurements	  410	  

were	  used	  for	  model	  training	  and	  testing;	  and	  their	  performance	  was	  evaluated	  using	  𝑅!	  and	  𝑅𝑀𝑆𝐸.	  For	  411	  

both	   the	   study	   sites,	   ANFIS	   (𝑅!""#$%&#'! = 0.85,𝑅𝑀𝑆𝐸!""#$%&#' = 11.07  DM  kg/ha/day;	   𝑅!"#$%&! =412	  

0.76,𝑅𝑀𝑆𝐸!"#$%& = 15.35  DM  kg/ha/day)	   produced	  better	   estimations	  of	   biomass	   compared	   to	   the	  413	  

ANN	   (𝑅!""#$%&#'! = 0.63,𝑅𝑀𝑆𝐸!""#$%&#' = 18.05  DM  kg/ha/day;	   𝑅!"#$%&! = 0.59,𝑅𝑀𝑆𝐸!"#$%& =414	  

20.43  DM  kg/ha/day)	   and	   MLR	   (𝑅!""#$%&#'! = 0.29,𝑅𝑀𝑆𝐸!""#$%&#' = 25.08  DM  kg/ha/day;	  415	  

𝑅!"#$%&! = 0.39,𝑅𝑀𝑆𝐸!"!"#$ = 24.02  DM  kg/ha/day).	  However,	   there	  are	   some	  occasions	  when	   the	  416	  

model	  data	  under-‐estimates	  the	  actual	  biomass	  peak	  (a	  common	  feature	  of	  VI	  driven	  biomass	  models);	  417	  

one	  potential	  reason	  for	  this	  underestimation	  could	  be	  the	  effect	  of	  saturation	  of	  the	  satellite	  signal	  or	  418	  

vegetation	  index	  value	  and	  further	  work	  is	  required	  to	  understand	  these	  anomalies.	  Nevertheless,	  these	  419	  

results	  show	  significant	  promise	  for	  the	  use	  of	  a	  hyper–temporal	  time	  series	  of	  satellite	  imagery	  as	  input	  420	  

to	  modeling	  for	  an	  effective	  tool	  for	  grassland	  monitoring	  and	  management.	  421	  
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With	  the	  launch	  of	  members	  of	  satellite	  families	  (ALOS–2,	  Radarsat–2,	  Sentinel,	  TerraSAR–X,	  TanDEM–422	  

X/L)	  the	  volume	  of	  data	  for	  such	  modelling	  studies	  will	  increase	  markedly,	  and	  concepts	  of	  big	  data	  are	  423	  

becoming	  more	  relevant	  in	  the	  remote	  sensing	  domain.	  As	  machine-‐learning	  models	  are	  considered	  to	  424	  

be	  data	  driven	  models,	  more	  data	  heralds	  higher	  accuracy.	  To	  date,	  grassland-‐modelling	  activities	  over	  425	  

12	  years	  have	  not	  been	  reported	  in	  the	  literature,	  but	  the	  scope	  for	  such	  long	  term	  studies	  will	  increase	  426	  

significantly	  over	  the	  coming	  years.	  In	  addition	  to	  demonstrating	  the	  potential	  of	  such	  long	  time	  series	  427	  

studies,	  this	  work	  has	  also	  highlighted	  the	  potential	  for	  complex	  modelling	  approaches	  such	  as	  ANFIS	  in	  428	  

the	  field	  of	  remote	  sensing.	  With	  the	  passage	  of	  time	  and	  availability	  of	  high	  quality	  spectral,	  spatial	  and	  429	  

temporal	   resolution	   data,	   these	  models	  will	   get	   further	   refined,	  more	   robust	   and	   applicable	   to	   other	  430	  

biophysical	  parameter	  retrieval	  tasks.	  	  431	  
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3.2 additional commentary

The following section addressed the method of calculating total annual

yield from growth rate.

3.2.1 Total annual yield

Observed and ANFIS modelled grass growth rate for both the study sites

(Moorepark and Grange) were used to calculate the total annual yield

(t/ha) for each year as follows:

Tyield =

(
N∑
i=1

[Observed or Modelled]rate(i)

)
× 7 (1)

In Equation 1N represents the total number of samples for each year, and

the factor 7 represents the seven days in a week. In Equation 1 daily growth

rate is multiplied by 7 to get the total weekly yield and finally summed to

get the total annual yield. However, this makes a very strong assumption

that the growth rate is the same (constant) for all seven days in a week.

For both the study sites, the total annual yields for MLR, ANN and ANFIS

were plotted against the observed annual yield as shown in Figure 7 and

Figure 8. For both cases, ANFIS gives the better estimate as compared to the

MLR and ANN, and it gives the lowest root mean square error and highest

correlation for Moorepark (RMSE = 0.584 t/ha, R2 = 0.72, p < 0.05) and

Grange (RMSE = 0.291 t/ha, R2 = 0.92, p < 0.05).
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Figure 7: Moorepark total annual yield (t/ha).
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Figure 8: Grange total annual yield (t/ha).

From Figure 7 and Figure 8 it can be concluded that the precise estima-

tion of growth rate can be used to calculate the total weekly and annual

yield. However, the assumption of linear growth throughout the week is
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not always true. Due to the strong relationship between the growth rate

and weather conditions (e. g., daily temperature, precipitation) this issue

of linear (or constant) growth rate can be resolved by using GDD informa-

tion. In the next chapter the GDD information calculated from weather data

(daily: minimum, maximum and mean temperature) were combined with

the VI in order to analyse the influence of climate variability on the retrieval

of grassland biomass and growth rate.
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Climate is what we expect, weather is what we get.

— Mark Twain
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mote sensing and weather data to retrieve grassland biomass and growth rate",

International Journal of Applied Earth Observation and Geoinformation.
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4.1.1 Ali, I.; Cawkwell, F.; Dwyer, E.; and Green, S.; 2016, "Synergetic use of

remote sensing and weather data to retrieve grassland biomass and growth

rate", International Journal of Applied Earth Observation and Geoinforma-

tion. [Submitted, (IF: 3.470)]

The main abiotic factors which determine the growth potential of each veg-

etation type or plant include climate and soil. Therefore, it is important

to know the climatic requirements for plant species, and because of their

different phenological characteristics, different plant species require a dif-

ferent range of temperature and soil moisture. There is thus a very strong

link between the current and future climate and its effects on plant phe-

nology. After analysing the climate data from the past century Khanduri

et al. (2008) have reported that the average length of the growing season

(in different parts of the world) has extended by 3.3 days per decade.

GDD are a measurement of the growth and development of plants dur-

ing the growing season. Based on the findings from the previous paper

(Chapter 3), this paper presents the inclusion of climate variables (daily

minimum, maximum and mean temperature for GDD calculation) into the

model development (ANFIS: for details, see chapter 3, section 2.4.3) as a

proxy to predict and improve biomass and growth rate estimation.

In the literature, different methods for calculating GDD have been re-

ported which have different interpretations, based on the scenarios of ad-
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justing minimum, maximum and average temperature with respect to the

selected base temperature. Based on these adjustments each method will

produce a different profile of accumulated GDD, therefore it is important to

clearly define the criteria and conditions used to calculate the GDD. In this

study, three different methods of calculating GDD are used and their perfor-

mance for predicting both grassland biomass (DM kg/ha) and growth rate

(DM kg/ha/day) for the Grange study site is analysed.

Results show that the fusion of remote sensing VI and accumulated grow-

ing degree-days temperature has improved the biomass rate and yield esti-

mation performance.
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Abstract

In this study we have designed an experiment to retrieve grassland biomass

(dry matter (DM) kg/ha) and growth rate (DM kg/ha/day) based on satel-

lite (MODIS 8-day composite, six year time series) driven vegetation indices

(VI), and the synergetic use of vegetation indices and accumulated growing de-

gree days (GDD) information using an adaptive-neuro fuzzy inference systems

(ANFIS) approach. Three different configurations of GDD calculations were

compared for grassland biomass and growth rate retrieval. The results show

that, with the synergetic use of remote sensing vegetation indices and weather

data, the grassland biomass and growth rate estimation performance (R2) was

improved by 12.5% and 3.9% respectively as compared to the results achieved

by using VI only.

Keywords: Biomass, time series, Growing Degree Days, remote sensing,

grasslands, biophysical parameters retrieval

1. Introduction

Monitoring grassland and pastures from space using imaging satellites is be-

coming more feasible due to improved spatial, temporal and spectral resolution

of the data. A review of published studies on grassland suggests that the remote

∗Corresponding author

Preprint submitted to Elsevier April 11, 2016
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sensing community and agronomists are increasingly working together in order

to realize the potential of remote sensing technologies, with the aim of devel-

oping real time decision support systems. Consistent and regular monitoring

of the world’s second largest terrestrial ecosystem is not only important for the

grazing industry, but also for the environment where grasslands play a crucial

role in regularization of the carbon cycle [1].

Ireland is an ideal test location to develop such technologies as more than

80% of agricultural land is grassland, providing the major feed source for the

pasture based dairy and livestock industry. Intensive grass based systems de-

mand high levels of intervention by the farmer, with pasture cover (biomass)

being the most important variable in land use management decisions, as well

as playing a vital role in paddock and herd management. In grassland man-

agement and the livestock business, grazing capacity and intensity are the key

factors, and for sustainable farming need to be monitored consistently in order

to optimize feed resources and to avoid grassland degradation.

At present, the remote sensing community is benefiting from advances in

technology that are allowing for the acquisition of spaceborne data with higher

spatial, temporal, and spectral resolutions [2]. Optical sensors have a long his-

tory and have provided high quality and consistent data since the launch of

Landsat-1 in 1972. Both optical [3, 4] and radar [5] remote sensing data are

being used for monitoring grassland parameters and management strategies.

Vegetation indices derived from optical remote sensing data better explain the

on ground phenological developments of plants compared to the indicators de-

rived from radar data. These phenological developments are strongly linked to

the climatic variables (e.g., temperature, precipitation) that drive the photo-

synthesis process.

As growing degree days (GDD)–a measure of heat accumulation used by the

farm managers to understand plant development and growth status–are strongly

linked to the phenological elements of the growing season, we have explored the

synergy of satellite driven vegetation indices–an indicator that describes the

greenness–and accumulated GDD to retrieve biomass and growth rate of an

2
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intensively managed grassland farm in Ireland.

Multiple linear regression is one of the most widely adopted modelling ap-

proaches to derive biophysical parameters from satellite and in situ data [6, 7, 8,

9], but with growing data volumes new state of the art modelling methods have

been developed to better manage the high dimensionality and non-linearity of

many of the datasets. In the context of developing robust farm decision support

systems, it is very important to explore the strength of state of the art ma-

chine learning methods using multi-source datasets. Artificial neural networks

(ANN) are one of the most commonly used machine learning algorithms which

have the ability to learn from complex patterns in a dataset[10, 11, 12], while

fuzzy logic approaches have the power to reason and generate rules from the

dataset. Adaptive-neuro fuzzy inference systems (ANFIS) are the integration

of both ANN and fuzzy logic, combining the power of both methods to provide

an approach with improved predictive or approximation ability. This modelling

approach has been used in various disciplines [11, 13, 14] due to its ability to

handle very chaotic and complex patterns in the dataset, and is also getting at-

tention for remote sensing related application [3, 15, 16, 17]. Therefore, we have

used the ANFIS approach for grassland biomass and growth rate estimation.

The objective of this paper is to investigate the contribution of GDD in-

formation to more accurate retrieval of biomass and growth rate of intensively

managed grasslands compared to the use of just VI on its own. The following

two scenarios were analysed:

I Grassland biomass and growth rate estimation using only satellite driven

vegetation indices.

II Grassland biomass and growth rate estimation using both satellite driven

vegetation indices and accumulated local GDD profiles.

3
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2. Materials and methods

2.1. Study site

The Grange study site is a Teagasc (the Irish agriculture and food develop-

ment authority) research farm located in the north east (53◦ 06
′

N, 06◦ 40
′
W )

of Ireland. Teagasc research farms in Ireland have been closely monitored for

many years, providing a valuable source of grassland biomass (intensively man-

aged grassland), meteorological and farm management data.

2.2. Remote sensing data

A time series (46 images per year) of 250m MODIS Terra surface reflectance

8-day composite (MOD09Q1), and 500m MODIS Terra surface reflectance 8-

day composite (MOD09A1) images were freely downloaded from the NASA

LPDAAC1 for the Grange study site from 2001 to 2007. For accurate estimation

of the grass growth index based on satellite data, the date of ground truth data

collection and satellite image acquisition are required in order to establish a true

correlation between the observed biophysical parameters and satellite driven

vegetation indicators. The day of pixel composite information was extracted

from the MOD09A1 product as suggested by Guindin-Garcia et al. [18] and

applied to the 250m product, which was used for the model development.

2.3. In-situ data

The study site consists of intensively managed grassland pasture fields, and

a number of grassland related biophysical parameters have been recorded for

many years. Weekly biomass (DM kg/ha) and growth rate (DM kg/ha/day)

from six years (2001-2005, 2007) are used. These measurements are calculated

by cutting and drying a grass strip of approximately 1 meter wide and 3 meters

long for each paddock. The available on farm biomass is calculated by averaging

the individual paddock biomass. For the calculation of GDD, daily minimum,

1(https://lpdaac.usgs.gov/lpdaac/get_data/glovis)
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maximum and mean temperature for these six years were retrieved from the

on-site weather station (with hourly logging).

2.4. Growing Degree Days (GDD) calculation

Growing degree days, also called heat units, are a measure of heat accu-

mulation used by farm managers to understand plant development and growth

status. The concept was first introduced by Reaumer in 1930, and since then

it has been successfully used for different applications in agriculture and plant

ecology related investigations [19]. It is measured in growing degree-day (GDD,

◦C-day). Air temperature is one of the main factors that determines the rate

of plant development [20].

The canonical form for calculating GDD is:

GDD =

(
TMAX + TMIN

2

)
− TBASE (1)

Where TMAX is the maximum daily temperature, TMIN is the daily mini-

mum and TBASE a baseline temperature (all in ◦C) In the literature [19] there

are three different interpretations of this equation for adjusting the base tem-

perature with respect to the values of minimum, maximum and average tem-

perature. A base temperature of 5 ◦C was selected for grassland [21]. The three

different scenarios of equation 1 are [19, 22]:

Method 1:

GDDM1 =

(
TMAX + TMIN

2

)
− TBASE (2)

where if [(TMAX+TMIN )/2] < TBASE , then [(TMAX+TMIN )/2] = TBASE

Method 2:

GDDM2 =

(
TMAX + TMIN

2

)
− TBASE (3)

where if TMAX < TBASE , then TMAX = TBASE , and if TMIN < TBASE ,

then TMIN = TBASE

Method 3: If TMIN > TBASE , then

GDDM3 =

(
TMAX + TMIN

2

)
− TBASE (4)

5
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If TMAX < TBASE , then

GDDM3 = TBASE −
(
TMAX + TMIN

2

)
(5)

If TMAX > TBASE & TMIN < TBASE &
(
TMAX+TMIN

2

)
> Tbase, then,

GDDM3 =

[(
TMAX − TBASE

2

)
−
(
TBASE − TMIN

4

)]
(6)

If TMAX > TBASE & TMIN < TBASE &
(
TMAX+TMIN

2

)
< Tbase, then,

GDDM3 =

[(
TBASE − TMIN

2

)
−
(
TMAX − TBASE

4

)]
(7)

Figure 1 shows the weather dataset (Figure 1 (A)) that was used for calculat-

ing GDD profiles for these three methods (Figure 1 (B)), and the corresponding

profiles of accumulated sum of GDD for each year (Figure 1 (C)). Based on the

defined conditions and constraints, the output of each GDD method is differ-

ent. For example M1 will always produce positive values (GDDM1 ≥ 0), M2

can have negative values as well, while in the case of M3 if the given conditions

are not true the values will be set to zero or excluded making it more conser-

vative than the other methods. Therefore based on these conditions the values

of accumulated GDD profile for M1 and M2 are higher than the values of M3

due to the elimination of data points that do not satisfy the defined criteria (as

shown in Figure 1 (C)).

2.5. Model development

ANN have the ability to learn patterns, while fuzzy logic has the capability of

reasoning. ANFIS is a fusion or hybrid model that integrates the positive aspects

of both ANN and fuzzy logic in order to construct a robust model that will

associate the independent (input values) variables with the dependent (target

values) variables with minimum estimation error. A five layer ANFIS was first

introduced by Jang [23], with the ability to incorporate linguistic knowledge

(expert opinion) and human like reasoning based on a training data set and a

set of IF − THEN fuzzy rules (for detailed description of the algorithm see

[23]).
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(A) 

(B) 

(C) 

Figure 1: (A): Daily maximum, minimum and agerage temperature since January 2001. (B):

the output profile of GDD for Method 1, Method 2 and Method 3. (C): the corresponding

year wise accumulated growing degree days profiles for three methods (M1, M2 and M3).
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Five vegetation indices (Normalized Difference Vegetation Index (NDVI),

Enhanced Vegetation Index (EVI-2), Soil Adjusted Vegetation Index (SAVI),

Modified Soil Adjusted Vegetation Index (MSAVI) and Optimized Soil Adjusted

Vegetation Index (OSAVI)) were calculated from red and Near Infrared MODIS

bands, and along with ground measurements and weather data were used for

model development. Vegetation indices were filtered using the Savitzky-Golay

algorithm, which is widely used to smooth high frequency variability. Principal

Component Analysis (PCA) was then applied to reduce the data dimensionality

and variable dependencies. Figure 2 shows the work-flow and processing steps

of the approach implemented.

MODIS	  data	  acquisition	  

Information	  extraction	  
from	  .hdf	  files	  using	  

Python	  script	  	  

Calculation	  of	  vegetation	  
indices	  (VI)	  	  

Temporal	  data	  
filtering	  	  

(Savitzy-‐Golay)	  	  

Data	  standardization	  	  
(0	  Mean,	  1	  Standard	  

deviation)	  	  

Ground	  truth	  data	  
(Grass	  yield	  DM	  kg/ha)	  

Biomass	  and	  
growth	  rate	  
estimation	  

Principal	  Component	  
Analysis	  (PCA)	  	  

Adaptive	  Neuro-‐Fuzzy	  
Inference	  Systems	  

(ANFIS)	  	  

Minimum	  
Temperature	  

Maximum	  
Temperature	  

Average	  
Temperature	  

Growing	  Degree	  Day	  
(GDD)	  	  

	  	  

M1 M2 M3 

Figure 2: Work-flow of the scheme implemented for grassland biomass and growth rate esti-

mation.

To assess the performance of the ANFIS approach to estimate grassland

biomass (DM kg/ha) and growth rate (DM kg/ha/day), statistical measures

including root mean square error (RMSE (units: biomass = DM kg/ha, growth

rate = DM kg/ha/day)) and coefficient of determination (R2) were used.

3. Results and discussion

Table 1 shows the results with and without the integration of accumulated

GDD information with satellite driven vegetation indices. As GDD is strongly

linked to the plant development, or phenological elements, an improvement in

estimation for both biomass rate and yield is observed. However the degree of

improvement depends on the method of GDD calculation used.
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Table 1: Comparison of model performance for biomass and growth rate estimation using only

VI, and combination of VI and GDD.

Using VI R2 RMSE Difference from just using VI

(p < 0.05) DM kg/ha/day +improvement / -decline

DM kg/ha

Growth rate 0.76 15.35

Biomass 0.72 384.79

Using VI and GDD Method R2 RMSE R2 RMSE

(p < 0.05)

Growth rate: M1 0.79 14.05 +0.03 +1.30

M2 0.72 16.57 -0.04 -1.22

M3 0.77 14.61 +0.01 +0.74

Biomass: M1 0.81 374.32 +0.09 +10.47

M2 0.77 397.78 +0.05 -12.99

M3 0.80 376.64 +0.08 +8.15

3.1. Grassland biomass and growth rate retrieval using VI

In the first step grassland biomass and growth rate were modelled exclusively

based on vegetation indices. Results show that the model performed slightly

better in the case of growth rate retrieval (R2 = 0.76) as compared to the

biomass (R2 = 0.72) as shown in Table 1 and Figure 3. For both (growth rate

and biomass), 2005 gave the most inconsistent over and/or under estimations,

due to the high complexity of the patterns for this year as a result of management

practices (e.g., intensive grazing) compared to the others.

3.2. Grassland biomass and growth rate retrieval using VI and GDD

In the next step we modified the input feature vector to estimate the grass-

land biomass (DM kg/ha) and growth rate (DM kg/ha/day) using both remote

sensing vegetation indices and accumulated GDD information.

3.2.1. Growth rate retrieval

For the growth rate estimation, in the case of M1, performance increased

by 3.95% and root mean square error decreased from 15.35 to 14.05. It was

9
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Figure 3: Observed and modelled biomass and growth rate using satellite driven vegetation

indices.

observed that M1 produced the best results followed by M3, both of which have

a positive output value, while M2 can have both a positive and negative range

of values (see Figure 1).

Figure 4 shows the actual and modelled growth rate for the three different

GDD methods. It was observed that a few data points were under (e.g., in 2001,

2004) and over (e.g., in 2007) estimated by all three methods.
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Figure 4: Observed and modelled growth rate using vegetation indices and three GDD methods

(M1, M2 and M3).

Figure 5 (A) shows the scatter plot for the three GDD methods of the mea-

sured growth rate against that estimated using satellite driven VI. The RMSE

(DM kg/ha/day) was slightly improved from 15.35 to 14.05 (M1) and 14.61

(M3), and the over all trend of line fitting and slope was similar to the trend
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of VI based estimation model. In order to further analyse the performance of

each individual year, the evaluation was undertaken for each year separately.

Figure 9 (A) shows the year-wise scatter and boxplots of three GDD methods,

where M1 and M3 produced the best results compared to M2, and boxplots

show that the spread of the residuals values for M1 are also very compact and

the mean is close to zero. Higher actual growth rates tend to be underestimated

by the model and at the lowest growth rates, overestimated. 2002 has a different

pattern compared to the other years, where the range of growth rate values is

between 40 and 110 (DM kg/ha/day), which could be due to the management

practices and light to moderate grazing. Overall, growth rate is marginally im-

proved by incorporating GDD, with different models performing slightly better

in different years according to the conditions of that year.
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Figure 5: Scatter plots of observed and modelled (A) growth rate (RMSE DM kg/ha/day), and

(B) biomass (RMSE DM kg/ha) using satellite driven vegetation indices and GDD (coloured

points represent the different models).

3.2.2. Biomass retrieval

Similarly, in the case of biomass estimation, M1 produced the best results

with 12.5% increase in performance (R2) and 2.72% decrease in RMSE (DM

kg/ha). M2 performance increased by 6.49% and RMSE (DM kg/ha) increased

by 3.38%, and M3 shows an increase of 11.11% in performance (R2) and 2.12%

decrease in RMSE. Figure 5 (B) shows the scatter plot of observed and modelled

grassland biomass for the three GDD methods, and M1 gives the lower RMSE

value compared to M2, M3 and VI.
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Figure 6: Yearly performance (RMSE DM kg/ha/day) of observed and modelled growth rate

using three GDD methods (coloured points represent the different models: M1, M2 and M3).

Figure 7 shows the observed and model biomass using all three GDD meth-

ods. M1 produced the best results with only a few under (in 2002) and over

(in 2003) estimation errors. In the case of M2 a consistent over estimation is

evident e.g., in year 2001, 2004 and 2007. The output of M3 (R2 = 0.80) was

similar to M1 (R2 = 0.81) without any major over and under estimation errors.
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Figure 7: Observed and modelled biomass using vegetation indices and three GDD methods

(M1, M2 and M3).

Figure 8 shows the year-wise performance of each GDD method for biomass

estimation. In most cases M1 produced improved results as compared to the

other two GDD methods except for 2002 and 2005. For these two years the
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spread and range of biomass values is small compared to the other years (also

shown in Figure 7). Figure 1 shows that there is no major variation in climate

variables during these years that causes the low biomass and therefore they are

potentially due to the intensive grazing and farm management practices. For

2001 M2 gave a higher value of correlation coefficient (R2 = 0.84, RMSE =

426.07 DM kg/ha) than M1 (R2 = 0.79, RMSE = 500.05, DM kg/ha), but the

boxplot shows that M2 has a wide range of residual error compared to the M1

and M3 methods (Figure 9 (B)). In general the model tracks from low to high

biomass better than growth rate, although Figure 5 suggests that the model

slightly overestimates at low levels of biomass. Including GDD allows better

tracking of actual biomass than VI only, especially as the biomass increases.
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Figure 8: Year-wise performance of observed and modelled biomass using three GDD methods

(M1, M2 and M3).

In term of performance (Figure 9), in most cases M1 and M3 give the smallest

spread of interquartile range (IQR) of residuals. In the case of biomass retrieval

(Figure 9 (B)) for 2005, M1 produced the biggest range of error compared to

the M2 and M3, however for 2002 the spread of IQR for all three GDD methods

is comparable.
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Figure 9: Year-wise boxplot of residuals of three GDD methods for growth rate (A) and

biomass (B) retrieval.

3.3. Limitations of GDD

Growing Degree Days is a useful approximation of the growth accumulation

and development across a wide range of species. However it is only a linear

approximation and therefore can map poorly to the actual growth rate. For

example, for each vegetation/species type there is a minimum and maximum

temperature acceptance threshold, and beyond these thresholds growth will be

retarded [24]. Therefore careful and precise selection of base temperature for

each vegetation type is crucial for better approximation [25]. In the case of a

single base temperature selection over mixed vegetation areas, errors in predic-

tion can become fairly substantial. In this investigation the study site covers

only pasture fields without any mixture of other land-cover or vegetation type,

therefore the single base temperature assumption is appropriate. GDD assumes
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that the development rates are a linear function of temperature, however tem-

perature has non-linear effects too, especially when it approaches the upper and

lower threshold.

The assumption of GDD that development rate is only a function of temper-

ature is not always true [26], it is also linked to the use of fertilizers, pesticides

and management practices, which can explain some of the inter-annual vari-

ability in the results. Lastly, in order to build an accumulated GDD profile a

consistent long term record of weather data (daily recorded temperature val-

ues) is required, and for large area mapping and to avoid the effect of different

climatic zones in the region, a spatially distributed sampling of collected or

modelled weather data is also very important.

4. Conclusion

Growth rate and plant phenology are highly influenced by the weather con-

ditions, therefore it is important to investigate and understand the influence of

climatic variables (i.e., temperature, rainfall) on grassland parameters. Overall

it can be concluded that incorporating GDD into estimates of grass biomass

from satellite data does improve the performance of the model, and of the three

GDD configurations tested M1 and M3 methods gave improved results. Ac-

cumulated GDD method M1 gives the best results, both in terms of higher

correlation coefficient value and lower RMSE. The results show that for both

grassland growth rate and biomass, the inclusion of GDD information has im-

proved the overall estimation performance (R2) of the model by 3.95% and

12.5% respectively. The GDD equation has different interpretations and each of

them produced a different results, therefore it is strongly recommended that au-

thors should clearly describe the method and implementation scheme (in terms

of defining conditions and scenarios as discussed in section 2.4) so that results

are correctly interpreted by others, in this paper we have evaluated the three

methods of interpreting the GDD equation using a 5◦C base temperature. This

study explains the potential and benefit of a synergetic approach as well as the
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features derived from weather data to retrieve grassland parameters. The com-

bination is potentially beneficial, especially in the case of biomass, but we need

to understand why it is less effective with the growth rate. The method might

benefit from higher spatial (and temporal) resolution VI data in which case the

VI might perform equally well on its own, without having to use GDD, however

achieving a weekly VI at a higher resolution remains a problem in temperate

mid-latitude regions where cloud cover is prevalent.
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C. Rebella, Remote sensing capabilities to estimate pasture production in

france, International Journal of Remote Sensing 25 (23) (2004) 5359–5372.

doi:10.1080/01431160410001719849.

[7] V. Loris, G. Damiano, Mapping the green herbage ratio of grasslands using

both aerial and satellite-derived spectral reflectance, Agriculture, Ecosys-

tems & Environment 115 (1-4) (2006) 141–149. doi:10.1016/j.agee.

2005.12.018.

[8] B. Xu, X. C. Yang, W. G. Tao, Z. H. Qin, H. Q. Liu, J. M. Miao, Y. Y.

Bi, Modis based remote sensing monitoring of grass production in china,

International Journal of Remote Sensing 29 (17-18) (2008) 5313–5327. doi:

10.1080/01431160802036276.

[9] L. Vescovo, D. Gianelle, Using the MIR bands in vegetation indices for

the estimation of grassland biophysical parameters from satellite remote

sensing in the alps region of trentino (italy), Advances in Space Research

41 (11) (2008) 1764–1772. doi:10.1016/j.asr.2007.07.043.

[10] B. Ji, Y. Sun, S. Yang, J. Wan, Artificial neural networks for rice yield

prediction in mountainous regions, The Journal of Agricultural Science

145 (03) (2007) 249–261. doi:10.1017/S0021859606006691.

[11] M. K. Goyal, B. Bharti, J. Quilty, J. Adamowski, A. Pandey, Modeling of

daily pan evaporation in sub tropical climates using ANN, LS-SVR, fuzzy

logic, and ANFIS, Expert Systems with Applications 41 (11) (2014) 5267–

5276. doi:10.1016/j.eswa.2014.02.047.

17

4.1 paper—3 185



[12] C. Serele, Q. Gwyn, J. Boisvert, E. Pattey, N. McLaughlin, G. Daoust,

Corn yield prediction with artificial neural network trained using airborne

remote sensing and topographic data, in: Geoscience and Remote Sensing

Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International,

Vol. 1, 2000, pp. 384–386 vol.1. doi:10.1109/IGARSS.2000.860527.

[13] R. K. Kharb, S. L. Shimi, S. Chatterji, M. F. Ansari, Modeling of solar PV

module and maximum power point tracking using ANFIS, Renewable and

Sustainable Energy Reviews 33 (2014) 602–612. doi:10.1016/j.rser.

2014.02.014.

[14] G. Karimi, S. B. Sedaghat, R. Banitalebi, Designing and modeling

of ultra low voltage and ultra low power LNA using ANN and AN-

FIS for bluetooth applications, Neurocomputing 120 (2013) 504–508.

doi:10.1016/j.neucom.2013.04.021.

URL http://www.sciencedirect.com/science/article/pii/

S0925231213005274

[15] S. Rajesh, S. Arivazhagan, K. P. Moses, R. Abisekaraj, ANFIS based land

cover/land use mapping of LISS IV imagery using optimized wavelet packet

features, Journal of the Indian Society of Remote Sensing 42 (2) (2014)

267–277. doi:10.1007/s12524-013-0276-1.

[16] I. Ali, F. Cawkwell, E. Dwyer, S. Green, Modeling managed grassland

biomass estimation by using multitemporal remote sensing data–a machine

learning approach (article in press), Journal of Selected Topics in Applied

Earth Observations and Remote Sensing.

[17] F.-J. Chang, W. Sun, Modeling regional evaporation through ANFIS

incorporated solely with remote sensing data, Hydrology and Earth

System Sciences Discussions 10 (5) (2013) 6153–6192. doi:10.5194/

hessd-10-6153-2013.

[18] N. Guindin-Garcia, A. A. Gitelson, T. J. Arkebauer, J. Shanahan, A. Weiss,

An evaluation of MODIS 8- and 16-day composite products for monitoring

18

186 fusion of remote sensing and weather data



maize green leaf area index, Agricultural and Forest Meteorology 161 (2012)

15–25. doi:10.1016/j.agrformet.2012.03.012.

[19] G. S. McMaster, W. W. Wilhelm, Growing degree-days: one equation, two

interpretations, Agricultural and Forest Meteorology 87 (4) (1997) 291–300.

doi:10.1016/S0168-1923(97)00027-0.

[20] A. B. Frank, Evaluating grass development for grazing management.,

Rangelands Archives 18 (3) (2006) 106–109.

[21] G. K. Hutchinson, K. Richards, W. H. Risk, Aspects of accumulated heat

patterns (growing degree-days) and pasture growth in Southland., Vol. 62,

New Zealand Grassland Association, 2000, pp. 81–85.

[22] R. . F. Fealy, The spatial variation in degree days derived from locational

attributes for the 1961 to 1990 period, Irish Journal of Agricultural and

Food Research 47 (2008) 1–11.

[23] J.-S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE

Transactions on Systems, Man and Cybernetics 23 (3) (1993) 665–685.

doi:10.1109/21.256541.

[24] S. Wolfram, J. R. Michael, Estimating the impact of climate change on

crop yields: The importance of nonlinear temperature effects, Working

Paper 13799, National Bureau of Economic Research (February 2008). doi:

10.3386/w13799.

[25] A. Government of Alberta, Agroclimatic Atlas of Alberta: Agricultural

Climate Elements (2003).

URL http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/

sag6301

[26] G. N. M. Intyre, W. M. Kliewer, L. A. Lider, Some Limitations of the

Degree Day System as Used in Viticulture in California, American Journal

of Enology and Viticulture 38 (2) (1987) 128–132.

19

4.1 paper—3 187



188 fusion of remote sensing and weather data

4.2 additional commentary

In order to minimize the weather data requirements from the on-ground

installed weather stations, and to develop a forecast model for biomass

production. The potential use of weather forecast data is tested. Weather

forecast data (from February – June, 2014) from IBM Deep Thunder was

used for a preliminary analysis of grassland biomass estimation. For this

demonstration a date of June 10
th was selected due to the availability of

cloud free MODIS remote sensing data for this date. The model was trained

on the Grange test site (2001 – 2005, 2007) and was tested on features (VI

and GDD) extracted over a large area (150Km × 150Km) from June 10
th,

2014. The resolution of the weather data was 1.5 Km, therefore it was re-

sampled to the MODIS 250 m resolution.

Figure 10 shows the NDVI, accumulated GDD and estimated biomass map

of June 10
th, 2014. Major trends in the estimated biomass map are compara-

ble with the NDVI and accumulated GDD. For example, same color boxes in

Figure 10 (A), (B) and (C) show same area, it can be seen that the different

areas with different NDVI and corresponding accumulated GDD values are

differentiable. For example, areas with low NDVI and low accumulated GDD

gives the less biomass (blue and white boxes), similarly the area with high

biomass surrounded by water (magenta box) was also corrected labelled.

In the training samples the range of biomass values in the month of June

is around 2000 kg/ha, which is comparable to the estimated biomass. But

still the bias is there because the training data only cover the grassland area,
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Accumulated GDD 

NDVI: 10-June-2015 

Biomass estimation 

(A) 

(B) (C) 

Figure 10: Large scale model evaluation to retrieve grassland biomass using IBM
weather forecast data and remote sensing VI. A: NDVI, B: accumulated
GDD and C: biomass estimation of the selected date.

while the test data have multiple target features to be labelled e. g., water

bodies, urban area and forest patches. Therefore, it is very important to dis-

cuss the case of skewed classes, where more number of samples are from

one type of class than the other classes. This can be resolved by having an
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equal proportion of number of samples from all classes involved in the test

dataset.

These preliminary findings are encouraging, but still need to be vali-

dated by using a spatially distributed large sample size, high resolution

remote sensing and weather data, as well as different trends of growing

and biomass regimes from different regions. lastly, masking off the sea and

urban areas will give more freedom to the learning algorithm to avoid false

negative errors.
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The issue is not just size—we’ve always had big data sets—the issue is

granularity.

— Prof. Dr. Michael Jordan
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Currently several operational SAR instruments have the ability to acquire

high-resolution radar images (e. g., TerraSAR-X, COSMO-SkyMed) inde-

pendent of the weather conditions, therefore day and night acquisitions

can be obtained. The SAR signal’s ability to penetrate through the vege-

tation is mainly dependent on its wavelength, for example, shorter wave-

length (X-band) is scattered from the vegetation canopy layer, however the

longer wavelengths (e. g., C, L and P-band) are scattered from the trunks

and ground surface. Due to the thin structure and short grass height, X-

band is more sensitive to the small changes in grass cover due to its growth,

cutting and grazing. In pasture management, both destructive (cut and dry

or clipping) and non-destructive methods (i. e., Rising Plate Meter (RPM))

are being used to estimate the amount of pasture biomass available in farm

paddocks. The amount of available biomass is strongly linked to the grass

height, and RPM gives the biomass estimation based on grass height. In

a recent study on Bermudagrass, Pittman et al. (2015) have reported that

the value of the Pearson correlation coefficient (R) between the grass height
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and dry matter (R = 0.83) is higher than the correlation between NDVI and

dry matter (R = 0.75). A precise grass height estimation using SAR data will

not only give an improved biomass estimate, but also will minimize the

effects of saturation in VI which are calculated using spectral bands of the

optical imagery and can result in them being ineffective for high biomass

vegetation states.

Initially, SAR applications were limited to the exploitation of only the

amplitude of the radar signal. Further development in the field of SAR in-

terferometry revealed that the phase of the radar signal also carried useful

information for remote sensing applications (Zebker and Goldstein, 1986;

Wegmüller, 1997).

Assuming that at time T1, a satellite passes over an area of observation

(ATarget) the radar signal emitted from the satellite will be scattered from

the target (at distance R1) and will be recorded by the satellite. If at any

point in time T a change or deformation occurs, then the same satellite

(or another satellite of the same constellation, e. g., COSMO-SkyMed) will

acquire the second (or post event) image (T2) of the same target area (at

distance R2) as shown in Figure 11. The difference in path length is pro-

portional to the phase difference between the two acquisitions as given in

Equation 2:

φ = −
4π

λ
δR (2)

where, φ is the phase, λ is the wavelength and δR is the difference in path

length.
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In SAR interferometry, coherence–a degree of similarity between the two

acquisitions/images (Hanssen, 2001)–is another important measure. The

InSAR coherence is defined as the normalized complex cross-correlation of

the backscatter intensity values v1 and v2 at position R1 and R2 as shown in

Equation 3:

γ = |
〈v1v

∗
2
〉

〈v1v∗1〉〈v2v∗2〉
| (3)

where v∗
1

and v∗
2

are complex conjugates of v1 and v2. The coherence de-

scribes the noise in the interferometric phase: 0.0 = Pure noise, 1.0 = Per-

fectly smooth phase, or similarity.

Another important component of SAR interferometry is baseline (the hor-

izontal distance between the master (Pass 1) and slave (Pass 2) acquisition

pass of the satellite). There is a certain limit to which the two satellites can

be separated and after that threshold all the information required for inter-

ferometric analysis is lost. This is called a critical baseline (B⊥,crit) and is

mathematically expressed in Equation 4 (Bamler and Hartl, 1998):

B⊥,crit =
λRtan(θ)

2Rps
(4)

where λ is the wavelength, R is the satellite altitude, θ is the incidence

angle and Rps is the pixel spacing in range direction.

In SAR image acquisition, spatial resolution is directly proportional to the

illumination time and inversely proportional to the swath dimensions. For

example Figure 12 shows a comparison of the spatial coverage and reso-
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Figure 11: SAR interferometric imaging geometry of repeat-pass data acquisition
concept, where B is the baseline, λ is the wavelength, T1 and T2 are the
two acquisition times, R1 and R2 are the range vectors to the resolution
cell and δR is the path length (or range) difference (source: modified
from (Gosselin, 2015)).

lution of TerraSAR-X’s SpotLight, Staring SpotLight and Envisat-ASAR’s

Image modes. The newly introduced TerraSAR-X Staring SpotLight mode

has the highest target illumination time and spatial resolution (up to 0.25m)

with smallest swath size (4Km (width) x 3.7Km (length)), compared to the

SpotLight (spatial resolution up to 2m: 10km (width) x 10km (length)) and
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Envisat-ASAR’s Image (spatial resolution 6 30m: 100km (width) x 100km

(length)) acquisition mode.

Figure 12: (A) Footprints of Envisat-ASAR image mode (red), TerraSAR-X high res-
olution spotlight mode (blue) and TerraSAR-X staring spotlight mode
(green). (B),(C) and (D) show the screen shorts (covering an area of
intensively managed grassland in Ireland) of these three modes respec-
tively.

In relation to precision farming, or to monitor the variations within and

between the paddocks, very high spatial resolution data are required. Ad-

ditionally, a dense time series can be used to detect events such as mowing

in managed grasslands (Schuster et al., 2011), and vegetation phenological

development (Lopez-Sanchez et al., 2012). To date most precision agricul-

ture has relied on optical data from satellites, aircraft and unmanned aerial

vehicles, acquired at a sub-metre resolution.

Spaceborne SAR data are available in different polarizations–orientation

of the signal sent and received by the antenna–i. e., VH (vertically emitted

and horizontally received, also called cross-polarized channel), HV (hor-
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izontally emitted and vertically received) and HH/VV (horizontally/ver-

tically emitted and horizontally/vertically received, also called like or co-

polarized channels). SAR sensors are designed to acquire data in different

polarization modes e. g., single polarized (one channel: HH or VV or VH

or HV), dual polarized (two channels: HH-VV or HH-VH or HH-VH) and

fully polarimetric (four channels: HH-VH-HV-VV) mode. SAR fully polari-

metric data have the ability to fully decompose the target. Conventional

SAR data acquisition modes record data in one or two (single or dual) chan-

nels; while in the case of fully polarimetric SAR acquisition the measure-

ments are carried out in all four channels. Fully polarimetric data has the ca-

pability to identify the different scatters based on the discrimination of dif-

ferent scattering mechanisms (Lee and Pottier, 2009). The first spaceborne

fully polarimetric SAR sensor SIR-C/X-SAR was launched in 1994 and

the current generation of operational spaceborne fully polarimetric SAR

sensors includes: RADARSAT-2 (Canadian C-band sensor, 2007-present),

TerraSAR-X (German X-band sensor, 2007-present) and ALOS PALSAR-2

(continuation of ALOS PALSAR-1, Japanese L-band sensor, 2014-present).

SAR polarimetric data has been available since the early 1980s, but the

studies related to SAR polarimetry have only been reported in the litera-

ture in recent years. One potential reason for this could be the complexity

of the SAR polarimetry theory and processing. Smith and Buckley (2011)

carried out a comparative analysis of Radarsat-2 and Landsat-5 TM for

the classification of cultivated crops, summer fallow, improved and native

grassland. Even though the classification accuracy for Radarsat-2 (kappa:

0.65) was less than Landsat-5 TM (kappa: 0.81) due to the backscattering
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similarities between native and improved grasslands, it was still able to

successfully discriminate the cultivated crops from grasslands. In another

study Dusseux et al. (2014) reported a contradictory findings where SVM

classification results of fully polarimetric Radarsat-2 (accuracy: 98%) out-

performed the optical (SPOT-5, Landsat-5 TM, accuracy: 81%) data. More-

over, a recent study by Schuster et al. (2015) shows that with the high

spatial and temporal resolution SAR data can produce results (TerraSAR-

X: 91.1%) comparable to high resolution optical data (RapidEye: 91.7%) to

classify different grassland types.

In addition to monitoring and mapping, polarimetric data have the ca-

pability to monitor grassland related management practices. For example,

Voormansik et al. (2013) used a TerraSAR-X dual polarimetric SAR time se-

ries to detect the grassland cutting practices, and showed the potential of a

SAR polarimetry approach to distinguish among standing grass (Figure 13

(a, b)), when the grass was cut (Figure 13 (c)) and after it had been collected

from the field (Figure 13 (d)).

In SAR polarimetry, tests on different data fusion approaches–e. g., multi

angle and multi frequency data fusion–have been reported in the literature.

Buckley and Smith (2010) used a combination of multi angle Radarsat-2

quad-pol for grassland classification, and improved classification results

(SVM: 80%) were achieved compared to the individual incidence angle. In

another study, Metz et al. (2012) tested a multi frequency (X and C-band)

approach to discriminate the Natura-2000 and high nature value habitats

based on the Maximum-Entropy principle, and the highest accuracy was

achieved with combined use of a TerraSAR-X and Radarsat-2 time series.
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Figure 13: Top row: H2α entropy/mean scattering alpha angle distribution plots
of 19 June (a), 11 July (b), 2 August (c), and 24 August (d). Black arrows
indicate the two-way movement after the grass was cut and after it was
collected, Bottom row: Photographs taken on 18 June (a), 11 July (b), 1

August (c), and24 August (d) [Source: (Voormansik et al., 2013)].

The use of SAR data with different configurations (e. g., multi-frequency,

multi-angle, different polarizations and acquisition modes, high spatial res-

olution) have the great potential for grassland monitoring and biophysical

parameters retrieval applications.

In this paper the potential of repeat-pass synthetic aperture radar inter-

ferometry (InSAR) over intensively managed pastures is investigated. The

highest resolution spaceborne SAR data available from the TerraSAR-X

Staring Spotlight (TSX-ST) and a time series of images over a 12 month

period was acquired. Initial findings show the possibility of detection of

changes due to grass growth, grazing and mowing events by using inter-

ferometric coherence information. But it is not possible to automatically

categorize these changes only based on the SAR backscatter and coherence,
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due to the ambiguity caused by the tall grass laid down due to the wind.

Figure 14 shows the graphical abstract of this paper.

TerraSAR-‐X	  

SAR Time Series 

Preprocessing 

Doppler	  Adjustment	  

All	  possible	  
interferometric	  pairs	  

genera;on	  

Loop  DEM	  
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coherence	  
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Figure 14: Graphical abstract of this paper: Ali, I.; Barrett, B.; Cawkwell, F.; Green,
S.; Dwyer, E.; Neumann, M.; 2016, "Modelling managed grassland biomass
estimation by using multitemporal remote sensing data—a machine learning
approach", Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, IEEE. [Submitted (IF: 3.026)]
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Limitations Of Repeat-Pass TerraSAR-X

(Staring Spotlight Mode) InSAR Coherence To

Monitor Pasture Biophysical Parameters

Iftikhar Ali, Brian Barrett, Fiona Cawkwell, Stuart Green, Edward Dwyer,

and Maxim Neumann, Member, IEEE

Abstract

This paper describes the potential and limitations of repeat-pass synthetic aperture radar interfer-

ometry (InSAR) to retrieve the biophysical parameters of intensively managed pastures. We used a

time series of 8 acquisitions from the TerraSAR-X Staring Spotlight (TSX-ST) mode. The ST mode

is different from conventional Stripmap mode therefore we adjusted the Doppler phase correction for

interferometric processing. We analysed the three interferometric pairs with an 11-day temporal baseline,

and among these three pairs found only one gives a high coherence. The results show that the high

coherence in different paddocks is due to cutting of the grass in the month of June, however the

temporal decorrelation in other paddocks is mainly due to the grass growth and high sensitivity of the

X-band SAR signals to the vegetation cover. The coherent paddocks show a good correlation with SAR

backscatter (R2
dB = 0.65, p < 0.05) and grassland biophysical parameters (R2

Height = 0.55, p < 0.05,

R2
Biomass = 0.75, p < 0.05). It is thus possible to detect different management practices (e.g., grazing,

mowing/cutting) using SAR backscatter (dB) and coherence information from high spatial, short baseline

X-band imagery, however the rate of decorrelation over vegetated areas is high.
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Index Terms

Biophysical parameters, TerraSAR–X Staring Spotlight, interferometry, managed pastures, InSAR

coherence.

I. INTRODUCTION

Grasslands are one of the most prevalent and widespread land cover vegetation types, covering

31.5% of the global landmass [1]. After forests, grasslands are the largest terrestrial carbon sink

[2] and, as such, play a vital role in regulating the global carbon cycle [3]. Most of the earth

observation studies on grasslands have been based on optical imagery for various applications

e.g., classification [4], biomass [5], conservation status [6] and growth rate [7]. But in recent

years, after the launch of high-resolution spaceborne SAR sensors like TerraSAR-X (X-band

German SAR sensor launched in 2007) and COSMO-SkyMed (X-band constellation of four

Italian satellites launched in 2007 to 2010), new investigations on grasslands using SAR data

regarding mapping [8], monitoring management strategies [9] and parameter retrievals [10] have

been reported in the research literature.

SAR being an active sensor, has an advantage over optical sensors of acquiring data in nearly

all-weather conditions irrespective of day or night. Space borne synthetic aperture radar inter-

ferometry (InSAR) is being used for various applications e.g., monitoring landslides, subsidence

and deformation [11]. This domain of InSAR is very rich and has been studied in detail over

different regions using data from different sensors for more than 25 years, especially after the

launch of the ESA satellite ERS-1 in 1991. The interferometric coherence, or correlation, serves

as a quality measure for interferometric phase variation. The coherence is dependent on multiple

factors such as: temporal decorrelation, SAR processing, signal to noise ratio, co-registration,

volume decorrelation and baseline decorrelation [12]. Two geophysical decorrelation terms,

the volumetric and temporal coherence [13], are especially important for parameter retrieval

applications and are under active investigation [14].

The literature suggests that, with the development and availability of spaceborne SAR data

with improved spatial and temporal resolution recent studies have investigated various aspects

of grasslands, for example, management [9], [15], soil moisture [10], [16] and classification

[8]. Before that, in 1999, Hill et al. [17] conducted a very detailed experiment on grassland

biophysical properties using SAR backscatter calculated from multi-frequency (C, L and P band)
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and multi-polarized (HH, HV and VV) airborne (JPL/NASA airborne imaging system) SAR data.

Significant relationships were formulated between the measurement of grass height and the SAR

backscatter, demonstrating the potential that might be offered with repeat-pass satellite imagery.

Interferometric coherence is affected by the physical changes of vegetation and ground prop-

erties that occur between the acquisition times, a phenomenon known as temporal decorrelation

[18]. Studies [19], [20] show that for both SAR interferometry and polarimetric SAR interfer-

ometry [21] temporal decorrelation is one major limitation [18] which increases with shorter

wavelengths [13].

In 2014 TerraSAR-X activated a new acquisition mode, staring spotlight (ST) has a longer

target illumination time and high spatial resolution (up to 25cm), compared to the high-resolution

spotlight (SL) mode (up to 1m). This high spatial resolution is achieved at the cost of spatial

coverage, with staring spotlight mode spatial coverage of approximately 4Km (width) x 3.7Km

(length), compared to the SL which covers 10Km (width) x 5Km (length). TerraSAR-X has an

11-day repeat cycle and is suitable for repeat-pass SAR interferometry analysis. The ST mode is

very different from the conventional stripmap mode as the antenna beam keeps staring/focusing

at the same ground target for a longer period of time (called target illumination period), which

result in very high spatial resolution.

To the best of our knowledge there is no study reported in the literature on the application

of repeat-pass SAR interferometry on managed grassland/pasture to evaluate its potential to

monitor biophysical parameters. A recent investigation by Morishita and Hanssen [14] on pasture

using repeat-pass multi-frequency SAR interferometry is to analyse and develop a temporal

decorrelation model, however no work has been done on the retrieval of grassland biophysical

parameters and management practices using spaceborne SAR interferometry. Other studies on

grasslands [22] and crops [23] using X and C-bands are based on Tandem mode SAR acquisitions

where the temporal baseline is very short allowing high coherence to be achieved. Mostly the

interferometry analysis on vegetation, especially on crops and grasslands, are undertaken either

by using longer wavelengths or with Tandem mode–data acquisition from a sensor constellation.

The results presented here are based on the highest spatial resolution available from a space-

borne SAR sensor. In this experiment we have tested the behaviour of SAR interferometric

coherence against the biophysical parameters (height, biomass) of intensively managed pastures

and SAR backscatter values. The objective of this study is to investigate the potential and lim-
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itations of repeat-pass TSX–ST interferometry to retrieve biophysical parameters of intensively

managed grasslands and detection of management practices.

II. MATERIALS AND METHODS

A. Study site

The study area covers a Teagasc (Irish Agriculture and Food Development Authority) research

farm located in the south of Ireland (50° 07
′

N, 08° 16
′

W). The Teagasc Curtins Research Farm

covers an area of 48ha and has a primary focus on sustainable pasture-based dairy systems,

grassland and grazing management. The area has a temperate climate where annual mean

temperature ranges from 9.4–10.1 °C, while the annual rainfall varies between 854 and 1208

mm.

B. TSX-ST time series

A time series of TerraSAR-X’s newly launched ST mode was acquired from June to November

2014 with a total of 8 acquisitions ([format = acquisition#: ddmmyy] 1: 080614, 2: 190614,

3: 110714, 4: 220714, 5: 020814, 6: 240814, 7: 150914, 8: 090914). All acquisitions have the

same specifications (wavelength (λ) = 3.1 cm, incidence angle (θ) = 41.09°, orbit/dir = 147/Asc,

polarization = HH, critical baseline = [-15270.66, 15270.66]).

C. In-situ data

Intensive field campaigns were planned on the day of each SAR acquisition in order to collect

the grassland height (cm) and soil moisture. The grassland biomass (kg DM/ha) was collected

every Monday throughout the 6 month period and SAR acquisitions were planned either on a

Monday or close to a Monday. For paddock biomass estimation, a strip of grass (approximately 1

meter wide and 3.5 meter long) was cut and dried for grassland dry matter (DM) calculation. Soil

moisture was measured using a Stevens Hydra Probe II (Seyfried and Murdock, 2004) sensor

connected to a hand-held reader or PDA to record the measurements. The Hydra Probe has a

reported accuracy of ±3% soil moisture. An A4 size paper was placed on top of the grass and

by using a ruler the height of the paper was taken. For each of the 33 paddocks 12 samples were

collected in order to have a mean grass height of the plot (see Figure 1). Digital photographs

were also taken of each paddock for the purpose of cross validation and analysis.
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Figure 1: Ground truth data collection methods for grassland (A) biomass, (B) soil moisture and

(C) height measurements.

III. METHODOLOGY

SAR processing for σ0 [dB]: The TerraSAR-X ST time series data was received as a L1A

product in single look complex (SLC) format. After standard preprocessing steps (multi-looking,

co-registration and multi-temporal filtering) geometric and radiometric calibration was performed

to get the backscatter coefficient values of σ0 (dB), which were geocoded to the Irish Transverse

Mercator (ITM) projection.

SAR interferometry processing: For interferometric processing we used the JPL/Caltech SAR

interferometric tool ISCE (InSAR Scientific Computing Environment) developed by JPL and

Stanford University. The acquisition geometry of the SAR Staring Spotlight mode is different

from the Stripmap mode, therefore Doppler rate corrections were implemented as demonstrated

by Eineder et al. [24]. These modifications of Doppler rate correction were integrated into the

ISCE tool in order to support the TSX–ST mode interferometric processing. Another critical

component is the temporal separation between the acquisitions, which is very important for

vegetated areas. The volumetric decorrelation has to be taken into account due to the presence of

a perpendicular baseline component between the satellites and a vertical distribution of scatterers

[11], [25]. Figure 2 shows the details of the implemented scheme.

All 28 possible interferometric pairs were generated, and the SRTM digital elevation model

of 30 meters resolution was used to calculate and remove the topographic phase. For each pair,

flattened interferometric coherence and phase were calculated for further analysis.
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Figure 2: InSAR processing workflow scheme.
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Figure 3: Relationship of calculated coherence with backscatter value, grass height and biomass

of three SAR interferometric pairs with 11 days baseline (black = 080614_190614, red =

110714_220714 and cyan = 220714_020814).

IV. RESULTS AND DISCUSSION

A. Utility of repeat-pass InSAR time series for investigating grasslands

Wegmuller and Werner [26] have addressed the issue of temporal decorrelation for spaceborne

repeat-pass InSAR over vegetated areas. Studies show that the effect of temporal decorrelation

decreases in the case of TanDEM mode–data acquisition from a constellation of SAR sensors

e.g., TanDEM-X, ERS-1/2 and COSMO-SkyMed–SAR acquisitions [22], [27], due the very short

temporal baseline. The temporal baseline for all 28 pairs of ST data has a range from 11 days

to 154 days. Due to the rapid temporal decorrelation over vegetated areas, it was decided to use

only the three pairs with the 11-day temporal baseline.

The X-band SAR signals are scattered back to the antenna by the upper canopy component,

due to their shorter wavelength (3.1 cm) which cannot penetrate through the canopy layer. Due

to this sensitivity of the X-band signal to vegetation cover, the decorrelation rate is extremely

fast especially during the growing season. In the case of 11-day repeat-pass (110714_220714

and 220714_020814) the correlation between interferometric coherence, the observed parameters

(grass height and biomass) and SAR backscatter values is very low as shown in Figure 3.

However, the pair 080614_190614 shows a large variation and spread compared to the other

two pairs as shown in Figure 3. In this case a high correlation (R2 = 0.52, p < 0.05) between

InSAR coherence and SAR backscatter values is observed. For the grass height and biomass,

correlation values are low (p > 0.05) but the spread of the scatter plot is wider in comparison to
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110714_220714 and 220714_020814. A detailed investigation is performed in order to understand

this behaviour and the variation in the 080614_190614 InSAR pair.

B. Inter and intra paddock variations

Due to the shorter wavelength, the X-band signals are very sensitive to small changes in

vegetation cover, especially during the growing season when grass grows, and the rate of change

of coherent sum of the scatterers in the resolution cell is very high. Figure 4 shows the temporal,

as well as the intra- and inter-paddock, variation of the X-band signals for four adjacent grassland

paddocks. Grassland paddocks (9 and 15) with short grass height during the first acquisition

(080614) (mean height: 2–4 cm) can be distinguished from paddocks 8 and 12 with tall grass

(mean height: 25–35 cm). It is evident that in paddocks 9 and 15 the backscatter values in

080614 decreased in the later acquisitions (190614 and 110714) due to the grass growth. This

variation is one of the main reasons that led to the high temporal decorrelation over most of the

vegetated areas.
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12 
15 

Figure 4: Transect based (black line) backscatter scatter profile of four paddocks extracted

from colour composition of TerraSAR-X staring spotlight mode acquisitions (red=080614,

green=190614, blue=110714).

Figure 5 (A) shows an example where the highest correlation over grassland area is observed

in the first InSAR pair (080614_190614), and complete decorrelation occurs in all other InSAR

pairs except for the roads and urban structures. The potential reasons for decorrelation of the other

two 11 days InSAR pairs are discussed in the next section. The analysis was originally performed

on all pairs, but the results are not shown here, as decorrelated data do not contribute to pasture
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biophysical parameters retrieval. For this study, we considered the coherent pair 080614_190614

for further analysis in order to retrieve the biophysical parameters.

C. Detailed analysis of 080614_190614 pair

1) Change in SAR backscatter and its relation to coherent/non-coherent plots: Grassland

paddocks with short grass height (low biomass) show higher backscatter (dB) because short grass

(or paddocks after mowing) have less diffuse scattering compared to the tall grass, especially in

the case of the X-band sensors, where signal backscatter mainly comes from the vegetation top

canopy layer.

In the case of managed grasslands, the coherent grassland plots follow three types of backscat-

tering patterns:

I High coherence is observed with no change in the mean backscatter (dB) value between the

two acquisitions over some plots where, in both acquisitions, a high proportion of each plot

is bare or sparsely vegetated (i.e., paddock: 4 and 9, an example of paddock 4 is shown in

Figure 5 (B) and Figure 5 (C)).

II High coherence is also observed over the areas where the change in the mean backscatter

is more than 2 dB (similar to the findings reported by Wegmuller and Werner [26]). This is

due to the presence of short grass height and gradual growth (i.e., paddock: 15, 16, 17, 20,

22, 23, 24, 27 and 28, as an example see paddock 16 and 17 in Figure 5 (B) and Figure 5

(C)).

III Similar to the coherent paddocks (where mean backscatter (dB) is > 2 dB), comparatively

less coherent plots (i.e., paddock: 29, 30 and 31) follow the similar pattern where the mean

change in backscatter is less than 2 dB. Paddock 31 is more coherent than 29 and 30 due

to the short grass height (as shown in Figure 5 (B)).

Some paddocks (i.e., 2 and 5) are not coherent but still have a change in the mean backscatter

of more than 2 dB. This ambiguity is due to the fact that the grass in the first acquisition

(080614) was tall but lying horizontally due to the wind (see Figure 5 (C)). There is however

a high backscatter value in the second acquisition (190614) due to the short grass height (after

mowing). Similarly in the case of paddock 6, 7 and 8, the difference in backscatter value is due

to the gradual grass regrowth (or short grass height in second acquisition as compared to the

first).
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Figure 5: (A): A single baseline interferometric phase (flattened) of three 11 day temporal

baseline pairs. (format: ddmmyymaster_ddmmyyslave). (B): InSAR phase (flattened) for pair

080614_190614. Polygons with their number show the plots analysed in this study. Grass plots

with white boundaries represents the coherent plots while the plots with black boundaries are

non-coherent plots. (C): In each plot (and inset photograph) the blue colour represents the master

(080614) and the red colour represents the slave (190614) image. The dark blue lines (080614)

and the red lines (190614) represents the mean value of each band, while the dotted black line

represents the zero reference. The gray histogram represents the absolute value of the difference

between the two acquisitions abs(080614−190614) for each plot. (D): Example of coherent patch

from the pair 110714_220714. (E): Example of coherent patch from the pair 220714_020814
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Figure 6: Relationship between calculated coherence with backscatter value (dB) [left], height

(cm) [middle] and biomass (kg DM/ha) [right]. Black color represents all the plots, blue points

represent the non-coherent plots (plots with black boundaries in Figure 5 (B)) and green points

represent the coherent plots (plots with white boundaries in Figure 5 (B)).

The different sources (anthropogenic and natural) of decorrelation are thus due to:

i grass growth (i.e., paddock: 6, 7, 8, 11, 12, 13 and 26),

ii grazing (i.e., paddock: 18, 21 and 25), and

iii mowing event (i.e., paddock: 1, 2 and 5)

It can be concluded that from looking at the SAR backscatter only it is not possible to

identify the nature of management practices (and/or changes), however by combining both SAR

backscatter change and the level of coherence we can identify the type of event that has occurred.

For example plot 16 and 17 show a similar change in dB, but 17 is not as coherent as 16 (see

Figure 5 (B) and 5 (C)).

We further investigated the reasons as to why the other two 11 day InSAR pairs decorrelated

completely except in a few areas. Based on the intensive field validation data it was found that

during the month of June most of paddocks are cut for silage, which led to the high coherence

due the presence of bare soil and short grass height after cutting. In Figure 5 (A) the InSAR pair

080614_190614 shows that there are many fields outside the study site where high coherence is

also achieved due to the silage cut, but in the later acquisitions the InSAR pairs 110714_220714

and 220714_020814 the same fields were decorrelated due to grass growth and high biomass

value. For example, in pair 110714_220714 (red inset box in Figure 5 (A)) the upper part is

decorrelated due to low backscatter values (or high biomass/grass) while the lower part is coherent
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due to the high backscatter value (or low biomass/grass), as shown in Figure 5 (D). Similarly in

the other pair with 11 days temporal baseline (220714_020814) an example (yellow inset box

in Figure 5 (A)) of a coherent patch is shown. These are crop fields where high coherence is

due to cutting by the second acquisition and a mean change in SAR backscatter value is more

than 2 dB, Figure 5 (E) shows the low backscatter in the first acquisition (220714) and high

backscatter in second acquisition (020814).

2) Relationship between InSAR coherence and grassland biophysical parameters 080614_190614:

For the retrieval of grassland biophysical parameters using SAR interferometric coherence, based

on the visual assessment the plots under investigation were divided into three groups: (i) all plots

shown in Figure 5 (B), (ii) non-coherent plots (plots with black boundaries in Figure 5 (B)) and

(iii) coherent plots (plots with white boundaries in Figure 5 (B)). For each group the relationship

of InSAR coherence with the backscatter (dB), grass height (cm) and biomass (DM kg/ha) is

discussed.

• Coherence versus backscatter: SAR backscatter and interferometric coherence show a good

correlation (R2 = 0.65, p < 0.05) for coherent plots ({G1}: plots with white boundaries) as

compared to the non-coherent plots ({B1}: plots with black boundaries, (R2 = 0.07, p >

0.05)) and the combination of both ({R1}: all plots, (R2 = 0.52, p < 0.05), see Figure

6). The high correlation in case of {R1} is due to the inclusion of {G1}. As discussed in

the previous section, it is evident that the absolute change in backscatter values in coherent

plots is more than 2 dB, which leads to the high correlation between InSAR coherence and

SAR backscatter values for these plots.

• Coherence versus height: Figure 6 {R2} shows that the coherence and absolute values

of change in grass height have a very low correlation for the non-coherent plots (Figure 6

{B2}). In the case of coherent plots a reverse behaviour is observed (R2 = 0.55, p < 0.05).

The reason for this trend is due to the fact that if the change in canopy height is less than 10

cm (or in case of coherent areas/plots) they will either have a constant or increasing trend

of height (see Figure 6 {G2}). As soon as height starts increasing above the threshold of

10 cm, the coherence will also start decreasing. Similar findings can also be seen in other

studies that have been done on grasslands [22] and crops [27].

• Coherence versus biomass: Coherent plots (Figure 6 {G3}) show a strong relationship

between the coherence and grassland biomass. High values of coherence occur when there
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is low biomass (or less percentage canopy cover), and a gradual decrease in coherence

is due to the increase of biomass (see Figure 6 {R3}, Wegmuller and Werner [26] also

reported the similar findings). For the coherent paddocks, the relationship between the

interferometric coherence and grassland biomass (R2 = 0.75, p < 0.05, {G3}) is stronger

than the relationship with the SAR backscatter (R2 = 0.65, p < 0.05, {G1}) and grassland

height (R2 = 0.55, p < 0.05, {G2}).
In addition to detecting management practices over intensively managed grassland pastures, the

interferometric coherence calculated from high resolution spaceborne data has a great potential

to retrieve pasture biomass and height. High coherence over the paddocks cut for silage during

the summer season is an important finding especially in terms of calculating carbon budget, as

these paddocks show good correlation with the biomass and grass height. The SAR backscatter

is an important parameter that can be used in combination with the interferometric coherence in

order to determine the type of change that has happened on ground that led to the high or low

interferometric coherence.

The SAR backscatter is strongly linked (or responds) to the temporal developments in vege-

tation, similarly interferometric coherence is very sensitive to the changes in the resolution cell

especially for a large temporal baseline over vegetated areas. The effect of temporal decorrelation

is minimized in the case of InSAR tandem acquisitions.

This investigation was performed on a single farm with very high quality ground truth data

and very high resolution spaceborne SAR time series. It is, however, very clear that in order to

test the robustness over different vegetation types, this approach must be further investigated on

a larger scale including more auxiliary data (e.g., soil moisture, climate variables)

V. CONCLUSION

In this study we used a very high resolution TerraSAR-X ST time series. Due to the fact

that ST acquisition geometry is different from the conventional SAR stripmap mode, geometric

and Doppler related adjustments were implemented and later integrated into the ISCE tool.

SAR interferometric coherence and phase were calculated for all combinations of baselines.

For the detailed analysis we selected three InSAR pairs with an 11-day temporal baseline

(080614_190614, 110714_220714 and 220714_020814). For the InSAR pairs 110714_220714

and 220714_020814 the values of correlation between the interferometric coherence and the

218 sar interferometry of grasslands



14

grassland biophysical parameters were very low, the primary reason for this is due to the de-

correlation caused by the grass regrowth after the silage was cut. Initial findings from the June

pair show the possibility of change detection due to the grass growth, grazing and mowing events

by using InSAR coherence information. However, it is not possible to automatically categorize

different paddocks undergoing these changes based only on the SAR backscatter and coherence

values, due to the ambiguity caused by tall grass flattened by the wind. Decorrelation over

vegetated areas is a very complex and dynamic process which is influenced by many factors, but

where there is coherence there is also a good correlation with height and biomass. The lack of

coherence suggests that the X-band wavelength is too short, and therefore affected by even minor

grass growth, causing decorrelation of the signal. This study concludes that, for X-band SAR

interferometry even an 11 day temporal baseline is too long for grassland biophysical parameter

retrieval, except for the fields with short grass height or during the cutting season when the grass

is cut for silage.
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Drawing general conclusions about your main weaknesses can provide a great

stimulus to further growth.

— Alexander Kotov

Monitoring grassland and pastures from space using imag-

ing satellites is becoming more and more feasible due to im-

proved spatial, temporal and spectral resolution. A review

of published studies on grassland suggests that the remote sensing commu-

nity and agronomists are increasingly working together in order to utilize

the potential of remote sensing technologies, with the aim of developing

real time decision support systems. Consistent and regular monitoring of

the world’s second largest terrestrial ecosystem is not only important for

225



226 summary, conclusion and future research

the grazing industry, but also for the environment where grasslands play a

crucial role in regularization of the carbon cycle.

The work presented in this thesis investigates the use of optical and radar

time series to estimate the grassland biomass using both statistical linear

regression and state of the art machine learning algorithms. More than 80%

of agricultural land in Ireland is grassland, providing a major feed source

for the pasture based dairy farming and livestock industry. Intensive grass

based systems demand high levels of intervention by the farmer, with es-

timation of pasture cover (biomass) being the most important variable in

land use management decisions, as well as playing a vital role in paddock

and herd management. In grassland management and the livestock busi-

ness, grazing capacity and intensity are the key factors, and for sustainable

farming need to be monitored consistently in order to optimize the feeding

resources and to avoid grassland degradation.

This dissertation presents a detailed state of the art review of satellite

remote sensing of grasslands, with a comprehensive overview of the global

presence of grassland types and their classification. It is evident from the

literature that the application of very high resolution data for remote sens-

ing based precision agriculture approaches to grassland is now evolving to

the same level of maturity as experienced by arable agriculture. However,

the use of hyper-spectral/temporal (optical) and fully polarimetric (radar)

data for grassland classification and parameters’ retrieval using machine

learning approaches has not been fully explored. New methodological de-

velopments in designing new classifiers and retrieval algorithms are being

explored for grassland related investigations. From an operational perspec-
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tive it can be concluded from this review that in order to enhance the uti-

lization of remote sensing technologies a consensus needs to be reached

before the development of standardized and pre-validated user-friendly

products. These products will help to bridge the gap between remote sens-

ing scientists and farm managers.

Multiple linear regression is one of the most widely adopted modelling

approaches biophysical parameters from satellite and in situ data, but with

growing data volumes new state of the art modelling methods have been

developed to better manage the high dimensionality and non-linearity of

many of the datasets. Artificial neural networks (ANN) are one of the most

commonly used machine learning algorithms which have the ability to

learn from complex patterns in a dataset, and fuzzy logic approaches have

the power to reason and generate rules from the dataset. Adaptive-neuro

fuzzy inference systems (ANFIS) are the integration of both ANN and fuzzy

logic, combining the power of both methods to provide an approach with

improved predictive or approximation ability.

In this study, in situ and satellite data covering 12 years for the Moorepark

and 6 years for the Grange study sites were used to predict grassland

biomass through application of classical multiple linear regression and

state of the art machine learning algorithms (ANN and ANFIS). The results

demonstrate that a dense (8-day composite) MODIS image time series, along

with high quality in situ data, can be used to retrieve grassland biomass

with high performance (R2 = 0.86 p < 0.05, RMSE = 11.07). Due to the

combined features of ANN and fuzzy logic, the ANFIS has the ability to ac-

curately model complex and chaotic systems, and the results concur with
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those of the literature which report a high predictive power of ANFIS com-

pared to the ANN. The ANFIS model allows multiple inputs to produce a

single output, however to achieve a higher level of accuracy a large sample

size from different locations might be required to drive the model, with the

model performance also dependent on the data quality and study design.

The model for Grange was modified to evaluate the synergistic use of

vegetation indices derived from remote sensing time series and the accu-

mulated GDD information. As GDD is strongly linked to the plant develop-

ment, or phenological stage, an improvement in biomass estimation would

be expected, but high quality daily weather data are required to build an

accumulated GDD profile of the area. Daily minimum, maximum and aver-

age temperature data from an on-site weather station were used to calcu-

late the GDD for the Grange study site. It was observed that using ANFIS

the biomass estimation accuracy increased from R2 = 0.72 (p < 0.05) to

R2 = 0.81 (p < 0.05) (12.5% improvement) and root mean square error

reduced by 2.72%, however for large scale mapping spatially distributed

sampling of weather data is required in order to minimize the effects of

different climatic zones. A key point here is that the satellite data alone is

showing very good prediction of the biomass and including GDD, growth

rate estimates were only marginally improved (3.95%). It is important to

highlight that satellite driven VI are very powerful input features, and the

use of VI derived from high resolution imagery might produced an im-

proved estimation as with the inclusion of GDD.

The work on optical remote sensing data was further developed us-

ing a TerraSAR-X Staring Spotlight mode time series over the Moorepark



summary, conclusion and future research 229

study site to explore the extent to which very high resolution SAR data

of interferometrically coherent paddocks can be exploited to retrieve grass-

land biophysical parameters. After filtering out the non-coherent plots it is

demonstrated that interferometric coherence shows a good correlation with

backscatter (dB) value, height and biomass, and that it is possible to detect

changes due to the grass growth, and grazing and mowing events, when

the temporal baseline is short (11 days). However, it not possible to auto-

matically uniquely identify the cause of these changes based only on the

SAR backscatter and coherence, due to the ambiguity caused by tall grass

laid down due to the wind. This study provides a detailed investigation of

managed grasslands where the management practices and biophysical pa-

rameters are known at a paddock scale. This was for one pair (out of three

pairs with 11 days temporal baseline) only and more work is needed to

determine the consistency of these results. But it highlights the limitations

caused by the short wavelength X-band SAR and a large temporal baseline:

I Interferometry coherence loss over vegetative areas due to temporal

and volumetric decorrelation

II P, L and C band wavelengths (which are used for soil moisture and

forest monitoring due to their canopy penetration and reflection from

trunks) are strongly backscattered from the soil in grassland areas due

to the short height and thin structure of the vegetation. This has been

shown in various studies done on wetlands where the signal pene-

trates through the vegetation cover and reflects from the water layer

underneath
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III The repeat-pass interferometry over vegetated areas using short wave-

lengths is a challenging task. Decorrelation rates over vegetated areas

are very high, therefore most of the InSAR pairs were decorrelated. As

far an optimum temporal baseline is concerned, for interferometric

analysis over vegetated areas, SAR acquisitions in tandem mode are

recommended.

Overall, the work presented in this dissertation has demonstrated the po-

tential of dense remote sensing time series to predict grassland biomass in

intensively managed enclosed systems, using machine-learning algorithms,

where high quality ground data were available for training. At present a

major limitation for national scale biomass retrieval is the lack of spatial

and temporal samples, which can be partially resolved by minor modifi-

cations in the existing PastureBaseIreland database by adding the location

and extent of each grassland paddock. As far as weather data is concerned,

in Ireland data from 25 well-distributed weather-observing stations (Met

Éireann) are available and are sufficient for the proposed methodology,

however it cannot be known whether these data will have the same im-

pacts for other locations as they did for Grange. In future, with an increased

availability of in situ samples and a higher spatial and temporal resolution

of optical imaging systems, this strategy should generate more robust esti-

mates of grassland biomass at a national scale. The InSAR approach is fea-

sible if there are enough coherent interferometric pairs available, however

this is difficult to achieve due to the temporal decorrelation of the signal. In

future InSAR pair acquisition in Tandem mode will minimize the tempo-
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ral decorrelation over vegetation areas, however due to multiple sources of

decorrelation, high quality ground truth data will be required for corrected

interpretation and identification of the changes in the field. The proposed

approaches complements the current paradigm of Big Data in Earth Obser-

vation, and illustrates the feasibility of long term remote sensing and a high

quality field measurements to retrieve grassland biomass and growth rate.

In future, this framework can be used to prototype an operational decision

support system for retrieval of grassland biophysical parameters based on

data from long term designed missions such as Landsat and Sentinel.

The key highlights of the findings of this thesis are:

• Until recently, the use of optical remote sensing data was dominant,

but after the launch of very high resolution spaceborne SAR sensors

(TerraSAR-X, TanDEM-X, COSMO-SkyMed, Advanced Land Observ-

ing Satellite (ALOS)-2 and RADARSAT-2) the investigation of grass-

lands using SAR data have increased. More dedicated and detailed

investigations on grasslands using fully polarimetric SAR and hyper-

spectral optical data are yet to be studied.

• Remote sensing time series data along with high quality ground mea-

surements can be used for grassland biomass estimates using state of

the art machine learning algorithms, and ANFIS was used for the first

time for biophysical parameters retrieval.

• An improvement in biomass and growth rate retrieval was observed

with the fusion of remote sensing and GDD derived from weather

data.
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• The repeat-pass InSAR coherence approach has the potential to re-

trieve grassland biophysical parameters. However, due to the rapid

temporal decorrelation over vegetated areas it is not recommended

to use repeat-pass InSAR for reliable monitoring. Instead, SAR acqui-

sitions in Tandem mode with a shorter temporal baseline are more

feasible for consistent monitoring.

6.1 future research

There are many different methods to monitor and retrieve grassland bio-

physical parameters. The ground-based methods (i.e., land survey) are

mostly feasible for small scale studies and assessment. But for the large

scale, and consistent monitoring and assessment, the most feasible approach

seems to be monitoring from space by using imaging satellites Wulder and

Coops (2014).

Currently many space borne satellites are in operation and others are in

the planning or commissioning phase; which means that huge amount of

datasets from various sources (optical, SAR, InSAR, LiDAR, in-situ observa-

tions) are currently or will be available in the future. Furthermore, the size

of this data is expected to increase exponentially in future. According to

an IBM report 90% of data today we have in this world has been produced

in last 2-3 years1. Today’s world has entered into the age of "big-data" and

Earth Observation datasets are an example of this. Different space agencies

are producing various types of remote sensing data sets, both raw imagery

1 http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html


6.1 future research 233

and derived products, that can be used for the regional and global scale

monitoring of large ecosystems like grasslands, forests and water.

In order to properly utilize the upcoming influx of remote sensing data,

computationally cost effective, reliable and reproducible frameworks are

essential. The main challenge for this research will be to formulate a work-

flow that can be used to integrate the data from different sources (SAR, op-

tical, SMAP, Sentinel, Lidar and in-situ) in order to retrieve the biophysical

parameters of grasslands. The focus of future research could be to investi-

gate the potential of a data assimilation approach to answer the following

key questions:

I Does a data assimilation approach provide a feasible mechanism for

multi-source data integration that can improve the retrieval of grass-

land biophysical parameters (growth rate, biomass, and anomalies)?

II How will the climate change affect the relationship between soil mois-

ture and grassland’s carbon stocks? In this step the soil moisture prod-

uct from NASA’s newly launched satellite missions, Soil Moisture Ac-

tive Passive (SMAP) and the European Space Agency’s Soil Moisture

and Ocean Salinity (SMOS) can be used into the data assimilation

model as a proxy in order to analyse their contributions for parame-

ter retrieval.

Climate change dominated the G7 agreement in Germany and global in

Paris summit in 2015 as world leaders backed a full de-carbonisation vision

acknowledging that the world needs to deliver "decarbonisation of the global
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economy over the course of this century"2. Grasslands, forests and crop lands

play a crucial role in the regulation of the global carbon cycle (see Chapter 1

Table 1 for details). The use of remote sensing technology for regional to

global biomass estimation of different vegetation types (grasslands, forests,

crop lands) has been in operation for many years; and lot of research has

been done on methodologies and implementations.

With the passage of time and availability of new satellite data (with im-

proved spectral, spatial and temporal resolution) and development in com-

puting and modelling approaches the methods for grassland (or biosphere)

biophysical parameters retrieval have evolved and improved in terms of

accuracy and computational stability. Apart from carbon regularization,

grasslands are of importance for the livestock industry and for that rea-

son the need of the hour is to develop more robust and consistent methods

for retrieving grassland biophysical parameters at a large scale from space

and airborne platforms. With the availability of high quality remote sensing

data new and more robust methods/algorithms have been developed and

the methodological approach is now shifting from linear regression mod-

els to non-parametric (machine learning) models (SVM, ANN, RF, SGB)

for their ability to better learn the patterns from the highly complex and

non-linear data/features.

Each remote sensing acquisition technique (optical and radar) has advan-

tages and disadvantages. The proposed approach of data assimilation (or

integration) will define a unified mechanism to extract useful information

2 http://www.theguardian.com/world/2015/jun/08/g7-leaders-agree-phase-\
out-fossil-fuel-use-end-of-century

http://www.theguardian.com/world/2015/jun/08/g7-leaders-agree-phase-\out-fossil-fuel-use-end-of-century
http://www.theguardian.com/world/2015/jun/08/g7-leaders-agree-phase-\out-fossil-fuel-use-end-of-century
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from each available data source in order to retrieve the grassland parame-

ters.

Model–Data Fusion or ’data assimilation’ describes the method of combin-

ing as much data as possible from different spatial scales and sources. Data

assimilation techniques such as Ensemble Kalman Filter Evensen (1994),

the Particle Filter Arulampalam et al. (2002); Gordon et al. (1993) or vari-

ational methods like 4D–VAR Courtier et al. (1994) integrates the in-situ

measurements into terrestrial models for an improved description of the

real environmental conditions Montzka et al. (2012), and reduce the predic-

tion uncertainties.

Currently more and more terrestrial observation networks are being in-

stalled in various regions to monitor climate and land-use changes. Net-

works like FLUXNET, the European Integrated Carbon Observation System

(ICOS) and the German Terrestrial Environmental Observatories (TERENO)

are producing huge amount of data streams at different scales. But the

volume of data from satellites is even much more than these terrestrial

monitoring networks. Taking these factors into consideration, in addition

to future needs, a data assimilation approach should be investigated using

ground-based and remotely sensed data.

The potential of data assimilation for grassland parameters, retrieval has

not been explored yet, nor has the inclusion of features derived from re-

mote sensing sensors. The reason for choosing a data assimilation approach

is due to the fact that it has improved capabilities against the inversion ap-

proach as discussed by Rayner (2010):
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• only the assimilation approach allows prediction

• data assimilation reduces the under-determinacy of the inverse prob-

lem Kaminski et al. (2001)

• the data assimilation approach can integrate much more multi-source

and multi-scale data

Indeed the major requirement for the development of any operational

system is the size and quality of dataset. Many new spaceborne missions

are being launched to ensure the long term data availability for future

needs of environmental and ecosystem modelling applications. In the con-

text of Ireland, the following measures are recommended as a first step

towards the development of an operational decision support system for

grassland precision farming from space.

i Due to the complex structure of the PastureBaseIreland database it is

very hard to retrieve and interpret the growing amount of information

stored there. This can be resolved by simple modifications in the data

structure and design, so that this valuable dataset can be used with

remote sensing information.

ii In order to develop an operational decision support system, all the

methods need to be trained, tested and validated at multiple locations

in order to ensure their robustness and transferability. For this process

of validation and calibration, the exact location and extent of all the

farms used in this process is required. It is highly recommended to
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include the geo-referencing and boundary information of the existing

and newly registered farms in the database.

Overall, a data assimilation approach seems the most feasible for vary-

ing spatial scales and variables due to the increasing complexity of models,

observation operators and measurements. The current work can be further

developed by integrating data from high resolution remote sensing sensors

with long term weather data to uncover the influence of extreme weather

events on farm productivity, profitability and future management decisions.

However, a long term goal should be the development of schemes to inte-

grate remote sensing and plant growth models for near real-time forecast-

ing of grass growth, biomass and status. Figure 15 gives an overview of

the roadmap to develop an operational decision support system for farm

management.
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Current status: Grassland biomass and growth rate retrieval using machine learning methods 

Future target/aim: Precision farming from space 
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Use	  of	  mul<source	  high	  resolu<on	  remote	  sensing	  data.	  

Use	  of	  auxiliary	  data	  e.g.,	  weather	  data,	  soil	  type	  and	  soil	  moisture	  

PastureBaseIreland	  database	  could	  easily	  be	  modified	  or	  redesign	  in	  
order	   to	   serve	   the	   purpose	   for	   remote	   sensing	   use.	   The	   modified	  
PastureBaseIreland	   database	   will	   provide	   an	   opportunity	   to	   link	  
remote	  sensing	  observa<ons	  and	  ground	  measurements	  at	  a	  na<onal	  
scale.	  This	  will	  not	  only	  solve	  the	  issue	  of	  spa<ally	  distributed	  sample	  
collec<on,	  but	  also	  will	  provide	  the	  basis	  for	  consistent	  na<onal	  scale	  
monitoring	  mechanism.	  

Mul<source	   data	   assimila<ng	   approach	   to	   integrate	   biomass	   and	  
management	   to	   get	   true	   total	   seasonal	   yield.	   In	   future,	   this	   data	  
driven	  approach	  will	  get	  mature	  and	  more	  robust.	  	  	  	  	  	  	  

Combining	  plant	  growth	  models	  with	  remote	  sensing	  data/products	  to	  
develop	  opera<on	  decision	  support	  system.	  	  

Figure 15: Framework for future work in order to develop operation decision sup-
port system for digital/precision farming from space.
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