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Abstract

Abstract

Wurtzite III-nitride materials and their alloys have attracted significant interest for solid

state lighting applications. This is due to the direct band gaps of InN, GaN, and AlN

crystals, which span a wide range of emission wavelengths. Due to the importance

of these systems, the goal of optimising device performance has been an extremely

active field of research. An important aspect of this is the development of improved

modeling techniques. More recently, an emphasis has been put on understanding the

impact the disordered alloy microstructure has on the electronic structure, however

models focusing on transport properties are less mature. This is in part due to the

challenges of connecting a random alloy description of the underlying microstructure

with transport models.

This thesis addresses this difficult problem by developing and utilizing different sim-

ulation frameworks, focusing on transport properties of (In,Ga)N/GaN quantum well

systems. More specifically, the non-equilibrium Green’s function (NEGF) formalism

has been employed to study ballistic transport in a fully quantum mechanical setting.

This builds on a tight-binding description of the electronic structure which ensures an

atomistic description of the alloy is achieved. Our results indicate that while the alloy

microstructure is of secondary importance for electrons, the transmission of holes is

strongly perturbed by the presence of disorder. This is attributed to the breakdown of

the translational symmetry of the system, which opens up new channels not present

when fluctuations in local alloy content are neglected (using a virtual crystal approxi-

mation).

Moreover, we have developed a new semi-classical multi-scale drift-diffusion model.

This allows simulation of full devices due to a reduced computational demand com-

pared to the NEGF formalism, while still keeping a microscopic resolution and ac-

counting for important quantum corrections. The starting point is again the tight-

binding model, which is used as a foundation to describe the alloy microstructure: A

3-dimensional energy landscape is extracted which includes an atomistic description

of alloy fluctuations, local strain, and local polarization. This can be used as a con-

fining potential for electrons and holes, and quantum corrections can be included in a

numerically efficient manner via the recently developed localization landscape theory.

This landscape, including or excluding quantum corrections, is used to study both uni-

polar electron and hole transport. Our results show that, when quantum corrections

are accounted for, the virtual crystal approximation is again a good approximation for

electron transport, whereas hole transport is reduced due to carrier localization effects

in the quantum well region.

Finally this framework is extended to a ?-8-= junction, where carrier (and thus recombi-

nation) distribution across a multi-quantum well system is studied. This system allows
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Abstract

for a comparison between our in-house model and a commercial software package.

Without including disorder in the alloy microstructure both schemes fail to reproduce

literature experimental results. However, the situation changes when the random alloy

microstructure is accounted for using our newly developed approach: The predicted be-

haviour is consistent with literature experimental results, without changing any other

simulation parameters. These results highlight the importance of the treatment of the

alloy microstructure in simulations, and indicate that our developed framework is an

ideal starting point for modeling III-N systems to understand fundamental properties

and guide device design.
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Background
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Chapter 1

Prologue: From the origins of the
LED to current research challenges

The invention of the light emitting diode (LED) was a many step process which took

decades, and the technology is still being improved today. The first key revelation in

the path towards developing an LED is credited to Henry J. Round for the discovery of

electroluminescence (EL). In 1907, while working on silicon carbide (SiC) rectifiers, he

reported that “the crystal gave out a yellowish light” when a bias of 10 V was applied

to it [6], although this short publication was largely unnoticed until 1969 [7]. In

the 1920s, Oleg Lossev independently discovered EL while driving a current through

rectifiers based on zinc oxide (ZnO) and SiC [8]. During his work he studied the

threshold current at which light emission is observed. He also noted that this light was

not incandescence (as is found in, for example, tungsten filament light bulbs [9]) as the

device was not heating, and instead associated the emission with the inverse process

of Einstein’s photoelectric effect; an overview of Lossev’s achievements is described in

Ref. [10].

Both Round and Lossev worked primarily with Schottky diodes, a connection between

a metal and a semiconductor, whereas the modern LED is based on a so-called ?-=

junction [11]. Russell Ohl of Bell Laboratories who was studying photocells is reported

to have discovered the first ?-= junction in 1939 [12]. A ?-= junction contains two re-

gions, one which has been “=-doped” and one which has been “?-doped” (there is also

a ?-8-= junction which contains an undoped (intrinsic) region sandwiched between the

?- and =-doped regions). =-doping a material “donates” free electrons which can be

used to carry electric current. In contrast, ?-doping “accepts” free electrons. Having

“accepted” electrons is equivalent to the presence of holes, positively charged quasipar-

ticles corresponding to the absence of an electron [13]. Like electrons, holes can also

be used to carry current. The description of electron and hole injection across the ?-=

junction was described by Lehovec et al. in 1951, along with proposing a description of

2
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the valence band and conduction band [14]. This is qualitatively the same description

used today.

The efficiency of the discussed SiC light-emitting devices is limited due to the fun-

damental properties of the material, namely SiC has an indirect1 bandgap [15]. Re-

combination in indirect-gap materials is fundamentally less efficient than direct-gap

materials and, in order to improve the efficiency of LEDs, direct-gap materials e.g. III-V

materials such as gallium arsenide (GaAs) [16] or II-VI materials such as zinc selenide

(ZnSe) [17] are used.

Another significant improvement into the efficiency of these devices was the invention

of the double heterostructure2 and quantum well (QW). These both consist of a (lower

band gap) material being sandwiched between layers of a different material. This

allows the emitted light to have energy lower than the bandgap of the surrounding

material, which means it can not be reabsorbed by the barrier and light can escape the

device more easily (this will be revisited in Section 2.1.2). Double heterostructures and

QWs differ in their width: QWs are narrower such that quantum mechanical effects play

a role [18]. QWs have become a common feature of LED structures being researched

(see Fig. 1.1) and will be discussed extensively in this thesis.

Semiconductor materials composed of group III and group V elements (III-V semicon-

ductors) which contain arsenide and phosphide as the group V element have proved

successful in infrared and red wavelengths [19]. The band gap of a selection of these

binary materials and ternary alloys is shown in Fig. 1.2 (a). For some applications

shorter wavelengths provide technological benefits. For example, when storing data a

shorter wavelengths of light allow for a larger amount of information to be contained

on the same physical size of disk (e.g. Bluray which is read using a blue laser can hold

more data than a DVD which is read with a red laser [20]). Not only this, but in many

displays red, green and blue (rgb) lights are used to form pixels, which can be used to

effectively appear any colour across the visible spectrum. In order to implement this,

efficient red, green and blue emitters are all required. A shorter wavelength corre-

sponds to a higher band gap, and (as can be seen in Fig. 1.2 (a)) the conventional III-V

materials at these band gaps are indirect (for example gallium phosphide (GaP) and

aluminium arsenide (AlAs)). The quaternary alloy aluminium gallium indium phos-

phide (AlGaInP) has been used to extend the wavelength of III-V emitters from red into

orange wavelengths, however this also becomes inefficient if the emission is pushed

into green wavelengths [21].

At the other end of the visible spectrum, in the 1980s there was a competition between

II-VI materials and III-N materials to become the standard for blue lighting; ZnSe had

1In an indirect gap material, unlike a direct gap material, the conduction band minimum and valence
band maximum have differing crystal momenta, which is detrimental for light-emission.

2The “significant improvement” of a double heterostructure won the won Zhores Alferov and Herbert
Kroemer the Nobel Prize in physics in 2000 [18].
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Figure 1.1: Number of publications per year including the phrases “light emitting
diode” and “quantum well” (LED and QW, black) and including the phrases “light emit-
ting diode” and “GaN” (LED and GaN, red) from 1973 to 2022. This figure was gen-
erated using data obtained on 15/11/22, from Digital Science’s Dimensions platform,
available at https://app.dimensions.ai.
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Figure 1.2: In-plane lattice constant vs band gap for a selection of (a) zincblende ma-
terials and (b) wurtzite materials. Filled (unfilled) dots indicate direct (indirect) gap
binary materials. Solid (dashed) lines indicate direct (indirect) gap ternary alloys. Pre-
sented data are the minimum band gap of {�Γ6 , �-6 , �!6 } for each material. The visible
part of the spectrum is shown via colors. Band gap parameters for wurtzite III-N mate-
rials are from Refs. [22,23] with bowing parameters taken from Ref. [24], parameters
for zincblende III-V materials are from Ref. [25] and ZnSe from Refs. [26,27].

much higher crystal quality than gallium nitride (GaN), and was therefore regarded as

the front-runner for blue light emitters [28]. However, the III-N material system has

become the more frequently used. In particular, GaN-based systems are the topic of our

next discussion.
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1.1 GaN-based LEDs

The interest in III-N material systems stems from the wide band gap range (c.f. Fig 1.2 (b))

between InN in the infrared (0.69 eV [22]), GaN (3.51 eV [22]) in the near ultraviolet

(UV) and AlN (6.0 eV [23]) in the UV C part of the spectrum [29]. In particular, as

InN and GaN are either side of the visible spectrum, the alloy (In,Ga)N could emit, in

principle, across the entire visible spectrum, depending on its composition. As a result,

(In,Ga)N devices have been developed targeting myriad applications, including road

signage [30,31], displays [32,33], and photovoltaics [34,35].

III-N materials suffered from a high defect density and poor ?-doping. Amano et al., un-

der the supervision of Akasaki, discovered that a low-energy electron beam irradiation

could activate magnesium dopants, thus solving the ?-doping issue [36]. Later Naka-

mura et al. found that an annealing could be used for the same purpose [37]. Since

these breakthroughs interest in GaN-based LEDs has risen (see clear increase in Fig 1.1

(red) from 1990s onwards). Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura won

the 2014 Nobel prize in physics “for the invention of efficient blue light-emitting diodes

which has enabled bright and energy-saving white light source” [38]. The white light

could be generated by exciting a phosphor with blue light; the output light, a mixture

of blue and yellow, appears white to the human eye [28].

As mentioned, GaN crystals have high dislocation densities. If this density of defects

was present in other III-V materials their efficiency would drastically decrease (see,

for example, Fig. 13 in Ref. [28]). In spite of this, reasonably high efficiency can be

achieved with GaN. This can be explained by the localization of carriers, which allows

carriers to recombine radiatively without diffusing to defects [39]. We shall discuss

localization, along with some other characteristics of III-N devices in the next section.

1.1.1 Localization, Droop and the “Green Gap”

III-N alloys such as (In,Ga)N and (Al,Ga)N have been shown to exhibit strong localiza-

tion effects due to alloy disorder [40–43]. Localization is the confining of electronic

states to small regions of the alloy. In (In,Ga)N alloys this is particularly strong for

holes, which can have a localization length on the order of 1 nm [44]. Apart from

explaining the high efficiency of III-N devices, localization is also the explanation be-

hind a number of physical phenomena associated with III-N alloys and heterostructures

including inhomogeneous broadening of emission peaks [45] and the temperature de-

pendence of the photoluminescence peak energy [46,47].

Thanks to localization effects, LEDs made from III-N materials can have quite high

efficiency at blue and violet wavelengths. We have already mentioned that other

III-V materials emit efficiently in the red wavelengths. Unfortunately, both AlGaInP

and (In,Ga)N devices get less efficient as the bandgap is pushed towards green wave-
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lengths [48]. This is known as the green gap problem. Some properties which may

cause a reduction of efficiency in III-N alloys and heterostructures are the formation

of defects [49, 50], and an increase in the quantum confined Stark effect (QCSE) with

composition (caused by spontaneous and piezoelectric polarization, discussed in Sec-

tions 2.1.2 and 3.3.2) [50].

On top of the green gap, and also important for III-N devices operating at shorter

wavelengths, III-N LEDs also suffer from the so-called efficiency droop: As the current

density increases, the internal quantum efficiency (the ratio of radiative current density

to total current density) decreases [51]. Auger recombination is often cited as the cause

of this efficiency droop [51–53] though other contributions such as electron leakage

have also been suggested [52,54].

1.2 Current state of modeling techniques

To tackle these challenges associated with III-N alloys, reliable modeling techniques are

key to increasing understanding and guiding the design of future devices. Carrier lo-

calization has been considered extensively in the modeling of the electronic and optical

properties of III-N based heterostructures [4,55–58].

On the other hand, when studying transport in a device a common approach is a one-

dimensional (1-D) model which neglects carrier localization effects originating from

the underlying alloy microstructure [59–64]. 1-D simulations can lead to an over-

estimate of the turn-on voltage of an LED, and an often used approach is to reduce

the intrinsic polarization fields in the simulations (by a factor of 2) in order to fit

current-voltage (I-V) curves to experimental data [65, 66]. The underlying physical

origin however is not clear for such a drastic assumption. Studies by Li et al. have

shown that the alloy microstructure, namely random alloy fluctuations, significantly

affect the I-V curves of a device [67]. Such approaches often require three-dimensional

(3-D) transport models to achieve an improved description of device characteristics,

although modified 1-D models have also been employed [68, 69]. These calculations

often build on modified continuum-based models for the electronic structure of the

active region [70].

On top of this, the standard semi-classical description of transport neglects quantum

mechanical effects [63, 71]. To account for quantum mechanical effects, the standard

model can be coupled with the Schrödinger equation in a self-consistent process to

describe carrier densities [64–66,69]. The numerical demand of this approaches means

that it is generally only treated in 1-D, and quantum mechanical transport through a

3-D disordered III-N alloy has not been addressed. Our first goal in this thesis is to

describe a multi-QW (MQW) system, which is at the heart of modern III-N LEDs, in a

fully atomistic and quantum mechanical setting, and to study the impact that the alloy
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microstructure has on quantum mechanical transport properties.

As previously mentioned, 3-D semi-classical transport models have been employed to

study the impact of the alloy microstructure, which is built on top of a (spatially vary-

ing) continuum description of an alloy [67]. In III-N alloys atomistic effects are impor-

tant for describing the electronic properties, and it is unclear if the continuum approach

captures local effects correctly. Instead, a transport model should be built on top of an

atomistic description of the system which can accurately describe the electronic struc-

ture. Our second goal in this thesis is to develop a 3-D multi-scale framework to study

carrier transport in a semi-classical description which still captures atomistic features

and quantum corrections in the QW region of a device.

1.3 Thesis overview

In Chapter 2 we present general information about the wurtzite crystal structure, and

the properties of III-N-based heterostructures and LEDs in more detail. We build on this

in Chapter 3 and introduce k ·p and tight-binding models which describe the electronic

structure of single-particle states in a continuum and atomistic setting respectively.

Continuum and atomistic descriptions of strain and polarization in QW systems are

also introduced here. This chapter ends by presenting a method for approximating

the ground state in a given region which can be used as a numerically inexpensive

substitute for solving the Schrödinger equation, namely localization landscape theory.

Chapter 4 extends the electronic structure methods to introduce theories describing

carrier transport in a quantum mechanical non-equilibrium Green’s function (NEGF)

and semi-classical drift-diffusion (DD) description. For the DD model we develop a

framework which uses an energy landscape extracted from atomistic tight-binding to

include alloy fluctuations in a multi-scale simulations.

We investigate the impact that the description of the alloy microstructure has on ballis-

tic transport through (In,Ga)N/GaN MQWs in Chapter 5. These MQWs might form, for

example, the active region of an LED. Our results using the NEGF formalism show that

in the case of electrons, the specific treatment of the underlying alloy is of secondary

importance for describing carrier transport between wells. The same is not true for

holes, where the symmetry-breaking effect of an alloy is crucial for developing an ac-

curate picture of hole transport. Here we also investigate the impact that polarization

fields and a potential from a ?-8-= junction have on transmission properties.

Due to the numerical demand of the NEGF formalism we move away from the full
quantum mechanical description towards a modified DD approach in Chapter 6. In

this case we use the multi-scale DD framework building on tight-binding electronic

structure theory to investigate the properties of uni-polar transport for both electrons

and holes. This allows us to disentangle the transport effects from other contributions
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such as recombination processes. In the case of electrons, both quantum corrections

and alloy fluctuations result in an increased electron current. Conversely, in the case of

uni-polar hole transport, alloy fluctuations are detrimental to carrier transport due to

the localization of carriers.

Having learned about the behaviour of electron and hole transport from the uni-polar

study, we investigate a ?-8-= junction using the DD framework in Chapter 7. Here we

target previous literature experimental results which describe the carrier distribution

across a MQW. Including the effects of the fluctuating alloy microstructure has a signif-

icant impact of results. Experimental findings could be reproduced where a standard

modeling approach utilizing a commercial software package failed without changing

any other modeling parameters.

Finally, a summary of conclusions and an outlook of future topics of research are pre-

sented in Chapters 8 and 9.
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Chapter 2

Introduction

We highlighted in the prologue the current state of simulations of III-N materials and

devices. The basis of any transport simulator will be the electronic structure. In order

to build an electronic structure theory we must first start with a good description of the

underlying crystal structure of III-N materials.

2.1 Crystal structures

To start our analysis of semiconductor materials we shall assume that we are dealing

with a perfect crystalline material, which does not contain any defects. There are a

number of different crystal lattices which are formed by III-V materials with various

symmetries [11]. For example, III-Arsenide materials such as GaAs preferentially form

in the zincblende phase [72]. On the other hand, III-Nitride materials such as GaN and

InN are thermodynamically stable in the wurtzite phase [11]. The wurtzite lattice is

shown in Fig 2.1.

The ideal wurtzite crystal consists of two hexagonal, close-packed sub-lattices which

are offset along the growth (c) direction by 5/8 c, where c is the lattice constant along

this direction [73]. The III-N crystals contain alternating layers of cations (group III

atoms such as indium or gallium) and anions (nitrogen). Each atom has 4 tetrahedrally

bonded nearest-neighbours. The primitive unit cell is a four atom basis which has 6-

fold rotational symmetry in the c-plane1.

1Without translation the crystal has 3-fold rotational symmetry, however the structure is
non-symmorphic, and contains 6-fold rotational symmetry when paired with a non-primitive
translation [74].

9
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c

a

Anion

Cation

c

Figure 2.1: Hexagonal cell of the wurtzite crystal structure. Cations are shown in red
and anions in blue. Each anion (cation) has 4 cation (anion) nearest-neighbours. The
bonds between these atoms are shown with grey dashed lines. The c-plane is shown in
green, which has a normal vector along the c-direction, [0001]-direction2of the crystal.
The lattice constants a (in-plane) and c (out-of-plane) are shown.

In an ideal wurtzite lattice the positions within the unit cell are [75]

∆1 = (0, 0, 0) ,

∆2 = (0, 0/
√

3, 2/8) ,

∆3 = (0, 0/
√

3, 2/2) ,

∆4 = (0, 0, 52/8) .

This basis exists at every point in the hexagonal Bravais lattice whose lattice vectors

are

r1 = (a, 0, 0) ,

r2 = (−a/2,
√

3a/2, 0) ,

r3 = (0, 0, c) ,

2The planes and directions in a wurtzite crystal can be denoted using Miller-Bravais indices, (ℎ:8;)
and [ℎ:8;] respectively [76]. The indices ℎ, : and ; correspond to lattice vectors r1−3, and are equivalent
to the Miller indices used in other crystal phases such as zincblende. The extra index, 8 = −ℎ − :, allows
for the easy identification of equivalent directions in a wurtzite crystal. The [ℎ:8;]-direction is
perpendicular to the (ℎ:8;)-plane.
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so that an atom with index 8 is located at

∆replica
8

= ∆8 + =1r1 + =2r2 + =3r3

where =1, =2 and =3 are integers; in real space the lattice is also referred to as the direct
lattice.

III-N materials can be grown along different crystallographic planes. GaN is often

grown along the [0001] (c-) direction (perpendicular to the 2-plane, (0001), which

is shown in green in Fig. 2.1) due to difficulties associated with growing high-quality

structures along other planes such as the (112̄0) or (11̄00) (0- and <-) planes [77–79].

In this thesis we focus on 2-plane materials, and discuss their electronic and transport

properties.

To gain insight into the fundamental material properties, such as lattice constants,

information about the crystal planes is required. This can be obtained experimentally

by using diffraction measurements (e.g. Ref. [80]). Diffraction is related to the so-

called reciprocal lattice, which describes the spatial frequency of points in the direct

lattice. Reciprocal lattice vectors, G, are vectors which describe waves with the same

periodicity as the direct lattice, and therefore satisfy the equation [13]

exp (8G · R) = 1 ∴ G 9 · r 9 = 2c< 9 , (2.1)

where R = =1r1 + =2r2 + =3r3 and =8 and < 9 are integers. This can be expressed in terms

of primitive reciprocal lattice vectors,

G = <1k1 + <2k2 + <3k3 ,

which (in 3-D) are determined via [13]

k8 = 2c
r 9 × r:

r8 · (r 9 × r:)
.

Like the direct lattice, the reciprocal lattice can be divided into primitive cells which are

defined by the primitive vectors; this is referred to as the first Brillouin zone [13]. For

a wurtzite crystal this results in a hexagonal Brillouin zone, with primitive reciprocal

lattice vectors of [75]

k1 =
2c
a
(1, 1/

√
3, 0) ,

k2 =
4c
√

3a
(0, 1, 0) ,

k3 =
2c
c
(0, 0, 1) .

The electron wave functions in a lattice, and thus the electronic structure, is affected
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by the reciprocal lattice, as we shall see in the next section.

2.1.1 Electronic band structure

To study the electronic structure of pure crystals in principle the many-body Schrödinger

equation needs to be solved, where the time-independent Hamiltonian is described in

Eq. (2.2) [81].

Ĥ = −

)̂4︷      ︸︸      ︷
ℏ2

2<

=∑
8=1
∇2
8 −

)̂=︷       ︸︸       ︷
ℏ2

2"

#∑
�=1
∇2
� −

+̂4−=︷                       ︸︸                       ︷
1

4cn0

=∑
8=1

#∑
�=1

/� 4
2

|A8 − '� |

+ 1
8cn0

=∑
8

=∑
9≠8

42

|A8 − A 9 |︸                      ︷︷                      ︸
+̂4−4

+ 1
8cn0

∑
�

#∑
�≠�

/� /� 4
2

|'� − '� |︸                         ︷︷                         ︸
+̂=−=

(2.2)

)̂= and )̂4 are the kinetic energy terms for all the nuclei and electrons in the system

which depend on < and ", the masses of the electron and nucleus respectively. +̂4−=,

+̂4−4 and +̂=−= are the potential terms including the (attractive) electron-nucleus inter-

action, (repulsive) electron-electron interaction and (repulsive) nucleus-nucleus inter-

action. Here, /� is the proton number of the nucleus �. As we are interested in the

electronic structure, and not in the nuclear behaviour, we use the Born-Oppenheimer

approximation; as the nuclear mass is much greater than that of the electron (< � ")

the kinetic energy of the nuclei is negligible compared to that of the electrons [82].

The Schrödinger equation therefore reduces to

Ĥ = )̂4 + +̂4−= + +̂4−4 + +̂=−= .

This is still a very complex problem to solve, in particular due to +̂4−4, as the energy of

an electron depends on the positions of all other electrons in the system via Coulomb

interactions. In order to make this problem tractable we use the single-particle approx-

imation where we assume that the particle is moving through an effective potential

generated by all the other electrons and nuclei in the system [83]. Now the Hamilto-

nian can be written in terms of the electron kinetic energy operator and an effective

potential:

Ĥ =

=∑
8=1

(
−ℏ2

2< ∇
2
8 + +̂eff

)
=

=∑
8=1

�̂8 .

The Hamiltonian for the full system is simply the sum of the single-particle Hamilto-

nians describing all the electrons in the system individually, which is to say, the total

energy of the many-body system is the sum of the energies of the single-particles. The

interaction of the single-particle state with the other electrons is taken into account only

through the effective potential, so we are left with the single-particle time-independent
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Schrödinger equation,

�̂k(r) = −ℏ
2

2< ∇
2k(r) ++eff(r)k(r) = �k(r) (2.3)

where k is the single-particle wave function.

In a pure crystal the potential, +eff(r), has translational symmetry (due to the underly-

ing symmetry of the material):

+eff(r) = +eff(r + =1r1 + =2r2 + =3r3) ,

where r8 are the primitive lattice vectors of the crystal and =8 are integers, 8 ∈ {1, 2, 3}.
For example in a wurtzite material r8 would be the primitive lattice vectors outlined in

Section 2.1.

In a potential with translational symmetry, the electronic wave function can be ex-

pressed as a Bloch function, where the solution is divided into a product of a periodic

(Dk (r)) and a plane-wave (48k ·r) contribution [84]:

kk (r) = 48k ·rDk (r) .

The periodic contribution, Dk (r), has the same periodicity as the potential profile of the

crystal, so determining the solution of Dk (r) over the crystals unit cell corresponds to

knowing the solution anywhere in space up to a phase factor which depends on the

quantum number k:

kk (r +R) = 48k · (r+R)Dk (r +R) ≡ 48k ·R (48k ·rDk (r)) = 48k ·Rkk (r) .

In the above equation R is a vector composed of an integer number of the primitive

lattice vectors, R = =1r1+=2r2+=3r3, and k is known as the wavevector which is related

to the crystal momentum, p ≡ ℏk.

For each k there is a discrete set of eigenstates and corresponding eigenvalues. We

label these states with the index 9 so now our set of eigenstates are denoted

k 9k (r) = 48k ·rD 9k (r) . (2.4)

The discrete set of eigenstates vary continuously with k [13]. This results in bands of

energies corresponding to eigenvalues of the Schrödinger equation.

In the next paragraph we aim to restrict the values of k which are needed to gather

complete information about the crystal. To do this we follow the example of Ref. [85]

and consider (for simplicity) a 1-D system which is periodic along G with a lattice
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constant of 0. The wave function can be written as

k 9k (G) = 48:GD 9k (G) .

Here we introduce the reciprocal lattice vector, �< = 2c</0 (this can be found di-

rectly from Eq. (2.1)) where < is an integer, and 0 is the lattice constant defining the

periodicity along the G-direction. Multiplying our expression with a plane wave with

wavevector �< and its complex conjugate our wave function becomes

k 9k (G) = 48:G48�<G4−8�<GD 9k (G) = 48 (:+�<)G
(
4−8�<GD 9k (G)

)
.

Our manipulated equation still has the form of a plane wave term, 48 (:+�<)G, and a

periodic term with a period of the lattice constant, 4−8�<GD 9k (G). This indicates that

: is not uniquely defined, as : + �< is equivalent to :. This allows us to restrict

calculations to the interval
[
0, 2c

0

]
which is the first Brillouin zone. This is known as

the reduced zone scheme which drastically reduces the numerical effort required to

determine the electronic states in a crystal, as once they are known in this interval then

they are known for any wavevector : up to a phase [85]. This can be generalized to

higher dimensions.

The band structure for GaN is shown in Fig. 2.2. The conduction band maximum and

valence band minimum of the binaries GaN and InN are all located at the center of the

Brilloin zone, k = (0, 0, 0) = Γ. This means these materials have a direct band gap, and

are therefore good candidates for light emitting applications, as was highlighted in the

prologue. As was also mentioned, the band gaps of bulk InN (0.69 eV [22]), GaN (3.51

eV [22]) and AlN (6.0 eV [23]) span from the red to near UV to deep UV part of the

spectra. Therefore, in principle, alloys of these materials could emit across the entire

visible spectrum as well as UV wavelengths [29].

For heterostructures, the alignment of the bands with respect to each other is impor-

tant. This can be calculated, and the resulting band alignment relative to GaN means

that InN will form a well for both electrons and holes (valence band offset ≈ 0.62

eV [86]), whereas AlN will form a barrier for electrons and holes (valence band off-

set ≈ -0.2 eV [24]). These materials could therefore be used to manipulate electronic

properties of devices by introducing heterostructures.

2.1.2 Heterostructures

In the prologue we discussed how QWs are important for LEDs in terms of efficiency,

and targeting specific wavelength emission. In GaN-based structures, heterostructures

are often generated by embedding an alloy within the barrier material, although they

can also be comprised of binaries, for example in the form of a so-called digital al-

loy [87, 88]. A heterostructure of particular interest in this thesis is a QW, which uses
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Figure 2.2: Band structure of bulk GaN calculated with Heyd-Scuseri-Ernzerhof density
functional theory. The conduction band minimum (Ec) and valence band maximum
(Ev) are located at Γ resulting in a direct gap material with a band gap of Eg.

differences in the band structure (such as the valence band and conduction band align-

ment mentioned in Section 2.1.1) of the well material and the barrier material to con-

fine carriers in one direction, e.g. along the wurtzite 2-axis.

Heterostructures can be classified by their band alignment, namely type I or type II

alignment [11]. A double heterostructure with type I band alignment is shown in

Fig. 2.3 (a). In this case the band gap of the material � sits entirely within the band

gap of the material �. As a result, when embedded within material � a confining

well for both electrons and holes is formed. If only one carrier is confined by the

embedded material a type II heterostructure is formed, which is shown in Fig 2.3 (b).

In the shown case only electrons will be confined by material � due to the different

conduction and valence band alignments. As radiative recombination is dependent on

the overlap of electron and hole wavefunctions, in LED devices normally a type I band

offset is targeted.

Not only can these heterostructures aid the confining of carriers, they can also allow the

tuning of the emission wavelength. For example, QWs will have a reduced (composition

dependent) band gap, and this could be engineered in order to target specific colour

emission wavelength. In the simplest case, the QW corresponds to a 1-D particle in

a box problem. As such, the eigenenergies will also depend on the width of the box

and this can be used to tailor the confined energy levels [89]. As mentioned in the

prologue, the smaller QW bandgap also means the light emitted will not be reabsorbed

by the barrier material before escaping the device. As such, introducing QWs reduces

photon recycling [90]. A schematic of the impact of including a QW in a structure is

shown in Fig. 2.4.
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(a) Type I

� � �

(b) Type II

� � �

Figure 2.3: Schematic of double heterostructure formed using (a) a type I band align-
ment where the conduction and valence band both form a well in the region composed
of material �, and (b) a type II band offset where only one band confines carriers in
the region composed of material � (in this case, the conduction band).
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Figure 2.4: Schematic of the impact a quantum well has on electrons (red circles) and
holes (green circles). When a quantum well is included the lowest energy states are
confined to the low bandgap region resulting in an increased overlap of the electrons
and holes and a decrease in the emission energy. The high energy photons (blue arrow)
can be reabsorbed by the material and produce another electron-hole pair, while the
lower energy photon (red arrow) emitted by the quantum well cannot excite carriers
in the wide-bandgap material allowing it to escape the device.

The inclusion of heterostructures may be beneficial for confining carriers and manipu-

lating emission wavelengths, however the incorporation of an alloy also leads to further

effects which must be considered. For example, the 0 lattice constants of InN and GaN

differ by approximately 11%. The lattice mismatch will lead to strain effects in the

active region of (In,Ga)N/GaN-based LEDs [91].

In a bulk system or a heterostrucutre strain effects modify the electronic structure by

changing material properties such as the energy band maxima and minima [92] and

the effective masses [93]. In III-V materials compressive hydrostatic strain increases the

band gap which is often attributed to an increase in the conduction band energy along

with a decrease in the valence band energy [25]. In a heterostrucutre this will also

impact the confinement of states by changing the relative energies of the conduction

and valence band positions between materials comprising a heterostructure.
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2. INTRODUCTION 2.1 Crystal structures

Strain is described by a second rank tensor,

Y =
©«
YGG YGH YGI

YHG YHH YHI

YIG YIH YII

ª®®¬ ,

whose 8 9 Cℎ component describes the relative change in position along the 8-direction

due to a deformation along the 9-direction.

This can also be written in Voigt notation,

Y =

(
Y1 Y2 Y3 Y4 Y5 Y6

)†
,

where YGG = Y1, YHH = Y2, YII = Y3, 2YHI = Y4, 2YGI = Y5, and 2YGH = Y6. A more detailed

description of the strain tensor and how to determine the associated strain components

in a QW is presented in Section 3.3.

On top of strain effects, due to the wurtzite crystal structure these materials exhibit

strong spontaneous polarization fields [94]. In a crystal consisting of more than one

atomic species (whose electronegativies differ), each bond will have a certain dipole

moment associated with it. In zincblende materials these dipole contributions cancel

each other out, and the net dipole moment per volume, and thus the net polarization, is

zero [95]. However, in wurtzite crystals, due to the lack of an inversion center along the

c-direction, these contributions do not cancel and a permanent dipole per volume exists

within the material along the c-direction. This is the so-called spontaneous polarization,

Psp. The polarization is normally defined in terms of the distance from the anion to

cation along the [0001] direction. This results in a spontaneous polarization vector

pointing in the −2 direction for GaN and InN [96].

When a crystal is strained, deformations of the crystal lattice also lead to a polariza-

tion. This is referred to as a piezoelectric polarization and is exhibited by wurtzite

crystals. This is also found in III-V zincblende materials although the polarization is

generally weaker than in wurtzite III-N materials due to the more ionic nature of the

III-N bonds [95].

Using Voigt notation the first-order piezoelectric polarization, Ppz, in the 8 direction is

described by [96]

%pz,8 =

6∑
9=1

48 9Y 9 .

Elements of the strain tensor are denoted Y 9 and the piezoelectric coefficients are de-
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noted by 48 9 such that the piezoelectric tensor in Voigt notation is

4 =
©«
411 412 413 414 415 416

421 422 423 424 425 426

431 432 433 434 435 436

ª®®¬ . (2.5)

Second order polarization has also been investigated in III-N systems [97], although

often this is neglected and only first order piezoelectricity is considered.

The total polarization is therefore given by the sum of the spontaneous and piezoelec-

tric contributions,

Ptotal = Psp + Ppz .

If the total polarization is constant across a crystal, for example in an unstrained bulk

material, the polarization will not impact the electronic structure. To demonstrate this,

we consider the total charge density to be the sum of free charges and bound charges:

dtotal = dfree + dbound .

The bound charge is given by the (negative) divergence of the polarization vector [98]:

dbound = −∇ · P .

If there is no change in the polarization the bound charge is zero. On the other hand,

if there is an interface between two materials of differing polarization a charge will be

induced. We take for example a QW system where the well has a different polarization

to the barrier, and assume that the free charge is zero; this is indicated in the schematic

in Fig. 2.5. As the polarization differs across the interface a charge is induced at either

side of the QW. This has a capacitor-like profile, with a large 2-dimensional (2-D)

negative charge on one side and positive charge on the other. The sheet charges in turn

introduces a capacitor-like potential profile, called the built-in polarization potential,

which will influence the electronic and optical properties of the system.

In a III-N-based QW this leads to a potential drop across the heterostructure. This

can lead to the spatial separation of electrons and holes leading to a reduction in re-

combination rate and a red shift in the emission wavelength, known as the quantum

confined stark effect (QCSE) [99], which is illustrated in Fig. 2.6. A detailed discussion

around how to calculate the profile of this field in a continuum and atomistic picture is

presented in Section 3.3.

Here we have presented some general aspects of crystal structures with attention di-

rected towards wurtzite III-N heterostructures. We are interested in device behaviour,

for example in a light emitting diode. Therefore, we turn our attention to the back-

ground of ?-= junctions in the next section, which are a key element in LEDs.
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Figure 2.5: A change in the total polarization vector results in a bound charge being
formed between regions of material � (white) and material � (grey); material � has a
different polarization than material �. At the left (right) interface a negative (positive)
sheet charge is formed similar to that of a capacitor. The form of the potential profile
is shown below the figure.
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Figure 2.6: Schematic of the conduction and valence band edges are shown in black,
and the electron (hole) profile in red (blue). The energy of the state is denoted using
a dashed line of the same colour. The behaviour is indicated (a) excluding and (b) in-
cluding the polarization potential which results in the spatial separation of the electron
and hole, and a decrease in the band gap.

2.2 Light-emitting diodes

We have already seen in the prologue that LEDs are semiconductor optoelectronic de-

vices which are used to produce light when a bias voltage is applied. This generally

consists of a so-called ?-= junction; a connection of two materials which have been

?- and =-doped in order to generate free carriers which can be used to produce light

through a radiative recombination process of these carriers. Materials can be ?-doped

by ‘acceptor’ atoms, in order to produce loosely bound holes which are free to more

within the material, or =-doped by ‘donor’ atoms to similarly produce loosely bound
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2. INTRODUCTION 2.2 Light-emitting diodes

electrons. The energy level of these dopants is shown in the schematic in Fig. 2.7. To

excite the electrons or holes to the conduction or valence band requires ideally a small

amount of energy. This is referred to as the dopant activation energy for donors, Δ��
and acceptors, Δ��.

CBE

VBE

Acceptor level

Donor level

Δ��

Δ��

Figure 2.7: Schematic illustrating the conduction and valence band edges (CBE and
VBE) in a semiconductor (solid lines). The acceptor and donor levels sit within the
band gap close to the band edges such that it ideally takes a small amount of (thermal)
energy, Δ�� or Δ��, to excite carriers to the band edges.

The amount of free carriers at a point is described via the Fermi level. Introducing

dopants moves the Fermi level either towards the valence band edge (VBE) in the case

of ?-doping, or towards the conduction band edge (CBE) in the case of =-doping [100].

Bringing =- and ?-doped materials into contact with each other therefore would lead

to a jump in the Fermi level across the ?-= junction even at equilibrium. As we will see

in later discussions, a change in the Fermi level indicates that current is flowing, which

is not the case in equilibrium.

Fick’s law tells us that particles will tend to move from regions of high concentration

to low concentration [101]. Therefore when the two doped regions are brought into

contact electrons and holes diffuse into the opposite region due to the large concentra-

tion difference across the junction. This creates regions at the interface of the =- and

?-doped sections which are not charge neutral, introducing an electric field between

the doped regions. The electric field causes the drift of carriers, opposing the diffusion

of the electrons and holes at equilibrium. Carrier drift can be increased by applying an

external electric field through an applied bias, +�, causing a net current through the

junction.

The electric field can be described as the negative gradient of the electric potential,

which can be calculated via Poisson’s equation:

− ∇ ·
(
n (r)∇k(r)

)
= d(r) . (2.6)

The potential is given by k and depends on the (position dependent) dielectric constant

n and charge density d. This potential causes a band bending, modifying the conduction

and valence band edges which are given by CBE(r) = �2 (r) − @k(r) and VBE(r) =
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�E (r) − @k(r) where �2,E is the band edge energies of the intrinsic material when not

impacted by the potential k; @ is the elementary charge. A schematic of the band edges

in a ?-= junction in the absence of any applied bias (+� = 0) is shown in Fig. 2.8. The

potential drop from the =-doped to the ?-doped region without applying a bias is called

the built-in voltage, +�� .

-G?

G=

@+��

CBE

VBE
� 5

?-doped =-doped

Figure 2.8: Schematic of the conduction and valence band edge profile in a ?-= junc-
tion. The Fermi level (blue) is constant in equilibrium resulting in a potential drop
across the junction with energy @+�� . A region with low free carrier density (depletion
region) is formed between −G? and G= (shaded in grey). The donor levels are indicated
with dashed black lines.

Now we have a structure whose Fermi level at equilibrium is flat (as physically is re-

quired). When, for example, electrons diffuse to the ?-doped region there are many

holes for them to recombine with, either radiatively or non-radiatively (the same goes

for holes which diffuse to the =-doped region). When these carriers recombine there

are less free carriers available for transport processes. This region with a low density

of free carriers is called the depletion region and is shown in grey shading in Fig. 2.8.

Using the approximation that the free charge density profile is piecewise-constant (see

Fig. 2.9) the width of this depletion region can be estimated via [102]

,� = G= + G? =

√
2n (+�� −+�)

@

#� + #�
#�#�

where +�� , +�, #� and #� are the built-in voltage, applied voltage, acceptor doping

density and donor doping density respectively.

A more accurate treatment of the junction would self-consistently calculate the device

potential and free charge densities when the Fermi level is constant [103], however the

assumption of piece-wise constant densities offers a good starting point which we can

use to gain insight into the behaviour of these junctions.

The size of the depletion region depends on the doping densities used, and varies with

applied bias. If a bias is applied so that the field pulls the electrons and holes away
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d

G

G=

-G?

d = #�

d = −#�

?-doped =-doped

Figure 2.9: Charge density profile of a ?-= junction (?-doping on the left, =-doping on
the right) assuming that carriers diffuse across the interface (dashed line) and com-
pletely recombine with the majority carrier up until a point (G?,=) causing a non-zero
charge density. Beyond this point the charge density is 0.

from the depletion layer (reverse bias) the width of the depletion layer is increased.

Conversely, if the voltage applies a field that pushes electrons and holes towards the

depletion region (forward bias) the depletion width decreases. As the applied bias

approached the built-in potential the depletion width goes to zero.

In order to extract light from these devices the junction is normally operated with for-

ward voltage, allowing current to flow and carriers to recombine. It would be beneficial

to maximize the recombination rate from devices by encouraging electrons and holes

to be located in the same region in space. This can be achieved by adding confining

structures to the junction, such as a QW (as discussed in Section 2.1.2); QW structures

are a common addition to LEDs (c.f. Fig. 1.1).

We saw in this section that describing a III-N based LED requires an understanding of

crystal structures, alloys, heterostructures, electronic structure and device behaviour.

In the next part we shall consider the theoretical models used to study transport in

(In,Ga)N QW systems. In order to understand carrier transport we require a description

of the electronic structure. To construct this we shall follow a similar format and start

our discussion with a description of the electronic structure of a bulk crystal. Then we

shall add the necessary ingredients we need to describe alloys and heterostructures,

including strain and polarization effects found in III-N QW systems. In Chapter 4 we

shall discuss the theory of quantum transport as well as full device modeling in a semi-

classical framework.
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Chapter 3

Electronic structure theory

The behaviour of optoelectronic devices will be strongly dependent on the electronic

structure of the device. The spatial and energetic distribution of electron and hole states

will have a significant impact on transport and optical properties of a system. Therefore

an accurate description of the underlying electronic structure is a key ingredient for our

description of the transport properties of a device.

There are two broad categories for both electronic structure calculations and transport

models: (i) ab initio calculations which do not need (at least in principle) any input

parameters, and (ii) semi-empirical models which require extra information from ex-

periment or first principle calculations. In the first category, from an electronic structure

point of view falls density functional theory (DFT), whereas transport might be studied

from first principles using the NEGF formalism.

DFT starts from the many-body Hamiltonian (using the Born-Oppenheimer approxi-

mation [104]) introduced in Section 2.1.1 to determine the many-body ground state

charge density. To solve this problem, the system is often mapped to a system where the

kinetic energy contribution is described by a non-interacting system and exchange and

correlation effects between the carriers are described by exchange-correlation func-

tionals. For the latter, several different approximations can be used, starting from

the well know local density approximation up to newly developed hybrid functional

schemes [104]. Once such an equation is established, the variational principle can

be used to find the many-body density which minimizes the energy of the ground

state [105]. This is ideally suited to a periodic system, which, as we discussed, can

be completely described through the primitive unit cell. While DFT has been applied to

alloys [86], and nanostructures such as quantum dots [106, 107], many density func-

tional theories (such as the Kohn-Sham formalism [108]) scale with the number of

atoms cubed, making DFT calculations of larger systems unattainable.

On top of this, extending parameter-free first principle calculations to study transport

in fully quantum mechanical framework using a DFT-NEGF approach is a numerically
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3. ELECTRONIC STRUCTURE THEORY 3.1 k · p and effective mass approximation

extremely demanding task and thus limited to small systems [109–111]. In order to

model a heterostructure including the effects of alloy disorder in a (multi) QW system,

the system size is typically on the order of at least ≈ 105 atoms, much larger than those

previously studies using DFT-NEGF frameworks.

One available option is to implement our second category of electronic structure theory.

Semi-empirical methods can be designed in order to reproduce the highly accurate

results from DFT, while simultaneously being capable of modeling larger systems. This

could then be coupled to an ab initio transport solver to accurately model quantum

transport, or connected to semi-classical frameworks; both of these options will be

discussed in Chapter 4. Therefore we proceed by introducing such theories which

can reproduce DFT band structures (at least in specific regions of the Brillouin zone),

namely k · p theory and atomistic tight-binding.

3.1 k · p and effective mass approximation

k ·p theory is based on time-independent perturbation theory. This model is used to ac-

curately describe the electronic structure of a material close to a selected k-point in the

first Brillouin zone at which the energy and wave functions are known [112]. This be

used to treat different crystal structures (e.g. zincblende, wurtzite) [113,114] with var-

ious levels of refinement. For example, the number of basis states (bands) can be varied

(e.g. single-band, 8-band) [4,113], with or without including the impact that spin has

on the results [112]. This can be applied to bulk systems, but also to nanostructures

and larger device structures due to the reduced numerical demand compared to DFT.

We shall first consider the model applied to a bulk crystal, before briefly discussing the

modifications needed to apply it to an alloy.

Following the formalism of Kane, the k ·p Hamiltonian is derived by plugging the Bloch

wave function (Eq. (2.4)) into the single particle Hamiltonian (Eq. (2.3)) [112]. The

k · p Hamiltonian is

�̂ =
?̂2

2< +
ℏ2

2< :
2 + ℏ

<
k · p + +̂ . (3.1)

Here we are neglecting spin-orbit coupling, which is much smaller than in other III-

V materials (e.g. splitting due to spin-orbit coupling is approximately 0.017 eV in

GaN [24] vs 0.341 in GaAs [25]). Details of how to include this in a k · p formalism

are discussed in Ref. [112]. The second last term (linear in k) gives the Hamiltonian

it’s name. Defining �̂k0 to be the Hamiltonian at k = k0 (a :-point of particular interest,

at which the energy and wave functions are known),

�̂k0 =
?̂2

2< +
ℏ2

2< :
2
0 +

ℏ

<
k0 · p + +̂ ,
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then Eq. (3.1) can be expressed as

�̂ = �̂k0 +
ℏ2

2< (:
2 − :2

0) +
ℏ

<
(k − k0) · p .

In Chapter 2 we saw that in the case of III-N materials, the conduction band minimum

and valence band maximum occur at the Γ-point, so here we will only describe equa-

tions expanding around k0 = 0. While the expression in Eq. (3.1) is exact, the final two

terms can be treated as a perturbation to the system around k0, and properties of the

system can be approximated using perturbation theory [115].

The energy of the =Cℎ non-degenerate band as a function of k, approximated by second

order perturbation theory, is [85]

�= (k) = �= (0) +
ℏ

<
k · p== +

ℏ2:2

2< +
ℏ2

<2

∑
=′≠=

|k · pnn′ |2
�= (0) − �=′ (0)

, (3.2)

where

pnn′ = 〈D=k0 | p |D=′k0〉 .

In diamond crystals structures, due to symmetry considerations the term linear in k
(k · p==) is identically zero [85,112]; in III-N semiconductor materials this term is small

compared to the quadratic contribution [85, 116]. We follow the widely employed

approximation and neglect this term going forward leaving only terms independent of

k or quadratic in k.

When employing a k · p model generally there is an energy scale which is of particular

interest for the study (for example, close to the conduction and valence band edges).

Bands in this energy range will interact with each other, but will also be impacted (to

a lesser extent) by bands which are farther away in energy. Following the approach of

Löwdin, these bands can be divided into two distinct categories; A-bands which will

be treated explicitly, and B-bands which will not be treated explicitly, although the

coupling which they have with the A-bands will be considered implicitly [117]. This

allows the restriction of basis states to only a small subset of the total bands, which

significantly decreases the numerical demand and the complexity of the model, while

still providing an accurate description of the band structure in the energy range of

interest.

In this case Eq. (3.2) becomes

�= (k) = �= (0) +
ℏ2:2

2< + ℏ2

<2

∑
=′∈�≠=

|k · pnn′ |2
�= (0) − � ′= (0)

+ ℏ2

<2

∑
=′∈�

|k · pnn′ |2
�= (0) − � ′= (0)

. (3.3)

The simplest case is a single band model. Here only one band is treated explicitly, e.g.

the conduction band. This is the only A-class band, so the sum over � in Eq. (3.3)

does not contain any terms. The B-class bands modify the band via the effective mass
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chosen in the Hamiltonian, which impacts the parabolicity of the band in question:

�EMA = � (0) + ℏ2

2<∗G
:2
G +

ℏ2

2<∗H
:2
H +

ℏ2

2<∗I
:2
I ,

where

<∗; =

(
1
<
+ 2
<2

∑
=′∈�

|̂l · p2
nn′ |

�= (0) − �=′ (0)

)−1

is the effective mass along the ;-direction, l̂ is the unit vector in this k-direction [112].

� (0) describes the band energy at the Γ-point, therefore this can give a good approxi-

mation of states close to the Γ-point where the band is approximately parabolic, how-

ever will break down for k-vectors farther away from this point.

So far we have only considered the case of a non-degenerate band. If �= (0) is degen-

erate then the denominator of some terms will be zero. The theory can be modified to

include degenerate bands using, for instance, the Luttinger-Kohn model; more details

can be found in Ref. [118].

Due to the small number of bands needed to implement k · p models, they can be

applied to quantum confining structures such as dots, wires and wells of realistic size

and geometry, providing a significant benefit over ab initio frameworks in terms of

numerical expense. However they also require a large number of input parameters

which are (in principle) not required in ab initio models. This may be a drawback, as

it can involve complex fitting procedures in order to try and obtain parameters. On the

other hand, it may be beneficial as it can offer control over aspects which are not well

described in some ab initio frameworks, e.g. the band gap of many materials predicted

using a local density approximation [105]. The single band EMA only requires two

free parameters, the effective mass and the energy at k0. However the number of

parameters increases with the number of A-class bands considered. If multiple bands

are implemented in a wurtzite crystal the effective mass is replaced by Luttinger-like

parameters to describe the impact of the class B bands [114].

3.1.1 Extending the model beyond bulk crystal structures

Our discussion until now has centered on describing the electronic properties of a pure

bulk crystal, where the infinite crystal can be modeled by considering only a single unit

cell (recall discussion in Section 2.1.1). This can be modified in order to extend the

model to an alloy by considering a virtual material.

The “bandstructure” of an alloy can be calculated using the k · p method using the

so-called virtual crystal approximation (VCA). In this case an effective unit cell is con-

structed whose properties are assumed to be an interpolation of the properties of the

constituent bulk materials. For example, in an InGGa1−GN virtual crystal the material
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parameter � might be assumed to be

�InGaN(G) = G · �InN + (1 − G) · �GaN + G(1 − G) · �InGaN ,

where the superscript denotes the given bulk material parameter, �InGaN is the bowing

parameter associated with non-linear changes in the parameter with alloy composition,

and G is the fractional InN content of the alloy [24].

If the electronic structure is only weakly perturbed by including an alloy then this

approach may provide good results (e.g. InGaAs/GaAs QW systems [119]). However, if

the underlying microstructure is important for describing these effects the k ·p method

may not provide the required resolution of the crystal. An atomistic model may be

required which resolves the individual atoms within the unit cells. In the next section

we proceed to introduce the tight-binding model which can provide such a resolution.

3.2 Tight-binding model

The tight-binding (TB) model is an atomistic description of a lattice which uses a

small number of strongly localized atomic-like orbitals as basis states. TB is a flexi-

ble method and can be applied to a variety of problems, and adjusted to suit the needs

of each problem being addressed. As is the case with k · p theory, it can be used to

model different crystal structures (cubic, zincblende, wurtzite) [75, 120, 121] and be

treated with varying levels of complexity. For example, the number of basis states used

(B?3, B?335B★) [122,123], the cut-off distance where orbital interactions are considered

(nearest-neighbour, next-nearest-neighbour) [124,125], and the inclusion or omission

of spin-orbit coupling [126] can all be considered. Here we discuss the construction

of a single-particle TB Hamiltonian using a nearest-neighbour model which neglects

spin-orbit coupling.

TB models assume atomic-like basis states which are tightly bound to the atoms that

they are located on, and as such the interaction that this state has with states on sur-

rounding atoms decreases quickly as separation is increased [74,75]. The potential due

to the lattice acts as a perturbation to the state. We follow the derivation in Ref. [74]

and start with the energy of an isolated a orbital sitting at the atom of species U in the

Rn
th unit cell. The Schrödinger equation is given in Eq. (3.4).

�̂atomic |Rn, U, a〉 =
(

p̂2

2< + +̂
atomic

)
|Rn, U, a〉 = �atomic

U,a |Rn, U, a〉 . (3.4)

Given that we know the properties of the isolated atom, we are interested in modeling

how this changes when the atoms interacts with other nearby atoms. In the case of a
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crystal we are interested in the modification due to all the other atoms in the lattice:

�̂bulk = �̂atomic + +̂ lattice = �̂atomic
U,a +

∑
<

∑
U′
+ (Rm, U

′) (1 − X=,<XU,U′) . (3.5)

+̂ lattice is the potential at the atom under consideration due to all atoms in the crystal,

neglecting the U atom in the unit cell Rn itself, which is already accounted for in the

atomic term, �̂atomic, of the full Hamiltonian, �̂bulk. This potential is periodic in a bulk

crystal, and therefore this is satisfied by Bloch states. The basis states can be written in

reciprocal space as

|k, U, a〉 = 1
√
#

∑
=

48k · (Rn+∆U) |Rn, U, a〉 . (3.6)

Here the atom U is located at position ∆U within the unit cell at Rn, and # is the

number of unit cells in considered in the system. We can have more than one atom in

the basis, as seen in Section 2.1 the wurtzite crystal consists of a four atom basis on a

hexagonal lattice; {∆U} forms the basis of the crystal and Rn denotes the location of

the unit cell in the lattice.

We are now able to construct a wave function as a linear combination of our basis states

by summing over all orbitals and atomic sites considered:

|k〉 =
∑
U,′a′

2U′,a′ (k) |k, U′, a′〉 =
∑
U′,a′

2U′,a′ (k)
(

1
√
#

∑
=′
48k · (Rn′+∆U′ ) |Rn′, U

′, a′〉
)
. (3.7)

The coefficients of the wave function, 2U′,a′ (k), can be determined by solving the

Schrödinger equation,

�̂bulk |k〉 = � (k) |k〉 .

By applying 〈k, U, a | from the left we arrive at the matrix equation:∑
U′,a′
[〈k, U, a |�̂bulk2U′,a′ |k, U′, a′〉 − � (k)2U′,a′ 〈k, U, a |k, U′, a′〉] = 0 .

The tightly-bound orbitals on different lattice sites which are used as basis states are

not generally orthogonal. They can, however be transformed using a Löwdin transform

which orthogonalizes these states while also maintaining the symmetry of the original

orbitals [127]. As such, we can use the identity 〈k, U, a |k, U′, a′〉 = XU,U′Xa,a′ to arrive at

the expression: ∑
U′,a′
〈k, U, a |�̂bulk |k, U′, a′〉 2U′,a′ = � (k)2U,a . (3.8)

For the sake of simplified discussion we shall now assume that there is only one atom

per unit cell, U, which contains only one orbital as a basis state, a. In this case Eq. (3.8)

is simplified to

〈k, U, a |�̂bulk |k, U, a〉 = � (k) .
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Applying our ansatz for |k, U, a〉 from Eq. (3.6) results in

1
#

∑
=,=′

48k · (Rn′+∆U′−Rn−∆U) 〈Rn, U, a |�̂bulk |Rn′, U
′, a′〉 = � (k) .

The translational invariance of the crystal allows us to remove one of the sums over the

unit cells and the divisor of #, as the result for each unit cell is the same and we end

up adding this result # times and dividing by #, so instead we can focus on one cell

located at a fixed position, R0.∑
=′
48k · (Rn′+∆U′−R0−∆U) 〈R0, U, a |�̂bulk |Rn′, U

′, a′〉 = � (k) . (3.9)

Considering just the 〈R0, U, a | �̂bulk |Rn′, U
′, a′〉 term for now, and recalling the expres-

sion for the bulk Hamiltonian from Eq. (3.5):

〈R0, U, a | �̂bulk |Rn′, U
′, a′〉 = �atomic

U′,a′ X0,=′XU,U′Xa,a′

+
∑
<

∑
U

〈R0, U, a |+ (Rm, U) |Rn′, U
′, a′〉 (1 − X=′,<XU,U′) . (3.10)

Since we are considering only one atom species and orbital type U′ = U and a′ = a.

The sum including the potential from the lattice can now be expanded according to the

proximity of the neighbouring atoms to the atom which we are focusing on. The same

principle can be applied with multiple atoms in the cell, however the added complexity

is not rewarded with deeper insight.

Dividing this up into groups depending on the proximity of the unit cells R0 to Rn′,

Eq. (3.10) becomes

〈R0, U, a | �̂bulk |Rn′, U, a〉 =
[
�atomic
U,a +

∑
<≠=′
〈R0, U, a |+ (Rm, U) |Rn′, U, a〉

]
X0,=′

+
[∑
<

〈R0, U, a |+ (Rm, U) |Rn′, U, a〉
]
X0±1,=′

+
[∑
<

〈R0, U, a |+ (Rm, U) |Rn′, U, a〉
]
X0±2,=′

+ . . .

(3.11)

As the basis states are assumed to be strongly bound to their lattice site the overlaps

decrease quickly as the separation between atomic sites is increased [74,75]. As such,

the sum in Eq. (3.11) can be truncated appropriately (nearest-neighbour model: trun-

cate after X0±1,=′, next-nearest-neighbour model: truncate after X0±2,=′, etc.). The first

bracket in the expression above is called the on-site energy,

�on-site
U,a = �atomic

U,a +
∑
<≠0
〈R0, U, a |+ (Rm, U) |R0, U, a〉 . (3.12)
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This is the energy of an orbital sitting on the lattice site being considered (R0 in this

case) which has been modified by the presence of the other atoms in the crystal. The

other terms (which constitute the off-diagonal terms in the TB Hamiltonian matrix,

when including a phase term as seen in Eq. (3.9)) are hopping terms which describe

the coupling between orbitals on separate atomic sites.

The evaluation of the quantities in this expression requires solving two-center integrals

involving the potential at position R0 due to the atom at Rm as well as three-center

integrals which include for example an orbital sitting at R0, an orbital sitting at Rn′ and

the potential due to an atom Rm, where 0 ≠ =′ ≠ <. One approach proposed by Slater

and Koster is to neglect these three-center integrals, as these terms are significantly

smaller than the two-center integral contributions [120]. In this approximation the

sum over the entire crystal is reduced to considering two spherical potentials located

(in the case of Eq. (3.11)) at R0 and Rn′. Slater and Koster determine expressions

for the hopping terms of a TB Hamiltonian based on the orbital (and bond) type, and

direction cosines which indicate the angle between the atoms being considered [120].

The matrix elements needed in the TB model could be calculated from ab initio ap-

proaches in, for example, DFT-based TB methods [128–130]. An alternate approach is

to take the TB matrix elements and use them as free parameters to fit results to band

structure data. The number of free parameters will depend on the number of orbitals

included at each atomic site and the number of neighbours which are considered to

have non-zero hopping terms. This semi-empirical approach is widely employed [121,

131, 132]. The TB model used throughout this thesis is a semi-empirical B?3, nearest-

neighbour model which has been benchmarked against Heyd-Scuseri-Ernzerhof (HSE)

hybrid functional DFT [96].

3.2.1 Extending the model beyond bulk crystal structures

We saw in the k ·p theory that an alloy could be modeled in the form of a virtual crystal.

The same principle can be applied to the TB model, where the onsite energies and

hopping terms can be described as interpolated values of the bulk materials constituting

the alloy. This provides a continuum approximation for the description of an alloy.

A drawback of the k · p model is that it is defined only down to the unit cell, and

individual atoms (such as anion and cation species) are not resolved. This limitation is

not present in the case of TB where the individual atoms are modeled explicitly. This

allows for the treatment of an alloy without generating an effective material composed

of virtual atoms.

Here we consider the example of an (In,Ga)N alloy which is treated using a nearest-

neighbour TB model. The parameters for bulk InN and GaN can be determined from

bulk band structure as discussed, providing the on-site energies and hopping terms of

gallium and nitrogen atoms in GaN and of indium and nitrogen atoms in InN. Due

Theory of carrier transport in III-N based
heterostructures

31 Michael John Oliver O’Donovan



3. ELECTRONIC STRUCTURE THEORY 3.3 Heterostructures

to the crystal structure, the neighbours of all cation sites (indium or gallium) will be

nitrogen. Therefore the nearest-neighbour environment is the same as in a bulk crystal,

so the on-site energy and hopping terms will also be the same as the bulk material (if

strain effects are neglected). At the anion sites the situation is not so straightforward,

as the neighbours could be either gallium or indium. The on-site energy of a given

atomic species may differ between the bulk binaries, as is the case between InN and

GaN [96]. A common approach is to assign the on-site energy as a weighted average

which is dependent on the local environment of the atom in the system [133–135]. For

example, a nitrogen atom with three gallium neighbours and one indium neighbour

would be assigned on-site energies which are a combination of the on-site energies of

GaN and of InN in a ratio of 3:1. In future calculations we assume that in regions of

(In,Ga)N the indium atoms are distributed randomly (random alloy), without including

any clustering. This is in line with experimental observations [40].

We have described two methods for describing an alloy with TB: a virtual crystal and a

random alloy. A comparison of the results from these two approaches for a given alloy

composition allows us to investigate the impact that alloy fluctuations have on various

properties.

The second approach requires the construction of a supercell containing many unit cells

to generate a distribution of indium and gallium atoms. This breaks the translational

symmetry which was originally present in the system. The assumption that k is a good

quantum number is no longer valid, and therefore we do not consider a dispersion

relation when discussing an alloy, instead taking k = 0.

As already indicated above, so far we have discussed an alloy without mentioning

strain or polarization effects which may impact (for example) the energies of orbitals

at a given lattice site. We saw in Chapter 2 that these can have an impact on electronic

properties of a material. In the next section we extend our discussion to a heterostruc-

ture to include these effects, as well as other points of consideration for modeling an

alloy.

3.3 Heterostructures

The TB and k ·p models have been introduced for both binary and alloy III-N materials.

In order to extend the models to heterostructures one important aspect, which was

mentioned in Section 2.1.1, is the relative band offset values of different materials.

In Chapter 2 we introduced heterostructures, and discussed how a type I band align-

ment could be used to (e.g.) confine electrons and holes. Two aspects are important.

First, the band gap of the confining material should be smaller than the barrier material.

Second, the natural valence band edge offset (which does not include modifications

from strain or polarization effect) will impact characteristics.
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Determining the (composition dependent) direct band gap of a material can be achieved

via spectroscopic techniques [136, 137]. However the band alignment between un-

strained systems cannot be determined so straightforwardly. The question was targeted

for (In,Ga)N alloys theoretically by Moses and Van de Walle who used (non-polar) sur-

face calculations to align the conduction and valence band edges relative to the vacuum

level with hybrid functional DFT [86]. As already mentioned, results showed that the

InN natural valence band edge offset is 0.62 eV above the GaN band edge.

The relative band alignment is included in both the k · p and TB models through the

matrix elements used to describe a unit cell of the bulk materials. When this has

been considered, a description of an alloy or a heterostructure can be constructed.

Beyond this, strain and polarization will also play a role. In this thesis we are primarily

concerned with alloys in the context of a 2-plane QW structure, embedded within a

binary material. Our discussion around the description of strain and polarization will

focus on these heterostructures, which simplifies their profiles somewhat compared to,

for example, a quantum dot [138].

3.3.1 Strain

We start with a description of strain in an alloy. We have seen already in Chapter 2 that

strain effects can impact the electronic structure of a material. The strain in an alloy can

be divided into two categories: macroscopic effects, which occur on the length scale

of a unit cell or larger, and microscopic effects which occur on the atomic scale (e.g.

embedding an indium atom in a GaN crystal would result in a local strain around the

indium atom). Though we are ultimately interested in modeling an alloy in an atomistic

framework we shall start in the continuum picture, which is the implementation used

to include effects in a VCA. Here the microscopic effects are in general not included,

only capturing the macroscopic description.

3.3.1.1 Continuum elasticity

In a continuum description of strain we do not consider any local strain effects within

the unit cell. In this case we assume the lattice constant of the virtual material is a

(linear) combination of the constituent bulk materials.

Assuming that the strained material can be formed via a small deformation of the

unstrained material, the initial strain is determined by the relative difference between

the lattice constant of the alloy and the material to which it is being strained (the host

material). The initial strain tensor is [139]

Y =
©«
00−0
0

0 0
0 10−1

1
0

0 0 20−2
2

ª®®¬
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where 0, 1 and 2 are the lattice constants of the strained material and 00, 10 and 20

are the lattice constants of the host material. In the case of wurtzite III-N materials

0 = 1 ≠ 2. Here there has been no relaxation of the strained material.

Turning our attention to a QW system we make the assumption that the barrier material

is unstrained, and the QW is strained to match the in-plane (0) lattice constant of the

barrier; the QW material is allowed to relax along the 2-direction (out-of-plane) This is

usually a well justified approach (compare, for example, Fig. 1 in Ref. [41] and Fig 2

in Ref. [138]).

The in-plane strain is given by the fractional change in the 0-lattice constant as before,

and the strain along the 2-direction minimizes the elastic energy of the system. This

depends on the elastic properties of the alloy and is given by [138]

Y33 = −2�13
�33

Y11 . (3.13)

�8 9 are the elastic constants of the well material which in a continuum description of an

alloy are assumed to be interpolated values of the elastic constants of the constituent

materials.

The continuum description of strain is suitable for application to a virtual crystal de-

scription of an alloy, for example k · p or TB implementing a VCA. However, as our

goal is to be able to model alloy fluctuations atomistically we require a model which

accounts for the internal relaxation of the atoms in the alloy.

3.3.1.2 Atomistic strain

An atomistic description of strain allows for the change of position of atoms within

a strained unit cell. There are several options for modeling the interactions between

atoms in a crystal. These include the methods of Stillinger and Weber [140], Lennard-

Jones [141], Musgrave and Pople [142] and Keating [143]. The last two are so-called

valence force field (VFF) models which are frequently employed in semiconductor het-

erostructures [144–146].

In the VFF model the interatomic potential between each atom is modeled to include

the impact in the change in bond length, bond angle, as well as cross terms, e.g. bond-

bending and stretching terms. In this work relaxed atomic positions are calculated

using Martin’s potential [147] which has been discussed in detail in Ref. [91]. With

Theory of carrier transport in III-N based
heterostructures

34 Michael John Oliver O’Donovan



3. ELECTRONIC STRUCTURE THEORY 3.3 Heterostructures

this potential the energy at the 8Cℎ atom, +8, is given by

+8 =
1
2

∑
8≠ 9

Bond stretching︷             ︸︸             ︷
1
2 :A (A8 9 − A

0
8 9)2 +

∑
9≠8

∑
:≠8,:> 9

{ Bond bending︷                         ︸︸                         ︷
1
2 :

8
\A

0
8 9A

0
8: (\8 9: − \

0
8 9:)

2

+

Bond-angle︷                                                          ︸︸                                                          ︷
: 8A \

[
A0
8 9 (A8 9 − A0

8 9) + A0
8: (A8: − A

0
8:)

]
(\8 9: − \0

8 9:) +

Bond-bond︷                         ︸︸                         ︷
: 8AA (A8 9 − A0

8 9) (A8: − A0
8:)

}
+
′∑
9≠8

/∗
8
/∗
9
@2

4cn0nAA8 9︸      ︷︷      ︸
Coulomb

−1
2

∑
9≠8

1
4U"

/∗
8
/∗
9
@2

4cn0nAA2
8 9

(A8 9 − A0
8 9)︸                            ︷︷                            ︸

Coulomb Screening

.

In this expression :A , : 8\ :
8
A \

, : 8AA are the force constants corresponding to bond stretch-

ing, bond bending, bond-angle and bond-bond interactions respectively, A0
8 9

and A8 9 are

the bond lengths between atom 8 and 9 in the unstrained and strained structures, and

\0
8 9:

and \8 9: are the angles formed at atom 8 by the bonds connecting it to atoms 9 and :

in the unstrained and strained structures respectively. In a wurtzite structure each atom

has 4 bonds and 6 angles within the local tetrahedron formed by its nearest-neighbour

environment.

The bond stretching term describes the increase in energy due to the change in bond

length between atoms 8 and 9 away from the unstrained bond length. The bond bending

term accounts for the change in energy due change in angle formed with neighbours

when moved away from equilibrium. If the angle \8 9: decreases the bond lengths

connecting atom 8 to atoms 9 and : would tend to increase; this is captured in the

bond-angle term which describes the impact of the bond angle on the bond lengths. The

bond-bond term includes forces which occur on a bond when a nearby bond changes

length, e.g. shortening one bond extends another. All these terms only consider the

neighbouring atoms, the Coulomb term however takes into account the potential due

to every atom in the lattice and runs over the (infinite) crystal; this is denoted by the

′ symbol in the sum. In the Coulomb term /∗
8

is the effective charge of the atom 8, @

is the elementary charge, n0 and nA are the free-space and relative dielectric constants.

The final term is a repulsion term which corrects for the screening of charge within the

nearest neighbour environment where U" is the Madelung constant. This contribution

is required to keep the crystal stable [147].

We follow a similar approach for determining the force constants to that which we saw

for determining the on-site energy at an anion site in TB. If only one binary material is

involved then the constants can be assumed to correspond to that material. However,

where a combination of In-N and Ga-N bonds are involved averaged parameters are

used. The material parameters for the bulk materials are determined through fitting

results from HSE DFT [148]. This potential is calculated for each atom in the system
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under consideration, implemented with the highly efficient and parallelized software,

LAMMPS [149]. The atomic positions are moved via the conjugate gradient method in

order to find the relaxed atomic positions which minimize the potential energy of the

supercell being relaxed.

Once the relaxed positions have been determined it is also possible to calculate the

local strain tensor by finding the solution to [150]

Y =
©«
'12,G '23,G '34,G

'12,H '23,H '34,H

'12,I '23,I '34,I

ª®®¬ ×
©«
'0

12,G '0
23,G '0

34,G
'0

12,H '0
23,H '0

34,H
'0

12,I '0
23,I '0

34,I

ª®®®¬
−1

− 1l .

Here R0
ij = ('

0
8 9 ,G

, '0
8 9 ,H

, '0
8 9 ,I
)) is the edge of the ideal tetrahedron connecting vertices

8 and 9 as shown in Fig. 3.1, Rij = ('8 9 ,G , '8 9 ,H , '8 9 ,I)) is the corresponding edge of

the relaxed tetrahedron and 1l is the identity matrix; a polar decomposition is also

employed to ensure the local strain matrix is symmetric [151]. Now the off-diagonal

elements of the strain tensor Y12, Y23, Y13, Y21, Y32 and Y31, are no longer necessarily

zero, even in a QW system.

We discussed in Section 2.1.2 how strain effects could influence the electronic structure.

So far, while we have described the steps needed to calculate the strain in both a con-

tinuum and atomistic framework, we have not detailed how the strain will be included

in electronic structure calculations; this shall be the focus of our next discussion.

R0

R1

R2

R3

R4

R12

R23 R34

Figure 3.1: Schematic of local tetrahedron surrounding atom at R0 showing relevant
edges needed to compute strain. Black lines indicate inter-atomic bonds between the
central atom and its 4 nearest neighbours (R1−4), red lines indicate tetrahedron edges
used to compute the strain tensor.
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3.3.1.3 Including strain effects in electronic structure calculations

In both the k · p and TB methods the strain can be incorporated as a correction to the

Hamiltonian,

�̂ = �̂0 + �̂strain ,

where �̂0 is the unstrained Hamiltonian and �̂strain is the correction due to strain [114].

The number of components in �̂strain will depend on the number of basis states included

in the model. Here we shall consider an B?3 model for TB, but first a single band EMA.

3.3.1.3.1 Continuum strain effects

The single band EMA can be a good description of the conduction band close to the

center of the Brillouin zone. When a material is strained, modifications to this state

can be described by the Pikus-Bir Hamiltonian. For example the conduction band edge

would evolve as follows: [114]

�strain = (2 = 02(YGG + YHH) + 01YII (3.14)

where (B is the change in energy of the conduction band edge state, 01,2 are the defor-

mation potentials associated with strain out-of-plane and in-plane, and Y8 9 are elements

of the strain tensor as described in Section 2.1.2. This has the effect of moving the ab-

solute scale of the band structure, and does not impact the effective mass in the single

band description. Similarly, the valence band is modified by strain as

�strain = (E = E2(YGG + YHH) + E1(YII) , (3.15)

where E1,2 are the valence band deformation potentials. Here, effects due to shear

strain (Y8 9 with 8 ≠ 9) have been neglected. This is sufficient in a 1-D description of a

QW system, as we have already seen that these contributions are zero. Strain will also

impact different valence bands differently (see, for example Ref. [118]) and in some

situations a single band may not suffice. Multi-band descriptions of strain can also

be constructed, for example a 6-band k · p model could be used to describe strained

valence band states [114].

3.3.1.3.2 Atomistic tight-binding model

In the continuum description the strain was applied to the unit cell, and deformation

potential was simply the change in the band energy due to this. In an atomistic model

the cause for these changes becomes more intuitive. Considering this in the TB formal-

ism, variation in the bond length will modify the hopping terms between neighbouring

atoms. Not only this, but the on-site energy will also be adjusted due to a changes in the

potential from the surrounding lattice (c.f. Eq. (3.11)). A natural method of including

strain might be a modification to the hopping terms depending on the strain state (e.g.
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Refs. [152] and [153]). This approach introduces a large number of adjustable param-

eters which need to be determined, for example through a fitting procedure. Here we

take a different approach and include strain as a correction to the on-site energies using

the Pikus-Bir Hamiltonian [96]. This provides a straightforward approach to include

strain with a small number of parameters which can be extracted directly from DFT; no

fitting procedure is required. The strain correction at the 8Cℎ atomic site is given by

�8strain =

©«
(B 0 0 0
0 (GG (GH (GI

0 (GH (HH (HI

0 (GI (HI (II

ª®®®®®¬
,

where

(B = 02(YGG + YHH) + 01YII ,

(GG = ;1YGG + <1YHH + <2YII ,

(HH = <1YGG + ;1YHH + <2YII ,

(II = <3YGG + <3YHH + ;2YII ,

(GH = =1YGH ,

(GI = =2YGI ,

(HI = =2YHI

are the changes in energy of the B, ?G, ?H and ?I orbitals due to strain. The material

parameters are related to the deformation potentials, �8, of the material via [154]

;1 = �2 + �4 + �5 ,

;2 = �1 ,

<1 = �2 + �4 − �5 ,

<2 = �1 + �3 ,

<3 = �2 ,

=1 = 2�5 ,

=2 =
√

2�6 .

For the TB model discussed in this thesis, deformation potentials were extracted from

HSE DFT [155]. As is the case with the TB parameters for the on-site energies and

interaction terms, parameters at nitrogen sites are treated as a linear combination of

the parameters corresponding to InN or GaN depending on the number of neighbours

of each are present as before. It is worth noting that these parameters are fitted at

k = 0. This approach may not provide accurate results over the full Brillouin zone.

However, as we are focusing on an alloy we are primarily interested in the behaviour
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at the Γ-point, and therefore this is not a major limitation in this case.

3.3.2 Polarization potential

As discussed in Section 2.1.2, III-N materials grown in the wurtzite phase exhibit a

spontaneous polarization vector field within the crystal. On top of this, when strained

they also produce piezoelectric fields which impact the polarization in the material. We

saw in the case of strain that there are macroscale and atomic scale effects. Polarization

effects can also be categorized in this way, where a continuum model does not show

the full picture. Here we discuss the description of these effects in more detail starting

with a continuum model.

3.3.2.1 Continuum polarization

In Section 2.1.2 we discussed how the change in polarization due to a QW structure

can lead to a capacitor-like accumulation of charge resulting in a built-in polarization.

We revisit this here in more detail and focus on a single strained 2-plane QW of width ℎ,

where the spontaneous polarization also differs between the well and barrier materials.

The total polarization, as described in Section 2.1.2, is P(r) = Psp(r) + Ppz(r). Due to

the absence of shear strain in a continuum description of a 2-plane QW the piezoelectric

contribution is

Ppz = (Y1431 + Y2432 + Y3433)ẑ

where Y8 are elements of the strain tensor and 48 9 are elements of the piezoelectric

tensor. Using Voigt notation, the piezoelectric tensor of a wurtzite 2-plane QW is given

by [96]

4 =
©«

0 0 0 0 415 0
0 0 0 415 0 0
431 431 433 0 0 0

ª®®¬ .

This describes the macroscopic polarization field generated while in the presence of

strain.

Using this tensor and the relation between strain and the elastic constants given in

Eq. (3.13), the expression for the polarization field within a single QW is given by

Ppz = %
,
pz ẑ = 2Y1

(
431 − 433

�13
�33

)
ẑ .

The potential profile can be found by solving Poisson’s equation:

−∇ ·
(
n (r)∇ipol(r)

)
= dpol(r) = −∇ · P(r) .

In the single quantum well with unstrained barriers being treated as a 1-D system this

is straightforward, and by applying suitable boundary conditions (for example, zero
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field in the barrier as I → ±∞) the final solution can be written concisely as [138]

i?>; (I) =
(
%,sp − %�sp + %,pz

2n,

)
( |I | − |I − ℎ|) .

Here we are assuming that the well begins at I = 0, has a width of ℎ, and a dielectric

constant of n, ; there is no dependence on the in-plane coordinates (G and H).

3.3.2.2 Atomistic polarization

The previously described framework is applicable to a continuum model, and also an

atomistic framework using a VCA. If we use an atomistic description of strain we get

local strain effects. We require a theory which can turn these into local polarization

effects. Extending the above approach to an atomistic model, due to the internal relax-

ation of atomic positions is not simple. However it is important to capture the effects

due to the large lattice mismatch present in (In,Ga)N alloys.

Instead, a different approach is used; the polarization model used is described in detail

in Ref. [156]. In an atomistic framework there will be fluctuations in the polariza-

tion due to changes in local composition and strain. The 8Cℎ component of the local
polarization vector at a given lattice site is given by [96]

%
pz
8
=

6∑
9=1

4
(0)
8 9
Y 9︸      ︷︷      ︸

Macroscopic

+ %sp
8
− 4

+0

Z0
8

##

(
##∑
U=1

;U8 −
3∑
9=1
(X8 9 + Y8 9)

##∑
U=1

;U9,0

)
︸                                                        ︷︷                                                        ︸

local

(3.16)

where 4 (0)
8 9

are the piezoelectric coefficients obtained from a clamped-ion calculation

where the ionic coordinates are not allowed to relax internally, Y 9 is the macroscopic

strain in Voigt notation, %sp
8

is the 8Cℎ component spontaneous polarization, Z0
8

is the

Born effective charge, ## is the number of nearest neighbours (4 in wurtzite struc-

tures), ;U
9,0 and ;U

9
are the bond vectors pointing from the 9 Cℎ neighbour towards the

central atom before and after strain respectively. The sum of ;U
8

over the local tetrahe-

dron around an atom represents the bond asymmetry, and would be 0 if the 8Cℎ atom

was in the center of a perfect tetrahedron.

If this is evaluated at every atomic site determining values for Z would be an extensive

task, as at a nitrogen site there are multiple nearest-neighbour environments which

need to be considered. Instead, we treat only the cation sites whose nearest neighbour

sites will always be nitrogen atoms, reducing the number of effective charges needed

to two (one for GaN and one for InN).

When the polarization vector is calculated it is possible in principle to evaluate the

potential via Poisson’s equation, as was done in the continuum calculation. In an atom-

istic framework this presents technical challenges due to the irregular grid formed by
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the relaxed atomic positions. Instead we implement a point-dipole method, where the

potential at an atomic site R0 is determined to be the sum of the contribution of all the

dipoles which are present in the lattice [156].

The quantity calculated using Eq. (3.16) is the polarization, which can be described as

the dipole density. Therefore the dipole moment in a given volume is

p8 = P8+8 .

The effective volume of each dipole generated in our wurtzite crystal structure is

+8 = (r1 − r4) · [(r2 − r4) × (r3 − r4)]

where ri are the atomic positions of the atoms forming the tetrahedral environment

around the 8Cℎ lattice site [156]. Therefore the point-dipole at each cation site can be

evaluated. A point-dipole at position R8 will generate a potential at position r of

q8p(r) =
1

4cnA n0
p8 · (r −R8)
|r −R8 |3

.

The total potential therefore at the 8Cℎ atomic site is the sum of the point-dipole poten-

tials due to all other atoms:

i8pol =
∑
9≠8

q
9
p(r8) .

3.3.2.3 Including polarization effects in electronic structure calculations

Once the potential has been evaluated, either using a continuum or atomistic approach,

it can be incorporated to the electronic structure theories previously discussed as a site-

diagonal correction to the Hamiltonian being used. This approach is the same for k · p
and TB models. Taking an B?3 TB model as an example, the correction due to the

polarization potential at the 8Cℎ lattice site is

�8pol =

©«
i8pol 0 0 0
0 i8pol 0 0
0 0 i8pol 0
0 0 0 i8pol

ª®®®®®®¬
where i8pol is the polarization potential at the atomic site in question.

The Hamiltonian including strain and polarization effects can now be constructed as

�̂ = �̂0 + �̂strain − @�̂pol .

Single particle states and energies can be calculated by finding the eigenvectors and
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eigenvalues of the full Hamiltonian �̂.

Eigenvalue problems are a numerically challenging task, particularly for systems with

a large number of basis states. On top of this, in transport calculations the Schrödinger

equation may be needed to be solved self-consistently with the Poisson and current

equations.

As a result, in order to capture a quantum description of particles in very large sys-

tems (self-consistently) while maintaining a fine resolution of the alloy microstructure,

approximations of the Schrödinger equation may be needed. In the next section we

introduce one such technique called localization landscape theory.

3.4 Localization Landscape Theory

In previous sections we have considered how to describe single particle states of a sys-

tem in order to learn about electronic states and energies. Even if we are only interested

in a small number of states close to the band edges solving an eigenvalue problem is a

numerically expensive task. Here we consider a different approach which allows for the

estimation of a local ground state without solving an eigenvalue problem, the so-called

localization landscape theory (LLT). This approach was first presented by Filoche and

Mayboroda in 2012 studying a localization landscape in a disordered medium [157].

This existed simply as a mathematical tool until 2017, when the model was first applied

to semiconductors to introduce modeling of devices [158], study Urbach tails [159] and

investigate transport properties [67] in (In,Ga)N-based devices.

Localization landscape theory is a general method which can be applied to any random

landscape in order to estimate the (local) ground state energy and wave function in

any localization region in a single band description. Here we derive the expression, fol-

lowing the procedure from Ref. [157] (supplementary material), although we consider

here a discrete basis set.

The states in the system are determined by the single band Hamiltonian, �̂, with eigen-

states

�̂ |k=〉 = �= |k=〉 .

We are aiming to approximate the ground state wave function, |k0〉 which has an en-

ergy �0. The ground state wave function can be expressed of a vector of the complex

coefficients, q0
8
, which describe the state:

|k0〉 =
(
q0

0 q0
1 . . . q0

9
. . . q0

#−1 q0
#

)†
. (3.17)

In the case of the single band EMA there is only one basis state at each position in the

system, so q0
8

is the coefficient describing the ground state wave function at the position

x8.
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3.4.1 Green’s function

In order to derive LLT (and later the NEGF formalism) we introduce the Green’s func-

tion of the Hamiltonian operator. The Green’s function for the time-independent, single

particle Schrödinger equation is defined via [160]

[� − �̂ (r)]�̂ (r, r′; �) = X(r − r′) , (3.18)

or in matrix form

[�1l − �]� (�) = 1l , (3.19)

where � is the energy, � is the Hamiltonian, � is the Green’s function, X(r − r′) is the

X-function and 1l is the identity matrix. The X-function has the property

5 (r) =
∫

5 (r′)X(r − r′)dr′ ,

or in the matrix case,

58 =
∑
9

5 9X8, 9 , (3.20)

so that

X8, 9 =


0 8 ≠ 9

1 8 = 9
,

which for the full system becomes the identity matrix (only non-zero entries along the

diagonal when 8 = 9). The Green’s function describes the response of a system at

position r due to an impulse in the form of a X-function at position r′.

3.4.2 Deriving localization landscape theory

From Eq. (3.19) it can be seen that varying � has the effect of varying the absolute

energy scale of the Hamiltonian. In the case the of Schrödinger equation this can be

freely done with the only effect being a shift in the eigenenergies of the Hamiltonain,

as the potential is only defined up to a constant. That is to say

(�̂ − �1l) |k=〉 = )̂ |k=〉 + (+̂ − �1l) |k=〉 = (�= − �) |k=〉

where the eigenfunction |k=〉 is independent of � , and has an eigenvalue �= − � . For

the derivation of LLT we shall refer to � as the reference energy, also denoted �ref. We

shall assume that this is zero for now, though as we shall see later the choice of �ref can

impact results after the Green’s function has been considered, and it should be chosen

to minimize the absolute value of the ground state energy (while keeping it positive).

We also modify the definition of the Green’s function slightly by changing the sign, in
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line with the approach taken in Ref. [157]:

�� = 1l .

Considering this matrix multiplication element by element, the 8Cℎ row of � and the 9 Cℎ

column of � multiply to produce the equation∑
: ∈ Ω

�8,:�:, 9 = X8, 9 . (3.21)

Using our identity in Eq. (3.20) the elements of the ground state can be described as

q0
9 =

∑
8 ∈ Ω

q0
8 X8, 9 .

Replacing the X-function with our expression from Eq. (3.21) the 9 Cℎ the component of

|k0〉 can be written in terms of the Hamiltonian and the Green’s function:

q0
9 =

∑
8 ∈ Ω

q0
8

∑
: ∈ Ω

�8,:�:, 9 =
∑
: ∈ Ω

( ∑
8 ∈ Ω

q0
8 �8,:

)
�:, 9 . (3.22)

As |k0〉 is an eigenstate with energy �0,∑
8∈Ω

q0
8 �8,: = �0q

0
: .

This allows us to rewrite Eq. (3.22) as

q0
9 = �0

∑
: ∈ Ω

q0
:�:, 9 .

The amplitude of q0
9

has an upper bound:

|q0
9 | =

������0
∑
: ∈ Ω

q0
:�:, 9

����� ≤ �0
∑
: ∈ Ω

|q0
: | |�:, 9 | . (3.23)

In the above equation we have assumed that �0 is positive. This can always be achieved

by shifting the absolute energy scale of the Hamiltonian.

The right hand side of Eq. (3.23) includes in the sum the magnitude of the elements

of |k0〉. We now endeavour to find an upper bound for this term to simplify our upper

bound of |q0
9
|. To do so we introduce the concept of a ?-norm. The ?-norm of a vector

|E〉 (whose elements are {E8}) is defined as [161]

‖v‖ ? =
(∑
8

|E8 |?
) 1
?

.
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If ? is 2 this corresponds to the Euclidean norm (‖v‖2 ≡ ‖v‖). Increasing the value

of ? results in an increased contribution to the norm from the larger values of E8 and

a suppression of the smaller values. As ? → ∞ only the maximum value of E8 will

contribute to the norm, so this is equivalent to the amplitude of the maximum value of

E8:

‖v‖∞ ≡ Max{|E8 |} .

This is the so-called infinity norm (sometimes called the supremum norm or the max

norm) of the vector. As |q0
:
| ≤ ‖k0‖∞ the following inequality holds:∑

: ∈ Ω
|q0
: | |�:, 9 | ≤ ‖k

0‖∞
∑
: ∈ Ω

|�:, 9 | .

Therefore dividing Eq. (3.23) by �0‖k0‖∞ results in the expression

|q0
9
|

�0 | |k0 | |∞
≤

∑
: ∈ Ω

|�:, 9 | .

If all the entries of � are positive1 then the absolute value of the Green’s function in

the sum over : can be ignored, and the inequality can be expressed as

|q0
9
|

�0 | |k0 | |∞
≤

∑
: ∈ Ω

�:, 9 × 1 ≡ D 9 , (3.24)

where D 9 is the upper bound which we are trying to evaluate. Recalling the properties

of the X-function (Eq. (3.20)), we rewrite D 9 as

D 9 =
∑
8 ∈ Ω

X8, 9D8 .

Replacing the X-function with the product of the Hamiltonian and Green’s function

(Eq. (3.21)) we are left with

D 9 =
∑
8 ∈ Ω

( ∑
: ∈ Ω

�8,:�:, 9

)
D8 =

∑
: ∈ Ω

�:, 9

∑
8 ∈ Ω

�8,:D8 . (3.25)

Comparing the expressions for D 9 in Eq. (3.24) and Eq. (3.25) it is clear that the fol-

lowing expression must hold: ∑
8 ∈ Ω

�8,:D8 = 1 ∀ : ∈ Ω ,

1The Green’s function of the Hamiltonian is positive if the Hamiltonian is positive definite [162].
This was already assumed to be the case in Eq. (3.23) where the ground state was declared to be
positive, �0 > 0 and thus �= > 0 ∀ =.
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or, written in matrix form

� |D〉 = 1 . (3.26)

This is the so-called landscape equation, whose solution, D bounds the amplitude of

the ground state wave function (normalized in some way by the energy and the norm

of the wave function). Therefore to calculate the localization landscape, only a linear
system of equations needs to be solved. This provides a significant benefit in terms of

numerical demand when compared to solving an eigenvalue problem which is required

in order to calculate the ground state from the Schrödinger equation.

The object D can be used to approximate the ground state wave function [158, 163].

This is illustrated for a test system in Fig. 3.2 (i) (a) where a square QW with periodic

boundary conditions is considered. The normalized wave function amplitude calcu-

lated via the Schrödinger equation is compared to the localization landscape function,

D (normalized over the same region such that the Euclidean norms are 1); the profiles

are comparable inside the well region, although the landscape function is non-zero

outside the well region whereas the wave function decays quickly due to the potential

energy of the barrier being greater than the energy of the state. An energy landscape

(i) �0 − �ref = 50 meV (ii) �0 − �ref = 500 meV
(a) Ground state
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Figure 3.2: (a) A comparison of the normalized ground state charge density calculated
by the Schrödinger equation (black) and the normalized landscape function squared
(red). (b) The confining potential energy profile input to the Schrödinger equation
(black) and the effective potential calculated from localization landscape theory, , =

1/D (red). Results are shown for systems where the ground state sits 50 meV and (ii)
500 meV above the reference energy.
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can also be extracted from D. To do so the inverse of D at each point is taken [158]:

, 9 =
1
D 9

. (3.27)

This can be treated as an effective confining potential which can be used to include

quantum corrections in a classical description of a system [158]. Figure 3.2 (i) (b)

shows the confining potential energy used in the original Schrödinger equation (black)

and the effective confining potential energy (red) extracted using LLT. Two features

are of note. Firstly, the effective confining potential energy is less deep, and the low-

est point sits slightly above the bottom of the QW. This is capturing the effect of the

confinement energy which causes the ground state to sit above the bottom of the QW.

Secondly, the effective potential energy profile of the well is broader than the original

potential energy. This captures the quantum effect of the wave function leaking into

the barrier material, which is not included in a classical description where this region

is forbidden for carriers at energies less than the confining energy.

LLT could be used, for example, in drift-diffusion calculations where the conduction

and valence band edges are used as input without solving the Schrödinger equation,

and the carriers are treated as point like charges; an effective landscape could be used

in this case to include some quantum effects as mentioned above. This will impact the

barriers that carriers encounter, and impact the position of the Fermi energy.

3.4.3 Drawbacks of the method

Although LLT is a numerically efficient way to include quantum corrections without

having to solve an eigenvalue problem there are some drawbacks from not using the

full Schrödinger equation. As we saw above, the wave function resulting from the time-

independent Schrödinger equation is independent of the zero-point of the potential.

This is not the case for Eq. (3.26), where the reference energy of the potential plays a

role in the resulting effective landscape. This is shown clearly by Chaudhuri et al. where

a modified landscape approach is suggested, motivated by expanding the landscape in

the basis of eigenstates of �:

� |D〉 = �
∑
=

U= |k=〉 =
∑
=

U=�= |k=〉

where = runs over the eigenstates |k=〉 of � which have eigenvalue �= [163]. The

coefficients, U=, can be extracted by using the orthogonality of the eigenstates:

〈k8 | � |D〉 =
∑
=

U=�= 〈k8 |k=〉 = U8�8 .
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Recalling from Eq. (3.26) that � |D〉 = 1 the coefficients can be expressed as

U8 =
〈k8 |1〉
�8

so the expansion of |D〉 is

|D〉 =
∑
=

〈k= |1〉
�=

|k=〉 . (3.28)

From Eq. (3.28) it can be seen that the resulting form of the landscape |D〉 will depend

on the absolute values of �=, and will not remain fixed as the reference energy is

changed. In particular, we are interested in describing the ground state in the region of

interest, so we require the 0Cℎ term to dominate the expansion: U 9 � U0 ∀ 9 ≠ 0. To

satisfy this, the reference energy of the Hamiltonian can be picked so that the ground

state is very close to 0, while still retaining the positive definiteness of the Hamiltonian

(as was required in the derivation for LLT).

For Fig. 3.2 (i) the reference energy of the system was chosen such that the ground

state energy was 50 meV above the reference energy. Figure 3.2 (ii) shows the results

of the same system such that this difference is 500 meV. With such a large separation

between the reference energy and the ground state energy the results from LLT become

significantly worse for the form of the ground state wave function (c.f. Fig. 3.2 (i) (a)

and Fig. 3.2 (ii) (a)). The resulting energy landscape, , , also has a less smoothed out

well-barrier interface. On top of this, the effect of carriers sitting above the bottom of

the well (due to confinement) which was present when �0 − �ref = 50 meV is no longer

visible (c.f. Fig. 3.2 (ii) (a) and Fig. 3.2 (ii) (b)). As the reference energy becomes

infinitely far away from the ground state energy the effective confining potential energy

approaches the profile of the original confining potential energy landscape used in the

Schrödinger equation.

So far LLT has been applied to a range of topics using effective mass [158,164] and TB

Hamiltonians [165,166]. However, in all these frameworks only a single band was con-

sidered, and the model is yet to be extended to a multi-band model. In the applications

discussed in this thesis this is not a significant issue, as the lowest conduction band of

InN and GaN are both B-like in character, and the highest valence band states both have

?G,H-character. In this case a single band Hamiltonian is sufficient to capture the key

physics. The same may not necessarily be the case for other systems, such as AlGaN- or

AlInN-based structures (due to the significant differences in AlN band structure com-

pared to InN and GaN [167]). In the case of AlN the highest valence band state has

?I character [168]. The character of the highest valence band state is important for

describing the optical polarization of the emitted light [169, 170]. Therefore a single

band model may not be sufficient, and LLT may not be so simply applied, particularly

when studying systems as a function of aluminium content.

In this chapter we have described electronic structure theories which can be used in a
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variety of settings, including continuum frameworks, atomistic models and a numeri-

cally efficient approximation of a particle ground state. In the next chapter we shall

introduce different approaches to describe transport in a system, which build on the

here-presented electronic structure theories. We shall continue our discussion starting

with a quantum description to model ballistic transmission, before moving towards a

semi-classical framework which is capable of modeling a full device while still main-

taining an atomistic description of an alloy.
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Chapter 4

Carrier Transport Theory

As we saw in Chapter 3 there are many ways of describing energy states in a semicon-

ductor or semiconductor heterostructure. Equally there are many flavours of models

describing transport through such systems. The most fundamental approaches start

with a quantum mechanical framework, and evaluates the probability of transmission

between states. In this chapter we introduce the non-equilibrium Green’s function for-

malism which treats the system in this way. This is numerically very demanding, and

other models which take a more classical approach are often used used when describ-

ing full devices. One such model is drift-diffusion, which we will discuss in greater

detail in Section 4.2.

4.1 Non-equilibrium Green’s function formalism

The NEGF is a quantum mechanical approach used for describing transport in a de-

vice. The formalism was built on work carried out in the 1960’s by Schwinger [171],

Fujita [172], Keldysh [173] and others describing carrier dynamics. We consider this

framework to describe a device which is connected to two leads (which act as a source

and drain for charge carriers) which extend infinitely far. As we shall see, this approach

reduces the infinitely large system into a finite dimensional problem. In this chapter

we follow methods found in Ref. [174] to introduce the framework.

We start with the Hamiltonian describing the full system, �̂: we are dealing here with

three regions, one device region (which may contain, for example quantum wells), and

two semi-infinite leads, which form the contacts of the system. This is indicated in

schematic form in Fig. 4.1. The time-independent Schrödinger equation indicates the

energy of charge carriers in the system is given by

�̂ |k〉 = � |k〉 .
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C; CA

Left lead
�;

Right lead

�A

Device
�3

→∞∞←

Figure 4.1: Structure of device considered while deriving non-equilibrium Green’s func-
tion formalism. The device region when isolated is described by the Hamiltonian �3,
and the semi-infinite left and right leads are described by �; and �A respectively. The
coupling between the device region and the leads takes place in the regions shown by
red dashed lines, and the submatrices are denoted C; and CA .

The full Hamiltonian of the device and leads is

�̂ =
©«
�; C; 0
C
†
;

�3 CA

0 C
†
A �A

ª®®¬
where subscript ;, A and 3 denotes properties in the left lead, right lead and device

regions respectively. �8 are the Hamiltonians of each isolated region (with 8 ∈ {;, 3, A})
and C8 are the coupling terms between the 8Cℎ lead and the device region (with 8 ∈ {;, A}).
Here we assume there is no interaction between the two leads. We saw in Section 3.4.1

that the Green’s function for the single-particle, time independent Schrödinger equa-

tion is defined by1

(�1l − �̂)�̂ = 1l , (4.1)

where � is the energy, 1l is the identity matrix and �̂ is the Green’s function. We also

write �̂ in terms of block matrices,

�̂ =
©«
�; �;3 �;A

�3; �3 �3A

�A; �A3 �A

ª®®¬ .

Applying the matrix multiplication in Eq. (4.1) results in nine equations. As we are

interested in the device region we focus on the expressions which contain �3:

(�1l − �;)�;3 + C;�3 = 0 , (4.2a)

(�1l − �3)�3 + C†;�;3 + CA�A3 = 1l , (4.2b)

(�1l − �;)�A3 + C'�3A = 0 . (4.2c)

From Eq. (4.2a) and Eq. (4.2c) expressions for �;3 and �A3 can be derived in terms of

1As in Section 3.4, the Green’s functions and subsequent derived quantities will depend on energy,
�̂ → �̂ (�). For compact notation we neglect this for the majority of the section, and only re-introduce it
later when it becomes more relevant to the discussion.
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�3:

�;3 = −6;C;�3 ,

�A3 = −6A C†A�3 ,

where 6;,A = (�1l − �;,A )−1 are the Green’s functions of the isolated leads.

Using this information and Eq. (4.2b) the Green’s function of the device can be ex-

pressed as

�3 = [�1l − �3 − Σ; − ΣA ]−1 , (4.4)

where Σ;,A are the scattering self energies which act as a correction to the system to

account for the coupling of the device region with the semi-infinite leads. These are

given by

Σ; = C
†
;
6;C; ,

ΣA = CA6A C
†
A .

Now we are able to describe the response in the device using a finite-dimentional ma-

trix. This however requires us to know the Green’s function of an isolated semi-infinite

lead. These are also known as surface Green’s functions, and could be derived analyti-

cally [175] or calculated numerically [176].

The Green’s function of the device in general admits two solutions, one corresponding

to outward propagating waves, away from the excitation, and one to formed by waves

coming in and disappearing at the point of excitation. Physically, we are interested

in the waves which are propagating out from a point of excitation. To distinguish

between these solutions a infinitesimal complex energy, 8[+([+ > 0) is often added to

Eq. (4.4) which causes waves propagating in one direction to become unphysical, as

the (complex) wavevector will cause the wave function to balloon as the position goes

to infinity [175]. This is the retarded Green’s function, �'. Similarly subtracting this

complex energy results in the advanced Green’s function, ��.

�' = [(� + 8[+)1l − �3 − Σ]−1 ,

�� = [(� − 8[+)1l − �3 − Σ†]−1 .

Σ is the total self-energy associated with the leads, and in the case of multiple leads

it is the sum of each contribution so that in our case it is Σ; + ΣA . In general we

will concern ourselves with the retarded Green’s function which is associated with the

outward propagating waves, though the advanced Green’s function is related to this

via �' = [��]†.

We have defined Σ to be the self-energy associated with all of the leads, however extra

self-energy terms are often included to account for scattering within the device. These
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are so-called Bütticker probes, which are included in a similar manner to the leads, how-

ever they do not act as a source or drain for the carriers, they only change their energy

and momentum [177]. One such scattering mechanism is electron-phonon scattering,

where charge carriers lose their energy to lattice excitations. This can be included in

the NEGF formalism via the self-consistent Born approximation [178–180].

In the work carried out in this thesis we consider ballistic transport. In this case we

neglect these scattering mechanisms, and consider only the interaction single-particle

states have with the material through which they are transmitting (e.g. changes in

the conduction or valence band energy will cause a scattering of carriers). The time-

independent Schrödinger equation for the device in the presence of an incoming source,

|B〉 is given by [174]

� |k〉 = �3 |k〉 + Σ |k〉 + |B〉 , (4.5)

which indicates that the energy in the device depends on not only the device Hamil-

tonian, but also the coupling to the leads (via Σ) and the injection of states through a

source term.

Writing this in terms of the retarded Green’s function the wave function within the

device due to an incoming source, |B〉, is

|k〉 = �' |B〉 .

The density matrix of |k〉 is given by 2c |k〉 〈k |, which we shall denote �=, following

the notation used by Datta [175]. We can write this in terms of the Green’s function

and the source term:

�= = 2c�' |B〉 〈B |�� = �'Σin�� , (4.6)

where we have labeled the density matrix of the source term as Σin which describes

the electrons entering the device region (in-scattering). Similarly the density matrix of

electrons leaving the system can be described by Σout. As the out-scattering of electrons

is equivalent to the in-scattering of holes, the hole density matrix is analogously

� ? = �'Σout�� , (4.7)

The total number of available states is given by the spectral density, �. This is the total

electron states and the total hole states combines, and is thus given by the expression

� = �= + � ? = �'Γ�� = ��Γ�' , (4.8)

where for the last two terms we have introduced the broadening term, Γ, which takes

into account the change in energy of the system due to interaction with the leads [175]:

Γ = 8( [��]−1 − [�']−1) = 8(Σ − Σ†) = Σin + Σout . (4.9)
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By multiplying Γ by �' and �� from the left and right (right and left) respectively we

find an alternate expression for �:

� = 8(�' − ��) . (4.10)

The spectral density is the matrix analogy to the density of states, and the trace of this

matrix gives the number of available states at a given energy (remembering that the

Green’s function is energy dependent). In the same way the carrier density at a given

energy can be determined by the product of the carrier distribution function (Fermi-

Dirac function 5 (�)) and the density of states, the electron and hole density matrices

can be determined via

�= = 5 (�)� ,

� ? = (1 − 5 (�))� .

Using our expression for � from Eq. (4.8) these can be written in terms of the broad-

ening function, Γ:

�= = 5 (�)�'Γ�� ,

� ? = (1 − 5 (�))�'Γ�� .

By comparing these expressions with our original terms of the carrier density func-

tions (Eq. (4.6) and Eq. (4.7)) the following expressions for the in-scattering and out-

scattering rates can be found:

Σin = 5 (�)Γ , (4.11)

Σout = (1 − 5 (�))Γ . (4.12)

A table listing useful quantities and their physical meaning is given in table 4.1.

Table 4.1: A table connecting quantities used in NEGF formalism to a classical equiva-
lent.

Symbol Classical equivalent
�= Electron density
� ? Hole density
� Density of states
Σin In-scattering
Σout Out-scattering
Γ Total scattering
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4.1.1 Probability Current Density

Up until now we have considered the Hamiltonian of a system connected to contacts

in the form of two semi-infinite leads, and introduced some useful identities which will

be of interest going forward. Ultimately our goal is to investigate ballistic transmission

(related to ballistic current as we will see later). In order to do this we shall look at the

probability current density, � (�).

The trace of �= (Eq. (4.6)) represents the number of electrons in the system, #. We

are interested in the current, therefore the time derivative of |k〉 〈k | is of interest to us,

as

� (�) = @ m#
mC

= @
m

mC
)A

(
2c |k〉 〈k |

)
, (4.13)

where � (�) is the energy resolved current and )A (") is the trace operator, which sums

the diagonal elements of the matrix ". The time evolution of |k〉 is described via the

Schrödinger equation,

8ℏ
m

mC
|k〉 = �̂ |k〉 ,

−8ℏ m
mC
〈k | = 〈k | �̂ .

Expanding the derivative of |k〉 〈k | via the product rule for differentiation, and applying

the Schrödinger equation and its complex conjugate results in the following expression:

m

mC
|k〉 〈k | = 8

ℏ

[
|k〉

(
〈k | (�3 + Σ†) + 〈B |

)
−

(
(�3 + Σ) |k〉 + |B〉

)
〈k |

]
.

Using the identities already described (|k〉 = �' |B〉, 〈k | = 〈B |��, �= = 2c |k〉 〈k |, and

Σin = 2c |B〉 〈B |) this expression can be simplified to

m#

mC
=

8

2cℏ)A
[
�=�3 − �3�= + �=Σ† − Σ�= + �'Σin − Σin��

]
.

As )A [��] = )A [��] and )A [� + �] = )A [�] + )A [�] we can write this as

m#

mC
=

1
2cℏ)A

[
�Σin − Γ�=

]
,

where we have used Eq. (4.9) and Eq. (4.10). This gives us a neat expression for the

current,

� (�) = @

2cℏ)A
[
�Σin − Γ�=

]
=

@

2cℏ)A
[
Σin� ? − Σout�=

]
.

We are interested in a device in steady-state. In this case the number of electrons in

the device is not changing, and the time-derivative of the carrier density (Eq. (4.13))

is zero. On the other hand, the total current � (�) is made up of current contributions

between different leads. These are not necessarily individually 0, however their sum

will be in order to conserve the number of electrons in the system.
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The current at contact < will therefore be [174]

�<(�) =
@

2cℏ)A
[
Σin
<�

? − Σout
< �=

]
.

The expression for the current can be manipulated using equations (4.6)–(4.9) to reach

the expression

�<(�) =
@

2cℏ)A [Σ
in
<�

'Γ − Γ<�'Σin��] ,

where Σin
< and Γ< are the in-scattering and total scattering at the <Cℎ contact only. The

other scattering terms, Σin and Γ correspond to the full device, and can be described as

the sum the contributions associated with each contact:

Γ =
∑
2

Γ2 ,

Σin =
∑
2

Σin
2 ,

where 2 denotes each contact (in the case introduced there 2 ∈ {;, A}). The current at

the <Cℎ contact is now

�<(�) =
@

2cℏ
∑
2

)A [Σin
<�

'Γ2�
� − Γ<�'Σin

2 �
�] .

Recalling from Eq. (4.11) the in-scattering rate can be written in terms of Γ and the

Fermi function, the current at the <Cℎ contact can finally be described as

�<(�) =
@

2cℏ
∑
2

)A [Γ<�'Γ2��] ( 5<(�) − 52 (�)) ,

where 5<(�) Fermi function at the <Cℎ contact, and an individual term in the sum is

the current between contacts < and 2. In the structure with two contacts, ; and A, the

current at A arriving from ; is therefore given by

�A (�) =
@

2cℏ) (�) ( 5A (�) − 5; (�)) , (4.14)

where the transmission is

) (�) = )A [ΓA�'Γ;��] . (4.15)

This expression for the transmission is physically quite opaque, however we now have

an expression which can be calculated providing we know the Green’s function of the

system coupled to the semi-infinite leads, and the broadening function associated with

each lead. This can be achieved by carrying out the required matrix inversions and

multiplications, or by implementing a recursive Green’s function algorithm [181].

Equation (4.14) shows that the current between the contacts A and ; is proportional to

the difference between the probability of the initial and final state being occupied. If
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the Fermi level is equal at both points current will not flow, which is the same result we

shall see in the classical approximation implementing drift-diffusion. On top of this, it

is straightforward to see in this case that the current at ; from A is simply −�A . The total

current at A is the integral of �A over all energy:

IA =
@

2cℏ

∫
) (�) ( 5A (�) − 5; (�))d� .

In this work we focus solely on the transmission function, and study the impact that

different treatments of an alloy will have on transmission of both electrons and holes.

We also study only ballistic tunnelling, where no scattering events take place. In this

case the transport can be described equivalently using the so-called wave function for-

malism (or quantum transmitting boundary method), which numerically is much less

demanding than the NEGF equations [123].

Even though it appears obvious to think of ) as the probability of an electron leaving the

left lead has of reaching the right lead it is worth noting that ) (�) can actually exceed 1.

As this quantity is energy resolved, and not state resolved, if there are degenerate states

) tells us the sum of the probabilities of each state transmitting. This is evidenced for

example in Ref. [123] where the band structures and transmission profiles for various

nanowires are shown; there is a step-change in the transmission profile (as a function

of energy) whenever the number of bands at each energy changes.

So far we have made no assumptions about the Hamiltonian being used to describe the

electronic structure of the system under consideration. The NEGF formalism has been

coupled successfully with a range of Hamiltonians including DFT [109–111], TB [123,

182], and effective mass [183–185] models. In this work we couple a TB Hamiltonian

(described in detail in Chapter 3) to study systems in an atomistic setting including

alloy fluctuations, as well as strain and polarization profiles calculated with atomistic

theories.

When considering a 3-D device structure the NEGF formalism is limited in its applica-

tion to small devices due to the high numerical demand, even in the ballistic case. In

order to model a full device, approximations must be made in order to extend modeling

to a full device-size domain. To this end we introduce the DD framework in the next

section.

4.2 Drift-diffusion

Due to the reduced numerical demand of DD compared to fully quantum mechanical

approaches, the framework has been widely applied to studying transport in devices.

DD, or modified DD frameworks are frequently employed in the study of a range of

devices such as LEDs [67, 182, 186], transistors [187, 188] and solar cells [34, 35]. As

the name suggests, DD models the motion of particles due to an external force causing
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the carriers to drift (e.g. a field moving electrons via Lorentz Force), as well as due

to changes in the particle concentration (Fick’s Law of diffusion). In this section we

derive the model starting from the Boltzmann transport equation, and introduce the

ingredients required to implement the model.

4.2.1 Deriving drift-diffusion from Boltzmann transport

The Boltzmann transport equation (BTE) is a statistical model describing the behaviour

of a thermodynamical system, and can be used to describe for example the motion of

fluids or of charged particles subject to an electromagnetic field [189]. The BTE is a

semi-classical analogy to the NEGF formalism in the sense that NEGF couples quantum

dynamics to scattering processes, while the BTE uses semi-classical dynamics while

also introducing scattering mechanisms. Therefore the BTE is a suitable formalism for

describing carrier dynamics in a device as long as quantum mechanics does not play an

important role, as the formalism considers the carriers to be point-like particles. On the

other hand the BTE is still a computationally expensive method if information about the

full carrier distribution function is required [190]. This limits its usefulness for device

applications, and therefore we focus on trying to determine average properties of the

carrier distribution via the method of moments. Here we derive the DD equations from

the statistical BTE following the procedure in Ref. [191], with further insights provided

in Ref. [192].

The BTE is:

3

3C
5 (r, k, C) =

[ m
mC
+ v · ∇︸︷︷︸

position

+ 1
ℏ

F · ∇:︸   ︷︷   ︸
momentum

]
5 (r, k,C) =

(m 5
mC

)
coll

. (4.16)

A phenomenological derivation of this equation is described in Ref. [13]. In the above

equation, 5 (r, k, C) describes the probability of finding a particle in the phase space

(r, k) at time C. These particles are considered to be point-like with position r and

momentum ℏk. The velocity, v, can be related to the band structure via the relation

v = ∇k� (k)/ℏ, where � (k) is the energy dispersion of the system.

The position term refers to the change in position of particles due to their group velocity,

v, while the momentum term refers to the change in momentum due to the force F
(e.g. an electric field). In Eq. (4.16), and in subsequent equations, ∇ denotes the

gradient operator with respect to position, whereas ∇k is the gradient with respect to

the wavevector k.

Scattering events are assumed to impact the momentum of particles, but not their

position. Therefore the right-hand term can be described by the sum of all the scattering
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events:

(m 5
mC

)
coll

=

scattering in︷                                                  ︸︸                                                  ︷∑
k′
5 (r, k′,C) [1 − 5 (r, k,C)], (k′, k, r)dk′

−
∑
k′

5 (r, k,C) [1 − 5 (r, k′,C)], (k, k′, r)dk′︸                                                   ︷︷                                                   ︸
scattering out

where , (k, k′, r) is the rate of scattering from a state at position r with wavevector k
into a state with wavevector k′. The first term describes the rate at which states are

scattered into the state 5 (r, k, C) while the second term describes the scattering out of

the state.

In the BTE several assumptions are made [192]:

1. The carriers can be assigned a position and momentum as if they are classical

particles. This requires that the size of the system being considered is much

greater than the mean-free path between collisions (greater than the particle

wave packet), and that the potential varies slowly compared to the particle wave

function. The energy scales being considered must also be much greater than the

uncertainty due to the spread of the particle momentum.

2. Carrier motion between scattering events is assumed to be well governed by New-

ton’s laws of motion.

3. All scattering processes are independent, instantaneous, do not cause a change in

particle position (only momentum) and are perturbations which can be described

using Fermi’s golden rule to estimate their probability per unit time. This is the

so-called “molecular chaos” assumption, or Stoßzahlansatz [193].

The Boltzmann transport equation can be solved using, for example, Monte Carlo meth-

ods [194]. Alternatively the method of moments can be used to try and gain informa-

tion about some ensemble averages such as the average particle density and flux at

each position and time.

4.2.1.1 The method of moments

We are interested in finding the average properties of our system described by the BTE.

Therefore we proceed by multiplying the BTE by some function which depends on k.

We shall call this Ψ(k) which later we will take to be different orders of polynomial

of k. We then integrate this over all k-space, while keeping the position- and time-

dependence. Multiplying Eq. (4.16) by Ψ(k) and integrating it over all k-space results

in ∫
k
Ψ
m 5

mC
dk +

∫
k
Ψv·∇ 5 dk +

∫
k
Ψ

1
ℏ

F · ∇k 5 dk =
∫

k
Ψ

(m 5
mC

)
coll

dk . (4.17)
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The quantities Ψ and v do not depend on time or position [192] so we can write∫
k
Ψ
m 5

mC
dk = m

mC

∫
k
Ψ 5 dk ,

and ∫
k
Ψv·∇ 5 dk = ∇ ·

∫
k
Ψv 5 dk .

Using the relation ∇k (Ψ 5 ) = 5∇kΨ + Ψ∇k 5 we can also rewrite the third term in

Eq. (4.17) as ∫
k
Ψ

1
ℏ

F · ∇k 5 dk = 1
ℏ

F ·
∫

k
∇k (Ψ 5 )dk − 1

ℏ
F ·

∫
k
5∇kΨdk .

Using integration by parts we can eliminate one of the terms in the above expression:

1
ℏ

F ·
∫

k
∇k (Ψ 5 )dk = 1

ℏ
F ·

∮
mΩ

Ψ 5 .̂df − 1
ℏ

F ·
∫

k
Ψ 5∇k1dk = 0,

where .̂ is the outward pointing normal of the surface in k-space, mΩ. The second

term is clearly zero, as it involves the gradient of a constant function. Assuming that

5 (k, t, C) → 0 as |k| → ∞ such that Ψ 5 → 0 this surface integral will also evaluate to

0. As we will later choose Ψ to be polynomial in k this will be the case if the particle

distribution decays exponentially as |k| → ∞. Assuming this to be true, we are left with

m

mC

∫
k
Ψ 5 dk + ∇ ·

∫
k

vΨ 5 dk − 1
ℏ

F ·
∫

k
5∇kΨdk =

∫
k

(m (Ψ 5 )
mC

)
coll

dk (4.18)

which is a functional of our test function Ψ. By choosing this function to be integer

powers of k the Boltzmann transport equation can be replaced with a series of partial

differential equations.

4.2.1.1.1 Zeroth order moment: Carrier conservation

Setting Ψ = 1, Eq. (4.18) becomes

m

mC

∫
k
5 (k, r, C)dk + ∇ ·

∫
k

v(k) 5 (k, r, C)dk =
∫

k

(m 5
mC

)
coll

dk . (4.19)

Note the momentum term has vanished as it includes the derivative of a constant func-

tion. The integral of the probability distribution function over all k is simply the particle

density at position r at time C:

=(r, C) =
∫

k
5 (k, r, C)dk . (4.20)

Turning our attention to the second term of Eq. (4.19), at a position r at time C the

average particle velocity is the sum of the velocities of all particles at position r and
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time C, divided by the corresponding particle density (Eq. (4.20)):

v(r, C) =
∫
k v(k) 5 (k, r, C)dk∫

k 5 (k, r, C)dk
.

The average particle current density is J(r, C) = =(r, C)v(r, C):

J(r, C) =
∫

k
v(k) 5 (r, k, C)dk . (4.21)

Using the derived expressions for carrier density (Eq. (4.20)), and current density

(Eq. (4.21)), equation (4.19) now becomes a continuity equation for carriers:

m=

mC
+ ∇ · J =

(m=
mC

)
coll

. (4.22)

Different populations, such as electrons and holes, can be coupled together via the

collision term which could include recombination and generation.

4.2.1.1.2 First order moment: Momentum conservation

For the first-order moment of the BTE we choose Ψ(k) to be the carrier momentum, ℏk.

The first-order moment equation becomes

m

mC

∫
k
ℏk 5 dk + ∇ ·

∫
k
ℏvk 5 dk − F ·

∫
k
5∇kkdk =

∫
k

(m (ℏk 5 )
mC

)
coll

dk . (4.23)

The average momentum is given by

p(r, C) =
∫
k ℏk 5 (r, k,C)dk∫

k 5 (r, k,C)dk
. (4.24)

We start with the third term of Eq. (4.23), associated with the change in momentum

due to an external force. This can be evaluated as:

F ·
∫

k
5∇kkdk = F

∫
k
5 dk = F=(r, C) .

Now considering the other terms of Eq. (4.18) individually

m

mC

∫
k
ℏk 5 dk = m (=p)

mC

and

∇ ·
∫

k
ℏvk 5 dk = ℏ2

<∗
∇ ·

∫
k

k k 5 dk (4.25)

where in the last equation we have assumed parabolic energy bands
(
� (k) = ℏ2:2

2<∗
)
, so
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that

v = 1
ℏ
∇k� (k) →

ℏk
<∗

(4.26)

with <∗ being the effective mass of the band associated with the particle species =.

kk can be rewritten in terms of k (where k = p/ℏ) as

k k = (k − k) (k − k) + 2k k − k k ,

where the juxtapose multiplication of two vectors is the outer (tensor) product (kk =⇒
k ⊗ k) [195]. Integrating this over all k-space, weighted by the probability distribution

function 5 results in∫
k

k k 5 dk =
∫

k
(k − k) (k − k) 5 dk +

∫
k

2k k 5 dk −
∫

k
k k 5 dk .

As k is the result of a definite integral over all k, it is independent of k. As a result it

can be taken outside the integrals in all cases. Recalling equations (4.20) and (4.24)

this now can be rewritten as∫
k

k k 5 dk =
∫

k
(k − k) (k − k) 5 dk + =k k . (4.27)

We will introduce in the following the covariance matrix [196], with more details in

Appendix A. The covariance between particle momenta at position r at time C is [192]

C[k; r, C] =
∫
k (k − k) (k − k) 5 (k, r, C)dk∫

k 5 (k, r, C)dk
=

∫
k (k − k) (k − k) 5 (k, r, C)dk

=(r, C) ,

The covariance describes how scattered the distribution of k-values are when described

by the function 5 ; higher covariance describes a more spread out distribution [196].

Here we associate the distribution of momenta around the average value with the ran-
dom particle motion, so the temperature tensor can be written in terms of the covari-

ance of k as [192]

T[r, C] = ℏ2

<∗:�
C[k; r, C] . (4.28)

The diagonal elements of T, )88 represents the random motion in the 8-direction, while

the off-diagonal elements, )8 9 , represent the correlation between motion in the 8 and 9

directions. A further discussion on the connection between covariance and temperature

is presented in Appendix A.

Motivated by this expression for the temperature we multiply Eq. (4.27) by ℏ2

<∗ :

ℏ2

<∗

∫
k

k k 5 dk = =:�T + 1
<∗
=p p . (4.29)

To continue evaluating the first-order moment we take the divergence of Eq. (4.29) to

Theory of carrier transport in III-N based
heterostructures

62 Michael John Oliver O’Donovan



4. CARRIER TRANSPORT THEORY 4.2 Drift-diffusion

evaluate Eq. (4.25):

∇ ·
∫

k
ℏkv 5 dk = ∇ ·

(
=:�T + 1

<∗
=p p

)
= ∇ · (=:�T) + 1

<∗
∇ · (=p p) .

Using the identity

∇ · (=p p) = (=p · ∇)p + p∇ · (=p)

and collecting all the terms together, the first-order continuity equation is

m (=p)
mC
+ ∇ · (=:�T) + 1

<∗
[(=p · ∇)p + p∇ · (=p)] − =F =

(m (=p)
mC

)
coll

.

Finally, using the Newtonian definition for momentum, recalling that the particle cur-

rent density is given by J = =v, and dividing by the effective mass the momentum

conservation can be written in terms of the current density:

mJ
mC
+ (J · ∇)v + v∇ · J + 1

<∗
∇ · (=:�T) − =

<∗
F =

(mJ
mC

)
coll

. (4.30)

Higher order moments can be derived which give further continuity equations (second

order moment gives energy continuity, with third order giving the energy flux continu-

ity). These can be used to derive the DD model via energy balancing [192]. Instead

we truncate the expansion here, and follow the method in Ref. [191] to derive the DD

formalism by focusing on the collision term.

4.2.1.1.3 Collision term

The collision term in the BTE describes the change in state occupation via scattering

into or out of available states. In an optoelectronic device such as an LED this is done

via generation, �, or recombination, ', of electrons and holes. The generation term

describes the production of free carriers in the device. Physically this could be describ-

ing for example photo-generation. Generation would be important to consider if we

were applying the DD model to, for example, optically pumped devices where the main

source of excited carriers is from photon absorption, in order to study the diffusion

length of minority carriers [197], or solar cells [34, 35]. In this thesis we are focus-

ing our study on electrically pumped devices, and therefore generation is of secondary

importance, compared to the recombination rate, '.

If generation and recombination events occur at the same rate then the rate of change

of particle density is zero: (m=
mC

)
coll

= � − ' .

Now we consider the rate of change of the current density due to collisions,(mJ
mC

)
coll

=

(m (=v)
mC

)
coll

.
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Using the product rule for differentiation the RHS becomes(mJ
mC

)
coll

=

(
=
mv
mC

)
coll
+

(m=
mC

)
coll

v .

A relaxation time approximation is used to describe the scattering between bands [198].

Scattering between bands corresponds to a change in the average velocity (Eq. (4.26)).(
=
mv
mC

)
coll

= −=v − veq

g

where veq is the ultimate average velocity of the distribution if there is no external

force acting on the particles (here, veq = 0), and g is the relaxation time to return to

this state. Using the relaxation time approximation the collision terms in the carrier

and momentum conservation equations, Eq. (4.22) and Eq. (4.30), can be written as(m=
mC

)
coll

= � − ' ,(mJ
mC

)
coll

= −=v
g
+ (� − ')v .

Again using the product rule to expand the derivative of the current density (and cur-

rent density collision term) in Eq. (4.30), and using the carrier continuity equation

in Eq. (4.22) to replace the divergence of J leads to

=
mv
mC
+ (J · ∇)v + 1

<∗
∇ · (=:�T) − =

<∗
F =

(
=
mv
mC

)
coll

Using the relaxation time approximation for the remaining collision term we arrive at

the equation

=
mv
mC
+ (J · ∇)v + 1

<∗
∇ · (=:�T) − =

<∗
F = −=v

g
.

Multiplying this expression by the relaxation time, and re-ordering results in

=v + =
(
g
mv
mC

)
+ g(J · ∇)v + g

<∗
∇ · (=:�T) = =g

<∗
F . (4.31)

In order to proceed we make the following assumption about our system [191]:

1. g
���mv
mC

��� � |v| → Relaxation time is much shorter than the rate of change of the aver-

age velocity due to external influences. As a results the second term in Eq. (4.31)

will be negligible compared to the first term.

2. g
���∇v

��� � 1 → Spatial variations in velocity are small compared to the scattering

rate. In this case the third term in Eq. (4.31) will be negligible compared to the

first term (as J = =v, so third term equivalent to g(=v · ∇)v).

Using these assumptions, and recasting Eq. (4.31) in terms of J = =v the current can
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be written as

J + g=∇ · (:�T)
<∗

+ g:�T · ∇=
<∗

=
=g

<∗
F

where we have also expanded the divergence term using the identity2

∇ · (=T) = =∇ · T + T†∇= = =∇ · T + T∇= .

Up until now we have considered particles moving under some arbitrary force, and

looked at the current in terms of particle number. We are particularly interested in

charge carrier transport in the presence of an electric field; in an LED the electric field

is generated by applying a bias across the device. The force on an electron can be

written in terms of the electric potential, k:

F(r) = −@E (r) = @∇k(r) .

where @ is the elementary charge. This leaves us with an expression for the electron

current density, J=, of

J= = −
g==∇ · (:�T)

<∗=
− g=:�T · ∇=

<∗=
− @g==

<∗=
∇k . (4.32)

We have now got an expression for the particle current density. The temperature T
here refers to the carrier temperature; however, if we assume that the particle species

is in thermal equilibrium everywhere in the device (no “hot” carriers) this is equivalent

to the device temperature. We shall also make the commonly used assumption that the

device temperature is constant across the device [192].

J= = −
g=:�)∇=
<∗=

− @g==
<∗=
∇k .

One can now define mobility and diffusion constants, `=,? and �=,?, according to

`=,? =
@g=,?

<∗=,?
,

�=,? =
g=,?

<∗=,?
:�) ,

where the subscript = denotes properties associated with electrons and subscript ?

denotes denotes properties associated with holes. The mobility, `=,?, determines the

response particles have in to an applied electric field; higher mobility results in higher

current for a given applied field. Similarly the diffusion constant �=,? determines the

2As we already discussed, the temperature tensor, T, is related to the covariance of k. We assume
that this is a diagonal tensor (see Appendix A) so any off-diagonal terms of T are 0. Not only this, but the
8 9 off-diagonal term describes the correlation between :8 and : 9 , which must be the same as the
correlation between : 9 and :8 , so even without the diagonal assumption T = T†.
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tendency particles have to diffuse; higher diffusion constant results at higher diffusive

current at a given carrier concentration gradient.

The DD equations for electrons can therefore be written as

m=

mC
+ ∇ · J= = � − ' , (4.33)

J= = −�=∇= + `==∇k . (4.34)

In summary these two equations tell us that (i) the rate of change of carrier density

depends on the rate of carriers flowing into and out of a given volume, and the differ-

ence between the generation and recombination rates (Eq. (4.33)), and (ii) the current

is driven by the diffusion of carriers due to a change in their concentration (governed

by the diffusion constant, �) and by the drift of carriers due to a field (governed by

the mobility, `) (Eq. (4.34)). Similar expressions can be derived for holes, accounting

for the fact that an electric field exerts a force in the opposite direction compared to

electrons:

m?

mC
+ ∇ · J? = � − ' , (4.35)

J? = −� ?∇? − `??∇k . (4.36)

The mobility and diffusion constants are related to each other through the Einstein

relation [13]:

`=,? =
@

:�)
�=,? . (4.37)

This relationship can be seen readily by treating equilibrium carrier densities with

Boltzmann statistics (more details in Section 4.2.1.2) and requiring that the current

at equilibrium is 0. This demands that the drift and diffusion terms in the current

equation exactly cancel each other resulting in the Einstein relation.

While we have so far determined expressions for the carrier continuity and current den-

sity, these depend on the electrostatic potential, k, which has not yet been considered.

The potential will depend on the spatial distribution of charges, therefore in order to

correctly model device behaviour Eq. (4.33) and Eq. (4.34) should be solved coupled

with Poisson’s equation (Eq. (2.6)):

− ∇ ·
(
n (r)∇k(r)

)
= d(r) . (2.6 revisited)
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4.2.1.2 Coupling the current equations with Poisson’s equation

The carrier density of electrons, =, and holes, ?, in a semiconductor can be written in

terms of a statistical function [103]:

= = #2F
(@k − @i= − �2

:�)

)
, (4.38a)

? = #EF
(�E − @k + @i?

:�)

)
, (4.38b)

Here #2,E is the effective density of states, �2,E is the band edge energy of the undoped

material (without any added potential), i=,? is the quasi-Fermi potential and k is the

electrostatic potential. As discussed in Section 2.2 this potential is generated by the

doping profile, as well as by the free charges in the device. In a 3-D system the effective

density of states is given by

#2,E = 2
(
<∗=,?:�)

2cℏ2

)3/2

(4.39)

where <∗=,? is the effective mass of the particle, :� is the Boltzmann constant and )

is the temperature [103]. F is a statistical function describing the carriers energetic

distribution and can be described using a Boltzmann approximation, where

F ([) → exp([) ,

or with Fermi-Dirac statistics where F ([) is the Fermi integral of order 1/2:

F ([) → 1
√
c

∫ ∞

0

b1/2

1 + exp(b − [) 3b .

The change in sign of the arguments of the distribution function, F , in Eq. (4.38) is due

to the holes being described in the valence band picture, rather than the hole picture;

in the valence band picture the least energetic hole state has the highest energy in the

valence band, and excited states have lower energies, whereas in the hole picture this

is reversed, and the hole ground state has the highest energy on an absolute scale.

Using the expressions for the densities (Eq. (4.38)), as well as the Einstein relation

(Eq. (4.37)), the current density can be written neatly in terms of the gradient of the

quasi-Fermi potentials [103]:

J= = `==∇i= , (4.40)

J? = −`??∇i? . (4.41)

This indicates that the gradient of the quasi-Fermi potential is the driver for carrier

current in the DD framework. Up until this point we have considered the density of

the carriers, and their current. To convert this to charge current we define the flow of

charge due to electrons as j= = −@J= and holes as j? = +@J?. Therefore the charge
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currents due to electrons and holes are given by [103]

j= (r) = −@`= (r)=(r)∇i= (r) ,

j? (r) = −@`? (r)?(r)∇i? (r) .

The potential k will depend on the position of charges in the system, so this is often cou-

pled with the Poisson equation (Eq. (2.6)) to determine the potential self-consistently

with the DD equations.

In a system with only electrons, the charge density d is replaced by the total free elec-

tron charge density: @(#� − =), where #� is the ionized donor density introduced in

Section 2.2. Similarly for a system with only excess holes this is given by d = @(? −#�)
where #� is the ionized acceptor density. A bi-polar system has a charge density com-

prising of both of these, so Poisson’s equation would include both species. Also the

DD equations of both charges should be considered resulting in a system of equations

which needs to be solved self-consistently:

−∇(n∇k(r)) = @(?(r) − #�(r) − =(r) + #� (r)) , (4.42a)

@
m=(r)
mC
− ∇ · j= (r) = @(� (r) − '(r)) , (4.42b)

@
m?(r)
mC
+ ∇ · j? (r) = @(� (r) − '(r)) , (4.42c)

j= (r) = −@`==(r)∇i= (r) , (4.42d)

j? (r) = −@`??(r)∇i? (r) (4.42e)

where the carrier densities are described as in Eq. (4.38)

This system of equations is known as the van Roosbroeck system [199] and is the cen-

tral result of this derivation. The DD system of equations is the workhorse of many

commercially available software packages, e.g. Refs. [200, 201]. An applied bias can

be introduced via the boundary conditions of the quasi-Fermi potentials. For our pur-

poses we shall only be interested in steady-state current, so the time-derivatives of the

electron and hole densities can be neglected. On top of this, if only one carrier species

needs to be considered, for example if the device under investigation is uni-polar, and

only doped to produce one carrier species, the system of equations can be reduced to

accordingly (e.g. no need to consider hole current in only electrons are present in the

system).

4.2.1.3 Recombination model

The implementation of Eq. (4.42) requires information about the band edge profile, �2
and �E , as well as expressions describing the generation and recombination of carriers,

� and '. As previously discussed, generation is key in optically pumped devices. How-

Theory of carrier transport in III-N based
heterostructures

68 Michael John Oliver O’Donovan



4. CARRIER TRANSPORT THEORY 4.2 Drift-diffusion

ever, as this thesis is focused on electrically pumped devices we assume � is negligible.

To describe the recombination rate, 'U, we employ the so-called ABC model [202,203].

This takes into account three recombination processes: (defect related) Shockley-Read-

Hall (SRH) (∝ =, where = is the carrier density), radiative (∝ =2) and (non-radiative)

Auger (also called Auger-Meitner [204], ∝ =3) recombination. The total recombination

is then the sum of these three components.

The SRH rate is related to defect densities, and it is obtained from:

'SRH(r) = �0(=, ?)A (=, ?) , (4.43)

where �0(=, ?) is given by

�0(=, ?) =
1

g?
(
=(r) + =8 (r)

)
+ g=

(
?(r) + =8 (r)

) .
g= and g? are the electron and hole lifetimes. The excess carrier density A (=, ?) is given

by

A (=, ?) = =(r)?(r) − =2
8 (r)

where the intrinsic carrier density is [103]

=2
8 (r) = =(r)?(r) exp

(
@i= − @i?

:�)

)
where i=,? are the electron and hole quasi-Fermi potentials. The radiative recombina-

tion rate is a two carrier process which is calculated via

'RAD(r) = �0A (=, ?) , (4.44)

where �0 is the radiative recombination coefficient. Finally the Auger rate is a non-

radiative, three-carrier, process which, instead of emitting a photon when carriers re-

combine, excites a third carrier to a higher-energy state. Its rate is

'AUG(r) = (�==(r) + �??(r))A (=, ?) , (4.45)

where �= and �? are the electron-electron-hole and hole-hole-electron Auger coeffi-

cients respectively. All these parameters will in principle carry a composition depen-

dence [205–207]. Furthermore, �0, �? and �= will also be carrier density depen-

dent [58, 208, 209]. A widely made assumption is to treat these as constant values

across the device region [67,210].
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4.2.1.4 Discretization of van Roosbroeck system of equations

To solve the van Roosbroeck system of equations numerically an approximation of

Eq. (4.42) is required. There are a few options in this case:

1. Finite difference method (FDM), e.g. Ref. [211]. Here derivatives are approxi-

mated by (usually) linearly discretized functions. This has the advantage of being

straightforward to implement, however can result in non-physical descriptions of

the current density [103]. On top of this, finite difference approaches can give

poor results in the presence of discontinuities [212]. In a system with many inter-

faces (as in a fluctuating energy landscape in an (In,Ga)N QW) good treatment

of discontinuities will be important.

2. Finite element method (FEM), e.g. Ref. [67]. Here the differential equations

are multiplied by a test function, and converted into an integral form which is

discretized on the mesh. The integral form provides a better treatment of discon-

tinuities than the differential form (as in FDM) [212]. The FEM is also more easily

applied to more general mesh shapes than finite difference than finite difference

methods. A discretization of the DD equations using the FEM can be found in

Ref. [191].

3. Finite volume method (FVM), e.g. Ref. [3]. Like the FEM this treats the system

in integral form, and therefore is also good at treating interfaces. On top of

this, the flux of, for instance, charges entering a given volume is exactly the

flux charges leaving the neighbour along their joining surface, so this method

conserves currents making it a particularly suitable method for discretizing the

DD equations.

We discretize Eq. (4.42) via the FVM on Voronoi cells [103]. In a distribution of points

the Voronoi cell corresponding to point 8 is the volume which is closer to 8 than any

other point in the set. The construction of such a mesh from a boundary conforming

Delaunay triangulation (no other points in the set lie within the circumcircle of a con-

structed triangle, and any triangle sharing an edge with the domain has an opposite

angle less than or equal to 90◦ [103,214]) is illustrated in Fig. 4.2.

Equation (4.42) is integrated over a test volume l: and Gauss’s divergence theorem is

applied, resulting in the integral equations

−
∫
ml:

YB∇k · .̂3B = @
∫
l:

(
� − = (k, i=) + ?(k, i?)

)
3r ,∫

ml:

j= · .̂3B = @
∫
l:

'3r,∫
ml:

j? · .̂3B = −@
∫
l:

'3r,
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Figure 4.2: Left: Piecewise linear description of computational domain with given point
cloud (black dots). Center: Delaunay triangulation of domain (gray edges) and trian-
gle circumcenters (blue dots). As some boundary triangles have angles larger than 90◦
opposite to the boundary, their circumcenters lie outside of the domain. Right: Bound-
ary conforming Delaunay triangulation with automatically inserted additional points at
the boundary (green dots) by projecting the circumcenters outside onto the boundary
of the computational domain. The boundary conforming Delaunay triangulation is cre-
ated from the original point cloud (black dots) plus the projected circumcenters (green
dots). Now all circumcenters (blue dots) lie within the computational domain. The
boundaries of the (restricted) Voronoi cells are shown as well (red edges). Since the
Voronoi cells are constructed from a boundary conforming Delaunay triangulation, the
edge between any two neighbouring boundary cells is perpendicular to both bound-
ary nodes. This is by construction also true for interior nodes and the edge separating
them. The images were created with triangle [213].

for : = 1, . . . , #, where # corresponds to the number of cells. � is the doping density

given by � (r) = #�(r) − #� (r). Here, .̂ is the outward-pointing unit normal to the

control volume l: . These equations represent an integral form of the van Roosbroeck

system on every control volume. In particular, the first equation is Gauss’ law of elec-

trodynamics. The second (third) equation constitutes a balance law for the electrons

(holes).

Next, the surface integrals are split into the sum of integrals over the planar interfaces

between the control volume l: and its neighbours. Employing one point quadrature

rules for the surface and volume integrals, we deduce the finite volume scheme:∑
lℓ ∈N (l: )

|ml: ∩ mlℓ |�:,ℓ = @ |l: |
(
�: − =

(
k: , i=;:

)
+ ?

(
k: , i?;:

) )
, (4.46a)∑

lℓ ∈N (l: )
|ml: ∩ mlℓ | 9=;:,ℓ = @ |l: |': , (4.46b)∑

lℓ ∈N (l: )
|ml: ∩ mlℓ | 9?;:,ℓ = −@ |l: |': . (4.46c)

In the above formulae, N (l:) denotes the set of all control volumes neighbouring l: .

In 2-D, the measure |ml:∩mlℓ | corresponds to the length of the boundary line segment

and in 3-D to the area of the intersection of the boundary surfaces. The measure |l: |
is in 2-D given by the area and in 3-D by the volume of the control volume l: . The

unknowns k: and i=;: and i?;: are approximations of the electric potential as well as

the quasi Fermi potentials for electrons and holes evaluated at node x: (black dots in
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Fig. 4.2, left). Accordingly, ': is defined as

': = '
(
=
(
k: , i=;:

)
, ?

(
k: , i?;:

) )
which is calculated using the ABC model as described previously. The doping is defined

by the integral average

�: =
1
l:

∫
l:

� (r)3r ,

which can be approximated by its nodal value � (x:). The numerical fluxes �:,ℓ , 9=;:,ℓ

and 9?;:,ℓ in Eq. (4.46) approximate the fluxes −n∇k · .̂:ℓ , j= · .̂:ℓ and j? · .̂:ℓ in

Eq. (4.42), respectively, on the interfaces between two adjacent control volumes l:
and lℓ . The electric displacement flux is approximated by

�:,ℓ = −nB
kℓ − k:
ℎ:,ℓ

,

where

ℎ:,ℓ = ‖xℓ − x: ‖

is the edge length and nB is the dielectric constant.

In the case of Boltzmann statistics the carrier flux can be numerically approximated

using, for example, the Scharfetter-Gummel scheme [215]. In this case the flux in

a system with varying band edges is (when extended to treat fluctuating band edge

energies) [103]

98 = −I8@`=*) #8
1
ℎ

{
�

(
− I8

Xk − X�8/@
*)

)
exp([8,!)

− �
(
I
Xk − X�8/@

*)

)
exp([8, )

}
,

(4.47)

where 8 represents the carrier species for electrons or holes; in general 8 ∈ {=, ?} how-

ever for the band edge energies and effective density of states 8 ∈ {2, E}. The parameter

I8 is the charge number for the carrier being considered (I8 = −1 for electrons and

I8 = +1 for holes), �(G) = G/(exp(G) − 1) denotes the Bernoulli function, *) =
:�)
@

the

thermal voltage, Xk = k! − k and X�8 = �8,! − �8, and

[8,% = I8
�8,% − @(k% − i8,%)

:�)
, % ∈ { , !}.

The subindices  and ! refer to the nodes x and x! associated to the corresponding

cells.

For more general statistics, such as Fermi-Dirac statistics, other fluxes must be applied.

For Fermi-Dirac and Boltzmann statistics the excess chemical potential (SEDAN) flux
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can be applied: [216]

98 = −I8@`=*) #8
1
ℎ

{
�

(
− Xa([8) − I8

Xk − X�8/@
*)

)
F ([8,!)

− �
(
Xa([8) + I8

Xk − X�8/@
*)

)
F ([8, )

}
.

(4.48)

In this case the symbols are consistent with the Scharfetter-Gummel equation with

the additional definition that a([8) = [8 − log(F ([8)), and Xa([8) = a([!) − a([ ); in

the case of Boltzmann statistics a([) is 0 and the scheme reduces to the Scharfetter-

Gummel equation. A numerical analysis of the SEDAN scheme as well as other flux

approximations in a finite volume discretization is given in Ref. [217].

4.2.2 Drift-diffusion energy landscape

In the last section we also saw that transport in a DD description relies on an energy

landscape which is comprised of (conduction and valence) band edge energies, �8.

For an alloy the choice of �8 is often taken to be a virtual material with a linear or

quadratic interpolation of the band edge energies of the constituent materials (this is

the approach taken by many commercial software packages, such as nextnano [200]).

Strain and polarization effects are then included via deformation potentials and by

solving Poisson’s equation for the polarization charges respectively. This approach is

taken not only in 1-D calculations, but also 2- and 3-D calculations which generate a

“local” alloy composition [67,218]. These methods require generation of an alloy map

which is then averaged over a sampling volume to obtain the “local” alloy content. The

volume used is somewhat arbitrary, and the resulting conduction and valence band

edges can depend strongly on the volumes used. Here we present a different technique,

which extracts the band edge energies directly from TB on an atomistic mesh.

4.2.2.1 Extracting a confining landscape from Tight-binding

In Chapter 3 we saw how an alloy is treated in an atomistic framework using TB, includ-

ing strain and polarization effects. So far this has been considered in the framework of

electronic structure calculations, as well as quantum transport. It would be beneficial

to combine the TB framework with DD by using TB to generate an atomistic descrip-

tion of the (local) band edge values instead of local alloy contents, �8. This would have

the advantage of treating the system in an atomistic framework for the description of

the alloy microstructure, strain effects and polarization fields while being coupled to a

transport solver capable of simulating large devices than fully atomistic and quantum

mechanical approached. At our starting point, we assume we have already generated a

TB Hamiltonian, �̂ including an alloy, atomistic strain and polarization potential. From

here we endeavour to extract an energy landscape.
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In a nearest-neighbour model, the energy at a given lattice site is determined com-

pletely by the onsite energy, and the interaction with the nearest neighbours. As such,

we aim to construct a framework which considers only this environment. The atoms in

question are shown in schematic form in Fig. 4.3, where |8〉 is the atom at which we are

determining the local energy.

|8〉

| 9〉

|:〉

|;〉

|<〉

Figure 4.3: Tetrahedron surrounding a central atom, |8〉, consisting of the four nearest
neighbours accounted for in the tight-binding Hamiltonian interactions, | 9〉, |:〉, |;〉 and
|<〉. Here all basis states (in our case B, ?G, ?H, ?I) are represented in a given ket.

The states at the 8th atom can be described as a linear combination of atomic-like or-

bitals, which we saw for the TB model in Section 3.2; Ri denotes the unit cell which

contains the atom, U8 denotes the atom within that unit cell and a denotes the orbitals

comprising the basis states at each atom:

|8〉 =
∑
a

|Ri, U8 , a〉 .

We proceed by constructing a local Hamiltonian, �local, which is dependent only on the

local tetrahedron:

�local =

(
〈8 | �̂ |8〉 ∑

# 〈8 | �̂ |#〉∑
# 〈# | �̂ |8〉 1

4
∑
# 〈# | �̂ |#〉

)
≡

(
�0 �1−4

8=C

�
1−4†
8=C

�1−4

)
,

where the sums over # run over the four nearest neighbour atoms, # ∈ { 9 , :, ;, <}
including also the different orbital contributions. If an B?3 basis is being used each

entry is a 4×4 submatrix (or more generally, =×= where = is the number of basis orbitals

are used) populated by entries of the full TB Hamiltonian. �0 is the on-site energies

at the lattice site in question. The interaction this atom has with the neighbouring

atoms, �1−4
8=C

, is simply the sum of the interactions the atom 8 has with each neighbour.

However, the onsite term, �1−4, is the average energy of the carrier sitting on the

neighbours. This is similar to the procedure used to generate a Hamiltonian for a
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primitive unit cell (e.g. in Ref. [121] and Ref. [75]).

In order to extract a local conduction and valence band edge this local Hamiltonian

is diagonalized at each lattice site. Thus a 3-D confining energy landscape can be

extracted from the full Hamiltonian. A 2-D slice of the valence and conduction band

edge energy extracted in this way is shown in Fig. 4.4 for a system containing an

In0.1Ga0.9N QW within a GaN barrier including polarization fields. The fluctuations in

the band edge energies due to alloy fluctuations are clearly visible in both the valence

and conduction band edges. When the local Hamiltonian is applied to a pure crystal

(e.g. bulk GaN) the resulting conduction and valence band energies give the expected

energy gap (in GaN ≈ 3.45 eV).

As the entries for the local Hamiltonian have been taken from the full TB Hamiltonian,

atomistic strain and polarization effects are automatically included in the energy land-

scape produced. This provides an advantage as it avoids the need to solve for these

using a continuum approach. A continuum treatment would involve an interpolation

of material parameters and possibly the introduction of bowing parameters which are

not required using this method.

(a) Valence band edge (b) Conduction band edge
Energy (eV) Energy (eV)

	0 	4 	8 	12
x	(nm)

	0

	3.5

	7

z	(
nm

)

-0.3 	0.2 	0.7

	0 	4 	8 	12
x	(nm)

	0

	3.5

	7

z	(
nm

)

	2.6 	3.1 	3.6

Figure 4.4: 2-D slice of the (a) valence band edge and (b) conduction band edge of an
In0.1Ga0.9N quantum well embedded in GaN barriers. The well is located between 2 nm
and 5 nm along z and the resulting landscape fluctuates strongly within this region. The
energy landscape was extracted from tight-binding using the local Hamiltonian.

The confining energy landscape has been used to calculate the electronic structure of

various (In,Ga)N/GaN quantum well systems using a single band EMA [4]. As the cal-

culations were based on the same underlying alloy microstructure as the TB method

a direct comparison between the electronic structures could be made. We have per-

formed such an analysis, which revealed that in order to get good agreement between

TB and EMA (in terms of absolute energy, and the separation between excited states)

a composition dependent band offset is required in both the valence and conduction
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band edge within the QW region [4].

4.2.2.2 Including alloy fluctuations in a drift-diffusion model

The DD framework treats charges as point-like particles, however a quantum mechan-

ical treatment would describe the carrier as a wavefunction which has a larger spatial

extent. It has already been discussed in the literature that for transport properties,

the spatial length scale of the potential fluctuations is effectively determined by the

de Broglie wavelength [67]. While in VCA this may be of secondary importance, in a

strongly fluctuating energy landscape it is important to account for this, since it may

lead to percolation paths in such a landscape. The question has been discussed in de-

tail in Ref. [67] and the authors applied a Gaussian averaging procedure to determine

the local alloy content. The same ad-hoc procedure has been employed by Di Vito et
al. [219]. We can follow a similar approach here and employ a Gaussian averaging,

however we apply this to the original band edge profile �TB
2,E from TB

�f2,E (x8) =

∑
9 �

TB
2,E (x 9) exp

(
− ( |x8−x 9 |)2

2f2

)
∑
9 exp

(
− ( |x8−x 9 |)2

2f2

) (4.49)

but not to the alloy content. Here, �f2,E (x8) is the CBE or VBE energy at the (lattice) site

x8; f denotes the Gaussian width and acts as a smoothing parameter. This averaging

procedure is only relevant in (or near) regions where the band edge energies fluctuate.

For (In,Ga)N-based LEDs, which are of interest for this present study, this approach has

been applied to the active region of the device. We stress again, in Refs. [67,219] the In

content at each point is computed from a Gaussian average, and then the strain, built-

in field and ultimately the CBE and VBE is computed in a purely continuum framework.

We go beyond this by calculating the CBE and VBE (the confining potential) at each

(lattice) site from the atomistic TB approach, with no need to calculate local strain

or built-in potentials in a continuum-based framework, before applying a Gaussian

function to the confining potential. Thus, in comparison to Refs. [67, 219] we have

here a posteriori broadening and transfer the atomistic effects on band offset, strain

and built-in field due to alloy fluctuations directly into the confining energy landscape

before averaging.

4.2.2.3 Including quantum corrections in a drift-diffusion model

Many commercial software packages have the option to include quantum corrections

by solving the Schrödinger equation self-consistently with the Poisson and DD equa-

tions [200,201]. This is a numerically demanding task even in 1-D, and is numerically

unfeasible in a 3-D calculation which is needed to include a description of alloy fluc-

tuations. However, as we saw in Section 3.4, LLT can be used to extract an effective

confining potential describing carrier wave functions in a numerically efficient manner.
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The local band edges extracted from TB can be used to describe the confining poten-

tial energy in the Hamiltonian. An effective confining energy landscape, , (r), can be

determined as described in Eq. (3.27). The resulting landscape will have a softened

potential at interfaces, which in some ways mimics tunneling processes allowing carri-

ers to pass barriers at lower energies than is allowed classically. The effective potential

will also include confinement energy, which will have a knock-on effect on the posi-

tion of the quasi Fermi level. The effective confining potential energy landscape was

described in more detail in Section 3.4.2. In this way we have a method which can

include quantum corrections in a DD calculation in a numerically efficient manner.

In our comparison between TB and the EMA a rigid band offset was required in the

QW region of the extracted energy landscape in order to reproduce the correct ground

state energies. As LLT is also based on a single band model this energy shift should also

be included to provide an appropriate description of the effective confining potential.

The effective confining potential also smooths out the strong fluctuations in the TB

landscape, which makes it a useful tool when coupling the TB model with DD. This

approach can be applied both the a random alloy, as well as a VCA.

Both of these methods are carried out on the (wurtzite) lattice on which the TB model

is based; this results in an atomistic mesh resolution being used. To carry out a full

device transport simulation with such a fine discretization would be a huge numerical

challenge, and is basically unfeasible for targeting LED structures. Therefore we require

a multi-scale framework where a coarser mesh can be employed where fluctuations on

small length scales are of secondary importance.

4.2.2.4 Device mesh generation for transport calculations

The local band edges need to be transferred to a mesh that allows us to perform the

transport calculations. Two aspects are important here. First, the mesh needs to be

fine enough to capture alloy fluctuations in the active region; we call this region in

the following the atomistic mesh, which forms the so-called atomistic region. Second, in

regions where no alloy fluctuations are present, the band edge energies can be obtained

from the literature or directly from TB (e.g. =-doped GaN contacts). In this contact

region the mesh can also be chosen much coarser when compared to the atomistic

region; this helps to keep the computational cost low. The latter part is very important

to make self-consistent 3-D DD simulations feasible. A schematic illustration of our

approach to address this challenge is shown in Fig. 4.5, which describes also the level of

atomistic and or quantum correction contributions in the carrier transport calculations.

We start from an atomistic TB energy landscape as discussed above and ultimately

construct a larger mesh for the DD simulations.

Next, we discuss the post-processing within the atomistic region before we explain the

embedding into the larger mesh. Using the atom lattice sites as nodes, we construct
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Continuum output

Atomistic 
Configurations 
(Tight-Binding)

Atomistic input

Generate atomistic  
FEM mesh

Drift-diffusion  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Generate atomistic  
finite volume mesh

Add device  
regions (contacts)

Atomistic to continuum interface

Tight-binding 
data on  

atomistic  
FEM mesh

Band edges  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Localization  
landscape theory

Gaussian 
broadening 

Localization  
landscape theory
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interpolation 
FEM → FVM

data on 
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data on 

FEM mesh
interpolation 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Figure 4.5: Schematic workflow to connect an atomistic tight-binding model to a
continuum-based drift-diffusion solver (here ddfermi). The connection between the
atomistic and continuum-based grid is achieved in three steps. First we generate an
atomistic finite element method (FEM) mesh with as many nodes as atomic sites. The
data on the FEM mesh is then interpolated on a Voronoi finite volume method (FVM)
mesh needed for stable drift-diffusion simulations. Finally, the FVM mesh is enlarged
by adding coarser contact and intrinsic regions. The inset details four different ways
atomistic band-edge data are transferred to the FVM mesh. Whereas the data paths
indicated in black refer to VCA type of data, the data paths in red refer to random alloy
data. Solid arrows indicate an operation (stated in the box) on the FEM mesh and
dashed arrows indicate interpolation to the FVM mesh. The meshes are shown visually
in Fig. 4.6.

a FEM mesh via TetGen [220, 221]. The TB energy landscape determines the energy

values at the nodes. Figure 4.6 (a) depicts the TB model data for a 3.1 nm thick

In0.1Ga0.9N SQW in the G-I-plane, where the I-axis is parallel to the wurtzite 2-axis. The

depicted test structure has 38,150 atoms and the corresponding FEM mesh has 38,150

nodes and 280,816 tetrahedra, see Fig. 4.6 (b); this mesh represents the atomistic

region discussed above.

In order to perform full-device calculations, contact regions (as an example we shall

consider an =-8-= junction which contains two =-doped GaN contacts) have to be at-

tached to the atomistic region of the simulation. Our specific approach which we de-

scribed in detail in Section 4.2.1.4 requires a mesh which ensures that the numerical

fluxes are perpendicular to the cell interfaces and allows us to employ a FVM. There-

fore, the next step is the generation of such a FVM mesh from the atomistic mesh

which satisfies this additional requirement. Again via TetGen we produce a so-called

boundary-conforming Delaunay-tetrahedral mesh (for details see Section 4.2.1.4) which

includes the original FEM lattice sites and interpolate the atomistic data onto it, see

Fig. 4.6 (b) to (c). The FVM mesh has 47,248 nodes and 305,272 tetrahedra. Fi-

nally, we attach coarser intrinsic meshes as well as doped GaN contact regions to both

sides of the atomistic region, again using TetGen. Thus, a complete =-8-= junction has
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3.216
3.149
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Figure 4.6: Transfer of atomistic data to a larger finite volume mesh for continuum-
based drift-diffusion simulations. We start with a point set (a) defined by the atomistic
lattice sites as provided by tight-binding. Using TetGen, a tetrahedral finite-element
mesh (b) is generated, which has exactly the same number of nodes as there are atoms
in (a). In doing so, the tight-binding input is exactly represented on the nodes of the
atomistic finite element method mesh. The colors in (b) represent the values of the
conduction band edge �2 and (c) depicts the �2 profile of an In0.1Ga0.9N single quan-
tum well in virtual crystal approximation. The data from the atomistic finite element
method mesh are then interpolated to a finite volume mesh (d), namely a boundary-
conforming Delaunay-triangulation generated by TetGen [220, 221]. After attaching
intrinsic device regions and doped contact regions to the atomistic region, the full 3-D
device mesh (e) for drift-diffusion simulations is established.

been created, see Fig. 4.6 (d), which contains the atomistic region (box with yellow-

dashed lines), the coarse grained intrinsic GaN (light blue and green) and =-doped

GaN (red and purple) regions. As already said, we have used here an =-8-= structure

as an example, however the approach can now be easily adapted for a ?-8-? setup, ?-

8-= setup or other material systems. The resulting boundary-conforming finite-volume

mesh of the complete uni- and bi-polar structures can be used for DD simulations with

ddfermi [222]. The tool chain for creating the combined meshes and transferring TB

data has been implemented with WIAS-pdelib [223] and TetGen [220,221].

Overall in the last two chapters we have presented theories to describe the electronic

structure (such as an EMA, TB, and LLT) and transport properties (using NEGF and DD)

of materials and heterostructures. This has provided us with tools to target transport

properties in (a) a quantum-mechanical approach and (b) a multiscale semi-classical

description. In the next chapter we will present results obtained using the described
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models. We begin by focusing on ballistic quantum transport through a multi-quantum

well system, before proceeding to target larger device-like systems with the DD model.

Theory of carrier transport in III-N based
heterostructures

80 Michael John Oliver O’Donovan



Part III

Results

81



Chapter 5

Impact of alloy fluctuations on
ballistic transport through
InGaN/GaN multi quantum well
systems

As we saw in the prologue, (In,Ga)N-based devices have attracted strong interest for

lighting applications in the visible spectral range. Fluctuations in the alloy microstruc-

ture play an important role in the properties of these devices. Throughout Chapters 3

and 4 we have introduced theoretical models of the electronic structure and transport

with the goal of investigating how alloy fluctuations can impact device behaviour.

Not only will alloy fluctuations have an impact on carrier transport properties, quan-

tum effects have also been shown to be important in (In,Ga)N-based LEDs. For exam-

ple, experimental studies observe significant ballistic hole transport through (In,Ga)N

MQWs [224]. Ballistic transport includes tunneling processes which are not captured in

a classical description of particles. Previous simulation studies have considered quan-

tum transport using NEGF [185] or the Wentzel-Kramers-Brillouin (WKB) approxima-

tion [60, 225] through (In,Ga)N QWs. However, these approaches described the sys-

tem in the frame of a 1-D model, and thus neglected the impact that alloy fluctuations

have on the system. Other studies have included alloy fluctuations in a semi-classical

description of transport, without including a quantum mechanical description of tun-

nelling [67]. Both of these approaches are missing a key aspect, as the theoretical

description of (In,Ga)N/GaN MQW systems asks for a full 3-D model that captures

both atomistic alloy induced effects as well as quantum mechanical contributions such

as tunneling.

In this work we address transport through (In,Ga)N/GaN QWs in a fully 3-D atom-
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istic and quantum mechanical frame. On the electronic structure side, an atomistic

TB model is applied to capture carrier localization effects on a microscopic level. To

achieve a quantum mechanical description of ballistic transport properties we employ

the NEGF approach, implemented in OMEN [123].

This is used to determine the transmission spectra of electrons and holes through

(In,Ga)N/GaN MQW systems, and investigate the impact including alloy fluctuations

has compared to treating the system in VCA. The influence of the energy alignment

of states in neighbouring wells is studied in detail by varying the level of disorder be-

tween QWs, and by the inclusion and omission of fields due to polarization and a ?-8-=

junction.

The chapter is organized as follows: Section 5.1 gives a brief overview of the NEGF

framework which was introduced in Section 4.1. The details and features of the model

MQW systems used in our study are outlined in Section 5.2. The results of our calcu-

lations are presented in Section 5.3. Finally, Section 5.4 summarizes the results of this

study.

5.1 Theoretical Framework

The NEGF formalism builds on top of the TB model introduced in Section 3.2. This
is the foundation for all theoretical frameworks, and here we summarize once the main
components: To capture the effects of alloy fluctuations on a microscopic level, and its

impact on ballistic transport properties, our electronic structure model is an atomistic

nearest neighbor B?3 TB model. To include (local) strain and polarization effects found

in 2-plane InGaN/GaN QW systems the VFF and local polarization theories discussed

in Section 3.3 are used.

To calculate transport properties in an atomistic and quantum mechanical framework,

we use the TB model as the starting point for NEGF based calculations, as discussed

in Section 4.1. More specifically, the TB Hamiltonian is connected to the NEGF solver

OMEN which takes input of the TB Hamiltonian, and modifies it to include for open

boundary conditions. As electron-phonon scattering is not considered in ballistic trans-

port, the transport is computed using the wave function formalism, as implemented in

OMEN [123].

We discussed in Chapter 2 that an LED structure also exhibits an electrostatic built-in

field due to =- and ?-doped regions of the device, which modifies the CBE and VBE

of the MQWs further. Therefore, to simulate and analyze transport properties of an

LED-relevant active region using (In,Ga)N MQW systems the potential profile from a

?-8-= junction is calculated using nextnano [200] with a mesh size of 0.1 nm. The

potential profile is calculated in 1-D using GaN material parameters from Ref. [24] and

dielectric constants from Ref. [226]. (In,Ga)N QWs are not included at this step of the
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calculation. Instead, the potential profile from the ?-8-= junction is mapped onto the

TB mesh, and included as a correction to the QW region in addition to the built-in field

from local polarization theory.

Overall, the aim of this study is to gain insight into the impact of alloy fluctuations on

inter-well electron and hole transport properties. Therefore, we are interested in how

carriers tunnel/transmit through an (In,Ga)N/GaN MQW with different barrier widths

and with different “levels of randomness” in the wells (see below for details). To do so,

we are focussing on ballistic transport calculations. To this end we start and end the

simulation cell with (In,Ga)N regions. A schematic illustration of a typical simulation

cell is given in Fig. 5.1. The left and right contacts are treated the same way as the

MQWs being considered for transport calculations. This means, in a VCA the contacts

are described by a virtual crystal; if random alloy fluctuations are being considered in

the well regions, the contacts are set up as a random alloy. We note that left and right

contact exhibit always the same alloy configuration. In doing so, this approach ensures

that the carriers populate the wells and that transmission properties can be studied

efficiently, without having to include numerically expensive electron-phonon coupling

effects. We note that similar approaches have been used in the literature to study

the ballistic transport properties in (In,Ga)N MQWs, however, without considering the

impact of alloy fluctuations and thus connected carrier localization effects [60, 225,

227].
Left 
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Figure 5.1: Schematic illustration of the supercell used in our ballistic transport calcu-
lations. Red indicates regions of In0.12Ga0.88N and blue indicates regions of GaN.

To address the question of the impact of (random) alloy fluctuations on the ballistic

transport properties of (In,Ga)N MQWs in detail, we proceed in the following way. As

a starting point we describe the MQW system within VCA. The results from the VCA

calculations are then compared to an equivalent structure (e.g. same In content, same

barrier width etc.) in which random alloy fluctuations are taken into account on a

microscopic level.

We note that both VCA and calculations accounting for alloy fluctuations are performed

on three-dimensional supercells. Such a set up leads to band folding effects. In the fol-
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lowing we focus our attention on K‖ = 0 states, where K‖ is the supercell in-plane

k-vector. In the case of our VCA calculations where k‖, the in-plane wave function

of the primitive cell, is a good quantum number, several states with different in-plane

wavevectors are folded back to K‖ = 0. In the (random) alloy case, due to the breaking

of the translational invariance, the states can no longer be classified with a unique k‖.
In principle band structures as a function of K‖ can be derived, but alloy fluctuations

will again affect the band structure and thus the transport properties. By band unfold-

ing methods, effective band structures for the “primitive” cell can be obtained. Previous

theoretical studies on SiGe and AlGaAs systems have used effective band structures for

random alloy supercells and compared the calculated transmission properties of these

systems with VCA results [228, 229]. These data show that random alloy fluctuations

affect the transmission properties, but that this is a general feature and applicable to all

considered K‖- or k‖-states in a similar fashion. Therefore, to study the impact of alloy

fluctuations on electron and hole ballistic transport in 2-plane (In,Ga)N/GaN MQWs in

general, we consider in the following the situation of K‖ = 0. To flesh out the influence

of alloy fluctuations in detail, we vary also the “level of randomness” in the wells. How

this is done is described in the following section, where the MQW model systems are

introduced.

5.2 Model Systems

To study the impact of alloy fluctuations on electron and hole ballistic transport prop-

erties, we investigate different structures. First we focus our attention on fundamental

aspects such as how the “level of randomness” in an (In,Ga)N MQW system affects

the results. The supercells that underlie these studies are described in Section 5.2.1.

In a second step, Section 5.2.2, we turn our attention to systems that in terms of the

number of QWs, well width and the presence of a ?-8-= junction induced electrostatic

built-in field better resemble a device structure. Here, structures with different bar-

rier widths !1 are considered, allowing us to analyze the impact of !1 on the ballistic

carrier properties.

5.2.1 Varying levels of disorder in (In,Ga)N multi quantum well systems

We will first look at an In0.12Ga0.88N/GaN MQW system with two wells. The well width

!F and barrier width !1 are !F = !1 = 2.6 nm. Similar well widths and alloy contents

have been used in other studies, e.g. Ref. [230]. For our full 3-D calculation, a supercell

with an in-plane area � of � ≈ 3.2 × 2.8 nm2 and a height of ℎ ≈ 18.1 nm along the c-
direction is generated; the cell contains 14,000 atoms. The (in-plane) hole localization

length in (In,Ga)N QWs with 10% is of the order of 2 nm [44]. Thus, the chosen

in-plane dimensions are large enough to capture the (in-plane) localization length of

holes; the out-of plane (along the 2-axis) hole localization lengths are of similar length
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but are mainly determined by the built-in polarization field along the growth direction,

which is taken into account in our calculations.

In order to investigate the impact of (random) alloy fluctuations on inter-well transport

in general, three different situations, in terms of how the QW region is described in the

TB model, will be discussed. The aim is to compare results from calculations in which

the “level of disorder” within the QWs varies. More specifically, the In0.12Ga0.88N QWs

will be described by

1. a VCA - Any variation in local alloy composition is neglected.

2. a random distribution of In atoms in the (In,Ga)N well, but both QWs exhibit

the same In atom distributions (same microscopic configuration). This system is

labeled as “Random I”.

3. a random distribution of In atoms in the (In,Ga)N well, but the QWs exhibit

different In atom distributions (different microscopic configurations). This system

is labeled as “Random II”.

5.2.2 Interplay of barrier width and ?-8-= junction field

While the supercells discussed above are designed to shed light on the impact of alloy

disorder on ballistic transport properties in general, it is also important to analyze the

impact of the barrier width and the electrostatic built-in field due to the presence of a ?-

8-= junction on the results. Here, we consider an In0.12Ga0.88N MQW system, embedded

in a ?-8-= junction, with well widths of !F = 2.6 nm. As already mentioned above, the

field due to a ?-8-= junction is calculated within nextnano [200]. To do so, in nextnano

the intrinsic region is set to a width of 55 nm and =- and ?-contacts are modeled with

constant doping density profiles of 5×1018 cm−3 and 2×1019 cm−3 respectively; similar

doping concentrations have for instance been used in Ref. [231]. In the following we

focus our attention on the equilibrium solution, meaning that no bias is applied. This

set up is sufficient for our aim to gain first insight into the interplay of alloy fluctuations,

barrier width and combined electrostatic field originating from intrinsic spontaneous,

piezoelectric and ?-8-=-junction induced fields.

Building on this framework, the transport calculations are performed on supercells

with an in-plane area � of � = 4.5 × 3.9 nm2, which again is large enough to cap-

ture hole localization effects; the increased in-plane area will allow for more localized

hole states within the supercell. To study the impact of the barrier width !1 on the

results, MQWs with two different barrier widths have been studied, namely !1 = 3.1
nm and !1 = 5.2 nm. The overall system size is therefore 4.5 × 3.9 × 28.8 nm3 (43,904

atoms) and 4.5× 3.9× 34.6 nm3 (59,584 atoms), respectively. While the approximation

Random I is useful to establish general aspects, we do not study this situation here,

since it is unlikely to be found in structures grown epitaxially. Thus we consider a VCA
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description of the wells and different random microscopic configurations in the wells

(Random II, see above). To analyze the impact of the alloy microstructure in more

detail, the calculations have been repeated five times, thus five different microscopic

alloy configurations have been generated.

5.3 Results

Having discussed the theoretical framework and the model systems under considera-

tion, we present here the results of our calculations. Before turning to transport re-

sults, in Section 5.3.1, we initially discuss general aspects of the electronic structure

of (In,Ga)N/GaN MQWs and how it is affected by alloy fluctuations and electrostatic

built-in fields. This information is important for understanding the observed transmis-

sion spectra of the different model systems. In Section 5.3.2 we present results on

the impact of different levels of disorder on electron and hole ballistic transport. The

impact of barrier width, alloy fluctuations and built-in field due to a ?-8-= junction on

electron and hole transmission spectra are discussed in Section 5.3.3.

5.3.1 Electronic structure of an (In,Ga)N/GaN MQW: VCA vs Random Al-
loy

To establish general aspects of the impact of alloy fluctuations on the electronic struc-

ture in MQW systems, we study in the following the structures discussed in Section 5.2.1.

To highlight the impact of symmetry breaking, e.g. induced by polarization fields, we

treat the polarization field of the two QW system as a linear combination of two single

QWs embedded in an infinite host matrix. The CBE and VBE profiles within VCA in

the absence and the presence of the built-in field are shown in Fig. 5.2 (a) and (b)

respectively. Comparing Fig. 5.2 (a) and (b) clearly shows that the built-in field breaks

the symmetry of the otherwise identical wells. In the following, to disentangle effects

stemming from the electrostatic built-in potentials (due to the spontaneous and piezo-

electric polarization fields) and effects originating from the alloy microstructure, we

first analyze results in the absence of the built-in field.

Figure 5.3 shows isosurfaces of the electron (blue) and hole (red) ground state charge

densities for (i) VCA, (ii) Random I and (iii) Random II systems viewed along the c-
axis. This “top view” gives information about the charge density distribution within the

2-plane. The isosurface corresponds to 40% of the respective maximum charge density

values. Figure 5.3 also shows the planar-integrated charge density, %(I:U), which is

defined by

%(I:U) =
∑
8, 9

∑
a

|28 9:U,a |2 , (5.1)

given that the TB (electron or hole) wave function, |k〉, following the notation of Sec-
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(a) Without built-in field (b) With built-in field
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Figure 5.2: Conduction and valence band edges for a two In0.12Ga0.88N/GaN quantum
well system described in a virtual crystal approximation. (a) Band edges in the absence
of spontaneous and piezoelectric polarization induced built-in potentials. (b) Band
edges in the presence of these built-in potentials.

tion 3.2, is expressed as:

|k〉 =
∑
8, 9 ,:

∑
U,a

2
8 9:
U,a |R8 9: , U, a〉 . (5.2)

Here, 8, 9 and : denote the G, H and I coordinates of the unit cell, R8 9: , U denotes the

atom within the unit cell (the four atom wurtzite basis) and a is the orbital located on

this atom (a ∈ {B, ?G , ?H , ?I}). Thus, I:U is the I-coordinate of the plane perpendicular to

the 2-direction running though the U atom in the : th unit cell along this direction. The

basis states of the B?3 TB model are denoted by |R8 9: , U, a〉 with expansion coefficients

at each lattice site given by 28 9:U,a. These are obtained by solving the eigenvalue problem

for the Hamiltonian describing the MQW system, �̂ |k〉 = � |k〉.

While the isosurface plots of the charge densities viewed along the c-axis provide in-

sight into in-plane carrier localization effects, the planar-integrated probability density

%(I:U), Eq. (5.1), gives insight into carrier localization along the 2-axis, e.g., in which

QW the carriers are localized.

In a first step we turn our attention to the VCA results. Since in this case alloy fluctu-

ations within the QW region are not captured, the electron and hole charge densities

are distributed across the entire two QWs. This is clearly reflected in %(I:U) shown in

Fig. 5.3 (i). Turning to the system labeled as Random I, Fig. 5.3 (ii), in which case

the alloy fluctuations are identical in both wells, the electron charge density is still

well distributed across the two QWs, as %(I:U) shows. However, some alloy fluctuation
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(iii) Random II
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Figure 5.3: Top view (along the c-axis) of isosurface plots of (left) electron and (middle)
hole charge densities for a (i) VCA, (ii) Random I and (iii) Random II system without
the inclusion of the built-in polarization field. The isosurfaces correspond to 40% of
the respective maximum charge density values. The right panel of the figure shows
the planar integrated charge density, %(I:U), along the supercell for both electrons and
holes.

induced localization effects are visible in the different plots. Looking at the electron

ground state first, we find an almost equal distribution of charge density in both wells.

Due to the low effective electron mass, at least when compared to the holes, the elec-

tron wave functions of the two wells couple similar to the bonding and anti-bonding

states in a homonuclear molecule. We find that this is also reflected in the calculated

energy spectrum (not shown) where the first two electron states are energetically split

and that this splitting is reduced with increasing barrier width between wells. Turning
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to the hole ground state, we find that alloy fluctuations lead to strong wave function

localization effects. While we still observe significant charge densities in both wells,

the ground state wave function is preferentially localized in QW 1. However, we note

also that, as the wells contain the same microscopic configuration, there is a second

hole state which is almost energetically degenerate with the state presented in Fig. 5.3

(ii); this second state has a slightly higher probability density in QW 2 (not shown). We

attribute the smaller energetic separation of the first two hole states, when compared

to the electrons, to a reduced electronic coupling between the two wells due to the

larger hole mass and stronger hole localization effects when compared to electrons.

In Random II the picture changes noticeably. Now that the two wells differ in their

microscopic alloy configuration, the symmetry of the system is broken and the ground

state for electrons and holes are localized entirely within one well, as %(I:U) clearly

shows in Fig. 5.3 (iii).

Having discussed the electronic structure of the three different systems in the absence

of the electrostatic built-in field, Fig. 5.4 displays isosurface plots of the electron (red)

and hole (blue) ground state charge densities along with planar integrated probability

density, %(I:U), in the presence of the field. The corresponding CBE and VBE profiles,

within VCA, are shown in Fig. 5.2 (b). As Fig. 5.2 (b) reveals, the polarization potential

leads to a significant tilt in the band edges; thus already in VCA the symmetry between

the wells is broken by the built-in field. As a consequence the ground state for the

electrons is always found in QW 2, while the hole ground states is found in QW 1.

Comparing the electron and hole ground state charge densities from VCA, Random

I and Random II, cf. Fig. 5.4, at least in terms of localization of these states along

the growth direction, the systems are not very different. However, it is important to

highlight that in-plane localization effects are not captured in VCA and that the alloy

microstructure will still affect carrier localization effects within the plane.

Having seen the impact of the spontaneous and piezoelectric polarization field induced

built-in potential on the carrier confinement, we briefly discuss how the band edge

profile is modified when the field of the ?-8-= junction is also present and the barrier

width, !1, between the wells is changed. Figure 5.5 shows the CBE and VBE profile of

the four QW system discussed in Section 5.2.2 for the barrier width !1 of (a) !1=3.1

nm and (b) !1 = 5.2 nm. The horizontal lines indicate the CBE minimum and the VBE

maximum in the systems. In the system with !1 = 3.1 nm there is a clear difference

in the CBE of the first (most left) QW and the last (most right) QW, thus a symmetry

breaking between the wells in the MQW system is observed. In the case of !1 = 5.2 nm,

the field of the ?-8-= junction “realigns” the CBEs of the four QWs. We note that these

calculations are carried out for the same doping profiles; changes in the band edge

profile arise entirely from changes in the barrier width. Below we discuss the effect of

these changes in the band edge profile for transport properties. However, first, we focus
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(ii) Random I
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(iii) Random II
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Figure 5.4: Top view (along the c-axis) of isosurface plots of (left) electron and (mid-
dle) hole charge densities for a (i) VCA, (ii) Random I and (iii) Random II system with
the built-in polarization field included. The isosurfaces correspond to 40% of the re-
spective maximum charge density values. The right panel of the figure shows the planar
integrated charge density, %(I:U), along the supercell for both electrons and holes.

our attention on the impact of the different levels of randomness on the transmission

properties of the two QW systems discussed above.

5.3.2 Impact of alloy fluctuations on transmission properties of (In,Ga)N
MQWs

In order to understand the impact of the underlying alloy microstructure on ballistic

electron and hole transport, we start with the 2 QW system discussed above. Since
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(a) Lb = 3.1 nm barrier (b) Lb = 5.2 nm barrier
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Figure 5.5: Conduction and valence band edges, in virtual crystal approximation, for
the four In0.12Ga0.88N multi quantum well system including a built-in field due to a ?-
8-= junction, spontaneous and piezoelectric polarization effects. Band edge profile for
a barrier width (a) of !1 = 3.1 nm and (b) of !1 = 5.2 nm.

we have already seen that the intrinsic built-in field significantly affects the electronic

structure of this system, we follow the same procedure as above and neglect this po-

tential initially; its impact on the results will be discussed in a second step.

5.3.2.1 Absence of built-in field

Focusing on electrons/conduction band first, Fig. 5.6 (a) depicts the transmission spec-

trum of the two QW system in the absence of the built-in field when calculated within

VCA (black) and Random I (blue). The results for Random I are averaged over 5 dif-

ferent random alloy configurations. In case of the VCA description (black), the trans-

mission spectrum shows a doublet of peaks with transmission close to 1 below the GaN

CBE of 3.45 eV. This doublet stems from the bonding/anti-bonding electron states in

two QWs (see above). A similar situation is found for transmission peaks near the CBE

of GaN (≈ 3.45 eV). The larger splitting in energetically higher lying peaks stems from

the effect that near the GaN CBE the electronic states from the two QW interact more

strongly, resulting in a larger splitting of bonding and anti-boding states when com-

pared to the energetically lower lying (more strongly bound) electron states. Also, the

broadening of the peaks is related to the confinement of the states. Above the GaN CBE

(> 3.45 eV) there is a continuum of states which facilitate transmission. Turning to the

results from the calculation within the Random I frame (blue), the spectrum is very

similar to the VCA result. Figure 5.6 (a) also reveals that each microscopic configura-

tion leads to transmission peaks at slightly different energetic positions. In general, this

effect gives rise to a broadening of the energetic range over which transmission may be
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(a) Random I and VCA (b) Random II and VCA
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Figure 5.6: Electron transmission spectra through a two In0.12Ga0.88N/GaN multi quan-
tum well system with well width of !F = 2.6 nm and barrier width of !1 = 2.6 nm. The
results are shown in absence of the built-in field. Virtual crystal approximation (VCA)
results are given in black; random alloy system in blue and red, respectively, averaged
over 5 microscopic configurations.

expected. Several things are important to note. First, the low transmission peak values

at an energy of 3.2 eV in the Random I case result from averaging over the 5 different

microscopic configurations and are not a result of the random alloy fluctuations in the

well. For an individual configuration these peaks are sharp and they exhibit a transmis-

sion value of close to 1. This can be seen in Fig. 5.7 where the electron transmission

spectrum of an arbitrary microscopic configuration is shown for Random I (blue). The

same effect is seen at the energetically higher lying peaks, and the continuum above the

GaN CBE. However, given that the peaks are sharp and their energies differ (slightly)

between configurations, the averaging process reduces the heights of the peaks. This

effect is less pronounced for higher lying peaks since these are broader and the varia-

tion in energy between different configurations is smaller. This analysis shows that, for

electrons, the alloy fluctuations in the well do not lead to a (strong) reduction in the

ballistic transport properties, at least when the alloy microstructure is the same in both

wells.

We note also that for the VCA description, assumptions about the parameter averag-

ing procedure (e.g. bowing parameters) has to be made. Therefore, usually a refer-

ence/benchmark system is required. Having now the random alloy system as a refer-

ence, by adjusting the VCA further, a good agreement between VCA and Random I may

be achieved, given that the overall features of the transmission spectra are very similar.

So far we have assumed that the alloy microstructure in the two wells is the same.
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Figure 5.7: Comparison of the transmission properties of electrons for an arbitrary
microscopic alloy configuration for Random I (blue) and Random II (red) in the
In0.12Ga0.88N/GaN multi quantum well system with two wells; the well width !F = 2.6
nm and the barrier width !1 = 2.6 nm. The calculations are performed in the absence
of the built-in field. Random II differs from Random I by having a different micro-
scopic alloy configuration in the second well, the alloy microstructure in the first well
is identical in the two systems.

The question remains how the different random alloy configurations within the two

wells will affect the transmission properties. Thus in the following we focus on the

comparison between VCA and Random II.

Figure 5.6 (b) shows the transmission spectrum for the VCA (black) and the Random

II (red) system. Overall, the spectrum within Random II is, at first glance, not very

different from the spectrum calculated within Random I (cf. 5.6 (a)). Therefore the

VCA spectrum also gives a good approximation of the Random II spectrum. However,

now that the microscopic configuration differs between the two QWs, the symmetry

between the wells is broken and the electronic states between the wells do not neces-

sarily align energetically. As a result, the transmission of the lowest lying states is now

indeed reduced. To see this clearly, Fig. 5.7 shows the transmission spectrum of an

arbitrarily chosen microscopic configuration in Random II in comparison to the spec-

trum of Random I. While above the GaN CBE the two structures give basically the same

spectrum, the transmission via bound QW states is noticeably reduced in the Random

II case when compared to Random I. But, overall the electron transmission spectrum

does not change dramatically between the two different random alloy assumptions and

VCA gives a good description of the general features of the spectrum.

We now analyze the same situations for ballistic hole transport. Figure 5.8 (a) shows a

comparison of the hole transmission spectra in VCA and Random I systems. The latter

is again averaged over 5 different microscopic configurations. While for electrons, Ran-
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dom I and VCA gave very similar results, the hole spectra reveal a drastically different

picture. Since the VBE of the unstrained GaN barrier is chosen as the zero of energy

for the considered structures, cf. Fig. 5.2 (a), the VCA calculation shows one doublet

of transmission peaks stemming from bound hole states in the well. As in the electron

calculation, this doublet originates from the bonding and anti-bonding states of the two

QWs within VCA. By comparison, the Random I case reveals a high density of trans-

mission channels close to the GaN band edge, which are not present in the VCA result.

We note also that Random I gives rise to new transmission peaks energetically above

the VCA QW related transmission peaks. As a result, a continuum based calculation

neglecting alloy fluctuations would underestimate the ballistic hole transport.

We attribute the appearance of extra transmission channels in the Random I case to the

alloy induced symmetry breaking effects. Given the strong hole localization discussed

in the literature [41,44,232] and also above, a significant deviation from an ideal QW

picture may already be expected. While in the VCA/ideal QW case all well states can be

classified according to their in-plane k-vector, k‖, this classification is no longer possi-

ble for the random alloy case. So, k‖-vector conservation for transmission is no longer

required in the random alloy case. As a consequence, the random alloy calculations

include extra channels which are available to contribute to transmission. A similar ar-

gument has recently been put forward for optical properties, where it has been argued

that the absence of k | | as a good quantum number results in more optically allowed

transitions when compared to a VCA description of an (In,Ga)N QW [58]. Overall, our

analysis shows that the VCA gives a poor estimate of hole ballistic transport properties,

in contrast to electrons.

The question remains how the result is changed when the randomness is different in

the two wells, which is reflected in our system labeled as Random II. The outcome of

this analysis is shown in Fig. 5.8 (b). For Random II the transmission close to the GaN

VBE is very similar to the Random I case and therefore noticeably different from the

VCA results. However, the transmission peaks at energies higher then the energetically

highest doublet in VCA are basically missing in Random II, which presents a difference

to the Random I data (cf. Fig. 5.8 (a)). We relate this effect to the symmetry breaking

between the wells. Even though the average In content is the same, the difference in

the alloy microstructure leads to different electronic structures in the wells, given the

pronounced hole localization effects. As a consequence, the transmission probability

involving energetically higher lying (more strongly bound QW) states is reduced in

the Random II case when compared to its Random I counterpart. This can be seen in

Fig. 5.9 where the transmission spectrum of Random I (blue) and Random II (red) of an

arbitrarily chosen configuration is shown. Above 0.015 eV, most peaks in Random II are

smaller when compared to Random I. By contrast, the states closer to 0 eV (unstrained

GaN VBE) are more delocalized wave functions so that the electronic coupling between

the wells is stronger and in turn a higher transmission probability is observed. Along
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(a) Random I and VCA (b) Random II and VCA
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Figure 5.8: Hole transmission spectra through a two In0.12Ga0.88N/GaN multi quantum
well system with well width of !F = 2.6 nm and barrier width of !1 = 2.6 nm. The
results are shown in the absence of the built-in field. Virtual crystal approximation
(VCA) results are given in black; random alloy system in blue and red, respectively,
averaged over 5 microscopic configurations.
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Figure 5.9: Comparison of the transmission properties of holes for an arbitrary
microscopic alloy configuration for Random I (blue) and Random II (red) in the
In0.12Ga0.88N/GaN multi quantum well system with two wells; the well width !F = 2.6
nm and the barrier width !1 = 2.6 nm. The calculations are performed in the absence
of the built-in field. Random II differs from Random I by having a different micro-
scopic alloy configuration in the second well; the alloy microstructure in the first well
is identical in the two systems.

with the breakdown of k‖ as a good quantum number, a larger number of transmission

peaks is observed in Random I and II when compared to VCA.
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Overall, our analysis shows that changing the randomness between the wells has a

slight impact on the hole transmission spectrum. Introducing random alloy fluctuations

in general is the dominant effect as seen above. But, in addition to the symmetry

breaking of the random alloy fluctuations, the presence of the electrostatic built-in field

will also have a strong impact. We study its impact on the electron and hole ballistic

transport properties in the following section.

5.3.2.2 Impact of the built-in field

Including the polarization field results in a potential step across the QWs (cf Fig. 5.2

(b)), which modifies the GaN CBE and VBE profiles. Therefore, the energy at which

states are present to contribute to the transmission through the two QWs is changed.

Before looking at the fine details, Fig. 5.10 (a) shows that for electrons the transmission

spectrum obtained within VCA reflects the same behavior as the spectrum obtained

from Random I. Also, when comparing the Random II result with the VCA data, as

displayed in Fig. 5.10 (b), the spectra are very similar. We do not see a reduction in

transmission peaks when the microscopic configurations are varied between the wells.

Thus the transmission properties in this case are basically dominated by the electro-

static built-in field and not the random alloy fluctuations.

(a) VCA and Random I (b) VCA and Random II
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Figure 5.10: Electron transmission spectra through a two In0.12Ga0.88N/GaN multi
quantum well system with well width of !F = 2.6 nm and barrier width of !1 = 2.6 nm.
The electrostatic built-in field is included in the calculations. Virtual crystal approxima-
tion (VCA) results are given in black, random alloy system in blue and red, respectively,
averaged over 5 microscopic configurations.

The same is true for holes, as the calculated transmission spectra depicted in Fig. 5.11

reveal. Thus, when taking the electrostatic built-in field into account, the VCA provides
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(a) VCA and Random I (b) VCA and Random II
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Figure 5.11: Hole transmission spectra through a two In0.12Ga0.88N/GaN multi quan-
tum well system with well width of !F = 2.6 nm and barrier width of !1 = 2.6 nm. The
electrostatic built-in field is included in the calculations. Virtual crystal approximation
(VCA) results are given in black, random alloy system in blue and red, respectively,
averaged over 5 microscopic configurations.

a good description of ballistic transport properties for both electrons and holes. How-

ever, it is important to note that in the flat band condition (no field), as discussed in

the previous section, the situation especially for the holes is different. As we have seen

in Section 5.2, the symmetry breaking between the wells due to the built-in field also

depends on the barrier width between the wells and the presence of the ?-8-= junction

induced field. Thus, we study in the following section how the presence of this exter-

nal field in a device and changes in the barrier width affect the ballistic transport of

electrons and holes in an (In,Ga)N MQW system.

5.3.3 Multi-quantum well system in a ?-8-= junction

As already highlighted in Section 5.2, the built-in potential originating from the ?-8-=

junction affects the CBE and VBE profile of a (In,Ga)N/GaN MQW system. Also we

have discussed that the barrier width !1 in conjunction with this field will affect the

band edge profiles. In the following sections we analyze their combined impact on the

ballistic transport properties of the MQW system introduced in Section 5.3.3.1. We start

in Section 5.3.3.1 with the system with a barrier width of !1 = 3.1 nm before turning

to the structure with !1 = 5.2 nm in Section 5.3.3.2. The width of the individual wells

is kept constant at !F = 2.6 nm. We reiterate that, as Random I is not a situation that is

likely to be found in a real device, we only treat the systems using a VCA and Random

II.
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5.3.3.1 Barrier width !1 = 3.1 nm

The transmission spectrum calculated within VCA (black) and the Random II assump-

tion (red) is shown in Fig. 5.12 for (a) electrons and (b) holes for the MQW system

with four In0.12Ga0.88N wells with a barrier width of !1 = 3.1 nm. The random alloy

data is obtained as an average over the transmission spectra of 5 different random alloy

configurations. Looking at the VCA results for electrons first, Fig. 5.12 (a), transmis-

sion is mainly found at higher energies (> 3.5 eV). Below 3.5 eV the VCA transmission

probability is low. Examining the CBE profile depicted in Fig. 5.5 (a) indicates that

in the VCA case, bound QW states do not contribute to the transmission through the

MQW system. In VCA, a similar situation is found for the holes, as Fig. 5.12 (b) reveals.

Here, the first peak in the VCA hole transmission spectrum is found at around -0.13 eV.

Looking at the VBE profile depicted in Fig. 5.5 (a), in terms of the energy, mainly the

fourth well (last well on the right in Fig. 5.5 (a)) presents a potential barrier for the

transmission process. Energetically higher lying valence states (bound hole states) do

not contribute to the transmission, given that due to their high effective mass, these

wave functions are strongly localized within individual wells.

(a) Electrons (b) Holes
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Figure 5.12: Transmission spectra of the four In0.12Ga0.88N/GaN multi quantum wells
with well width of !F = 2.6 nm and barrier width !1 = 3.1 nm calculated within virtual
crystal approximation (black) and a random alloy description (Random II; red, aver-
aged over 5 configurations). The calculations include spontaneous and piezoelectric
built-in potentials as well as a field originating from a ?-8-= junction.

Turning to the random alloy case, and focussing initially on the electron transmission

spectrum (cf. Fig. 5.12 (a)), the calculated spectrum is very similar to the VCA case.

This means one is also left with very low transmission probabilities below 3.5 eV; only

for energies larger than 3.5 eV significant transmission is observed. The difference

between the random alloy case (red) and the VCA result in this energy range is the
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spectral broadening of the transmission. The VCA transmission is described by 2 dis-

tinct peaks before the onset of a continuum. By contrast, the random alloy calculation

results in many peaks distributed across the same energy range (between 3.5 eV and

3.7 eV), before the continuum onset. These result from the differing microscopic con-

figurations providing higher-probability transmission channels at different energies.

The situation is different for the holes. Figure 5.12 (b) shows, in addition to the VCA

spectrum (black), also the hole transmission spectrum (red) of the Random II case. The

comparison between VCA and Random II data reveal clearly that in the random alloy

case an earlier onset (higher energies) of the transmission occurs. More specifically,

we observe strong transmission peaks in the energy range from -0.1 eV to 0 eV in the

random alloy calculation; VCA basically shows no peaks in this energy range. We again

note that due to the averaging process, and the sharpness of the peaks, these peaks are

a lower bound of the transmission in this energy range. In other words, a noticeable

effect is observed due to the presence of random alloy fluctuations.

Overall, this investigation reveals that (i) the energetic alignment of the different wells

in a MQW system becomes important for the transmission probability of the carri-

ers, (ii) VCA gives a good description of the electron ballistic transport properties of

the MQW system and (iii) that VCA underestimates the hole ballistic transport notice-

ably. Especially the last point is important. For efficient radiative recombination in an

(In,Ga)N/GaN MQW system, the carriers ideally transfer easily between the wells so

that when electrons are injected from the =-side and holes from the ?-side of the de-

vice, all QWs in the MQW structure contribute to the light emission process. Therefore,

the finding that the random alloy fluctuations introduce additional channels at lower

energies would then facilitate a more efficient distribution of holes between the MQW

system than expected from a VCA type calculation.

Overall alloying the GaN barrier with a small portion of In (e.g. 5%) could provide a

pathway for improving hole transport in (In,Ga)N MQW systems and thus the carrier

distribution in the different wells. Firstly, such an approach would reduce the effective

barrier height, which results in weaker confinement of bound states and an increased

leakage of carrier wave functions into the barrier. Secondly, (In,Ga)N barriers with low

In content could also facilitate percolation transport between the wells. Here carriers

can take a path through regions where the potential barrier is locally low. Similar ef-

fects have been observed for =-8-= transport studies containing AlGaN electron blocking

layers [233]. However, the impact of alloying the barrier with small fractions of In on

the ballistic hole transport between wells may be more subtle. In the absence of alloy

disorder, k is a good quantum number in the GaN barrier, so that there is no scattering

once the carrier enters the barrier. In the presence of alloy fluctuations, scattering is

possible and the transmission probability should be reduced. However, while this may

be true for individual transmission peaks, a large number of additional channels may be
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made available. This is also reflected in our results above, which indicate that transmis-

sion above the GaN band edge is increased by alloy fluctuations. A similar feature has

been observed in recent studies on the radiative recombination rates in (In,Ga)N/GaN

QWs, where alloy fluctuations reduce the oscillator strength of individual transitions

when compared to a VCA calculation. However, due to the breaking of the k-selection

rules, the number of allowed transitions is increased, leading to an overall increase

in the radiative recombination rate when compared to the VCA calculations [58]. We

revisit the discussion of the potential impact of alloying the barrier material with In

further below and present initial results in Appendix B.

Here, we have discussed the ballistic transport properties for a barrier width of !1 = 3.1
nm. As we have seen above, cf. Fig. 5.5, the barrier width will also affect the VBE and

CBE profile. Additionally the electronic coupling between the wells, and therefore the

ballistic transport, should also be affected by the barrier width. In the next section we

analyze the impact of !1 on the transmission properties in more detail.

5.3.3.2 Barrier width !1 = 5.2 nm

Figure 5.13 (a) shows the electron transmission spectra in VCA (black) for the

In0.12Ga0.88N/GaN MQW system introduced in Section 5.2.2 with a barrier width of

!1 = 5.2 nm; the spectrum obtained within the random alloy description Random II is

given in red. The depicted data for Random II is the average over 5 different random

alloy configurations. Bearing in mind the band edges in Fig. 5.5 (b), and looking first

at the VCA data, we mainly observe transmission peaks above 3.6 eV, which is the CBE

of the barrier material. Basically the same behavior is observed in the random alloy

case. Thus, similar to the smaller barrier width discussed above, for electron ballistic

transport, VCA yields a good description of the system.

Figure 5.13 (b) depicts the transmission spectrum for holes in VCA (black) and Ran-

dom II (red). When comparing the calculated spectra for VCA and random alloy de-

scription, we find that the random alloy fluctuations introduce “extra” transmission

channels when compared to VCA data. We note also that for the chosen barrier width,

the CBE and VBE of the different wells are almost perfectly aligned in the VCA case.

This is obviously the best case scenario, but is probably not the norm when e.g. chang-

ing doping profile or the barrier width further. Even a slight shift in the energies be-

tween neighboring wells results in a sharp reduction of the VCA transmission peaks

(not shown). For the random alloy system the situation is different. Here, alloy fluc-

tuations already break the symmetry between wells intrinsically, thus aligning or not

aligning the band edges is of secondary importance for the random alloy case. Bear-

ing in mind the strong dependence of the VCA transmission on the alignment of the

band edges, the random alloy fluctuations should still open additional transmission

channels, given that k-conservation breaks down, and thus lead to an enhancement of

Theory of carrier transport in III-N based
heterostructures

101 Michael John Oliver O’Donovan



5. IMPACT OF ALLOY FLUCTUATIONS ON BALLISTIC

TRANSPORT THROUGH INGAN/GAN MULTI

QUANTUM WELL SYSTEMS 5.3 Results

(a) Electrons (b) Holes

0.0

0.2

0.4

0.6

0.8

1.0

	3.2 	3.4 	3.6 	3.8

Random	Alloy

VCA

Tr
an

sm
is

si
on

Energy	(eV)

0.0

0.2

0.4

0.6

0.8

1.0

-0.25 -0.2 -0.15 -0.1 -0.05 	0 	0.05

Random	Alloy

VCA

Tr
an

sm
is

si
on

Energy	(eV)

Figure 5.13: Transmission spectra of the four In0.12Ga0.88N/GaN multi quantum wells
with well width of !F = 2.6 nm and barrier width !1 = 5.2 nm calculated within virtual
crystal approximation (black) and a random alloy description (Random II; red, aver-
aged over 5 configurations). The calculations include spontaneous and piezoelectric
built-in potentials as well as a field originating from a ?-8-= junction.

the transmission. However, overall we can conclude that the wider barrier width sup-

presses ballistic transport compared to the narrower barrier width, given that electronic

coupling between the QWs is reduced.

But, as discussed already above, alloying the barrier with In could provide a way for-

ward to increase the transmission probability. Our calculations have shown that the

hole transmission through the “extra” channels is sensitive to the state confinement,

and the coupling between states in neighboring wells. Including In in the barrier would

reduce the confinement of states within the wells, and could lead to a situation where

hole ballistic transport is improved at wider barrier widths. In a recent experimental

study, Marcinkevičius et al. analyzed such a situation [234]. Their data reveal indeed

an increased hole transmission through an (In,Ga)N MQW system when 5% In was

introduced in the GaN barrier. Our analysis indicates a potential mechanism underly-

ing the experimentally observed increase in ballistic hole transport, which is supported

by initial results presented in Appendix B. Further studies are required to shed more

light on this question; this is beyond the scope of the present study, which is aimed at

providing insight into the impact of alloy fluctuations within the well and how the level

of randomness affects the carrier transport in (In,Ga)N/GaN MQW systems. Recent

semi-classical (DD) studies have also observed that alloying the barrier region (using a

random alloy description) near the QW leads to an increased carrier transport, in line

with our expectations based on this study [210].
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5.4 Conclusion

In this work we have presented an analysis of the ballistic transport properties of

(In,Ga)N/GaN MQW systems by means of a combined atomistic TB-NEGF approach.

We have paid special attention to the impact of (random) alloy fluctuations on both

electron and hole ballistic transport. To investigate the impact of alloy disorder, results

are compared to the outcome of calculations that utilize a virtual crystal approximation

of the (In,Ga)N MQWs. Our data shows that for electrons the alloy microstructure is

of secondary importance for their ballistic transport, while for hole transport the situ-

ation is different. We observe that for narrow GaN barrier width in an (In,Ga)N/GaN

MQW system, the presence of the alloy fluctuations give rise to extra hole transmis-

sion channels when compared to a virtual crystal description of the same system. We

attribute this effect to the situation that in the random alloy case, k‖-vector conser-

vation is broken/relaxed and therefore the ballistic hole transport increases. Thus, a

VCA description would underestimate the contribution from hole ballistic transport in

general. However, for wider barrier width this effect is strongly reduced. Overall, our

theoretical findings of significant ballistic hole transport for narrower barrier width,

which decreases with increasing barrier width, is consistent with recent experimental

studies [224].

Furthermore, the gained insight indicates a potential explanation for the recent exper-

imental observation that alloying the GaN barrier region between the wells with small

fractions of In (e.g. 5%) is beneficial for hole ballistic transport in (In,Ga)N MQW sys-

tem. Based on our results, such an approach results in (i) the breakdown of k‖-vector

conservation and (ii) a slight reduction in the barrier height between the wells.

The NEGF methods used in this chapter are numerically very demanding, so our study

was focused only on the region close to QWs which could form the active region of an

LED. This chapter has highlighted that a VCA description is not sufficient to describe

hole transport, however new methods are needed to investigate how this will impact

transport in, for example, a full LED structure. Therefore we focus next on a multi-

scale, DD based description of transport which allows us to scale the simulations up to

larger system sizes.
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Chapter 6

Multiscale simulations of uni-polar
charge transport in (In,Ga)N-based
devices with random fluctuations

In Chapter 5 we saw that alloy fluctuations can have a significant impact on ballis-

tic transport in (In,Ga)N-based devices. Due to the numerical demand of the NEGF

method (even in the ballistic case) the simulations are basically limited to a very small

region - in this case the area close to the QWs. Given this numerical burden the

workhorse for transport calculations still remains largely DD. Thus, we now we em-

ploy the quantum corrected DD model which was derived in Section 4.2; this ensures

that the impact of alloy fluctuations in the QW region ìs still included. We begin by

applying the framework to uni-polar carrier transport in both the =-8-= (electron) and

?-8-? (hole) case. This allows us to disentangle transport effects from other effects such

as recombination. It also enables us to address each carrier individually, starting with

uni-polar electron transport.

6.1 Uni-polar electron transport

As we highlighted in the prologue, III-nitride-based QW structures are at the heart of

modern short wavelength LEDs [29,235]. Here, (In,Ga)N/GaN multi-QWs (MQWs) are

used to realize devices operating in the visible part of the spectrum. We also previously

stressed the different properties that nitride-based heterostructures have compared to

other III-V material systems; namely the underlying wurtzite crystal structure, and the

built-in polarization field. These features can be accounted for in 1-D simulations, how-

ever generally the predicted I-V curves of such simulations do not reflect experimental

results [64, 218, 236]. It has recently been shown that this shortcoming in the simula-

tion of (In,Ga)N-based LEDs [67] or uni-polar devices [218] is related to (i) treating
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these systems as 1-D as well as (ii) the semi-classical nature of DD models.

Regarding (i), as previously stated, the theoretical and experimental studies have re-

vealed that the electronic and optical properties of III-N-based heterostructures are

strongly affected by alloy fluctuations and accompanying carrier localization, all of

which is not fully reflected within a 1-D DD transport model [67, 70, 218]. Further-

more, (ii) the semi-classical nature of DD models neglects quantum mechanical effects,

such as tunneling. Fortunately, such quantum effects can be included, to some extent,

in DD simulations via LLT (discussed in Section 3.4) or the (nonlocal) effective po-

tential method to smooth band edges [186, 237, 238]. Thus, to accurately guide the

design of future III-N based LEDs, a fully 3-D, ideally atomistic, transport model which

includes quantum mechanical effects for the entire device is required.

As mentioned previously, the numerical demand of the atomistic NEGF calculations

of Chapter 5 is high. When extending simulations to full device calculations via the

DD formalism the challenge is to transfer atomistic effects into a modified, quantum-

corrected transport model. Previous work, targeting for instance (In,Ga)N LED or uni-

polar devices, tackled such a multi-scale problem in the following way: [67,219] First,

a random distribution of In and Ga atoms on either a cubic or a wurtzite grid is gen-

erated. Second, based on such a distribution, the local In content is determined by

using averaging procedures on the underlying grid. Equipped with this information,

continuum-based strain and built-in field calculations are performed which can then be

used to generate an “energy landscape” (conduction and valence band edges/confining

potential), mainly in the framework of a single-band EMA. This information can either

be directly used for 3-D DD-based transport calculations or even coupled with LLT to

account for quantum corrections. It is important to note that such an approach relies

on (i) identifying an interpolation procedure for the local alloy content, (ii) the knowl-

edge of how related material parameters change with composition locally and (iii) on

assuming that bulk parameters can be used locally to obtain strain and built-in fields

effects. Finally, it assumes that even when including random alloy fluctuations, the

modified continuum-based single-band EMA describes the electronic structure of this

complicated system accurately. Thus, overall “atomistic” aspects enter mainly at the In

atom distribution level. However, it is difficult to judge how well local fluctuations in

strain or built-in fields are captured in comparison to a fully atomistic approach (va-

lence force field plus local polarization theory). Furthermore, consequences of alloy

fluctuations for the electronic structure of the well and again how this compares to a

fully atomistic description, e.g. TB, is not widely discussed or analyzed.

We discussed in Section 4.2.2.1 a framework to make just such a comparison. We

extracted an energy landscape from TB which was used in single band EMA to calculate

the electronic structure, and calibrated the model using TB such that the band gap and

splitting between states provided a good comparison. In this work, we extend this
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theoretical framework to study charge transport in III-N based devices. Details of the

formalism have already been presented in Chapter 4. In general, we use the energy

landscape calculated from our atomistic TB model in conjunction with LLT to generate

a quantum-corrected energy landscape. This landscape presents the backbone of our

DD simulation. For the active (In,Ga)N QW region we use a FEM mesh with as many

nodes as atomic lattice sites, which we later enlarge to work in combination with a

specialized FVM. In doing so, (=-doped) contact regions can be added to the system on a

much coarser grid to model a full device. We highlight that the developed approach can

be extended to investigate uni-polar hole transport (Section 6.2) or complete (In,Ga)N-

based LED structures (?-8-= systems, e.g. Chapter 7).

The remainder of the section is organized as follows: We present the theoretical in-

gredients of our multi-scale model which were discussed in detail in Chapter 3 and

Chapter 4, namely TB, LLT and DD. Our results for uni-polar transport in (In,Ga)N-

based (single QW) SQW and MQW systems are detailed in Section 6.1.2. Finally, we

summarize our framework and the results in Section 6.1.3.

6.1.1 Theoretical framework

In order to capture the effects of (random) alloy fluctuations on the CBE and VBE and

ultimately on the electronic structure of the QW active region of a III-N device, we

employ an atomistic TB model which has been discussed in detail in Section 3.2. An

atomistic description of strain is found by relaxing the atomic coordinates using a VFF

model. The (local) polarization potential is then calculated using a local polarization

theory. These were discussed in detail in Section 3.3.

A key ingredient for DD transport calculations are the (local) CBEs and VBEs. This

information can be extracted from our TB model by generating and diagonalizing a

local Hamiltonian at each lattice site, following the procedure of Section 4.2.2.1. This

forms a 3-D confining energy landscape on the wurtzite lattice sites which can include

alloy fluctuations as well as atomistic strain and polarization effects. The local band

edges need to be transferred to a mesh that allows us to perform the transport calcu-

lations. This is done by including coarse mesh regions, where alloy fluctuations are

of secondary importance, to the atomistic region as detailed in Section 4.2.2.4. This

allows us to generate a FVM mesh which can be used for DD calculations. Details of

the system size used will be given later in Section 6.1.2.

In Section 4.2.2 we discussed the complication associated with a strongly fluctuating

landscape coupled with DD equations. In order to address this issue we include a

Gaussian softening of the band edge energies which were extracted from TB, following

the approach in Section 4.2.2.
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6.1.1.1 Smoothing by Gaussian averaging

In general, employing such a Gaussian averaging procedure comes at the cost of having

to correctly determine the width, f, a priori. To analyze the impact of the f on the

CBE profile, which ultimately will also impact the transport, Fig. 6.1 shows the profile of

�f2 − @k in a 3.1 nm wide In0.1GaN0.9/GaN SQW, comparing random alloy fluctuations

with different Gaussian widths f to a VCA. Here k denotes the electrostatic potential

in the =-8-= device, including also piezoelectric and spontaneous polarization effects; @

denotes the elementary charge; �f2 is the CBE energy when a Gaussian width of f is

used. At each plane along the c-direction, the full range of CBE values over the G-H plane

is shown, which allows a clear visualization of the impact of the alloy fluctuations on

the CBE. Several features are important. The most striking difference between the VCA

and the smoothed random alloy (RA) CBE is that the potential barrier between GaN and

(In,Ga)N QW material is significantly reduced. This feature is expected to reduce the

turn-on voltage of the device and will be discussed in detail further below. Moreover,

the barrier-well interface reduces further with increasing f. However, the reduction

between f = 0.6 nm and f = 0.9 nm is smaller than the reduction from f = 0.3 nm

to f = 0.6 nm, even though the difference in f values is the same (Δf = 0.3 nm). We

also note that while the average band edge energy in the well is basically unaffected by

different f values, the CBE fluctuations in the well noticeably reduce. Consequences

of these effects on the current-voltage characteristics are discussed below.
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Figure 6.1: Randomly fluctuating, smoothed conduction band edge profile along the I-
(2)-axis of an =-8-= In0.1Ga0.9N/GaN single quantum system at zero bias (more details
given in the main text). The results are displayed in the absence of quantum corrections
via LLT, but for three different Gaussian widths f, namely f =0.3 nm (red), f =0.6 nm
(blue) and f =0.9 nm (green), as well as for a “standard” virtual crystal approximation
(VCA, black).
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6.1.1.2 Quantum corrections by localization landscape theory

Having determined the local band edges from atomistic TB theory, we can now also

include quantum corrections using LLT [158]. These corrections are not limited to a

calculation that accounts for random alloy fluctuations; LLT can also be used in con-

junction with a VCA description. We note that many commercial software packages

targeting transport properties of III-N devices also have the option to include quantum

mechanical effects by solving Schrödinger’s equation in the active region (QW region)

of a device. However, such an approach is numerically extremely demanding even for

a 1-D simulation, not to mention a full 3-D calculation, which is necessary in the pres-

ence of random fluctuations. As already discussed in detail in Section 3.4, when using

LLT one avoids having to solve the Schrödinger equation, and thus a large eigenvalue

problem since the landscape equation is:

� |D〉 = 1 . (3.26 revisited)

Here we use it to extract an effective confining potential, , , via Eq. (3.27):

, 9 =
1
D 9

. (3.27 revisited)

Regarding the computational aspects, we numerically solve the LLT equation, Eq. (3.26),

supplied with appropriate Dirichlet and Neumann boundary conditions on the atom-

istic FEM mesh via a standard FEM [239]. The Dirichlet conditions are applied on the

left and right boundaries of the atomistic FEM mesh, and are implemented via a penalty

technique [240]. The FEM discretization is implemented in WIAS-pdelib [223], using

PARDISO as linear solver [241].

Since LLT basically replaces the Schrödinger equation, LLT provides also information

about the energy spectrum and the wave functions [242]. Thus, the outcome of the

LLT calculations can be directly compared to our TB data. For the SQW structures

analyzed in Section 6.1.2, we find very good agreement between TB and LLT when

applying a rigid band edge shift of 129 meV to the CBE in the QW region in the EMA

description, in line with Ref. [4]. All this provides a feedback loop between our atom-

istic model, the obtained landscape and the resulting electronic structure. This bench-

marking gives further confidence that the here established simulation framework for

performing transport calculations captures alloy fluctuations accurately in a SQWs.

Examples for the resulting effective energy landscapes/confining potential energies

, − @k are given in Fig. 6.2. We observe that similar to the random alloy case with-
out quantum corrections, cf. Fig. 6.1, the LLT treatment leads also to a reduction in

the potential barrier between GaN material and (In,Ga)N QW. Therefore, the strongly

fluctuating TB landscape is “softened”, given that the carrier wave functions sample a

wider “area” on this landscape, as one may expect from a quantum mechanical wave
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Figure 6.2: Randomly fluctuating, smoothed conduction band edge profile along the
I- (2)-axis of an =-8-= In0.1Ga0.9N/GaN single quantum well system at zero bias (more
details given in the main text). The results are displayed in the presence of quantum
corrections via LLT, but for three different Gaussian widths f, namely f =0.3 nm (red),
f =0.6 nm (blue) and f =0.9 nm (green), as well as a “standard” virtual crystal ap-
proximation (VCA, black).

function analysis. However, two additional aspects are important to note. As already

highlighted above, LLT cannot only be combined with the random alloy system, it can

also also be employed in a VCA type calculation. Thus, from a VCA plus LLT descrip-

tion it is also expected that the potential barrier between the GaN and the (In,Ga)N

QW material is reduced. Therefore, including quantum corrections in VCA should also

affect the turn-on voltage of a device when compared to a “standard” VCA calculation

without quantum corrections. Secondly, as one can infer from Fig. 6.2, once LLT has

been applied, increasing the Gaussian width f for the CBE softening in the random

alloy case has very little impact on the resulting band edge profile. Below we will ana-

lyze this aspect in greater detail when looking at the I-V curves of (In,Ga)N/GaN-based

uni-polar devices.

6.1.1.3 Uni-polar drift-diffusion model

In previous sections, we have discussed the mesh generation and also how random

alloy fluctuations and quantum corrections in the confining potential are treated. In

this section, we focus our attention on the semi-classical van Roosbroeck system which

models DD charge transport in semiconductors. This was introduced in Section 4.2.1.2.

As we are interested in uni-polar electron transport the van Roosbroeck system of equa-
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tions (given in full in Eq. (4.42)) is reduced to

−∇(Y∇k(r)) = −@(=(r) − #� (r)) , (6.1a)

∇ · j= (r) = 0 , (6.1b)

j= (r) = −@`==(r)∇i= (r) . (6.1c)

The electrons are treated using Boltzmann statistics:

=(x) = #� exp
(
@(k(x) − i= (x)) − �332 (x)

:�)

)
, (6.2)

where :� is the Boltzmann constant, ) denotes the temperature, �332 (x) is the (position

dependent) band edge energy used in the transport calculations and #� is the effective

density of states:

#� = 2
(
<∗4:�)

2cℏ2

)3/2

.

If simulating a real device and targeting a theory-experiment comparison the Boltz-

mann approximation may not be adequate, and Fermi-Dirac statistics may need to be

applied at high enough bias values. However, for the purposes of this chapter, where a

framework is being established and a comparison between a VCA and random alloy is

being carried out, Boltzmann statistics are sufficient.

We note that we have different options for setting the band edge energy �332 in the DD

simulations. One may choose (smoothed) TB data �332 = �f2 , VCA results �332 = �VCA
2

or the outcome of LLT calculations �332 = , . Equation (6.2) indicates that the electric

potential, k, leads to a bending of the energy landscape, �2 − @k, and thus results in a

nonlinear, self-consistent coupling to the carrier densities. In the following, we assume

a globally constant temperature for carriers and the crystal lattice of ) = 300 K. As

Boltzmann statistics are being employed the electron flux can be correctly discretized

by extending the local Scharfetter-Gummel flux approximation [215] to variable band

edges (c.f. Eq. (4.47)). The physical parameters used in the DD simulations are listed

in Table 6.1.

Table 6.1: Material parameters used in drift-diffusion simulations. Unless otherwise
stated, all parameters are taken from Ref. [67]; † from [243].

Physical Quantity Value Units
<∗4 GaN 0.2 m0
<∗4 InN 0.07 m0
`= =-GaN 200 cm2/(V s)
`= 8-GaN 440 † cm2/(V s)
`= 8-(In,Ga)N 300 cm2/(V s)
n�0#A 9.7 † n0
n � =#A 15.3 † n0
=-doping (GaN) 5 × 1010 cm−3
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6.1.2 Results

In this section, we apply the developed framework to uni-polar, =-doped/intrinsic/=-

doped (=-8-=), (In,Ga)N/GaN-based structures: We analyze the impact of random alloy

fluctuations and quantum corrections introduced by LLT on the I-V curves of such sys-

tems. The results are compared with data obtained from a VCA description of the same

structures. Special attention is paid to the impact of the Gaussian broadening width,

f, on the results. This analysis is carried out for both SQW systems, Section 6.1.2.1, as

well as for MQW structures consisting of 3 wells, Section 6.1.2.2. For all these calcula-

tions the well width is 3.1 nm, the In content in the well is 10% and the barrier material

is GaN. In the MQW system the width of the barrier between the wells is 8.0 nm. Fig-

ure 6.3 gives a schematic illustration of the system. Except for the VCA systems, all

calculations make a random alloy assumption for the (In,Ga)N alloy forming the QW;

any additional penetration of In atoms into the GaN barrier are not considered. The as-

sumption of such an abrupt interface between (In,Ga)N and GaN is consistent with the

experimental data in Ref. [40], at least for growth of (In,Ga)N on GaN. When capping

an (In,Ga)N QW with GaN, penetration of In atoms into the GaN barrier may occur.

However, recent experimental studies show that by a careful choice of the growth con-

ditions this effect can be reduced [244]. Given that we are interested in establishing

a general simulation framework, these In atom “bleeding” effects are of secondary im-

portant for the present study.

6.1.2.1 (In,Ga)N SQW system

In a first step and before looking at a full I-V curve of the In0.1Ga0.9N SQW system, we

focus our attention on the impact of random alloy fluctuations on the results. More

specifically we will study the impact of the Gaussian width f and thus the related

smoothing of the energy landscape on the current. Figure 6.4 displays the current in

the system at a fixed bias of 3 V for different f values. The data are shown when

including and when neglecting quantum corrections arising from LLT. The calculations

have been performed for 5 different random alloy configurations in the QW, allowing

us to also study the influence of the alloy microstructure on the current; the error bars

indicate the standard deviation. One can infer from Fig. 6.4 that when neglecting LLT

effects, the resulting current (strongly) depends on the width of the Gaussian function,

at least for f < 0.6 nm (≈ 20, where 0 is the in-plane lattice constant of GaN). Above

this threshold the dependence of the current I on f is less pronounced. We will discuss

the impact of f on the full I-V curve further below, but noting here that f may impact

the results. In the literature the value of f has for instance been estimated using atom

probe tomography data, and a value of fAPT = 0.6 nm has been assumed [67]. Turning

now to the calculations including quantum corrections via LLT, Fig. 6.4 reveals that
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Figure 6.3: Schematic illustration of the simulation cell with 3 quantum wells (QWs)
in the active region. The =-doped regions (light blue) have a doping density of = =
5 × 1018 cm−3 and a length of !� = 160 nm. The intrinsic regions on the coarse mesh
(green) have a length of !� = 40 nm. The atomistic region, also assumed as intrinsic,
contains regions of GaN barrier material (dark blue) with a length of !� = 8.0 nm and
In0.1Ga0.9N QWs (red) with a length of !, = 3.1 nm. The simulation cell has an
in-plane dimension of F × ℎ = 5.1 × 4.4 nm2 along the entire system.

once these effects are taken into account, f is of secondary importance for the obtained

current I at the fixed bias of 3 V; this is at least the case for a SQW. We note however

that this aspect may depend on the in-plane dimensions of the simulation cell and thus

needs to be carefully investigated when performing calculations that include random

alloy fluctuations in general. This observation agrees with our earlier conclusion that

Gaussian smoothing does not affect the band edge profile, see Fig. 6.2, when including

LLT effects in the calculations.

Having gained initial insight into the impact of the Gaussian width f on the current I

at a fixed voltage V, in a second step we focus our attention now on the full I-V curve

of the SQW system. Figure 6.5 depicts the obtained results within the different ap-

proaches. Our reference point is again a “standard” VCA (black line) model, which

neglects both alloy fluctuations and LLT effects. In addition, we present also the data

of a combined VCA and LLT treatment. Finally, Fig. 6.5 displays results for the random

alloy case for different f values (red line: f = 0.3 nm; blue line: f = 0.6 nm) with and

without LLT effects included in the calculations. Turning to the result in the absence

of LLT first, it becomes clear that when accounting for random alloy fluctuations in the

model, the turn on voltage is shifted to lower values in comparison to a standard VCA

description. This is also consistent with previous literature results on uni-polar trans-

port calculations of (In,Ga)N/GaN-based QW systems [218]. However, our calculations

also reveal, and in line with Fig. 6.4, that the obtained current at a given voltage V de-
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Figure 6.4: Current I at a bias of 3 V as a function of the Gaussian width, f, without
LLT (purple) and with LLT (blue) coerrections for an =-8-= system with a 3.1 nm wide
In0.1Ga0.9N single quantum well. The results are averaged over 5 different microscopic
alloy configurations and errors bars are given by standard deviation.
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Figure 6.5: Current-voltage curves for an =-8-= In0.1Ga0.9N single quantum well system,
within virtual crystal approximation (VCA, black), random alloy (RA) with Gaussian
widths of f = 0.3 nm (red) and of f = 0.6 nm (blue). Solid lines show results without
quantum corrections, dashed lines denote results with quantum corrections included
via localization landscape theory.

pends on the Gaussian width f. As already indicated above, when neglecting quantum

corrections via LLT, a further analysis is required to determine f: if f is too small, the

resulting very strong fluctuations in the energy landscape within the well are beyond

the applicability of a continuum-based DD model; if f too large, the fluctuations in

the energy landscape are completely removed as discussed in Section 6.1.1.1. So when

neglecting LLT effects, care must be taken when choosing f.
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Next we turn and discuss the I-V curves when including effects arising from LLT (dashed

lines in Fig. 6.5), both in the random alloy case but also in the VCA simulations. Look-

ing at the calculations including random alloy fluctuations and LLT first, we observe

that the Gaussian width f is of secondary importance; this is again consistent with our

findings in Fig. 6.2 and 6.4. We note also that when choosing a relatively large value

of f (e.g. 0.6 nm) the random alloy I-V curves with and without LLT (blue) do not

differ significantly. We attribute this to the effect that both LLT and a relatively large

Gaussian broadening soften the well-barrier interface and thus reduce the resistivity

of the system. Furthermore, the fluctuations in the energy landscape within the QW

are reduced, leading to a further decrease in the resistance of the QW region. We note

that in the presented test system, the in-plane dimensions of the simulation cell are

relatively small, and further tests on the impact of f on the I-V curve may be required

in future studies. However, this is beyond the scope of the present work, which in-

troduces the general framework. Nevertheless, our results show that the calculations

including random alloy fluctuations and LLT effects give the lowest turn-on voltage and

highest current compared to all other models discussed here. However, and interest-

ingly, we find also that the VCA plus LLT calculations give almost the same I-V curve

as the quantum corrected random alloy simulations. This indicates that for a SQW,

once LLT is included in the model, the VCA can provide a very good approximation of

the I-V characteristics of the uni-polar =-8-= system in comparison to a full 3-D random

alloy model; we saw a similar result in Chapter 5 using the fully quantum mechanical

NEGF formalism. Furthermore, since the (3-D) VCA neglects any in-plane variation in

the system, already a 1-D VCA simulation seems to lead to reliable results – as long

as LLT is included. Having only to rely on a 1-D simulation would obviously reduce

the computational cost immensely compared to a full 3-D calculation including alloy

fluctuations. However, and as we will show in the following section, for a MQW system

a 1-D VCA plus LLT calculation is no longer sufficient.

6.1.2.2 (In,Ga)N MQW system

Having discussed a SQW system in the previous section, we focus our attention now

on a MQW system. Figure 6.6 shows the I-V curves for a MQW system consisting of

three In0.1Ga0.9N/GaN QWs with a barrier width of !� = 8.0 nm. Here, we followed

the approach of the SQW and calculations have been performed using either a VCA

treatment or account for random alloy fluctuations in the system. Again the simulations

are carried out both with and without quantum corrections via LLT.

As in the SQW case, VCA calculations neglecting LLT effects show the highest turn-

on voltage and lowest current at a fixed bias point when compared with all other data.

When combining VCA and LLT, we find similar to the SQW case that the turn-on voltage

is reduced and the current density is increased. However, and this is in strong contrast
to the SQW data, cf. Fig. 6.5, in the MQW system the results from VCA plus LLT devi-
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Figure 6.6: Current voltage curves for a three In0.1Ga0.9N quantum well system, within
virtual crystal approximation (VCA, black) and when random alloy (RA) fluctuations
(Gaussian width of f = 0.6nm) are included in the model (blue). Solid lines indicate
results without quantum corrections, dashed lines show results with quantum correc-
tions included via localization landscape theory.

ate noticeably from the outcome of calculations that accounted for both random alloy

fluctuations and LLT, cf. Fig. 6.6. We also note that VCA plus LLT simulations show

significant deviations (lower currents, higher turn-on voltages) from random alloy cal-

culations that neglect LLT effects. Overall, we attribute the aspect that random alloy

fluctuations seem to become more important in the MQW system to inherent features

of LLT. As discussed for instance in detail in Section 3.4.3, as well as in Refs. [158,163],

to predict the ground state energy of a QW, the reference energy, �ref, has to be chosen

appropriately. However, the choice of �ref not only affects the prediction of the ground

state energy of the system, it also affects the effective potential , , which is used in

the DD transport calculations. If the QWs in a MQW system in a DD simulation are

energetically aligned, e.g. CBEs of all wells forming the MQW have approximately the

same energy for an applied bias, �ref can be chosen as the bottom of the CBE. However,

if there is a large difference in the CBEs of the different wells in the system, LLT may

give a poorer approximation of , for the well where the CBE is energetically furthest

away from the reference energy �ref. This situation can be found when applying a bias

V in an =-8-= system. As a result, the softening of the well-barrier interface along with

an effective decrease of the QW depth (confinement energy), may be different for the

different QWs in the MQW system. Obviously, for a SQW system this issue never arises.

However, two important general aspects are to note. Firstly, the LLT treatment of MQWs

may be further improved by partitioning the MQW system into different sub-regions in

which LLT is then solved separately. This means one could calculate LLT in each region

with its own reference energy and “stitch” the resulting effective potentials together.

This approach will be discussed in detail in Section 6.2.1.2.1 where it has been applied
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to uni-polar hole transport; the low effective electron mass compared to that of holes

means this approach is much more challenging for electrons: reduced effective mass

results in larger smoothing further into the barrier by LLT, making stitching regions

together problematic, this is beyond the scope of the present work. Secondly, we note

that in a ?-8-= system, near the turn-on voltage, the QW band edges are expected to be

energetically not too different. In that case, even without partitioning the system, LLT

should provide a good approximation for biases near the turn-on voltage. This will be

discussed further in Chapter 7.

In principle, the same difficulties with respect to �ref apply here in the random alloy sys-

tems when including LLT in the calculations. However, and compared to the outcome of

VCA plus LLT studies, our results show that for simulations including alloy fluctuations

but neglecting LLT, larger currents are observed. As discussed above, the calculations

taking random alloy fluctuations into account automatically include some softening of

the well barrier interface. Combining LLT with random alloy fluctuations results in a

further increase of the current and reduction of the turn-on voltage. We stress that

standard 1-D VCA DD calculations presented in the literature on =-8-= (In,Ga)N QW

systems, always predicted much higher turn-on voltages when compared to the exper-

imental studies [218]. Thus, the here obtained results reveal and support again the

origin of this discrepancy: standard 1-D VCA calculations neglect alloy fluctuations.

Thus, even though �ref still has to be treated carefully, the resulting energy landscape

presents an improvement over VCA in terms of the predicted I-V characteristics.

While the above calculations have been performed at a fixed Gaussian width f of f =

0.6 nm, we still need to evaluate the impact of f on the I-V characteristics. In the SQW

case, cf. Fig. 6.4, the predicted current at a fixed voltage was virtually independent

of f once LLT was applied. Due to the difficulty of choosing �ref in a MQW system,

the current may now depend more strongly on the Gaussian width f. However, our

analysis reveals that after LLT has been applied at a fixed voltage of 3 V the obtained

currents differ only by less than 8% from the mean over a f range from 0 to 0.9 nm

(not shown). The change due to different Gaussian widths f is only a small correction

compared to the change between e.g. VCA and random alloy fluctuation calculations,

indicating again that a calculation including both random alloy fluctuations and LLT are

robust against changes in f. Random alloy calculations without including LLT follows

a similar trend to that of the SQW shown in Fig. (6.4) (purple) where the result can

strongly depend on the choice of f, particularly for f less than 0.6 nm.

6.1.3 Conclusions from studying uni-polar electron transport

In this section we applied the framework presented in Section 4.2 to uni-polar elec-

tron transport. This allows us to bridge the gap between atomistic TB theory and

continuum-based DD calculations. The model also includes quantum corrections via
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the localization landscape method, to address charge carrier transport in III-N based

devices. Overall, we find that random alloy fluctuations and quantum corrections sig-

nificantly impact the current voltage characteristics of uni-polar (In,Ga)N devices when

compared to standard VCA studies, which are at the heart of most literature carrier

transport solvers. In general and independent of SQW and MQW systems, the com-

bination of quantum corrections and random alloy fluctuations lead to lower turn on

voltages and higher currents when compared to a VCA. This effect is very important

since literature studies on uni-polar carrier transport have revealed that “standard” 1-

D continuum-based transport solvers, effectively corresponding to our virtual crystal

results, give turn-voltages considerably larger than the experiment. Thus, our here

predicted shift to lower voltages due to quantum corrections and alloy fluctuations

indicates an improved description of experimental data. However, we note that the

relative importance of quantum corrections and random alloy fluctuations varies be-

tween SQW and MQW systems. We find that in the SQW system, quantum corrections

are extremely important. As a consequence, in the SQW, a combined virtual crystal

approximation plus LLT treatment leads to almost the same current voltage curve as in

a calculation that also includes alloy fluctuations. This indicates that for a SQW sys-

tem, 1-D calculations including LLT may be sufficient; this reduces the computational

demand significantly. However, our analysis also indicates that in a MQW system this

finding may not hold, and alloy fluctuations and thus a full 3-D transport calculation

is required. Therefore, our investigations highlight that for MQW systems both atom-

istic as well as quantum mechanical effects should be taken into account to achieve an

accurate description of the I-V characteristics of uni-polar (In,Ga)N-based devices.

So far we have only studied uni-polar electron transport. Our fully quantum mechanical

analysis in Chapter 5 highlighted that the response of electrons and holes to the random

alloy microstructure differs significantly, so before turning to a full bi-polar transport

problem we study in the following uni-polar hole transport to complement and compare

with the electron transport.

6.2 Uni-polar hole transport

Our previous (NEGF and DD) simulation results have highlighted how the treatment of

the alloy microstructure can affect carrier transport through (In,Ga)N-based quantum

well systems. Having applied a DD framework to uni-polar electron transport, we turn

our attention to holes. Recent work has investigated uni-polar hole transport through

an (Al,Ga)N barrier [245]. The study showed the importance of considering alloy fluc-

tuations for the theoretical description of the hole transport in such systems. However,

a similar investigation for (In,Ga)N quantum well systems is missing. This stems in part

from the fact that high quality ?-doped-intrinsic-?-doped (?-8-?) systems are challeng-

ing to realise experimentally due to, e.g., high dopant activation energy [246], com-
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pensation effect [247], memory effect [248], but also from the fact that the theoretical

modeling of carrier localization in (In,Ga)N systems is a difficult task in itself [4,219].

Moreover, given the difference in the material system ((Al,Ga)N vs (In,Ga)N) the re-

sults from Ref. [245] cannot necessarily be carried over to an (In,Ga)N/GaN structure.

Therefore we focus in this chapter on uni-polar hole transport in (In,Ga)N QWs. Here,

we apply our previously discussed multi-scale simulation framework to study uni-polar

hole transport in (In,Ga)N SQW and MQW systems. We analyze in detail the impact of

alloy and quantum corrections on the results.

This section is organized as follows: In Section 6.2.1 we outline the theoretical frame-

work we use, with a particular focus on the implementation of LLT in a MQW (as

discussed in Section 6.1.2.2). In Section 6.2.2 we present our results for uni-polar hole

transport in (In,Ga)N/GaN SQW and MQW systems. Finally, Section 6.2.3 concludes

this work.

6.2.1 Theoretical framework

The framework applied to the uni-polar hole transport systems is very similar to that

presented for uni-polar electron transport in Section 6.1.1: The model builds on a

TB model to include an atomistic description of the VBE energies extracted using a

local Hamiltonian, which are embedded withing a sparser device mesh to describe ?-

doped GaN regions. The energies in the atomistic region are subjected to a Gaussian

broadening with a width of f in order to account for the spatial extent of the wave

function, which does not only “see” valence band enedgies at a given lattice site but

also beyond this.

6.2.1.1 Smoothing by Gaussian averaging

As seen in the discussion of uni-polar electron transport, when applying a Gaussian

smoothing the averaging procedure depends on the width of the Gaussian, f. Given

that the Gaussian width f is now effectively a free parameter, we will follow the same

procedure as in Section 6.1 and study below the impact of f on the effective energy

landscape and the hole transport. Future studies may target evaluating f values based

on calculations of e.g. the density of states [159,206] in (In,Ga)N-based QWs utilizing

modified continuum models.

We follow a similar approach to that taken in the =-8-= study to understand the potential

impact of f on the results; Fig. 6.7 shows the VBE energy profile of an (In,Ga)N/GaN

SQW with 10% In and a width of 3.1 nm for different values of f (f = 0.1 nm (purple),

f = 0.3 nm (green) and f = 0.5 nm (blue)) at equilibrium (0 V). The VCA profile,

which does not undergo broadening, is also depicted (black, dashed). Firstly, we note

that when choosing a f value smaller than the bond length of the material, 30 (e.g.

f = 0.1 nm < 3GaN
0 [91]), basically no averaging takes place. As a consequence, the
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Figure 6.7: Comparison of valence band edge energies for an In0.1Ga0.9N single quan-
tum well of width 3.1 nm at a bias of 0 V (equilibrium solution) without quantum
corrections for a VCA (black, dashed) and random alloy calculations using a Gaussian
width, f, of 0.1 nm (purple), 0.3 nm (green) and 0.5 nm (blue).

VBE energy exhibits very strong fluctuations due to the alloy fluctuations, see Fig. 6.7.

We note that while the average QW “depth” (averaged over each atomic plane) does

not differ significantly for different f values, both the magnitude of the VBE energy

fluctuations as well as the potential barrier between (In,Ga)N well and surrounding

GaN is strongly impacted by the f value. Thus, Fig. 6.7 gives already indications that

carrier transport, e.g. I-V curves, may be strongly dependant on f as we saw in the

uni-polar electron systems in Section 6.1. We will discuss this in more detail below.

6.2.1.2 Quantum corrections by localization landscape theory

The framework of LLT has been introduced in detail both in the Chapter 3 and in

Section 6.1. The procdure here is initially the same1 as the =-8-= system in order to

extract an effective landscape, , .

To provide first general insight into the impact of LLT corrections to the confining en-

ergy landscape for holes, Fig. 6.8 shows the effective potential , for the VBE of an

In0.1Ga0.9N/GaN SQW system at equilibrium (0 V); the width of the well is 3.1 nm. The

data are displayed for three different Gaussian broadening values f, namely f = 0.1 nm

1As the derivation of LLT requires that the Hamiltonian �̂ is a positive definite operator [157], the
landscape equation (Eq. (3.26)) is solved in the hole picture (where the hole ground state has the lowest
energy on an absolute scale, and the hole effective mass is positive) rather than in the valence band
picture (where the hole ground state has the highest valence band energy on an absolute scale, and the
hole effective mass is negative). As such, the confining potential is described by + = −�TB

E . The resulting
effective landscape, , (Eq. (3.27)), is converted to the valence band picture (multiplication by -1) so
that it can be used in transport calculations. When displaying band edge profiles, we always use the valence
band picture; if LLT has been applied, the obtained effective landscapes/potentials, , , have been transformed
accordingly.
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Figure 6.8: Comparison of valence band edge energies for a In0.1Ga0.9N single quantum
well of width 3.1 nm at 0 V including quantum corrections via LLT for a VCA (black,
solid) and random alloy calculations using a Gaussian width of 0.1 nm (purple), 0.3 nm
(green) and 0.5 nm (blue). The VCA result excluding quantum corrections is also
shown (black, dashed).

(purple), f = 0.3 nm (green) and f = 0.5 nm (blue), as well as a LLT corrected VCA

profile (black, solid). A “standard” VCA profile is also shown (black, dashed). This fig-

ure displays that once LLT is included in the calculations, the impact of f on the band

edge profile is significantly reduced. Looking at the VCA plus LLT results, one finds a

very smooth confining band edge energy profile.The consequences of using a softened

profile for carrier transport will be discussed below.

6.2.1.2.1 Subtleties of LLT for MQW structures

The drawbacks of LLT have already been discussed in Section 3.4.3. One key point

mentioned is the change in energy landscape when the reference energy, �ref, of the

system is changed; ideally the reference energy should be chosen to maximize the con-

tribution of the ground state ( |k0〉 , with energy �0) to the expansion of D (Eq. (3.28)):

|D〉 =
∑
=

〈k= |1〉
�=

|k=〉 . (3.28 revisited)

While adjusting the reference energy of a SQW system is in principle a straightforward

procedure, for a MQW system this becomes more involved. This was described briefly

in Section 6.1, but here we focus more closely on the consequences, since the higher

effective hole mass allows us to partition the system into different sub-systems as al-

ready mentioned in Section 6.1.2.2. To illustrate this in more detail, Fig. 6.9 shows a

schematic of a 3 QW system. Here we assume a large energy difference between the

VBE values of the different wells to highlight central aspects of LLT. If this structure

Theory of carrier transport in III-N based
heterostructures

120 Michael John Oliver O’Donovan



6. MULTISCALE SIMULATIONS OF UNI-POLAR

CHARGE TRANSPORT IN (IN,GA)N-BASED

DEVICES WITH RANDOM FLUCTUATIONS 6.2 Uni-polar hole transport

-0.6

-0.3

	0

	0.3

	0.6

	0.9

	0 	10 	20 	30 	40

En
er
gy

	(e
V)

Position	(nm)

Ω1 Ω2 Ω3

E1
0

ψ1
0

E2
0

ψ2
0

E3
0

ψ3
0

Figure 6.9: Schematic illustration of a potential band edge energy profile (black solid
line) in a multi-quantum well with 3 quantum wells where the wells exhibit a large
energy separation between their respective ground state energies � 80 (red dashed line).
The local hole ground state wave function in the iCℎ localization region, Ω8 (marked by
shading), are indicated by k80 (red, solid).

is treated as one single “localization” region Ω, and we choose the reference energy,

�ref, to be very close to �1
0 (using the hole picture instead of the valence picture), D

and consequently , will be dominated by the ground state wave function k1
0, as 〈k

1
0 |1〉
�1

0
will dominate the series expansion in Eq. (3.28). Due to the larger energy separation

between �ref and �2
0 and �3

0 , respectively, there will be basically no contribution from

k2
0 and k3

0 to , (xi). As a consequence the effective potential , in the spatial region

where k2
0 (located in region Ω2) and k3

0 (located in region Ω3) are localized is largely

unaffected by LLT quantum corrections.

To circumvent this issues, one could in principle partition the system into multiple

(here three) subregions (Ω1,Ω2,Ω3) and solve LLT for each sub-system separately; for

each subregion an individual � 8ref can be chosen. In doing so, the wave functions k80
describe now the ground state wave function for each “localization” region Ω8 with its

corresponding local ground state energy � 80. Now the series expansion of D in each

region is dominated by the first term, and D obtained for each region Ω8 should give

a very good description of the lowest state locally. As a consequence, the confining

potential in each QW subregion Ω8 contains quantum corrections.

When using this approach of partitioning the system into different subregions, the re-

maining question is how to “connect” the local effective potentials ,8 so that one ob-

tains a global one, , . As we saw in the case of electrons, partitioning the system

into different localization regions is difficult, as the low effective electron mass leads

to a large “leaking” of the wave function into the barrier material. This makes it very
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difficult to connect the individual effective potentials, ,8 continuously. Holes, how-

ever, have a much higher effective mass, and partitioning the system is achievable if

the separation between the wells in a MQW system is not too small. For the system

under consideration (see Section 6.2.2) this is the case and the locally obtained effec-

tive landscapes return quickly to the band edge energy of the GaN barrier material;

this guarantees that the interface between neighbouring localization regions is smooth

and continuous when “stitching” the different ,8 together to obtain , . A comparison

of effective landscapes obtained with and without partitioning a MQW structure into

different sub-regions is show in Appendix C.1. When analyzing hole carrier transport

in a MQW system in Section 6.2.2.2, we will pay special attention to the above de-

scribed partitioning of the system when including quantum corrections via LLT in the

simulations.

We note also that similar considerations are usually required in “standard” coupled

Schrödinger-Poisson simulations of MQW systems. Here, in principle two options are

available: solve the Schrödinger equation for a large number of states over the full

simulation cell. However, a full quantum mechanical treatment of the full simulation

cell is numerically very demanding. Most often, the quantum mechanical description

(i.e. solving the Schrödinger equation) of the system is restricted to spatial regions

near the wells of a MQW structure with appropriate boundary conditions (e.g. wave

functions decayed approximately to 0 in the barrier material). Such an approach is

similar to the above described partitioning of the MQW in different localization regions

in which LLT is solved.

6.2.1.3 Uni-polar drift-diffusion model

As discussed in Section 4.2.2.4, we transfer the atomistic VBE energy data, together

with constant macroscopic VBE parameters for the doped regions, on to a FVM mesh.

Following the discussion in the previous section, we may use for the atomistic VBE data

either the valence band energy after Gaussian broadening, �fE (x8), or the effective con-

fining potential extracted from LLT, −, (x8); the multiplication of, by −1 is due to the

change from the hole picture to the valence band picture. This atomistic data can either

take the form of a VCA, where interpolated material parameters are used to describe

an alloy, or it can contain fluctuations due to the underlying alloy microstructure. The

DD model which describes charge transport through the device has already been intro-

duced in Section 4.2.1.2. As we are considering steady-state uni-polar hole transport

without any recombination processes the van Roosbroeck system is described by

−∇(n∇k(r)) = @(?(r) − #�(r)) , (6.3a)

∇ · j? (r) = 0 , (6.3b)

j? (r) = −@`??(r)∇i? (r) . (6.3c)
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where k is the electrostatic potential, ? is the hole density, #� is the ionized accep-

tor density, j? is the hole current, i? is the hole quasi-Fermi potential and @ is the

elementary charge. Hole densities are described using Boltzmann statistics:

?(x) = #+ exp
(
@(i? (x) − k(x)) + �33E (x)

:�)

)
, (6.4)

where the effective density of states is given by

#+ = 2
(
<∗
ℎ
:�)

2cℏ2

)3/2
.

Above, <∗
ℎ

is the hole effective mass, :� is the Boltzmann constant, ) is the temperature

and ℏ is the reduced Planck’s constant. The hole flux is discretized by the Scharfetter-

Gummel approximation (Eq. (4.47)). Bias values are implemented via Dirichlet bound-

ary conditions. In the here-studied systems the Boltzmann approximation is sufficient

to describe carriers; this is outlined in more detail in Appendix C.2 where a comparison

of Fermi-Dirac and Boltzmann statistics is carried out.

6.2.2 Results

In this section, we apply the framework described above to a ?-doped-intrinsic-?-doped

(?-8-?) system in both a SQW, Section 6.2.2.1, and a MQW, Section 6.2.2.2, setting.

Our simulations are carried out within the ddfermi simulation tool [222], which is

implemented within the WIAS-pdelib toolbox [223]. A schematic of the MQW sys-

tem including the contact regions is shown in Fig. 6.10. Details about well and barrier

widths, as well as the In content are given in the figure caption. The material param-

eters entering the DD calculations are summarized in Table 6.2; in all calculations the

temperature ) is set to ) = 300 K. To study the influence of alloy fluctuations and

quantum corrections on the carrier transport, the simulations have been performed for

the different �33E settings discussed in Section 6.2.1.3. Thus, we compare results from

calculations including alloy fluctuations to results from VCA simulations; the simula-

tions have been carried out in the absence and presence of LLT quantum corrections.

In the case of the MQW, we also investigate how the I-V curves change when parti-

tioning the MQW system to solve LLT locally (for each QW), see also discussion in

Section 6.2.1.2.1.

6.2.2.1 (In,Ga)N SQW system

In the following we analyze the impact of random alloy fluctuations and quantum

corrections on the I-V characteristics of a ?-8-? (In,Ga)N SQW system; details of the

structure and simulation cell are given in the caption of Fig. 6.10. In order to study the

influence of the alloy microstructure on the results we have repeated these calculations
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Figure 6.10: Schematic illustration of the simulation cell with three quantum wells
(QWs) in the active region. The ?-doped regions (light blue) have a doping density of
2 × 1019 cm−3 and a length of !� = 160 nm. The intrinsic regions on the coarse mesh
(yellow) have a length of !� = 40 nm. The atomistic region, also assumed as intrinsic,
contains regions of a GaN barrier material (dark blue) with a length of !� = 8.0 nm
and In0.1Ga0.9N QWs (red) with a width of !, = 3.1 nm. For a single QW calculation
the atomistic region contains only one In0.1Ga0.9N QW (!F = 3.1 nm) and two GaN
barrier regions. The simulation cell has an in-plane dimension of F × ℎ = 5.1 × 4.4 nm2

along the entire system.

Table 6.2: Material parameters used in the simulations. Unless otherwise specified, all
parameters are taken from Ref. [67]; † Ref. [249].

Physical Quantity Value Units
<∗
ℎ

GaN 1.87 m0
<∗
ℎ

InN 1.61 m0
`ℎ ?−GaN 5 cm2/(V s)
`ℎ 8−GaN 10 † cm2/(V s)
`ℎ 8−(In,Ga)N 10 cm2/(V s)
nGaN
A 9.7 n0
n InN
A 15.3 n0
?−doping (GaN) 2×1019 cm−3

for 5 different microscopic configurations. Furthermore, the Gaussian broadening f

has been varied to study how f affects the results. Before turning our attention to the

full I-V curve of the system, and similar to our electron transport study above, Fig. 6.11

depicts the current in the SQW system at a fixed bias of 1.0 V for different f values.

As discussed in Section 6.1.1.1, when f is increased, the Gaussian function softens

the band edges and reduces the magnitude of the fluctuations. As a consequence,

in the absence of quantum corrections, the current at 1.0 V increases with increasing

f and starts to converge for f values larger than approximately 0.5 nm. For these

large f values the VBE becomes smooth and the current approaches that of a VCA
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Figure 6.11: Impact of Gaussian width, f, on the current in a single In0.1Ga0.9N/GaN
quantum well system at a bias of 1.0 V. Results are obtained in the presence (blue)
and absence (purple) of quantum corrections via LLT and are averaged over 5 different
microscopic configurations. The errorbars show the standard deviation of the current
over the 5 configurations.

without quantum corrections, as we will discuss further below. In addition, Fig. 6.11

also reveals that there is an abrupt increase in the current at around f = 0.2 nm. We

attribute this to the fact that if f is small and below the bond length of e.g. GaN,

the band edge profile entering the DD simulations exhibits strong (local) fluctuations

which noticeably affect the carrier transport.

In the next step we turn our attention to the full I-V curves in the presence of alloy fluc-

tuations but in the absence of LLT quantum corrections. Overall, the behavior discussed

for the fixed bias of 1.0 V, Fig. 6.11, is also reflected in the full I-V curves, Fig. 6.12: for

a Gaussian width of f = 0.1 nm the current is extremely low, but increases with increas-

ing f. However, it is important to note that the here obtained results are in contrast

to uni-polar electron transport, for instance discussed in Section 6.1. In the case of the

electrons, the current always exceeds the VCA results, while we find here that in the hole

case it approaches the VCA data. This means that for electron transport alloy fluctua-

tions are beneficial, while they are detrimental for the hole transport in (In,Ga)N QWs.

This result is consistent with the observation that alloy fluctuations lead to strong hole

localization effects, while electron wave functions, due to their lower effective mass,

are affected to a lesser extent by the alloy fluctuations [40,41].

To shed more light onto the influence of alloy fluctuations on the hole transport,

Fig. 6.13 shows the charge density distribution in and around the (In,Ga)N SQW region

for f = 0.1 nm in the absence of any LLT quantum corrections and at a bias of 1.0 V.

For comparison the VCA charge density distribution is also depicted (black, dashed)

and the VCA charge density distribution including quantum corrections (black, solid).
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Figure 6.12: Comparison of current-voltage curves for a single In0.1Ga0.9N/GaN quan-
tum well for VCA (black, dashed) and random alloy calculations using a Gaussian width
of f = 0.1 nm (purple), f = 0.3 nm (green) and f = 0.5 nm (blue) in the absence of
quantum corrections. Results are shown on a linear scale (left) and log scale (right).
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Figure 6.13: Carrier density distribution in and around a single In0.1Ga0.9N/GaN quan-
tum well of width 3.1 nm at a bias of 1.0 V for calculations including random alloy
fluctuations and using a Gaussian width of 0.1 nm. The results are shown in the ab-
sence (purple) and presence (red) of quantum corrections via LLT. For comparison VCA
data (black, dashed), and VCA including LLT (black, solid) are also depicted.

We stress again that due to the small f value, the alloy fluctuations lead to a strongly

fluctuating VBE energy profile, which in turn results in strong hole localization effects.

From Fig. 6.13 one can infer that due to the strong carrier localization effect, the car-

rier density is very high when compared to the VCA result in the QW region; the carrier

density in the barrier material is depleted in the random alloy case compared to VCA.

As a consequence, these carrier localization effects/the strong VBE fluctuations lead to
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a strong VBE bending, originating from the coupling of the hole density and the quasi-

Fermi level via Eq. (6.3c) and Eq. (6.4). Overall, and compared to the VCA result, this

gives rise to a larger resistivity of the device. Thus for this small value of f = 0.1 nm,

the current through the device is very low, as seen in Fig. 6.12. We note that such a low

broadening parameter can result in an underlying energy landscape which is not com-

patible with the DD framework (as f is much smaller than the de Broglie wavelength),

and this extreme depletion of the barriers may be physically unrealistic.

The situation changes with increasing f as Fig. 6.14 shows. Here, the charge density

distribution in and around the QW for both f = 0.3 nm (green) and f = 0.5 nm (blue)

are similar to the VCA results (black, dashed). Furthermore, as the charge density

distributions with increasing f approaches the VCA profile, so does the resulting I-V

curve, Fig. 6.12.
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Figure 6.14: Carrier density distribution in and around a single In0.1Ga0.9N/GaN quan-
tum well of width 3.1 nm at a bias of 1.0 V for a VCA (black, dashed) and random alloy
calculations. The latter use Gaussian widths of f = 0.3 nm (green) and f = 0.5 nm
(blue) and exclude quantum corrections.

Having discussed the impact of alloy fluctuations on the hole transport, we focus our at-

tention now on the impact of quantum corrections on the results. Overall, we find that

when including quantum corrections via LLT in the transport calculations, the Gaus-

sian width f influences the results to a much lesser extent. This can for instance been

seen in Fig. 6.11, where the current is shown as a function of f (light blue) at a fixed

bias of 1.0 V. In contrast to the results without quantum corrections (purple), when

including these corrections, the obtained current changes very little when increasing f

beyond 0.2 nm. We highlight also that even at the very low f value of f = 0.1 nm,

the current is strongly increased when including quantum corrections. The origin of

this becomes clear when looking again at the carrier density profile in and around the

SQW, depicted in Fig. 6.13. As discussed above, in the absence of quantum corrections,
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the strongly fluctuating energy landscape leads to a very large carrier density in the

well and depletes the region surrounding the well. When accounting for quantum cor-

rections, the carrier density profile including alloy fluctuations (red), even though the

same f value is used, is much smoother and approaches the VCA quickly in the barrier.

This emphasizes again that quantum corrections soften the confining energy landscape

and indicates also that once LLT corrections are taken into account, the importance of

alloy microstructure is reduced. This is further supported by Fig. 6.11: the standard

deviation (indicated by the error bars in the figure) is small relative to the current, at

least for larger f. The impact of the alloy microstructure is still visible for smaller f

values. We note here also that the magnitude of this effect may depend on the in-plane

dimension of the simulation cell, especially when using small f values. Thus careful

studies are required to analyze this in more detail, including a further evaluation on the

choice of the “correct” Gaussian width before LLT is applied. The impact of the in-plane

dimension on hole transport in a SQW is further is further discussed in Appendix C.3.

When turning to the full I-V curve of the SQW system, Fig. 6.15, we find that the choice

of f is of secondary importance, at least for the system studied here. In addition to

the random alloy calculations, Fig. 6.15 depicts also VCA results both in the presence

(black, solid) and absence (black, dashed) of LLT quantum corrections. From this it is

clear that in the case of a SQW, random alloy results do not differ strongly from the

VCA data. Interestingly, these results are also well approximated by VCA simulations

excluding quantum corrections. For the VCA, when there are no alloy fluctuations and

the VBE is smooth, the combination of the small valence band offset as well as the high

hole effective mass, results in similar profiles for the confining potentials of the VCA

and quantum corrected VCA. Consequently the I-V curves do not differ significantly.

It should be noted that the above discussed results are different but also similar to

uni-polar electron transport reported in Section 6.1. They are similar in the sense that

once quantum corrections are taken into account, VCA and random alloy simulations

give very similar results in terms of the I-V characteristics of SQW systems. However, a

difference between electron and hole transport is that for uni-polar electron transport

the current increases for larger f values and exceeds the VCA result, for holes this is

not the case. Our calculations also indicate that for holes, once LLT corrections are

included, the current is not strongly dependent of f; it should again be noted that this

result may depend on the in-plane dimensions of the simulation cell. A larger in-plane

cell may give rise to a larger extent of locally varying band edge energies. As a conse-

quence carrier localization effects may be more pronounced. Thus the here presented

results should be treated as “best” case scenario, since when carriers are “trapped” by

alloy fluctuations they will increase the resistivity of the device. We conclude therefore

that in general carrier localization effects in the well will have a detrimental effect on

the hole transport, and the resulting currents will in general be smaller or equal to the

VCA result, in contrast to electrons.
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Figure 6.15: Including quantum corrections via LLT: Comparison of current-voltage
curves for a single In0.1Ga0.9N/GaN quantum well of width 3.1 nm for a VCA (black,
solid) and random alloy calculations; the random alloy simulations use Gaussian widths
of f = 0.1 nm (purple), f = 0.3 nm (green) and f = 0.5 nm (blue). Results are shown
on a linear scale (left) and log scale (right).

But, the impact of carrier localization effects on the I-V curves may be more pronounced

in MQWs, as the depletion of the carriers in the GaN barrier region may be amplified

in such a system when compared to a SQW. In our previous study on uni-polar electron
transport we have already seen that results from a SQW system cannot necessarily

be carried over to MQWs. In general, gaining insight into hole transport in MQW

systems is very important for understanding the carrier distribution in full (In,Ga)N-

based MQW LED structures. Thus, we turn our attention in the next section to uni-polar

hole transport in (In,Ga)N MQW structures.

6.2.2.2 (In,Ga)N MQW system

Similar to the SQW system discussed in the previous section, we start our analysis of the

uni-polar hole transport in a (In,Ga)N/GaN MQW system by investigating the impact

of the Gaussian width f on the results. Figure 6.16 displays the current through the

MQW system as a function of f at a fixed bias of 1.0 V. Here we compare results

from simulations that (i) exclude quantum corrections via LLT (purple), (ii) include

quantum corrections via LLT but treating the entire MQW region as one localization

region (green), and (iii) quantum corrections via LLT but solving the LLT equation for

each well of the MQW system separately (red), as discussed in Section 6.2.1.2.1 (cf.

Fig. 6.9).

Figure 6.16 shows that for all studied f values, the calculation excluding LLT (purple

line) exhibits the lowest current at a fixed voltage of 1.0 V. Also, the difference is

largest at small f values. In the case of the calculation without LLT corrections, the
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Figure 6.16: Impact of Gaussian width, f, on the current in an In0.1Ga0.9N/GaN multi-
quantum well system at 1.0 V. Results are shown (i) for a system including quantum
corrections via LLT and partitioning the system into 3 localization regions each with
a local reference energy (red), (ii) for a system including quantum corrections via
LLT using a single (global) reference energy for the entire multi-quantum well region
(green), and (iii) for a system excluding quantum corrections (purple).

VBE edge exhibits large local fluctuations. These fluctuations are intrinsically smoothed

by the quantum corrections, and the resulting landscape (even for small f values)

exhibits significantly smaller fluctuations due to the alloy microstructure. The large

VBE fluctuations increase the potential barrier and consequently increase the resistance

in the ?-8-? junction, thus leading to a smaller current. This is the same effect we have

already seen in the SQW system, however, the result is more pronounced due to the

combined influence of the 3 QWs in the MQW.

In a second step we discuss the results from the calculations including quantum cor-

rections in more detail. Looking at the simulations using a global reference energy,

i.e. the MQW system is treated as a single localization region (green), we find that

the current drops a greater amount at low f values compared the the outcome of the

simulations using a local reference energy (where each well is treated as a separate

localization region). More specifically, at the smallest considered f value (no broaden-

ing), the current obtained from the model using a global reference energy is just over

half the current using local reference energies. We attribute this drop to the combina-

tion of two factors. Firstly, given that the LLT model using a local reference energy also

shows a slight drop in current with decreasing f indicates that the strong fluctuations

in the VBE energy still impact the current even though the LLT treatment softens this

intrinsically. Secondly, when treating the MQW as a single localization region, a poorer

description of the confining potential of the QW for which the VBE energy is furthest

away from the global reference energy is expected in such an LLT treatment. As a
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consequence, still larger fluctuations are present in the wells furthest away from the

reference energy, especially for small f values. All this will result in a higher resistivity

of the MQW system and consequently a lower current at a fixed bias.

Having discussed the impact of Gaussian broadening and LLT quantum corrections on

the current in a MQW system at a fixed bias, Fig. 6.17 depicts the full I-V curves. Here

again results from calculations applying LLT, both using a single localization region

(dashed), Ω, and sub-regions, Ω8, for each QW (dotted), as well as results in the absence
of quantum corrections (solid) are shown. This is displayed for both VCA (black) and

random alloy calculations using a Gaussian width of 0.3 nm (green); to get first insight

into the hole transport in a MQW structure we have restricted the calculations to one

alloy configuration. Future studies can target analysing the statistics of different alloy

microstructure configurations on the results. A value of f = 0.3 nm has been chosen

since it is large enough for the Gaussian averaging to including neighbouring sites but

small enough to still capture effects due to carrier localization. Figure 6.17 reveals that

in both VCA and random alloy calculations, quantum corrections increase the current

similar to the situation in uni-polar electron transport (Section 6.1). Furthermore,

when using a local reference energy for LLT, thus treating each QW as an individual

localization region, Ω8, the current increases further when compared to the LLT model

employing a global reference energy. Our results also show that this effect is more

pronounced for the random alloy case; partitioning the system in VCA impacts the I-V

curve (black dashed and black dotted line) only slightly.
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Figure 6.17: Comparison of current-voltage curves in a multi-quantum well
In0.1Ga0.9N/GaN system for VCA (black) and random alloy calculations; the random al-
loy simulations use a Gaussian width of 0.3 nm (green). I-V curves are shown for calcu-
lations without any quantum corrections (solid), including quantum corrections when
employing an un-partitioned (dashed, superscript ‘1’) and partitioned multi-quantum
well regions (dotted, superscript ‘3’). Results are shown on (a) a linear scale and (b) a
log scale.
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Overall our calculations reveal that in the MQW system and for the chosen f value

of f = 0.3 nm, even when including LLT corrections, the random alloy calculations

give a smaller current at fixed bias when compared to the VCA result. This finding is

in contrast to the SQW system, where VCA and random alloy results give very similar

results, see Fig. 6.15.

Furthermore, and again in contrast to the SQW structure, the magnitude of the differ-

ence in current between VCA and random alloy results will depend on the f value, as

Fig. 6.16 shows. We note that beyond f, and as already mentioned above, the in-plane

dimension of the simulation cell may impact the results as carrier localization effects

due to lateral fluctuations in the (In,Ga)N wells can have a (detrimental) influence on

the current. It should be noted that the LLT treatment builds on a single-band EMA;

our previous studies indicate that such a model may underestimate hole localization

effects [4], which in turn may lead to higher current.

Nevertheless, all these factors should only reduce the current further in the MQW sys-

tem. Thus the VCA I-V curve should be regarded as a upper bound for the hole current

in an (In,Ga)N MQW structure. This is in contrast to uni-polar electron transport,

where alloy fluctuations and quantum corrections give rise to an increase in the current

when compared to a VCA result (Section 6.1).

This result also appears to be in contrast to the results obtained in Chapter 5 studying

hole transport through a MQW using the NEGF formalism. In that case the inclusion

of alloy fluctuations introduced extra transmission channels not present in the VCA.

However, recall that the extra channels were comprised of localized states which de-

cayed quickly with increasing barrier width (!� > 3.1 nm). Here we are studying a

comparatively large barrier width (!� = 8.0 nm) and the extra transmission channels

are unlikely to play a significant role.

On top of this, in Chapter 5 the transmission was studied only through a prescribed well

alignment (at equilibrium). In the DD case the transport equations are coupled with

Poisson’s equation and the well alignment is determined in a self-consistent manner.

The states which are localized within the quantum wells, which are not contributing to

transmission, do contribute an electric potential which in this case increases the barrier

seen by holes.

Our NEGF results also indicated that alloying the barrier may lead to increased hole

transport. This has not been considered in this study, however an alloyed barrier may

lead to the presence of percolation paths, which requires further investigation. Overall,

we conclude that alloy disorder in the QWs has a detrimental effect on hole transport

(In,Ga)N MQWs in a ?-8-? system. The degree to which this impacts the I-V curve

requires further careful research into the description of the confining energy landscape.
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6.2.3 Conclusions from studying uni-polar hole transport

In this section we applied the previously established TB-to-continuum framework to

perform drift-diffusion calculations for ?-8-? systems. The impact of alloy fluctuations

was determined by comparing to a VCA, and quantum corrections were included via

LLT. Our results showed that alloy fluctuations have a detrimental effect on hole trans-

port through In0.1Ga0.9N/GaN QW systems, although the degree to which this impacts

results depends on the treatment of the localization landscape, and the smoothing ap-

plied. For low Gaussian broadening values, f, the alloy fluctuations reduce the current,

due to the increased hole density localizing within the QWs and the resulting depletion

of the barriers; this reduces the conductivity in the barrier regions. When the landscape

is heavily smoothed (large f) this effect is reduced, and the I-V curve approaches that

of VCA (a smooth landscape).

6.3 Conclusions

In this chapter our newly developed drift-diffusion framework, which includes an atom-

istic description of the quantum well regions, is used to study electron and hole trans-

port. This allowed us to investigate the impact that alloy fluctuations have on uni-polar

carrier transport in the presence and absence of quantum corrections utilizing local-

ization landscape theory. Our approach furthermore enables a feedback loop between

atomistic theory and continuum models, since both operate on the same confining en-

ergy landscape. Current models in the literature mainly use modified continuum-based

approaches that generate confining energy landscapes from locally averaged alloy con-

tents and do not offer the option to compare the outcome of this with an atomistic

model.

Our analysis reveals that alloy fluctuations enhance electron transport, but are detri-
mental for hole transport, in a uni-polar system. In both cases quantum corrections

lead to an increase in current density at a given bias point.

Having now investigated the transport of electrons and holes separately, we are equipped

with the tools needed to study a bi-polar system, where a MQW system is embedded in

a ?-= junction forming thus a ?-8-= structure; this constitutes the backbone of modern

LED structures.
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Chapter 7

Impact of random alloy fluctuations
on the carrier distribution in
multi-colour (In,Ga)N/GaN
quantum well systems

Chapter 6 highlighted that alloy fluctuations and quantum corrections influence trans-

port properties of electrons and holes in uni-polar (In,Ga)N/GaN MQW systems. Specif-

ically, quantum corrections are beneficial for electron and hole transport, whereas alloy

fluctuations are beneficial for electrons, due to the softening of potential barriers, but

they are detrimental for holes due to stronger hole localization effects. In the prologue

we introduced (In,Ga)N as a candidate for efficient visible lighting applications. This re-

quires the presence of both electrons and holes for radiative recombination. Therefore,

our framework is extended to investigate the active region of (In,Ga)N-based MQW

LED structures (?-8-= systems) and study how carriers distribute across the active re-

gion. In general, understanding the carrier distribution can help to guide maximizing

the efficiency in an LED, since ideally the carriers shall be distributed evenly across

the entire MQW region so that all QWs will contribute to emission [250]. However,

previous experimental studies on carrier distribution in (In,Ga)N/GaN MQW systems

have indicated that mainly the well closest to the ?-doped contact side contributes to

the light emission process [250–253]. These samples were specifically designed to gain

insight into the carrier distribution inside the active region of an LED.

Overall, this has been attributed to a sequential filling of the QWs, resulting in a

high hole density only in the ?-side QW. To establish accurate carrier transport mod-

els the trends found in the experimental studies of Refs. [250–253] need to be cap-

tured. Previous theoretical studies have reproduced the experimentally observed be-

haviour, however this required (i) treating bound carriers in a quantum mechanical
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picture, (ii) softening of the QW barrier interface to account for tunneling effects, (iii)

distinguishing between continuum and bound carriers in the carrier transport model

(multi-population model), and (iv) allowing for scattering between the different pop-

ulations [69]. But, the impact of alloy disorder is basically neglected in this advanced

but also complex carrier transport model.

In this chapter we show that when employing our quantum corrected 3-D simulation

framework that accounts for random alloy fluctuations, the experimentally observed

trends are captured, without introducing for instance a multi-population scheme. This

highlights that our developed solver presents an ideal starting point for future device

design studies.

To highlight clearly the impact that random alloy fluctuations have on the carrier dis-

tribution in the active region of an (In,Ga)N-based LED, we use as a reference point a

VCA description which effectively can be described by a 1-D model. The benefit of this

is twofold. Firstly, this enables us to compare directly the outcomes of our quantum

corrected model with results from 1-D commercial software simulations; commercial

software packages often employ a standard Schrödinger-Poisson-DD solver, which is

numerically very costly and therefore unfeasible in large 3-D transport simulations.

This motivates the need for an alternative implementation of quantum corrections.

Secondly, and building on this benchmark, alloy fluctuations can be included in the

calculations, revealing clearly their impact on the results. Our studies show, and when

using the same input parameter set, only the model accounting for random alloy fluc-

tuations produces trends that are consistent with the experimental data. The widely

employed VCA yields results that are in contradiction with the experimental data, thus

indicating that radiative recombination stems mainly from the well furthest away from

the ?-side. Overall, this highlights (i) that alloy fluctuations are essential to achieve

an accurate description of the carrier transport and (ii) have to be taken into account

when theoretically guiding the design of energy efficient III-N light emitters.

The chapter is organized as follows: In Section 7.1 we outline the model structure used

for calculations and briefly summarise some of the literature experimental data from

Ref. [251]. The theoretical framework which we use is summarized in Section 7.2. Our

results are discussed in Section 7.3. Finally Section 7.4 presents our conclusions.

7.1 Model MQW structures and literature experimental find-

ings

To investigate the carrier distribution in (In,Ga)N/GaN MQW systems we proceed simi-

lar to experimental studies in the literature [251,253] and target MQW systems where

one of the wells in the MQW stack has a slightly higher In content compared to the

remaining wells. In our case, we study MQW systems with three (In,Ga)N/GaN wells.
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Here two are In0.1Ga0.9N (“shallow”) wells and one is an In0.125Ga0.875N (“deep”) QW.

These QWs are 3 nm wide and separated by 5 nm GaN barriers. The band edge profile

of such a system along the transport (2-) direction, using a VCA, is shown in Fig. 7.1 at

a current density of 50 A/cm2.
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Figure 7.1: Conduction and valence band edges (black) along with the quasi-Fermi
energies for electrons and holes (grey) in an (In,Ga)N/GaN multi-quantum well system
described in virtual crystal approximation. The band edge profile and the quasi Fermi
levels are shown at a current density of 50 A/cm2. The leftmost (In,Ga)N quantum well
contains 12.5% indium while the other two (In,Ga)N wells (centre and right) contain
10% indium.

In the following, we investigate the carrier transport properties in two settings: (i)

on an atomistic level accounting for random alloy fluctuations and (ii) in the frame

of a VCA thus neglecting alloy fluctuations. In the latter VCA case (ii), at a given I-

position (along the c-direction), there is no variation in material properties within the

growth plane (2-plane). This assumption is also made in the widely used 1-D transport

simulations on (In,Ga)N MQWs.

To study the carrier distribution in MQW systems using the simulation settings (i) and

(ii), we follow again the experimental approach e.g. presented in Ref. [251] and the

deep QW is moved from the =-side (position 1 (=-side) in Fig. 7.2) to the ?-side (po-

sition 3 (?-side) in Fig. 7.2). In the case of the random alloy structures, the same

microscopic configuration is kept for each well and only the ordering is changed.

For each of these systems the ratio of radiative recombination from the shallow wells

Theory of carrier transport in III-N based
heterostructures

136 Michael John Oliver O’Donovan



7. IMPACT OF RANDOM ALLOY FLUCTUATIONS ON

THE CARRIER DISTRIBUTION IN MULTI-COLOUR

(IN,GA)N/GAN QUANTUM WELL SYSTEMS 7.2 Theoretical framework

=
-d

op
ed

?
-d

op
ed

1
(=

-s
id

e)

QW

2
(c

en
te

r)

QW

3
(?

-s
id

e)

QW

Figure 7.2: Schematic illustration of multi-quantum well system. The =-doped region
is shown in cyan, the ?-doped is in red and undoped regions are in grey. The quantum
wells are numbered starting from the =-side.

to the deep well is calculated using:

r =
RRAD
Ω(

RRAD
Ω�

(7.1)

where

RRAD
Ω8

=

∫
Ω8

'RAD(r)dV , (7.2)

is the total radiative recombination from the region Ω8. Here, Ω� is the region con-

taining the deep QW, Ω( is the region containing the shallow wells (as there are two

shallow QWs this is the union of the two shallow QW regions). The radiative recom-

bination rate at position r, 'RAD(r) is calculated via the ABC model as introduced in

Section 4.2.1.3. Since we are studying a system with three QWs, an even distribution

of carriers across the MQWs would result in a ratio of r = 2. Previous experimental

work on a similar system by Galler et. al. [251] found that r was small (i.e. emission

is dominated by the deep QW) only when the deep well was closest to the ?-doped side
of the MQW system (thus position 3 (?-side) in Fig. 7.2). The authors conclude that

holes are responsible for this behavior, and argue that they are mainly found in the ?-

side QW and not in wells further away from the ?-side. As a consequence, the overall

emission from the (In,Ga)N/GaN MQW system is dominated by the emission from this

well closest to the ?-doped region. In line with Ref. [251], we calculate r at a current

density of 50 A/cm2, which allows us to compare the here predicted trends with the

trends found in the experimental studies. The theoretical framework employed to gain

insight into r is discussed in the following section.

7.2 Theoretical framework

In this section, we introduce the underlying (microscopic) theory of our multiscale

simulations. Since the TB and DD approaches have already been discussed in detail in

Chapter 3 and Chapter 4 , we here give only a brief summary, and highlight changes to

the simulation framework.
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7.2.1 Tight-binding energy landscape

The simulations build on the same TB model which was implemented in previous stud-

ies in this thesis that was introduced in detail in Chapter 3. As before, a potential

energy landscape is extracted following the procedure in Section 4.2.2.1 by generat-

ing conduction and valence band energies at each lattice site including an atomistic

description of the alloy microstructure, strain and polarization. The obtained 3-D con-

fining energy landscape, after employing a Gaussian softening, forms the basis for our

DD calculations.

In Chapter 6, while studying uni-polar transport, we have investigated and discussed in

detail the influence of the Gaussian softening on transport calculations for electrons and

holes. Here, we choose a Gaussian broadening on the order of the GaN lattice constant,

f2,E = 0
GaN = 0.3189 nm, in all calculations. This value is large enough to average over

a number of neighboring sites, while also small enough to retain fluctuations in the

energy landscape.

To obtain an accurate description of carrier transport in (In,Ga)N-based LEDs, the DD

equations, are often coupled with solving the Schrödinger equation to account for quan-

tum corrections. As before, to reduce the numerical demand in our simulations we

implement LLT, since we saw in Chapter 6 that it is important to include quantum cor-

rections. From LLT we extract an effective confining potential for the conduction and

valence band edge starting from the TB energy landscape. An example of the resulting

quantum corrected energy landscape is given in Fig. 7.3 (a) and (b). Here, in-plane

band edge profiles for a single atomic plane through an In0.1Ga0.9N QW, after LLT has

been applied, are shown. As Fig. 7.3 (a) reveals, the fluctuations in the VBE energy due

to alloy fluctuations are of the order of 100 meV. In combination with the high effective

hole mass, these fluctuations are large enough to give rise to strong carrier localiza-

tion effects as seen in other studies already [40, 41, 254]. We therefore expect that,

especially for holes, the inclusion of random alloy fluctuations in the simulation will

impact the carrier distribution. Consequently recombination rates are also expected to

be noticeably influenced.

The variation in the CBE energy is significantly smaller (order of 30 meV), as can be

seen in Figure 7.3 (b). Since the effective electron mass is much lower in comparison

with the holes, electron wave functions are less strongly perturbed by alloy fluctuations.

The impact that these fluctuations in the band edge energies have on the radiative

recombination is also seen in Fig. 7.3 (c); the radiative recombination is calculated

with ddfermi as was described in Section 4.2.1.3. The correlation between the VBE

maxima and regions of high radiative recombination can be clearly identified; similar

spatial profiles can be seen for non-radiative (Auger) recombination (not shown).

In order to highlight the impact of random alloy fluctuations on carrier transport and

the distribution of carriers across a MQW system, we compare our atomistic calcula-
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Figure 7.3: Profile of (a) valence band edge energy, (b) conduction band edge energy,
and (c) radiative recombination rate in the growth plane (2-plane) of an In0.1Ga0.9N
quantum well; the current density is 50 A/cm2 in all depicted figures. The slice dis-
played is the through the center well. The data are shown in all cases on a linear
scale.

tions with the outcome of a VCA. The VCA description, without any Gaussian broaden-

ing, is similar to commercially available packages. However, and in contrast to com-

mercial software packages, quantum corrections via LLT can also be taken into account

in our VCA simulations, following the approach used for the random alloy case.

7.2.2 Device simulation

Having outlined above the generation of the energy landscape of the active region,

e.g. the (In,Ga)N/GaN MQW system, a full device mesh, including the =- and ?-doped

regions, needs to be constructed on which the DD equations are solved. This is carried

out following the procedure outlined in Section 4.2.2.4.

In order to capture the effects of carrier localization in the calculations, the in-plane

dimensions of our 3-D simulation cell should be larger than the localization length of

the holes, given that electrons are less strongly affected by alloy fluctuations [57]. In

our atomistic calculations we use a system with in-plane dimensions of 12.8×11.0 nm2.

This is large enough to see the effects of hole localization as the in-plane hole localiza-

tion length for In0.1Ga0.9N QWs is of the order of 1 nm [44]. The in-plane dimensions

can be seen in Fig. 7.3 (a) and (b) where a 2-D slice through the valence and conduc-

tion band edges of an In0.1Ga0.9N QW are shown. In case of the VCA, given that there

are no variations in material properties (band edge energies) within the growth plane

(2-plane), a much smaller in-plane area is sufficient (1.3× 1.1 nm2), which reduces the

numerical effort.

Equipped with the constructed mesh, we turn now to the DD simulations. To do so we

build on the van Roosbroeck system of equations [199]. The system of equations was

described in Eq. (4.42); unlike in previous sections we now use the full system of equa-

tions in steady-state and include for both electrons and holes. The electron and hole

carrier densities are described statistically via the Fermi-Dirac distribution function,
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and a temperature of ) = 300 K has been used in all calculations. The recombination

model used is the ABC model described in Section 4.2.1.3. We follow here the widely

made assumption that the Shockley-Read-Hall, radiative and Auger recombination co-

efficients, �0, �0, and �=,?, are constant across the (In,Ga)N MQW region [67, 210].

In the following we take a weighted average of parameters calculated in Ref. [205] for

an electron and hole density of 3.8 × 1018 cm−3, which is a good approximation for the

average carrier densities in the QWs at a current density of 50 A/cm2. As our active

region consists of two In0.1Ga0.9N QWs and one In0.125Ga0.875N QW we evaluate the

different recombination coefficients as follows:

'eff
8 =

2 × ('10%
8
) + 0.5 × ('15%

8
+ '10%

8
)

3 . (7.3)

Here, '8 ∈ {�0, �=, �?} are the radiative recombination, electron-electron-hole and

hole-hole-electron Auger recombination coefficients, respectively. As there are no val-

ues for an In0.125Ga0.875N QW in Ref. [205], a linear average of the coefficients in

In0.1Ga0.9N and In0.15Ga0.85N wells has been used. A summary of the material param-

eters employed in all simulations is given in Table 7.1.

Table 7.1: Material parameters used in the different regions of the simulation supercell.
Parameters denoted with † are taken from [67]; parameters denoted with ‡ are derived
from [205] as described in the main text.

Parameter Value in each region
Name Units ?-GaN 8-InGaN =-GaN
Doping cm−3 5 × 1018 1 × 1016 5 × 1018

`ℎ
† cm2/Vs 5 10 23

`4
† cm2/Vs 32 300 200

g?
† s 10 1 × 10−7 7 × 10−10

g=
† s 6 × 10−10 1 × 10−7 10

�0
‡ cm3/s 2.8 × 10−11 2.8 × 10−11 2.8 × 10−11

�?
‡ cm6/s 5.7 × 10−30 5.7 × 10−30 5.7 × 10−30

�=
‡ cm6/s 1 × 10−31 1 × 10−31 1 × 10−31

The numerical approximation of the van Roosbroeck system is again implemented (in 3-

D) in ddfermi [222]. We employ the FVM described in Section 4.2.1.4 and the current

is discretized using the SEDAN (excess chemical potential) approach [216, 217, 255]

described in Eq. (4.48), which yields a thermodynamically consistent flux approxima-

tion in the sense of Ref. [103].

To simulate the devices under study, we also used the commercial software

nextnano [200], which relies on the simulation of a self-consistent Schrödinger-Poisson-

DD system. Here we use nextnano to simulate the carrier transport in the above dis-

cussed MQW systems within a 1-D approximation. In nextnano we utilize the same

parameter set as in the ddfermi simulations. Therefore, the obtained results can be

directly compared to our 3-D VCA model. When including quantum corrections in
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ddfermi, LLT is used. In nextnano a self-consistent Schrödinger-Poisson-DD calcula-

tion is performed where a k · p Hamiltonian is used to calculate eigenstates across the

full simulation domain. Following the ddfermi set up, in nextnano we employ also a

1-band model for the calculation of the electron and hole densities.

7.3 Results

In this section we present the results of our study on the carrier distribution in the

above described (In,Ga)N/GaN MQW systems. To understand the impact of the alloy

microstructure on the carrier distribution, in Section 7.3.1 we start with standard 1-D

calculations building on the commercial software package nextnano [200]. We use

this entirely continuum-based description of the QWs also to determine the impact (i)

of an EBL and (ii) a self-consistent Schrodinger-Poisson-DD treatment on the transport

properties. Moreover, and as already mentioned above, (ii) can also be used as a bench-

mark for our 3-D ddfermi solver. In Section 7.3.2 we then proceed to investigate the

influence of random alloy fluctuations on the carrier distribution in the (In,Ga)N/GaN

MQW stack.

7.3.1 Continuum-based simulations of the carrier transport in (In,Ga)N-
based LEDs

To examine the impact of random alloy fluctuations on the carrier distribution in an

(In,Ga)N/GaN MQW stack, we start with a ‘standard’ 1-D simulation approach that is

widely applied in the literature. In a first step we begin with nextnano calculations and

as outlined above, compare the results to our ddfermi data.

7.3.1.1 nextnano simulations

To study how the presence of an EBL affects the ratio of radiative recombination r,

Eq. (7.1), the systems outlined in Section 7.1 are simulated with and without a 20 nm

Al0.15Ga0.85N EBL using nextnano. The EBL is separated from the ?-side QW (position

3 (?-side) in Fig. 7.2) by a 10 nm GaN barrier. Similar settings for an (Al,Ga)N EBL

have been used in previous studies [67]. The nextnano calculated ratio of radiative

recombination r, when varying the position of the deep QW in the MQW stack, are

depicted in Fig. 7.4 (a). Turning first to the data without quantum corrections, we

find that in the case of the employed 1-D VCA-like continuum-based description, r is
small when the deep QW is at the =-side (position 1 (=-side) Fig. 7.2) and larger when
the deep well is at the p-side (position 3 (?-side) Fig. 7.2). Thus, the 1-D model predicts
the opposite trend when compared to experiment [251]. This trend is only slightly

changed when including quantum corrections via a self-consistent Schrödinger-Poisson-

DD model. In this case a much weaker dependence of the results on the position of the

deep QW in the MQW stack is observed. However, even when including quantum
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corrections, the nextnano results for r are not reflecting the experimentally observed

behavior (see discussion above). Figure 7.4 (a) reveals also that qualitatively the results

do not depend on the presence of the EBL, indicating that for the structures considered,

this feature of an LED is of secondary importance for the aims of this study.

(a) nextnano (1-D) (b) ddfermi (3-D)
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102

1 2 3

%

Deep QW position (from n-side)

No EBL, no quantum
No EBL, quantum

EBL, no quantum
EBL, quantum

10−2

10−1
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101
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1 2 3

%

Deep QW position (from n-side)

VCA, no quantum
VCA, quantum

Random alloy, quantum

Figure 7.4: Ratio of radiative recombination r, Eq. (7.1), from the shallow wells
(In0.1Ga0.9N) to recombination from the deep well (In0.1Ga0.9N) calculated as a func-
tion of the position of the deep well in the multi-quantum well stack. Here r is evalu-
ated using (a) nextnano excluding (purple) and including (green) quantum corrections
via a self-consistent Schrödinger-Poisson-drift diffusion solver; results are shown when
excluding (solid, filled circles) and including (dotted, open circles) an Al0.15Ga0.85N
blocking layer, and (b) ddfermi excluding (purple), including (green) quantum cor-
rections via localization landscape theory (LLT) using a virtual crystal approximation
(VCA) and a random alloy calculation including LLT-based quantum corrections (blue);
these calculations neglect the AlGaN blocking layer.

7.3.1.2 ddfermi simulations

Since we are also able to use the atomistic framework in a VCA setting, we compare

our ddfermi results, cf. Fig. 7.4 (b) (purple), with those from nextnano, cf. Fig. 7.4 (a)

(purple, solid). We focus on structures which neglect the EBL as we have found above

that it does not impact results in a VCA. In both nextnano and ddfermi a similar trend

is found: the deep QW dominates recombination only when it is located at the =-side.

This is illustrated further in Fig. 7.5 (a), which displays the contribution (in percent)

to the radiative recombination rate from each QW (colours) in the MQW stack. The

data are shown as a function of position of the deep QW in the MQW system. This

confirms that it is always the QW which is closest to the =-doped side (position 1) that

dominates the recombination process; the =-side QW contributes ≈ 95% when the deep

QW is at position 1, ≈ 70% when the deep QW is at position 2 or 3. Again, we stress

that this is the opposite trend to the experimental findings in Ref. [251].
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(a) VCA (b) VCA + LLT (c) Random alloy + LLT
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Figure 7.5: Contribution of each quantum well (=-side; centre; ?-side) in the
(In,Ga)N multi-quantum well system to the total radiative recombination R'��

Ω8
for

8 ∈ {=-side, center, ?-side} as a percentage of the total radiative recombination from all
3 quantum wells for (a) virtual crystal approximation (VCA), (b) virtual crystal approx-
imation with quantum corrections included via localization landscape theory (VCA +
LLT) and (c) a random alloy calculation including localization landscape theory based
quantum corrections (Random alloy + LLT). That data are shown as a function of the
position of the deep quantum well (G-axis). Each bar contains the percentage recom-
bination from the =-side quantum well (purple), the center quantum well (green) and
the ?-side quantum well (blue). Labelling is consistent with that introduced in Fig. 7.2.

To shed more light on this result, the upper row in Figure 7.6 depicts the average

hole (black, solid), electron (black, dashed) and radiative recombination (red) rate

along the c-axis when the deep QW (In0.125Ga0.875N well) is (a) closest to the =-side

(position 1), (b) in the centre of the MQW stack (position 2) and (c) closest to the

?-side (position 3). Focusing on the VCA data, Figs. 7.6 (i) (a-c), we see the cause

of the dominant recombination from the =-side QW: the hole density is always high in

this region, independent of which well is closest to the =-side. In particular, the ?-side

QW fails to capture holes effectively and consistently has the lowest hole density. We

note that a similar behavior is also found in the nextnano calculations discussed in

Sec. 7.3.1.1.

Given that our VCA ddfermi approach and nextnano treat (In,Ga)N as a homogeneous

alloy that can be described by averaged material parameters which do not vary through-

out the wells (no alloy fluctuations included), it allows us also to compare the imple-

mented methods for quantum corrections in DD simulations. Here, as discussed above,

nextnano builds on the widely used Schrödinger-Poisson-DD model while ddfermi uti-

lizes the recently developed LLT method. It has been discussed and shown in the liter-

ature that the LLT method can produce results in good agreement with the solution of

the Schrödinger equation in the case of a 1-D EMA [158, 163]. Looking at Fig. 7.4 (a)

(green, solid) and Fig. 7.4 (b) (green) we see that the results from our in-house de-

veloped ddfermi-based 3-D model, which employs LLT (3-D, ddfermi), are very simi-

lar to the standard self-consistent 1-D Schrödinger-Poisson-DD calculation underlying

nextnano. This gives confidence that our LLT treatment is providing a comparable
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(ii) VCA + LLT
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(iii) Random alloy + LLT
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Figure 7.6: Hole density (black, solid), electron density (black, dashed), and radiative
recombination rate (red, solid) averaged over each atomic plane along the transport
direction. Results from calculations building on (i) a virtual crystal approximation
(top), (ii) a virtual crystal including quantum corrections via localization landscape
theory (LLT) (center) and a (iii) random alloy description including LLT-based quantum
corrections (bottom); the deep well is located at (a) the =-side (left), (b) the center
(middle) and (c) the ?-side (right). The data are shown on a log scale.

description of the quantum corrections in the system.

Overall, Fig. 7.4 (a) reveals that when including quantum corrections in the VCA cal-

culations, the position of the deep QW has little impact on the ratio of the relative

radiative recombination, r. From Fig. 7.5 (b) one can also gain more insight into this

behavior and how quantum corrections impact the carrier distribution in the MQW

stack. In the absence of quantum corrections but utilizing a VCA, Fig. 7.5 (a), the well
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closest to the =-side dominates the relative radiative recombination ratio r independent

of the position of the deep well in MQW systems. When including quantum corrections

this situation is now changed: the deep QW is now the dominant emitter independent

of its position in the MQW stack.

This behavior becomes clear when analyzing the electron and hole densities as a func-

tion of the position of the deep well in the (In,Ga)N/GaN MQWs, as shown in Fig. 7.6 (ii).

Looking at the electron densities first, we find that electrons preferentially occupy the

well closest to the ?-side. This effect is enhanced when the deep QW is closest to the ?-

side (cf. Fig. 7.6 (ii) (c)). In our previous study on uni-polar electron transport (Ref. [3]

and Section 6.1), we have already seen that including quantum corrections leads to a

softening of the potential barrier at the QW barrier interfaces. This in turn can lead to

an increased electron current at a fixed bias point, when compared to a VCA system

without LLT treatment, and thus the electrons can more easily ‘overshoot’ the wells in

the MQW system. As a consequence, a lower electron density in the well closest to the

=-side is observed. Turning to the hole density, the situation is different. Here, we find

that holes preferentially populate the well closest to the =-side. Only when the deep QW

is closest to the ?-side, the hole density in this well is noticeably increased. However,

when comparing the distribution of holes in the MQW as a function of the position of

deep well in absence (Fig. 7.6 (i)) and presence (Fig. 7.6 (ii)) of quantum corrections,

the results are not very different. This indicates that quantum corrections, at least

when employing a VCA, are of secondary importance for the hole distribution. This

finding is consistent with our previous results on uni-polar hole transport (Ref. [2] and

Section 6.2), where we have discussed that due to the high effective hole mass and the

small valence band offset, quantum corrections have a smaller impact on the hole trans-

port when compared to electrons. As a consequence, the distribution of holes follows

a similar pattern to that of the VCA where quantum corrections are neglected. Finally,

when looking at the ratio of radiative recombination r, it is important to note that this

quantity is not only determined by having both large electron and hole densities in the

same well but also by their spatial overlap. As one can infer from Fig. 7.6 (ii) (a-c),

the largest radiative recombination rate is always observed in the deepest well. This

indicates also that the spatial overlap of electron and hole densities largest in the deep

QW regardless of its position across the MQW system. We stress again that even when

including quantum corrections in the VCA calculations, the resulting trend in r is not

reflecting the trend observed in experimental studies [251].

7.3.2 Impact of random alloy fluctuations on the carrier transport in
(In,Ga)N/GaN MQWs

In the last step, we move away from the VCA description of the system and include,

in addition to quantum corrections, also random alloy fluctuations in the calculations.

Figure 7.4 (b) (blue) shows that, and this time in line with the experimental results
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by Galler et. al [251], the deep QW only contributes significantly to the radiative

recombination when it is closest to the ?-side (position 3). In fact, when including

random alloy fluctuations in the calculations, the well closest to the ?-side always has

the largest contribution to total radiative recombination, as can be seen in Fig. 7.5 (c).

To understand this behavior, Fig. 7.6 (iii) depicts the electron and hole densities in the

different wells as a function of the position of the deep well in the MQW systems. Look-

ing at the electron density first, in comparison to the VCA calculations both including

and excluding quantum corrections, random alloy fluctuations lead a reduction in elec-

tron density at the =-side QW. As discussed above and previously, quantum corrections

can lead to increased electron transport, and including alloy fluctuations adds further

to this effect due to the softening of the barrier at the well interfaces [3]. As a con-

sequence, the electrons can more easily ‘overshoot’ the wells in the MQWs, which can

also be seen in the increased electron density beyond the ?-side QW when alloy fluc-

tuations and quantum corrections are included. However, in comparison to the VCA

result including quantum corrections, the electron density in the ?-side well is only

slightly affected by alloy fluctuations.

In contrast, hole densities in the ?-side QW are more dramatically changed by alloy

fluctuations. As Figs. 7.6 (ii) and 7.6 (iii) show, in comparison to the VCA description,

alloy fluctuations lead to an increase in the hole density in the ?-side QW (position 3)

even when the deep QW is closest to the =-side (position 1) or in the centre (position

2) of the MQW system. While the smoothing of the well barrier interface can increase

hole transport, as in the case of electrons, there are now also alloy disorder induced

localization effects to contend with. As discussed in our previous work, these localiza-

tion effects are detrimental to hole transport (Ref. [2] and Section 6.2) and result in

an increased hole density in the ?-side QW. As a consequence, the well closest to the

?-side dominates radiative recombination

We note that there is still a reasonable hole density present in the =-side QW

(Fig. 7.6 (iii) (a-c)). In general, the distribution of carriers will also depend on the GaN

barrier width and a 5 nm barrier is narrow enough to allow for some hole transport

across the MQW [253]; a similar dependence of hole transmission on the barrier width

was seen in the NEGF study in Chapter 5. Thus we expect that increasing the barrier

width will mainly lead to a reduction of the hole density in the well furthest away from

the ?-side, but should to a lesser extent affect the hole density in the well closest to the

?-side. Therefore, even for a larger barrier width than the here considered 5 nm, we

expect that the recombination will still be dominated by the ?-side QW.

We note that based on the VCA results we did not consider the EBL in the atomistic

calculations. In general the EBL needs to be treated with an atomistic resolution. Pre-

vious studies of (Al,Ga)N barriers in uni-polar device settings have found that the im-

pact of these barriers is lower than what is expected from a 1-D simulation for both
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electrons [256] and holes [245]. Thus given that our VCA calculations show that the

presence of the EBL is of secondary importance for our study, we expect a similar con-

clusion when treating the EBL with alloy fluctuations. Therefore, it is unlikely that the

EBL impacts the here presented result.

7.4 Conclusions

In this chapter we apply a 3-D quantum corrected multiscale simulation framework

to gain insight into the impact of random alloy fluctuations on the electron and hole

distribution across the active region of an (In,Ga)N/GaN LED. To study the spatial

distribution of carriers we have followed literature experimental studies [251] and

analyzed the radiative recombination ratio in a multi-quantum well system, where one

of the wells in the system has a higher indium content (deeper well) and its position is

varied within the stack.

The here considered MQW systems are not only of interest for a comparison with ex-

periment, they provide also the ideal opportunity to benchmark and validate results

from our in-house developed 3-D multiscale simulation framework against commer-

cially available software packages. To do so we treat the QWs in a VCA, to mimic the

1-D simulation widely used in the literature for (In,Ga)N QWs and implemented in the

commercial software package nextnano. In addition, this study allows us also to com-

pare the different schemes to account for quantum corrections (localization landscape

theory vs. Schrödinger-Poisson-DD simulations) in the simulations. Overall, this analy-

sis showed very good agreement between results obtained from our in-house software

and nextnano, when neglecting random alloy fluctuation.

Equipped with this benchmarked model, our analysis reveals that including (random)

alloy fluctuations in the calculations is vital for reproducing trends seen in experiment.

More specifically, when using the widely employed VCA, the hole density in the well

closest to the ?-doped region of the device is significantly reduced compared to our

atomistic random alloy calculation. As a consequence, and in contrast to the experi-

ment, in VCA the well closest to the ?-side contributes very little to the radiative recom-

bination process, an effect that can be reduced by accounting for quantum corrections.

While this leads to enhanced radiative recombination from the well closest to the ?-

side, at least when this well is the deep well, it still does not reflect the trends observed

in the experimental studies. However, when including random alloy fluctuations and

quantum corrections in our 3-D simulation framework, these effects lead to an increase

in the hole density in the well closest to the ?-side. Consequently, this well dominates

the radiative recombination process in line with the experimental data. We note that

in addition to quantum corrections and alloy fluctuations no further ingredients are

required (e.g. multi-population model) to explain the experimentally observed trends.

Therefore, our calculations highlight that alloy fluctuations are a key ingredient in sim-
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ulations guiding the design of III-N based devices. Thus, the here developed model

presents an ideal starting point for future calculations of (In,Ga)N-based LED struc-

tures.
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Chapter 8

Summary and conclusions

In this thesis a theoretical study of carrier transport was carried out, with a particular

focus on (In,Ga)N/GaN quantum wells due to their technological importance for visible

lighting applications. Atomistic and fully quantum mechanical simulations were used to

analyse ballistic transport. Furthermore, in order to investigate device behaviour, a new

framework was developed and established to include alloy fluctuations and quantum

corrections in a multi-scale semi-classical transport simulation. Such a formalism is not

limited to (In,Ga)N-based LEDs, but can be extended to other material systems.

All calculations were built on an atomistic, B?3 nearest neighbour tight-binding model.

This was employed to describe systems (i) as a random alloy, in order to capture the

atomistic nature of the underlying alloy microstructure, and (ii) as a virtual crystal

which acts as a continuum-based description. The implementation of a random alloy

microstructure, setting (i), is not widely utilized in literature transport calculations,

and often only a virtual crystal approximation is used. The work in this thesis targeted

exactly the impact of random alloy fluctuations, which cause carrier localization effects

due to the alloy microstructure.

To analyse the impact of the alloy microstructure on ballistic transport, the tight-

binding model was coupled with the non-equilibrium Green’s function (NEGF) solver,

OMEN. This allowed a fully atomistic, quantum mechanical description of ballistic

transport through (In,Ga)N/GaN multi-quantum wells which has not been addressed in

the literature. Results were compared with those from a virtual crystal approximation,

which neglects the alloy fluctuations, so the influence of the alloy microstructure could

be deduced.

Our results showed that the treatment of the alloy microstructure is of secondary im-

portance for describing electron transport in a fully quantum mechanical framework:

The virtual crystal approximation gave the same general features as the random distri-

bution of atoms in terms of transmission peaks, however the random alloy description

introduced a broadening of these peaks due to the variation of the alloy microstruc-
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tures between different regions of a device. In contrast to this, hole transmission was

strongly influenced by disorder in the alloy microstructure. The breakdown of the

translational symmetry modified the hole states significantly when a random alloy was

used. As a result, the transmission through states near the band edge (perturbed by

the alloy fluctuations) is drastically different between the two schemes, and a virtual

crystal approximation might underestimate hole transport. However, the extra trans-

mission channels are sensitive to barrier width, and quickly decay as the well separation

is increased; this observation is backed up by previous literature experimental results.

Initial investigations into the impact of alloying the barrier between quantum wells

were also performed, which offer a first insight into experimental findings that alloying

the barrier increases ballistic transport.

The numerical demand of the fully quantum mechanical non-equilibrium Green’s func-

tion approach means that it is not suitable for full device simulation, especially when

such a model is used to guide the design of, e.g. LEDs where several parameters (well

width, barrier width, etc.) have to be varied. Thus, due to the numerical constraints

of a fully atomistic and quantum mechanical formalism, a 3-D multi-scale framework

to study carrier transport in a semi-classical context was developed. To achieve this,

a method of extracting an energy landscape directly from the atomistic tight-binding

model was developed and implemented. This was then included in drift-diffusion cal-

culations to provide an atomistic description of (In,Ga)N quantum wells (including

local strain and polarization effects calculated with atomistic theories). Quantum cor-

rections have also been included in the energy landscape using the recently formulated

localization landscape theory.

To decouple transport properties from recombination aspects, we first applied the

framework to uni-polar transport systems. Starting with uni-polar electron transport,

without including quantum corrections, the virtual crystal approximation results in a

lower current at a given bias point compared to a random alloy. This is attributed to

the reduction of potential barriers caused by the alloy microstructure. Previous exper-

imental and simulation results indicate that the virtual crystal approximation underes-

timates the electron current in an =-8-= system, and thus our approach that accounts

for alloy fluctuations corrects the current-voltage curve (at least qualitatively) towards

experimental data.

Including quantum corrections causes an increase in current for both the virtual crystal

and random alloys. Overall, when quantum corrections are considered in a single quan-

tum well system we find that the virtual crystal provides a good approximation for a

random alloy system. This is the same result which we saw using the fully atomistic and

quantum mechanical non-equilibrium Green’s function formalism. In a multi-quantum

well system the situation becomes more involved. In this case the random alloy treat-

ment including quantum corrections results in a higher current than the virtual crystal
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approximation. We conclude and show that this is attributed to subtleties in the local-

ization landscape theory rather than a physical effect.

Turning to hole transport, ?-8-? system have been studied using the drift-diffusion

framework. Here we observed that alloy fluctuations are detrimental to hole transport,

particularly in the absence of quantum corrections. When quantum corrections are

included this effect is reduced, but still present. The decrease in current is attributed

to carrier localization capturing holes in the quantum well region so they do not con-

tribute to carrier transport. This effect is neglected in a virtual crystal approximation.

The current is also reduced through a multi-quantum well system when a random alloy

microstructure is considered. Unlike in the case of electrons, this difference between a

single quantum well and multi-quantum well is not due to difficulties in implementing

quantum corrections. This is demonstrated by partitioning the system into different

sub-regions, and applying quantum corrections in each region individually, an approach

which was not possible in the =-8-= system due to the lower electron effective mass.

The difference between the drift-diffusion results for holes in a uni-polar system and

the ballistic hole transport results using non-equilibrium Green’s function formalism is

attributed to two factors. First, a wide barrier is used in the drift-diffusion formalism,

so localized states do not contribute strongly to transport. On top of this, the localized

holes within the quantum wells will contribute an electric potential that is determined

self-consistently; such a self-consistent approach due to its numerical expense is not

taken into account in the ballistic transport simulation.

Having ascertained the influence that that alloy microstructure has on the transport

of electrons and holes in uni-polar systems, we extended our analysis to a ?-8-= struc-

ture, similar to a setup found in an LED. Here we used the developed multi-scale drift-

diffusion framework to study the distribution of carriers across a multi-colour quantum

well system. Similar structures have been studied experimentally in the literature, and

the conclusion was that holes could not distribute beyond the first quantum well on the

?-side. Using a virtual crystal description with the here developed theoretical frame-

work, and a commercial software package that has been used to validate our developed

model, this trend was not predicted excluding or including quantum corrections. How-

ever, by using the same simulation parameters, but changing only the confining energy

landscape to include alloy fluctuations and quantum corrections, the trend seen in

the experiment is reproduced by our multi-scale model. This is attributed to the fact

that fluctuations in the alloy microstructure results in holes becoming localized more

strongly in the ?-side well, an effect neglected in 1-D simulations. Our calculations

highlight that alloy fluctuations are a key ingredient in simulations guiding the design

of III-N based devices, and the here developed model presents an ideal starting point

for future calculations.

Overall, we have seen throughout this thesis that the specific treatment of the alloy
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microstructure will impact transport simulations in (In,Ga)N/GaN quantum well sys-

tems. In the case of electrons, a virtual crystal approximation might suffice if quantum

corrections are included, however the strong localization of holes means that transport

properties are noticeably varied depending on the treatment of the alloy microstruc-

ture.
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Chapter 9

Outlook

In its present form, the drift-diffusion framework described in this thesis is the ideal

starting point to study many systems. For example, the model could be used to research

the impact of indium penetration into GaN barriers, or the influence of graded alloy

composition and alloyed barrier material in a multi-scale setting. Such studies could

be tailored to analyse specific devices in collaboration with experimental groups. A

theory-experiment comparison could also be used to find an empirical value for the

width of the Gaussian broadening function, f. This could involve, for example, a study

of the width of the EL emission spectra, whose observed broadened profile is attributed

to localization effects.

To progress the drift-diffusion model further several aspects could be earmarked for

further study. The energy landscape derived from tight-binding, including atomistic

descriptions of strain and polarization, has been used to calculate the electronic struc-

ture. This allowed for a direct comparison with the tight-binding electronic structure

as the two approaches operate on the same alloy microstructure. No direct study on

importance of the atomistic description of strain and polarization effects has been car-

ried out. This could be achieved by first generating a random distribution of atoms

which is used for tight-binding. This distribution can be converted into a composition

map on the wurtzite mesh by (for example) getting the average alloy content over a

local tetrahedron. Strain could be calculated using a linear elasticity theory, and polar-

ization by solving Poisson’s equation via a continuum approach, using the composition

map as input. The resulting strain and polarization profiles could be compared, as well

as the calculated electronic structures using tight-binding and e.g. a single band effec-

tive mass approximation. Thus a solid evaluation could be made on the effectiveness

of continuum-based approaches when applied to systems which call for an atomistic

treatment.

The question also remains about how fine the mesh in the drift-diffusion calculations

needs to be. In the current setup there is a node for every atom in the active region.
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After quantum corrections have been applied, the strong fluctuations initially present

in the energy landscape are much reduced, and possibly the full atomistic resolution is

not required. The required mesh density may depend on the effective mass of the car-

riers, and is therefore likely limited by the behaviour of the holes in both (In,Ga)N and

(Al,Ga)N systems. The impact that coarse-graining the mesh after quantum corrections

have been applied has on transport properties such as current-voltage curves could be

investigated. This could enable simulations on larger supercells to further study per-

colation transport, or permit a quicker simulation of systems which would allow for a

more efficient systematic study of device parameters.

In Chapter 7 the impact of an (Al,Ga)N electron blocking layer was discussed. It was

touched on that ideally the blocking layer would be treated as a random alloy. This

is a feature which could be targeted in future studies using the here established tight-

binding to drift-diffusion framework, particularly because (as already mentioned) 1-D

simulations fail to accurately described transport properties of these structures. If such

a question is being addressed careful attention would have to be paid to treatment of

the quantum corrections using localization landscape theory. Localization landscape

theory is well suited to describing localized states in a given region, and provides a

good description in an energy range close to the energy of the ground state. As a result,

localization landscape theory is not necessarily well adapted for a quantum barrier: As

the blocking layer is a barrier for electrons, the conduction band edge sits energetically

above the band edge of the (GaN) material which hosts the quantum wells. As such,

the height of the barrier may not be accurately described, and this may be exacerbated

by the presence of polarization fields.

In order to investigate this, a 1-D virtual crystal approximation of the barrier without

including transport could first be constructed. As this is a numerically accessible prob-

lem this could be used to calculate the wave functions using the Schrödinger equation

as well as the localization landscape. This would provide a good initial insight into

the accuracy of localization landscape theory when applied to such a barrier before ad-

vancing to the more complex situation of a 3-D random alloy including self-consistent

drift-diffusion and Poisson equations.

Not only could the blocking layer be treated as (Al,Ga)N, the active region could also

be composed of these alloys. This allows for the simulation of ?-8-= diodes which can

target UV emission. Unlike the (In,Ga)N/GaN structures investigated in this thesis, the

barrier material in these systems is also an alloy, such that the active region is composed

of AlGGa1−GN/AlHGa1−HN. Current work is ongoing on the importance for transport of

the alloy microstructure in the barrier and the well regions respectively.

As was discussed in Section 3.4.3, the localization landscape theory is currently applied

to a single band Hamiltonian. As the orbital character of the AlN and GaN valence

band edge differs (?I vs ?G,H) the polarization of the emitted light depends on the
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composition of the alloy in the active region. Studies targeting questions around the

light polarization in (Al,Ga)N may therefore require multi-band descriptions of the

valence band edge. Applying quantum corrections to this description requires further

development of the localization landscape theory, and could be the focus of upcoming

research as this would be an important element in 3-D models of (Al,Ga)N/(Al,Ga)N

systems including quantum corrections. A multi-band localization landscape theory

could also be applied directly to the B?3 tight-binding Hamiltonian solving the equation

�̂TB |D〉 = 1, without the extra step of generating an energy landscape and subsequently

a k · p Hamiltonian.

We have seen in Chapter 7 that the carrier density in a multi-quantum well system is

influenced by the description of the alloy microstructure. To populate a well, the car-

riers either can tunnel into the well, as we saw in the ballistic transport simulations

in Chapter 5, or can be scattered from a different (higher energy) state into the wells.

The scattering is considered implicitly in the drift-diffusion framework in the mobilities

chosen, however a fully quantum mechanical description of this scattering mechanism

was not considered in this thesis. Including scattering in the NEGF formalism could

confirm, or provide further insight into, the impact that the alloy microstructure has

on the hole distribution across a multi-quantum well structure. Electron-phonon cou-

pling drastically increases the numerical demand of the NEGF formalism further, which

would provide a technical challenge for such a study; however it may result in new

insight into the behaviour of carriers in (In,Ga)N QW systems.

Overall, the work contained in this thesis has provided new physical insights into III-N

based quantum well structures and in order to do this a new framework was devel-

oped to connect an atomistic tight-binding model to a multi-scale, quantum corrected,

drift-diffusion model. This has also opened up new avenues for a variety of studies.

These could be the start point for research projects focusing on either the numerical or

physical aspects of the simulation methods.

Theory of carrier transport in III-N based
heterostructures

156 Michael John Oliver O’Donovan



“But since it falls unto my lot

That I should rise and you should not,

I gently rise and softly call

Good night and joy be to you all.”

Excerpt from The Parting Glass



Part V

Appendix
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Appendix A

Covariance of momentum
distribution and its relation to
temperature

In Section 4.2.1 we used the result that the integral of kk was related to the carrier

temperature. Here we look at this in a little more detail, though we start with the as-

sumption the average momentum is 0 (the same result holds if the average momentum

is finite, once you shift your coordinate system so the origin sits at k). Here we shall

consider a 3-D system, with momentum coordinates (:G , :H , :I). We shall also focus

on a single position, r0 with coordinates (G0, H0, I0), and time C0. Our distribution func-

tion over k-space is therefore 5 (k, r0, C0). The elements of the covariance matrix of this

function is given by

�8 9 [k; r0, C0] =

∫
:G

∫
:H

∫
:I
5 (k, r0, C0):8: 9d:Gd:Hd:I∫

:G

∫
:H

∫
:I
5 (k, r0, C0)d:Gd:Hd:I

, (A.1)

where 8, 9 ∈ {G, H, I}. We note the denominator is simply =(r0, C0), so we focus on

the numerator of the 8 9 entry of C[k; r0, C0], �NUM
8 9

. Here we shall assume that our

distribution function, 5 , is an even function in all :-components around the mean

value, k which can be separated into the product of functions of :G, :H and :I ,

5 (k, r0, C0) = 5G (:G , r0, C0) · 5H (:H , r0, C0) · 5I (:I , r0, C0) .

Physically here we are assuming that the distribution of momenta is due to the random

motion of particles, and there is no tendency to skew the momenta to higher or lower

values in any direction, so assuming a distribution function similar to, for example, a

Gaussian (as is done in Ref. [192]) seems a reasonable choice to make.

There are only two cases for us to consider, the diagonal entries of C (8 = 9) and the off-
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diagonal entries (8 ≠ 9). Let us first look at the off-diagonal case, and take the example

of 8 = G and 9 = H. Because of our assumption about 5 , The numerator of Eq. (A.1)

becomes

�NUM
GH =

∫
:G

odd function︷              ︸︸              ︷
:G 5G (:G , r0, C0) d:G ·

∫
:H

odd function︷             ︸︸             ︷
:H 5H (:H , r0, C0) d:H ·

∫
:I

even function︷         ︸︸         ︷
5I (:I , r0, C0) d:I .

Parity considerations help us out greatly here: :8 is an odd function around :8, whereas

5G, 5H and 5I are assumed to be even. Therefore the off-diagonal elements will be

zero under these assumptions, as they include the integrals of an odd function over an

interval centered on k.

Returning now to the diagonal elements, we take �GG as a test case (note here we are

looking at the full expression, not just the numerator):

�GG =

∫
:G

even function︷              ︸︸              ︷
:2
G 5G (:G , r0, C0) d:G ·

∫
:H

even function︷          ︸︸          ︷
5H (:H , r0, C0) d:H ·

∫
:I

even function︷         ︸︸         ︷
5I (:I , r0, C0) d:I∫

:G
5G (:G , r0, C0)d:G ·

∫
:H
5H (:H , r0, C0)d:H ·

∫
:I
5I (:I , r0, C0)d:I

.

As all the integrands are even functions we are going to have a non-zero result. Sim-

plifying this, we see that the �GG entry is the :2
G expectation value, which is related to

the kinetic energy associated with the random motion around the average :G value,

�GG =

∫
:G
:2
G 5G (:G , r0, C0)d:G∫

:G
5G (:G , r0, C0)d:G

= :2
G .

If we consider our assumption about 5 again it is also reasonable to assume that the

characteristic width of the distributions is the same in all :-directions, so :2
G = :2

H =

:2
I = :2. Now the covariance matrix a diagonal matrix which is proportional to the

identity:

C[k; r0, C0] = :2(r0, C0)1l3

where :2 is the is the average :-squared value, and therefore related to the the average

kinetic energy associated with the random motion, as the kinetic energy is ℏ2:2

2<∗ .

We associate this random kinetic energy with the average temperature [191]:

1
2 :�) =

ℏ2:2

2<∗ =⇒ )1l3 =
ℏ2

<∗:�
C[k; r0, C0] .

This is the result used in Eq. (4.28), though here we have only considered the tem-

perature at the lattice site r0. In general this can vary across the entire device so each

lattice site would have it’s own associated temperature tensor which is, under the as-

sumptions made here, proportional to the 3 × 3 identity matrix, 1l3. In the main text
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we make the assumption that the temperature is also constant across the entire de-

vice, so that the full temperature tensor is also proportional to the identity matrix (of

dimensions suitable to describe the full device).
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Appendix B

NEGF: Alloyed Barrier Material

As discussed in Chapter 5, alloying the barrier material could provide a pathway to

enhance the ballistic transport in InGaN MQW systems. To analyze the potential impact

of In in the barrier on the transmission spectrum for electrons and holes, we focus in

the following on a 2 QW In0.12Ga0.88N system. The system is generated in the Random

II setting, where the microscopic configuration between the QWs differs.

We compare an In0.12Ga0.88N/GaN system to an In0.12Ga0.88N/In0.05Ga0.95N system.

The barrier is also treated as a random alloy which differs between each region of

In0.05Ga0.95N. Here the barrier and the well width are both 2.6 nm. The QW configura-

tion is kept fixed, so only the barrier material is changed for this comparison. We only

consider one microscopic configuration in each case, so no averaging is done to obtain

the results.

For the sake of simplified discussion, we neglect strain and polarization fields. When

alloying the GaN barrier with 5% In, the CBE is shifted downwards from 3.45 eV (pure

GaN) to approximately 3.36 eV (In0.05Ga0.95N) in the barrier region of the MQW sys-

tem. Also the VBE of the barrier material changes: for pure GaN barriers, the VBE is

chosen to be at 0 eV; in the case of 5% In in the barrier region, the VBE then shifts to

approximately 0.03 eV.

Figure B.1 (a) shows the electron transmission spectrum of the system with the pure

GaN barrier (black) along with the spectrum obtained for an

In0.12Ga0.88N/In0.05Ga0.95N MQW structure (blue). With pure GaN barriers, transmis-

sion through the electron ground states (transmission peaks around 3 eV) is weak,

while in case of the In0.05Ga0.95N barrier, the ground state transmission is strongly en-

hanced. The effect of enhanced QW ground state transmission is accompanied by a

slight red shift of the transmission peaks. We attribute both effects (red shift, enhanced

transmission) to changes in carrier confinement in case of the alloyed barrier when

compared to the pure GaN system. Similar effects are observed for the excited QW

states at approximately 3.2 eV.

162



B. NEGF: ALLOYED BARRIER MATERIAL

(a) Electrons (b) Holes

0.0

0.2

0.4

0.6

0.8

1.0

	2.6 	2.8 	3 	3.2 	3.4 	3.6

In0.05Ga0.95N	barrier

GaN	barrier

Tr
an

sm
is

si
on

Energy	(eV)

0.0

0.5

1.0

1.5

2.0

2.5

	0 	0.02 	0.04 	0.06 	0.08 	0.1 	0.12

In0.05Ga0.95N	barrier

GaN	barrier

Tr
an

sm
is

si
on

Energy	(eV)

Figure B.1: Transmission spectra of a 2 In0.12Ga0.88N QW system with GaN (black) and
In0.05Ga0.95N (blue) barriers for (a) electrons and (b) holes. The microscopic configu-
ration differs between the QWs but is kept the same for the pure GaN and the InGaN
barrier. Thus only the barrier material differs between the two systems. Strain and
built-in fields are not considered. The barrier and well width are !1 = !F = 2.6 nm.

Figure B.1 (b) depicts the results for the hole transmission. Our calculations show that

the In0.05Ga0.95N barrier significantly increase the ballistic hole transport facilitated by

QW confined states near energies of 0.06 eV. Also, and in comparison with the pure

GaN barriers, transmission in the energy range of 0.03 eV to 0.05 eV is also increased

significantly. We attribute this effect again to the reduction in the carrier confinement

when comparing pure GaN and In0.05Ga0.95N barriers.

Overall, these initial studies indicate that using InGaN barriers with low In content are

beneficial for increasing the ballistic transport in InGaN MQW systems, and thus po-

tentially enabling an improved distribution of carriers between the different QWs in a

MQW structure. This finding may explain the experimental observation made in the

work by Marcinkevičius et al. [224]. To shed further light on the influence of InGaN

barriers on the transport properties of InGaN MQWs, future studies may target a vari-

ety of different questions. For instance, the question remains if there is a critical barrier

In content at which alloy scattering will have a detrimental effect on the ballistic trans-

port. Furthermore, we have followed here the experimental work of Ref. [224] and

kept the In content in the well constant while increasing the In content in the barrier.

As discussed above, this will reduce the carrier confinement. To disentangle effects aris-

ing from alloy fluctuations in the barrier and the barrier height (carrier confinement),

investigations may be performed in which the relative band offset difference is kept

constant, e.g. comparing transport properties of an In0.12Ga0.88N/GaN MQW system

to the properties of an In0.17Ga0.05N/In0.05Ga0.95N MQW structure. Such a detailed
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and extensive analysis can be targeted in future investigations, which may focus on

the impact of alloy fluctuations in the barrier material on the ballistic carrier transport.

However, this is beyond of the scope of the present study, where our main aim is to

understand the impact of alloy fluctuations within the well on transport properties.
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Appendix C

Uni-polar hole transport

C.1 Effective confining potential in MQW structure: Parti-

tioned vs Unpartitioned LLT

In this appendix we provide further insight into the question how the effective confin-

ing potential, , , obtained from LLT is modified when partitioning the MQW into sub-

regions, i.e. different “localization” regions. As discussed in Section 3.4.3, the choice of

the reference energy �ref for a given localization region can impact the resulting quan-

tum corrected effective landscape. As a test case we use the system discussed in Sec-

tion 6.2.1.2.1 which exhibits a large potential difference between the QWs (as shown in

Fig. 6.9) forming the MQW. For demonstrative purposes we neglect any effects due to

the presence of a ?-8-? junction and we assume a capacitor-like potential profile with a

potential drop across each QW of 0.35 V. Figure C.1 reveals the impact that partitioning

the MQW into different subregions has on the effective band edge. The starting point

is the “standard” VCA description of the system without quantum corrections (purple).

Here, each QW exhibits the same VBE profile. Treating the MQW system as a single

localization region within LLT, the resulting band edge profile (green) reveals that the

band edge of the first QW (leftmost in Fig. C.1) is smoothed significantly. However,

the two other wells forming the MQW system, which are energetically far from the

global reference energy chosen, undergo noticeably smaller corrections. As discussed

in Sec. 6.2.1.2.1, this stems from the fact that the contributions from (localized) states

in these QWs contribute only weakly to the series expansion of D (Eq. (3.28)). However,

Fig. C.1 also reveals that when the system is partitioned into 3 sub-regions, and each

localization region (QW region) is described by an individual reference energy which

is close the local ground state energy, the resulting effective landscape (red, dashed) is

significantly softened in all three wells of the MQW system. In doing so, one assures

that quantum corrections in all 3 QWs are properly treated. Figure C.1 also confirms

that the landscape is not only smoothed but also continuous between each localization
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C.2 Comparison of impact of distribution function
on results

region, which is important to construct a global effective landscape that can be used

for transport calculations.
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Figure C.1: Valence band edge profile in virtual crystal approximation for a fictive
(In,Ga)N/GaN multi-quantum well system in the absence of LLT (purple) and presence
of LLT quantum corrections. When including LLT two scenarios are considered (i) using
a single reference energy (green) and (ii) separate reference energies for each quantum
well region (red, dashed).

C.2 Comparison of impact of distribution function on results

The results presented in Section 6.2.2 rely on the Boltzmann approximation for free

carrier density. In this appendix we briefly discuss how and if the results are affected

by employing Fermi-Dirac statistics instead of Boltzmann. Overall, we find that in the

case of the here studied uni-polar hole transport, the resulting I-V curves are basically

unaffected when changing the distribution function from Boltzmann to Fermi-Dirac.

This is illustrated in Fig. C.2 (a) for a SQW.

To shed more light onto this finding, we have also investigated how the Fermi-level

changes when using Fermi-Dirac instead of Boltzmann. The resulting Fermi-levels

(green) for the two distribution functions are depicted in Fig. C.2 (b) (Boltzmann)

and Fig. C.2 (c) (Fermi-Dirac). In addition to the Fermi-level, the valence band edge

(purple) is also given. The data are plotted at 0.5 V, for a relatively low Gaussian

width of f = 0.2 nm and when excluding LLT. Comparing the Fig. C.2 (b) (Boltzmann)

and Fig. C.2 (c) (Fermi-Dirac), one observes that choosing Fermi-Dirac statistics only

very weakly affects the Fermi-level inside the well; in the barrier it is basically un-

changed. This explains our finding that both distribution functions give basically the

same I-V curve. Above we used a calculation without LLT and a relatively low f value

(f = 0.2 nm), so that differences between Boltzmann and Fermi-Dirac will be further
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C.3 Study of the in-plane dimensions on current
density
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Figure C.2: Impact of distribution function for a random alloy system using a Gaussian
width of f = 0.2 nm on the I-V curve, the valence band edge and Fermi-level in the
(In,Ga)N/GaN SQW described in Section 6.2. Left: I-V curves for Boltzmann system
(purple) and Fermi-Dirac system (green). Center: Valence band edge (purple) and
Fermi level (green) at 0.5 V using Boltzmann statistics. Right: Valence band edge
(purple) and Fermi level (green) at 0.5 V using Fermi-Dirac statistics.

reduced when using a larger broadening (larger f value) and/or when including LLT

in the calculations, since both contributions will result in a smoother energy landscape

(not shown).

C.3 Study of the in-plane dimensions on current density

In Sec. 6.2.2.2 we have already highlighted that the results may depend on the in-

plane dimension of the simulation cell. Here, we extend this discussion. Figure C.3

depicts the current density for an in-plane slice through the an In0.1Ga0.9N SQW for

two different applied voltages, namely 0.5 V (left column) and 3.0 V (right column);

for the Gaussian broadening we have used f = 0.2 nm. The upper row displays the

data in the absence of LLT corrections, while the lower row depicts the results in the

presence of LLT corrections.

Looking at the results without LLT, one can clearly see that that current density strongly

fluctuates within the plane. This means that in the absence of quantum corrections via

LLT, the simulation cell is large enough to resolve the alloy fluctuations and potentially

connected percolation paths. In Section 6.2 we have compared I-V curves without LLT

but in the presence of alloy fluctuations to VCA results, obtained also in the absence

of LLT. We observed that the turn on voltage/knee voltage for the hole transport is

higher and the current is lower in the alloy case when compared to the VCA. Therefore,

the observed fluctuations in the current density, and thus potential percolation paths,

are not beneficial for the hole transport. Given that we resolve the variation in the

current density already for the present simulation cell size, one could expect that the

observed results will not change dramatically when increasing the in-plane dimension

of the simulation cell.
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C.3 Study of the in-plane dimensions on current
density
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Figure C.3: Current density within a slice of a (In,Ga)N SQW at 0.5 V (left) and 3.0 V
(right) using a Gaussian broadening of 0.2 nm without LLT (top) and with LLT (bot-
tom). The total current density is shown using the colour scale on a log scale.

However, when including LLT in the calculations, the alloy fluctuations are “washed

out” for the given cell size as the lower row of Fig. C.3 shows. Here, the current

density indeed behaves more like the VCA case. But, if the in-plane dimension of the

simulation cell is increased, the softening of the energy landscape will be reduced,

as the likelihood of regions with locally high/low indium content increases. Thus we

can expect to recover an in-plane current density profile with regions of high and low

current, similar to the calculation neglecting quantum corrections, but on a larger scale.

As a consequence, with increasing simulation cell size and even with LLT, it is expected

that one finds a situation more similar to the results in the absence of LLT, thus the

upper row in Fig. C.3. Therefore, it is expected that in case of LLT and random alloy

fluctuations, the current density decreases with increasing in-plane dimension. As such,

our conclusion in the paper that the VCA I-V curve presents an upper limit for the

hole transport, should still hold even when increasing the in-plane dimensions of the

simulation cell.
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[234] S. Marcinkevičius, R. Yapparov, L. Y. Kuritzky, Y.-R. Wu, S. Nakamura, S. P. Den-

Baars, and J. S. Speck, “Interwell carrier transport in InGaN/(In)GaN multiple

quantum wells,” Applied Physics Letters, vol. 114, no. 15, p. 151103, 2019.

[235] M. Kneissl, T.-Y. Seong, J. Han, and H. Amano, “The emergence and prospects

of deep-ultraviolet light-emitting diode technologies,” Nat. Photonics, vol. 13,

p. 233, 2019.

[236] K. Bulashevich, O. Khokhlev, I. Evstratov, and S. Karpov, “Simulation of light-

emitting diodes for new physics understanding and device design,” in Light-
Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVI

Theory of carrier transport in III-N based
heterostructures

189 Michael John Oliver O’Donovan



REFERENCES

(K. P. Streubel, H. Jeon, L.-W. Tu, and N. Linder, eds.), p. 152, International

Society for Optics and Photonics, SPIE, 2012.

[237] D. Ferry, S. Ramey, L. Shifren, and R. Akis, “The effective potential in device

modeling: the good, the bad and the ugly,” Journal of Computational Electronics,
vol. 1, p. 59, 2002.

[238] D. A. Zakheim, A. S. Pavluchenko, D. A. Bauman, K. A. Bulashevich, O. V.

Khokhlev, and S. Y. Karpov, “Efficiency droop suppression in InGaN-based blue

LEDs: Experiment and numerical modelling,” physica status solidi (a), vol. 209,

no. 3, p. 456, 2012.

[239] D. Braess, Finite Elemente. Springer Berlin Heidelberg, 1997.

[240] J. W. Barrett and C. M. Elliott, “Finite element approximation of the Dirichlet

problem using the boundary penalty method,” Numerische Mathematik, vol. 49,

no. 4, p. 343, 1986.

[241] O. Schenk, “PARDISO version 5.0.0.” URL: http://www.pardiso-project.org. Ac-

cessed 2016-02-22.

[242] D. N. Arnold, G. David, M. Filoche, D. Jerison, and A. Mayboroda, “Computing

spectra without solving eigenvalue problems,” SIAM J. SCI. COMPUT., vol. 41,

p. B69, 2019.

[243] M. Ilegems and H. Montgomery, “Electrical properties of n-type vapor-grown

gallium nitride,” Journal of Physics and Chemistry of Solids, vol. 34, no. 5, p. 885,

1973.

[244] F. Massabuau, N. Piot, M. Frentrup, X. Wang, Q. Avenas, M. Kappers,

C. Humphreys, and R. Oliver, “X-ray reflectivity method for the characteriza-

tion of InGaN/GaN quantum well interface,” physica status solidi (b), vol. 254,

no. 8, p. 1600664, 2017.

[245] K. S. Qwah, M. Monavarian, G. Lheureux, J. Wang, Y.-R. Wu, and J. S. Speck,

“Theoretical and experimental investigations of vertical hole transport through

unipolar AlGaN structures: Impacts of random alloy disorder,” Applied Physics
Letters, vol. 117, no. 2, p. 022107, 2020.

[246] P. Kozodoy, H. Xing, S. P. DenBaars, U. K. Mishra, A. Saxler, R. Perrin, S. Elhamri,

and W. C. Mitchel, “Heavy doping effects in Mg-doped GaN,” Journal of Applied
Physics, vol. 87, no. 4, p. 1832, 2000.

[247] D. Iida, K. Tamura, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Com-

pensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic

vapor phase epitaxy,” Journal of Crystal Growth, vol. 312, no. 21, p. 3131, 2010.

Theory of carrier transport in III-N based
heterostructures

190 Michael John Oliver O’Donovan



REFERENCES

[248] Y. Ohba and A. Hatano, “A study on strong memory effects for Mg doping in GaN

metalorganic chemical vapor deposition,” Journal of Crystal Growth, vol. 145,

no. 1, p. 214, 1994.

[249] C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the Optimization

for Current Spreading Effect of Lateral GaN/InGaN LEDs,” IEEE Transactions on
Electron Devices, vol. 61, no. 2, p. 511, 2014.

[250] J. H. Zhu, S. M. Zhang, H. Wang, D. G. Zhao, J. J. Zhu, Z. S. Liu, D. S. Jiang, Y. X.

Qiu, and H. Yang, “The investigation on carrier distribution in InGaN/GaN mul-

tiple quantum well layers,” Journal of Applied Physics, vol. 109, no. 9, p. 093117,

2011.

[251] B. Galler, A. Laubsch, A. Wojcik, H. Lugauer, A. Gomez-Iglesias, M. Sabathil,

and B. Hahn, “Investigation of the carrier distribution in InGaN-based multi-

quantum-well structures,” physica status solidi c, vol. 8, no. 7, p. 2372, 2011.

[252] A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and

M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well

light-emitting diodes,” Applied Physics Letters, vol. 92, no. 5, p. 053502, 2008.

[253] J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, and H. B. Wang, “Barrier

effect on hole transport and carrier distribution in InGaN/GaN multiple quan-

tum well visible light-emitting diodes,” Applied Physics Letters, vol. 93, no. 2,

p. 021102, 2008.

[254] A. Di Vito, A. Pecchia, A. Di Carlo, and M. Auf Der Maur, “Characterization of

non-uniform InGaN alloys: spatial localization of carriers and optical proper-

ties,” Japanese Journal of Applied Physics, vol. 58, no. SC, p. SCCC03, 2019.

[255] Z. Yu and R. Dutton, “SEDAN III – A one-dimensional device simulator.” www-

tcad.stanford.edu/tcad/programs/sedan3.html, 1988.

[256] D. A. Browne, M. N. Fireman, B. Mazumder, L. Y. Kuritzky, Y.-R. Wu, and J. S.

Speck, “Vertical transport through AlGaN barriers in heterostructures grown by

ammonia molecular beam epitaxy and metalorganic chemical vapor deposition,”

Semiconductor Science and Technology, vol. 32, no. 2, p. 025010, 2017.

Theory of carrier transport in III-N based
heterostructures

191 Michael John Oliver O’Donovan

www-tcad.stanford.edu/tcad/programs/sedan3.html
www-tcad.stanford.edu/tcad/programs/sedan3.html

	List of Figures
	List of Tables
	List of acronyms
	Publication list
	Acknowledgements
	Abstract
	I Background
	Prologue: From the origins of the LED to current research challenges
	GaN-based LEDs
	Localization, Droop and the ``Green Gap''

	Current state of modeling techniques
	Thesis overview

	Introduction
	Crystal structures
	Electronic band structure
	Heterostructures

	Light-emitting diodes


	II Theory
	Electronic structure theory
	kp and effective mass approximation
	Extending the model beyond bulk crystal structures

	Tight-binding model
	Extending the model beyond bulk crystal structures

	Heterostructures
	Strain
	Continuum elasticity
	Atomistic strain
	Including strain effects in electronic structure calculations

	Polarization potential
	Continuum polarization
	Atomistic polarization
	Including polarization effects in electronic structure calculations


	Localization Landscape Theory
	Green's function
	Deriving localization landscape theory
	Drawbacks of the method


	Carrier Transport Theory
	Non-equilibrium Green's function formalism
	Probability Current Density

	Drift-diffusion
	Deriving drift-diffusion from Boltzmann transport
	The method of moments
	Coupling the current equations with Poisson's equation
	Recombination model
	Discretization of van Roosbroeck system of equations

	Drift-diffusion energy landscape
	Extracting a confining landscape from Tight-binding
	Including alloy fluctuations in a drift-diffusion model
	Including quantum corrections in a drift-diffusion model
	Device mesh generation for transport calculations




	III Results
	Impact of alloy fluctuations on ballistic transport through InGaN/GaN multi quantum well systems
	Theoretical Framework
	Model Systems
	Varying levels of disorder in (In,Ga)N multi quantum well systems
	Interplay of barrier width and p-i-n junction field

	Results
	Electronic structure of an (In,Ga)N/GaN MQW: VCA vs Random Alloy
	Impact of alloy fluctuations on transmission properties of (In,Ga)N MQWs
	Absence of built-in field
	Impact of the built-in field

	Multi-quantum well system in a p-i-n junction
	Barrier width Lb=3.1 nm
	Barrier width Lb=5.2 nm


	Conclusion

	Multiscale simulations of uni-polar charge transport in (In,Ga)N-based devices with random fluctuations
	Uni-polar electron transport
	Theoretical framework
	Smoothing by Gaussian averaging
	Quantum corrections by localization landscape theory
	Uni-polar drift-diffusion model

	Results
	(In,Ga)N SQW system
	(In,Ga)N MQW system

	Conclusions from studying uni-polar electron transport

	Uni-polar hole transport
	Theoretical framework
	Smoothing by Gaussian averaging
	Quantum corrections by localization landscape theory
	Uni-polar drift-diffusion model

	Results
	(In,Ga)N SQW system
	(In,Ga)N MQW system

	Conclusions from studying uni-polar hole transport

	Conclusions

	Impact of random alloy fluctuations on the carrier distribution in multi-colour (In,Ga)N/GaN quantum well systems
	Model MQW structures and literature experimental findings
	Theoretical framework
	Tight-binding energy landscape
	Device simulation

	Results
	Continuum-based simulations of the carrier transport in (In,Ga)N-based LEDs
	nextnano simulations
	ddfermi simulations

	Impact of random alloy fluctuations on the carrier transport in (In,Ga)N/GaN MQWs

	Conclusions


	IV Summary, conclusion and outlook
	Summary and conclusions
	Outlook

	V Appendix
	Covariance of momentum distribution and its relation to temperature
	NEGF: Alloyed Barrier Material
	Uni-polar hole transport
	Effective confining potential in MQW structure: Partitioned vs Unpartitioned LLT
	Comparison of impact of distribution function on results
	Study of the in-plane dimensions on current density


	VI Bibliography

