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Abstract 12 

Onshore wind power has seen considerable growth in all grid systems due to government-imposed 13 

renewable energy targets, motivated by climate change and security of supply concerns. In the coming 14 

decade offshore wind power is also expected to expand rapidly. Wind generation of electricity differs 15 

from conventional thermal generation because it is more variable and intermittent due to the stochastic 16 

nature of wind, and the power output is therefore not fully predictable over all time scales. Integration of 17 

wind generation into existing grids requires additional power system and electricity market planning, 18 

operation and management for system balancing. Low levels of wind power generally have little effect on 19 

power systems. However, as penetrations increase studies indicate additional system balancing is required 20 

with an associated extra cost. Wind power forecasting and prediction methods are used by system 21 

operators to reduce these additional integration costs and by wind farm owners to maximize profit. This 22 

paper presents an in-depth review of the current methods and advances in wind power forecasting and 23 

prediction. Numerical wind prediction from global to local scales, ensemble forecasting and upscaling 24 

and downscaling processes are discussed. Statistical and machine learning approach methods are detailed. 25 

Techniques for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance 26 

of various approaches over different forecast time horizons is examined. Finally, current research 27 

activities, challenges and potential future developments are appraised. 28 

 29 
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 1 

1.0 Introduction 2 

Over the last decade there has been rapid growth in wind generation of electricity, with the installed wind 3 

power capacity worldwide has increased almost fourfold from circa 24.3 GW to an expected 203.5 GW 4 

this year [1]. In power systems, balance is maintained by continuously adjusting generation capacity and 5 

by controlling demand. As wind is inherently variable, wind power is a fluctuating source of electrical 6 

energy. Short-term forecasts (ranging from 1 hour up to 72 hours) are useful in power system planning for 7 

unit commitment and dispatch, and for electricity trading in certain electricity markets where wind power 8 

and storage can be traded or hedged. Medium-term forecasts and predictions (ranging from 3 days to 7 9 

days) are needed to plan maintenance of the wind farms, unit commitment and maintenance outages of 10 

thermal generators and to schedule grid maintenance and energy storage operations. Forecast errors 11 

typically increase as the time horizon increases. However, this is always not the case, as shown in Figure 12 

1 [2]. When specifying a wind power prediction model, the desired time horizon will dictate the final 13 

choice, as the different models are differently suited to certain power system planning and market 14 

activities which occur over different timescales.  15 

 16 

Wind forecasting for energy generation and power systems operations mainly focuses on the immediate 17 

short-term of seconds to minutes, the short-term of hours up to two days, and the medium term of 2 to 7 18 

days. This is because power systems operations such as regulation, load following, balancing, unit 19 

commitment and scheduling, are carried out within these timeframes. The science of wind power 20 

prediction is described as the application of the theories and practices of both meteorology and 21 

climatology specifically to wind power generation [3]. The prediction of short-term wind power patterns 22 

is discussed in Landberg [4]. 23 

 24 

Traditional thermal generators are also intermittent but with more predictability than wind power. 25 

Nevertheless, thermal plant can experience sudden unplanned outages. In power systems a traditional 26 

generator is usually described as ‘dispatchable’, whereas wind generation is often referred to as ‘non-27 

dispatchable’. Accurate wind power forecasting reduces the risk of uncertainty and allows for better grid 28 

planning and integration of wind into power systems. However, a common conclusion is that as the levels 29 

of wind power penetration increase additional system balancing is required. The cost of the balancing is 30 

linked to the flexibility of the existing power system. Wind power forecasting tools are therefore 31 

invaluable because they enable better dispatch, scheduling and unit commitment of thermal generators, 32 
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hydro plant and energy storage plant and more competitive market trading as wind power ramps up and 1 

down. Overall they reduce the financial and technical risk of uncertainty of wind power production for all 2 

electricity market participants. 3 

 4 

This paper provides a detailed review of current methods and recent advances in wind power forecasting. 5 

The paper contains three sections. Section 2 overviews benchmarking and uncertainty analysis, examines 6 

current forecasting methods, starting with a discussion of time horizons, followed by descriptions of 7 

numerical wind prediction, ensemble forecasting, upscaling and downscaling methods, and physical, 8 

statistical and learning approach methods. Section 3 presents current research activities and potential 9 

future advances. Finally, section 4 gives a brief summary and conclusion. 10 

 11 

2.0 Current Forecasting & Prediction Methods 12 

Forecasting models for wind power can be divided into two overall groups. The first group is based upon 13 

analysis of historical time series of wind, and a second group uses forecasted values from a numerical 14 

weather prediction (NWP) model as an input. However, wind power forecasting is generally described in 15 

terms of physical methods, traditional statistical or ‘black box’ methods and more recently the so-called 16 

learning approaches, artificial intelligence or ‘grey box’ methods. Hybrid methods can involve some 17 

aspect of all of these. 18 

 19 

The models in the first group use the statistical approach to forecast mean hourly wind speed or to 20 

directly forecast electric power production. The models in the second group use explanatory variables 21 

(mainly hourly mean wind speed and direction) derived from a meteorological model of the wind 22 

dynamics to predict wind power N-steps ahead. The models of the first group provide good results, in the 23 

majority of cases, in the estimation of mean monthly or even higher temporal scale (quarterly, annual) 24 

wind speed. However, in the short-term horizon, (mean daily or hourly wind speed forecasts), the 25 

influence of atmospheric dynamics becomes more important, so that the use of the models of the second 26 

group becomes essential [5].  27 

 28 

There are three steps in wind power forecasting: firstly determining wind speed from a model; then 29 

calculating the wind power output forecast or prediction; and finally regional forecasting or upscaling or 30 

downscaling, which may be applied over different time horizons. Very short term forecasting models are 31 
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usually statistically-based. For statistical and the learning approach methods a large amount of historical 1 

time series data is essential. The persistence method, also known as the naïve predictor, can be used to 2 

benchmark other methods. Persistence usually performs better than NWP methods for short-term 3 

prediction horizons of up to about 3 to 6 hours at a local level, whereas the climatologic mean is better for 4 

prediction horizons longer than 15 hours [6]. Table 1 presents a non-exhaustive list of wind power 5 

software models developed internationally. 6 

 7 

2.1 Numerical Weather Prediction & Wind Forecasting 8 

In developing a NWP-based wind power prediction model the selection of the particular NWP model is a 9 

critical step. Important selection criteria include the geographical area, the resolution (both spatial and 10 

temporal) and the forecast horizon, as well as the accuracy required and the computational time and 11 

number of runs. NWP models usually have three main components, the dynamic centre, which represents 12 

the adiabatic non-viscous flow, the physical equations describing variability of the meteorological 13 

processes (e.g. turbulence and radiation) and the information gathering software code. Therefore the 14 

output of a NWP model is a detailed forecast of the state of the atmosphere at a given time, not just the 15 

wind. NWP forecasts are not specifically produced for the electricity industry and are used by a variety of 16 

industries, sectors and government agencies. NWP is sensitive to initial conditions and to overcome this 17 

ensemble forecasting is used [7]. Nielsen et al [8] demonstrated that if several NWP forecasts are used the 18 

forecast error decreases. Louka et al [9] showed that the Kalman filter can remove systematic forecast 19 

errors in NWP wind speed forecasts. 20 

 21 

Ocean models are not included in most NWP as sea surface water temperatures are described by 22 

climatology. Specific NWP models have been developed to identify storms in the Pacific and Atlantic, 23 

which tend to be ensemble NWP models (e.g. Typhoon Ensemble Model by the Japan Meteorological 24 

Agency). Most meteorological services provide only on-shore and near-shore weather predictions to meet 25 

their client needs. Hence, the focus to date of global NWP models has been to provide more accurate 26 

weather forecasts on land. As global NWP models need boundary conditions to solve their equations, 27 

mostly land surface properties including temperature are used. NWP holds best for time horizons greater 28 

than 4 hours. Most models are multi-step and provide look-ahead times for numerous horizons but the 29 

bulk of these tools only produce a single expected value for each forecast timescale and are referred to as 30 

deterministic, spot or point forecasts. Hence their use for stochastic optimization and risk assessment is 31 
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limited [10]. 1 

 2 

At a regional and mesoscale level another family of NWP models was developed to focus on particularly 3 

local weather phenomena. Examples include the hydrostatic ETA model, the HIRLAM model and the 4 

ALADIN model [11, 12 and 13]. Further examples include the freely downloadable MM5 regional model 5 

developed at the Pennsylvania State University and used by the National Centre of Atmospheric Research 6 

in the United States of America (USA) and the more recent Weather Research and Forecast (WRF) 7 

regional model [14 and 15]. Some NWP models are used at a regional level to predict wind power in a 8 

country or in a region of a country. Predicting the wind power output from each individual wind farm can 9 

be time consuming so instead an approach called ‘upscaling’ is used. In upscaling the wind power output 10 

from a sample number of wind farms forms the basis of reference data. Upscaling can have the apparent 11 

effect of reducing forecast error because it becomes averaged over the whole region [16]. The process of 12 

downscaling involves the production of more detailed spatial information from coarse NWP outputs using 13 

physical and/or statistical models [17]. Physical downscaling models are similar to NWP but run at higher 14 

resolution over a smaller area. Statistical downscaling models use power and/or wind speed at an actual 15 

wind farm and NWP to generate a transfer function, which can be used to predict wind power from other 16 

wind farms in a region. Table 3 provides a list of a number of NWP global and regional models in use. 17 

 18 

2.2 Ensemble Forecasting 19 

Ensemble forecasting employs a number of different model runs to predict a large sample of possible 20 

future weather outcomes. The results are then evaluated by examining the the distribution across all 21 

ensemble ‘members’ of the forecast variables. Another ensemble approach is the multi-model approach, 22 

which uses a number of NWP models to produce an ensemble [18]. It is referred to as a multi-NWP 23 

method. The members of the ensemble arise from different variants of the same NWP model (like 24 

different physical parameterization of the sub-grid physical processes, or different initial conditions, or 25 

different data assimilation techniques). They can also arise from completely different NWP models. An 26 

interesting feature of ensemble forecasting lies into the fact that it also provides an estimation of the 27 

reliability of the forecast. The idea is that when the different ensemble members differ widely the forecast 28 

is affected by a large uncertainty; when there is a closer agreement between the ensemble member 29 

forecasts, the uncertainty in the prediction is lower.  30 

 31 
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The MSEP approach is another ensemble method, based on predictions from one NWP with different 1 

schemes [19]. A study of MSEP in Ireland compared against validated results from Denmark and 2 

Germany established that forecast errors increased with increasing capacity factor due to an increase in 3 

abnormal weather events and higher than normal wind speeds [20]. In Ireland, for instance, a study 4 

showed that using a power curve derived from measured wind and power can improve the forecast root 5 

mean square error (RMSE) by nearly 20% in comparison to using the power curve only [21]. The 6 

nonlinearity of the wind power curves leads to a further amplification of the error, such that small 7 

variations in the wind speed may result in much larger deviations in the power. 8 

 9 

2.3 Physical Methods 10 

Several physical models based on the use of weather data have been developed for wind speed forecasting 11 

and wind power predictions [22]. The physical models generally make use of global databases of 12 

meteorological measurements or atmospheric mesoscale models, but they require large computational 13 

systems in order to achieve accurate results [23]. In the physical approach a detailed description of the 14 

lower atmosphere is used to estimate the wind power output. An overview of some of the neural, 15 

geostatistical and hybrid models used for space-temporal wind forecasting is contained in Cellura et al 16 

[24]. The numerical codes for wind field modeling over rough terrain are generally divided into two 17 

types: dynamic models (also called prognostic) and kinematic models (also called diagnostic) [25]. In 18 

these models the momentum and energy equations are not solved explicitly but considered indirectly 19 

using parametric relations and/or wind data [26]. Computational fluid dynamics (CFD) is also used as an 20 

alternative method to the power law to adjust for the local conditions of the physical terrain [27]. Model 21 

output statistics (MOS) are often used to avoid systematic forecasting errors and to correct the predicted 22 

power output for unknowns [28].  23 

 24 

2.4 Statistical and Learning Approach Methods 25 

In the statistical approach a vast amount of data is analyzed and meteorological processes are not 26 

explicitly represented. The link between historical power production and weather is determined and then 27 

used to forecast the future power output. Unlike physical methods, statistical methods involve only one-28 

step to convert the input variables into power output. Hence, the methods used are described as ‘black 29 
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box’. Generally a statistical relationship is developed between the weather forecast or prediction and the 1 

potential power output from the wind farm. 2 

 3 

Other statistical techniques used include autoregressive (AR), moving average (MA), autoregressive 4 

moving average model, (ARMA) and autoregressive integrated moving average model (ARIMA), the 5 

Box-Jenkins methodology and the use of the Kalman filter. Torres et al [29] found it was possible to get 6 

20% error reduction compared to persistence to forecast average hourly wind speed for a 10 hour forecast 7 

horizon at a number of locations using nine years of historical data using an ARMA model. Classical time 8 

series analysis is not the only way to model the statistical relationship among the data. The main soft 9 

computing (or machine learning) approaches used are artificial neural networks (ANN) and fuzzy 10 

systems, but also other models, like grey predictors or support vector machines (SVM) have been applied. 11 

Learning approach methods are also often referred to as artificial intelligence (AI) methods. They are 12 

called learning approaches because they learn from the relationship between the predicted wind and 13 

forecasted power output using historical time series. More recently, they have been referred to as ‘grey 14 

box’ methods. Wind speed and output power were forecasted using a grey predictor with a look-ahead 15 

time of one hour with an accuracy respectively 11.2% and 12.2% better than persistence in terms of mean 16 

absolute error [30]. In some studies an improvement, depending on the forecast horizon, between 9.5% 17 

and 28.4% over persistence was the result of using a genetic algorithm (GA) to optimize a fuzzy inference 18 

system (FIS) model [31]. 19 

 20 

ANN’s ‘learn from experience’ using data. For this reason, the approach they are based upon is called 21 

data-driven approach. A number of studies apply the most commonly used neural models, which is the 22 

standard multi-layer perceptron (MLP) network method [32] or the recurrent version of NN [33]. Welch 23 

at al [34] compares three types of neural networks (namely MLP, simultaneous recurrent neural network 24 

(SRN) and Elman recurrent neural network) trained using particle swarm optimization (PSO) for short 25 

term prediction of wind speed. Ramirez-Rosado et al. compared forecasting schemes in which NWP 26 

predictions were enhanced by various neural network and other machine learning approaches and 27 

combined with turbine power curve models and demonstrated significant improvements over persistence 28 

[35]. Recently, researchers have started to use decision tree techniques in data mining with interesting 29 

results [36]. The results indicate that the predictive power of individual variables is dependent on the 30 

seasons, with wind power most strongly related to atmospheric pressure in summer and to humidity in 31 

winter. Wind power forecasts were determined at 10 wind farms and compared to the NWP data at each 32 
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wind farm using classical MLP ANNs, mixture of experts, SVM and nearest neighbor with PSO [37]. The 1 

main conclusion is that combining several models for day-ahead forecasts produces better results. 2 

 3 

Jursa and Rohrig [38] presented an approach which combined the ANN and the nearest-neighbor 4 

approaches in an optimization model and the result was an improvement of 10.75% in the normalized 5 

RMSE of the prediction compared to persistence (where the improvement equals RMSEpersistence minus 6 

RMSEmodel divided by RMSEpersistence). In summary, five data-mining models used in wind speed and wind 7 

power prediction include SVM, MLP ANN, regression trees and random forests. The review of 8 

published literature and data indicates that the MLP ANN outperforms the other four models in both very-9 

short and short and long-term forecasts. The direct approach of feeding the wind ensemble NWP directly 10 

into the model also outperformed the integrated approach for both very-short and short and long-term 11 

models [39]. 12 

 13 

Mohandes et al [40] compared SVM to a multilayer perceptron ANN model to predict wind speed. The 14 

SVM model gave lower RMSE than the MLP ANN model and it was established that SVM outperforms 15 

MLP for system orders from 1 to 11. In data mining repeating patterns are identified. In Kusiak et al [41] 16 

four time series models with different prediction horizons were developed with data mining algorithms 17 

and it was established that the least accurate and stable was the integrated k nearest neighbor (kNN) for 18 

power prediction. Larson and Westrick [42] used a support vector classifier to estimate the forecasting 19 

error, obtaining lower mean square error and mean absolute percentage error than traditional SVM. A 20 

novel approach for the analysis and modeling of wind vector fields was introduced by Goh et al [43] and 21 

developed by Mandic et al [44] where the wind vector is represented as a complex-valued quantity and, 22 

unlike the other commonly used approaches, wind speed and direction are modeled simultaneously.  23 

 24 

Negnevitsky et al [45] combines two AI methods, ANN and fuzzy logic in a hybrid approach to develop 25 

an adaptive neural fuzzy system model (ANFIS). Fuzzy models are employed in cases where a system is 26 

difficult to model exactly or vagueness is the problem formulation is characterized by some indefinite and 27 

vague elements. In Damousis et al [46] a fuzzy model was implemented for the prediction of wind speed 28 

and the produced electrical power at a wind park. The model was trained using a genetic algorithm-based 29 

learning. The efficiency of short-term forecasting was improved for ranges from a few minutes to several 30 

hours ahead. However, the main drawback of the proposed method is the large number of fuzzy rule base 31 

and the consequent large computational time. Pinson and G. Kariniotakis [47] developed a prediction 32 
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system that integrates models based on adaptive fuzzy-neural networks configured for short and long-1 

term forecasting. 2 

 3 

Recently, Bayesian methods have started to be employed for wind speed prediction. Miranda and Dunn 4 

[48] used an autoregressive model based on a Bayesian approach to obtain one-hour-ahead forecasts of 5 

the wind speed. Fan et al [49] applied an integrated machine learning forecasting model, based on 6 

Bayesian clustering by dynamics (BCD) and support vector regression (SVR), to provide short-term wind 7 

power generation forecasts for a wind farm. 8 

 9 

A general result worth noting is that there is a very strong interdependence between wind power 10 

prediction model accuracy and NWP model accuracy. In all statistical models the data gathering and 11 

accuracy is key to producing good results. The dependence of prediction error on time horizon is 12 

illustrated from a sample of models for which, RMSEs were reported is illustrated in Figure 2. The 13 

increase in prediction error as time horizons become longer can be observed, and it is also apparent that 14 

wind speed prediction models produce lower errors than models which attempt to predict wind power 15 

outputs. In Fugon et al [50], it was found that if a number of statistical models are combined for day-16 

ahead predictions the forecast error decreases. 17 

 18 

2.5 Benchmarking & Uncertainty Analysis 19 

As wind power forecasting has intrinsic uncertainty, the results of any model must be tested. The 20 

verification of wind power prediction models is complicated. As wind power prediction model outputs are 21 

generally either a vast array of single value point forecasts for each look-ahead time or more recently 22 

multiple ensembles from a multi-scheme ensemble prediction (MSEP), it is difficult to establish a 23 

standard metric of accuracy. Therefore, a number of accuracy tests are used to benchmark or validate a 24 

model and to determine the percentage of uncertainty of the results. The input data and the time horizon 25 

usually determine the most appropriate accuracy test. In Madsen et al [51] three criteria were identified to 26 

establish the ‘fitness for purpose’ of a weather forecast. These criteria are consistency, quality and value. 27 

Consistency refers to the expectations of the model performance based on the skill and experience of the 28 

modeler. Quality is defined as the correspondence between the observed and forecasted observations. 29 

Value is related to the ‘fit for purpose’ or relevance of the forecast to its actual function and application. 30 

 31 
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The purpose of uncertainty analysis is to measure the degree of ‘wrongness’ of the model, often described 1 

by a loss (or cost) function. Uncertainty analysis has three main approaches: probabilistic forecasting, risk 2 

indices and scenario generation. In probabilistic forecasting the uncertainty in the future is estimated as a 3 

probabilistic measure. Probabilistic measures include quantiles, interval forecasts and probability density 4 

function (pdf) and probability mass function for each time step of the prediction horizon. Risk indices, 5 

also referred to as skill forecasts, include the meteo-risk index (MRI) and the normalized prediction risk 6 

index (NPRI). They are not related to the prediction method and provide a priori information on expected 7 

level of forecast error.  8 

 9 

A model’s prediction error is classically defined as the difference between the measured and the predicted 10 

value. A number of standard error measures are also used to describe the error in point forecast models. 11 

Models are assessed and compared using mean error (bias), mean absolute error (MAE), mean square 12 

error (MSE), RMSE, histograms of the frequency distribution of the error, the correlation coefficient (R), 13 

mean absolute percentage error (MAPE) and the coefficient of determination (R
2
), standard deviation of 14 

the errors (SDE) and the normalized MAE and RMSE. These error measures do not depend on the size of 15 

the test set. The ‘skewness’ of the prediction is often determined using Fisher’s equation. A negative 16 

skew implies relatively few low results, whereas a positive skew implies few high results. The skill score 17 

and measures to verify forecast models are proposed in Murphy and Epstein [52] and Murphy and 18 

Winkler [53]. It is frequently recommended that three measures are taken to reduce forecast and 19 

prediction errors. Table 2 gives a summary of some of the standard error measures. 20 

 21 

The grouping of wind farms reduces the overall prediction error, an example of this is in Germany where 22 

the forecast error for the aggregated wind power stays below 2.5% when the three control zones of E.ON, 23 

Vattenfall and RWE are grouped together [54]. In the USA a MAE of 10 to 15% for day-ahead modeling 24 

of the nameplate capacity of the wind farm has been obtained [55]. If the model is rerun a few hours 25 

ahead on the same day the MAE range is typically 5% of the name plate capacity of the wind farm. The 26 

Danish system operator has had similar results [56]. The RMSE is usually 10% of installed capacity for 27 

most models. In Ireland the system operators (i.e. EirGrid in the Republic of Ireland and SONI in 28 

Northern Ireland) have a target accuracy of 6 – 8% [57]. The operators have quoted individual wind farm 29 

accuracy in the range of 10 – 20%.  30 

 31 



Please cite this paper as: 
Foley, A. M. et al. (2012) Current Methods and Advances in Forecasting of Wind Power Generation. Renewable 
Energy 37 (1-8) doi: 10.1016/j.renene.2011.05.033 

 

Page 11 of 22 

As part of the European Union (EU) funded ANEMOS project, a number of models including Prediktor, 1 

Previento and AWPPS, were benchmarked and a standardization approach was developed [58 and 59]. A 2 

number of the key findings were that Kalman filters decrease NWP systematic error. Forecasts for 3 

offshore wind farms appear to have similar performance results to those for flat terrain on-shore wind 4 

farms and that none of the models could perform better than the others for each test case or look-ahead 5 

time. Another benchmarking study was carried out by the Asociación Empresarial Eólica (AEE) in Spain 6 

to study the effects of terrain and model selection [60]. 7 

 8 

3.0 Current Research Activities and Future Advances 9 

Most wind power forecasting models study ‘regular’ wind conditions. The EU funded project called 10 

‘Safewind’ aims to improve wind power prediction over challenging and extreme weather periods and at 11 

different temporal and spatial scales [61]. Development activities are on-going to reduce error in wind 12 

power prediction, to improve regionalized wind power forecasting for on-shore wind farms and to derive 13 

methods for wind power prediction for offshore wind farms. It is possible that the use of ensemble and 14 

combined weather prediction methods together may enhance forecasting. 15 

 16 

If the error in wind power forecasting and prediction is reduced then electricity markets can trade with 17 

more certainty. Contract errors as a function of time in electricity markets can be as high as 39% for a 18 

forecasting lead time of 4 hours [62]. Gubina et al (2009) [63] presents a new tool called the WILMAR 19 

and ANEMOS scheduling MeThodology (WALT) to reduce the number of thermal generators on stand-20 

by or in reserve using the probability of generation outages and load shedding are system reliability 21 

criteria instead of generation adequacy based solely on generation outage. The wind and load forecast 22 

errors are modeled using a Gaussian stochastic variable approach. However, in another study it was found 23 

that the prediction errors do not satisfy the Kolmogorov-Smirnov test for normal distribution [64]. In 24 

Ramìrez and Carta [65], it was shown that, the use of autocorrelated (and thus not independent) 25 

successive hourly mean wind speeds, though invalidating all of the usual statistical tests, has no 26 

appreciable effect on the shape of the pdf estimated from the data. 27 

 28 

Offshore wind farms pose more of a challenge in terms of accurate wind power forecasting because the 29 

environment is typically flat and smooth with very few obstacles so changes in wind speed and thermal 30 

effects are felt more acutely than on land as weather fronts pass over the wind farm [66]. A review of 31 
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published data has gleaned very little knowledge of methods in use for offshore wind power prediction. 1 

There are ambitious plans to develop large offshore wind farms (e.g. Horns Rev, Denmark, Arklow Bank, 2 

Ireland and Hornsea, UK). Watson et al [67] discusses some of the issues associated with offshore wind 3 

farm prediction, including: 4 

 Current forecasting and prediction models are designed for on-shore environment and still have 5 

errors, 6 

 Resource assessment is difficult due to completely different conditions, offshore is vast, flat and 7 

smooth (with a variable roughness) and thus weather fronts are felt more acutely than on land. 8 

Therefore thermal effects, wake affects and coastal land mass effects are amplified. 9 

 Poor availability of meteorological data to validate NWP outputs for these offshore locations. 10 

 11 

Current indications of best practice involve adapting existing models and using CFD adjusted for the 12 

maritime conditions. To illustrate the difficulty of accurate prediction of offshore wind, a ‘nowcast’ (i.e. 13 

zero time horizon) is included in Figure 2 for comparison purposes, and it can be seen that the RMSE 14 

exceeds that of many onshore forecasts [68]. The increase in prediction error as time horizons become 15 

longer can be observed, and it is also apparent that wind speed prediction models produce lower errors 16 

than models, which attempt to predict wind power outputs. 17 

 18 

4.0 Discussion & Conclusion 19 

One of the ultimate goals of every wind power prediction model is to estimate the wind power output as 20 

early and as accurately as possible. Wind power will become more attractive for system and market 21 

operators as NWP model accuracy improves and as easier to use forecasting techniques are developed. 22 

Wind power prediction tools are invaluable because they enable better dispatch, scheduling and unit 23 

commitment of thermal generators, hydro plant and energy storage plant and more competitive market 24 

trading as wind power ramps up and down. Overall accurate wind power prediction reduces the financial 25 

and technical risk of uncertainty of wind power production for all electricity market participants. When 26 

smart grid technology and intelligent load management techniques (such as controlled water and space 27 

heating and chilling, and electric vehicle charging) are deployed, integration of wind power will become a 28 

more straightforward task. Many aspects of existing grid systems, conventional thermal generation and 29 

the management of the power system are circa 70 years old, whereas large-scale adoption of wind energy 30 

has only occurred in just the last 15 years. Furthermore, a more diverse generation portfolio mix, which 31 
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includes energy storage plant, off-shore wind, wave and tidal will also make wind power integration less 1 

operationally intensive for system operators. 2 

 3 

In conclusion, the extensive body of literature has demonstrated that research; development and activity 4 

in wind power forecasting are very active areas and are delivering results for generators, power system 5 

operators and market operators. The rapid expansion of wind generation capacity in the past 15 years has 6 

created demand for advances in wind forecasting techniques. Improvements in NWP, driven by advances 7 

in the affordability and power of computing technology, have resulted in greater accuracy by enabling the 8 

use of more sophisticated parameterizations and finer meshes. Continuing innovations in statistical and 9 

machine learning prediction techniques have also paid dividends, particularly for forecasting on very 10 

short term and short term timescales. Hybrid methods are delivering some of the benefits of both NWPS 11 

(in terms of accuracy over medium term time horizons) and of statistical and machine learning techniques 12 

(in terms of better time resolution and better representation of winds at local scales). Further increases in 13 

wind energy penetration of power systems, with the associated issues of managing wind variability, are 14 

likely to drive future developments in wind forecasting technology, and the current plans to hugely 15 

increase offshore wind capacity will necessitate model improvements in this area. 16 

 17 
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Figure 1. Actual and Short Term Forecast Total System Wind Power Generation on the 10th January 2011 on the Republic of 

Ireland System (data provided by Eirgrid). 
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Figure 2 Some Prediction Errors (as percentage RMSE) as a Function of Forecast Horizon from different studies (Black markers 

indicate wind power generation prediction models, whereas grey markers indicate wind speed prediction models) 
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Table 1 Some Wind Power Forecasting & Prediction Models 

Model Name Developer(s) Method Some geographical locations of 

applications 

Prediktor L. Landberg at Risø, Denmark Physical Spain, Denmark, Republic of Ireland, 

Northern Ireland, France, Germany, 

USA, Scotland & Japan 

WPPT Eltra/Elsam collaboration with Informatics and 

Mathematical Modelling at Danmarks Tekniske Universitet 

(DTU), Denmark 

Statistical Denmark, Australia, Canada, 

Republic of Ireland, Holland, 

Sweden, Greece & Northern Ireland 

Zephyr Risø & IMM ay DTU, Denmark Hybrid Denmark & Australia 

Previento  Oldenburg University Hybrid Germany, Northern Ireland 

e Wind TM  True Wind Inc., USA Hybrid USA 

Sipreólico University Carlos III, Madrid, Spain & Red Eléctrica de 

Espaňa 

Statistical Spain 

WPMS Institut für Solare Energieversorgungstechnik (ISET), 

Germany  

Statistical Germany 

WEPROG J. Jørgensen & C. Möhrlen at University College Cork Hybrid Ireland, Denmark and Germany 

GH Forecaster Garrad Hassan Statistical Greece, Great Britain & USA 

AWPPS École des Mines, Paris Statistical Crete, Madeira, Azores & Ireland 

LocalPred  

& RegioPred 

M. Perez at Centro Nacional de Energias Renovables 

(CENER) and Centro de Investigaciones Energéticas, 

Medioambientales y Tecnalógicas, Spain (CIEMET) 

Hybrid Spain and Ireland 

Alea Wind  Aleasoft at the Universitat Polytécnica de Catalunya, Spain 

(UPC) 

Statistical Spain 

SOWIE Eurowind GmbH, Germany Physical Germany, Austria & Switzerland 

EPREV Instituto de Engenharia de Sistemas e Computadores do 

Porto (INESC), Instituto de Engenharia Mecânica e Gestão 

Industrial (INEGI) and Centro de Estudos de Energia Eólica 

e Escoamentos Atmosféricos (CEsA) in Portugal 

Statistical Portugal 

Scirocco Aeolis Forecasting Services, Netherlands Hybrid Netherlands, Germany & Spain 
 

 

 



Please cite this paper as: 
Foley, A. M. et al. (2012) Current Methods and Advances in Forecasting of Wind Power Generation. Renewable Energy 37 (1-8) doi: 
10.1016/j.renene.2011.05.033 

 

Page 21 of 22 

Table 2 Commonly-used Error Measures 

Measure Formula Purpose 

Bias 

Bias k = ke  = 

TN

1





N

t t
kt

e
1

 

 where NT = number of prediction errors for each 

look-ahead time k for the considered time 

horizon 

Bias signifies if the method over-estimates or 

under-estimates the forecast variable. It gives 

low results for statistical methods. If MOS are 

used in physical methods it also gives low 

results. It does not indicate the level of skill of 

the forecast method. 

MSE 

MSE k = ke  = 

TN

1





N

t t
kt

e
1

2)(  

MSE expose the contribution of positive and 

negative errors to the lack of accuracy. Random 

and systematic errors influence MSE. 

RMSE 

RMSE k = kMSE  = 




N

t t
kt

T

e
N 1

2)(
1

 

RMSE is easier to interpret it is expressed in the 

same units as the forecasted variable. 

SDE 

SDE k = 
)1(

][
1

2








pN

ee
N

t

k
t

kt

 

SDE is a guesstimate of the error distribution. 

Therefore only random errors are a factor in 

SDE. 

Skill Score 

Imp
)(

)()(
)(

k

kk
k

ref

ref
ref







  

 where Imp = the improvement with respect to, 

γref (k) = value for the reference approach and γ 

(k) = value for the advanced approach, for time 

horizon k. 

Skill score can use MAE, RMSE or SDE 

including the normalized versions of all three. 

The result is often changed to a percentage by 

multiplying by 100 and presenting it as a 

percentage improvement on the result of the 

reference approach. If the results are always less 

than 100, the forecast is very accurate. 
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Table 3 Global & Regional NWP Models 

 

 

 

 

Name Developer(s) Type 

Global Forecast System (GFS)  National Oceanic and Atmospheric Administration (NOAA), US Global 

Action de Recherche pour la Petite Echelle et la 

Grande Echelle (ARPEGE) 

Météo-France (METEO FRANCE) Global 

Global Meteorological Model (GME) Deutscher Wetterdienst (DWD), Germany Global 

Global Environmental Multi-scale Model (GEM) Recherche en Prévision Numérique (RPN), Meteorological Research 

Branch (MRB), and the Canadian Meteorological Centre (CMC) 

Global 

Navy Operational Global Atmospheric Prediction 

System (NOGAPS) 

United States Navy (USN) Global 

Intermediate General Circulation Model (IGCM) NCAS Centre for Global Atmospheric Modelling, University of Reading, 

United Kingdom (UK) 

Global 

Unified Model (UM) Met Office, UK Global 

Integrated Forecast System (IFS)  

Note uses the same code as ARPEGE 

European Centre for Medium-Range Weather Forecasts (ECMWF), 

England 

Global 

GSM Japan Meteorological Agency (JMA) Global 

Global Analysis and Prediction (GASP)  Bureau of Meteorology, Australia Global 

High Resolution Limited Area Model (HiRLAM) Current members include: Danmarks Meteorologiske Institut (DMI), 

EESTI Meteoroloogia Ja Hüdroloogia Insitut (EMHI), Ilmatieteen Laitos 

(FMI), Veðurstofa Íslands (VI), Met Éireann, Koniklijk Nederlands 

Meteorologisch Instituut (KNMI), Meteorologisk instutt (met.no), 

Agencia Estatal de Meteorología (AEMET) and  Swedish Meteorological 

and Hydrological Institute (SMHI) 

Regional 

Lokal-modell (LM) DWD, Germany Regional 

ALADIN Météo-France with a consortium of16 European partners Regional 

Mesoscale Model 5 (MM5) Mesoscale Prediction Group in the Mesoscale and Microscale 

Meteorology Division, National Center for Atmospheric Research 

(NCAR) 

Regional 

MSM and a number of Ensemble models Japan Meteorological Service Regional 

Weather Research and Forecasting (WRF) Model A collaboration in the US, which includes NCAR, the National Oceanic 

and Atmospheric Administration (National Center for Environmental 

Prediction (NCEP) and the Forecast Systems Laboratory (FSL)), the Air 

Force Weather Agency (AFWA), the Naval Research Laboratory (NRL), 

the University of Oklahoma and the Federal Aviation Administration 

(FAA) 

Regional 

Consortium for Small-Scale Modelling (COSMO) A collaboration of 6 European met services led by the Federal Office of 

Meteorology and Climatology MeteoSwiss 

Regional 


