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Abstract

Quantum waveguides are one of the key components in the developement of

quantum technologies that experienced a new surge in popularity in recent years.

In quantum computers, quantum particles have to be moved between different

sites on a quantum chip through waveguides. The progressive miniaturization

of quantum chips requires the waveguides to follow certain paths and so they

need to be bent in order to be accomodated onto the chip. If the bending is

too abrupt, instabilities are introduced in the system, possibly causing reflection

and consequently data loss. This difficulty is usually overcome by adopting

the adiabatic approach: the parameter representing the bending needs to vary

gently along the waveguide, to prevent disruptive effects. This method, however,

cannot be applied in many settings, in particular the ones that need a high degree

of compactness. Thus, a new approach that would take into account all the

different requirements is needed. “Shortcuts to Adiabaticity” (STA) offers the

right platform to improve on adiabatic processes and in this thesis we will apply

a protocol based on STA to maximize particle transmission fidelity in geometries

where the adiabatic approach cannot be employed.
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Chapter 1

Introduction

Quantum computing is a relatively novel approach that utilises quantum fea-

tures, such as state entanglement and superposition, with the purpose of imple-

menting a system able to outperform classical computers [1–4]. The importance

of quantum computers resides on the fact that they can run algorithms capa-

ble of solving computational problems - deemed to be too time-demanding to

be carried out by classical computers - in a reasonable time [5]. Consider for

example the Shor algorithm [6], which has been demonstrated to exponentially

speed up the factoring of an integer, compared to algorithms implemented on a

classical computer.

The building block of quantum computing is the qubit [7, 8], the unit of infor-

mation that can be considered as the quantum counterpart of the classical bit.

In classical computing, a bit is a logical state that can assume one of only two
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values. It is the smallest unit of information and it can be encoded in various

physical systems that exist in either of two dinstinct states (for example two

distinct voltage levels in an electrical circuit) and which are usually identified by

0 and 1. Furthermore, logic operations can be performed on a single bit as well

as on several bits to execute calculations.

Correspondingly, a qubit is any state vector in a two-dimensional Hilbert space,

hence we can write a general state as linear combination of two basis vectors.

The basis is usually determined by the measurement process but usually the

computational basis is used: the two basis vectors are denoted as |0〉 and |1〉.

A pure qubit is any coherent superposition of the two basis vectors and it is

of the form α |0〉 + β |1〉 where α and β are two complex numbers such that

|α|2 + |β|2 = 1. A single qubit can be manipulated with quantum gates,

mathematically identified by unitary operators that preserve the norm of the

qubit and can be represented by 2×2 matrices. Take for example the NOT gate,

the truth table for which is - in analogy with the classic logic gate - |0〉 → |1〉

and |1〉 → |0〉. So, for a general qubit

α |0〉+ β |1〉 NOT−−−→ α |1〉+ β |0〉 (1.1)

and we can identify the NOT gate with a matrix X that acts on the vector’s

components according to

X

α
β

 =

β
α

 . (1.2)
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So the matrix X can be written as

X ≡

0 1

1 0

 . (1.3)

The unitarity property differentiates quantum gates from their classic coun-

terparts as every unitary operator is by definition invertible, meaning every

quantum gate is reversible by nature, in contrast with classic logic gates. This

property is rooted in the fact that the physical realization of a gate is an experi-

mental setup described by a Hamiltonian acting on a qubit for a specific amount

of time. The Hamiltonian, according to the Schrödinger equation, generates the

time evolution operator which is by definition unitary.

A class of important processes carried out on a single qubit is the measure-

ment: considering a general normalized state α |0〉 + β |1〉, a measurement in

the computational basis {|0〉 , |1〉} collapses the state yielding exclusively |0〉 or

|1〉 as results, with probability |α|2 and |β|2 respectively. More generally, we

can choose any orthogonal basis {|v〉 , |w〉} and measure in that basis, by rewrit-

ing our state as |ψ〉 = α′ |v〉 + β′ |w〉 and the outcome can be |v〉 or |w〉 with

probability |α′|2 and |β′|2 respectively.

It is also possible to combine multiple qubits to exploit a peculiar quantum trait,

termed entanglement. Let us take, for simplicity, a state formed only by two

qubits and we call the respective underlying Hilbert spaces HA and HB with

|i〉A, |i〉B with i = 0, 1 their respective computational bases. The combination
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of the two qubits is a state vector in the tensor product space HA⊗HB and the

usual choice for the basis is given by the collection of pure states of the form

|i〉A⊗|j〉B. We can use a more compact notation writing |i〉A⊗|j〉B as |ij〉 so, for

example, the vector |0〉A⊗|1〉B is written as |01〉. These four basis states can be

written as tensor product of the component system, in contrast with entangled

states where the two qubits cannot be described independently from each other,

and cannot be factored. Notable examples of entangled states are the so-called

Bell states, defined as

|Φ〉± =
1

2
(|00〉 ± |11〉)

|Ψ〉± =
1

2
(|01〉 ± |10〉).

(1.4)

Entangled states are crucial in quantum computation as they make possible

applications like quantum teleportation [9–11] and superdense coding [12–14].

These processes are impossible to realize with classical bits and they promise to

dramatically improve comunication speed and security.

There are various physical implementations of quantum computers as the infor-

mation carried by a qubit can be encoded in any two level system, be it photon

polarization [15] or the spin of a particle [16], or indeed the internal state of a

neutral atom [17].

For the remainder of this work we will focus on the latter. Similarly to classic

computers, we would like to have a central processing unit (CPU) where

operations are performed on a qubit, and a register to store the result of the
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calculations. The transmission from the processing region to the memory is

achieved by means of waveguides [18]: these are potential wells where the

qubits are constrained to move along a preferred axis. The passage is of vital

importance: it needs to leave the qubit unperturbed to avoid distortion of infor-

mation but on the other hand, the passage has to be fast enough to minimize

decoherence effects which otherwise would cause loss of information. Further-

more, we need just the right amount of flexibility, as the path between the CPU

and the memory can be intricate.

To reach this goal, we need quantum techniques to control the system. These

need to be stable against error propagation, but at the same time they need to

be fast as we want to mitigate decoherence effects arising from the interaction

between the state and the environment. Shortcuts to Adiabaticity (STA) [19, 20]

meet all the aforementioned features. STA are a collection of protocols designed

to drive a system via control of external parameters. In this thesis we want to

employ Shortcuts to Adiabaticity to design waveguides capable of channeling

particles in a stable and controllable fashion.

This work structure can be summarized as follows:

• chapter 2 will review the theoretical background required to model a qubit

interacting with an electromagnetic field. We will start by giving a geo-

metrical representation of the qubit via the Bloch sphere and proceed by

describing the interaction Hamiltonian between light and a qubit. This will
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lead to the definition of the Rabi frequency, as well as providing the tools

to introduce optical lattices that can themselves be exploited to produce

waveguides. The chapter is closed by the description of two experimental

implementations of how quantum optical waveguides are obtained via the

optical lattice approach.

• Chapter 3 will outline the Shortcuts to Adiabaticity technique. Firstly, the

adiabatic theorem will be stated and demonstrated. Subsequently, Short-

cuts to Adiabaticity will be introduced and we will describe the counter-

diabatic and the invariant-based inverse engineering methods. Finally we

will conclude by showing two applications of the aformentioned procedures

to the same physical system.

• In chapter 4 we will turn our attention to quantum waveguides, starting

from a straight waveguide in two dimensions and defining the associated

free-particle Hamiltonian. We will then change the geometry of the sys-

tem, effectively bending the waveguide, applying a smooth transformation

that is nothing more than a change of coordinates. The change of co-

ordinates will be reflected in the form assumed by the Hamiltonian that

will transform accordingly and a curvature-induced effective potential will

arise.

From chapter 5 onwards, we will make use of the concepts explained in previous

chapters. In particular, we will apply the Shortcuts to Adiabaticity techniques

to the tranformed Hamiltonian with the aim of optimizing the curvature to mini-
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mize reflection, thus allowing the particle to be transmitted along the waveguides

unperturbed. In particular the chapters will be structured as follows:

• in chapter 5 we will start with a review of the approach by F. Impens, R.

Dubosq and D. Guèry-Odelin [21] where a classical mechanics inverse engi-

neering method is used as a starting point to tailor an optimised curvature

profile. We will then try to further extend this method and examine the

robustness of the obtained curve.

• Chapter 6 will focus on the quantum aspect of this problem: we will employ

the results obtained in chapter 5 to evaluate the fidelity of the shape of

the waveguide when a quantum particle is involved in the process. In

particlular we will outline the computational methods used to numerically

solve the corresponding Schrödinger equation and assess the validity of the

resulting profile of the waveguide.

• Finally, in chapter 7, we will provide a summary to this thesis and an

outlook to future work.

A quick remark about the notation: we will use the caret superscript ˆ to

identify both operators and normal unit vectors and its meaning will be evident

from the context. The arrow superscript ~ will be used to distinguish vector

functions from operators with more than one component, but in both cases

the boldface style will be used, to remark the fact that we are dealing with

mathematical objects with more than one component. Finally, we will use the

7



Newton’s notation when taking the derivative of a function with respect to the

dependent variable. We will write
.
f or

..
f for the first and second derivative

respectively. In particular, the dependent variable would be either time (t) or

the arc length (s), depending on the context.
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Chapter 2

Atomic Quantum Optics

Many physical realizations of quantum computers rely on the manipulation of

neutral atoms by laser light. In this implementation, qubit information is en-

coded into two internal electronic states and lasers with specific wavelength are

employed to control them [22–24]. In the following sections we will review the

underlying theory required to understand the interaction between an atom and

light. In particular, we will focus on a two-level atomic quantum system and

on how to give a geometric representation of every qubit as an unit vector on

a Bloch sphere. We will then turn our attention and explain how an electro-

magnetic field interacts with a two-level system. This argument will be covered

following the semi-classical approach given by Rabi in 1937 [25] which led to the

discovery of the then so-called Rabi Oscillation. Finally, we will conclude with

a review of optical lattices, how they have been implemented in experiments and

how they can be used as quantum waveguides.
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2.1 Two level system

Even the simplest atom - Hydrogen - has a complex electronic energy structure.

In many physical processes, however, only some energy levels are involved, thus

an approximation is often performed in order to make the whole framework

easier to work with. An atomic state can be represented by a vector in a Hilbert

space H, the evolution of which is governed by the Hamiltonian ĤA and its

eigenvectors {|ψn〉} form an orthonormal basis for H. It follows that ĤA can be

rewritten as1

ĤA =
∑
n

~ωn |ψn〉 〈ψn| (2.1)

where ~ωn is the eigenvalue corresponding to the nth eigenvector.

In many systems, only two levels play a significant role in the process. They are

usually called the ground and the excited state and are generally labelled |0〉

and |1〉 respectively.

Let ~ω be the energy separation between the two states and suppose they are

centered around some reference energy E0, then we can write

ĤA |0〉 = (E0 −
1

2
~ω) |0〉 ,

ĤA |1〉 = (E0 +
1

2
~ω) |1〉 .

(2.2)

We would like to remark that this formalism can be employed for every system

with two levels, wheter it is a 1
2

spin particle or the electronic state of an atom.

1We assume discrete eigenvalues in order to simplify the notation
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In the next sections we will give explicit expressions for ĤA, but first we need to

rewrite the state and give it a more geometrical representation.

2.1.1 Bloch sphere

Every pure state is a unit vector and can hence be written as a combination of

the two basis vectors as

|ψ〉 = c1 |0〉+ c2 |1〉 , (2.3)

where c1, c2 are complex numbers such that |c1|2 + |c2|2 = 1.

Since c1, c2 ∈ C we can write them using the Euler formalism

c1 = ρ1e
iφ1 ,

c2 = ρ2e
iφ2 ,

(2.4)

where φ1, φ2, ρ1, ρ2 ∈ R. So we can write

|ψ〉 = c1 |0〉+ c2 |1〉

= ρ1e
iφ1 |0〉+ ρ2e

iφ2 |1〉

= eiφ1
(
ρ1 |0〉+ ρ2e

i(φ2−φ1) |1〉
)
.

(2.5)

Two vectors in a Hilbert space are equivalent up to an overall phase that can be

set freely i.e. |ψ〉 ∼ |ψ〉 eiξ. So by setting ξ = φ1 we obtain

|ψ〉 = ρ1 |0〉+ ρ2e
i(φ2−φ1) |1〉 . (2.6)

11



Figure 2.1: Bloch sphere showing a unit vector |ψ〉 and the two angles that
identify it.

The quantity φ2 − φ1 is the relative phase between the two basis states. By

naming φ = φ2−φ1, we can check that the normalization constrain is satisfied if

we take an angle θ such that ρ1 = cos(θ/2) and ρ2 = sin(θ/2) and we can finally

write the most general pure state as

|ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉 . (2.7)

The two variables (θ, φ) can be also interpreted as colatitude and longitude in

spherical polar coordinates and they specify a point on the surface of the unit

R3 ball as shown in figure 2.1. We can see how every pure state is uniquely

identified by the couple (θ, φ), provided θ ∈ [0, π] and φ ∈ [0, 2π). In particular

the two basis states are the two poles of the sphere. The evolution of a state

12



can then be visualized as a trajectory over the surface of the Bloch sphere. It is

possible to extend this argument also to mixed states, which can be represented

via density matrices. In this case, though, the state can be pictured as a point

that is not bound to lie on the surface anymore, but it can be inside the sphere

as well, i.e. it is part of the ball in R3.

2.1.2 Two level Hydrogen atom

We will now give more physical meaning to the two-level atom encountered earlier

and we will show how to use the formalism in a real situation. Specifically, we

will deal with a Hydrogen atom composed of an electron and a proton, where

the time independent Hamiltonian can be written as

Ĥ |ψ〉 =

[
−

p̂2
p

2mp

− p̂2
e

2me

− e2

4πε0

1

|~rp −~re|
,

]
|ψ〉 (2.8)

where p̂p, p̂e are the momentum operators - in position representation - for the

proton and electron respectively, defined as p̂ := i~ ~∇ with ~∇ gradient operator

expressed in Cartesian coordinates. Moreover, mp,me refer to proton and the

eletcron masses, while ~rp,~re are their position vectors and e is the elementary

charge. Finally, ε0 is the vacuum permittivity.

This problem has been extensively studied and solved exactly (see for example

[26]) by moving to the centre of mass frame of reference. Defining the new

13



variables as

M = mp +me, µ =
mpme

mp +me

,

P̂ = p̂e + p̂m, p̂ =
mp

M
p̂e +

me

M
p̂p,

~R =
me~re +mp~rp
me +mp

, ~r = ~rp −~re,

(2.9)

we obtain

Ĥ =
P̂2

2M
+

p̂2

2µ
− e

4πε0

1

|~r|
= ĤCM + ĤA, (2.10)

with

ĤCM =
P̂2

2M
,

ĤA =
p̂2

2µ
− e

4πε0

1

|~r|
.

(2.11)

The corresponding time-independent Schrödinger equation ĤA |ψ〉 = E |ψ〉 is

solved by obtaining two separable partial differential equations, the solution of

which is a combination of Leguerre polynomials and spherical harmonics. One

can show that the eigenstates can be labelled by three quantum numbers and

they satisfy the equation

ĤA |n, l,m〉 = En,l |n, l,m〉 . (2.12)

Hence the Hamiltonian can be rewritten as ĤA =
∑

n,l,mEn,l |n, l,m〉 〈n, l,m|.

It is customary to employ the two-level approximation by considering only two

eigenstates of the Hamiltonian and these will be referred to as |0〉 and |1〉.
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2.2 Coupling between two-level system and

light

The aim of this section is to investigate the behaviour of an atom when a beam

of laser light is shone on it. In many experiments the wavelength of the laser is

fine-tuned in such a way as to produce coupling between the ground and excited

state. This is the rationale behind the two-level approximation as explained in

the previous section.

2.2.1 Exact Interaction Hamiltonian

When taking into account the electromagnetic field, the effects of the field vec-

tor ~A(~r, t) and the scalar potential Φ(~r, t) need to be included in the Hamil-

tonian driving the system. The Hamiltonian of two particles interacting with an

electromagnetic field is well known in literature [26]: by applying the Coulomb

gauge we can write the Hamiltonian for the system as follows

Ĥ =
p̂e

2me

− e

me

~A(~re, t)p̂e +
e2

2me

~A2(~re, t)

+
p̂p

2mp

+
e

mp

~A(~rp, t)p̂p +
e2

2mp

~A2(~rp, t)−
1

4πε0

e2

|~re −~rp|
.

(2.13)
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We can use the same change of variables (2.9) to obtain the Hamiltonian in the

centre of mass frame of reference

Ĥ =
P̂2

2M
+

p̂2

2µ
− 1

4πε0

e2

|~r|
− e

me

~A
(
~R +

mp

M
~r, t
)(me

M
P̂ + p̂

)
+

e2

2me

~A2
(
~R +

mp

M
~r, t
)

+
e

mp

~A
(
~R− me

M
~r, t
)(mp

M
P̂ + p̂

)
+

e2

mp

~A2
(
~R− me

M
~r, t
)
.

(2.14)

2.2.2 Dipole approximation

By assuming the dimensions of the atom are much less than the wavelength of

the impinging laser (which is usually the case in experiments), we can apply the

dipole approximation, by virtue of which we can rewrite

~A
(
~R +

mp

M
~r, t
)
≈ ~A

(
~R− me

M
~r, t
)
≈ ~A(~R, t) (2.15)

and obtain the Hamiltonian of a Hydrogen atom coupled to an external electro-

magnetic field in the dipole approximation as

Ĥdip =
P̂2

2M
+

p̂2

2µ
− 1

4πε0

e2

|~r|
− e

µ
~A(~R, t)p̂ +

e2

2µ
~A2(~R, t)

=
P̂2

2M
+ ĤA −

e

µ
~A(~R, t)p̂ +

e2

2µ
~A2(~R, t),

(2.16)

16



where ĤA is given by (2.11). By means of some mathematical manipulation, we

finally obtain

Ĥdip =
P̂2

2M
+ ĤA + (−e~r) · ~E(~R, t) =

P̂2

2M
+ ĤA + Ĥint (2.17)

where Ĥint = (−e~r) · ~E(~R, t) with ~E(~R, t) the electric field.

We now want to solve the Schrödinger equation relative to the Hamiltonian Ĥdip.

This corresponds to finding a function |ψ(t, ~R, ~R)〉 that satisfies the Schrödinger

equation

Ĥdip |ψ(~R,~r, t)〉 = i~
∂

∂t
|ψ(~R,~r, t)〉 . (2.18)

The
P̂2

2M
term in 2.17 will be relevant in the following discussion as we will deal

with an atom moving through a laser.

2.2.3 Two level approximation

So far, we have not made any assumption about the infinitely many eigenstates

of the Hamiltonian. We want now to simplify the problem even further by

considering only two levels of the Hydrogen spectrum, eigenfuctions of the form

φn(~r) (note they depend only on the variable ~r) with n = 0, 1. The states are

labelled accordingly |0〉 and |1〉. These two functions form an orthonormal basis

for the respective Hilbert space, hence the identity matrix can be written as

1̂ =
1∑
i=0

|i〉 〈i| = |0〉 〈0|+ |1〉 〈1| . (2.19)
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Now the following chain of equalities holds.

Ĥint = 1̂Ĥint1̂ =
∑
k,j

|j〉 〈j| (−e~r) |k〉 〈k| ~E(~R, t). (2.20)

Let us focus on the 〈j| (−e~r) |k〉 term, which is an integral of the form

〈j| (−e~r) |k〉 =

∫
R3

d3~rφ∗j(~r)(−e~r)φk(~r). (2.21)

We can clearly see that when j = k, the integral becomes

∫
R3

d3~r |φj(~r)|2(−e~r), (2.22)

which is identically 0 as the function |φj(~r)|2(−e~r) is a function with odd parity,

hence the integral over R3 is zero. So the only remaining non-zero terms are the

ones with j 6= k and expanding (2.20) we obtain

Ĥint = [|0〉 〈0| (−e~r) |1〉 〈1|+ |1〉 〈1| (−e~r) |0〉 〈0|] ~E(~r, t)

= [−~µ0,1 |0〉 〈1| − ~µ0,1 |1〉 〈0|] ~E(~r, t).

(2.23)

In this case ~µ0,1 = 〈0| e~r |1〉 is the element of the dipole operator, the matrix

representation of which is

Ĥint =

 0 −~µ0,1
~E(~R, t)

−~µ∗0,1~E(~R, t) 0

 . (2.24)
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2.2.4 Rotating wave approximation

We will now assume an incident monochromatic light of frequency ωl hitting a

two-level atom, where the energy gap between ground and excited state is ~ω

and, for simplicity, we set the energy of the first level to 0. Thus, we can split

the full Hamiltonian as Ĥdip = Ĥ0 + Ĥ1 with

Ĥ0 = ~ωl |1〉 〈1| (2.25)

Ĥ1 =
P̂2

2M
− ~(ωl − ω) |1〉 〈1|+ Ĥint, (2.26)

We define ∆ := ωl − ω as the detuning frequency. The respective electric field

function is

~E(~R, t) = ~E0(~R)ei(
~k~R−ωlt) + ~E0(~R)∗ei(−

~k~R+ωlt) (2.27)

and we can rewrite the interaction Hamiltonian (2.24) as

Ĥint = −~µ0,1

(
~E0(~R)ei(

~k~R−ωlt) + ~E0(~R)∗ei(−
~k~R+ωlt)

)
|1〉 〈0|

− ~µ∗0,1
(
~E0(~R)ei(

~k~R−ωlt) + ~E0(~R)∗ei(−
~k~R+ωlt)

)
|0〉 〈1|

= −~
(

Ω(~R)e−iωlt + Ω̃(~R)eiωlt
)
|1〉 〈0| − ~

(
Ω̃(~R)∗e−iωlt + Ω(~R)∗eiωlt

)
|0〉 〈1| ,

(2.28)

where we defined the so called Rabi frequencies as follows:

Ω(~R) :=
~µ0,1 · ~E0(~R)ei

~k~R

~
, Ω̃(~R) :=

~µ0,1 · ~E0(~R)∗e−i
~k~R

~
. (2.29)
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We need now to move to the interaction picture via an unitary transformation

Ĥ1,I = Ût Ĥint Û
†
t , (2.30)

where the unitary operator Ût is of the form

Ût = eiĤ0t/~, (2.31)

recalling that Ĥ0 is time-independent. The Hamiltonian Ĥ1 expressed in the

interaction picture becomes then

Ĥ1,I =
P̂2

2M
− ~∆ |1〉 〈1| − ~

(
Ω(~R) + Ω̃(~R)ei2ωlt

)
|1〉 〈0|

− ~
(

Ω̃∗(~R)e−i2ωlt + Ω∗(~R)
)
|0〉 〈1| .

(2.32)

Assuming the frequency of the electric field is close to the transition frequency

ω (usually the case in experiments), we have ∆ � ωl + ω. This implies we

can neglect the e±i2ωlt term as it oscillates much faster than the other term,

averaging to zero on any appreciable time scale. So the Hamiltonian with the

rotating wave approximation becomes then

Ĥ1,I =
P̂2

2M
−~∆ |1〉 〈1|−~Ω(~R) |1〉 〈0|−~Ω∗(~R) |0〉 〈1| ≡ P̂2

2M
−~

2

 0 Ω(~R)

Ω∗(~R) 2∆

 .
(2.33)

We have finally found the Hamiltonian of a two-level system interacting with a

fast oscillating laser (rotating wave approximation) and with wavelength much
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bigger than the size of the atom (dipole approximation).

2.3 Atom in 2 dimensions

Lasers have been used extensively to produce optical waveguides by tuning the

intensity and the frequency of the beam that in turn will result in different

Hamiltonians (2.33). We will be dealing with planar waveguides in the next

chapters, so it is natural to study the behaviour of an atom moving through a

2D region where laser light is shone. We will see in particular how the intensity

of the laser can give rise to peculiar effects.

2.3.1 Rabi oscillation

We will start with a laser shining perpendicularly on a plane with constant

intensity throughout the region. These two conditions cause the Rabi frequencies

to become space independent:

• the perpendicularity feature means ~k · ~R = 0,

• constant intensity implies ~E0(~R) = ~E0.

The Hamiltonian of the system then becomes

Ĥ1,I = − ~2

2M

∂2

∂x2
− ~2

2M

∂2

∂y2
− ~

2

 0 Ω

Ω∗ 2∆

 . (2.34)
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To solve this problem, we need to find a vector that satisties

i~
∂

∂t

ψ0(x, y, t)

ψ1(x, y, t)

 = Ĥ1,I

ψ0(x, y, t)

ψ1(x, y, t)

 . (2.35)

Since the laser intensity is constant all over the space, we can use an ansatz of

the form ψ0

ψ1

 = f(x, y, t)

χ0(t)

χ1(t)

 (2.36)

and inserting it back into (2.35) we obtain two conditions

i~
∂f

∂t
= − ~2

2M

∂2f

∂x2
− ~2

2M

∂2f

∂y2
, (2.37)

i~
∂

∂t

χ0

χ1

 = −~
2

 0 Ω

Ω∗ 2∆


χ0

χ1

 . (2.38)

Focusing only on the second equation and recalling that

χ0

χ1

 = χ0(t) |0〉+ χ1(t) |1〉 , (2.39)

we can see how |χ0(t)|2 is the probabilty to find the atom in state |0〉 at time t.

And similarly for |χ1(t)|2, giving the pobability of finding the atom in quantum

state |1〉.

The solution of equation (2.38) for ∆ ∈ R, assuming the system starts in the
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ground state for t = 0 i.e. χ1(0) = 0, is given by

χ0(t) = ei∆t/2
[
cos

(
ΩR

2
t

)
− i ∆

ΩR

sin

(
ΩR

2
t

)]
, (2.40)

χ1(t) = ei∆t/2 i
Ω∗

ΩR

sin

(
ΩR

2
t

)
(2.41)

where

ΩR =
√
|Ω|2 + ∆2. (2.42)

So the respective probabilties are

|χ0(t)|2 = cos2

(
ΩR

2
t

)
+

∆2

Ω2
R

sin2

(
ΩR

2
t

)
, (2.43)

|χ1(t)|2 =
|Ω|2

Ω2
R

sin2

(
ΩR

2
t

)
. (2.44)

We can also check that if we shine a laser with frequency equal to the energy

gap of the two states (∆ = 0), the system will show an oscillatory behaviour.

On the other hand, if ∆� |Ω| equation (2.43) is identically equal to 1, meaning

the system will remain in the ground state unperturbed.

2.3.2 Red and blue detuning

In the next example, we will consider a laser arriving perpendicularly onto the xy

plane and the intensity of which changes along the plane. For these conditions,

the Rabi frequencies change accordingly and we have

Ω(x, y) :=
~µ0,1 · ~E0(x, y)

~
. (2.45)
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The Schrödinger equation then becomes

i~
∂

∂t

ψ0(x, y, t)

ψ1(x, y, t)

 =

− ~2

2M

∂2f

∂x2
− ~2

2M

∂2f

∂y2
− ~

2

 0 Ω(x, y)

Ω∗(x, y) 2∆



ψ0(x, y, t)

ψ1(x, y, t)

 .

(2.46)

This equation can be rewritten in its component form

i~
∂

∂t
ψ0 = − ~

2M

∂2ψ0

∂x2
− ~

2M

∂2ψ0

∂y2
− ~

2
Ω(x, y)ψ1, (2.47)

i~
∂

∂t
ψ1 = − ~

2M

∂2ψ1

∂x2
− ~

2M

∂2ψ1

∂y2
− ~

2
Ω∗(x, y)ψ0 − ~∆ψ1. (2.48)

Assuming now |∆| � 1, equation (2.48) simplifies, giving us the following rela-

tion

ψ1 ≈ −
1

2∆
Ω∗(x, y)ψ0 (2.49)

and inserting this result into equation (2.47) we obtain

i~
∂ψ0

∂t
≈ − ~

2M

∂2ψ0

∂x2
− ~

2M

∂2ψ0

∂y2
+

~
4∆
|Ω(x, y)|2ψ1 =

P 2

2M
+ V (x, y)ψ1 (2.50)

where

V (x, y) =
~|Ω(x, y)|2

4∆
(2.51)

and is called the effective potential. We can see that V (x, y) has only a

mechanical effect on the system i.e. it will not enable any state transition. In

fact, following relation (2.49), it is clear how the excited state has almost zero

probability of being populated.
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Moreover, from (2.51), we have three different possibile outcomes depending on

the detuning frequency

• ωl > ω =⇒ V (x, y) > 0 the potential is repulsive, termed blue detuning,

• ωl < ω =⇒ V (x, y) < 0 the potential is attractive, giving red detuning,

• ωl ≪ ω or ωl ≫ ω =⇒ V (x, y) ≈ 0 the laser has no effect on the system.

2.4 Optical Waveguides

2.4.1 Plane waves Optical Lattice

We have already shown how a laser can be employed to create both an attractive

or a repulsive potential in section 2.3.2. By overlapping two counter-propagating

laser beams we can then produce a standing wave, where an atom can be trapped:

take for example two plane waves of the form (we assume constant intensity and

polarization for simplicity)

~E(x, t) =
~E0

2
e±ikx−iωlt. (2.52)

The superposition effect of the two interferring waves produces a total electric

field, the amplitude of which can be expressed as

~ET (x, t) = cos(kx)Re{~E0e
−iωlt}. (2.53)
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Figure 2.2: Sketch of the optical 1D lattice produced by two identical counter-
propagating lasers. The purple sphere represents the particle that can be trapped
in every potential minimum.

As previously discussed, if the laser frequency ωl greatly differs from the tran-

sition frequency of the two-state atom ω, i.e. if |ω − ωl| = |∆| � 1, we get an

effective potential

V (x) =
~|Ω0|2

4∆
cos2(kx) (2.54)

with Ω0 =
~µ·~E∗

0

~ . The potential (2.54) is periodic and each minimum is effectively

a trap. Figure 2.2 shows how a neutral atom can be stored in the evenly spaced

traps generated by the overlapping lasers.

We will now extend our argument to examine the effects of lasers in two di-

mensions. Let us consider four lasers shining perpendicularly to each other as

shown in figure 2.3(a). They are two pairs of counter-propagating lasers and

for simplicity we assume they lie on the xy plane and they are perpendicular to
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(a) (b)

Figure 2.3: Optical lattice formed by superimposing lasers. In figure (a) the
diagram of the incoming lasers while figure (b) is a sketch of the resulting lattice
of straight tubes. Figures are from [27].

each other. We can see that the in this situation the particle possesses only one

spacial degree of freedom, being forced to move linearly along one direction and

it is clear how this condition is equivalent to a linear waveguide.

Supposing the relative phase between the lasers on the x direction and the ones

along y is φ, we can describe the model by means of the following equations

(again assuming same intensity and wavevector)

~Ex(x, t) =
~E0

2
e±ikx−iωlt, (2.55)

~Ey(y, t) = eiφ
~E0

2
e±iky−iωlt (2.56)

and - similarly to (2.53) - the total electric field is

~ET (x, y, t) = <{~E0e
−iωlt[cos(kx) + eiφ cos(ky)]}. (2.57)

27



Finally the optical potential can be written as

V (x, y, t) =
1

4∆~

(
~µ1,2

~ET (x, y, t)
)(

~µ1,2
~ET (x, y, t)

)∗
=

1

4∆~
|~µ1,2

~E0|2
(
cos2(kx) + cos2(ky) + eiφ cos(ky) + e−iφ cos(ky)

)
=

~
4∆
|Ω0|2

(
cos2(kx) + cos2(ky) + 2 cos(φ) cos(ky)

)
.

(2.58)

An interference factor 2 cos(φ) cos(ky) arises, depending on the relative phase be-

tween the two fields and so the choice of φ is crucial in order to obtain different

optical lattices, as shown in figure 2.4. From (2.58) we can see that the interfer-

ence factor 2 cos(φ) cos(ky) is equal to zero for φ = nπ/2 , n ∈ Z corresponding

to a lattice that shows the same periodicity in both directions.

The mathematical approach to three dimensions is basically an extension of the

argument as presented earlier in this section, with the notable difference that,

in this case, the particle is confined to one point. This setting corresponds to a

crystal lattice and it can be used to simulate real crystal properties by employing

only laser light.

2.4.2 Painted potential

The previous section gave a simple - yet useful - description on the approach

adopted to generate an optical potential using plane waves with constant in-

tensity over a certain region. While the lattice generated is regular and can

be fine-tuned, it does not allow the flexibility required to obtain waveguides of
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φ = 0 φ =
π

3

φ =
5

2
π φ =

π

2

Figure 2.4: Effects on the potential for different relative phase φ between the
two couples of incoming lasers. It is important to remark that for φ = π/2 the
lattice is periodic in both x and y direction with the same periodicity.

a particular shape. It is possible, however, to utilize lasers of various shapes,

directions and intensities to produce the desired waveguide.

Recently, painted potentials have been adopted in many experimental setups

[28–31], to give more freedom and new options to design ad hoc potentials. We
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will give an overview of two different systems to produce the painted potential.

In the first one, a single optical tweezer is moved rapidly to generate a time-

avereged potential, while in the second, a Digital Mirror Device (DMD) is used

to produce an array of optical tweezers to form an array of traps.

Time averaged optical potential

Optical tweezers are tightly focused laser beams used to trap and move atoms

by exerting a net force on their electric dipole - similar to what have been

explained in section 2.4.1 - thus enabling one to manipulate particles. In [32],

rapidly moving optical tweezers have been used to form waveguides. In these

experiment, 87Rb atoms are released in a sheet of light that inhibits movement

in one direction. Subsequently, optical tweezers are driven at a frequency greater

than the response frequency of the atoms so that the effective trap is stationary

with respect to the characteristic timescale of their evolution (see figure 2.5).

The motion of the optical tweezers paints a time-averaged potential and the

trajectory can be designed in order to obtain the desired waveguide geometry.

Figure 2.5 shows how the tweezers are moved in order to force particles to move

along a waveguide.

DMD-controlled optical tweezers

A different approach to optical tweezers can be found in [33]. The key component

in this experimental approach is the digital mirror device (DMD), an instrument

consisting of an array of thousands of micromechanical mirrors (MM). Each MM
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Figure 2.5: Depiction of the tightly focused optical tweezers acting on the sheet of
light to produce a time-averaged optical dipole potential with waveguide shape.
Figure from [32].

can be independently switched between two angles: when light impinges on a

MM it can be reflected in two different directions, depending on the MM angle.

Every MM can thus be considered as an on-off switch and collectively the DMD

can be set up in order to produce a so-called holographic mask. Interposing

the DMD between the trapping beam and the target particle generates an array

of traps, the position of which on the plane depends on the chosen holographic

mask, as in figure 2.6. This technique shows a great amount of freedom and

flexibility in relation to the geomerty of the trapping array and it can clearly be
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Figure 2.6: Collection of trapping arrays. For each case the holographic masks
produced by the DMD, the simulated trapping potentials and fluorescence images
of the trapped atoms are shown. Figure extracted from [33].

customised to produce waveguides.

Having reviewed all the relevant properties of qubits and the methods of manip-

ulating them, we will focus our attention next on the theoretical approaches that

will exploit the Shortcuts to Adiabaticity (STA) protocols, in order to optimize

quantum waveguides. In the next chapter we will give an overview of the STA

approach and then apply it to quantum waveguides.
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Chapter 3

Shortcuts to Adiabaticity

Shortcuts To Adiabaticity (STA)[19, 20, 34] is a novel blend of different tech-

niques aiming to control the dynamics of a quantum system without relying

on the adiabatic approximation. Adiabatic processes require that the time-

dependent driving varies slowly with respect to the intrinsic response of the

system. STAs want to achieve the same outcomes reached with adiabatic pro-

tocols but in a shorter time and with greater robustness, so as to minimize

the negative effects of the interaction between the system and the environment

(namely decoherence and error accumulation). Some of the STA techniques rely

on specific theoretical tools and will be presented later. Still, the common de-

nominator involves finding tunable parameters that can be adjusted to produce

the desired final state.

In the next sections two of the most prominent STA protocols will be presented
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and covered in some detail, as well as presenting some examples of their appli-

cation. First,though, we need to prove the Adiabatic theorem.

3.1 Adiabatic theorem

The adiabatic theorem was proven by Max Born and Vladimir Fock in 1928

[35] and describes how a system evolves under the action of a slowly varying

time-dependent Hamiltonian. In its original version, it was stated as:

“A physical system remains in its instantaneous eigenstate if a given perturbation

is acting on it slowly enough and if there is a gap between the eigenvalue and the

rest of the Hamiltonian’s spectrum.”

We assume no degeneracy in the Hamiltonian spectrum, i.e. for every time, there

exists a unique eigenvector for a given eigenvalue:

If ∃ |n(t)〉 , |m(t)〉 : Ĥ(t) |n(t)〉 = E(t) |n(t)〉

and Ĥ(t) |m(t)〉 = E(t) |m(t)〉 ∀ t =⇒ |n(t)〉 = |m(t)〉 .
(3.1)

In addition, we assume that the set {|n(t)〉} forms a basis for the underlying

Hilbert space at every time. Given these prescriptions, we can write the eigen-

value equation as

Ĥ(t) |n(t)〉 = En(t) |n(t)〉 , (3.2)
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and the Schrödinger equation is thus given by

i~
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 . (3.3)

For a constant Hamiltonian, the eigenstates would have acquired a phase of the

form eiEnt/~. In this case, however, we have En(t) and we need to introduce the

dynamic phase:

eiθn(t), where θn(t) = −1

~

∫ t

0

dτEn(τ). (3.4)

We can now write the general state as

|ψ(t)〉 =
∑
n

cn(t)eiθn(t) |n(t)〉 (3.5)

and substituting it into (3.3) we get

i~
∂

∂t
|ψ(t)〉 = i~

∂

∂t

(∑
n

cn(t)eiθn(t) |n(t)〉

)

= i~

(∑
n

.
cn(t)eiθn(t) |n(t)〉 − cn(t)

i

~
En(t)eiθn(t) |n(t)〉 cn(t)eiθn(t) ∂

∂t
|n(t)〉

)

=
∑
n

i~.
cn(t)eiθn(t) |n(t)〉+ cn(t)eiθn(t)En(t) |n(t)〉+ i~cn(t)eiθn(t) ∂

∂t
|n(t)〉 ,

(3.6)
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and

Ĥ(t) |ψ(t)〉 = Ĥ(t)

(∑
n

cn(t)eiθn(t) |n(t)〉

)
=
∑
n

cn(t)eiθn(t)En(t) |n(t)〉 . (3.7)

So, combining equations (3.6) and (3.7), we obtain:

∑
n

i~.
cn(t)eiθn(t) |n(t)〉+

((((
(((

((((
(

cn(t)eiθn(t)En(t) |n(t)〉+ i~cn(t)eiθn(t) ∂

∂t
|n(t)〉

=

���
���

���
���

��∑
n

cn(t)eiθn(t)En(t) |n(t)〉,
(3.8)

and we are left with:

∑
n

��i~.
cn(t)eiθn(t) |n(t)〉+��i~cn(t)eiθn(t) ∂

∂t
|n(t)〉

=
∑
n

eiθn(t) .cn(t) |n(t)〉+ eiθn(t)cn(t)
∂

∂t
|n(t)〉 = 0.

(3.9)

We can now take the inner product between (3.9) and 〈m(t)| and exploit the

orthonormality to obtain:

0 =
∑
n

eiθn(t) .cn(t) 〈m(t)|n(t)〉+ eiθn(t)cn(t) 〈m(t)|
[
∂

∂t
|n(t)〉

]
=
∑
n

eiθn(t) .cn(t)δm,n + eiθn(t)cn(t) 〈m(t)| ∂
∂t
n(t)〉

= eiθm(t) .cm(t) +
∑
n

eiθn(t)cn(t) 〈m(t)| ∂
∂t
n(t)〉 .

(3.10)
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This allows us to write a differential equation for cm(t):

.
cm(t) = −

∑
n

ei(θn(t)−θn(t))cn(t) 〈m(t)| ∂
∂t
n(t)〉 . (3.11)

We need now to understand what 〈m(t)| ∂
∂t
n(t)〉 is. Taking a derivative with

respect of time in (3.2) on both sides, we have

d

dt

(
Ĥ(t) |n(t)〉

)
=

d

dt
(E(t) |n(t)〉)

.
Ĥ |n(t)〉+ Ĥ

∂

∂t
|n(t)〉 =

.
En(t) |n(t)〉+ En(t)

∂

∂t
|n(t)〉 .

(3.12)

And projecting onto 〈m(t)|, with m 6= n

〈m(t)|
.
Ĥ |n(t)〉+ 〈m(t)| Ĥ ∂

∂t
|n(t)〉 =

.
En(t) 〈m(t)|n(t)〉+ En(t) 〈m(t)| ∂

∂t
n(t)〉

〈m(t)|
.
Ĥ |n(t)〉+ Em(t) 〈m(t)| ∂

∂t
n(t)〉 = 0 + En(t) 〈m(t)| ∂

∂t
n(t)〉 .

(3.13)

We can finally rearrange (3.13) and get:

〈m(t)| ∂
∂t
n(t)〉 =

〈m(t)|
.
Ĥ |n(t)〉

En(t)− Em(t)
. (3.14)

Now by substituting this result into (3.11), we are left with

.
cm(t) = −cm(t) 〈m(t)| ∂

∂t
m(t)〉 −

∑
m6=n

ei(θn(t)−θn(t))cn(t)
〈m(t)|

.
Ĥ |n(t)〉

En(t)− Em(t)
. (3.15)

This is the exact solution of the problem and we can see that there is a non-zero
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probability of transition, by virtue of the second term of (3.15).

The adiabatic approximation amounts to neglecting the second part of (3.15)

and it can be applied when

〈m(t)|
.
Ĥ |n(t)〉

En(t)− Em(t)
≪ 〈m(t)| ∂

∂t
m(t)〉 ∼ Em

~
. (3.16)

From a physical standpoint, this requirement translates to the fact that the

frequency of variation of the Hamiltonian is negligible when compared to the

intrinsic timescale of the whole system. Imposing this approximation on (3.15)

we obtain

.
cm(t) = −cm(t) 〈m(t)| ∂

∂t
m(t)〉 =⇒ cm(t) = eiγm(t)cm(0) (3.17)

where γm(t) = i

∫ t

0

dτ 〈m(τ)| ∂
∂τ

m(τ)〉 . (3.18)

We can finally prove the claim as expressed at the beginning of the chapter if we

can show that in fact γm is real, thus conferring an overall phase to the initial

state, hence forbidding transitions to different states. We can easily highlight this

fact recalling that for every t the state is normalized. Hence the time derivative
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has to be zero:

0 =
∂

∂t
〈n(t)|n(t)〉 =

[
∂

∂t
〈n(t)|

]
|n(t)〉+ 〈n(t)|

[
∂

∂t
|n(t)〉

]
=

(
〈n(t)|

[
∂

∂t
|n(t)〉

])∗
+ 〈n(t)|

[
∂

∂t
|n(t)〉

]
=⇒

(
〈n(t)|

[
∂

∂t
|n(t)〉

])∗
= −〈n(t)|

[
∂

∂t
|n(t)〉

]
,

(3.19)

meaning γm is real.

3.2 Inverse engineering

The term inverse engineering refers to an approach geared toward designing

a Hamiltonian that will meet certain requirements regarding the dynamics of

the system under consideration. Let us focus on closed linear quantum systems

of which we need to describe their evolution in time. Recalling the Schrödinger

equation, every state |ψ〉 needs to obey the relation

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 ∀t. (3.20)

Now, we can employ the Schrödinger picture and write every state at a certain

time t as a time evolution of the initial state |ψ(0)〉 in the following way

|ψ(t)〉 = Û(t) |ψ(0)〉 . (3.21)

39



Here Û(t) is a unitary operator i.e. Û(t)Û †(t) = Û †(t)Û(t) = 1̂ and we can

subsitute it back in (3.20), obtaining

i~
∂

∂t
Û(t) |ψ(0)〉 = ĤÛ(t) |ψ(0)〉 . (3.22)

Since |ψ(0)〉 is a constant state and the above equation has to hold for every

state, (3.22) can be rewritten in term of the time evolution operator as

i~
∂

∂t
Û(t) = ĤÛ(t) −→ i~

.
Û(t) = ĤÛ(t). (3.23)

By applying Û †(t) on both sides of (3.23) and recalling the unitarity of Û(t), we

have

i~
.
Û(t) = ĤÛ(t)

i~
.
Û(t)Û †(t) = ĤÛ(t)Û †(t)

i~
.
Û(t)Û †(t) = Ĥ 1̂

i~
.
Û(t)Û †(t) = Ĥ.

(3.24)

So in the end we have a time-dependent Hamiltonian of the form

Ĥ(t) = i~
.
Û Û †. (3.25)

Our goal is now to design a unitary time evolution operator Û(t) of the form

Û(t) =
∑
n

|n(t)〉 〈n(0)| (3.26)
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where the states |n(t)〉 form a complete basis that need to satisfy a time-

dependent Schrödinger equation driven by the Hamiltonian (3.25). In the com-

mon framework the Hamiltonian is set at initial and final time: this imposes

some boundary conditions that fix |n(t)〉 at the beginning and at the end of the

process. On the other hand, there is still freedom to choose the states that will

evolve between the states at initial and final time. Different techniques have

been developed according to the choice of set of some instantaneous eigenstates.

In particular

• in the counterdiabatic driving approach the quantum states |n(t)〉 are

instantaneous eigenstates of a reference Hamiltonian Ĥ0(t),

• in invariant-based engineering, |n(t)〉 are eigenstates of the invariant

of an assumed Hamiltonian form.

In the following sections those two methods will be covered in detail.

3.3 Counterdiabatic Driving

The counterdiabatic paradigm [36–39] aims to design an inverse-engineered Hamil-

tonian Ĥ(t), starting from a reference Hamiltonian Ĥ0(t) so that the final dynam-

ics follows exactly the instantaneous eigenstates of Ĥ0(t). We will follow Berry’s

[39] approach to explain the procedure. Recalling section 3.1, if a Hamiltonian
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Ĥ0(t) that can be written as

Ĥ0(t) =
∑
n

En(t) |n(t)〉 〈n(t)| , (3.27)

varies ”slowly” in time, we can apply the adiabatic approximation and claim

that every state, starting from an eigenstate |n(0)〉, will remain the same nth

eigenstate of Ĥ0 at every time t and it will acquire an extra time-dependent

phase and can hence be written as

|ψn(t)〉 = eiζn(t) |n(t)〉 , (3.28)

where

ζn(t) = −1

~

∫ t

0

dτEn(τ) + i

∫ t

0

dτ 〈n(τ)| ∂
∂τ

n(τ)〉 . (3.29)

We would like to highlight that these states are approximate solutions of an

approximate problem. What we would like to find is a Hamiltonian Ĥ(t) for

which the states |ψn(t)〉 are exact solutions for Ĥ(t)

i~
∂

∂t
|ψn(t)〉 = Ĥ(t) |ψn(t)〉 . (3.30)

We need to define a time evolution operator Û(t) such that the relation (3.25)

is satisfied. A clever choice is to set

Û(t) =
∑
n

eiζn(t) |n(t)〉 〈n(0)| , (3.31)
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and we are now in a position to calculate i~
.
Û Û †. We will split the calculation

into several parts

i~
.
Û(t) = i~

∂

∂t

∑
n

eiζn(t) |n(t)〉 〈n(0)|

= i~
∑
n

i
.
ζn(t)eiζn(t) |n(t)〉 〈n(0)|+ eiζn(t) | ∂

∂t
n(t)〉 〈n(0)| .

(3.32)

We need to evaluate
.
ζn(t), by differentiating (3.29) (it is just the application of

the fundamental theorem of calculus)

.
ζn(t) = −1

~
En(t) + i 〈n(t)| ∂

∂t
n(t)〉 , (3.33)

and by substituting it in (3.32), we get

∑
n

eiζn(t)

[
|n(t)〉En(t) 〈n(0)| − i~ 〈n(t)| ∂

∂t
n(t)〉 |n(t)〉 〈n(0)|+ i~ | ∂

∂t
n(t)〉 〈n(0)|

]
.

(3.34)

Now, the only term left to calculate is the adjoint of Û(t)

Û †(t) =
∑
n

e(iζn(t))∗(|n(t)〉 〈n(0)|)† =
∑
n

e−iζ
∗
n(t) |n(0)〉 〈n(t)| =

∑
n

e−iζn(t) |n(0)〉 〈n(t)| .
(3.35)

It is easy to check that ζ∗n(t) = ζn(t). The first integrand is real by definition,

while we have already proved in (3.19) that 〈n(t)| ∂
∂t
n(t)〉 ∈ R ∀ |n(t)〉.
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Combining (3.32) and (3.3), we finally obtain

∑
n

eiζn(t)e−iζn(t)

[
|n(t)〉En(t) 〈n(0)| − i~ 〈n(t)| ∂

∂t
n(t)〉 |n(t)〉 〈n(0)|

+i~ | ∂
∂t
n(t)〉 〈n(0)|

]
·
[
|n(0)〉 〈n(t)|

]
=
∑
n

|n(t)〉En(t) 〈n(t)|+ i~
[
| ∂
∂t
n(t)〉 〈n(t)| − 〈n(t)| ∂

∂t
n(t)〉 |n(t)〉 〈n(t)|

]
,

(3.36)

where in the second step we used the fact that the states are normalized for

every t (t = 0 in this case). By comparison, we can rewrite (3.36) as

Ĥ(t) = Ĥ0(t) + ĤCD(t), (3.37)

where

ĤCD(t) = i~
[
| ∂
∂t
n(t)〉 〈n(t)| − 〈n(t)| ∂

∂t
n(t)〉 |n(t)〉 〈n(t)|

]
(3.38)

is the counterdiabatic Hamiltonian which was being sought.

3.3.1 Application of the Counterdiabatic driving

We will now give an example of the application of the counterdiabatic approach.

In particular we will show how to retrieve a counterdiabatic Hamiltonian in a

two level system. We will follow the arguments as outlined in [40].

The most general operator in a system with two levels can be written, in matrix
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form, as follows

Ĥ0(t) =
~
2

 −∆(t) |Ω(t)|eiα(t)

|Ω(t)|e−iα(t) ∆(t)

 . (3.39)

Ĥ0(t) can describe a variety of different settings, be it the coupling between

two atomic states with a laser or be it a particle with spin 1/2 in a magnetic

field. Regardless of the underlying physical system, we can diagonalize (3.39)

and recover the two eigenvalues relative to the eigenstates |λ±〉

Ĥ0(t) |λ±〉 = ±~Ω̃

2
|λ±〉 where Ω̃ =

√
∆2 + |Ω|2. (3.40)

The instantaneous eigenstates have the form

|λ−(t)〉 = − sin

(
θ(t)

2

)
eiα(t)/2 |0〉+ cos

(
θ(t)

2

)
e−iα(t)/2 |1〉 ,

|λ+(t)〉 = cos

(
θ(t)

2

)
eiα(t)/2 |0〉+ sin

(
θ(t)

2

)
e−iα(t)/2 |1〉 ,

(3.41)

where

• θ(t) ≡ arccos

(
−∆(t)

Ω̃

)
,

• |0〉 , |1〉 are the canonical basis vector

1

0

 and

0

1

.
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Following (3.37) we can write ĤCD(t) = Ĥ
(1)
CD(t) + Ĥ

(2)
CD(t) with

Ĥ
(1)
CD(t) = i~

∑
n

|.n〉 〈n| ≡ ~
2

 − .
α −ieiα

.
θ

ie−iα(t)
.
θ

.
α

 ,
Ĥ

(2)
CD(t) = −i~

∑
n

〈n(t)|.n(t)〉 |n(t)〉 〈n(t)| ≡ ~
2

cos[θ]
.
α

 cos[θ] eiαsin[θ]

e−iαsin[θ] −cos[θ]

 .
(3.42)

3.4 Invariant-based engineering

The dynamical invariants approach [34, 41–43] is inspired by the work published

by Lewis and Riesenfeld [44], where for a time-dependent Hamiltonian Ĥ(t), an

invariant is a self-adjoint operator Î(t) which satisfies

dÎ

dt
=
∂Î

∂t
+

1

i~
[Î , Ĥ] = 0. (3.43)

We can work up the eigenstates for the Hamiltonian starting from the eigenstates

of Î(t). Suppose {|n(t)〉} is a set of non-degenerate eigenstates for Î(t) such that

Î(t) |n(t)〉 = εn(t) |n(t)〉 , (3.44)

we can show that the eigenvalues {εn(t)} are time-independent by differentiating

(3.44) (the time dependence is omitted)

∂Î

∂t
|n〉+ Î

∂

∂t
|n〉 =

∂εn
∂t
|n〉+ εn

∂

∂t
|n〉 . (3.45)
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Applying (3.43) to |n〉, we get

0 = i~

[
∂Î

∂t
+ [Î , Ĥ]

]
|n〉 =

∂Î

∂t
|n〉+ ÎĤ |n〉 − εnĤ |n〉 , (3.46)

and taking the scalar product with a state 〈m| yields

0 = i~ 〈m|∂Î
∂t
|n〉+ 〈m| ÎĤ |n〉−〈m| εnĤ |n〉 = i~ 〈m| ∂Î

∂t
|n〉+(εm−εn) 〈m|Ĥ|n〉 .

(3.47)

If m = n we have

〈m|∂Î
∂t
|n〉 = 0. (3.48)

Now taking the scalar product of (3.45) with |n〉, we obtain

〈n|∂Î
∂t
|n〉+ 〈n|Î ∂

∂t
|n〉 = 〈n|∂εn

∂t
|n〉+ εn 〈n|

∂

∂t
n〉

〈n|∂Î
∂t
|n〉+

��
�
��
�

εn 〈n|
∂

∂t
|n〉 =

∂εn
∂t
〈n|n〉+

��
�
��
�

εn 〈n|
∂

∂t
|n〉

〈n|∂Î
∂t
|n〉 =

∂εn
∂t

=⇒ ∂εn
∂t

= 0.

(3.49)

We want now to find a connection between the solutions of the invariant Î and

those of the Hamiltonian Ĥ. To achieve this goal, we will rewrite equation (3.45)

with the condition (3.49)

(εn − Î)
∂

∂t
|n〉 =

∂Î

∂t
|n〉 . (3.50)
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The scalar product with |m〉 gives

〈m|(εn − Î)| ∂
∂t
n〉 = 〈m|∂Î

∂t
|n〉

(εn − εm) 〈m| ∂
∂t
n〉 = 〈m|∂Î

∂t
|n〉 .

(3.51)

We can rewrite the second term of the previous relation using (3.47) to see that

i~ 〈m| ∂Î
∂t
|n〉 = −(εm − εn) 〈m|Ĥ|n〉

〈m| ∂Î
∂t
|n〉 =

1

i~
(εn − εm) 〈m|Ĥ|n〉 .

(3.52)

Finally we can subsitute (3.52) into (3.51) obtaining

i~(εn − εm) 〈m| ∂
∂t
n〉 = (εn − εm) 〈m|Ĥ|n〉 . (3.53)

If m 6= n it is clear to see that

i~ 〈m| ∂
∂t
n〉 = 〈m|Ĥ|n〉 , (3.54)

but we cannot make the same statement if m = n because if i~ 〈n| ∂
∂t
|n〉 =

〈n|Ĥ|n〉 would hold, we can deduce that the state |n〉 is a solution of the

Schrödinger equation i~
∂

∂t
|n〉 = Ĥ(t) |n〉. However, we are still free to choose

an overall phase αn(t) arbitrarily, and define a new set of states

|nα〉 = eiαn(t) |n〉 . (3.55)
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These new states will still be eigenstate for Î(t) but at the same time they will

make the relation (3.52) true for every n. We will show that this requirement cor-

responds to solving a first-order differential equation where αn(t) is the unkown

variable, by examining the following relation

i~ 〈nα|
∂

∂t
nα〉 = 〈nα|Ĥ|nα〉

i~ 〈e−iαn(t)n| ∂
∂t
eiαn(t)n〉 = 〈e−iαn(t)n|Ĥ|eiαn(t)n〉

i~eiαn(t) 〈n|eiαn(t)

[
i
dαn
dt

+
∂

∂t

]
|n〉 = e2iαn(t) 〈n|Ĥ|n〉

i~����e2iαn(t)

(
〈n|diαn

dt
|n〉+ 〈n| ∂

∂t
n〉
)

=��
��

e2iαn(t) 〈n|Ĥ|n〉 .

(3.56)

Rearranging the terms, we finally obtain a first-order differential equation

~
dαn
dt

= 〈n|i~ ∂
∂t
− Ĥ|n〉 , (3.57)

and the integral form for the phase is given by

αn(t) =
1

~

∫ t

0

dτ 〈n|i~ ∂

∂τ
− Ĥ|n〉 . (3.58)

The overall phase αn(t) acquired from the state is often called Lewis-Riesenfeld

phase.

A general solution for the Schrödinger equation can finally be expressed as

ψ(t) =
∑
n

cn |n〉α =
∑
n

cne
iαn(t) |n〉 , (3.59)
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where the coefficients cn are time-independent. This approach has been used in

its early days to solve the system for a known Hamiltonian. STA try to reverse

this idea by designing the Hamiltonian starting from a prescribed state evolution.

3.4.1 Application of the invariant-based inverse

engineering

We will apply the invariant engineering protocol to the two level system, as in

[42], described by the same Hamiltonian (3.39), albeit written in terms of its real

and complex part as follows

Ĥ0(t) =
~
2

 −∆(t) ΩR(t)− iΩI(t)

ΩR(t) + iΩI(t) ∆(t)

 (3.60)

and the invariant operator can be set as given by

Î(t) =
~
2

 cos(θ(t)) sin(θ(t))e−iα(t)

sin(θ(t))eiα(t) − cos(θ(t))

 . (3.61)
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The operator can be diagonalized, obtaining two eigenvectors |φ+(t)〉 and |φ−(t)〉

with respective eigenvalues ±~
2

such that

|φ+(t)〉 =

cos(θ/2)e−iα/2

sin(θ/2)eiα/2

 , (3.62)

|φ−(t)〉 =

 sin(θ/2)e−iα/2

− cos(θ/2)eiα/2

 (3.63)

In order to fulfill relation (3.43), the variables θ and α have to satisfy

.
θ = ΩI cos(α)− ΩR sin(α), (3.64)

.
α = −∆− cot(θ)

(
ΩR cos(α) + ΩI sin(α)

)
. (3.65)

As explained in section 3.4, we can write a general solution for the Hamiltonian

applying (3.59)

|Ψ(t)〉 = c+e
iκ+(t) |φ+〉+ c−e

iκ−(t) |φ−〉 , (3.66)

where c± are constant complex coefficients and κ± are the Lewis-Riesenfeld

phases, satisfying (3.58)

.
κ± =

1

~
〈φ±|i~

∂

∂t
− Ĥ0|φ±〉 . (3.67)

In particualar, we can set a pure state of the form

|ψ(t)〉 = |φ+(t)〉 e−iγ(t)/2 where γ(t) = −2κ+ = 2κ−, (3.68)
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and we can see that

.
γ =

1

sin(θ)
(cos(α)ΩR + sin(α)ΩI). (3.69)

We will employ the settings described up to this point to inverse engineer the

Hamiltonian in order to achieve a population inversion, i.e. we want to start in

a state

|ψ(0)〉 =

e−iα(0)/2

0

 e−iγ(0)/2, (3.70)

and end up in a state

|ψ(T )〉 =

 0

eiα/2

 e−iγ(T )/2, (3.71)

at the end of the process.

Assuming θ(t), α(t) and γ(t) are given and have to fulfill some boundary condi-

tions, we can invert (3.64) and (3.65), obtaining

ΩR = cos(α) sin(θ)
.
γ − sin(α)

.
θ, (3.72)

ΩI = sin(α) sin(θ)
.
γ + cos(α)

.
θ, (3.73)

∆ = − cos(θ)
.
γ − .

α. (3.74)

We hence have found a way to tune the real and imaginary part of the Raby

frequency ΩR, ΩI respectively, and the detuning frequency ∆ to achieve the
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desired transition.

This concludes our review of different STA techniques, in the next section we

will discuss how to mathematically define waveguides and how the free-particle

Hamiltonian changes according to the geometry of the system under considera-

tion.
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Chapter 4

Bent Quantum waveguides

Having described the STA techniques we want now to apply them to waveguides.

The aim of this chapter is to give a mathematical description of waveguides in

order to obtain the Hamiltonian of the system. The Hamiltonian will be the

reference upon which Shortcuts to Adiabaticity are based. In the remainder of

the work, we will restrict our attention to curved waveguides in two dimensions,

starting considering a straight patch and then introducing bending and calcu-

lating the effects of the curvature on the free-particle Hamiltonian. We assume

a harmonic transverse confinement with constant trapping frequency all along

the waveguide. Moreover, all the waveguides in this work will have two exter-

nal leads that need to be joined by a general curved patch as shown in figure

4.1. In the next sections we will give a geometric characterization of waveguides,

showing how they can be described in terms of differentiable curves. We will

then perform a change of coordinates moving from Cartesian to curvilinear co-
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Figure 4.1: Sketch of the prototype of waveguides we will encounter in this work:
two straight ends need to be connected by a curved section. Our aim is to design
the curve in order to meet all the constraints.

ordinates and finally we will calculate how this transformation is reflected in the

Hamiltonian of the system.

4.1 Straight waveguides

As prevously stated, the waveguides considered in this work are formed by two

external leads connected by a patch of general shape. Solving the Hamiltonian

in the straight regime will give solutions that can be used a reference upon

which base further calculations and also will provide boundary conditions the

wave functions inside the curved section needs to meet. Let us first consider a

straight 2-D waveguide in cartesian coordinates (x, y) with transverse trapping

of the form V (y) = 1
2
mω2y2, with ω constant along the curve.
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The Schrödinger equation of the confined particle is:

i~
∂

∂t
Ψ(x, y, t) = ĤΨ(x, y, t) =

[
− ~2

2m

∂2

∂x2
− ~2

2m

∂2

∂y2
+

1

2
mω2y2

]
Ψ(x, y, t).

(4.1)

Since the potential is time-independent, we can separate the wave function

into a product of two functions, looking for solutions of the form Ψ(x, y, t) =

Φ(t)ψ(x, y). Hence we are interested in solving the time-independent Schrödinger

equation

[
− ~2

2m

∂2

∂x2
− ~2

2m

∂2

∂y2
+

1

2
mω2y2

]
ψ(x, y) = Eψ(x, y). (4.2)

In equation (4.2), x and y are called longitudinal and transverse coordinates

and we can see that it is clearly separable with the solution being a product

of travelling waves with longitudinal wavenumber αn and normalized transverse

wave functions φn(y), which are solutions of the one-dimensional harmonic os-

cillator, with energy εn

ψn(x, y) = ei±αnxφn(y), (4.3)

φn(y) =
(mω
π~

)1/4 1√
2nn!

Hn(y)e−y
2/2, (4.4)

εn =

(
n+

1

2

)
~ω, αn =

√
k2 − εn, (4.5)

where Hn(y) is the Hermite polynomial of order n and k2 = 2E/~ω. We can see

from (4.5) that αn has to be a real number, otherwise the exponential function

in (4.3) will diverge. This condition is met only for k > εn for a certain n.
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Figure 4.2: Depiction of the potential of a straight 2-D waveguide and the relative
wave functionfor n = 0.

The situation is summarized in figure 4.2: we now have additional boundary

conditions the wave function needs to satisfy when entering and leaving the

curved section. In the next section we will build the mathematical framework

that will help us in rewriting the Hamiltonian of a bent waveguide.

4.2 Curved waveguides

A curved waveguide can be thought as a trap extending along a curve, with the

centre of the trap following its center. In this section we will start by exploring all

the relevant features of this curve, starting from different ways of parametrising

it and explaining how to define a new set of coordinates that define the curve.
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This will help us giving a coordinate transformation that will, in turn, transform

the Hamiltonian (4.2) producing an extra attractive potential term.

4.2.1 Arc length parametrisation

A curve in R2 can be defined parametrically in Cartesian coordinates, as a vector

function

~Γ : [a, b]→ R2 ~Γ : t 7→

ξ(t)
η(t)

 = ξ(t)x̂ + η(t)ŷ (4.6)

where [a, b] is an interval in R and x̂, ŷ are the standard unit vectors in the

xy directions of the two-dimensional Cartesian plane. For the remainder of the

work we will assume that ξ and η are continuosly differentiable functions and

that the curve is not self-intersecting. The definition (4.6) is the most general

parametrisation of a curve but the most useful one in this case is the arc length

parametrisation. The arc length is defined as follows:

s(t) :=

∫ t

0

dτ
∣∣∣∣∣∣ .~Γ(τ)

∣∣∣∣∣∣ =

∫ t

0

dτ

√ .
ξ(τ)2 +

.
η(τ)2 (4.7)

and we can invert this function to reparameterize the curve ~Γ(t)→ ~Γ(s). Even if

this parametrisation seems counterproductive, adding more complexity, we will

show that
∣∣∣∣∣∣ .~Γ(s)

∣∣∣∣∣∣ = 1.
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From equation (4.7) is clear that:

s(a) = 0

.
s(t) =

∣∣∣∣∣∣ .~Γ(t)
∣∣∣∣∣∣ > 0 from the fundamental theorem of calculus.

If we set L = s(b), s(t) is a continuous increasing function, which means it admits

an inverse s−1(t) : [0, L] → [a, b] and the arc length parametrisation is given by(
~Γ ◦ s−1

)
(t).

We can now evaluate the derivative exploiting the inverse calculus theorem:

d

dt

(
~Γ ◦ s−1

)
(t) =

.
~Γ(s−1(t))

d

dt
(s−1(t)) =

.
~Γ(s−1(t))
.
s(s−1(t))

=

.
~Γ(s−1(t))∣∣∣∣∣∣ .~Γ(s−1(t))

∣∣∣∣∣∣ . (4.8)

This will make the calculation easier when moving to the Frenet frame.

4.2.2 Frenet-Serret Formulation

Having a curve ~Γ(t), we can build a curvilinear frame (t̂, n̂) by taking t̂ to be the

unit vector tangent to the curve and subsequently defining n̂ as the unit vector

perpendicular to t̂ such that the couple (t̂, n̂) forms a orthonormal right-handed

oriented coordinate system. The tangent unit vector can be easily found to be:

t̂(t) =

.
~Γ(t)∣∣∣∣∣∣ .~Γ(t)

∣∣∣∣∣∣ =
1√ .

ξ(t)2 +
.
η(t)2

 .
ξ(t)

.
η(t)

 . (4.9)
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To find the vector perpendicular to t̂, we need to find a vector n̂ such that

t̂ · n̂ = 0 and impose the normalization. It is straightforward to take a vector of

the form: − .
η(t)
.
ξ(t)

 , (4.10)

so that the normalized vector is

n̂(t) =
1√ .

ξ(t)2 +
.
η(t)2

− .
η(t)
.
ξ(t)

 . (4.11)

As we saw in the previous section, the arc length parametrisation implies
∣∣∣∣∣∣ .~Γ(s)

∣∣∣∣∣∣ =

1, so we can simplify the expression of the coordinate frame axis as:

t̂(s) =

 .
ξ(s)

.
η(s)

 , n̂(s) =

− .
η(s)
.
ξ(s)

 . (4.12)

Moreover, we can see that the three vectors ~Γ, t̂ and n̂ have to obey to three

differential equations, the so called Frenet-Serret equations

d~Γ(s)

ds
= t̂(s),

dt̂(s)

ds
= γ(s)n̂(s),

dn̂(s)

ds
= −γ(s)t̂(s). (4.13)

The first one is trivial and it has already been proven. To obtain the remaining

two equations, we need to evaluate the derivatives of t̂ and n̂ with respect of the

s variable and recall that a vector resulting from the differentiation of another

vector is always perpendicular to the initial one. So for example, the derivation
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of t̂ yields:

d

ds

 .
ξ(s)

.
η(s)

 =

..
ξ(s)

..
η(s)

 . (4.14)

The vector
dt̂

ds
is perpendicular to t̂, therefore parallel to n̂ and can thus be

written as

(
dt̂(s)

ds
· n̂(s)

)
n̂(s) =

..
ξ(s)

..
η(s)


>

·

− .
η(s)
.
ξ(s)

 n̂(s) =

[ .
ξ(s)

..
η(s)−

..
ξ(s)

.
η(s)

]
n̂(s).

(4.15)

Finally, we can retrieve the second equation of (4.13) by setting

γ(s) :=
.
ξ(s)

..
η(s)−

..
ξ(s)

.
η(s), (4.16)

where γ(s) is called signed curvature of ~Γ(s). We can obtain similarly the

third Frenet-Serret equation by using the same argument for the derivative of n̂.

Every point ~P = (X, Y ) in R2 can now be described in terms of the new coordi-

nates (s, u) via the following coordinate trasformation:

~P(s, u) = ~Γ(s) + un̂(s),

X(s, u)

Y (s, u)

 =

ξ(s)− .
η(s)u

η(s) +
.
ξ(s)u

 . (4.17)

Having shown how to express the coordinate transformation from Cartesian to

curvilinear frame of reference, we are now ready to evaluate how this change of
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coordinates affects the Hamiltonian (4.2), in particular the kinetic energy terms

∂2

∂x2
and

∂2

∂y2
.

4.2.3 Hamiltonian in curvilinear coordinates

A waveguide that extends along a curve is conveniently described by means of

its axis. This induces the coordinate transformation (4.17) that modifies the

geometry of the system and consequently modifies the form of the Hamiltonian

(4.2). The trapping potential in curvilinear coordinates can be easily rewritten

as a quadratic function of the transverse coordinate u, while more calculation

needs to be undertaken in order to exprees the kinetic operator

T̂ := − ~2

2m

(
− ∂2

∂x2
− ∂2

∂y2

)
= − ~2

2m
∆ (4.18)

in the new frame of reference.

To evaluate how a differential operator acts in different coordinates, we need to

obtain the metric tensor G for the new system, which encapsulates the geometry

in this new frame of reference. In this case G assumes the form of a 2×2 matrix

with elements gij i, j = 1, 2 and it can be connected with the metric tensor E of

the system expressed in Cartesian coordinates via the following relation

G = J>E J, (4.19)
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where J is the Jacobian of the transformation, defined as:

J =


∂X

∂s

∂X

∂u

∂Y

∂s

∂Y

∂u

 =


.
ξ − ..

ηu − .
η

.
η +

..
ξu +

.
ξ

 . (4.20)

In this case also, the metric tensor E is nothing more that the identiy matrix

12, hence the new metric tensor can be easily calculated

G = J>J =

(1− uγ)2 0

0 1

 . (4.21)

The metric tensor G is diagonal as expected, considering that the Frenet-Serret

system is othonormal. Furthermore, it simplifies the calculation of the Laplacian

operator ∆ that can be expressed in the new coordinates using the following

relation

∆ =
1
√
g

∑
i

∂

∂xi

(√
g

gii

∂

∂xi

)
=

1
√
g

[
∂

∂s

(√
g

g11

∂

∂s

)
+

∂

∂u

(√
g

g22

∂

∂u

)]
, (4.22)

where g is the determinant of G, easily found to be (1− uγ)2.

We are finally ready to write the Laplacian operator in curvilinear coordinates

as:

∆ =
1

1− uγ

[
− ∂

∂s

(
1

1− uγ
∂

∂s

)
− ∂

∂u

(
(1− uγ)

∂

∂u

)]
. (4.23)

The change of coordinates affects also the way integrals are evaluated. In par-
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ticular, having a normalized wave function ψ(x, y):

∫
dxdy ||ψ(x, y)||2 =

∫
Det(J)dsdu ||ψ(s, u)||2 =∫

dsdu(1− γu) ||ψ(s, u)||2 ,
(4.24)

and we can see that it is convenient to use ψ(s, u) =
φ(s, u)√
1− uγ

.

Using the prescriptions mentioned above, we can now evaluate how the Hamilto-

nian changes. The calculations will be carried out with respect to each variable.

Dependence on u

Taking into account only the part of the Hamiltonian dependent o u, we obtain:

1

1− uγ
∂

∂u
(1− uγ)

∂

∂u

φ√
1− uγ

=
1

1− uγ
∂

∂u
(1− uγ)

(
γφ

2(1− uγ)3/2
+

1√
1− uγ

∂φ

∂u

)
=

1

1− uγ
∂

∂u

(
−γφ

2
√

1− uγ
+
√

1− uγ ∂φ
∂u

)
=

1

1− uγ

(
γ2φ

4(1− uγ)3/2
+
���

��
���γ

2
√

1− uγ
∂φ

∂u
−
���

��
���γ

2
√

1− uγ
∂φ

∂u
+
√

1− uγ∂
2φ

∂u2

)
=

γ2

4(1− uγ)2

φ√
1− uγ

+
1√

1− uγ
∂2φ

∂u2
.

(4.25)

Dependence on s
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We need to evaluate only the part dependent on the s variable:

1

1− uγ
∂

∂s

(
1

1− uγ

)
∂

∂s

φ√
1− uγ

=
1

1− uγ
∂

∂s

(
1

1− uγ

)(
u
.
γφ

2(1− uγ)3/2
+

1√
1− uγ

∂φ

∂s

)
=

1

1− uγ
∂

∂s

(
u
.
γφ

2(1− uγ)5/2
+

1

(1− uγ)3/2

∂φ

∂s

)
=

1

1− uγ

(
5

4

u2 .γ2φ

(1− uγ)7/2
+

u
..
γφ

2(1− uγ)5/2
+

2u
.
γ

(1− uγ)5/2

∂φ

∂s
+

1

(1− uγ)3/2

∂2φ

∂s2

)
=

(
5

4

u2 .γ2

(1− uγ)4
+

u
..
γ

2(1− uγ)3

)
φ√

1− uγ
+

1√
1− uγ

(
2u

.
γ

(1− uγ)3

∂φ

∂s
+

1

(1− uγ)2

∂2φ

∂s2

)
=

(
5

4

u2 .γ2

(1− uγ)4
+

u
..
γ

2(1− uγ)3

)
φ√

1− uγ
+

1√
1− uγ

(
∂

∂s

1

(1− uγ)2

∂φ

∂s

)
.

(4.26)

Eventually, by joining equations (4.25) and (4.26) we obtain:

∆

(
1√

1− uγ
φ(s, u)

)
=

1√
1− uγ

[
− ∂

∂s

1

(1− uγ)2

∂

∂s
− ∂2

∂u2
+ V (s, u)

]
φ(s, u) (4.27)

=
1√

1− uγ
Eφ(s, u), (4.28)

and we can see how the
1√

1− uγ
term can be cancelled out from equation (4.27)

and (4.28). Furthermore, V (s, u) is called induced potential given by:

V (s, u) := − γ2

4(1− uγ)2
− u

..
γ

2(1− uγ)3
− 5

4

u2 .γ2

(1− uγ)4
. (4.29)

To summarize: beginning with the time-independent Schrödinger equation in
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Cartesian coordinates (4.1), we moved to a different frame of reference, the

origin of which lies on a curve and obtained the Hamiltonian Ĥcurv in curved

coordinates

Ĥcurv :=
~2

2m

[
− ∂

∂s

1

(1− uγ)2

∂

∂s
− ∂2

∂u2
+ V (s, u)

]
+

1

2
mω2u2. (4.30)

A new attractive potential V (s, u) appears due to the change of geometry but

the form of the harmonic trapping is maintained as we can see from the last

term in (4.30).

Having shown how the geometry of the system is reflected in the Hamiltonian

and we are now ready to apply the STA approach in this particular setting.
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Chapter 5

Semi-classical Design of

Waveguide curvature

5.1 Introduction

In the previous chapters we gave an overview of quantum waveguides and char-

acterized the mathematical framework needed to describe the behaviour of a

particle in curved geometry.

In this chapter we will be presented with the following problem: two straight

ends separated by an angle α and our goal is to connect the two parts to enable

transmission, minimizing the transverse excitation of the outcoming particle.

The natural choice would be to have the two parts connected by an arc of a

circle, but we will show that a constant radius generates instabilities in the
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particle. To overcome this effects we will reverse engineer the curvature of the

bent section using a semi-classical approach introduced by Impens, Dubosq and

Guéry-Odelin in [21]. We will then try to expand this method even further in

order to optimize the performances of the waveguide.

In the next section, we will look at the reference case of a circular bend connecting

two straight ends.

5.2 Circular bend and adiabatic approach

As stated earlier, the simplest candidate to connect two straight sections forming

an angle α is a portion of a circle of radius R. We can set α = π/2, corresponding

to the situation depicted in figure 5.1. Recalling (4.30), we need a function of

the curvature γc(s) with respect of the arc length. The curvature is defined as

the inverse of the radius of the osculating circle at every point: γc(s) = 1/R(s).

In this case, the radius is constant, so the curvature is a step function of the

form

γc(s) =


1/R if s ∈ [0, Rα]

0 otherwise

, (5.1)

and the external potential is a sum of the trapping potential V⊥(u) and the

induced potential V (s, u) (4.29) that change accordingly, becoming

V⊥(u) + V (s, u) =
1

2
mω2u2 − (γc)

2

4(1− uγc)2
−
��

��
��
�u

..
γc

2(1− uγc)3
−
��

�
��

��5

4

u2 .
γc

2

(1− uγc)4
(5.2)
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Figure 5.1: Schematic picture of the straight ends connected by circular bend of
length Rπ/2 (a) with R = 10 µm and the relative curvature function in red (b).

Thus the whole Hamiltonian simplifies, yielding the following time-independent

Schrödinger equation:

[
− 1

(1− uγc)2

∂2

∂s2
− ∂2

∂u2
− γ2

4(1− uγc)2
+ V⊥(u)

]
ψ(s, u) = k2 |ψ(s, u)〉 . (5.3)

We want to note that this equation can be exactly solved if the harmonic trapping

is replaced by a well with hard walls. This approximation can be performed

assuming the trapping potential is sufficiently strong, effectively producing a

waveguide with hard walls, where V⊥(u) is zero inside the walls and infinite

outside. We can then apply the change of variable r ≡ 1 − γcu so that (5.3)

becomes [
1

r2

∂2

∂s2
+ γ2

c

∂2

∂r2
+

γ2
c

4r2

]
ψ(s, r) = −k2ψ(s, r)

∂2

∂s2
ψ(s, r) +

[
r2γ2

c

∂2

∂r2
+��r

2 γ
2
c

4��r2
− r2k2

]
ψ(s, r) = 0

(5.4)
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and we can separate the variables noting that the radial equation corresponds

to a Bessel equation and can be solved exactly with solutions of the form

ψl(s, r) =
1√
r
Sl(s)Υl(r) (5.5)

where Sl(s) is a periodic function and Υl(r) is a combination of Bessel and

Neumann functions. These functions need to meet boundary conditions, i.e. they

need to be continuously differentiable in the whole waveguide and in particular

at the junction between the straight and curved section. It has been shown by

Lin and Jaffe in [45] that for big curvatures, it is not possible to match the

internal solutions of the Schrödinger equation in the curved sections with the

corresponding solutions in the straight ends. On the other hand, it has been

proved that the system is solvable for small curvatures.

This results paved the way for a series of studies focusing on waveguides within

the small curvature approximation [46–48]: in these settings, the curvature func-

tion varies slowly and continuosly along the curve and its magnitude never in-

creases up to a critical level. This regime can be thought as an adiabatic ap-

proximation, with the arc length s acting as the time parameter and the whole

Hamiltonian changing as s progresses.

Having a wave packet of dispersion σ, the adiabatic conditions can be summa-

rized by:

σ |γ| � 1, σ

∣∣∣∣dγds
∣∣∣∣� 1, σ

∣∣∣∣ dγ

ds2

∣∣∣∣� 1. (5.6)
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Now let us go back to the harmonic trapping. Within these limits, the effective

potential V (s, u) becomes dominated by the first term and loses the dependency

from u, thus the total external potential becomes

V⊥(u) + V (s, u) ≈ V⊥(u) + V (s) =
1

2
mω2u2 − γ(s)2

4
. (5.7)

These constraints are very strict and cannot be applied in many experimental

setups. In the following sections we will try to overcome this limitations by

inverse engineering the shape of the waveguide: the curvature function will be

obtained by means of a classical argument and will be then used to solve the

Schrödinger equation.

We will start by reviewing the paper by Impens et al. [21] that sparked this

research.

5.3 Classical-based inverse engineering

We have already explained the effects caused by the discontinuity of the cur-

vature function: the discontinuity generates transverse excitation that, in turn,

will produce mixing between the transverse and longitudinal modes of the wave

function, hence reducing the fidelity of the whole process.

In the paper [21] of Impens, Dubosq and Guéry-Odelin, the key idea is to solve

the Newton’s equations in curved 2D geometry to explicitely find the expression

of the curvature in terms of the trajectory of the particle. The trajectory can then
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be freely chosen in order to meet the required boundary conditions. In particular,

these constraints are defined with the aim of minimizing the transverse excitation

at the end of the curve.

First, we will show how the Newton’s equations are affected by the change in

geometry.

5.3.1 Newton’s Equation in curved coordinates

As explained in chapter 4, given a curve ~Γ(s) we can define the curvilinear

coordinates t̂(s) and n̂(s) which obey the Frenet-Serret equations (4.13).

Every point in R2 can now be identified by a vector ~r(s, u) = ~Γ(s) + un̂(s). In

this case, however, we also need to include the dependence of the curvilinear

coordinates s and u from the time variable t that will tacitly be assumed for

the remainder of the chapter. With this in mind, the equations of motion in

curvilinear coordinates are now derived in the usual way.

Let us start with:

m
d2~r(s, u)

dt2
= −∇V⊥(s, u).

where V⊥ is a general confining external potential (for the moment we are not

assuming harmonic trapping) and ∇ is the divergence operator expressed in
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curvilinear coordinates :

∇ :=

 1
1−uγ

∂

∂s
∂

∂u

 =⇒ ∇V⊥(s, u) =
1

1− uγ
∂V⊥(s, u)

∂s
t̂(s) +

∂V⊥(s, u)

∂u
n̂(s).

(5.8)

We need now to evaluate the derivative of the position vector with respect of

time t as follows (the explicit dependence from s is omitted for clarity):

d~r(s, u)

dt
=

d

dt
(~Γ + un̂) =

d~Γ

ds
.
s+

.
un̂+ u

dn̂

ds
.
s = t̂

.
s+

.
un̂− uγt̂.s

=
.
s (1− uγ) t̂+

.
un̂.

(5.9)

where
.
s and

.
u are the total time derivative of the respective coordinate. Con-

tinuing with the second derivative, we get:

d2~r(s, u)

dt2
=

d

dt

(.
s (1− uγ) t̂+

.
un̂
)

=
..
s (1− uγ) t̂+

.
s

(
− .
uγ − udγ

ds
.
s

)
t̂+

.
s (1− uγ)

dt̂

ds
.
s+

..
un̂+

.
u

dn̂

ds
.
s

=
..
s (1− uγ) t̂− .

s

(
.
uγ + u

dγ

ds
.
s

)
t̂+

.
s (1− uγ) γn̂

.
s+

..
un̂− .

uγt̂
.
s

= [
..
s(1− uγ)− .

s(
.
γu+ 2γ

.
u)] t̂+

[..
u+

.
s2γ(1− uγ)

]
n̂.

(5.10)

We can finally write the two differential equations of motion by projecting (5.8)

and (5.10) i.e. we will separate the parts along the t̂ axis from the ones along
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the n̂ axis:

..
s(1− uγ)− .

s(
.
γu+ 2γ

.
u) +

∂V⊥
∂s

= 0, (5.11)

..
u+

.
s2γ(1− uγ) +

∂V⊥
∂u

= 0 (5.12)

with γ = γ(s(t)). Moreover we are dealing with a conservative potential (de-

pending only from the position coordinates), hence from (5.9) we can retrieve

the equation describing the conservation of energy:

E = m

∣∣∣∣∣∣∣∣d~r(s, u)

dt

∣∣∣∣∣∣∣∣2 + V⊥(s, u) = m
( .
u2 +

.
s2(1− uγ)2

)
+ V⊥(s, u)

=⇒ .
u2 +

.
s2(1− uγ)2 +

2V⊥(s, u)

m
=

2E

m
.

(5.13)

5.3.2 Retrieving the curvature from particle trajectory

We are now ready to solve the problem of obtaining the curvature γ as a function

of s as in [21]. In the following, we assume a harmonic transverse trapping

potential with constant frequency, of the form V⊥(u) = 1
2
mω2u2 and we set the

angle α = π/2. In this case, the equations of motion become:

..
s(1− uγ)− .

s(
.
γu+ 2γ

.
u) = 0, (5.14)

..
u+

.
s2γ(1− uγ) + ω2u = 0, (5.15)

.
u2 +

.
s2(1− uγ)2 + ω2u2 =

2E

m
. (5.16)
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From equation (5.16) we can set vk =
.
s(1 − uγ) and check that

.
vk =

.
sγ

.
u from

equation (5.14). In this way, (5.16) becomes:

.
u2 + vk + ω2u2 =

2E

m
. (5.17)

We can now obtain vk by imposing the desired smooth transverse particle tra-

jectory u(t) and subsequently get
.
s and γ. In particular:

.
s = vk +

.
vku
.
u

(5.18)

γ(t) =
.
vk
.
s
.
u
. (5.19)

The curvature γ in (5.19) is a function of the time parameter: to obtain the

parametrisation of γ as a function of the arc length we need to exploit the

relation (5.18) that can be numerically integrated to obtain the function s(t).

This function can be therefore inverted to obtain the desired reparametrisation.

The actual curve can be retrieved from the curvature γ(s) by solving the differ-

ential equations (4.13) and obtaining the three vectors ~Γ, t̂, n̂, given the initial

conditions

~Γ(s(0)) =

0

0

 , t̂(s(0)) =

1

0

 , n̂(s(0)) =

0

1

 (5.20)

so the curve is represented by the resulting vector function ~Γ(s(t)) and the
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condition

~Γ(s(2T )) = (R,R) (5.21)

needs to hold in order to ensure the continuity of the curve, where 2T is the

total time required by the particle to complete the curved segment. To design

the transverse particle trajectory u(t) the symmetry of the system is exploited,

i.e. the path is split into two halves with the whole process taking a total time

2T . The transvere trajectory needs to obey the following prescriptions:

• usta(0) =
.
usta(0) =

..
usta(0) = 0,

• usta(T ) = ∆u,

• .
usta(T ) =

..
usta(T ) = 0,

• usta(2T ) =
.
usta(2T ) =

..
usta(2T ) = 0,

with ∆u the maximum deviation from a circular trajectory, allowed in the middle

of the curve. These constraints can be motivated by the fact that we want to

avoid any kind of excitation both at the entrance and at the end of the bent

section. Moreover, the condition set in the middle (t = T ) is needed to ensure

robustness against velocity and position dispersion.

Within the class of functions that satisfy these prescriptions, in [21] the following

polynomial has been chosen

usta(t) = ∆uP

(
t

T

)
= ∆u

(
10

(
t

T

)3

− 15

(
t

T

)4

+ 6

(
t

T

)5
)

(5.22)
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and it will be used for the first half of the path i.e. in the interval [0, T ]. For the

second half, the symmetry of the problem imposes the usage of P

(
2T − t
T

)
.

The parameter ∆u is connected with the maximum curvature γm reached at

t = T by the following relation:

∆u = − 1

4γm

(√
1 +

8
.
s(0)2γ2

m

ω2
− 1

)
(5.23)

with
.
s(0) initial velocity of the incoming particle. The total time T and the

value ∆u cannot be choosen at will becuase the resulting curve obtained from

the process explained earlier does not always fullfill the condition (5.21). Hence,

we need to solve the whole problem self-consistently for different ∆u and T until

the final curve ends in the point (R,R) with some preset accuracy.

We have therefore shown how the curvature γ(s) can be evaluated solely by

imposing the desired particle trajectory usta(t) and some initial conditions and

we are now ready to perform some calculations.

5.3.3 Results with Polynomial from [21]

We need to set up the initial parameters, so to obtain the final curvature:

• ω = 2π × 1705 Hz,

• s0 = 20 mm/s,

this leads us to get ∆u ≈ −0.61 µm and 2T ≈ 0.88 ms.
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Figure 5.2: Curvature γ(s) as a function of the arc length, based on the particle
trajectory 5.22 .

We now have both
.
s(t) and γ(s(t)). By integrating

.
s(t) we can obtain the

curvature as a function of the arc length as shown in figure 5.2. The curve is

finally obtained following the prescriptions explained in section 5.3.2 and the

final solution is shown in figure 5.3.

The curvature is a continous function with no discontinuity but it presenents

a cusp in the middle of the curve. This may cause singularity problems and

numerical instabilities and therefor we presume that having the trajectory u(t)

characterized by a smooth polynomial defined all over the interval [0, 2T ] - as

opposed to two polynomials each defined over the half interval - would produce

a continuously differentiable curvature, hence a curve more robust against vari-

ation of initial conditions.

In the next section we will use different polynomials with the aim of obtaining
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Figure 5.3: View from the top of the curve ~Γ obtained by integration of the
curvature function γ, based on the particle trajectory 5.22 . The dashed curve
is the corresponding circular bending for reference, see section 5.2.

a smoother function for the curvature.

5.4 Results with alternative Polynomials

The non differentiable point of the curve in section 5.3.3 is the result of the

polynomial (5.22) being a combination of two different polynomials. We want

to use new transverse trajectories for the particle, and we will refer to them by

using the capital letter U(t), with the purpose of producing a smooth trajectory

from start to finish, i.e. in the whole time interval [0, 2T ]. The conditions the
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trajectory of the particle have to meet are the same as expressed in (5.3.2),

except for the fact that we impose the derivative be 0 up to the nth order and

so they can be rewitten as

• U (i)(0) = 0 for i = 0, ..., n,

• U (0)(T ) = ∆U ,

• U (i)(T ) = 0 for i = 1, ..., n,

• U (i)(2T ) = 0 for i = 0, ..., n.

We would like to remark that for each different n we have to evaluate the corre-

sponding maximum displacement ∆Un and the time Tn required by the particle

to reach the middle of the curve. So we we will write every particle trajectory

as

Un(t) = ∆Un Pn(t/Tn) (5.24)

where Pn is a polynomial the coefficients of which change according to n.

In the remainder we will identify every particle trajectory by the number n, and

to keep the notation consistent, U1 will refer to the particle trajectory usta(t) used

in the previous section and the same notation will be used for the polynomial P1

that will replace P (t) of 5.22. We will employ the same notation for the curvature

and we will write γn to specify the curvature obtained by the polynomial Pn,

as opposed to γ1 and γc that will refer to curvature calculated in section 5.3.2

and the curvature of the circular waveguide respectively and will be used as a
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reference. Similarly, ~Γn will identify the curve obtained by the corresponding

curvature γn, and ~Γ1 while ~Γc will refer to the curve retrieved from γ1 and to

the arc of a circle respectively.

In the next section we will give an example of the procedure used to obtain the

desired polynomial.

5.4.1 Finding the polynomial

To illustrate the procedure, we will use a polynomial with n = 2 for which the

constraints are the same as 5.3.2. The polynomial is of the form:

P2

(
t

T2

)
=

∞∑
m=0

am

(
t

T2

)m
. (5.25)

We need to calculate the derivatives of (5.25) with respect of t

.
P2(t/T2) =

dP2(t/T2)

dt
=

∞∑
m=0

d

dt
(amt

m) =
∑
m=1

namt
m−1 =

∞∑
m=0

(n+ 1)an+1t
m

(5.26)

..
P2(t/T2) =

d
.
P2(t/T2)

dt
=

∞∑
m=0

d

dt
[(n+ 1)an+1t

m]

=
∞∑
m=1

n(n+ 1)an+1t
m−1 =

∞∑
m=0

(n+ 1)(n+ 2)an+2t
m. (5.27)

Every time we evaluate the two relations at a certain time, we are left with

two linear equations where the unknown variables are the coefficients am. For
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example, the request
.
U2(T ) = 0 corresponds to the following linear equation

0 =
.
U2(T2) = ∆U

.
P2(1) =

∞∑
m=0

(m+ 1)am+1 = a1 + 2a2 + 3a3 + ... (5.28)

We have a total of nine constraints, that can be thought as the solution vector of

dimension 9 for the linear system. This also means that the minimum require-

ment to have a single unique solution for the system, is to have 9 equations.

This indicates that the polynomial has to be of order 8 and we can rewrite the

system in matrix form as M . The rank of M is equal to the dimension of the

linear system, then the system allows a single unique solution that can be found

to be

P2(t/T2) = 32

(
t

T2

)3

−96

(
t

T2

)4

+120

(
t

T2

)5

−76

(
t

T2

)6

+24

(
t

T2

)7

−3

(
t

T2

)8

(5.29)

and finally the particle trajectory for n = 2 can be written as

U2(t) = ∆U2 P2(t/T2). (5.30)

Increasing the order of the polynomial will only result in a bigger matrix, having

to accomodate more constraints.

In this work we test polynomial up to n = 6 and the corresponding polynomials

Pn(τ) are shown in figure 5.4.
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Figure 5.4: Comparison between different test trajectories in dimensionless units
for τ = t/Tn.

5.4.2 Calculation and Results

Mirroring the same argument of section 5.3.2, we obtain new curvature profiles

as shown in figure 5.5 for n = 2 and n = 6, where we can see that the cusp in the

middle of the curvature has vanished. Increasing the order of the polynomial will

lead to a flatter curvature around the centre of the curve but steeper variation

at the beginning and at the end of the curved section. We can then retrieve the

curve ~Γn in the same fashion as in section 5.3.2, to obtain the shape shown in

figure 5.6.

We will now proceed comparing the stability of these new curves against initial

errors.
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Figure 5.5: Curvature γn(s) as a function of the arc length for different n com-
pared with the curvature γ1 .

5.5 Robustness

Having obtained the shape of the waveguides for different desired trajectories,

we now want to test the robustness of the curvatures against initial displacement

and dispersion of initial velocity.

We will substitute the expression of the curvature previously obtained for polyno-

mials Pn(t) of different n to solve the Newton’s differential equations (5.14) and

(5.15) with different initial conditions, to evaluate new transverse trajectories

Uδ(t).

5.5.1 Stability against initial displacement

In this case the velocity of the incoming particle will be kept constant, with

s0 = 20 mm/s, but we will impose an initial displacement from the center of the
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Figure 5.6: Profile of the curve ~Γ2 evaluated from the curvature γ2 compared
with the one obtained from γ1. Again, the red dashed line represents the arc of
a circle.

trap. This condition can be written as :

Uδ(0) = δU. (5.31)

In the following, δU will range in the interval [−0.1, 0.1] µm. The displacement

will cause turbulence in the system and this will eventually lead to oscillation

at the end of the curved section as in figure 5.7. We call the final amplitude of

the oscillation Yf . We changed the initial displacement δU linearly, evaluated

the corresponding maximum oscillation amplitude Yf and compared the perfor-

mances of each curve ~Γn with different n. In figure 5.8 the results for the curve
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Yf

Figure 5.7: Example of how the initial displacement affects the final oscillation
of the particle, in yellow the transverse trajectory for no initial displacement, in
blue the trajectory with δU = 0.2 µm. The particle trajectory is obtained from
the curve ~Γ5.

~Γ4 are summarized.

Different curves show similar behaviour, namely the final amplitude oscillation

Yf grows linearly according to the initial displacement δU . To compare the

robustness of different curves we make a linear fit for the two different branches

and then averaged the absolute values of the obtained linear coefficients and we

call it sensitivity. We use ρp to identify the sensitivity against the variation of

initial position. Then we plot the values for the different curves in figure 5.9. The

most robust curve is the one with the lowest ρp as it means that given the same

initial displacement, the one with the lowest ρp ensures the highest suppression

of final oscillation amplitude compared to the other curves.
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Figure 5.8: Final amplitude Yf versus initial displacement δU for the curve ~Γ4.

Figure 5.9 shows that the highest robustness is achieved by the curvature ob-

tained from the polynomial P2 even by a small margin.

5.5.2 Stability against dispersion of velocity

Now the particle will start travelling from the middle of the waveguide and we

will only change its initial velocity that will be of the form:

.
s(0) = s0 + δs0 ≡ S0. (5.32)

The approach is similar to the one used to check the robustness of the curve

against initial displacement: we will have a particle starting in the middle of

the trap i.e. Uδ(0) = 0, but in this case we will assume that the particle has
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Figure 5.9: Sensitivity ρp of different curves ~Γn against initial displacement. For
every curve we calculated the slope of the resulting linear fit, see text for details.

an initial tangential velocity S0. As an example, figure 5.10 shows the effects

that the initial velocity has on the transverse particle trajectory for the curve

~Γ3. Again, a transverse excitation is retained by the particle after the curved

segment, resulting in an oscillatory behaviour that can be quantified - similarly

to what we have done in the previous section - by the oscillation amplitude Yf

We will evaluate the maximum amplitude of the oscillation as we vary the initial

velocity in the interval [−0.1s0, 0.1s0] and repeat this calculation for different

curves ~Γn with n = 1, 2, ..., 6.

The results are summarized in figure 5.11 and figure 5.12 where we can clearly

see that for every curve there is a particular velocity, the value of which is less
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Figure 5.10: Effects of the initial velocity on the final excitation of the particle.
In blue the transverse trajectory with initial velocity set to 22 mm/s, relative to

the curve ~Γ3. The yellow line is the trajectory of the particle for s0 = 20 mm/s
included for reference.

than s0, that yields no final oscillation Yf . In particular, for ~Γ2, this value is

very close to s0, dramatically increasing the robustness of this curve against the

dispersion of initial velocity.

Unlike the case of section 5.5.1, where the relation between initial displacement

and final amplitude was clearly nearly linear and symmetric in the shown param-

eters range, in this case, defining and evaluating the sensitivity of the waveguide

is not as straightforward.

We wanted to quantify the value of this important feature for the waveguide and

we have consequently decided to concentrate our attention closer to the central
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Figure 5.11: Effects of the dispersion of initial velocity S0 on the maximum final
oscillation amplitude Yf .

value s0 where a linear approximation can be performed as in figure 5.12. The

inhibiting effects are even more striking in this graph as we can see that ~Γ2

effectively suppresses any final oscillation for S0 ≥ s0.

The actual value of the sensitivity of the waveguide against initial velocity is then

obtained adopting the same approach we used in section 5.5.1. Two different

interpolations have been made, one for S0 ≤ s0 and the other for S0 ≥ s0 and

averaged the resulting linear coefficients that we call it ρv. We have repeated

this calculation for n = 1, ..., 6 and the results are finally shown in figure 5.13.

Again, the most stable curve is the one for which ρv has the lowest value, as it

ensures the highest stability against a spectrum of velocities centered around s0.

From figure 5.13, we can see that the curve with the lowest sensitivity, hence the

most robust, is ~Γ2.
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Figure 5.12: Inset of figure 5.11 in a smaller interval centerd around s0.

This result and the one obtained in 5.5.1 have shown that the curve with the

best features is ~Γ2 as it ensures the lowest sensitivity against both the initial

displacement and dispersion of initial velocity.

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6
0.000

0.005

0.010

0.015

0.020

0.025

ρv [ms]

Figure 5.13: Sensitivity ρv against initial velocity for different curves ~Γn resulting
from the calculation of the linear fit around s0, see text for details.
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We are now ready to turn our attention to the quantum realm: having obtained

the curvatures and verified their robustness in classical settings, in the next chap-

ter we will test their efficiency solving the time-dependent Schrödinger equation

by means of numerical algorithms. In particular we will use the the split oper-

ator method, firstly described by Fleck et al in [49]. We will then define and

evaluate the fidelity for the different curves in quantum settings.
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Chapter 6

Quantum implementation of the

bent waveguides

6.1 Introduction

In chapter 5 we have used an approach inspired by Shortcuts to Adiabaticity to

inverse engineer the shape of a curved waveguide to improve the robustness with

respect to the circular shape and we have also confirmed their effectiveness by

means of classical arguments. In particular, we have shown that the most stable

and robust curve is the one obtained from the curvature γ2.

However, our aim is to employ waveguides in quantum computing, hence we

need to test the strength of this shape in a quantum environment. To reach this
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goal we need to solve the time-dependent Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (6.1)

where the Hamiltonian operator has the form

− ~2

2m

[
∂

∂s

1

(1− uγ)2

∂

∂s
+

∂2

∂u2
+

γ2

4(1− uγ)2
+

uγ̈

2(1− uγ)3
− 5

4

u2γ̇2

(1− uγ)4

]
+

1

2
mω2u2.

(6.2)

In this case γ is the curvature obtained from the semiclassical calculation of chap-

ter 5. This equation cannot be solved analytically, so we need to use numerical

methods.

In this chapter we will start by reviewing the split-operator method [49] that

will be used to evolve the wave function. First the wave function will evolve in a

circular waveguide that will serve as a reference, then we will change the shape

of the waveguide so that the bottom of the harmonic trap follows the curve that

has been inverse engineered with the semiclassical STA approach of chapter 5.

Finally, we will compare the results obtained in these different settings by eval-

uating the fidelity in each process.
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6.2 Split operator method

Let the Schrödinger equation with a standard time-independent Hamiltonian be

given as:

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 =

(
T̂ + V̂

)
|ψ(t)〉 (6.3)

where T̂ and V̂ are the kinetic energy and potential operator respectively.

The split operator method relies heavily on the Fourier transform as we will show

later in the section and we found it more convenient to express the Hamiltonian

in Cartesian coordinates. So, in this case and in the following simulations, the

Hamiltonian will be of the form

Ĥ = − ~2

2m

[
∂2

∂x2
+

∂2

∂y2

]
+ V⊥(x, y) (6.4)

where V⊥(x, y) is the harmonic trapping in Cartesian coordinates. Altough this

choice will simplify the following calculations, we will need to also convert the

transverse potential V⊥ from curvilinear to Cartesian coordinates and this pro-

cess will be explained in section 6.3.

Having an initial state |ψ(t0)〉 at time t0, the state at time t = t0 + ∆t can be

evaluated via the time evolution operator

|ψ(t)〉 = |ψ(t0 + ∆t)〉 = exp

{
−iĤ

~
∆t

}
|ψ(t0)〉 . (6.5)

This operator exponential can be expressed in terms of the series expansion
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eX̂ =
m∑
n=0

1

n!
X̂n and for ∆T � 1 we can truncate the series to the second order:

exp

{
−iĤ

~
∆t

}
= 1− i∆t

~

(
T̂ + V̂

)
∆t− ∆t2

2~2

(
T̂ + V̂

)2

+O(∆t)3. (6.6)

Expanding the right hand side of (6.6), we obtain

1+ 2

(
−i∆t

2~
V̂ − ∆t2

4~2
V̂ 2

)
+

(
−i∆t

~
T̂ − ∆t2

2~2
T̂ 2

)
− ∆t2

2~2

(
T̂ V̂ + V̂ T̂

)
+O(∆t3)

= exp

{
−iV̂

2~
∆t

}
exp

{
−iT̂

~
∆t

}
exp

{
−iV̂

2~
∆t

}
+O(∆t3).

(6.7)

As already stated, this expression has an error of ∆t3 but this splitting becomes

very useful from a numerical standpoint as the two operators T̂ and V̂ are

diagonal in their own respective basis, hence making it easier to perform the

exponential in this particular form. The change of representation corresponds

to a change of basis and can be performed via the Fourier transform F [·] from

position to momentum space, while the inverse F−1[·] corresponds to a change

of basis from momentum to position space.

In two dimensions, the Fourier transform is given by

F [〈r̂|ψ(t)〉] (~p) =
1

2π~

∫
R2

d2~re−i~p~r/~ 〈r̂|ψ(t)〉 . (6.8)
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Finally, we can express the evolution of the state as follows

〈r̂|ψ(t0 + ∆t)〉 =

exp

{
−iV̂

2~
∆t

}
F−1

[
exp

{
−iT̂

~
∆t

}
F

[
exp

{
−iV̂

2~
∆t

}
〈r̂|ψ(t0)〉

]]
.

(6.9)

Clearly, this calculation is computationally demanding as the Fourier transform

has to be performed many times, but the Fast Fourier Transform (FFT) algo-

rithm [50] provides an efficient solution and dramatically increases the speed of

the simulation. Furthermore, the algorithm can be easily parallelized on specific

Graphic Processing Units (GPU), to improve the velocity of this method even

further.

In the next section we will describe the method we employed to obtain the

Cartesian trapping potential V⊥(x, y) from V⊥(s, u) expressed in curvilinear co-

ordinates.

6.3 Potential in Cartesian coordinates

The split operator method explained in section 6.2 is implemented via a collection

of C++ programs that use the whole potential as an input and evolve the particle

on consecutive time steps. Thus, we need to define a finite region in the xy plane

where the Fourier transform can be carried out. In order to simplify the notation

and facilitate the calculations we will first rewrite the Schrödinger equation in

dimensionless units so that the computation can be performed independently
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from the real parameters of the system.

6.3.1 Schrödinger equation in dimensionless units

We will first perform a change of variable with respect to the three independent

variables in the Schrödinger equation, i.e. the spatial variables x and y and the

time variable t. The whole size of the system is clearly characterized by the

radius R of the arc of the circle connecting the two straight sections. Similarly,

the whole process is carried out in a total time Tf , so it becomes straightforward

to introduce the following change of variables

x̃ =
x

R
, ỹ =

y

R
, t̃ =

t

T
. (6.10)

Despite not knowing the exact functional for the potential V⊥(x, y), we know

that it is quadratic on the spatial coordinates x and y, so we can rewrite the

potential in dimensionless coordinates as

V⊥(x, y) =
1

2
mω2

0f(x, y) =
1

2
mω2

0R
2f̃(x̃, ỹ) (6.11)
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and the Schrödinger equation becomes (with |ψ̃〉 = |ψ̃(x̃, ỹ, t̃)〉) :

i
~
Tf

∂

∂t̃
|ψ̃〉 = − ~2

2m

1

R2

[
∂2

∂x̃2
+

∂2

∂ỹ2

]
|ψ̃〉+

mω2
0R

2

2
f̃(x̃, ỹ) |ψ̃〉 (6.12)

i
∂

∂t̃
|ψ̃〉 = − Tf~�2

��~2mR2

[
∂2

∂x̃2
+

∂2

∂ỹ2

]
|ψ̃〉+

mR2ω2
0Tf

2~
f̃(x̃, ỹ) |ψ̃〉 (6.13)

i
∂

∂t̃
|ψ̃〉 =

1

2m̃

[
∂2

∂x̃2
+

∂2

∂ỹ2

]
|ψ̃〉+

1

2
m̃ω̃2f̃(x̃, ỹ) |ψ̃〉 , (6.14)

where between (6.13) and (6.14) we have defined the dimensionless mass and the

dimensionless frequency

m̃ =
mR2

Tf~
, ω̃ = ω0Tf . (6.15)

Using the same argument we can define the dimensionless momentum k̃0 = k0R.

In the remainder of the chapter we will use both the notations of (6.10) depending

on the context.

We are now ready to describe the process that will produce the potential in

Cartesian coordinates starting from the expression in curvilinear coordinates.

6.3.2 Conversion from curvilinear to Cartesian

In our case, we have a square region of the form [x̃0, x̃1]× [ỹ0, ỹ1] and we need to

define a grid of sample points of size n×n included in this region fine enough to

ensure the desired accuracy but at the same time the number of points cannot

be excessively large, otherwise the split operation algorithm will be too time-
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consuming.

With this in mind, every point can be written as a couple (x̃i, ỹj) of the form

(x̃i, ỹj) = (x̃0 + i∆x̃, ỹ0 + j∆ỹ) for i, j = 0, ..., n− 1,

with ∆x̃ =
x̃1 − x̃0

n
∆ỹ =

ỹ1 − ỹ0

n
.

(6.16)

Now we need to express the trapping potential in Cartesian coordinates, i.e. we

need to assign to each point in the grid the corresponding value of the potential

expressed in curvilinear coordinates. This problem has been solved recursively,

so for each point (x̃i, ỹj) we take its Euclidean distance from the curve ~Γ(s)

delineating the bottom of the trap:

di,j = min(
√

(x̃i − ξ(s̃))2 + (ỹj − η(s̃))2. (6.17)

The potential relative to the point (x̃i, ỹj) can then be easily defined as 1
2
m̃ω̃2d2

i,j

and the conversion process from curvilinear to Cartesian coordinates is repre-

sented in figure 6.1. The conversion has been performed using a collection of

codes written using the Mathematica software suite [51].

The collection of n2 triplets (x̃i, ỹj,
1
2
m̃ω̃2d2

i,j) will be then stored into a data

file that can be lately accessed by the C++ program to solve the Schrödinger

equation. In our study, have chosen x̃0 = ỹ0 = −1.5, x̃1 = ỹ1 = 2.5. The

number of sampling points will be discussed in section 6.5 as we have compared
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Figure 6.1: Outline of the process employed to build the potential in Cartesian
coordinates: the grid is laid out (in this case we used 16 points in each dimension
for simplicity) and to every point we associated its relative distance from the
curve. The potential is easily obtained from the distance, via the usual formula.

the results obtained with a different number of sampling points.

In the next section we will give the definition of fidelity for this process as well

as describing in detail all the parameters.

6.4 Fidelity

The fidelity of a protocol is a measure that quantifies the discrepancy between

a reference, ideal, quantum state and the quantum state resulting from the

application of that protocol.
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For the process of a wave function moving along a waveguide, we assumed the

initial state to be

ψin := ψ(x̃, ỹ, t̃in) =
1√
π

(
1

4σ̃2
y

)1/4(
σ̃x

σ̃2
x + it̃in/2m̃

)1/2

× exp

{
ik̃0x̃in − i

(
k̃2

0 +
1

4σ̃2
y

)
t̃in
2m̃
− (x̃in − x̃in)2

4(σ̃2
x + it̃in/2m̃)

− (ỹin − ỹ0)2

4σ̃2
y

} (6.18)

with x̃in = −0.5, ỹin = 0, t̃f = 0 and σ̃y =
1√

2m̃ω̃
. We assumed a waveguide

with transverse confining ω̃ = 20 and a particle of mass m̃ = 400 and an initial

longitudinal dispersion σ̃x = 0.05.We would like to stress out that ψin will be

our initial wave function for every simulation in the remainder of the work, we

will vary the k̃0 parameter only.

In the ideal case, the wave function would move along the curved section of the

waveguide - the length of which we call L - retaining its Gaussian envelope in the

transverse direction, while evolving as a free wave along the longitudinal axis.

It would then leave the bent region and the final, ideal, wave function would be

ψf := ψ(x̃, ỹ, t̃f ) =
1√
π

(
1

4σ̃2
y

)1/4(
σ̃x

σ̃2
x + it̃f/2m̃

)1/2

× exp

{
ik̃0ỹ − i

(
k̃2

0 +
1

4σ̃2
y

)
t̃f
2m̃
− (ỹ − ỹf )2

4(σ̃2
x + it̃f/2m̃)

− (x̃− x̃f )2

4σ̃2
y

} (6.19)

where x̃f = 1, ỹf = 1.5 and the final time t̃f will be evaluated classically,

depending from the context. The form of (6.19) is nothing more than the final

state we would expect from the evolution of the wave function along a straight
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waveguide of length L, but in this case we have rotated it about π/2. The

assumption we made for ψf can be better understood as a slow deformation of

a completely straight waveguide of length L into a curved one. If the bending

process is slow enough, the adiabatic theorem ensures that the wave function

will stay unperturbed. This is the underlying idea of the definition of fidelity

in these settings: we want to evalute the overlap between the resulting wave

function obtained by the split operation method and the wave function that

would result in the ideal case. The fidelity will then assume the form

F := |〈ψso|ψf〉|2 (6.20)

where |ψso〉 is the wave function obtained numerically and |ψf〉 is the one from

the ideal case. The situation is sketched in figure 6.2. Having defined the fidelity

for this process and having set up all the different parameters, we are now ready

to perform the numerical simulations and compare the performances of different

shapes of waveguides as we increase the momentum of the incoming particle.

6.5 Results of numerical simulation

6.5.1 Circular bend

In order to have a reference case, we started by simulating a quantum waveguide,

the shape of which is an arc of a circle. Assuming a circular bend of radius

R, we obtained the potential in Cartesian coordinates following the procedure
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(a) (b)

Figure 6.2: Example of comparison between a wave function obtained from a
simulation (a) and the corresponding ideal wave function (b). For reference, the
fidelity in this case is F = 0.25.

explained in section 6.3 and shown in figure 6.3. In this case we calculated the

total time of the travel assuming constant velocity throughout the whole process.

So, for a given k̃0, total time is simply evaluated as the ratio between the total

length of the path and the velocity:

T̃ =
L

k̃0/m̃
with L = 2d+

π

2
, (6.21)

where d = 0.5 is the length of each straight section. For the ideal final wave

function ψf (6.19), we will then use t̃f = T̃ .

At first we started with a grid composed of 1024 × 1024 sampling points and

simulate the evolution of the wave function for different initial momenta. From
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Figure 6.3: 3D depiction of the trapping potential of the circular bend which
axis goes along an arc of a circle.

k̃0 = 300 we progressively increased this value by then up to 900 by steps of 10.

The results of the simulation are shown in figure 6.4 and we can see the fidelity

showing oscillating behaviour. Moreover, there is a dramatic drop in fidelity

after k0 = 770. This is quite suspect and it is probably connected to the number

of sampling points we used. We have then decided to increase the number of

points to a grid of 2048 × 2048 and evaluated the fidelities for different initial

momenta around k0 = 770. We then compared the results, as in figure 6.5. The

fidelities are similar up to k0 = 770 and for this reason we have decided, for the

upcoming calculations, to reduce the maximum value of the momentum from

900 to 770 with a grid of 1024 × 1024 points as these values ensure the best

trade-off between accuracy and time consumption. In the next section we will
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Figure 6.4: Fidelity F for the circular bend as the momentum of the incoming
particle k0 increases.

retrieve the curve that maximizes the fidelity given an initial momentum k̃0 for

different curves we obtained using the approach explained earlier in chapter 5 .

6.5.2 Optimized quantum waveguide

Every curve is uniquely defined by the chosen polynomial Pn and by the pa-

rameters of the system. In particular, k̃0 and ω̃ affect the maximum transverse

displacement of the particle trajectory at the middle of the curve and conse-

quently the time T̃c that the particle spend travelling in the curved section. So,

for each k̃0 we have calculated both the corresponding T̃c and the resulting curve

~Γn, from which we obtained the potential in Cartesian coordinates. The total
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Figure 6.5: Fidelities calculated with a grid of 1024 × 1024 and 2048 × 2048
points respectively, as the momentum of the incoming particle k̃0 increases.

time T̃ that will be used in the split operator method is, finally

T̃ =
2d

k̃0/m̃
+ T̃c. (6.22)

Similarly to section 6.5.1, we will set t̃f = T̃ to evaluate the ideal final wave

function ψf .

Given the results of chapter 5, we have decided to run the simulation for different

curves ~Γn with n from 1 to 4 and for different initial momenta k̃0 to calculate

the corresponding fidelities. The results are summarized in figure 6.6, where we

can clearly see a big improvement in fidelity for the curves designed with the

STA approach when compared to the fidelity of a waveguide where the bottom
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Figure 6.6: Fidelity F for different curves as the momentum k̃0 = k0R increases.
~Γc (light blue line) represents the arc of a circle, while ~Γ1 (green solid line), ~Γ2

(blue plus), ~Γ3 (red cross), ~Γ4 (orange circle) are the curves obtained from the
polynomial P1, P2, P3, P4 respectively. The points overlap each other as the
difference in fidelity is 10−5.

of the harmonic trap follows an arc of a circle (light blue line). The fidelity of

the designed curves ~Γ1 to ~Γ4 has been found to be greater than 0.998 for each

different initial momentum k̃0, thus indicating that the shortcuts approach is

very robust and gives a platform to design lossless wave guides that maximize

transmission rates.

Considering the common traits that the different curves show, we have decided

not to investigate the performances of the curves ~Γ5 and ~Γ6 as we believe the

results would have not been significantly dissimilar.
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Figure 6.7: Average value of the fidelity F for the examined curves ~Γc, ~Γ1, ~Γ2,
~Γ3, ~Γ4. The dashed line corresponds to the value 1 and is set as a reference.

In order to evaluate the effectiveness of every curve, we have decided to aver-

age the fidelities of each curve for different initial momenta k̃0. This number,

identified by F , summarizes the overall stability of the curve and also gives us a

measure to compare different shapes.

We can clearly see that the curves designed via shortcuts outperform the circular

bend. Between the curves ~Γn we cannot determine which one has the best

performances, as the average fidelities are equal up to 10−5, where the numerical

uncertainty becomes prevailing. We believe that decreasing the value of the

trapping frequency ω̃ can help highlighting the effects of the structure of the

curve on the fidelity: in our settings the trapping frequency plays a dominant

role and the small geometrical differences of the curves ~Γn are suppressed by ω̃.
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This concludes our study to the design of quantum waveguides using a STA-

based approach. In the next chapter we will summarize the work done in this

thesis and suggest some possible outlooks for future studies.
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Chapter 7

Summary and future prospects

In this thesis we focused on applying a STA-based protocol to transport of

quantum particle in quantum waveguides. In this chapter we will review our

work and alongside we will provide outlooks that could sparkle further studies.

7.1 Conclusion

In the first chapters we reviewed the theoretical background and built the frame-

work that helped us establishing the environment of our problem. We started by

giving the definition of qubit and proceeded describing different methods to ma-

nipulate and control quantum states, effectively generating quantum waveguides

by shining laser light. We then introduced the STA paradigm and presented

two applications of this approach, namely counterdiabatic drive and Lewis-

Reisenfeld-invariant-based inverse engineer, with the aim of applying these pro-
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tocols specifically to quantum waveguides. We subsequntly concentrated toward

quantum waveguides and we showed how the Hamiltonian for a general, bent

waveguide changed according to the geometry of the system. This calculation

helped highlighting the vital importance of the curvature function in the waveg-

uide system.

We then proceeded and reviewed the paper that inspired this thesis [21], where a

STA-based approach has been applied to a classical particle to retrieve the curve

that would have met all the desired constraints. We have tested this protocol in

classical settings and showed some possible extensions to this procedure testing

the sensitivity of the obtained curves against different initial conditions. Finally,

we gathered the results of the semi-classical approach and used them as the

starting point to numerically simulate the evolution of a quantum particle moving

inside bent quantum waveguides using the split operator method that has been

used to compare the efficiency of different waveguide shapes. In particular we

obtained remarkable results for the shapes obtained using the inverse engineer

approach as opposed to the reference case (the arc of a circle). More specifically,

we found that the inverse engineer waveguide shapes grant an average fidelity

very close to 1, as opposed to the reference case where the average fidelity is

≈ 0.85.

In conlusion, we validate the inverse engineer approach proposed in [21] and

improved upon that technique by changing the parameters governing the process

to design bent quantum waveguides that have been shown to be robust and
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efficient both in classical and quantum settings.

7.2 Outlooks

There are still plenty of possibilities one can investigate, starting from the results

of this thesis.

An interesting study would be to have the harmonic trapping changing along

the curve. In this case, instead of a constant frequency ω, we would have a

function ω(s). We could connect the two straight ends with a simple arc of a

circle and then inverse engineer the profile of the trapping frequency along the

curve with the aim of minimizing the final transverse excitation. Of course this

idea could also be extended to different curves, in particular the ones obtained

inverse engineering the curvature as in chapter 5 with the hope that the two

strategies would sinergies to produce waveguides that present a higher level of

robustness.

Another promising prospect, this time relatoed to STA approaches to quantum

waveguides, would be to use the Lagrange density technique [52–54] specializing

it to curved geometry. We will give a brief overview in this section, while more

details on this idea can be found in the appendix 7.2. The main idea is to write

the Lagrangian as a functional of the wave function

L(~r, t, ψ, ψ∗), (7.1)
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and consequently the action integral in curvilinear coordinates

S :=

∫ T

0

dt

∫
R2

dsdu(1− uγ)L. (7.2)

Then, by making extra assumptions on the form of the wave function and im-

posing the small curvature approximation (again, more details in appendix 7.2),

we are going to minimise the action integral (7.2) for a specific class of wave

functions. This can be done by employing the Euler - Lagrange equations

∂L
∂qi
− d

dt

∂L
∂q̇i

= 0 (7.3)

that can be used to calculate the desired curvature.
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Lagrange density approach

Starting from the definition for the Lagrangian density in one dimension

L(x, t, ψ, ψ∗) +
i~
2

(
ψ
∂ψ∗

∂t
− ψ∗∂ψ

∂t

)
+

~2

2m

∣∣∣∣∂ψ∂x
∣∣∣∣2 + V (x)|ψ|2, (4)

we can write the more general form as

L(~r, t, ψ, ψ∗) =
i~
2

(
ψ
∂ψ∗

∂t
− ψ∗∂ψ

∂t

)
+

~2

2m

∣∣∣ ~∇ψ
∣∣∣2 + V (~r)|ψ|2 (5)

with ψ = ψ(t, ~r).

In particular, we can apply this formula to R2 and move to curvilinear coordi-

nates. The change of coordinates modifies the gradient operator

(
∂

∂x
,
∂

∂y

)
−→

(
1

1− uγ
∂

∂s
,
∂

∂u

)
(6)
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and in turn

∣∣∣ ~∇ψ
∣∣∣2 = ~∇ψ· ~∇ψ∗ =

(
1

1− uγ
∂ψ

∂s
,
∂ψ

∂u

)
·

 1
1−uγ

∂ψ∗

∂s
∂ψ∗

∂u

 =
1

(1− uγ)2

∣∣∣∣∂ψ∂s
∣∣∣∣2+

∣∣∣∣∂ψ∂u
∣∣∣∣2 .

(7)

Assuming the wave function is a stationary solution of the Schrödinger equation,

we can write

ψ(s, u, t)→ e−
iEt
~ φ(s, u), (8)

so we have

i~
2

(
ψ
∂ψ∗

∂t
− ψ∗∂ψ

∂t

)
=
i~
2

(
e−

iEt
~ φ

iE

~
e

iEt
~ φ∗ − e

iEt
~ φ∗

(
−iE

~

)
e−

iEt
~ φ

)
=
i~
2

(
2iE

~

)
|φ|2 = −E|φ|2.

(9)

Moreover, ∣∣∣ ~∇ψ
∣∣∣2 =

∣∣∣ ~∇φ
∣∣∣2 . (10)

The action integral is then defined as

S +
∫ T

0

dt

∫
R2

dxdyL. (11)

We need to perform the coordinates transformation for the differential forms in

the integral as well.
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Given the transformation, the differential two form changes according to

dxdy = (1− uγ)dsdu (12)

and we can finally write the action integral in curvilinear coordinates as

S =

∫ T

0

∫
R2

dsdu − E|φ|2 +
1

(1− uγ)

~2

2m

∣∣∣∣∂ψ∂s
∣∣∣∣2

+ (1− uγ)
~2

2m

∣∣∣∣∂ψ∂u
∣∣∣∣2 + (1− uγ)Vext(s, u)|ψ|2

= −ET +

∫ T

0

∫
R2

dsdu
1

(1− uγ)

~2

2m

∣∣∣∣∂ψ∂s
∣∣∣∣2

+ (1− uγ)
~2

2m

∣∣∣∣∂ψ∂u
∣∣∣∣2 + (1− uγ)Vext(s, u)|ψ|2

(13)

where the ET terms is obtained exploiting the normalization of the wave func-

tion and we can see that does not have any significant contribution to the cal-

culation of (13) as it is just an overall constant factor and it will be neglected

when evaluating the action integral. As a reminder, we recall from (4.29) that

Vext(s, u) = V (s, u) + V⊥(s, u) where

V (s, u) := − γ2

4(1− uγ)2
− u

..
γ

2(1− uγ)3
− 5

4

u2 .γ2

(1− uγ)4
(14)

is the induced potential and

V⊥(s, u) =
1

2
ω2u2 (15)
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is the harmonic confinement potential (we have tacitely assumed a trapping

frequency changing along the curve, ω(s)).

We now need to make an assumption for the wave function ansatz: the solution

of the Hamiltonian in the straight segment is a travelling wave with Gaussian

envelope along the transverse axis. It will be of the form

φstr(s, u) =

(
mΩ(s)

π~

) 1
4

exp

[
−mΩ(s)u2

2~
+ iκs

]
(16)

where we would like to point out the fact that the Ω(s) is different from ω(s)

of V⊥, since we allow the wave function the freedom to react to the change of

trapping frequency.

Moreover, we can note that (16) has an explicit dependence from s, so it can be

written as a product of two different functions, each dependent from a distinct

variable

φstr(s, u) =

(
mΩ(s)

π~

) 1
4

υ(u)σ(s) (17)

where

υ(u) = e
−
mΩ(s)u2

2~ (18)

σ(s) = eiκs (19)

The curvature will introduce mixing between s and u, hence the solution of the
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curved Hamiltonian cannot be factored out, thus our ansatz will be

φ(s, u) =

(
mΩ(s)

π~

) 1
4

exp

[
−mΩ(s)u2

2~
+ if(s, u)

]
. (20)

In this case f(s, u) is an auxiliary function that reflects the symmetry breaking

caused by the curvature.

Unsurprisingly, (13) is not analitically solvable, so we need to introduce some

approximations that will help tackle the problem. Firstly, we impose the small

curvature approximation, in other words we write γ(s) = λζ(s) and then write a

series expansion in terms of λ. In this case we expand λ up to the second order

γ(s) ≈ λζ(s) +O(λ2). (21)

We also assume that the auxiliary function f(s, u) could be separable to a certain

degree, i.e. we set

f(s, y) = f0(s) + uf1(s) + u2f2(s) (22)

where fi(s) is another set of auxiliary functions.

Imposing these approximations helps us solving the action integral with respect

to the u variable letting us obtaining a Lagrange functional of the type

L = L(ω, f0, f1, f2). (23)
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Now every argument of (23) can be used as an indipendent variable to obtain

the Euler - Lagrange equations.

∂L
∂qi
− d

dt

∂L
∂
.
qi

= 0. (24)

We finally obtained a set of four differential equations that can be solved to

calculate the resulting curvature.
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[18] Kovař́ık H. Exner P. Quantum Waveguides. 2015.

[19] D. Guéry-Odelin et al. “Shortcuts to adiabaticity: Concepts, methods, and

applications”. In: Rev. Mod. Phys. 91 (4 Oct. 2019), p. 045001.

[20] Erik Torrontegui et al. “Chapter 2 - Shortcuts to Adiabaticity”. In: Ad-

vances in Atomic, Molecular, and Optical Physics. Ed. by Ennio Arimondo,

Paul R. Berman, and Chun C. Lin. Vol. 62. Advances In Atomic, Molecu-

lar, and Optical Physics. Academic Press, 2013, pp. 117–169.

[21] François Impens, Romain Duboscq, and David Guéry-Odelin. “Quantum
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