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We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quan-
titative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray
diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum
wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random
alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW
width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and
the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near
the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of ty-
pically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-
rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy)
emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for
the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the
lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs.
& 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Bob Sinclair and Nestor Zaluzec have pioneered the use of
electron microscopy and analysis to characterise the structure of
materials at the nanoscale. High resolution electron microscopy
r B.V. This is an open access article
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has been central to the research of Sinclair, particularly aberration-
corrected transmission electron microscopy. He has utilised high
resolution electron microscopy to analyse a wide range of mate-
rials and devices, from seminal work on silicide thin-films on si-
licon [1] to quantum dots in living mice [2].

Zaluzec has developed state-of-the-art instrumentation for
electron and X-ray spectroscopy, and analytical electron micro-
scopy. He has recently investigated how aberration-corrected
transmission electron microscopes can be re-engineered to im-
prove the sensitivity of spectroscopy in analytical modes. He has
studied a wide range of materials, from ground-breaking research
on high-Tc superconductors [3] to InGaN quantum wells in light
emitting diodes [4].

The present paper reports some of our research on the unusual
atomic structure of InGaN quantum wells, which relates to the
work of Zaluzec [4] and for which aberration-corrected electron
microscopy has been essential.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2. The surprising success of InGaN quantum wells

The use of InGaN light emitting diodes (LEDs) in solid state
lighting and high brightness displays is rapidly increasing [5], and
it seems likely that InGaN LEDs will become the dominant form of
lighting throughout the world, saving over 10% of electricity
globally and 10% of carbon emissions from power stations. At the
heart of these LEDs are polar InGaN/GaN quantum wells (QWs)
which emit visible light with high internal quantum efficiency
(IQE). For example, such blue light emitting LEDs can exhibit IQE
values as high as 90% at room temperature [6]. This high efficiency
is surprising because the lattice mismatch of GaN on sapphire (the
usual substrate in commercial GaN LEDs) is 16%, which leads to a
high density of misfit dislocations at the GaN/sapphire interface
and to threading dislocations passing through the InGaN QWs
with a density of at least 108cm�2. In other light-emitting semi-
conductors, such as GaAs, the dislocation density needs to be less
than 103cm�2 to prevent significant loss of light due to the non-
radiative recombination of carriers at the dislocations. It is known
from cathodoluminescence (CL) studies that dislocations in InGaN
are non-radiative recombination centres. Hence a key question is
why the efficiency of blue emitting InGaN/GaN LEDs is so high
when the dislocation density is so large.
3. The green gap problem in LEDs

White LEDs used for lighting typically use a blue-emitting In-
GaN/GaN LED covered with a yellow emitting phosphor, the
combination of blue and yellow light producing a cool white light.
If a warmer white light is desired, a red emitting phosphor is used
as well. However, the obvious way to produce white light is to mix
red, green and blue LEDs. This would produce even more efficient
white light than using a blue LED with phosphors because the
Stokes shift energy loss of converting a high energy blue photon to
a lower energy yellow or red photon would be avoided, as would
efficiency losses in the phosphors themselves. However, we cannot
do this efficiently at present due to the “green gap” problem. The
experimentally determined external quantum efficiency (EQE) of
400nm (violet) LEDs is very high, over 80%, and for 650nm (red), it
is also very high, over 70%, but for green and yellow emission the
EQE drops to about 20% [7]. This “Green Gap” has important
technological consequences. If one wishes to make white light by
mixing red, green and blue LEDs, one red, one blue and three
green LEDs are typically required, making such a white light
source expensive.

The green gap in nitride LEDs may in part be attributed to in-
ternal electric fields due to the large spontaneous and piezo-
electric polarisations that produce high fields of ∼ 106Vcm�1

across the QWs. The active region in nitride LEDs is one or more
InGaN QWs sandwiched between the wider bandgap GaN barriers
to confine the carriers. The epitaxial InGaN QWs are strained be-
cause InGaN has a larger lattice parameter than GaN. Commercial
InGaN/GaN QW LEDs are grown in the polar [0001] direction. The
strain in an InGaN QW increases as the indium content increases,
hence the piezoelectric field across an InGaN QW increases as the
indium content increases. This field separates the electrons and
holes to opposite sides of the QW, the separation increasing as the
indium content increases. Hence the electron-hole wave-function
overlap decreases as the indium content increases. This may result
in the efficiency of InGaN/GaN green LEDs being less than that of
blue LEDs because the decreased electron and hole overlap in
green QWs results in increased radiative lifetimes, which in the
presence of non-radiative recombination paths can lead to re-
duced values of the IQE and EQE. The electric field across an InGaN
QW can be suppressed by growing the InGaN/GaN QW structure
along a non-polar direction. This would be expected to produce
green LEDs with high efficiency, hence we have recently explored
this and obtained some surprising results.
4. The atomic structure of polar

It was realised as long ago as 1997 that since blue InGaN QWs
emitted brilliant light despite having a very high density of dis-
locations, and since cathodoluminescence showed that disloca-
tions were non-radiative recombination centres in InGaN, there
must be some microstructural feature of the InGaN QWs that was
localising the carriers and preventing them from moving to the
dislocations. There was at the time broad agreement in the GaN
scientific community that indium-rich clusters in the InGaN QWs
were responsible for localising the carriers [8-16]. Since the
bandgap of InN is smaller than that of GaN, indium-rich clusters in
an InGaN QW will have a smaller bandgap and hence localise the
carriers. The widespread belief in this localisation mechanism was
based upon three pieces of scientific evidence. First, high resolu-
tion transmission electron microscopy (HRTEM) revealed localised
regions of strain contrast about 2nm across which were inter-
preted as being highly indium rich. This was supported by data
from electron energy loss spectroscopy (EELS) [8-16]. Second,
photoluminescence (PL) measurements of the temperature de-
pendence of the peak photon energy emitted from an InGaN QW
revealed an S-shaped dependence characteristic of carrier locali-
sation [17]. Thirdly, thermodynamic calculations revealed that
InGaN was an unstable alloy which would decompose into indium
rich and indium poor regions [18]. These three independent pieces
of evidence appeared to provide strong scientific support for there
being gross indium-rich clusters in InGaN QWs, and this was
universally accepted by the scientific community.

In 2003, it was shown that InGaN QWs were extremely sensi-
tive to radiation damage in TEM and that HRTEM images acquired
immediately after first irradiating a region of an InGaN QW
showed no detectable indium-rich regions [19-21]. The papers
further revealed that continued exposure to the electron beam led
to the formation of locally strained regions that appeared similar
to those previously attributed to indium rich clusters. So it was
concluded that the indium-rich clusters observed by many others
were due to electron beam damage. This was subsequently sup-
ported by multiple research groups by a variety of methods [22-
27].

However, InGaN can decompose if there are macrosteps on the
growth surface, since indium is incorporated differently at treads
and risers of these macrosteps, which leads to compositional
growth striations [28]. A recent example of this is atomic-level
ordering in InGaN quantum dots in GaN nanowires. This was at-
tributed to a non-flat growth front at vicinal surface facets [29]. In
other recent work, indium fluctuations were observed in InGaN/
GaN core-shell nanorods, and these were correlated with atomic
steps at the GaN/InGaN core-shell interface giving rise to a change
in the growth mode from 2D (planar) to 3D (faceted) [30]. Apart
from these examples of faceted growth, there is now almost uni-
versal acceptance that in (0001) InGaN quantum wells grown by
2D layer-by-layer growth, as in planar LEDs, there are no gross
indium-rich clusters.

Galtrey et al [31] used atom probe tomography (APT) not only
to confirm that there were no indium-rich clusters in (0001) In-
GaN QWs but also to demonstrate that InGaN was a random alloy.
APT was also used to show that an electron beam in TEM can
create In-rich clusters in InGaN [32]. These results appeared to
conflict with the thermodynamic calculations that showed that
InGaN should decompose into indium rich and indium poor re-
gions at the growth temperature used [18]. However, these



Fig. 1. Schematic diagram of the structure of the non-polar specimens. Five InGaN
QWs with GaN barriers were grown by MOVPE on an a-plane ammonothermal GaN
substrate. The thickness of the GaN layer grown on the Ammono substrate was
900nm. The nominal thickness for the QWs and barriers were 2.0nm and 6.0nm
respectively.
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calculations had been performed for bulk InGaN, and, in a paper
that had been somewhat overlooked, Karpov had shown that for
strained InGaN QWs, the strain suppressed the decomposition and
that blue and green emitting InGaN QWs should be stable at the
growth temperatures used [33]. So the thermodynamics now
agreed with the HRTEM and APT results. However, the PL results
clearly showed that the carriers in InGaN were localised. If there
were no indium-rich clusters, then what was the localisation
mechanism?

HRTEM was used to show that the lower GaN/InGaN interface
appeared to be atomically smooth, but that the upper InGaN/GaN
interface had atomic height interface steps, typically about 5nm
across [34]. This was later confirmed using APT [35]. The interface
steps resulted in QW width fluctuations on an atomic scale. A key
question was whether such well width fluctuations and random
indium fluctuations played any role in localising the carriers in the
InGaN QWs.

4.1. Localisation mechanisms in InGaN

The above atomic structure results from HRTEM and APT were
fed into quantum mechanical calculations independently by
Watson-Parris et al. using an effective mass treatment [36], and
Schulz et al. using an atomistic tight binding model [37]. They both
found that the electrons and holes were localised by different
mechanisms. The electrons were localised near the top QW in-
terface by the built-in electric field and well width fluctuations,
whereas the holes were localised near the bottom QW interface by
the random In fluctuations, in regions of higher In concentrations.
The localisation energy of the holes was typically about 60meV
and of the electrons about 20meV. The large PL linewidth observed
from InGaN was found to be mainly due to the fluctuations in the
localisation energies of the holes. Schulz et al. [37] also found that
these localisation energies of the electrons and holes in the InGaN
QWs are much higher than the electron/hole Coulomb interaction
energy, which is relatively weak because of the spatial separation
of the electrons and holes due to the built-in potential. Hence the
electrons and holes essentially act as independent carriers in the
QWs and not as excitons. It is worth noting that this detailed
understanding of electrons and holes in polar InGaN QWs is based
upon observations of the atomic structure of the wells using
HRTEM and APT, these experimental results then being input as
data into theoretical calculations. However, in non-polar QWs
there is no electric field across the QWs, and the electrons and
holes are not spatially separated. Hence we now discuss the
structure and origin of localisation in non-polar (11-20) InGaN
QWs.
5. Comparing polar and non-polar InGaN QWs

5.1. Sample details

Four non-polar a-plane (11-20) samples with five InGaN/GaN
QWs were grown by metal organic vapour phase epitaxy (MOVPE)
in a Thomas Swan 6 � 2in close coupled showerhead reactor (see
Fig. 1). Trimethylgallium (TMG), trimethylindium (TMI), and am-
monia were used as the precursors, with hydrogen as the carrier
gas, for the growth of the GaN epilayer, and nitrogen for the
growth of the InGaN QWs and GaN barrier layers. The samples
were grown on ammonothermal GaN substrates to reduce the
high density of stacking faults and dislocations which would
otherwise have formed in these non-polar samples. The substrates
had a miscut of 0.3 7 0.20° towards [0001]. An 800nm non-in-
tentionally doped GaN epilayer was grown directly on the sub-
strate. Five period InGaN/GaN QWs were grown at 300Torr in a
constant ammonia flow of 446mmol/min. The InGaN QWs were
grown for 160s with a TMI flow of 14.5mmol/min and a TMG flow
of 4.5mmol/min. The indium composition in the QWs was varied
by changes in the growth temperature between 705 and 690°C, to
give an indium content in all four samples varying from 8% to 21%,
as measured by X-ray diffraction. Following the growth of each
InGaN QW, a 1nm GaN protective cap layer was grown at the same
temperature and TMG flow rate as during the InGaN growth. The
GaN barrier growth continued during the temperature ramp up to
860°C over 90 seconds at which point the TMG flow rate was in-
creased to 73.2mmol/min for the remainder of the barrier. Further
growth details are given in ref. [38].

For comparison, four polar samples were grown on (0001)
sapphire with a miscut of 0.25 7 0.10° towards [11-20]. A 5mm
thick GaN pseudo-substrate was grown following a two-step ap-
proach as described by Das Bakshi et al. [39], this was followed by
the growth of 400nm of non-intentionally doped GaN. The QWs
were grown at 300Torr in a constant ammonia flow of 446mmol/
min. The InGaN QWs were grown for 216s with a TMI flow of
14.5mmol/min and a TMG flow of 4.5mmol/min. The indium com-
position between the samples was varied by changes in the
growth temperature from 779, 771, 754, and 744°C. The barriers
were grown under the same conditions previously used for the
non-polar samples.

5.2. Results: the apparent disagreement of theory and experiment for
non-polar InGaN QWs

The Inx Ga1-x N indium composition, defined in this study as
the group-III alloy fraction (x), was quantified using X-ray dif-
fraction (XRD). XRD is a rapid, non-destructive and widely used
technique to measure the indium composition in InGaN QWs. High
resolution XRD was performed on a Philips X'pert MRD dif-
fractometer with a 4-bounce monochromator and a triple axis
analyser. The QW widths and lattice parameters were determined
by ω�2θ scans following the approach of Vickers et al [40] for the
polar samples and its adaptation to non-polar orientations [41].
XRD does not reveal variations in the composition between QWs
or within the QW, but it can provide information on the average
composition for the QWs [38,42].

Fig. 2 shows experimental points for the PL peak emission
wavelength from the InGaN QWs as a function of the indium
composition, as measured by XRD, for the polar and (11-20) non-
polar structures. We have also calculated the change in emission
wavelength as a function of the indium composition using a
commercially available package for the simulation of semi-
conductor nanostructures, nextnano3, which assumes that the
InGaN in the QWs is a uniform alloy.

While the simulated emission wavelength of the polar (0001)
InGaN QWs agrees reasonably with the observed results, for the



Fig. 2. (a) PL emission wavelength at 10K as a function of the indium content of
InGaN QWs measured by XRD for (0001) polar and (11-20) non-polar QWs, ex-
perimental points and simulated curves. (b) FWHM of the PL emission spectrum as
a function of the indium content.

Fig. 3. APT atom map of the indium distribution in a non-polar (11-20) InGaN QW.
Note the indium-rich clusters. The map is a 2D in-plane projection, (11-20) plane,
of all indium atoms in the first QW, integrated over the thickness of the well.
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non-polar (11-20) InGaN QWs the experiment and theory do not
agree, particularly at longer wavelengths. It would seem that ei-
ther the structural assumptions used in the theory are wrong, or
the indium content measured by XRD is wrong for the non-polar
samples. In addition, we note from Fig. 2 that the PL emission
spectrum is much broader for the non-polar specimens than for
the polar. Again, this is an unexpected result and it is not obvious
why this should be the case. These surprising and unexpected
results drove us to perform a more detailed characterisation of the
atomic structure of our non-polar InGaN QWs.

5.3. Results from APT and aberration-corrected quantitative-STEM

Fig. 3 shows an APT atom map of the indium distribution in a
non-polar (11-20) InGaN QW. Visually, some indium-rich clusters
are apparent. To quantitatively study the indium distribution, a
frequency distribution analysis of the indium distribution was
performed (Fig. 4). Analysis was performed with histogram bin
sizes ranging from 25 to 200 atoms in increments of 25 atoms,
corresponding to volumes with linear dimensions ranging from
1.2 to 2.4nm. (For example, taking into account the detection ef-
ficiency of the atom probe gives the size of a 100 atom bin as
1.55 � 1.55 � 1.55nm3 [43].) The experimental distribution of
indium atoms exhibits significant deviations when compared with
a random binomial distribution. Evidence of a non-random
distribution requires a p-value less than 0.05 [44]. A χ2 analysis of
the data in Figs. 4 and 5 yields a p-value less than 0.001, indicating
no statistical correlation between the experimental data and a
random distribution [45].

The APT result, that there are indium-rich clusters in non-polar
(11-20) InGaN QWs, was unexpected and contrary to the ob-
servations in polar InGaN QWs and we therefore decided to in-
vestigate further the atomic structure of these non-polar QWs
using quantitative scanning transmission electron microscopy (Q-
STEM) in an FEI Titan3 80–300keV Schottky field emission gun
TEM fitted with spherical aberration correctors on the probe and
image-forming lenses at the electron microscope facility at Mon-
ash University. Further details are given in ref. [38]. We used
Q-STEM because InGaN is sensitive to radiation damage in an
electron microscope [19-21]. Q-STEM can provide high spatial re-
solution and chemical sensitivity with a lower electron dose than
energy dispersive X-ray spectroscopy (EDS) or electron energy loss
spectroscopy (EELS). As previously reported by Rosenauer et al
[46], we found no evidence for the formation of indium-rich re-
gions, or other observable damage induced by the electron beam,
for the low doses we used in Q-STEM.

For quantitative compositional analysis of our HAADF-STEM
images, theoretical HAADF-STEM intensities were simulated for
comparison using a frozen phonon multislice model following the
approach of Rosenauer et al [46] using electron image simulation
software adapted from the Melbourne mSTEM code [47]. Image
intensity calculations were performed for indium fractions from
0 to 0.24 in steps of 0.04, up to a maximum thickness of 130nm.
The calculations assumed the same incident electron energy,
probe convergence and detector response as used in the experi-
ment. Comparison between the simulated and experimental in-
tensities, as described in ref. [37], was used to produce an indium
composition image, as shown in Fig. 5. The distribution of indium
in each of the five QWs is revealed. The HAADF-STEM results show
variations in projected In concentration, and strain contrast, which
would be expected if clustering occurs in this (11-20) non-polar
sample. Because the HAADF-STEM image is a projection of the
structure, these indium-rich regions could be indium-rich nano-



Fig. 5. The distribution of indium in each of the non-polar (11-20) InGaN QWs.
Indium-rich regions are clear (see also the inset). Specimen thickness 80nm. Zone
axis orientation [0001].

Fig. 4. (a) Frequency distribution analysis of the indium content in the first non-
polar (11-20) InGaN QW using a bin size of 50 atoms. (b) The frequency difference
between the experimental data and a binomial (random) distribution. The fre-
quency difference data have a p-value of less than 0.001, indicating a clear devia-
tion from a random distribution of indium atoms.

C.J. Humphreys et al. / Ultramicroscopy 176 (2017) 93–98 97
wires running along the electron beam direction, but the APT re-
sult confirms that they are, in fact, nm-scale In-rich clusters. The
size of these clusters agrees with those seen in the APT images.
Since our findings, quantitative-STEM has also been applied to
reveal locally indium rich regions on non-polar m-plane (1-100)
sidewalls in InGaN core-shell nanorods [48].

5.4. Discussion of the non-polar (11-20) InGaN QW results

Since the bandgap of InN is less than that of GaN, it is suggested
that indium-rich clusters in the non-polar (11-20) InGaN QWs will
localise the carriers and produce longer wavelength (lower en-
ergy) emission than from a random InGaN alloy of the same
average composition. This may explain the apparent discrepancy
between theory and experiment for non-polar (11-20) InGaN in
Fig. 2(a), in which the theory is for a random alloy. The indium-
rich clusters in non-polar (11-20) InGaN QWs may also explain the
broad spectral line widths from this material shown in Fig. 2(b).

The average composition measured by APT and Q-STEM agreed
quantitatively with XRD measurements, but only APT and Q-STEM
had the resolution to reveal the indium-rich clusters in non-polar
(11-20) InGaN QWs. The reason for the clustering is not yet clear,
but may be due to the lower QW growth temperature for the (11-
20) InGaN QWs compared to the (0001) polar InGaN QWs.
6. Conclusions

For polar (0001) InGaN QWs, the calculated wavelength as a
function of the In content is in agreement with theory, assuming
InGaN to be a random alloy. For non-polar (11-20) InGaN QWs, the
calculated wavelength apparently disagrees with experiment.
However aberration-corrected Q-STEM and APT reveal that in non-
polar (11-20) InGaN QWs there are indium-rich clusters, instead of
InGaN being a random alloy. When these large indium fluctuations
are taken into account there is agreement of theory and
experiment.

Aberration-corrected electron microscopy has been an essential
technique to solve the problems reported in this paper. Bob Sin-
clair and Nestor Zaluzec have made major contributions to this
technique and its applications and we have built upon their out-
standing research.
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