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There Are No EP x S Vacuum Gravitational Instantons

Niall 0 Murchadha and Hugh Shanahan( )

Physics Department, University College, Cork, Ireland
(Received 20 August 1992)

Gravitational instantons, solutions to the Euclidean Einstein equations, with topology R x S
arise naturally in finite-temperature quantum gravity. It is shown here that all such instantons must
have the same asymptotic structure as the Schwarzschild instanton. Prom this follows that if the
Ricci tensor of such a manifold is non-negative it must be fIat. Hence there is no nontrivial vacuum
gravitational instanton on R x S . This places a significant restriction on the instabilities of hot
Hat space. Another consequence is that any static vacuum Lorentzian Kaluza-Klein solution is Hat.

PACS numbers: 04.60,+n, 04.50.+h

Instantons, solutions to the classical Euclideanized
field equations, play a prominent role in quantum field
theory. One situation in which they arise is in comput-
ing a transition amplitude in the standard, Lorentzian,
signature. The transition amplitude may be dominated
by a classical solution to the field equations. If such does
not exist, it may be possible to deform the contour of
integration into a region of imaginary time and find that
the integral may be dominated by a solution to the Eu-
clidean field equations, an instanton. Such an instanton
may be interpreted as a tunneling solution.

Another use of instantons, of much more relevance to
this Letter, is in finite-temperature quantum field theory.
It can be shown that the partition function at some given
temperature is equivalent to a transition amplitude in
which the time is made both imaginary and periodic,
with period w = P = 1/T, where T is the temperature
[1]. Again, the partition function may be dominated by
classical solutions, but now the classical solutions which
one considers are periodic as well as being Euclidean.

Finite-temperature quantum gravity has been inten-
sively studied ever since the discovery of black hole ther-
modynamics by Beckenstein [2] and Hawking [3]. As part
of this investigation, people have tried to find gravita-
tional instantons, especially those with a periodic char-
acter. It is clear that one can identify Bat slices of Hat
Euclidean four-space to give a Hat instanton. Further, it
was realized that if one took the standard Schwarzschild
solution and Euclideanized it by t ~ iw, one got a regular
vacuum instanton if one simultaneously made it periodic
with period ~o = SvrM [4].

The Schwarzschild instanton has topology R x S . It
is widely assumed that there is no vacuum gravitational
instanton with topology Rs x Si (except rolled up fiat
space, of course). Such an instanton would signal an
instability of hot fiat space [5]. Here we will give a proof
that no such instanton exists. Witten [6] has already
shown that there is no nontrivial vacuum gravitational
instanton on R . The technique we use can be thought
of as an adaptation of the Mitten proof.

We assume that the metric is asymptotically Hat in the

A3 directions. %'e further assume that the manifold has
a constant period (7O) near infinity, but we do not as-
sume that the period remains constant in the interior. In
other words, we are assuming a constant temperature at
infinity but we do not care what happens in the interior.

The first point to be resolved is the asymptotic behav-
ior of Ricci-Hat Riemannian metrics on B x S . Since
the metric is asymptotically Hat, we can write the Ein-
stein equation in the "Lorentz" gauge [7]. This means
that we consider

and reverse its trace by defining

1 nP
~P V —~P V —,~P Vg ~EXP (2)

The "Lorentz gauge" means making a coordinate trans-
formation so that 6 satisfies

Equation (4) holds only in the weak-field region, but this
is the part of the space where we assume that we have a
constant period, wo. We can write h„as a Fourier series
in u, the periodic coordinate,

hpu = ) 4pvn(r)e

where w = 2~/~0 and r is the spatial radius vector. We
substitute Eq. (5) into Eq. (4) to get

82h
(4) ~2h (3)~2h ~ p V

P, V PV +

h, pv, v

Such a transformation can always be made. The lin-
earized Einstein equation in the Lorentz gauge is simply
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Since the Fourier components are linearly independent,
Eq. (8) implies that each mode must satisfy

~ ~& P„„(r)—n ~ P„„(r)= 0, V n . (9)

It can be shown that [8] the solutions of Eq. (9) for n P 0
decay exponentially at infinity. Therefore, the asymp-
totic behavior is dominated by the n = 0 mode which
satisfi. es

near infinity. This result holds even if the Ricci tensor of
the manifold is nonzero; all we require is that it fall off
suKciently rapidly at infinity.

This means that if we wish to obtain a nonexistence
result we need a global argument; a "local near infinity"
argument will never get us anything. This is why we try
to mimic the Witten R4 proof [6].

Following Witten, we seek a solution to the equation

(3) 23 Q2p 0 (io)
i lV P = 0, P ~ u near infinity.

This means that the n = 0 mode is determined by
the harmonic functions of the flat-space three-Laplacian.
Hence the leading term is of the form Co/r, where Co is
a constant. More precisely

Therefore all the C„'s must vanish except Cpp, because
r depends only on the three asymptotically flat coordi-
nates (x, y, z). Hence near infinity we have

(I 0 o 0)
Cpp 0000

p 0000
0000)

(13)

h„= C~ /r

near infinity, where C„are ten constants and r is the
three-dimensional radial distance. All the terms with u
dependence fall off exponentially.

However, we must simultaneously satisfy the Lorentz
condition [Eq. (3)]. This implies

I et us write

yo + p(o)

Equation (17) can be written as

———i l'7 u, &Pi
—+ 0 near infinity.

We have

(18)

(19)

i4iV' u = —g ~1 "p ——G(1/r ) . (2o)

We assume that the given (curved) metric can be
smoothly distorted back to flat space. It is easy to show
that the four-Laplacian has no harmonic function 0 that
vanishes at infinity anywhere along this sequence; just
integrate by parts 6~ ~V' t9 over the manifold, and throw
away the surface term to leave the integral of (T8)2. This
is zero, so 0 itself must also be zero. The Laplacian on flat
B x S is an isomorphism; we can explicitly write down
the Green function. The method of continuity [9] now
guarantees that the isomorphism property holds along
the whole sequence of metrics. This means that a solu-
tion to (19) exists which decays at infinity at least as fast
as 1/r, and hence we have a solution to (17).

The following identity is now used:
We can reverse Eq. (3) to give

h,„~ = h,„~ —
—,'6„~g~/ h p .

When we substitute (13) in (14) we get

(1 o o 0)
Cpp 0 —1 0 0
2r 0 0 —1. 0

(0 0 0 —1)

(14)
v„(g,y'v'v'y') = (v.v„y')'+ v.y'v„v" v ~y'.

(»)
Let us add and subtract 7' Pc%' 7'„7'"Po [which is iden-
tically zero from (17)] to Eq. (21) to give

~„(~.y'v'o&y') = (v.v„y')'+ v.y'v „yon".
(22)

Finally, using —4M = Cpp, we get

2M
r

0
0
o

0 0
1+2M 0r

0 y+ 2M
r

0 0
"(-')

1+ 2M)

(16)

We should recognize Eq. (16) as being just the leading
part of the Schwarzschild instanton [4]. This should come
as no surprise because all we have been doing is deter-
mining the asymptotic behavior of the gravitational in-
stanton, and R x S is indistinguishable from R x S2

Since we assume that the manifold is Ricci flat, we can
throw away the last term in Eq. (22). Let us now inte-
grate (22) over the whole manifold to give

7'„(V„P 7"7~/ )~gd x = (D V„P )2~gd x.

'7 PoV' 7'"P n„~gd S = ('V 'V„P ) ~gd x.
(24)

(23)

The left-hand side of (23) can be turned into a surface
integral at infi. nity to give
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(7' V„(P) vgd x = —4~M7.p . (26)

Therefore M, the analog of the Schwarzschild mass, must
be negative.

However, P is not the only natural harmonic function
we could de6ne on this manifold. Another candidate is

= 0, P —+ 2: near infinity.

We repeat the calculation following (17) and write

o'= +~I',
and we again have

(') V'~ = g.~-r', = C (1/") . (29)

The connection, in general, falls off like 1/r2, but a can-
cellation occurs in the particular combination in (29) so
that the leading terms cancel. In other words, the stan-
dard coordinates on any manifold which is asymptotically
Schwarzschildian are "almost harmonic. "

We can use exactly the same identity as before, just
substituting Pi for PP. Now we get, instead of (26),

Any term in the integrand of the surface integral that
falls off faster than 1/r can be neglected because the
"area" of the "surface at inanity" blows up like 4&07t;r2,

where wo is the period in the u direction. This allows us

to ignore the contribution from the Pi term. The only(o)

term that remains is the connection from 7' V"P . It is
easy to show that the surface integral reduces to

(25)

Hence (24) gives us

xz„.= v'„v.x, &'~v'x=0, (32)

where B„ is the Ricci tensor of the four-manifold, and N
is the norm of the Killing vector. The second equation
in (32) tells us that N must be constant, and the first
equation then tells us that the Ricci tensor must vanish.
Therefore M4 must be Hat and hence the Ave-manifold
must be trivial.

We would like to thank Michel Vandyck, especially for
his help with the proof that the zero mode dominates. We
would also like to thank Raphael Sorkin, who indicated
the Kaluza-Klein result to one of us (N. OM. ) .

When we evaluate expression (24), it turns out that the
integral of 7' tV' 9'"t n„actually diverges on any surface
that shrinks to r = 2M. Thus the negative term at in-
G.nity is more than compensated for by a positive interior
term. Such behavior will not occur on a manifold which
is topologically B3 x S .

Over the years, a number of "static + vacuum implies
trivial" theorems have been derived. (The only coun-
terexample to date has been the Einstein- Yang-Mills sys-
tem [11].) The result obtained here, that a Ricci-ffat Rie-
mannian manifold with topology R3 x S is Hat, can be
used to show that "static + vacuum implies trivial" is
valid for standard (Lorentzian) Kaluza-Klein theory. In
Kaluza-Klein theory we consider a manifold with topol-
ogy B x S where the S and three of the four directions
in R are spacelike. I et us consider a static, vacuum
Kaluza-Klein manifold. By static we mean that there
exists a timelike, surface-forming Killing vector. Obvi-
ously, the surface orthogonal to the Killing vector, M4,
is a Riemannian manifold with topology B x S . The
"Einstein" equations in this case reduce to

('7 7'„p') Vgd z = —4vrr I'*„=+47rMrp . (30)

Now we get M ) 0. But we have already shown M & 0.
The only way that (30) can be compatible with (26) is

that we really have M = 0, and this implies

=0. (31)

The existence of these functions (and their equivalents P
and P3) whose double derivatives vanish is sufficient to
show that the four-space is Hat. This nonexistence argu-
ment extends to the case where we have a nonzero Ricci
tensor if the Ricci tensor has non-negative eigenvalues
(see [10] for a similar result in the R4 case).

The undoubted existence of the Schwarzschild instan-
ton does not contradict this nonexistence result. It is
very easy to repeat this calculation in the Schwarzschild
case because the standard time coordinate t in the
Schwarzschild instanton is harmonic due to the static na-
ture of the metric. However, the length of the vector 9' t
becomes unboundedly large as one approaches r = 2M.

~ ~ Present address: Physics Department, University of Ed-
inburgh, Edinburgh, Scotland.
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