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_________________________________________________________________________________

ABSTRACT 

 

Extensive enzymatic hydrolysis of milk proteins in reconstituted buttermilk powder was combined 

with ultrafiltration to generate a phospholipid (PL) enriched fraction with maximum permeation of 

hydrolysed peptides. Buttermilk, naturally high in PLs, is the ideal substrate for enrichment of these 

bio- and techno- functionally active compounds. A 7.8 fold increase in PL was achieved in the 50 kDa 

retentate; 6.16 ± 0.02% total PL compared with 0.79 ± 0.01% in the starting substrate, an increase 

considerably greater than previously reported. Total lipid content (% dry matter) increased 6.3 fold in 

the retentate, 43.43 ± 0.61%, from the starting substrate, 6.84 ± 0.17%.  This combined strategic 

approach enabled maximum enrichment of PLs with no transmission of lipid material into the 

permeate, 0.09 ± 0.02% total lipid, and non-detectable levels of PLs recovered in the permeate, 0.00 ± 

0.01% total PL. 

__________________________________________________________________________________ 
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1.  Introduction 

 

Cream churning during the butter manufacture process disrupts the natural emulsifying layer 

of the milk fat globule and releases fragments of the milk fat globule membrane (MFGM), namely 

polar lipids and membrane proteins, into the aqueous (serum) phase that characterises the by-product 

buttermilk (BM) (Corredig, Roesch & Dalgeleish, 2003; Morin, Jiménez-Flores, & Pouliot, 2007). 

While similar to skim milk in terms of protein (casein and whey), lactose and minerals (Corredig & 

Dalgleish, 1997; Keenan, & Dylewski, 1995; Vanderghem et al., 2010), BM  is distinguishable by its 

marginally higher fat content, 2.80% fat compared with 0.74% in skim milk (Barry, Dinan, Murray & 

Kelly, 2016), arising from destabilisation of the milk fat globules and the release of MFGM-based 

polar lipids (Britten, Lamothe, & Robitalle, 2006; Sodini, Morin, Olabi, & Jiménez- Flores, 2006). 

The concentration of these polar lipids, phospholipids (PLs), in BM has been reported to be up to 15 

times greater than that of whole milk (Barry et al., 2016; Christie, Noble, & Davies, 1987; Rombaut, 

van Camp, & Dewettinck, 2005). Phospholipids constitute two groups of polar lipids, 

glycerophospholipids and sphingolipids (Avalli & Contarini, 2005; Contarini & Povolo, 2013; 

Rombaut et al., 2005). However, not all sphingolipids constitute glycerophospholipids, e.g., 

sphingosine, due to the absence of the phosphate group. The major glycerophospholipids are 

phosphatidyethanolamine (PE) and phosphatidylcholine (PC), while phosphatidylinositol (PI), 

phosphatidylserine (PS) and phosphatidic acid (PA) are present in relatively minor amounts (Barry et 

al., 2016). Sphinomyelin (SM) represents the major sphingolipid (Barry et al., 2016; Contarini & 

Povolo, 2013; Rombaut, Dewettinck, & van Camp, 2007a). Hence, there is a growing interest in BM 

as an ideal substrate for the development of enriched PL concentrates. 

 Quantitatively, BM production is estimated to be similar to that of butter, which was reported 

to be approximately 5.2 million tonnes worldwide in 2013 (FAOSTAT, 2015).  Previously considered 

a low value by-product from butter manufacture, BM is now widely used in the food and beverage 

industry due to the inherent amphiphilic nature of its PLs (with their hydrophobic tail and hydrophilic 

head group: Contarini & Povolo, 2013; Dwetteinck et al., 2008) that is mainly responsible for the 

functional and technological properties of BM, such as emulsification and stabilisation (Corredig & 
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Dalgleish, 1997; Ferreiro, Martinez, Gayoso, & Rodriguez-Otero, 2016; Kuchta, Kelly, Stanton, & 

Devery, 2012).  

In addition, there are numerous biological and nutritional properties associated with PLs, 

particularly those derived from dairy sources due to their higher content of PS and SM (Barry et al., 

2016; Burling & Graverholt, 2008). SM and its metabolites have been shown to exhibit 

anticarcinogenic activity, in particular suppressing colon carcinogenesis (Berra, Colombo, 

Scottocornola, & Giacosa, 2002; Hertervig, Nilsson, Cheng, & Duan, 2003, 2005; Kuchta- Noctor, 

Murray, Stanton, Devery, & Kelly, 2016; Parodi, 2003; Spitsberg, 2005).  PLs have also been 

associated with cognitive performance and improvement, in particular the biological activity 

associated with PS has been utilised in the treatment of Alzheimer’s disease (Burling & Graverholt, 

2008; Pepeu, Pepeu, & Amanducci, 1996).  Other positive health benefits associated with PLs are 

linked to reduced incidence of cardiovascular disease, suppression of multiple sclerosis, myelination 

of the central nervous system, depression and stress (Contarini & Povolo, 2013; Dewettinck et al., 

2008; Oshida et al., 2003). Supplementation of infant formulas with PLs has been shown in recent 

years to have a positive effect on both the neurodevelopment and immunological defences of the 

infant (Timby, Domellöf, Hernell, Lönnerdal, & Domellöf, 2014; Timby et al., 2015). 

 Due to its widespread availability, low cost and functionality, BM is an appropriate starting 

substrate to consider for production of a PL concentrate. Membrane separation processes have been 

explored by various groups in the course of enriching the concentration of  valuable MFGM material 

in BM. Microfiltration, because of its selectivity to remove caseins, has been extensively researched 

(Holzmüller & Kulozik, 2016); however, the transmission of MFGM components has been shown to 

be dependent on a number of factors such as pore size, processing temperature, pH, type of BM and 

also the membrane filtration configuration (Astaire, Ward, German, & Jiménez- Flores, 2003; 

Dewettinck et al., 2008; Morin, Jiménez-Flores, & Pouliot, 2004; Morin, Pouliot, & Jiménez-Flores, 

2006; Rombaut, Dejonckheere, & Dewettinck, 2007a; Surel & Famelart, 1995). The similarity in size 

of casein micelles and PLs has been reported to be a major obstacle during selective isolation of 

MFGM components by membrane filtration. Apparent interactions between casein micelles and 

MFGM are thought to be partially responsible for the poor separation of PLs by microfiltration 
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(Morin et al., 2007). This has resulted in complementary measures such as cream washing in 

conjunction with ultrafiltration (UF) being explored to facilitate maximum removal of the skim milk 

proteins, lactose and minerals (Morin, Britten, Jiménez-Flores & Pouliot, 2007). Other measures 

include the investigation of pre-disruption, coagulation and precipitation of the casein fraction prior to 

filtration (Corredig et al., 2003; Roesch, Rincon, & Corredig, 2004; Rombaut et al., 2007a; Sachdeva 

& Buchheim, 1997). Sachdeva and Buchheim (1997) induced rennet coagulation of the caseins prior 

to MF, but suffered a 20% loss of the PL in the rennet curd (Sachdeva & Buchheim, 1997). Corredig 

et al. (2003), Roesch et al. (2004) and Rombaut et al. (2007a) improved the MF transmission of casein 

as a result of disruption by added citrate, but experienced losses of MFGM material due to membrane 

fouling and pore blocking (Rombaut, Dejonckheere, & Dewettinck, 2006). Another avenue of 

investigation was cream washing with skim milk ultrafiltrate prior to butter/buttermilk production 

(Britten et al., 2007; Holzmüller, Müller, Himbert, & Kulozik, 2016; Morin et al., 2007b). In this 

instance, washing cream prior to churning reduced BM protein content by 74–80%, but at the expense 

of severe PL losses (Britten et al., 2008). The type of BM used also influences the transmission of 

MFGM components. A 50% decrease in transmission of PLs has been reported in fresh pasteurised 

BM compared with reconstituted BM which is attributed to differences in processing (Morin et al., 

2004).  Whey BM, a by-product of cheese production, is a desirable substrate for MFGM isolation 

due to the absence of casein micelles, but of less interest commercially due to the low production 

volumes of whey cream and also the susceptibility of whey butter to lipid oxidation (Morin et al., 

2007a).  

This study set out to develop a process to maximise both enrichment and recovery of PL 

material using reconstituted buttermilk powder as a standard substrate for all experimental studies, 

due to its availability, utilising a combination of enzymatic hydrolysis and UF fractionation. UF has 

not been as widely investigated as MF for PL enrichment, but may serve as an avenue to overcome 

the unsatisfactory results obtained by fractionation by means of microfiltration (Morin et al., 2007a).  

In particular, the study pushes the boundaries of previous work done with enzymatic hydrolysis of 

buttermilk prior to microfiltration. In this case, more extensive protein hydrolysis is aimed for by 

initially screening commercial proteases on the basis of their capacity to generate smaller peptides 
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capable of permeating UF membranes, thereby reducing the protein content of the retentate and higher 

levels of polar lipid enrichment. UF, with its smaller pore size, should ensure minimal transmission of 

the PLs compared with transmission experienced during MF (> 45%; Morin et al., 2004) and thus 

maximise recovery of these complex bio- and techno- functional compounds in the retentate. 

 

2.  Materials and methods 

 

2.1.  Materials 

 

Spray-dried buttermilk powder was sourced from Tipperary Co-operative (Tipperary, 

Ireland). Compositional analysis of the powder by standard IDF protocols determined 6.84% fat, 

31.40% protein, 48.00% lactose and 7.40% minerals. The digestive enzymes Alcalase® 

(EC3.4.21.62) and Neutrase® (EC3.4.22) were procured from Novozymes (Bagsværd, Denmark). 

Alcalase has a minimum activity of 2.4 Anson units (AU) per gram of composition (2.4 AU g-1) at pH 

7.5, with the optimum conditions for Alcalase activity within 35–60 °C and pH 7–9. Neutrase is a 

metalloprotease with a minimum activity of 0.8 AU g-1 protease at pH 7 with optimal conditions for 

neutrase activity between 40–50 °C and pH 5–7. The digestive enzyme complex Corolase PP® (CPP) 

(EC 3.4.21.4), was procured from AB Enzymes GmbH (Darmstadt, Germany). CPP has a minimum 

activity of 2500 units with haemoglobin as a substrate (UHb) and 220,000 Lohlein-Volhard units 

(LVU) g-1 at pH 8.0. 

VivaflowTM 200 polyethersulfone (PES) cross-flow ultrafiltration cassette membranes 

(molecular mass cutoffs of 50 kDa and 100 kDa) were purchased from Sartorius Stedim (Sartorius 

Stedim Ireland Ltd., Dublin, Ireland). Acetonitrile was procured from ThermoFisher Scientific 

(Waltham, MA, USA). All other chemicals were HPLC grade, > 99.9 % and were purchased from 

Sigma Aldrich (Arklow, Ireland)  

 

2.2.  Enzymatic hydrolysis of buttermilk powder protein fraction 
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(1) 

The degree of hydrolysis (DH) is defined as the number of peptide bonds (h) cleaved as a 

percentage of the total peptide bonds (htot) and is related to base consumption due to proton release 

during the hydrolysis reaction according to Eq. 1 (Adler-Nissen, 1986): 

%�� = 100	�			�	
�	�	
�



	�	

�

��
	�	

�

����
 

where B is the volume of base  in mL, NB is the normality of the base, 1/α is the average degree of 

dissociation of the α-NH groups (= 1.13 at pH 8.0, 50 °C), MP is the molecular mass of the protein 

and htot is the number of peptide bonds in the protein substrate (= 8.2 for casein/whey mix). 

Investigative screening of a number of proteases, either individually or in combination, was 

carried out to determine the most proteolytic enzyme in terms of greater amount of smaller molecular 

mass peptides generated. These included CPP, Neutrase and Alcalase as well as Alcalase in 

combination with CPP or Neutrase. For analysis of the changes in molecular mass distribution and 

peptide formation during the hydrolysis reaction for each individual enzyme or enzyme combination, 

aliquots of the reaction were subtracted at different DH points (determined using Eq. 1) and the 

enzyme activity was terminated by dilution in 0.1% (v/v) trifluoroacetic acid (TFA). The hydrolysates 

were then analysed via size exclusion chromatography to determine the enzyme that generated the 

greatest degree of smaller molecular mass material. Going forward, all hydrolysis experiments 

described will refer to the use of Alcalase as the proteolytic enzyme unless otherwise stated.  

For all hydrolysis reactions, buttermilk powder (BMP) was reconstituted to 10% total solids 

in deionised water, 800 mL, and allowed to hydrate overnight at 4 °C with gentle agitation (300 rpm). 

The BMP dispersions, with an original pH of 6.45, were adjusted to pH 8.0 with 4 M NaOH and 

heated to 50 °C in a water bath. Enzymatic hydrolysis was initiated by addition of Alcalase dissolved 

in dH2O, and the pH was controlled throughout by titration with 0.2 M NaOH using a Metrohm 842 

Titrando pH stat dosing unit (Metrohm Ltd., Herisau, Switzerland). The reaction was agitated 

throughout utilising an over-head stirrer at 300 rpm. DH ranging from 1% to 25% was investigated, 

with percentage DH (%DH) selection based on the optimum digestion of the milk proteins. 

Termination of the reaction by enzyme inactivation achieved through heating the hydrolysate to 80 °C 

for 20 min or by pH inactivation with 0.1% (v/v) TFA was investigated to determine the effects of the 
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(2) 

enzyme inactivation process on the final hydrolysate. All hydrolysate reactions were performed in 

triplicate. 

Determination of the end-point DH was measured by a modification of the method described 

by Adler-Nissen (1979) for the trinitrobenzenesulfonic acid (TNBS) reaction. TNBS involves 

measurement of the reaction of liberated α-amino groups (α-NH2) with 2,4,6-trinitrobenzene-1-

sulfonic acid. Briefly, a standard curve was prepared using L-leucine at concentrations ranging from 

20 to 250 mg L-1. Samples with a 3 mg mL-1 protein concentration were prepared in 1% SDS to which 

0.2125 M phosphate buffer was added. 1% SDS alone was used as a blank. To both the test samples 

and blank, 2 mL of TNBS was added, with the exclusion of light, and the reaction was incubated at 50 

°C for 1 h. Termination of the reaction was achieved through addition of 4 mL 0.1 M HCL, and the 

samples were cooled for 30 min following which the absorbance at 340 nm was read using a Varian 

Cary 1 dual beam UV- visible spectrometer (Varian Ltd., Walton-on-Thames, UK). 

DH values were determined using the following equation (Spadaro, Draghetta, del Lama, 

Camargo, & Greene, 1979) (Eq. 2) 

%�� =	
�������

���
	�	100 

where, AN1 is the amino nitrogen content of the unhydrolysed protein substrate (mg g-1 protein), AN2 

is the amino nitrogen content of the hydrolysed protein substrate and Npb is the nitrogen content of the 

peptide bonds in the protein substrate (mg g-1 protein). DH values were compared with the pH stat 

determined values. 

To determine optimum enzyme to substrate ratio (E:S) for the hydrolysis, reactions were 

performed at E:S ratios ranging from 0.1% to 2%, with reaction times dependent on DH and E:S, 

calculated using Eq. 1, under the hydrolysis conditions previously described. 

 

2.3.  Ultrafiltration of BMP hydrolysates 

 

Hydrolysates were subjected to membrane fractionation using VivaflowTM 200 PES cross-

flow cassette UF membranes (Sartorius Stedim); molecular mass cut-offs of 100 kDa and 50 kDa 
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were investigated to determine optimum fractionation of the hydrolysate. UF was carried out at 50 °C 

with a membrane inlet pressure of 1 Bar maintained throughout the process. Two diafiltration steps 

with 400 mL dH2O (half the volume of the starting BMP hydrolysate) were performed to achieve a 

volume concentration factor of 8. Retentates and permeates were concentrated using a Buchi rotary 

evaporator (Büchi, Flawil, Switzerland) and subsequently freeze-dried using a FreeZone® Plus 12 L 

(Labconco, Kansas City, MO, USA). UF of BMP hydrolysate was carried out in triplicate. 

 

2.4.  Chromatographic analysis of BMP hydrolysates and UF fractions 

 

For molecular mass characterisation and observation of the loss of native protein, HPLC was 

carried out using a Waters 2695 separation module and a Waters 2487 dual wavelength absorbance 

detector with Waters Empower software (Milford, MA, USA). Column eluates for protein analysis 

were monitored at 214 nm. 

Size exclusion chromatography (SEC) was carried out according to the method of O’Loughlin 

et al. (2013). Briefly, 20 µL of sample with 2.5 mg mL-1 protein concentration in Milli-Q water was 

injected onto a TSK Gel G2000SW, 7.8 mm × 600 mm column (Tosoh Bioscience GmbH, Stuttgart, 

Germany) with an isocratic gradient of 30% acetonitrile (MeCN) containing 0.1% TFA and a run time 

of 60 min. A molecular mass curve was generated using the following protein standards at 2.5 mg mL-

1 protein (20 µL injection volume): α-lactalbumin. β-lactoglobulin A and B, bovine serum albumin 

(BSA), lactoferrin and CMP (from Sigma Aldrich) and ribonuclease A, cytochrome C, Aprotinin, 

Bacitracin, His–Pro–Arg–Tyr, Leu–Tyr–Met–Arg, Bradykinin, Leu–Phe and Tyr–Glu (Bachem AG, 

Bubendorf, Switzerland). All samples and standard were pre-filtered through glass filters and 0.22 µm 

low protein binding membrane filters (Sartorius Stedim) prior to HPLC analysis. 

 

2.5. Lipid extraction, separation and quantification of the BMP phospholipids 
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Separation and quantification of PLs in the BMP hydrolysate and UF fraction involved 

extraction of crude lipid by Folch and subsequent analysis and quantification via HPLC according to 

Barry et al. (2016).  Briefly the crude extract was dissolved in CHCl3:MeOH (88/12, v/v) with 25 µL 

of the sample applied to the HPLC-detection system, Waters 2695 separation module (Waters) 

coupled to a corona charged aerosol detector (CAD) (Thermo Scientific, Hemel Hempstead, UK). PL 

analysis was carried out on a 3 µm particle diameter Prevail Silica column (Grace Sciences, Labquip, 

Dublin, Ireland) under linear gradient elution conditions with the ratio in volume of solvent A to B as 

follows; 96:4 at T = 0 min, 25:75 at T = 20 min, 6:94 at T = 21 min and 96:4 at T = 22 min and 

maintained until T = 27 min at a flow rate of 0.50 mL min-1. PL recovery was determined by 

quantifying with respect to calibration curves generated for each individual PL species.  Operating 

pressure of the CAD was maintained at 241.32 kPa with N2 as the nebulising gas with a flow rate of 

2.1 L min-1. All lipid extractions were performed in triplicate and all samples were pre-filtered 

through 0.20 µm Hydrophobic FluoroporeTM (PTFE) membrane filters (Merek Millipore Ltd. Cork, 

Ireland) prior to HPLC analysis  

 

2.5.  Compositional analysis of BMP UF fractions 

 

Compositional analysis was performed in duplicate on all samples using the standard IDF/ISO 

or AOAC methods for determination of % protein (ISO, 2014), % total solids/moisture and ash (ISO, 

2010) and lactose (AOAC, 2012); % fat, performed in triplicate, was determined using the Folch 

method described by Barry et al. (2016). 

 

2.6.  Statistical analysis 

 

Statistical analysis was performed with Minitab, version 15 (Minitab Ltd, Coventry, UK), 

with one-way analysis of variance (ANOVA) and Tukey Tests for both intra- and inter- sample 

variance. 
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3.  Results and discussion 

 

3.1.  BMP hydrolysates and target degree of hydrolysis determination 

 

In the current study, screening of a number of proteases, Neutrase®, Corolase PP®, and 

Alcalase®, both individually or in combination, was carried out to determine the most proteolytic 

enzyme with enzyme selection based on generation of the greatest degree of smaller molecular mass 

material. Each enzyme was investigated in terms of their ability to hydrolyse the BMP substrate, with 

the molecular mass distribution of each hydrolysate produced during the reactions analysed by SEC. 

From the chromatograms obtained (Fig. 1), Alcalase alone (Fig. 1a) proved to be the most proteolytic 

enzyme on the basis of smaller molecular mass material, of which it generated 89.84% <50 kDa in 

size (Table 1). The enzyme combinations, CPP + Alcalase and Neutrase + Alcalase, generated 

68.26% and 73.17% < 50 kDa, respectively (Fig. 1d and 1e); however,there is a large portion of larger 

molecular mass material, > 50 kDa, 31.73% and 27.44% in the CPP + Alcalase and Neutrase + 

Alcalase hydrolysates, respectively. This may be due to residual unhydrolysed protein or aggregate 

formation with smaller molecular mass peptides through sulphide linkages (Mullally, O’Callaghan, 

Fitzgerald, Donelly, & Dalton, 1994). CPP alone (Fig. 1b) had the greatest amount of larger molecular 

mass material, 63.94% > 50 kDa (Table 1). The difference in the generation and amounts of smaller 

mass peptides indicates the different mechanisms of hydrolysis for each of the enzymes screened. 

Alcalase is an endoprotease of the serine type and acts as an esterase enabling it to catalyse 

stereoselective hydrolysis of amino esters and selective esters. Neutrase acts as a metalloprotease 

enabling the kinetic resolution of amino esters. CPP is a digestive complex also containing serine 

endoprotease activity and has been reported to have high chymotrypsin to trypsin activity ratio 

(Mullally et al., 1994). As a result of the screening, Alcalase (Fig. 1a) was selected as the enzyme 

going forward to produce the BMP hydrolysates that would be subjected to ultrafiltration. 

 As mentioned earlier (Section 2.2), the optimum %DH for the Alcalase digested hydrolysates 

was investigated with %DH selection based on the greatest digestion of the milk proteins. DH was 
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determined by the volume of base consumed as calculated using Eq. 1. Size exclusion 

chromatography (SEC) was utilised to characterise the change in molecular mass distribution of the 

hydrolysed protein over the course of the hydrolysis reaction and peptide formation at each DH point. 

From the resulting SEC chromatograms (Fig. 2), it was determined that a DH of 19% (Fig. 2c) 

ensured extensive hydrolysis of the milk proteins with almost complete digestion of the larger 

molecular mass material present in the BMP starting substrate (Fig. 2a), with a shift in mass from 

92.10% >100 kDa in the BMP to 0.25% > 100 kDa in the BMP hydrolysate (Table 1). Extending the 

reaction to 25% DH had no significant change on the molecular mass distribution profile (Fig. 2d). 

Thus 19% DH was selected going forward as the end-point for the hydrolysis reactions as it ensured 

extensive hydrolysis of the proteinacious material such that the large body, 89.84% (Table 1), of 

smaller peptides (< 50 kDa) generated would facilitate peptide permeation during UF, and thus 

concentrate the lipid and in particular phospholipid fractions. 

 SEC was also utilised to investigate the effect that mode of enzyme inactivation, i.e., heat-

induced (80 °C for 20 min) versus pH (0.1% TFA) had on the final hydrolysate. It was concluded 

(Fig. 3) that pH inactivation to pH 5 was the preferable method of enzyme inactivation, as aggregate 

formation (> 50 kDa) occurred following thermal treatment of the hydrolysate to 80 °C for 20 min 

(Fig. 3c), and this did not occur in the pH inactivated hydrolysate, Fig. 3b.  Aggregate formation due 

to release of peptides during the hydrolysis reaction held together by non-covalent interactions has 

been comprehensively studied (Otte, Lomholt, Halkier, & Qvist, 2000). Altering the pH to 5 was 

sufficient to inactivate the enzyme. Alcalase is known to be quickly inactivated at pH 5 and above pH 

11 (Douchet, Otter, Gauthier, & Foegeding, 2003).  

 

3.2.  Ultrafiltration of BMP hydrolysate  

 

UF and diafiltration (DF) was carried out on the BMP hydrolysate to maximise permeation of 

the digested protein material, and thereby, reduce the amount of retained proteinaceous material in the 

phospholipid (PL)-containing retentate. Membrane cassettes with a choice of two cut-offs, i.e., 50 

kDa and 100 kDa, were screened initially based on the profiles of their respective permeating 
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peptides. Each UF step was carried out in duplicate. From the SEC chromatograms obtained for both 

the 50 kDa and 100 kDa retentates (data not shown) it was determined that the molecular mass 

distribution profiles were not significantly different between the two UF membranes (p < 0.01, one-

way ANOVA), and consequently, the 50 kDa membrane was selected to accomplish the selective 

concentration step in subsequent studies. 

UF was carried out at 50 °C and inlet pressure of 1 bar. A 6-fold increase in lipid content of 

the retentate (50 kDa R), 43.43 ± 0.61% total lipid (dry matter, DM), compared with 6.84 ± 0.17% 

total lipid (DM) in the starting BMP material (Table 2).  At the same time, a 2-fold reduction in total 

protein content of the BMP, from 31.40 ± 0.57% to 17.9 ± 0.19%, in the 50 kDa R was achieved as a 

result of increased UF protein permeation in the form of  smaller peptide material (< 50 kDa) (Table 

2). Molecular mass distribution profiling by SEC of the 50 kDa R and the 50 kDa permeate (50 kDa 

P) confirmed the deproteinising effectiveness of this combined hydrolysis/UF process (Fig. 4), e.g., a 

maximum absorbance of 0.108 mV for 50 kDa P (Fig. 4a) compared with 1.491 mV for 50 kDa R 

(Fig. 4b).  

 

3.3.  Phospholipid enrichment in a 50 kDa retentate following UF/DF of BMP hydrolysate 

 

The degree of phospholipid (PL) enrichment achieved was determined through quantification 

of the PL profiles obtained from the BMP starting material, the 50 kDa R and the 50 kDa P according 

to the HPLC method outlined by Barry et al. (2016). Total lipid was extracted from each of the three 

substrates via the method of Folch, Lees, and Stanley (1957). A 6-fold increase in total lipid in the 50 

kDa R with respect to the starting BMP was achieved by utilising the combined process of protein 

hydrolysis and UF/DF as already described (Section 3.2), 43.43 ± 0.61% total lipid and 6.84 ± 0.17% 

total lipid respectively (Table 2). This is significantly greater than that achieved previously. Roesch 

and Corredig (2002) obtained an ingredient with a total lipid increase from 8% to 16% in the final 

retentate following hydrolysis and UF. The extracted lipid was subsequently analysed by HPLC-CAD 

to determine the PL content. A PL concentration effect was observed between the BMP starting 

material and the 50 kDa retentate, 0.79 ± 0.00% total PL (summation of PI, PE, GluCer, PS, PC and 
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SM) and 6.16 ± 0.02% total PL, respectively, expressed as a percentage of the sample (Table 2). This 

demonstrates a 7.8 fold increase in the PL material attributed to the hydrolysis and UF treatment, 

which is greater than that previously published using similar hydrolysis and/or filtration technologies. 

Konrad, Kleinschmidt, and Lorenz (2013) obtained a PL concentrate following peptic hydrolysis and 

UF with a 2.5% increase in PL material. Morin et al. (2006) obtained a 3× enrichment of PL content 

following MF. In this study, it would appear that the lower temperatures used in the membrane 

process may have negatively influenced the transmission of the lipid components, which is in 

agreement with previous work (Astaire et al., 2003; Morin et al., 2006).  Morin et al. (2007a) obtained 

a washed cream buttermilk sample with a 2.8 fold increase in PL material following MF and 

diafiltration. The values obtained for the more acidic PLs, PI and PS, are greater than that previously 

reported in the literature, 10.84 ± 0.04% PI and 9.54 ± 0.01% PS in the BMP and 15.25 ± 0.11% PI 

and 11.62 ± 0.03% PS in the 50 kDa R (Table 2). This increase is attributed to the sensitivity and 

precision of the CAD system and also the Folch lipid extraction method (Barry et al., 2016). It was 

noted that the % of SM was higher in the BMP compared with the 50 kDa R: 26.57 ± 0.04% and 

20.97 ± 0.05%, respectively (Table 2). This decrease is attributed to the increase in PI thus leading to 

a lower calculated % of SM with respect to total PL. 

 HPLC-CAD chromatograms obtained for the BMP and 50 kDa R fractions (Fig. 5) 

demonstrate well defined peaks representing each of the five major PLs, namely phosphatidylinositol 

(PI), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylcholine (PC) and 

sphingomyelin (SM) and also glucosylceramide (GluCer). Sub-peaks of both PC (PC 1, PC 2), and 

SM (SM 1, SM 2) are evident in the chromatograms. These sub-peaks are due to the existence of 

different molecular species of PC and SM as already described (Barry et al., 2016; Deschamps, 

Chaminade, Ferrier, & Baillet, 2001; Fagan & Wijesundera 2004). From the chromatogram, the 

increase in PL material in the 50 kDa R (Fig. 5b) can be determined due to the higher concentration of 

PLs compared with that of the starting BMP (Fig. 5a): 6.16 ± 0.02% and 0.79± 0.00%, respectively. 

The total lipid and PL contents of 50 kDa P was 0.09 ± 0.02% and 0.00 ± 0.01%, respectively, thus 

confirming that there was no permeation or loss of PL during UF (Table 2). Secondly, protein 

digestion to 19% DH would appear to be essential to ensure sufficient permeation of smaller peptide 
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material through the UF 50 kDa membrane so that concentration of residual lipid components is 

maximised. Thus, the resulting retentate with PL concentration of 6.16 ± 0.02% total PL and non-

detectable losses of PL was superior to that obtained using casein micelle disruption or coagulation-

based separation support strategies used by others (Corredig et al., 2003; Roesch et al., 2004; 

Rombaut et al., 2007; Sachdeva & Buchheim, 1997). Thus, unlike previous researchers who utilised 

MF in their separations, this study proved that a combination of UF membrane and an optimised level 

of hydrolysed buttermilk protein prior to filtration enabled satisfactory PL enrichment to be 

accomplished. 

 

4.  Conclusion 

 

The aim of the work presented here was to achieve an enrichment of phospholipids that 

exceeded previously reported values. This was carried out through the deployment of a twin strategy 

involving enzymatic hydrolysis to digest the milk proteins in a buttermilk substrate to facilitate 

subsequent UF permeation of the resulting peptide mixture.  

Alcalase was determined as the most proteolytic enzyme for the protein hydrolysis with 

enzyme selection based on the greatest generation of smaller molecular mass peptides, 89.84% < 50 

kDa. An optimum degree of hydrolysis of 19% with Alcalase ensured extensive hydrolysis of the milk 

proteins with almost complete digestion of the larger molecular mass material present in the starting 

BMP, 0.25 ± 0.02% and 92.10 ± 0.6% > 100 kDa, respectively, with pH adjustment identified as the 

preferred method of enzyme inactivation compared with noticeable aggregate formation, > 50 kDa, 

upon thermal treatment. 

 Finally, UF with a 50 kDa membrane was successful in reducing the protein content of the 

BMP hydrolysate from 31.40 ± 0.57% to 17.9 ± 0.19% in the retentate, while increasing lipid content 

of the latter from 6.84 ± 0.17% to 43.43 ± 0.61%, respectively. This 6-fold increase in lipid material 

was attributed to degradation, dissociation and subsequent permeation of the hydrolysed protein and 

concomitant  increase in PL content of the 50 kDa retentate to 6.16 ± 0.02% total PL compared with 

0.79 ± 0.00% total PL in the starting material. 
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 This combined strategic approach has opened up new avenues for PL enrichment, 

highlighting the enhanced results obtained with the techniques outlined compared with results 

previously reported using similar techniques for separation of these techno- and bio- functionally 

attractive compounds. 

 

Acknowledgements  

 

The authors would like to acknowledge that the work herein was funded by the Food 

Institutional Research Measure (FIRM), project number: 10RD/TMFRC/709 administered by the Irish 

Department of Agriculture, Food & Marine. K. M. Barry was a Teagasc PhD Walsh Fellow supported 

by this FIRM project. 

 

References 

 

Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by 

trinitrobenzenesulfonic acid.  Journal of Agricultural and Food Chemistry, 27, 1256–1262. 

Adler-Nissen, J. (1986). Enzymatic hydrolysis of food proteins. New York, NY, USA: Elsevier 

Applied Science Publishers Ltd. 

AOAC. (2012). Lactose in milk. Polarimetric method, method no. 896.01. In Official methods of 

analysis of AOAC International (19th edn.). Gaithersburg, MD, USA: AOAC International. 

Astaire, J. C., Ward, R., German, J. B., & Jimenez- Flores, R. (2003). Concentration of polar MFGM 

lipids from buttermilk by microfiltration and supercritical fluid extraction. Journal of Dairy 

Science, 86, 2297–2307. 

Avalli, A., & Contarini, G. (2005). Determination of phospholipids in dairy products by 

SPE/HPLC/ELSD. Journal of Chromatography A, 1071, 185–190. 

Barry, K. M., Dinan, T. G., Murray, B. A., & Kelly, P. M. (2016). Comparison of dairy phospholipid 

preparative extraction protocols in combination with analysis by high performance liquid 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
chromatography coupled to a charged aerosol detector. International Dairy Journal, 56, 179–

185. 

Berra, B., Colombo, I., Scottocornola, E., & Giacosa, A. (2002). Dietary sphingolipids in colorectal 

cancer prevention. European Journal of Cancer Prevention, 1, 198–197. 

Britten, M., Lamothe, S., & Robitaille, G. (2008). Effect of cream treatment on phospholipids and 

protein recovery in butter-making process. International Journal of Food Science and 

Technology, 43, 651–657. 

Burling, H., & Graverholt, G. (2008). Milk- a new source for bioactive phospholipids for use in food 

formulations. Lipid Technology, 20, 229–231. 

Christie, W. W., Noble, R. C., & Davies, G. (1987). Phospholipids in milk and dairy products. 

Journal of the Society of Dairy Technology, 40, 10–12. 

Contarini, G., & Povolo, M. (2013). Phospholipids in milk fat: composition, biological and 

technological significance, and analytical strategies. International Journal of Molecular 

Science, 14, 2808–2831. 

Corredig, M., & Dalgleish, D. G. (1997). Isolates from industrial buttermilk: emulsifying properties of 

materials derived from the milk fat globule membrane. Journal of Agricultural and Food 

Chemistry, 45, 4595–4600. 

Corredig, M., Roesch, R. R., & Dalgleish, D. G. (2003). Production of a novel ingredient from 

buttermilk. Journal of Dairy Science, 86, 2744–2750. 

Deschamps, F. S., Chaminade, P., Ferrier, D., & Baillet, A. (2001). Assessment of the retention 

properties of poly (vinyl alcohol) stationary phase for lipid class profiling in liquid 

chromatography. Journal of Chromatography A, 928, 127–137. 

Dewettinck, K., Rombaut, R., Thienpont, N., Le, T. T., Messens, K., & van Camp, J. (2008). 

Nutrtional and technological aspects of milk fat globule membrane material. International 

Dairy Journal, 18, 436–457. 

Douchet, D., Otter, D. E., Gauthier, S. F., & Foegeding, E. A. (2003). Enzyme-induced gelation of 

extensively hydrolyzed whey proteins by alcalase:  peptide identification and determination of 

enzyme specificity. Journal of Agricultural and Food Chemistry, 51, 6300–6308. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Fagan, P., & Wijesundera, C. (2004). Liquid chromatographic analysis of milk phospholipids with on- 

line pre- concentration. Journal of Chromatography A, 1054, 241–509. 

FAOSTAT. (2015). World cow butter production. http://faostat3.fao.org/download/O/OP/E. 

Ferreiro, T., Martinez, S., Gayoso, L., &Rodriguez- Otero, J. L. (2016). Evolution of phospholipid 

contents during the production of quark cheese from buttermilk. Journal of Dairy Science, 99, 

4154–4159. 

Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of 

total lipides from animal tissue. Journal of Biological Chemistry, 226, 497–509. 

Hertervig, E., Nilsson, A., Cheng, Y., & Duan, R. D. (2003). Purified intestinal alkaline 

sphingomyelinase inhibits proliferation without inducing apoptosis in HT-29 colon carcinoma 

cells. Journal of Cancer Research and Clinical Oncology, 129, 577–582. 

Holzmüller, W., & Kulozik, U. (2016). Technical difficulties and future challenges in isolating 

membrane material from milk fat globules in industrial settings- a critical review.  

International Dairy Journal, 61, 51–66. 

Holzmüller, W., Müller, M., Himbert, D., & Kulozik, U. (2016). Impact of cream washing on fat 

globules and milk fat globule membrane proteins. International Dairy Journal, 59, 52–61. 

ISO (2010). Milk, cream and evaporated milk- determination of total solids content. ISO 6731. 

Geneva, Switzerland: International Organisation for Standardization. 

ISO (2014). Milk and milk products- deterination of nitrogen content. Part 1: Kjeldahl principle and 

crude protein. ISO 8968-1. Geneva, Switzerland: International Organisation for 

Standardization. 

Keenan, T. W., & Dylewski, D. O. (1995).  Intracellular origin of milk lipid globules and the nature 

and structure of milk lipid globule membrane. In P. F. Fox (Ed.), Advanced dairy chemistry. 

2. Lipids (pp. 89–130). London, UK: Chapman & Hall.  

Konrad, G., Kleinschmidt, T., & Lorenz, C. (2013). Ultrafiltration of whey buttermilk to obtain a 

phospholipid concentrate. International Dairy Journal, 30, 39–40. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Kuchta, A. M., Kelly, P. M., Stanton, D., & Devery, R. (2012). Milk fat globule membrane - a source 

of polar lipids for colon health? A review. International Journal of Dairy Technology, 65, 

315–333. 

Kuchta- Noctor, A. M., Murray, B. M., Stanton, C., Devery, R., & Kelly, P. M. (2016). Anticancer 

activity of buttermilk against SW480 colon cancer cells is associated with aaspase- 

independent cell death and attenuation of Wnt, Akt, and ERK signaling. Nutrition and 

Cancer, 68, 1234–1246. 

Morin, P., Britten, M., Jiménez- Flores, R., & Pouliot, Y. (2007a). Microfiltration of buttermilk and 

washed cream buttermilk for concentration of milk fat globule membrane components. 

Journal of Dairy Science, 90, 2132–2140. 

Morin, P., Jimenez- Flores., & Pouliot, Y. (2004). Effect of temperature and pore size on the 

fractionation of fresh and reconstituted buttermilk by microfiltration. Journal of Dairy 

Science, 87, 267–273. 

Morin, P., Jiménez- Flores, R., & Pouliot, Y. (2007b). Effect of processing on the composition and 

microstructure of buttermilk and its milk fat globule membranes. International Dairy Journal, 

17, 1179–1187. 

Morin, P., Pouliot, Y., & Jiménez- Flores, R. (2006). A comparative study of the fractionation of 

regular buttermilk and whey buttermilk by microfiltration. Journal of Food Engineering, 77, 

521–528. 

Mullally, M. M., O'Callaghan, D. M., FitzGerald, R. J., Donnelly, W. J. & Dalton, J. P. (1994). 

Proteolytic and peptidolytic activities in commercial pancreatic protease preparations and 

their relationship to some whey protein hydrolyzate characteristics. Journal of Agricultural 

and Food Chemistry, 42, 2973–2981. 

O’Loughlin, I. B., Murray, B. A., Brodkorb, A., FitzGerald, R. J., Robinson, A. A., Holton, T. A., et 

al. (2013). Whey protein isolate polydispersity affects enzymatic hydrolysis outcomes. Food 

Chemistry, 141, 2334–2342. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Oshida, K., Shimizu, T., Takase, M., Tamura, Y., Shimizu, T., & Yamashiro, Y. (2003). Effects of 

dietary sphingomyelin on central nervous system myelination in developing rats. Paediatric 

Research, 53, 589–593. 

Otte, J., Lomholt, S. B., Halkier, T., & Qvist, K. B. (2000). Identification of peptides in aggregates 

formed during hydrolysis of α-lactoglobulin b with a glu and asp specific microbial protease. 

Journal of Agricultural Food Chemistry, 48, 2443–2447 

Parodi, P. W. (2003). Anti-cancer agents in milk. Australian Journal of Dairy Technology, 58, 114–

118. 

Pepeu, G., Pepeu, I. M., & Amanducci, L. (1996). A review of phosphatidylserine pharmacological 

and clinical effects. Is phosphatidylserine a drug for the ageing brain? Pharmacological 

Research, 33, 73–80. 

Roesch, R. R., & Corredig, M. (2002). Production of buttermilk hydrolyzates and their 

characterization. Milchwissenschaft, 57, 376–360. 

Roesch, R. R., Rincon, A., & Corredig, M. (2004). Emulsifying properties of fractions prepared from 

commercial buttermilk by microfiltration. Journal of Dairy Science, 87, 4080–4087. 

Rombaut, R., Dejonckheere, V., & Dewettinck, K. (2006). Microfiltration of butter serum upon casein 

micelle destabilisation. Journal of Dairy Science, 89, 1915–1925. 

Rombaut, R., Dejonckheere, V., & Dewettinck, K. (2007a). Filtration of milk fat globule membrane 

fragments from acid buttermilk cheese whey. Journal of Dairy Science, 90, 1662–1673. 

Rombaut, R., Dewettinck, K., & van Camp, J. (2007b). Phospho- and sphingolipid content of selected 

dairy products as determined by HPLC coupled to an evaporative light scattering detector 

(HPLC-ELSD). Journal of Food Composition and Analysis, 20, 308–312. 

Rombaut, R., van Camp, J., & Dewettinck, K. (2005). Analysis of phospho- and sphingolipids in 

dairy products by a new HPLC method. Journal of Dairy Science, 88, 482–488. 

Sachdeva, S., & Buchheim, W. (1997). Recovery of phospholipids from buttermilk using membrane 

processing. Kieler Milchwirtschaftliche Forschungsberichte, 49, 47–68. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Sodini, I., Morin, P., Olabi, A., & Jimenez- Flores, R. (2006) Compositional and functional properties 

of buttermilk: a comparison between sweet, sour, and whey buttermilk. Journal of Dairy 

Science, 89, 525–536. 

Spadaro, A. C. C., Draghetta, W., del Lama, S. N., Camargo, A. C. M., & Greene, L. J. (1979). A 

convenient manual trinitrobenzenesulfonic acid method for monitoring amino acids and 

peptides in chromatographic column effluents. Analytical Biochemistry, 96, 371–321. 

Spitsberg, V. L. (2005). Invited review: bovine milk fat globule membrane as a potential 

nutraceutical. Journal of Dairy Science, 88, 2289-2294. 

Surel, O., & Famelart, M. H. (1995). Ability of ceramic membranes to reject lipids of dairy products. 

Australian Journal of Dairy Technology, 50, 36–40. 

Timby, N., Domellöf, E., Hernell, O., Lönnerdal, B., & Domellöf, M. (2014). Neurodevelopment , 

nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula 

supplemented with bovine milk fat globule membranes: a randomized controlled trial. 

American Journal of Clinical Nutrition, 99, 860–868. 

Timby, N., Hernell, O., Vaarala, O., Melin, M., Lönnerdal, B., & Domellöf, M. (2015). Infections in 

infants fed formula supplemented with bovine milk globule membranes. Journal of Pediatric 

Gastroenterology and Nutrition, 60, 348–389. 

Vanderghem, C., Bodson, P., Danthine, S., Paquot, M., Deroanne, C., & Blecker, C. (2010). Milk fat 

globule membrane and buttermilks: from composition to valorization. Biotechnology, 

Agronomy, Society and Environment, 14, 485–500. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Figure legends 

 

Fig. 1. Size exclusion high performance liquid chromatography mass distribution profiles of 

buttermilk powder (dashed line) and hydrolysates generated during enzymatic screeing: A, Alcalase; 

B, Corolase PP; C, Neutrase; D, CPP + Alcalase; E, Neutrase + Alcalase. 

 

Fig. 2. Size exclusion high performance liquid chromatography mass distribution profiles of 

buttermilk powder at different degrees of hydrolysis (% DH): A, 0% DH; B, 9% DH; C, 19% DH; D, 

25% DH. 

 

Fig. 3. Size exclusion high performance liquid chromatography mass distribution profiles of (A) 

unhydrolysed buttermilk powder, and 19% degree of hydrolysis buttermilk powder with (B) 20 min 

inactivation at 80 °C, or (C) inactivation with 0.1% TFA. 

 

Fig. 4. Size exclusion high performance liquid chromatography mass distribution profiles of (A) 19% 

degrees of hydrolysis buttermilk powder (19% DH BMP) 50 kDa retentate and (B) 19% DH BMP 50 

kDa permeate. 

 

Fig. 5. High performance liquid chromatography-corona charged aerosol detector chromatogram of 

phospholipid composition of (A) buttermilk powder and (B) 50 kDa retentate of buttermilk powder 

hydrolysate. 
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Table 1 
 
Molecular mass distributions of buttermilk powder hydrolysates during enzyme screening. a 
 
 
Enzyme Molecular mass distribution (%) 

>100 kDa  100–75 kDa  75–50 kDa  50–30 kDa 30–10 kDa < 10 kDa 
None 92.10 ± 0.61 7.30 + 0.17  0.55 + 0.11  0.05 + 0.03   
Corolase PP (CPP) 32.43 ± 0.01 17.53 + 0.09 13.98 + 0.07 21.84 + 0.01 5.52 + 0.19 8.65 + 0.07 
Neutrase 26.43 ± 0.00 5.56 + 0.32 4.05 + 0.12 29.11 + 0.07 15.56 + 0.51 19.28 + 0.03 
Alcalase  0.25 ± 0.02 2.95+ 0.01 6.97 + 0.01 36.45 + 0.03 17.21+ 0.01 36.18 + 0.02 
CPP + Alcalase 20.71 ± 0.05 6.71 + 0.09 4.31 + 0.07 34.31 + 0.10 16.92 + 0.11 17.03 + 0.02 
Neutrase + Alcalase 17.29 + 0.09 4.91 + 0.06 4.63 + 0.07 34.25 + 0.12 18.33 + 0.10 20.59 + 0.01 

 

a Distribution quantified with respect to calibration with known mass standards. Data are expressed as the 
average (+ % RSD) of three replicate hydrolysis reactions of the % of total area under the curve. Hydrolysis 
with Alcalase was selected as the way forward for producing BMP hydrolysate. 
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Table 2 

 

Compositional analysis of buttermilk powder (BMP), 50 kDa retentate (50 kDa R) and 50 kDa 

permeate (50 kDa P) with respect to fat, protein, and total and individual phospholipids. a 

  
Component BMP 50 kDa R 50 kDa P 

Fat (%) 6.84 ± 0.17 43.43 ± 0.61 0.09 ± 0.02 
Protein (%) 31.40 ± 0.57 17.90 ± 0.19 39.31 ± 0.09 
Total phospholipids (% sample) 0.79 ± 0.00 6.16 ± 0.02 0.00 ± 0.01 
Individual phospholipids     

Phosphatidylinositol (PI) 10.84 ± 0.04 15.25 ± 0.11  

Phosphatidylethanolamine (PE) 21.66 ± 0.07 22.28 ± 0.04  

Glucosylceramide (GluCer) 0.07 ± 0.32 0.10 ± 1.14  

Phosphatidylserine (PS) 9.54 ± 0.01 11.62 ± 0.03  
Phosphatidylcholine (PC) 31.31 ± 0.01 29.78 ± 0.02  
Sphingomyelin (SM) 26.57 ± 0.04 20.97 ± 0.05  

 

a Fat and protein were determined using the Folch method (Barry et al., 2016) and the Kjeldahl 
method (ISO, 2014), respectively. Total phospholipid was determined by summation of each 
individual PL with respect to that extracted from the sample. Data for fat and total phospholipids are 
expressed as the average (± %RSD) of three repeats; those for protein are expressed as the average (± 
%RSD) of two repeats. Data for individual phospholipids are expressed as % of total PL, average (± 
%RSD) of duplicate injections of each sample in triplicate.  
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Figure 5 
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