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3D UAV Trajectory and Data Collection
Optimisation via Deep Reinforcement Learning

Khoi Khac Nguyen, Student Member, IEEE, Trung Q. Duong, Fellow, IEEE, Tan Do-Duy, Member, IEEE, Holger
Claussen, Fellow, IEEE, and Lajos Hanzo, Fellow, IEEE,

Abstract—Unmanned aerial vehicles (UAVs) are now beginning
to be deployed for enhancing the network performance and cov-
erage in wireless communication. However, due to the limitation
of their on-board power and flight time, it is challenging to
obtain an optimal resource allocation scheme for the UAV-assisted
Internet of Things (IoT). In this paper, we design a new UAV-
assisted IoT system relying on the shortest flight path of the
UAVs while maximising the amount of data collected from IoT
devices. Then, a deep reinforcement learning-based technique is
conceived for finding the optimal trajectory and throughput in a
specific coverage area. After training, the UAV has the ability to
autonomously collect all the data from user nodes at a significant
total sum-rate improvement while minimising the associated
resources used. Numerical results are provided to highlight how
our techniques strike a balance between the throughput attained,
trajectory, and the time spent. More explicitly, we characterise
the attainable performance in terms of the UAV trajectory, the
expected reward and the total sum-rate.

Keywords- UAV-assisted wireless network, trajectory, data
collection, and deep reinforcement learning.

I. INTRODUCTION

Given the agility of unmanned aerial vehicles (UAVs), they
are capable of supporting compelling applications and are
beginning to be deployed more broadly. Recently, the UK
and Chile authorities proposed to deliver medical support and
other essential supplies by using UAVs to vulnerable people in
response to Covid-19 [1], [2]. In [3], the authors used UAVs for
image collection and high-resolution topography exploration.
However, given the several limitations of on-board power
level and the ability to adapt to changes in the environment,
UAVs may not be fully autonomous and can only operate for
short flight-durations, unless remote laser-charging is used [4].
Moreover, due to some challenging tasks such as topographic
surveying, data collection or obstacle avoidance, the existing
UAV technologies cannot operate in an optimal manner.
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Wireless networks supported by UAVs constitute a promis-
ing technology for enhancing the network performance [5].
The applications of UAVs in wireless networks span across
diverse research fields, such as wireless sensor networks
(WSNs) [6], caching [7], heterogeneous cellular networks [8],
massive multiple-input multiple-output (MIMO) [9], disaster
communications [10], [11] and device-to-device communica-
tions (D2D) [12]. For example, in [13], UAVs were deployed
to provide network coverage for people in remote areas and
disaster zones. UAVs were also used for collecting data in a
WSN [6]. Nevertheless, the benefits of UAV-aided wireless
communication are critically dependent on the limited on-
board power level. Thus, the resource allocation of UAV-
aided wireless networks plays a pivotal role in approaching
the optimal performance. Yet, the existing contributions typ-
ically assume having static environment [10], [11], [14] and
often ignore the stringent flight time constraints in real-life
applications [6], [8], [15].

Machine learning has recently been proposed for the in-
telligent support of UAVs and other devices in the network
[9], [16]–[24]. Reinforcement learning (RL) is capable of
searching for an optimal policy by trial-and-error learning.
However, it is challenging for model-free RL algorithms, such
as Q-learning to obtain an optimal strategy, while considering
a large state and action space. Fortunately, with the emerging
neural networks, the sophisticated combination of RL and
deep learning, namely deep reinforcement learning (DRL)
is eminently suitable for solving high-dimensional problems.
Hence, DRL algorithms have been widely applied in fields
such as robotics [25], business management [26] and gaming
[27]. Recently, DRL has also become popular in solving
diverse problems in wireless networks thanks to their decision-
making ability and flexible interaction with the environment
[7], [9], [18]–[24], [28]–[30]. For example, DRL was used for
solving problems in the areas of resource allocation [18], [19],
[29], navigation [9], [31] and interference management [22].

A. Related Contributions

UAV-aided wireless networks have also been used for
machine-to-machine communications [32] and D2D scenar-
ios in 5G [14], [33], but the associated resource allocation
problems remain challenging in real-life applications. Several
techniques have been developed for solving resource allocation
problems [18], [19], [31], [34]–[36]. In [34], the authors
have conceived a multi-beam UAV communications and a
cooperative interference cancellation scheme for maximising
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the uplink sum-rate received from multiple UAVs by the base
stations (BS) on the ground. The UAVs were deployed as
access points to serve several ground users in [35]. Then,
the authors proposed successive convex programming for
maximising the minimum uplink rate gleaned from all the
ground users. In [31], the authors characterised the trade-
off between the ground terminal transmission power and the
specific UAV trajectory both in a straight and in a circular
trajectory.

The issues of data collection, energy minimisation, and
path planning have been considered in [23], [32], [37]–[45].
In [38], the authors minimised the energy consumption of
the data collection task considered by jointly optimising the
sensor nodes’ wakeup schedule and the UAV trajectory. The
authors of [39] proposed an efficient algorithm for joint
trajectory and power allocation optimisation in UAV-assisted
networks to maximise the sum-rate during a specific length of
time. A pair of near-optimal approaches for optimal trajectory
was proposed for a given UAV power allocation and power
allocation optimisation for a given trajectory. In [32], the
authors introduced a communication framework for UAV-to-
UAV communication under the constraints of the UAV’s flight
speed, location uncertainty and communication throughput.
Then, a path planning algorithm was proposed for minimising
the associated completion time task while balancing the perfor-
mance by computational complexity trade-off. However, these
techniques mostly operate in offline modes and may impose
excessive delay on the system. It is crucial to improve the
decision-making time for meeting the stringent requirements
of UAV-assisted wireless networks.

Again, machine learning has been recognised as a powerful
tool of solving the high-dynamic trajectory and resource
allocation problems in wireless networks. In [36], the authors
proposed a model based on the classic k-means algorithm
for grouping the users into clusters and assigned a dedicated
UAV to serve each cluster. By relying on their decision-
making ability, DRL algorithms have been used for lending
each node some degree of autonomy [7], [18]–[21], [28], [29],
[46]. In [28], an optimal DRL-based channel access strategy
to maximise the sum rate and α-fairness was considered.
In [18], [19], we deployed DRL techniques for enhancing
the energy-efficiency of D2D communications. In [21], the
authors characterised the DQL algorithm for minimising the
data packet loss of UAV-assisted power transfer and data
collection systems. As a further advance, caching problems
were considered in [7] to maximise the cache success hit rate
and to minimise the transmission delay. The authors designed
both a centralised and a decentralised system model and used
an actor-critic algorithm to find the optimal policy.

DRL algorithms have also been applied for path planning
in UAV-assisted wireless communications [9], [22]–[24], [30],
[47]. In [22], the authors proposed a DRL algorithm based on
the echo state network of [48] for finding the flight path, trans-
mission power and associated cell in UAV-powered wireless
networks. The so-called deterministic policy gradient algo-
rithm of [49] was invoked for UAV-assisted cellular networks
in [30]. The UAV’s trajectory was designed for maximising
the uplink sum-rate attained without the knowledge of the

user location and the transmit power. Moreover, in [9], the
authors used the DQL algorithm for the UAV’s navigation
based on the received signal strengths estimated by a massive
MIMO scheme. In [23], Q-learning was used for controlling
the movement of multiple UAVs in a pair of scenarios,
namely for static user locations and for dynamic user locations
under a random walk model. However, the aforementioned
contributions have not addressed the joint trajectory and data
collection optimisation of UAV-assisted networks, which is a
difficult research challenge. Furthermore, these existing works
mostly neglected interference, 3D trajectory and dynamic
environment.

B. Contributions and Organisation

A novel DRL-aided UAV-assisted system is conceived for
finding the optimal UAV path for maximising the joint re-
ward function based on the shortest flight distance and the
uplink transmission rate. We boldly and explicitly contrast our
proposed solution to the state-of-the-art in Table I. Our main
contributions are further summarised as follows:
• In our UAV-aided system, the maximum amount of data

is collected from the users with the shortest distance
travelled.

• Our UAV-aided system is specifically designed for tack-
ling the stringent constraints owing to the position of
the destination, the UAV’s limited flight time and the
communication link’s realistic constraints. The UAV’s ob-
jective is to find the optimal trajectory for maximising the
total network throughput, while minimising its distance
travelled.

• Explicitly, these challenges are tackled by conceiving
bespoke DRL techniques for solving the above problem.
To elaborate, the area is divided into a grid to enable
fast convergence. Following its training, the UAV can
have the autonomy to make a decision concerning its next
action at each position in the area, hence eliminating the
need for human navigation. This makes our UAV-aided
system more reliable, practical and optimises the resource
requirements.

• A pair of scenarios are considered relying either on
three or five clusters for quantifying the efficiency of
our novel DRL techniques in terms of both the sum-rate,
the trajectory and the associated time. A convincing 3D
trajectory visualisation is also provided.

• Finally, but most importantly, it is demonstrated that our
DRL techniques approach the performance of the optimal
“genie-solution” associated with the perfect knowledge of
the environment.

Although the existing DRL algorithms have been well
exploited in wireless networks, it is challenging to apply to
current scenarios due to stringent constraints of the considered
system, such as UAV’s flying time, transmission distance, and
mobile users. As with the DQL and dueling DQL algorithm,
we discretise the flying path into grid and the UAV only
needs to decide the action in a finite action space. With
the finite state and action space, the neural networks can
be easily trained and deployed for online phase. With other
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TABLE I
A COMPARISON WITH EXISTING LITERATURE

[37] [6] [21] [23] [40] [9] [41] [47] [42] [43] Our work
3D trajectory
Sum-rate maximisation
Time minimisation
Dynamic environment
Unknown users
Reinforcement learning
Deep neural networks

existing RL algorithm, we have tried and found out that some
of them are not effective in solving our proposed problem.
Meanwhile, the continuous solver RL algorithms, e.g., deep
deterministic policy gradient (DDPG) and proximal policy
optimisation (PPO), are not suitable and so challenging for
the trade-off problem. Therefore, in this paper, we propose the
DQL and dueling DQL algorithm to obtain the optimal trade-
off in total achievable sum-rate and trajectory. As such, we can
transferred a real-life application into a digital environment for
optimisation and solve it efficiently.

The rest of our paper is organised as follows. In Section II,
we describe our data collection system model and the problem
formulation of IoT networks relying on UAVs. Then, the
mathematical background of the DRL algorithms is presented
in Section III. Deep Q-learning (DQL) is employed for finding
the best trajectory and for solving our data collection problem
in Section IV. Furthermore, we use the dueling DQL algorithm
of [50] for improving the system performance and convergence
speed in Section V. Next, we characterise the efficiency of
the DRL techniques in Section VI. Finally, in Section VII, we
summarise our findings and discuss our future research.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a system consisting of a single UAV and M
groups of users, as shown in Fig. 1, where the UAV relying
on a single antenna visits all clusters to cover all the users.
The 3D coordinate of the UAV at time step t is defined as
Xt = (xt0, y

t
0, H

t
0). Each cluster consists of K users, which

are unknown and distributed randomly within the coverage
radius of C. The users are moving following the random
walk model with the maximum velocity v. The position of
the kth user in the mth cluster at time step t is defined as
Xt
m,k = (xtm,k, y

t
m,k). The UAV’s objective is to find the best

trajectory while covering all the users and to reach the dock
upon completing its mission.

A. Observation model

The distance from the UAV to user k in cluster m at time
step t is given by:

dtm,k =
√
(xt0 − xtm,k)2 + (yt0 − ytm,k)2 +Ht

0
2
. (1)

We assume that the communication channels between the
UAV and users are dominated by line-of-sight (LoS) links;
thus the channel between the UAV and the kth user in the

Fig. 1. System model of UAV-aided IoT communications.

mth cluster at time step t follows the free-space path loss
model, which is represented as

htm,k = β0d
t
m,k
−2

=
β0

(xt0 − xtm,k)2 + (y0 − ytm,k)2 +Ht
0
2 ,

(2)

where the channel’s power gain at a reference distance of d =
1m is denoted by β0.

The achievable throughput from the kth user in the mth
cluster to the UAV at time t if the user satisfies the distance
constraint is defined as follows:

Rtm,k =

B log2

(
1 +

ptm,kh
t
m,k∑M

i 6=m
∑K
j p

t
i,jh

t
i,j +

∑K
u 6=k p

t
m,uh

t
m,u + α2

)
,∀m, k,

(3)

where B and α2 are the bandwidth and the noise power,
respectively; pm,k is the transmit power at the kth user in
the mth cluster. Then the total sum-rate over the T time step
from the kth user in cluster m to the UAV is given by:

Rm,k =

∫ T

0

Rtm,kdt,∀m, k. (4)
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B. Game formulation

Both the current location and the action taken jointly influ-
ence the rewards obtained by the UAV; thus the trial-and-error
based learning task of the UAV satisfies the Markov property.
We formulate the associated Markov decision process (MDP)
[51] as a 4 tuple < S,A,Pss′ ,R >, where S is the state space
of the UAV, A is the action space; R is the expected reward
of the UAV and Pss′ is the probability of transition from state
s to state s′, where we have s′ = st+1|s = st. Through
learning, the UAV can find the optimal policy π∗ : S → A
for maximising the reward R. As the definition of RL, the
UAV does not have any knowledge about the environment.
We transfer a real-life application of the data collection in
the UAV-assisted IoT networks into a digital form. Thus, the
UAV only has local information and the state is defined by
the position of UAV. We have also discretised the state and
action space for learning. More particularly, we formulate
the trajectory and data collection game of UAV-aided IoT
networks as follows:
• Agent: The UAV acts like an agent interacting with the

environment to find the peak of the reward.
• State space: We define the state space by the position of

UAV as
S = {x, y,H}. (5)

At time step t, the state of the UAV is defined as st =
(xt, yt, Ht).

• Action space: The UAV at state st can choose an action
at of the action space by following the policy at time-
step t. By dividing the area into a grid, we can define the
action space as follows:

A = {left,right, forward, backward,
upward, downward, hover}.

(6)

The UAV moves in the environment and begins collecting
information when the users are in the coverage of the
UAV. When the UAV has sufficient information Rm,k ≥
rmin from the kth user in the mth cluster, that user will
be marked as collected in this mission and may not be
visited by the UAV again.

• Reward function: In joint trajectory and data collection
optimisation, we design the reward function to be depen-
dent on both the total sum-rate of ground users associated
with the UAV plus the reward gleaned when the UAV
completes one route, which is formulated as follows:

R =
β

MK

 M∑
m

K∑
k

P (m, k)Rm,k

+ ζRplus, (7)

where β and ζ are positive variables that represent the
trade-off between the network’s sum-rate and UAV’s
movement, which will be described in the sequel. Here,
P (m, k) ∈ {0, 1} indicates whether or not user k of
cluster m is associated with the UAV; Rplus is the
acquired reward when the UAV completes a mission by
reaching the final destination. On the other hand, the term∑M

m

∑K
k P (m,k)Rm,k

MK defines the average throughput of all
users.

• Probability: We define Pstst+1(at, π) as the probability
of transition from state st to state st+1 by taking the
action at under the policy π.

At each time step t, the UAV chooses the action at based
on its local information to obtain the reward rt under the
policy π. Then the UAV moves to the next state st+1 by
taking the action at and starts collecting information from the
users if any available node in the network satisfies the distance
constraint. Meanwhile, the users in clusters also move to new
positions following the random walk model with velocity
v. Again, we use the DRL techniques to find the optimal
policy π∗ for the UAV to maximise the reward attained (7).
Following the policy π, the UAV forms a chain of actions
(a0, a1, . . . , at, . . . , afinal) to reach the landing dock.

Our target is to maximise the reward expected by the UAV
upon completing a single mission during which the UAV flies
from the initial position over the clusters and lands at the
destination. Thus, we design the trajectory reward Rplus when
the UAV reaches the destination in two different ways. Firstly,
the binary reward function is defined as follows:

Rplus =

{
1 , Xfinal ∈ Xtarget

0 , otherwise. , (8)

where Xfinal and Xtarget are the final position of UAV
and the destination, respectively. However, the UAV has to
move a long distance to reach the final destination. It may
also be trapped in a zone and cannot complete the mission.
These situations lead to increased energy consumption and
reduced convergence. Thus, we consider the value of Rtplus in
a different form by calculating the horizontal distance between
the UAV and the final destination at time step t, yielding:

Rtplus =

 1 , Xfinal ∈ Xtarget(
exp(dtarg)

)−1
, otherwise,

(9)

where dtarg =
√
(xtarget − xt0)2 + (ytarget − yt0)2 is the

distance from the UAV to the landing dock.
When we design the reward function as in (9), the UAV

is motivated to move ahead to reach the final destination.
However, one of the disadvantages is that the UAV only moves
forward. Thus, the UAV is unable to attain the best perfor-
mance in terms of its total sum-rate in some environmental
settings. We compare the performance of the two trajectory
reward function definitions in Section VI to evaluate the pros
and cons of each approach.

In our work, we optimise the 3D trajectory of the UAV
and data collection for the IoT network. Particularly, we
have design the reward function by a trade-off game between
the achievable sum-rate and the trajectory. Denote the flying
path of the UAV from the initial point to final position by
X = (X0, X1, . . . , Xfinal), the agent needs to learn by
iterating with the environment to find an optimal X . We
have defined a trade-off value β and ζ to make our approach
more adaptive and flexible. By modifying the value of β/ζ
, the UAV adapts to several scenarios: a) fast deployment
for emergency services, b) maximising the total sum-rate, and
c) maximising the number of connections between the UAV
and users. Depending on the specific problems, we can adjust
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the value of the trade-off parameters β, ζ to achieve the best
performance. Thus, the game formulation is defined as follows:

maxR =
β

MK

 M∑
m

K∑
k

P (m, k)Rm,k

+ ζRplus,

s.t. Xfinal = Xtarget,

dm,k ≤ dcons,
Rm,k ≥ rmin,
P (m, k) ∈ {0, 1},
T ≤ Tcons
β ≥ 0, ζ ≥ 0,

(10)

where T and Tcons are the number of steps that the UAV
takes in a single mission and the maximum number of UAV’s
steps given its limited power, respectively. The term Xfinal =
Xtarget denotes the completed flying route when the final
position of the UAV belongs to the destination zone. We have
designed the reward function following this constraint with
two functions: binary reward function in (8) and exponential
reward function in (9). The term dm,k ≤ dcons, Rm,k ≥
rmin, P (m, k) ∈ {0, 1} denote the communication constraint.
Particularly, the distance constraint dm,k ≤ dcons indicates
that the served (m, k)-user has a satisfying distance to the
UAV. P (m, k) ∈ {0, 1} indicates whether or not user k of
cluster m is associated with the UAV. Rm,k ≥ rmin denotes
the minimum information collected during the flying path. All
the constraints are integrated into the reward functions in the
RL algorithm. The term T ≤ Tcons denotes the constraint
about the flying time. Consider the maximum flying time is
Tcons, the UAV needs to complete a route by reaching the
destination zone before Tcons. If the UAV can not complete a
route before Tcons, the Rplus = 0 as we defined in (8) and (9).
We have the trade-off value in reward function β ≥ 0, ζ ≥ 0.
Those stringent constraints, such as the transmission distance,
position and flight time make the optimisation problem more
challenging. Thus, we propose DRL techniques for the UAV
in order to attain optimal performance.

III. PRELIMINARIES

In this section, we introduce the fundamental concept of
Q-learning, where the so-called value function is defined by a
reward of the UAV at state st as follows:

V (s, π) = E
[ T∑

t

γRt(st, π)|s0 = s

]
, (11)

where E[�] represents an average of the number of samples
and 0 ≤ γ ≤ 1 denotes the discount factor. In a finite game,
there is always an optimal policy π∗ that satisfies the Bellman
optimality equation [52]

V ∗(s, π) = V (s, π∗)

= max
a∈A

[
E
[
Rt(st, π∗)

]
+ γ

∑
s′∈S
Pss′(a, π∗)V (s′, π∗)

]
.

(12)

The action-value function is obtained, when the agent at
state st takes action at and receives the reward rt under the
agent policy π. The optimal Q-value can be formulated as:

Q∗(s, a, π) = E
[
Rt(st, π∗)

]
+ γ

∑
s′∈S
Pss′(a, π∗)V (s′, π∗).

(13)
The optimal policy π∗ can be obtained from Q∗(s, a, π) as

follows:
V ∗(s, π) = max

a∈A
Q(s, a, π). (14)

From (13) and (14), we have

Q∗(s, a, π) = E
[
Rt(st, π∗)

]
+ γ

∑
s′∈S
Pss′(a, π∗)max

a′∈A
Q(s′, a′, π),

= E
[
Rt(st, π∗) + γmax

a′∈A
Q(s′, a′, π)

]
,

(15)

where the agent takes the action a′ = at+1 at state st+1.
Through learning, the Q-value is updated based on the

available information as follows:

Q(s, a, π) = Q(s, a, π)

+ α

[
Rt(st, π∗) + γmax

a′∈A
Q(s′, a′, π)−Q(s, a, π)

]
,

(16)

where α denotes the updated parameter of the Q-value func-
tion.

In RL algorithms, it is challenging to balance the explo-
ration and exploitation for appropriately selecting the action.
The most common approach relies on the ε-greedy policy for
the action selection mechanism as follows:

a =

{
argmaxQ(s, a, π) with ε

randomly if 1− ε. (17)

Upon assuming that each episode lasts T steps, the action
at time step t is at that is selected by following the ε-greedy
policy as in (17). The UAV at state st communicates with
the user nodes from the ground if the distance constraint
of dm,k ≤ dcons is satisfied. Following the information
transmission phase, the user nodes are marked as collected
users and may not be revisited later during that mission. Then,
after obtaining the immediate reward r(st, at) the agent at
state st takes action at to move to state st+1 as well as to
update the Q-value function in (16). Each episode ends when
the UAV reaches the final destination and the flight duration
constraint is satisfied.

IV. AN EFFECTIVE DEEP REINFORCEMENT LEARNING
APPROACH FOR UAV-ASSISTED IOT NETWORKS

In this section, we conceive the DQL algorithm for tra-
jectory and data collection optimisation in UAV-aided IoT
networks. However, Q-learning technique typically falters for
large state and action spaces due to its excessive Q-table size.
Thus, instead of applying the Q-table in Q-learning, we use
deep neural networks to represent the relationship between
the action and state space. Furthermore, we employ a pair of
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techniques for stabilising the neural network’s performance in
our DQL algorithm as follows:
• Experience replay buffer: Instead of using current expe-

rience, we use a so-called replay buffer B to store the
transitions (s, a, r, s′) for supporting the neural network
in overcoming any potential instability. When the buffer
B is filled with the transitions, we randomly select a mini-
batch of K samples for training the networks. The finite
buffer size of B allows it to be always up-to-date, and
the neural networks learn from the new samples.

• Target networks: If we use the same network to calculate
the state-action value Q and the target network, the
network can be shifted dramatically in the training phase.
Thus, we employ a target network Q′ for the target value
estimator. After a number of iterations, the parameters of
the target network Q′ will be updated by the network Q.

The UAVs start from the initial position and interact with
the environment to find the proper action in each state. The
agent chooses the action at following current policy at state st.
By execute the action at, the agent receives the response from
the environment with reward rt and new state st+1. After each
time step, the UAVs have new positions and the environment
is changed with moving users. The obtained transitions are
stored into a finite memory buffer and used for training the
neural networks.

The neural network parameters are updated by minimising
the loss function defined as follows:

L(θ) = Es,a,r,s′
[(

yDQL −Q(s, a; θ)

)2
]
, (20)

where θ is a parameter of the network Q and we have

y =

{
rt if terminated at st+1

rt + γmaxa′∈AQ
′(s′, a′; θ′) otherwise.

(21)
The details of the DQL approach in our joint trajectory and

data collection trade-off game designed for UAV-aided IoT
networks are presented in Algorithm 1 where L denotes the
number of episode. Moreover, in this paper, we design the
reward obtained in each step to assume one of two different
forms and compare them in our simulation results. Firstly, we
calculate the difference between the current and the previous
reward of the UAV as follows:

rt1(s
t, at) = rt(st, at)− rt−1(st−1, at−1). (22)

Secondly, we design the total episode reward as the accu-
mulation of all immediate rewards of each step within one
episode as

rt2(s
t, at) =

t∑
i=0

rt1(s
t, at). (23)

V. DEEP REINFORCEMENT LEARNING APPROACH FOR
UAV-ASSISTED IOT NETWORKS: A DUELING DEEP

Q-LEARNING APPROACH

According to Wang et. al. [50], the standard Q-learning
algorithm often falters due to the over-supervision of all the
state-action pairs. On the other hand, it is unnecessary to

Algorithm 1 The deep Q-learning algorithm for trajectory and
data collection optimisation in UAV-aided IoT networks.

1: Initialise the network Q and the target network Q′ with
the random parameters θ and θ′, respectively

2: Initialise the replay memory pool B
3: for episode = 1, . . . , L do
4: Receive initial observation state s0

5: while Xfinal /∈ Xtarget or T ≤ Tcons do
6: Obtain the action at of the UAV according to the

ε-greedy mechanism (17)
7: Execute the action at and estimate the reward rt

according to (7)
8: Observe the next state st+1

9: Store the transition (st, at, rt, st+1) in the replay
buffer B

10: Randomly select a mini-batch of K transitions
(sk, ak, rk, sk+1) from B

11: Update the network parameters using gradient de-
scent to minimise the loss

L(θ) = Es,a,r,s′
[(

yDQL −Q(s, a; θ)

)2
]
, (18)

The gradient update is

∇θL(θ) = Es,a,r,s′
[(

yDQL−Q(s, a; θ)

)
∇θQ(s, a; θ)

]
,

(19)
12: Update the state st = st+1

13: Update the target network parameters after a number
of iterations as θ′ = θ

14: end while
15: end for

estimate the value of each action choice in a particular state.
For example, in our environment setting, the UAV has to
consider moving either to the left or to the right when it
hits the boundaries. Thus, we can improve the convergence
speed by avoiding visiting all state-action pairs. Instead of
using Q-value function of the conventional DQL algorithm,
the dueling neural network of [50] is introduced for improving
the convergence rate and stability. The so-called advantage
function A(s, a) = Q(s, a) − V (s) related both to the value
function and to the Q-value function describes the importance
of each action related to each state.

The idea of a dueling deep network is based on a combi-
nation of two streams of the value function and the advantage
function used for estimating the single output Q-function. One
of the streams of a fully-connected layer estimates the value
function V (s; θV ), while the other stream outputs a vector
A(s, a; θA), where θA and θV represent the parameters of the
two networks. The Q-function can be obtained by combining
the two streams’ outputs as follows:

Q(s, a; θ, θA, θV ) = V (s; θV ) +A(s, a; θA). (27)

Equation (27) applies to all (s, a) instances; thus, we have
to replicate the scalar V (s; θV ), |A| times to form a matrix.
However, Q(s, a; θ, θA, θV ) is a parameterised estimator of
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Algorithm 2 The dueling deep Q-learning algorithm for
trajectory and data collection optimisation in UAV-aided IoT
networks.

1: Initialise the network Q and the target network Q′ with
the random parameters, θ and θ′, respectively

2: Initialise the replay memory pool B
3: for episode = 1, . . . , L do
4: Receive the initial observation state s0

5: while Xfinal /∈ Xtarget or T ≤ Tcons do
6: Obtain the action at of the UAV according to the

ε-greedy mechanism (17)
7: Execute the action at and estimate the reward rt

according to (7)
8: Observe the next state st+1

9: Store the transition (st, at, rt, st+1) in the replay
buffer B

10: Randomly select a mini-batch of K transitions
(sk, ak, rk, sk+1) from B

11: Estimate the Q-value function by combining the two
streams as follows:

Q(s, a; θ, θA, θV ) = V (s; θV )

+

(
A(s, a; θA)−

1

|A|
∑
a′

A(s, a′; θA)

)
.

(24)

12: Update the network parameters using gradient de-
scent to minimise the loss

L(θ) = Es,a,r,s′
[(

yDuelingDQL−Q(s, a; θ, θA, θV )

)2
]
,

(25)
13: where

yDuelingDQL = rt + γmax
a′∈A

Q′(s′, a′; θ′, θA, θV ).

(26)
14: Update the state st = st+1

15: Update the target network parameters after a number
of iterations as θ′ = θ

16: end while
17: end for

the true Q-function; thus, we cannot uniquely recover the
value function V and the advantage function A. Therefore,
(27) results in poor practical performances when used directly.
To address this problem, we can map the advantage function
estimator to have no advantage at the chosen action by
combining the two streams as follows:

Q(s, a; θ, θA, θV ) = V (s; θV )

+

(
A(s, a; θA)− max

a′∈|A|
A(s, a′; θA)

)
.

(28)

Intuitively, for a∗ = argmaxa′∈AQ(s, a′; θ, θA, θV ) =
argmaxa′∈AA(s, a

′; θA), we have
Q(s, a∗; θ, θA, θV ) = V (s; θV ). Hence, the stream V (s; θV )
estimates the value function and the other streams is the

TABLE II
SIMULATION PARAMETERS.

Parameters Value
Bandwidth (W ) 1 MHz
UAV transmission power 5 W
The start position of UAV (0, 0, 200)

Discounting factor γ = 0.9

Max number of users per cluster 10

Noise power α2 = −110dBm
The reference channel power gain β0 = −50dB
Path-loss exponent 2

advantage function estimator. We can transform (28) using an
average formulation instead of the max operator as follows:

Q(s, a; θ, θA, θV ) = V (s; θV )

+

(
A(s, a; θA)−

1

|A|
∑
a′

A(s, a′; θA)

)
.

(29)

Now, we can solve the problem of identifiability by subtract-
ing the mean as in (29). Based on (29), we propose a dueling
DQL algorithm for our joint trajectory and data collection
problem in UAV-assisted IoT networks relying on Alg. 2. Note
that estimating V (s; θV ) and A(s, a; θA) does not require any
extra supervision and they will be computed automatically.

VI. SIMULATION RESULTS

In this section, we present our simulation results charac-
terising the joint optimisation problem of UAV-assisted IoT
networks. To highlight the efficiency of our proposed model
and the DRL methods, we consider a pair of scenarios: a
simple having three clusters, and a more complex one with
five clusters in the coverage area. We use Tensorflow 1.13.1
[53] and the Adam optimiser of [54] for training the neural
networks. In this paper, we set the maximum value of β/ζ not
too large because we prefer the completion of a mission. The
maximum value is set to β/ζ = 4/1. All the other parameters
are provided in Table II.

In Fig. 2, we present the trajectory obtained after training
using the DQL algorithm in the 5-cluster scenario. The green
circle and blue dots represent the clusters’ coverage and the
user nodes, respectively. The red line and black line in the
figure represent the UAV’s trajectory based on our method in
(8) and (9), respectively. The UAV starts at (0, 0), visits about
40 users, and lands at the destination that is denoted by the
black star. In a complex environment setting, it is challenging
to expect the UAV to visit all users, while satisfying the flight-
duration and power level constraints.

A. Expected reward

We compare our proposed algorithm with opitimal perfor-
mance and the Q-learning algorithm. However, to achieve the
optimal results, we have defined some assumptions of knowing
the IoT’s position and unlimited power level of the UAV. For
purposes of comparison, we run the algorithm five times in five
different environmental settings and take the average to draw
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Fig. 2. Trajectory obtained by using our dueling DQL algorithm

the figures. Firstly, we compare the reward obtained following
(7). Let us consider the 3-cluster scenario and β/ζ = 2 : 1
in Fig. 3a, where the DQL and the dueling DQL algorithms
using the exponential function (9) reach the best performance.
When using the exponential trajectory design function (9), the
performance converges faster than that of the DQL and of the
dueling DQL methods using the binary trajectory function (8).
The performance of using the Q-learning algorithm is worst.
In addition, in Fig. 3b, we compare the performance of the
DQL and dueling DQL techniques using different β/ζ values.
The average performance of the dueling DQL algorithm is
better than that of the DQL algorithm. Furthermore, the results
of using the exponential function (9) are better than that of
the ones using the binary function (8). When the value of
β/ζ ≥ 1 : 2, the performance achieved by the DQL and
dueling DQL algorithm close to the optimal performance.

Furthermore, we compare the rewards obtained by the DQL
and dueling DQL algorithms in complex scenarios with 5
clusters and 50 user nodes in Fig. 4. The performance of
using the episode reward (23) is better than that using the
immediate reward (22) in both trajectory designs relying on
the DQL and dueling DQL algorithms. In Fig. 4a, we compare
the performance in conjunction with the binary trajectory
design while in Fig. 4b the exponential trajectory design is
considered. or β/ζ = 1 : 1, the rewards obtained by the
DQL and dueling DQL are similar and stable after about
400 episodes. When using the exponential function (9), the
dueling DQL algorithm reaches the best performance and close
to the optimal performance. Moreover, the convergence of
the dueling DQL technique is faster than that of the DQL
algorithm. In both reward definitions, the Q-learning with (22)
shows the worst performance.

In Fig. 5, we compare the performance of the DQL and of
the dueling DQL algorithms while considering different β/ζ
parameter values. The dueling DQL algorithm shows better
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Fig. 3. The performance when using the DQL and dueling DQL algorithms
with 3 clusters while considering different β/ζ values

performance for all the β/ζ pair values, exhibiting better
rewards. Additionally, when using the exponential function
(9), both proposed algorithms show better performance than
the ones using the binary function (8) if β/ζ ≤ 1 : 1, but
it becomes less effective when β/ζ is set higher. Again, we
achieve a near-optimal solution while we consider a complex
environment without knowing the IoT nodes’ position and
mobile users. It is challenging to expect the UAV to visit all
IoT nodes with limited flying power and duration.

We compare the performance of the DQL and of the dueling
DQL algorithm using different reward function setting in Fig.
6 and in Fig. 7, respectively. The DQL algorithm reaches
the best performance when using the episode reward (23) in
Fig. 6a while the fastest convergence speed can be achieved
by using the exponential function (9). When β/ζ ≥ 1 : 1,
the DQL algorithm relying on the episode function (23)
outperforms the ones using the immediate reward function
(22) in Fig. 6b. The reward (7) using the exponential trajectory
design (9) has a better performance than that using the binary
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Fig. 4. The expected reward when using the DQL and dueling DQL
algorithms with 5-cluster scenario

trajectory design (8) for all the β/ζ values. The similar results
are shown when using the dueling DQL algorithm in Fig. 7.
The immediate reward function (22) is less effective than the
episode reward function (23).

B. Throughput comparison

In (7), we consider two elements: the trajectory cost and
the average throughput. In order to quantify the communica-
tion efficiency, we compare the total throughput in different
scenarios. In Fig. 8, the performances of the DQL algorithm
associated with several β/ζ values are considered while using
the binary trajectory function (8), the episode reward (23)
and 3 clusters. The throughput obtained for β/ζ = 1 : 1
is higher than that of the others and when β increases, the
performance degrades. However, when comparing with the
Fig. 3b, we realise that in some scenarios the UAV was stuck
and could not find the way to the destination. That leads
to increased flight time spent and distance travelled. More
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Fig. 5. The performance when using the DQL and dueling DQL algorithms
with 5 clusters and different β/ζ values

details are shown in Fig. 8b, where we compare the expected
throughput of both the DQL and dueling DQL algorithms.
The best throughput is achieved when using the dueling DQL
algorithm with β/ζ = 1 : 1 in conjunction with (8), which is
higher than the peak of the DQL method with β/ζ = 1 : 2.

In Fig. 9, we compare the throughput of different techniques
in the 5-cluster scenario. Let us now consider the binary
trajectory design function (8) in Fig. 9a, where the DQL
algorithm achieves the best performance using β/ζ = 1 : 1
and β/ζ = 2 : 1. There is a slight difference between the DQL
method having different settings, when using exponential the
trajectory design function (9), as shown in Fig. 9b.

In Fig. 10 and Fig. 11, we compare the throughput of
different β/ζ pairs. The DQL algorithm reaches the optimal
throughput with the aid of trial-and-learn methods, hence it
is important to carefully design the reward function to avoid
excessive offline training. As shown in Fig. 10, the DQL and
dueling DQL algorithm exhibit reasonable stability for several
β/ζ ≤ 1 : 1 pairs as well as reward functions. While we
can achieve the similar expected reward with different reward
setting in Fig. 6, the throughput is degraded when the β/ζ
increases. In contrast, with higher β values, the UAV can finish
the mission faster. It is a trade-off game when we can choose
an approximate β/ζ value for our specific purposes. When
we employ the DQL and the dueling DQL algorithms with the
episode reward (23), the throughput attained is higher than that
using the immediate reward (22) with different β/ζ values.

Furthermore, we compare the expected throughput of the
DQL and of the dueling DQL algorithm when using the
exponential trajectory design (9) in Fig. 11a and the episode
reward (23) in Fig. 11b. In Fig. 11a, the dueling DQL method
outperforms the DQL algorithm for almost all β/ζ values
in both function (22) and (23). When we use the episode
reward (23), the obtained throughput are stable with different
β/ζ values. The throughput attained by using the exponential
function (9) is lower than that using the binary trajectory
(8) and by using the episode reward (23) is higher than that
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Fig. 6. The expected reward when using the DQL algorithm with 5 clusters
and different reward function settings

using the immediate reward (22). We can achieve the best
performance when using the dueling DQL algorithm with (9)
and (23). However, in some scenarios, we can achieve the
better performance with different algorithmic setting as we
can see in Fig. 8b and Fig. 10a. Thus, there is a trade-off
governing the choice of the algorithm and function design.

C. Parametric Study

In Fig. 12, we compare the performance of our DQL tech-
nique using different exploration parameters γ and ε values
in our ε-greedy method. The DQL algorithm achieves the
best performance with the discounting factor of γ = 0.9 and
ε = 0.9 in the 5-cluster scenario of Fig. (12). Balancing the
exploration and exploitation as well as the action chosen is
quite challenging, in order to maintain a steady performance
of the DQL algorithm. Based on the results of Fig. 12, we
opted for γ = 0.9 and ε = 0.9 for our algorithmic setting.

Next, we compare the expected reward of different mini-
batch sizes, K. In the 5-cluster scenario of Fig. 13, the DQL
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Fig. 7. The performance when using the dueling DQL with 5 clusters, and
different β/ζ values

achieves the optimal performance with a batch size of K = 32.
There is a slight difference in terms of convergence speed with
batch size K = 32 is the fastest. Overall, we set the mini-batch
size to K = 32 for our DQL algorithm.

Fig. 14 shows the performance of the DQL algorithm
with different learning rates in updating the neural networks
parameters while considering the scenarios of 5 clusters. When
the learning rate is as high as α = 0.01, the pace of updating
the network may result the fluctuating performance. Moreover,
when α = 0.0001 or α = 0.00001 the convergence speed is
slower and may be stuck in a local optimum instead reaching
the global optimum. Thus, based on our experiments, we opted
for the learning rate of α = 0.001 for the algorithms.

VII. CONCLUSION

In this paper, the DRL technique has been proposed jointly
optimising the flight trajectory and data collection performance
of UAV-assisted IoT networks. The optimisation game has
been formulated to balance the flight time and total throughput
while guaranteeing the quality-of-service constraints. Bearing
in mind the limited UAV power level and the associated
communication constraints, we proposed a DRL technique for
maximising the throughput while the UAV has to move along
the shortest path to reach the destination. Both the DQL and
dueling DQL techniques having a low computational com-
plexity have been conceived. Our simulation results showed
the efficiency of our techniques both in simple and complex
environmental settings.
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