

Title	Electrochemical sensing of biotin using Nafion-modified boron- doped diamond electrode	
Authors	Buzid, Alyah;McGlacken, Gerard P.;Glennon, Jeremy D.;Luong, John H. T.	
Publication date	2018	
Original Citation	Buzid, A., McGlacken, G. P., Glennon, J. D. and Luong, J. H. T. (2018) 'Electrochemical sensing of biotin using Nafion- modified boron-doped diamond electrode', ACS Omega, 3(7), pp. 7776-7782. DOI:10.1021/acsomega.8b01209	
Type of publication	Article (peer-reviewed)	
Link to publisher's version	https://pubs.acs.org/doi/10.1021/acsomega.8b01209 - 10.1021/ acsomega.8b01209	
Rights	©2018, American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. https://pubs.acs.org/page/policy/ authorchoice_termsofuse.html - https://pubs.acs.org/page/ policy/authorchoice_termsofuse.html	
Download date	2025-01-13 20:31:56	
ltem downloaded from	https://hdl.handle.net/10468/6682	

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Electrochemical Sensing of Biotin using Nafion Modified Boron Doped Diamond Electrode

Alyah Buzid,^{†,‡} Gerard P. McGlacken,[‡] Jeremy D. Glennon,^{†,‡} and John H. T. Luong,^{*,†,‡}

[†] Innovative Chromatography Group Irish Separation Science Cluster (ISSC) Ireland.

[‡] School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland.

* Corresponding author:

j.luong@ucc.ie (J. H. T. Luong)

Figure S1. (a) CV of 50 μ M biotin, a scan rate of 50 mVs⁻¹. (b) LOD of biotin using the *i-t* curve at + 1.8 V. (c) Water also induced the signal response, indicating its reduction at -1 V. Electrolyte: 0.2 M TBAPF in MeCN. The detection was achieved on the bare BDD electrode vs. Ag/AgCl.

Figure S2. The CV of 100 μ M biotin obtained by the bare BDD electrode in Electrolyte: 0.2 M TBAPF in MeCN, at a scan rate of 100 mVs⁻¹.

Figure S3. IR spectra of 0.2 M TBAPF in MeCN contains 1 % water after 30 cycles of voltammetry (-2.5 to + 2.5 V at 100 mVs⁻¹).

Table S1. Parameters obtained for the bare and Nafion modified BDD electrodes using an equivalent circuit $R_s(C_{dl}(R_{ct}Zw))$. The parameters were obtained by ZnSimpWin.

	Bare BDD	Nafion BDD
$R_s(\Omega)$ -solution	71.3	75.4
C _{dl} (F) – double layer	1.26 x 10 ⁻⁷	2.24 x 10 ⁻⁷
R_{ct} (Ω)- charge transfer	36.4	43.2
$Z_w(\Omega \text{ s}^{-1/2})$ -Warburg model	0.001851	0.001372
Chi Square	0.0014	0.0036

Figure S4. The *i-t* curve of the blood plasma and the biotin spiked blood plasma.

Figure S5. DPVs obtained of a blank and spiked plasma sample with a uric acid standard. (a) 200 μ L blank plasma; (b) 200 μ L uric acid spiked plasma and (c) 400 μ L uric acid spiked plasma.

Figure S6. DPVs obtained of a blank and spiked plasma sample with a tyrosine standard. (a) 200 μ L blank plasma; (b) 200 μ L tyrosine spiked plasma and (c) 400 μ L tyrosine spiked plasma.