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Abstract 
 
Phosphatases of Regenerating Liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3) 

control magnesium homeostasis through an association with the CNNM magnesium transport regulators. 

Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly 

understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change 

of PRL expression by a mechanism involving its 5' untranslated mRNA region. Mutations or 

CRISPR/Cas9 targeting of the conserved upstream open reading frame present in the mRNA leader 

derepress PRL protein synthesis and attenuate the translational response to magnesium levels. 

Mechanistically, magnesium depletion reduces intracellular ATP but upregulates PRL protein 

expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, 

altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a 

magnesium sensitive mechanism controlling PRL expression, which plays a role in cellular 

bioenergetics. 

 

Significance Statement: 

The Phosphatases of Regenerative Liver (PRL) have been shown to interact with the CNNM magnesium 

transport regulators. Through this protein complex, PRL controls the levels of intracellular magnesium. 

Our study uncovers a remarkable post-transcriptional feedback mechanism by which magnesium 

controls PRL expression in mammalians cells. Here we show that regulation of PRL mRNA translation 

by magnesium depends on a 5'UTR-located uORF, which is conserved among all vertebrates, proposing 

a novel evolutionary molecular mechanism of action by a divalent ion. This magnesium-sensing 

mechanism, which also involve the key metabolic sensor AMPK, is thus central to maintain cellular 

homeostasis in mammalians cells. 
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/BODY 

INTRODUCTION 

The Phosphatase of Regenerating Liver (PRL) family is comprise of three members (PRL-1, -2, -3; gene 

name PTP4A1, PTP4A2, PTP4A3) of ~ 20 kDa with at least 75% amino acid sequence identity shared 

between them that are highly expressed in a majority of cancers (1). The Cyclin M (CNNM) magnesium 

regulators form an evolutionarily conserved complex with PRLs to regulate intracellular magnesium 

concentration (2, 3).The PRL/CNNM complex has been validated by structural studies characterizing 

the interaction between both proteins (4-6). Mutation of critical amino acid residues involved in this 

molecular association leads to reduced tumor growth indicating a pro-oncogenic role of the protein 

complex (7). Furthermore, either PRL knockdown or disruption of complex formation reduces 

magnesium transport (2, 3, 7). The main outcome of PRL overexpression and CNNM complex formation 

is increased intracellular magnesium establishing both of these as critical modulators of magnesium 

homeostasis. However, it is still unclear whether the CNNMs function as magnesium sensors or dual 

magnesium influx/efflux transporters (1, 8, 9).  

 

Magnesium is an essential cation regulating numerous cellular functions whose intracellular 

concentration is tightly regulated by various transporters (10). Serum magnesium represents only ~1% 

of the total body content, thus values within the normal range (0.7-1 mM) might not necessarily reflect 

an overall somatic hypo- or hypermagnesemic state (10). Magnesium imbalance is observed in multiple 

diseases and is linked to alterations of several hallmarks of cancer (11). It is required for energy 

production either indirectly as a part of the Mg2+-ATP complex or directly as a co-factor (12). Most 

enzymes involved in glycolysis, the Krebs cycle and the respiratory chain depend on magnesium as 

either an allosteric modulator or a co-factor. Moreover, magnesium is critical for mitochondria to carry 

out oxidative phosphorylation (13, 14), and low magnesium concentrations have been associated with 

altered uncoupled respiration (15, 16). In line with the role of PRLs in magnesium homeostasis, 
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mitochondrial respiration was found to be similarly affected and ATP turnover decreased  in cells 

isolated from PRL-2-/- animals (16). This is also consistent with the observed decrease in body weight 

of PRL-2-/- mice, suggesting that their cellular metabolism is inherently less efficient (16).  

 

The expression of various magnesium transporters is upregulated under conditions of magnesium 

deprivation, both in vitro and in vivo (17-19). The intrinsic mechanisms regulating this process are 

largely uncharacterized. It has been proposed that epithelial cells can sense environmental magnesium 

levels through transcription- and translation-dependent processes to alter magnesium transport and 

maintain its balance (20, 21). In bacteria, magnesium transporter expression is regulated by magnesium, 

both at the level of transcription by the PhoP/Q system, as well as post-transcriptionally by a 5' 

untranslated region (UTR)-located riboswitch (22). In eukaryotic cells, the underlying mechanism by 

which magnesium regulates gene expression is largely unexplored. We previously observed that while 

CNNM3 expression remains unchanged following magnesium depletion, its interaction with PRL-1/2 

markedly increases, indicating a pivotal regulatory role for PRL-1/2 and the PRL/CNNM complex in 

compensating for decreased magnesium availability (2). Furthermore, this was accompanied by an 

increase of PRL-1/2 protein expression by an unknown regulatory mechanism. Here we demonstrate that 

magnesium regulates PRL expression at the post-transcriptional level via an upstream open reading 

frame (uORF) in an AMPK/mTORC2 dependent manner.  
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RESULTS 

Magnesium controls PRL expression by an mRNA translational mechanism 

Cellular magnesium is regulated by intrinsic mechanisms which control various magnesium transporters 

to maintain homeostasis. Since extracellular magnesium depletion causes a decrease in intracellular 

magnesium levels (23, 24) (SI Appendix, Fig. S1), we examined the involvement of PRLs in the adaptive 

response related to changes in magnesium availability. We previously showed that extracellular 

magnesium levels regulate the expression of PRL-1 and -2 in various cancer cell lines by an unknown 

mechanism (2). Here, we further confirmed in PRL-2+/+, PRL-2+/-, and PRL-2-/- primary mouse 

embryonic fibroblasts that magnesium depletion induces a rise in PRL-1/2 protein levels (Fig. 1A) using 

a previously validated antibody that recognizes both proteins (2, 25). We next assessed the consequence 

of increasing intracellular magnesium instead. To this end, we over-expressed the TRPM7 magnesium 

transporter (26) using the well-characterized HEK293 doxycycline-inducible system to trigger an 

increase in intracellular magnesium levels (27, 28). We observed a decrease in PRL-1/2 expression 

following doxycycline-induced TRPM7 expression (Fig. 1B). On the other hand, knockdown of TRPM7 

using four independent single guide RNAs in the CRISPR/Cas9 system led to an increase in PRL-1/2 

protein levels (Fig. 1C), indicating that PRL expression is regulated by intracellular magnesium levels. 

The knockdown of PRL-2 also confirmed the specificity of the PRL-2 signal detected by western blot 

analysis. Surprisingly, while PRL protein levels were greatly induced following 24h magnesium 

depletion in four different cell lines tested (Fig. 1D), no significant changes in PRL mRNA levels were 

detected, except in HeLa cells which showed an increase in PRL-2 mRNA expression (Fig. 1E). Still, 

this change was modest as compared to the increase in PRL-2 protein levels. PRL-3 mRNA and protein 

levels were almost undetectable in all cell lines tested. Overall, the results indicate that PRL-1/2 protein 

expression is regulated by magnesium. 
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Since the data described in Fig. 1 suggested that a post-transcriptional mechanism might be responsible 

for the effect of magnesium on PRL expression, we performed an experiment to parallelly determine 

both mRNA and protein expression changes under hypomagnesemic conditions at different time points. 

Interestingly, we could detect an initial rise in PRL-1/2 levels by western blot after 3-4 h following 

magnesium depletion, which increased over time (Fig. 2A). In contrast, no difference was observed up 

to 8h following magnesium depletion when we examined PRL-1 and -2 mRNA levels by qPCR. We 

noted that PRL expression was still induced following magnesium depletion when transcription was 

inhibited using actinomycin D, a commonly used transcription inhibitor (Fig. 2B). eIF2a Ser-51 

phosphorylation, which has been implicated in the cellular stress response, remained unaffected by 

magnesium depletion but was induced by actinomycin D as previously described (29). The upregulation 

of PRL-1/2 was also not caused by magnesium-related inhibition of the proteasome since treatment with 

proteasome inhibitor MG132 did not interfere with the increase in PRL-1/2 proteins observed in the 

absence of magnesium (SI Appendix, Fig. S2). We next explored whether PRL-2 was being more 

efficiently translated upon magnesium depletion. To this end, we analyzed the polysome distribution of 

PRL-2 mRNA in HeLa cells cultured for two hours in either the absence or presence of magnesium (Fig 

2C). There was a clear recruitment of PRL-2 mRNA into heavy polysomes upon acute magnesium 

depletion as compared to cells cultured under normal magnesium conditions (Fig. 2C). Moreover, de 

novo protein synthesis of PRL-1/2 was also induced (Fig. 2D) and this was further confirmed in the 

MDA-MB-231 breast cancer cell line (SI Appendix, Fig. S3). Since a recent study proposed that 

magnesium-dependent regulation of PRL expression occurs at the transcriptional level in HeLa cells via 

the STAT pathway (30), we performed experiments using the same STATs inhibitor, S3I-201. Induction 

of PRL-1/2 protein expression was unaffected in the 8h following magnesium depletion and STAT 

inhibition (SI Appendix, Fig. S4).  We were only able to detect a reduction in PRL-1/2 at 24h following 

treatment. Collectively, these data indicate that PRL expression is rapidly regulated by an mRNA 

translational mechanism in response to changes in intracellular magnesium. 
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A conserved upstream open reading frame regulates PRL protein synthesis in a magnesium-

sensitive manner.  

Given the importance of the UTRs in the control of mRNA translation (31), we first determined which 

region of the PRL mRNA could be involved in regulating its expression following magnesium depletion. 

We generated reporter constructs by fusing the PRL-2 5'UTR, the 3'UTR or both regions to the luciferase 

gene as described in Fig. 3A. We then transfected these constructs into HeLa cells, treated them with 

various concentrations of magnesium, and measured luciferase activity. The results indicate that 

decreasing magnesium levels does not significantly affect luciferase activity in either the absence of both 

UTRs or the presence of only the 3' UTR (Fig. 3A). Interestingly, the PRL-2 5'UTR was sufficient to 

elicit a magnesium dose-response effect indicating that this region is critical for magnesium sensing and 

regulation of PRL-2 protein expression. In parallel, we observed a similar dosage effect on endogenous 

PRL-1/2 protein expression in HeLa cells (Fig. 3B), validating the results obtained using the luciferase 

assay. We found that the presence of the 5'UTR drastically repressed luciferase activity under normal 

conditions (Fig. 3C). These various reporter constructs showed no difference in mRNA level of the 

luciferase gene (SI Appendix, Fig. S5A), indicating a translational mode of regulation. Finally, we 

confirmed the importance of the PRL-1 5'UTR using the luciferase assay, which had a similar response 

to low magnesium as the PRL-2 5'UTR (Fig. 3D). Overall, these results suggest that the 5'UTR of both 

PRL-1 and PRL-2 mRNA may harbor some cis-regulatory elements affecting their translation and 

response to magnesium.  

 

mRNA translation can be regulated by various factors, including RNA secondary structures, upstream 

AUG (uAUG), and near-cognate non-AUG codons that may be used to initiate translation of upstream 

open reading frames (uORFs). In addition, some mRNAs bypass cap-dependent translation (see (32) and 

(33) for review). For example, it was recently shown that m6A modifications allow cap-independent 
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recruitment of initiating ribosome complexes (34). To assess the possibility of cap-independent initiation 

we used a bicistronic reporter vector encoding Renilla (RLuc) and Firefly (FLuc) luciferase on a single 

mRNA transcript, in which we cloned the PRL-2 5'UTR between the two reporters (SI Appendix, Fig. 

S5B). Production of Renilla reports on cap-dependent translation, whereas production of Firefly 

luciferase reports on cap-independent translational activity, as assessed by the EMCV control in this 

experiment. There is a slight increase in FLuc production when the PRL-2 5’UTR is placed between 

FLuc and RLuc indicating that this region might possesses elements involved in cap-independent 

translation (Fig. S5B), although the use of a bicistronic reporter alone is insufficient evidence (see (35) 

for discussion). Even if cap-independent initiation is involved, we did not detect an increased signal upon 

magnesium withdrawal. This excludes this mode of regulation involving this cation.  

Using GWIPS-viz (36, 37), which provides access to the genomic alignments of publicly available 

ribosome profiling data that maps the position of translating ribosomes over the entire transcriptome, we 

were able to identify a translated short uORF generating ribosome footprints located in the 5'UTR of 

both PRL-1 and -2 mRNAs (SI Appendix, Fig. S6 and S7). Most importantly, this small uORF is 

extremely well conserved among vertebrates and between PRL-1 and PRL-2, suggesting a potential 

function in regulating PRL expression. Of note, this uORF has been proposed to be associated with the 

resistance of PRL mRNA translation to global downregulation during Integrated Stress Response (38). 

In addition, these ribosome-profiling data, which was obtained under normal magnesium conditions, 

suggested that there was an accumulation of ribosomes stalled at the conserved uORFs in the 5'UTR of 

both PRL-1 and -2 mRNAs. Since both conserved uORFs contain two AUG (SI Appendix, Fig. S6-S8), 

we first wanted to assess if they are used for translation initiation and whether this type of cis-acting 

mode of regulation controls the expression of the main coding sequence (CDS). Therefore, we 

individually mutated both AUG codons in the 5'UTR of the PRL-2 mRNA to AUC (AUG1 and AUG2) 

and performed the luciferase assay described above (Fig. 4A). In contrast to the AUG1 mutant, we 

detected a stronger luciferase signal in the AUG2 mutant indicating that this codon is used to initiate 
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translation of the regulatory uORF controlling the expression of the main CDS (Fig. 4A). Importantly, 

the mutation reduced the reporter signal induced by magnesium depletion suggesting that this uORF2 

affects mRNA translation in a magnesium-sensitive manner (Fig. 4B). We next targeted the endogenous 

uORF2 located in the 5'UTR of the PRL-2 mRNA using two different CRISPR/Cas9 sgRNAs, which 

were directed to the corresponding genomic region in the PRL-2 locus. Also, an sgRNA targeting the 

coding sequence of PRL-2 was used as a control. As expected, we observed an increase in PRL-2 protein 

expression in MDA-MB-231 cells expressing the two sgRNAs targeting the uORF2 (Fig. 4C). 

Furthermore, magnesium depletion, which increased PRL-2 levels in lacZ control cells, did not have an 

additive effect on PRL-2 expression in the uORF-targeted cells (Fig. 4D). Similar results were obtained 

on targeted MDA-MB-231 clones in which we confirmed that the presence of indels near the C-terminal 

region of the uORF-encoded peptide (SI Appendix, Fig. S9). Consistent with this observation, when we 

targeted the uORF2 of PRL-1 in a similar fashion near the C-terminal region of the uORF-encoded 

peptide, its expression was not further affected in hypomagnesaemic conditions, although we detected 

an increase in PRL-1 expression using two different sgRNAs in normal magnesium (Fig. 4E). 

Importantly, we did not detect any changes in PRL-1 and -2 mRNA levels in the targeted cells (SI 

Appendix, Fig. S10). Using a reporter construct containing only the uORF cloned directly upstream of 

the luciferase gene (SI Appendix, Fig. S8), we showed that presence of the uORF was sufficient to 

provoke a magnesium-dependent response of the luciferase signal (Fig. 4F). Finally, we scrambled the 

amino sequence corresponding to the uORF2 in the 5'UTR of the PRL-2 mRNA without changing the 

start and stop codons (SI Appendix, Fig. S11) and showed that it abrogates translational control using 

the luciferase assay (Fig. 4G), thus indicating that the uORF amino acid sequence is critical for the 

regulation of the main coding sequence. In addition, we modified the nucleotide sequence without 

changing the amino acid sequence (wobble construct) to show that the nucleotide sequence itself is not 

important for the observed regulation. Taken together, this data identifies a novel role for a cis-regulatory 

element present on the 5'UTR affecting PRL mRNA translation in a magnesium-sensitive manner.  
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Magnesium regulates PRL expression by a mechanism linked to the AMPK/mTORC2 pathway. 

The main source of energy in cells is ATP, which must be bound to magnesium to be biologically active 

and is therefore commonly referred to as Mg-ATP (39). A decrease in its intracellular levels leads to an 

increase in AMP-activated protein kinase (AMPK) activity, which is a major regulator of metabolism 

and mRNA translation (40). We detected a decrease in ATP levels following magnesium depletion in 

various cell lines (Fig. 5A). This correlated with an increase in AMPK activity, as measured by the 

phosphorylation of acetyl-CoA carboxylase (ACC), a direct downstream target of AMPK (Fig. 5B). 

Surprisingly, inhibiting AMPK using compound C inhibited PRL-1/2 expression induced by the absence 

of magnesium in MCF-7 cells (Fig. 5C) and other cell lines (SI Appendix, Fig. S12). Furthermore, we 

used CRISPR/Cas9 to target the catalytic alpha subunit of AMPK using two different sgRNAs and 

confirmed that this enzyme is involved in the regulation of PRL-1/2 protein expression, but not mRNA 

abundance (SI Appendix, Fig. S13) in hypomagnesemic conditions (Fig. 5D). This result was confirmed 

in MDA-MB-231 cells (SI Appendix, Fig. S14). Interestingly, reducing magnesium levels stimulated 

mTORC2 activity as measured by increased pS473-AKT, its direct downstream target, and this rise was 

abrogated in AMPK-targeted cells (Fig. 5D). One of the major downstream signaling pathways regulated 

by AMPK is the mammalian target-of-rapamycin (mTOR) pathway, which includes the rapamycin-

sensitive mTORC1 complex and rapamycin-insensitive mTORC2 complex. Activation of AMPK 

represses mTORC1, but not mTORC2, which in turn suppresses translation of select mRNAs (41, 42). 

Exposing cells to rapamycin or an inhibitor of MNK1/2 (CGP57380), an upstream regulator of the cap 

binding protein eukaryotic initiation factor 4E (eIF4E), did not affect PRL-1/2 protein levels following 

magnesium depletion in MCF-7 cells (Fig. 5E). In contrast, inhibiting mTORC2 in addition to mTORC1 

using PP242 or Torin1 resulted in reduced expression of PRL-1/2. Similar results were obtained in two 

other cell lines with PP242 (SI Appendix, Fig. S15) further indicating that mTORC2 might be more 

important than mTORC1 for the control of PRL-1/2 levels in response to low magnesium. Consistent 
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with this, we observed reduced magnesium-dependent upregulation of PRL-1/2 proteins, without change 

in their mRNA levels, when Rictor, an essential component of the mTORC2 complex, was knocked 

down (Fig. 5F and SI Appendix, Fig. S13). This was accompanied by a block in pS473-AKT and no 

change in AMPK activity, suggesting that the latter acts upstream of mTORC2. Finally, we targeted 

Rictor in WT and uAUC2 5'UTR reporter expressing cells (described in Fig. 4A) and show that targeting 

mTORC2 activity reduces the luciferase signal following magnesium depletion when the uORF is 

functional (Fig. 5G). These findings demonstrate that restriction of magnesium availability leads to 

mTORC2 activation in an AMPK-dependent manner to increase PRL expression by a mechanism 

involving the uORF-regulatory functions. 

 

PRL-2 modulates cell metabolism 

Since magnesium is a critical regulator of various metabolic enzymes (10) and given the role of the 

AMPK/mTOR pathway in metabolism (42, 43), we next assessed the downstream bioenergetic 

consequences of altering PRL-2 expression. Of note, we initially generated PRL-2 knockout MDA-MB-

231 cells using CRISPR/Cas9, but we observed compensatory PRL-1 upregulation (SI Appendix, Fig. 

S16). Since long-term deletion of PRL-2 may cause metabolic cell adaptation or compensation by the 

other PRLs, we established MDA-MB-231 cells expressing doxycycline (dox)-inducible PRL-2 

shRNAs.  After 48h in the presence of dox, we observed ~80 % knockdown efficiency using two shRNAs 

when compared to the scramble control (Fig. 6A). This acute treatment did not result in increased PRL-

1 protein levels. At the transcriptional level, although we observed a decrease in PRL-2 mRNA as 

expected, PRL-1 and -3 transcription profiles were not altered (Fig. 6B). Given the importance of 

magnesium in metabolism, we observed that knockdown of PRL-2 leads to a decrease in intracellular 

ATP levels (Fig. 6C) and glutamine uptake (Fig. 6D). Moreover, this correlated with a reduction of 

glucose uptake by the PRL-2 targeted cells, which also led to lower lactate production (Fig. 6E), 

suggesting a lower glycolytic flux in these cells.  Surprisingly, since glutamine uptake was also reduced, 
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this indicated that other catabolic pathways might compensate for the reduced utilization of these two 

major nutrients. Finally, in order to evaluate the role of the uORF-mediated translational control in cell 

metabolism, MDA-MB-231 cells expressing the two sgRNAs targeting the uORF (described in Fig. 4C) 

were analyzed. As these cells showed increased PRL-2 expression, higher glucose uptake and increased 

lactate production was observed (Fig. 6F). Overall, this data demonstrates metabolic reprogramming in 

response to PRL-2, indicating that PRL-2 overexpression may provide a survival advantage by allowing 

cancer cells to meet the high bioenergetic demands required for rapid proliferation. 
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Discussion 

We identified a novel mode of control of PRL expression involving the 5'UTR in which the presence of 

a conserved uORF is critical for its regulation. Furthermore, this cis-regulatory element acts as a 

magnesium sensor by a mechanism involving in part the AMPK/mTORC2 pathway to regulate PRL 

expression, which will lead to a cellular metabolic response (Fig. 6G). As we previously showed, PRL-

2 can modulate bioenergetic functions in vivo (16) and a magnesium-deficient diet can stimulate PRL-2 

expression in various mouse tissues (44), all of which establish the PRLs as important metabolic 

mediators which respond to magnesium to maintain homeostasis. 

 

The lower ATP levels that we observed following magnesium depletion correlate well with the cellular 

function of magnesium. ATP must be bound to this cation to be biologically active (39) and is maintained 

within a tight concentration range by AMPK, which senses the energy state of the cell largely as a ratio 

of AMP or ADP to ATP (40). Consistent with this, we also observed AMPK activation in low 

magnesium conditions thus highlighting the essential function of magnesium as a cofactor of various 

metabolic pathways (10, 13). During energetic stress, the role of AMPK is to rapidly replenish 

intracellular ATP by shutting down major anabolic pathways and activating the catabolic ones in order 

to promote metabolic adaptation leading to cell survival. Given the role of the PRLs in cell survival, 

proliferation, and metabolism, our results suggest that the rapid increase in PRL protein levels following 

magnesium depletion via the AMPK pathway is part of this adaptive process. One likely possibility is 

that the binding of PRL to the CNNM magnesium transporter leads to an increase in intracellular 

magnesium levels, as we and others have previously shown (2, 3), in order to replenish intracellular 

ATP-Mg. This correlates well with the reported upregulation of various magnesium transporters in 

response to low magnesium to maintain its intracellular balance (17-19, 21). 
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A rise in intracellular magnesium via TRPM7 mediated influx is essential for sustained mTORC1 

activation (45). We show that overexpression of this magnesium transporter leads to a reduction in PRL 

levels. Interestingly, activated AMPK directly suppresses the function of mTORC1 (41, 42) but 

potentially upregulates mTORC2 activity (46, 47). Here, blocking mTORC1 with rapamycin did not 

affect PRL expression under hypomagnesemic conditions. Instead, we establish that mTORC2 activation 

in response to low magnesium acts as an upstream modulator of PRL expression. This suggests that 

when intracellular magnesium levels become limiting, AMPK is activated and suppresses mTORC1, 

thus favoring the mTORC2 pathway to promote PRL protein synthesis. The exact role of mTORC2 is 

still obscure but it has been shown to affect cell metabolism as loss of Rictor in mice, a critical component 

of the mTORC2 complex, affects glucose homeostasis (43). This is in line with the metabolic function 

of PRL-2 previously identified in PRL-2-/- mice (16) and our observation that the acute knockdown of 

PRL-2 leads to a decrease in glucose uptake. 

 

TRPM7 is regulated by magnesium levels via a post-transcriptional mechanism involving two uORFs 

located within its mRNA (48). The proposed model is one where the first uORF inhibits the overall 

translation of the main coding sequence, whereas the second confers specific magnesium sensitivity of 

translation leading to TRPM7 upregulation at decreased magnesium concentrations. In TRPM7, the first 

uORF overlaps the main ORF thus preventing proper scanning by the translation machinery past the 

main ORF thus dampening TRPM7 translation (48). In contrast, the main PRL ORF is located 

downstream of the conserved uORF, and the accumulation of ribosomes within this uORF indicates a 

strong inhibitory function under normal conditions. It is when magnesium becomes limiting that this 

ribosome stalling is likely relieved. There are at least three non-mutually exclusive ways that this could 

enhance translation of the downstream ORF. First, it is possible that the ribosome pause makes 

ribosomes incompetent for re-initiation downstream as they lose translation initiation factors associated 

with the ribosome. When the pause is removed, the ribosome would become competent for re-initiation 
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at the downstream main start codon, leading to the synthesis of PRL protein. The other possibility is that 

the pause may work as a roadblock to the leaky scanning 43S preinitiation complex (PIC). This 

possibility is supported by deep phylogenetic conservation of uAUG2 Kozak context for both PRL-1 and 

PRL-2, which is very weak (UUUAUGG). Finally, it is also possible that the pausing is involved in 

modulating the efficiency of translation initiation itself; paused ribosomes could lead to the generation 

of ribosome queues at the beginning of the uORF resulting in a prolonged time spent by the 43S PIC at 

uAUG2 increasing the chance of initiation. Such a mode of regulation has been demonstrated recently in 

polyamine dependent regulation of CUG initiated uORFs in antzime inhibitor (AZIN) mRNA (49). 

While this pause dependent initiation has been shown for a non-AUG start, it is likely that initiation at 

an AUG codon in a very weak Kozak context may also be highly sensitive to the time that 43S PIC 

spends at this start.  

What might be responsible for the pause? A very likely possibility is that the uORF encodes a cis-acting 

regulatory short peptide that responds to specific small molecules in the cellular environment (50, 51). 

The translation of the arg-2 gene of Neurospora crassa and CPA1 in fungi is negatively controlled at the 

translational level in response to the level of arginine (52, 53). Such a mechanism is supported by the 

exceptional cross-species conservation of the uORF amino acid sequence, which indicates that the 

sequence has an important functional role since it is evolutionally conserved. This is reinforced by our 

data showing that amino acid sequence of the uORF is critical for the translational control of PRL-2. 

Magnesium could interact with the nascent peptide either directly or through an intermediary to stall 

ribosomes at the uORF, which would attenuate PRL translation. While it is likely that the conservation 

of the amino acid sequence of this uORF is due to its properties associated with ribosome pausing and 

magnesium-dependent regulation of the main ORF translation, we cannot exclude a possibility that its 

product has its own function. Indeed, products of many uORFs have been detected in proteomics studies, 

and those of SLC35A4 and MIEF1 uORFs are predicted to be functional based on their conservation (38) 
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and function as a component of mitochondrial membrane (54) and a mitochondrial ribosome assembly 

factor (55), respectively. 

 

We provide strong evidence that magnesium regulates PRL expression by a post-transcriptional 

mechanism. However, it was recently proposed that PRL is transcriptionally regulated by magnesium in 

a STAT1-dependent manner in HeLa cells (30). With the STAT inhibitor used in that study, we observed 

a slight decrease in PRL expression at both basal conditions and following magnesium depletion only 

after 24h. As the rise in PRL protein expression in HeLa cells is detected much earlier in magnesium-

depleted media, we strongly believe that the main regulation occurs at the mRNA translation level to 

provide a rapid adaptive response by the cell and that transcription changes might occur as a secondary 

event. Except for HeLa cells, we did not see major changes in PRL mRNA levels under low magnesium 

conditions at late time points in all cell lines tested implying that post-transcriptional mechanisms are 

important for the regulation of this PTP family. In line with this, the existence of a post-transcriptional 

mechanism involving the binding of poly(C)-binding protein 1 (PCBP1) to the 5’UTR of PRL-3 mRNA 

was shown to downregulate its translation (56). Moreover, an inverse correlation between the protein 

levels of PRL-3 and PCBP1 was shown in different human primary cancers providing a clinical 

significance to this mechanism. Therefore, the rapid translational response to hypomagnesemia 

preceding the transcriptional response could be a general mode of cellular regulation involving PRL 

expression in response to various stimuli. Fast translational induction has been described in response to 

various stresses, including acute metabolic stress induced by oxygen and glucose deprivation, which 

provokes rapid widespread uORF-mediated alterations in mRNA translation with minimal transcription 

effects (57). As we saw under low magnesium conditions, AMPK is also activated by hypoxia, low 

glucose, and impaired mitochondrial function (40), thus contributing to selective translational 

reprograming via the AMPK/mTOR pathway leading to the survival of cells exposed to these adverse 

environmental conditions. Similar to magnesium deprivation, these conditions mimic the stringent tumor 
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microenvironment which imposes a dramatic stress on cellular bioenergetics. Thus, we believe that an 

acute change in PRL expression contributes to the metabolic rewiring of cells to rapidly meet the 

bioenergetic requirements for cell survival. 

 

Overall, our work establishes a novel mode of post-transcriptional regulation of gene expression 

involving a magnesium sensing mechanism controlled by a conserved cis-regulatory element present in 

the 5' UTR of PRL-1 and PRL-2 mRNAs. The findings presented here provide insight on how PRL 

upregulation regulates magnesium homeostasis, promotes cancer progression, and offers a metabolic 

advantage to cells in harsh growth environments.  
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Materials and Methods 
 
Cell Lines and cell culture: HeLa, MCF-7, HEK293, BT474 and MDA-MB-231 were initially obtained 

from ATCC, and the DB-7 cell line has been described previously (58). Primary murine embryonic 

fibroblasts (PMEF) were isolated from E14.5 embryos according to the standard protocols. All cell lines 

were cultured in DMEM (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS) 

(Thermo Fisher Scientific). Where indicated, magnesium-free DMEM (Wisent) and dialyzed FBS 

(Thermo Fisher Scientific) were used to vary the concentrations of magnesium by the addition of MgSO4 

which is about 1mM in regular DMEM. Where stated, the following concentrations of inhibitors were 

used: Actinomycin D (1 ug/ml), Compound C (10 uM), Rapamycin (50 nM), PP242 (2.5 uM), 

CGP57380 (10uM), Torin1 (100 nM), MG132 (5 uM). Cells were tested for mycoplasma contamination 

by PCR. All cell lines were maintained at 37°C in a 5% CO2 incubator.  

 

Western blot analysis: Analysis was performed as previously described (59). Antibodies used in this 

study are from Sigma (alpha-actin), EMD Millipore (PRL-2) and Cell Signaling Technology (AMPK, 

pT172-AMPK, ACC, pS79-ACC, pS240/244-S6, pS51-eIF2a, eIF2a, AKT, pS473-AKT, Rictor.). All 

western blots performed in this study are representative of at least 3 independent experiments. 

 

RNA isolation and real time PCR: RNA isolation, cDNA synthesis and qPCR were performed as 

described using the primers described in SI Appendix, Fig. S17. NormFinder analysis (60) determined 

that actin beta isoform (ACTB) and protein-phosphatase PP1-beta (PP1B) were the most stable genes 

upon magnesium modulation and were thus used as reference genes to calculate the relative abundance 

of the indicated genes of interest. 

 

Intracellular magnesium measurement: MDA-MB-231 cells were seeded in 100mm plates 1 day 

before treatment. Cells were washed with PBS and scraped into ICP-grade polypropylene tubes (SCP 
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Science) and digested sequentially with 500ul of both trace elements grade HNO3 (Macron Fine 

Chemicals) and 30% H2O2 (BioShop) for 1 h each at 100°C. Samples were then diluted to 5% HNO3 

and analyzed with inductively-coupled plasma optical emission spectroscopy (Thermo Fisher Scientific 

iCAPTM 6000). Magnesium concentration was normalized with total protein content measured from each 

sample before digestion. 

 

Polysome profiling: Polysome profiles were generated as previously described (61). The primers used 

for semi-quantitative PCR are as follows: PRL-2: ACGCGCAGTGTCCATCAGTAT and 

GGAGGGCTAATGTTTCATGTTGC; beta Actin: CTCTTCCAGCCTTCCTTCCT and 

AGCACTGTGTTGGCGTACAG. qPCR was performed on the pooled polysomal fractions using the 

PRL-2 and actin primers described in SI Appendix, Fig. S17. 

 

Metabolic labeling of newly synthesized proteins: Newly synthesized proteins were determined as 

previously described (62) with minor modifications. See SI Appendix, Materials and Methods for 

detailed labeling protocols.  

 

Plasmid constructs, transfection and luciferase assay: Generation of all DNA constructs for the 

luciferase assays are described in SI Appendix, Materials and Methods. Also, see SI Appendix, Materials 

and Methods for detailed information on transfection and luciferase assays.  

 

Analysis of publicly available data: For the analysis of publicly available data we used GWIPS-viz 

browser (36) (37). For the analysis of nucleotide conservation, we used 100-way vertebrate alignment 

that was visually explored with phyloP (63) and CodAlignView (I. Jungreis, M. Lin and M. Kellis, 

https://data.broadinstitute.org/compbio1/CodAlignViewUsersGuide.html) 
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CRISPR/Cas9 genome-editing technology and lentivirus infection: sgRNAs were designed using the 

online tool (http://crispr.mit.edu) and are listed in SI Appendix, Fig. S17. sgRNAs were inserted into the 

BsmBI sites of the following lentiviral constructs: pL-CRISPR.SFFV.GFP vector (Addgene plasmid no. 

57827) for TRPM7 and PRL-2; lentiCRISPR v2 vector (Addgene plasmid no. 52961) for PRL-2, 

AMPKa and the uORF of the PRL-1 gene; LentiCRISPRv2GFP (Addgene plasmid no. 82416) for the 

uORF of the PRL-2 gene. LacZ sgRNA control was cloned in all these lentiviral vectors. Lentivirus 

production and infection was described previously (59). Cells were used as a pool of targeted-cells for 

the assays described in this study and targeting efficiency was determined by western blot analysis. 

 

Generation of shRNA inducible cell lines: A stable reverse tetracycline-controlled transactivator 

(rtTA) MDA-MB-231 cell line was generated using CRISPR/Cas9 technology by targeting rtTA to the 

AAVS1 safe harbor human locus. sgRNA targeting the AAVS1 locus was cloned into pSpCas9(BB)-

2A-GFP (PX458) (Addgene plasmid no. 48138). A DNA fragment consisting of the CAG promoter 

located in front of an rtTA-T2A-Fluc transgene was generated by overlapping PCR and cloned into the 

AgeI/EcoRI sites of pZDonor-AAVS1 Puromycin targeting vector (Sigma). This targeting vector was 

then co-transfected along with the CRISPR/Cas9 AAVS1 sgRNA construct in MDA-MB-231 using 

Fugene HD (Roche) and clones were selected for puromycin resistance (5 ug/ml). Efficient targeting of 

a selected clone was validated by PCR on the genomic DNA as previously described (64). The newly 

generated rtTA MDA-MB-231 cells were then infected with two individual shRNAs targeting PRL-2 

and a scramble control (59), which were cloned into the lentiviral vector pLentiCMVTRE3GNeo_Dest 

(Addgene plasmid no. 27566) using the gateway system (Invitrogen). Cells were selected with G418 

(800 ug/ml) and used as a pool for the various assays described in this study. shRNA expression was 

induced using 1 ug/ml of doxycycline (Sigma).  
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ATP and metabolite measurement: ATP levels were measured using the CellTiter-Glo Luminescent 

Cell Viability Assay (Promega) which directly measures cellular ATP.  Glucose and glutamine 

consumption, and lactate production were measured using a Bioprofile Analyzer (NOVA Biomedical). 

Data were normalized to cell number using Cyquant (ThermoFisher Scientific).  
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Figure Legends: 

Fig. 1: Magnesium regulates PRL expression 

(A) Western blot analysis of primary mouse embryonic fibroblasts isolated from PRL-2 knockout (-/-), 

heterozygote (+/-) and wildtype (+/+) mouse embryos incubated for 24h in either the presence or absence 

of magnesium.  

(B) TRPM7 expression was induced with doxycycline (Dox) in HEK293 cells for 30h and analyzed by 

western blot. 

(C) Knockdown of TRPM7 using four independent sgRNAs by the CRISPR/Cas9 system was performed 

in HEK293-TRPM7 expressing cells and analyzed by western blot. 

(D and E) The indicated cell lines were cultured for 24h in either the presence or absence of magnesium 

and analyzed by western blot (D) or qPCR (E). 

The plots in (E) represent data as mean ± SD (n=3); ***p < 0.001 by two-way ANOVA. All western 

blots are representative of three independent experiments. 

 

Fig. 2: Magnesium depletion promotes PRL mRNA translation 

(A) HeLa cells were incubated in absence of magnesium for the indicated times and analyzed by western 

blot (top) and qPCR (bottom). 8 ctrl: 8h control with magnesium. 

(B) Western blot analysis of HeLa cells incubated for 6h in either the presence or absence of magnesium 

with or without actinomycin D (ActD). Quantification is represented as values expressed as fold change 

relative to 1 mM magnesium control (Ctrl). Data are means ± SEM (n=3). 

(C) Polysome profiles of HeLa cells treated for 2h in either the presence or absence of magnesium. PRL-

2 and actin mRNA distribution across the gradient was evaluated in each fraction by semi-quantitative 

RT-PCR and on the polysome fractions by qPCR. Data are means ± SD (n=3); **p < 0.01 by one-way 

ANOVA. 
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(D) HeLa cells were metabolically labelled with the methionine analogue AHA for 2h in either the 

presence or absence of magnesium. Newly synthesized proteins were covalently bound to biotin, pulled 

down with streptavidin beads, and analyzed by western blotting. Input represents total protein extract 

before biotin pulldown. Representative of three independent experiments. 

Fig. 3: The 5’ untranslated region of the PRL mRNA controls PRL expression in response to 

magnesium levels 

(A) PRL-2 UTR luciferase reporter constructs used to detect translation in response to magnesium levels. 

HeLa cells were transfected with the indicated constructs, treated with various concentrations of 

magnesium for 24h, and luciferase activity measured. Values are expressed as fold change relative to 1 

mM magnesium for each construct. 

(B) Western blot analysis of HeLa cells incubated for 24h in the presence of the indicated magnesium 

concentration. Representative of three independent experiments. 

(C) HeLa cells were transfected with the indicated constructs, treated with varying magnesium 

concentrations for 24h, and luciferase activity measured. Plot is representative of three independent 

experiments. Data are means ± SD (n=4); ****p < 0.0001 vs. control for each magnesium concentration 

by two-way ANOVA. 

(D) HeLa cells were transfected with the indicated constructs and incubated for 24h in either the presence 

or absence of magnesium followed by luciferase activity measurements. Values are expressed as fold 

change over 1 mM magnesium for each construct. Plot is representative of two independent experiments. 

Data are mean ± SD (n=4); ****p < 0.0001 vs. 1mM magnesium by two-way ANOVA. 

 

Fig. 4: A conserved uORF in the PRL 5’UTR senses magnesium levels to regulate its expression 

(A) PRL-2 5'UTR luciferase reporter constructs used to test uORFs identified by ribosome profiling data. 

HeLa cells were transfected with the indicated constructs and luciferase activity was measured. Plot is 
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representative of three independent experiments. Data are means ± SD (n=4); ****p < 0.0001 vs. WT 

by two-way ANOVA. 

(B) HeLa cells were transfected with the indicated constructs and incubated for 24h in either the presence 

or absence of magnesium followed by luciferase activity measurements. Values are expressed as fold 

change relative to 1 mM magnesium for each construct. Plot is representative of three independent 

experiments. Data are means ± SD (n=4); ****p < 0.0001 by two-way ANOVA  

(C) Targeting of the PTP4A2 locus using two independent single guide RNAs (sgRNA) against the 

uORF and a specific sgRNA against the main ORF encoding PRL-2 by the CRISPR/Cas9 system was 

performed in MDA-MB-231 cells and analyzed by western blot. LacZ sgRNA was used as a control. 

(D-E) PRL-2 and PRL-1 uORF-targeted MDA-MB-231 cells were incubated for 24h in the absence of 

magnesium and analyzed by western blot. Quantification is presented on each panel. Values are 

expressed as fold change relative to 1 mM magnesium control (Ctrl). Data are means ± SEM (n=3). **p 

< 0.01 vs 1mM by two-way ANOVA. 

 (F-G) PRL-2 5'UTR luciferase reporter constructs to test the uORF response to magnesium. HeLa cells 

were transfected with the indicated constructs and luciferase activity was measured. Values are expressed 

as fold change relative to 1 mM magnesium for each construct (F) or as luminescence ratio signal (G). 

Plot is representative of three independent experiments. Data are means ± SD (n=4); ****p < 0.0001 vs 

uORF 1mM and ***p < 0.001 vs WT 1mM by two-way ANOVA. 

 

Fig. 5: Magnesium regulates PRL expression by an AMPK/mTORC2 dependent pathway 

(A) ATP measurements in various cell lines following 2h magnesium depletion. RLU: Relative 

luminescent unit. Data are means data ± SEM (n=4). 

(B) Western blot analysis of MCF-7 cells incubated for 8h in either the presence or absence of 

magnesium. Representative of three independent experiments. 
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(C) MCF-7 cells were incubated for 24h in the presence or absence of magnesium with or without 

compound C (Comp. C) and analyzed by western blot. Quantification is shown as values expressed as 

fold change relative to 1 mM magnesium without Comp. C. Data are means ± SEM (n=3); *p < 0.05 by 

two-way ANOVA. 

(D) Knockdown of AMPKa using two single guide RNAs (sgRNA) by the CRISPR/Cas9 system was 

performed in MCF-7 cells. Targeted cells were incubated for 24h in the presence or absence of 

magnesium and analyzed by western blot. LacZ sgRNA was used as a control. Representative of three 

independent experiments. 

(E) MCF-7 cells were incubated for 24h in the presence or absence of magnesium with or without the 

indicated inhibitors and analyzed by western blot. Ctrl: vehicle control with DMSO; Rapa: rapamycin. 

Quantification is shown as values expressed as fold change relative to Ctrl 1 mM magnesium. Data are 

means ± SEM (n=3); ***p < 0.001 by two-way ANOVA. 

(F) MCF-7 cells were transfected for 30h with the indicated siRNAs and incubated for 12h in the 

presence or absence of magnesium before being analyzed by western blot. Scr: Scramble. 

(G) HeLa cells were transfected with the indicated constructs and siRNAs followed by luciferase activity 

measurement. Plot is representative of three independent experiments. Data are means ± SD (n=4); ***p 

< 0.001 by two-way ANOVA. 

 

Fig. 6: PRL-2 mediates cellular metabolic reprogramming 

(A) Western blot analysis of MDA-MB-231 cells expressing doxycycline (dox)-inducible PRL-2 or 

scramble (Scr) shRNAs treated with dox for 48 h. (B) Quantification of PRL-1, -2, -3 mRNAs was 

performed on doxycycline (dox)-inducible PRL-2 or scramble (Scr) shRNA expressing cells treated with 

dox for 48h. Data are mean ± SD (n=3); **p < 0.01 vs Scr. by two-way ANOVA.(C-E) MDA-MB-231 

cells expressing doxycycline (dox)-inducible PRL-2 or scramble (Scr) shRNAs were treated with dox 

for 48h and the indicated metabolites measured. All plots are representative of at least three independent 
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experiments. Data are means ± SD (n=4-5); ***p < 0.001 vs. Scr by two-way ANOVA. (F) Metabolite 

measurement of MDA-MB-231 cells expressing the two sgRNAs targeting the uORF cultured in 2.5 

mM glucose. All plots are representative of at least three independent experiments. Data are means ± SD 

(n=4); **p < 0.01 or *p < 0.05 vs. LacZ by two-way ANOVA. (G) Schematic depicting how low 

intracellular magnesium leads to an increase in PRL protein levels. When magnesium is reduced, the 

AMPK/mTORC2 dependent pathways, which are generally involved in regulating cellular 

bioenergetics, get activated to promote a rise in PRL protein synthesis to contribute to the observed 

metabolic switch. Concomitantly, a uORF contributes to the regulation of PRL mRNA translation by a 

"magnesium sensing" mechanism involving scanning ribosomes that will be stalled at the uORF in the 

presence of magnesium but become competent for re-initiation at the downstream start codon of the main 

open reading frame (mORF) under conditions of low magnesium, leading to PRL protein synthesis. 
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Supporting Information Appendix 

 

Materials and Methods 

Plasmid constructs: The firefly luciferase (Fluc) gene was cloned into the BamH1 and XhoI sites 

of pcDNA3.1_Zeo (Thermo Fisher Scientific) to generate the control Fluc vector. PRL-2 

(PTP4A2) luciferase constructs were generated based on the PTP4A2 mRNA isoform 

1(NM_080391.3) (SI Appendix, Fig. S8). Briefly, the 5'UTR (994 nucleotides) region was 

synthesized (Biobasic) and inserted into the BamH1 and XhoI sites of pcDNA3.1_Zeo in front of 

the Fluc gene using overlapping PCR. A similar approach was used for the 3'UTR region of 

PTP4A2 (2431 nucleotides) which was generated by PCR from cDNA made from HeLa cells and 

inserted after Fluc. All three pieces were spliced by overlapping PCR in one chimeric product and 

cloned into the BamH1 and XhoI of pcDNA3.1_Zeo to generate the full construct. PRL-1 

(PTP4A1) luciferase constructs were generated based on the PTP4A1 mRNA isoform 

1(NM_003463.4) (SI Appendix, Fig. S8). Briefly, the 5'UTR (993 nucleotides) region was 

synthesized (Biobasic) and inserted into the BamH1 and XhoI sites of pcDNA3.1_Zeo in front of 

the Fluc gene using overlapping PCR. Mutations in the PRL-2 5'UTR were introduced by site-

directed mutagenesis using the QuikChange Site-Directed Mutagenesis kit (Stratagene). 

 

Transfection and luciferase assay: Transfections of the Fluc constructs were performed using 

lipofectamine 2000 (Invitrogen) following the manufacturer’s instructions and experiments were 

carried out 24 hrs post-transfection. The Fluc activity was normalized relative to the activity of the 

co-transfected pRL vector (Promega) expressing Renilla luciferase (Rluc). Following 24h 

magnesium treatment, luciferase activity was determined by the Dual Luciferase Stop and Glo 



Reporter assay system (Promega) and expressed as an Fluc/Rluc signal ratio. To determine the 

effect of magnesium on various constructs, the ratio was normalized to 1 mM magnesium 

condition for each construct. For the IRES dual luciferase reporters, Fluc luminescence signal was 

normalized to the Rluc signal made upstream of the same cistron. 

 

Metabolic labeling of newly synthesized proteins: HeLa or MDA-MB-231 cells were seeded in 

100 mm plates 1 day before the experiment and cultured for 30 min in DMEM methionine-free 

media (Wisent). The medium was then replaced with DMEM methionine/magnesium-free media 

(Wisent) containing 1 mM of the methionine analog L-azidohomoalanine (AHA) (Click Chemistry 

Tools) for 2 h with or without 1 mM magnesium supplemented with 10% dialyzed FBS (Thermo 

Fisher Scientific), allowing incorporation of AHA into nascent proteins. Cells were lysed in RIPA 

and the newly synthesized AHA-incorporated proteins were crosslinked to a DBCO-PEG-biotin 

tag (Click Chemistry Tools) and affinity purified with streptavidin coated beads. Matrix-bound 

proteins were eluted into SDS sample buffer by boiling for 5 min. Total protein inputs and affinity-

purified fractions were separated by SDS-PAGE and proteins were detected by western blot 

analysis. 
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Figure S1: Quantification of intracellular magnesium using ICP-OES
MDA-MB-231 cells were incubated in either the presence or absence of 
magnesium for 24h, digested and analysed with ICP-OES. Values are mean +/- SD; 
** p = 0.0180  using Welch’s t-test.

Figure S2: Inhibiting the proteasome does not affect PRL protein levels.
HeLa cells were incubated for 6h in either the presence or absence of magnesium 
with or without the indicated inhibitors and analyzed by immunoblotting. 
Up-regulation of basal p27 protein expression confirmed MG132 efficacy. Ctrl: 
Control DMSO; CHX: Cycloheximide (100 ug/ml), MG132 (5 uM)

Figure S3: de novo protein synthesis following magnesium depletion in 
MDA-MB 231 cells
Cells were metabolically labeled with the methionine analogue AHA for 2h in 
either the presence or absence of magnesium. Newly synthesized proteins were 
covalently bound to biotin, pulldown with streptavidin beads and analyzed by 
western blotting. Input represents total protein extracts before biotin pulldown.
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Figure S5: Effect of magnesium levels on luciferase mRNA expression and 
PRL-2 cap-independent translation
(A) mRNA expression of the luciferase gene was measured by qPCR on HeLa cells 
transfected with the indicated PRL-2 5’UTR constructs and incubated for 24h in 
either the presence or absence of magnesium. Control is the luciferase construct 
without the 5’UTR (B) Magnesium depletion does not increase PRL-2 expression 
by cap-independent translation. Hela cells were transfected with the indicated dual 
luciferase reporter constructs and incubated for 24h in either the presence or 
absence of magnesium followed by dual luciferase activity measurements. 

Figure S4: Short-term inhibition of the STAT proteins does not affect PRL 
levels following magnesium depletion
HeLa cells were incubated for the indicated time in either the presence or absence 
of magnesium with or without the STATs inhibitor S3I-201 (100 uM) and analyzed 
by immunoblotting. Decreased p-STAT3 serves as a control of the compound’s 
efficacy. Ctrl: Control DMSO
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Figure S6: Ribosome profiles of the PRL-2 mRNA and conservation of the uORF
Ribosome profilling data were obtained from https://gwips.ucc.ie. In red, we observed a stronger ribosome footprint signal 
in 5’UTR corresponding to a higher conserved region (blue) corresponding to a uORF. Alignement using CodAlignView 
shows conservation of the codons of the uORF among various vertebrates. Green colors indicate a prevalence of 
synonymous and conservative codon substitutions, whereas red shows radical substitutions. The underlined amino acids 
represent the region with the strongest ribosome footprint signal.
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Figure S7: Ribosome profiles of the PRL-1 mRNA and conservation of the uORF
Ribosome profilling data were obtained from https://gwips.ucc.ie. In red, we observed a stronger ribosome footprint signal 
in 5’UTR corresponding to a higher conserved region (blue) corresponding to a uORF. Alignement using CodAlignView 
shows conservation of the codons of the uORF among various vertebrates. Green colors indicate a prevalence of 
synonymous and conservative codon substitutions, whereas red shows radical substitutions. The underlined amino acids 
represent the region with the strongest ribosome footprint signal..
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A) 

>5'UTR_PTP4A2_994 bp, 

GCGGCGGCGGGAGCTGGTTCCGGCTGCGCGCGCAGCGGTGGTGGTGGCGGCGCGATCGGCCGGGCTGTAACCGTC

GTCTGTCCGGGAGCGGCTGGAGCGGCAGCGGCGGCCGGGCACGGCGCGAGGTGACGCCACAGGGCAGCGGCGGCA

GCGGAGGCAGCGGCGGCAGCAGGAGACGCAGCGGCGGCCGCAGCAGCAGCAGCAAGACGGACTCGTGGAGACGCG

CCGCCGCCGCCGCCGCCGGGCCGGGCCGGGTGTCGCGCGCCGAGGCTGGGGGGGAGTCGTCGCCGCCGCCGCCAC

CGCTACCGCCGCCGCCGCCGCCGCCGAGGTGACTGAGGAGAGAGGCGCCTCCTCGCTCCCGCCACCGCCGGACTT

CAATGCCCAGTCCCCAGCTCGCCAGCGTTTTTCGTTGGAATATACGTTGCACATTTATGGCGATTCTGAGTGTGA

GGGCAGACTTCTGCCAGGCTCAGCACAGCATTTTCGCTGACAAGTGAGCTTGGAGGTTCTATGTGCCATAATTAA

CATTGCCTTGAAGACTCCTGGACACCGAGACTGGCCTCAGAAATAGTTGGCTTTTTTTTTTTTTAATTGCAAGCA

TATTTCTTTTAATGACTCCAGTAAAATTAAGCATCAAGTAAACAAGTGGAAAGTGACCTACACTTTTAACTTGTC

TCACTAGTGCCTAAATGTAGTAAAGGCTGCTTAAGTTTTGTATGTAGTTGGATTTTTTGGAGTCCGAAGGTATCC

ATCTGCAGAAATTGAGGCCCAAATTGAATTTGGATTCAAGTGGATTCTAAATACTTTGCTTATCTTGAAGAGAGA

AGCTTCATAAGGAATAAACAAGTTGAATAGAGAAAACACTGATTGATAATAGGCATTTTAGTGGTCTTTTTAATG

TTTTCTGCTGTGAAACATTTCAAGATTTATTGATTTTTTTTTTTCACTTTCCCCATCACACTCACACGCACGCTC

ACACTTTTTATTTGCCATAATGGTGAGCAAGGGCGAGGAGCTG.... 

>5'UTR_PTP4A1_993bp, 

GCATGATTCCTTCCAGTCGATAAATCGGAATCTCTCTCGCTCCCACCCCTTCTTAACTTCAGGCTTCCTGCATCC

CGGAGCACTCCCGGCAGCCCCTTCCCTCCCCCGCCCCGGGGATGCTCCGACTCGGCGCTTAGCCATTCATCAACC

GGTTCACACCGGCGGCGGCCGCCGCGGAGTGACGTCCGGAGGGGGCGGGCCTCCGCCCCCGCCTGTCGGCTCCTG

GCCCGCGGTTCCAGGCCGCGATTGGTGGCTGGAGGGTTGCACGTCGCGCCGGCTATAAAGGGGAGGGCTTGTGAC

GCAAGGGCGCCTCGGCGCGTGTATTGGCTCCTTCGGCTGCGGGCCGGCTCGGCTACGCGCTCTGCTCCGAGCCGC

TCACTGCATGGTAGAGTCTGGTGCCCCCGCCGCCGCCTGCATCGCCGCCACCGCCGCTCCGCCACGACCACCGCC

GCCTCCTGCCCTGCAGCCACCGCCACCGCCTGTGTCGCCGCCGCCTCGGGACCGGCTGTATGATTAGGCCAAATC

TTCAATGAGTAAACATATTCCTCAATTCTGTGGTGTTCTTGGTCACACATTTATGGAGTTTCTGAAGGGCAGTGG

AGATTACTGCCAGGCACAGCACGACCTCTATGCAGACAAGTGAACTGTAGAAACTGATTACTGCTCCACCAAGAA

GCCCCCATAAGAGTGGTTATCCTGGACACAGAAGTGTTGAATTGAAATCCACAGAGCATTTTACAAGAGTTCTGA

CCTGGATGGGGTAAACCTCAGTGCACTTCTTTTCTGTTGGCCTCAGTATTACTGGATTGAAGAATTGCTGCTTCT

TGTTAGGAGGTTCATTTCACTTATCATTACTTACAACTTCATACTCAAAGCACTGAGAATTTCAAGTGGAGTATA

TTGAAGTAGACTTCAGTTTCTTTGCATCATTTCTGTATTCAATTTTTTTAATTATTTCATAACCCTATTGAGTGT

TTTTTAACTAAATTAACATGGCTCGAATGAA.... 

B) 

>pcDNA3.1_5'UTR_Luciferase, 

...TAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCG

TTTAAACTTAAGCTTGGTACCGAGCTCGGGATCC_5'UTR-Luciferase_CTCGAG 

C) 

>>pcDNA3.1_uORF_Luciferase, 

...TAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCG

TTTAAACTTAAGCTTGGTACCGAGCTCGGGTACC_ACATTTATGGCGATTCTGAGTGTGAGGGCAGACTTCTGCC

AGGCTCAGCACAGCATTTTCGCTGACAAGTGA_GAATTC_Luciferase_CTCGAG 

 

Figure S8: Sequences of the 5'UTR of PRL-1 (PTP4A1) and PRL-2 (PTP4A2) mRNA used in this 
study. 
A) Sequences underlined correspond to the conserved uORF identified by ribosome-profiling. 
Sequences highlighted in green represent putative initiation codon and the ones in red are the main 
coding sequences of the PRLs. B) pcDNA3.1 vector sequence located upstream of the 5'UTRs in the 
luciferase constructs used in this study. In red, is the transcription start site present in the vector. C) 
Sequence of the uORF luciferase construct used in Figure 4F. Underlined is the uORF2 sequence (plus 
the -6 position relative to uAUG2) cloned upstream of the luciferase gene. 
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Figure S9: Analysis of clones isolated from a pool of MDA-MB-231 cells targeted at the 
uORF located in the PTP4A2 locus encoding the PRL-2 mRNA.
Targeting was performed using the sgRNA-uORF#2-2 in MDA-MB-231 cells and clones were 
isolated. Selected clones were incubated for 24h in either the presence or absence of magnesium 
followed by western blot analysis. Clones 14 and 16 expressed higher PRL-1/2 protein levels and 
the sequences of the targeted region of these clones are shown below. Clones 6 and 7 expressed 
similar PRL-1/2 protein levels then WT cells since the uORF was not targeted according to 
sequencing analysis. The black bar indicates the PAM sequence and the highlighted region 
indicates the conserved uORF2.

Figure S10: PRL-1 and PRL-2 mRNA levels in CRISPR/Cas9 uORF-targeted MDA-MB-231 cells. 
Targeting of the PTP4A1 (PRL-1) and PTP4A2 (PRL-2) locus using two independent single guide 
RNAs (sgRNA) against their respective uORFs using the CRISPR/Cas9 system was performed in 
MDA-MB-231 cells and analyzed by qPCR. 
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5'UTR_PTP4A2_WT, 

5'UTRATGGCGATTCTGAGTGTGAGGGCAGACTTCTGCCAGGCTCAGCACAGCATTTTCGCTGACAAGTGA5'UTR 

 

MAILSVRADFCQAQHSIFADK* 

 

 

5'UTR_PTP4A2_Scramble, 

5'UTRATGAGCGTATCCAGTCAACTGGATGAGGAAGTCGTATTGTGCCTCTACTTGGCCGAAGAGTTGTGA5'UTR 

 

MSVSSQLDEEVVLCLYLAEEL* 

 

 

5'UTR_PTP4A2_Wobble 

5'UTRATGGCAATCCTAAGCGTGAGGGCCGATTTTTGTCAGGCTCAACATAGTATCTTTGCCGATAAATGA5'UTR 

 

MAILSVRADFCQAQHSIFADK* 

 

Figure S11: Sequences of the PRL-2 (PTP4A2) 5'UTR uORF mutated Luciferase constructs. 
A) Sequences underlined correspond to the conserved uORF2 mutated in the full 5'UTR luciferase 
constructs used in Figure 4G. Highlighted in green represents the initiation codon and in red the stop codon. 
Below each nucleotide sequence is the corresponding amino acid sequence. 
 



+ Mg2+

+-+-Comp. C:
- Mg2+

p-ACC

ACC

Actin

PRL-1
PRL-2

MDA-MB-231

p-ACC

ACC

Actin

PRL-1
PRL-2

+ Mg2+

+-+-Comp. C:
- Mg2+

DB-7

Figure S12: Inhibiting AMPK activity blocks PRLs expression induced by magnesium depletion
Cells were incubated for 24h in either the presence or absence of magnesium, with or without compound C 
(Comp. C), and analyzed by immunoblotting.
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Figure S13: PRL-1 and PRL-2 mRNA levels following knockdown of AMPKα or Rictor in MCF-7 cells.
(A) Knockdown of AMPKα using two single guide RNAs (sgRNA) by the CRISPR/Cas9 system was 
performed in MCF-7 cells. Targeted cells were incubated for 24h in either the presence or absence of 
magnesium and analyzed by western blot. LacZ sgRNA was used as a control. (B) MCF-7 cells were 
transfected for 30h with the indicated siRNAs and incubated for 12h in either the presence or absence of 
magnesium before being analyzed by qPCR. 
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Figure S14: Targeting AMPKα using CRISPR/Cas9 blocks PRL expression induced by 
magnesium depletion
Knockdown of AMPKα using two single guide RNAs (sgRNA) was performed in MDA-MB-231 
cells, incubated for 24h in either the presence or absence of magnesium followed by western blot 

Figure S15: Inhibiting mTOR activity blocks PRLs expression induced by magnesium 
depletion
Cells were incubated for 24h in either the presence or absence of magnesium with or without the 
mTOR inhibitor PP242 and analyzed by immunoblotting. 

Figure S16: Targeting PRL-2 using CRISPR/Cas9 induces PRL-1 expression
Western blot analysis of PRL-2 targeted clones (KO indicated by the arrows) generated by 
CRISPR/Cas9 technology in MDA-MB-231 breast cancer cells. 
 



qPCR primer sequences: 
 

 Forward Reverse 
PTP4A1 

 

PTP4A2 

 

PTP4A3 
 

ACTB 

 

PP1B 

 

TGCTGTTCATTGCGTTGCAG 

 

GGAATCCACGTTCTAGATTGGC 

 

AGCACCTTCATTGAGGACCTG 
 

CTCTTCCAGCCTTCCTTCCT 

 

TGTCCGGGCTGCTTTCG 

CCACGCCGCTTTTGTCTTATG 

 

AACACAGCAACCTGGCTCTT 

 

CAGCGGCGTTTTGTCATAGG 
 

AGCACTGTGTTGGCGTACAG 

 

GGTCAAAATACACCTTGACGG 

 
 

sgRNAs primer sequences for cloning: 
   

uORF PTP4A1 
#1-1 

#1-2 

 

uORF PTP4A2 

#2-1 
#2-2 

 

TRPM7 

1 

2 
3 

4 

 

PTP4A2 

 

AMPK 

1 
2 

 

LacZ 

 
CACCGCATAGAGGTCGTGCTGTGCC 

CACCGGGCAGTGGAGATTACTGCC 

 

 

CACCGTTATGGCGATTCTGAGTGTG 
CACCGTGTGAGGGCAGACTTCTGCC 

 

 

CACCGCATCCTGGAAGGCATCTGTG 

CACCGGAGTCATAAATTTTCAAGG 
CACCGAGAAAGCACTTTGACCAAGA 

CACCGAAATTTGTCAGCAACTCGTC 

 

CACCGAGTGCATTGTGTTGCAGGAT 

 
 

CACCGCACGACGGGCGGGTGAAGAT 

AAACATCTTCACCCGCCCGTCGTGC 

 

CACCGCTGCGAATACGCCCACGCGAT 
 

 
AAACGGCACAGCACGACCTCTATGC 

AAACGGCAGTAATCTCCACTGCCCC 

 

 

AAACCACACTCAGAATCGCCATAAC 
AAACGGCAGAAGTCTGCCCTCACAC 

 

 

AAACCACAGATGCCTTCCAGGATGC 

AAACCCTTGAAAATTTATGACTCC 
AAACTCTTGGTCAAAGTGCTTTCTC 

AAACGACGAGTTGCTGACAAATTTC 

 

AAACATCCTGCAACACAATGCACTC 

 
 

AAACATCTTCACCCGCCCGTCGTGC 

AAACGCCCGTCGTGTTTCTGCTTCC 

 

AAACATCGCGTGGGCGTATTCGCAC 

 
 
 
Figure S17: Primer sequences used in this study 


	Hardy_et_al_PNAS_final
	Figure1 uORFpaperV2 copy
	Figure2 uORFpaper_v3 copy
	Figure3 uORFpaperV2 copy
	Figure4uORF_v3 copy
	Figure5_uORF_V3 copy
	Figure6_uORFPaperV3 copy
	Hardy et al_SI copy
	FigureS1_S2_S3 copy
	FigureS4_S5 copy
	FigS6_PTP4A2_v3
	FigS7_PTP4A1_V3 copy
	NewFigS8_sequences
	FigS9_10_V2 copy
	Fig_S11_NewFig_Seqenc
	FigureS12_S13 copy
	FigureS14_S15_S16 copy
	FigS17_primer sequences
	Materials and Methods SI.pdf
	Plasmid constructs: The firefly luciferase (Fluc) gene was cloned into the BamH1 and XhoI sites of pcDNA3.1_Zeo (Thermo Fisher Scientific) to generate the control Fluc vector. PRL-2 (PTP4A2) luciferase constructs were generated based on the PTP4A2 mRN...
	Transfection and luciferase assay: Transfections of the Fluc constructs were performed using lipofectamine 2000 (Invitrogen) following the manufacturer’s instructions and experiments were carried out 24 hrs post-transfection. The Fluc activity was nor...



