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Abstract

Soft tribology, i.e. the measurement of friction as a function of speed between two compliant surfaces,

has  found  applications  in  food  science  and  there  is  a  growing  body  of  theoretical  and  practical

knowledge  of  fundamental  mechanisms  of  lubrication  as  well  as  increasingly  strong  correlations

between tribology and sensory data.  Soft tribology is generally conducted using either commercially or

in-house built tribometers however, the recent decade has seen a rise in the use of rheometers with

tribology attachments. Based on current literature, knowledge gaps and potential avenues for future

research have been identified. These include investigations on hydrophobicity of surfaces, surface wear

(running-in),  cleaning  procedure  of  the  attachment  and  tribopairs,  speed  (range  and  method  of

increase/decrease) and measuring system configuration. 

In  the  current  research,  frictional  parameters  of  10  beers  (5  alcoholic  and  their  non-alcoholic

counterpart)  were  measured  using  an  Anton  Paar  MCR301  rheometer  with  a  tribology  attachment

(BC12.7, Anton Paar, Graz, Austria), and a range of variables was extracted and subjected to dimension

reduction analysis  (Principal  Component  Analysis,  clustering,  and correlation analysis).  Sensory  data

consisting  of  a  numeric  mouthfeel  rating  and  written  reviews  from  an  online  beer-rating  website

(www.ratebeer.com) were compiled,  transformed, and correlated with the tribology data.  Based on

Frictional parameters of the beers, clear differences were observed between alcoholic and non-alcoholic

beers,  as  well  as those beers  with  high or low mouthfeel  rating.  Text-mining and clustering  of  the

written reviews led to the development of 7 overall sensory descriptors; "watery", "smooth", "thick",

"bitter", "foam", "astringent", and "sour", related to mouthfeel.  Frictional parameters related to the

static (speed range ~10-8-10-5 m/s), boundary (speed range ~10-5-5*10-5 m/s) and beginning of the mixed

regime (speed range  ~5*10-5-10-4 m/s)  were correlated with  "watery",  "smooth",  and "thick",  while

"bitter", "foam", "astringent", and "sour" were represented later in the mixed regime (speed range ~10-



4-10-3 m/s). These results are significant in two ways; firstly, they indicate the usefulness of online beer

reviews as a means to gather reliable sensory data, and secondly, they demonstrate tribology as a tool

to instrumentally define and determine important mouthfeel parameters of beer. Further research is

needed to fully validate this methodology; results from the online database should be compared to the

outcome of a consumer panel under controlled settings, and a wider range of beers of different styles

should  be  tested  to  fully  understand  the  correlations  between  sensory  phenomena  and  frictional

parameters. 



Chapter I Tribology using rheometers: Literature review

1 Introduction

“Mouthfeel”  is  a  self-explanatory  term  used  to  describe  a  complicated  and  multi-faceted  sensory

concept: it encompasses the tactile sensations experienced during mastication. However, going beyond

“good” and “bad” and separating those sensations into meaningful terms and correlating them with

instrumental measurements requires a developed palate, vocabulary and methodology. The mouthfeel

of a given product is an important determinant of the liking and acceptance by consumers (Guinard &

Mazzucchelli, 1996), and product developers of food and beverages, referred to collectively as food in

this review, are therefore often interested in measuring mouthfeel in order to optimise this important

parameter comprising a wealth of different sensory phenomena. Mouthfeel can be defined as the “…

tactile (feel) properties perceived from the time at which solid, semi-solid or liquid foods or beverages

are placed in the mouth until they are swallowed”  (Guinard & Mazzucchelli, 1996). Currently, trained

sensory panels are used to determine mouthfeel; however, these are expensive and time-consuming,

especially when dealing with large sample-sizes  (Prakash, 2016).  For certain foods, i.e.  semi-solid to

liquid, the flow-characteristics, rheological, have been successfully correlated with certain mouthfeel

attributes; e.g. stickiness, thickness and mouthcoating (He, Hort, & Wolf, 2016), and, while rheological

measurements in some cases can distinguish between samples with differences in mouthfeel, viscosity

alone  often  fails  to  accurately  explain  the  complex  phenomenon  of  oral  physical  interactions  that

constitutes mouthfeel  (Prakash, Tan, & Chen, 2013; Selway & Stokes, 2014). This shortcoming can be

explained by the fact that rheology is a property principally related to the substrate, i.e. the food, while

mouthfeel arises from physical and chemical interactions between the food and oral cavity that cannot

be described solely by the flow-characteristics of the food in question (Selway & Stokes, 2014). This is



not to say that bulk properties such as viscosity and density are not important parameters influencing

mouthfeel. As such, development of a high-throughput, inexpensive and reproducible method would

offer advantages to both industry and academic researchers. In the last decades considerable effort has

been put into development of  such a system by food scientists.  A promising method is  the use of

tribology  which  can  be  succinctly  defined  as  follows:  “The  science  of  tribology  principally  involves

studying the characteristics of the film situated between contacting bodies and the consequence of its

failure or absence”  (Stokes,  2012).  The word tribology is  a contraction of the Greek root words for

“rubbing”  (tribo)  and  “study  of”  (logia).  “Soft”  tribology  can  further  be  defined  as  the  study  of

lubrication and friction using compliant (i.e. deformable) surfaces to better mimic the conditions in the

oral cavity (Joyner, Pernell, & Daubert, 2014a; Rudge, Scholten, & Dijksman, 2019). 

The term tribology was coined in 1966 (Jost, 1966) but the study of friction reaches far back in history.

Development  of  more  sensitive  measuring  systems  and  advances  in  polymer-science  to  produce

surfaces that mimic biological systems; i.e. deformable surfaces with defined wetting characteristics, has

led to the emergence of bio-tribology or “soft” tribology, a branch of tribology that studies the frictional

properties of biological  systems.  Examples of  applications include prosthetics  (Samaroo et al.,  2017;

Stevenson et al., 2019; Voutat, Nohava, Wandel, & Zysset, 2019) , contact lenses (Pitenis et al., 2017),

cosmetics (Timm, Myant, Spikes, & Grunze, 2011), dentistry (Cai, Li, & Chen, 2017), medicine (Batchelor,

Venables,  Marriott,  & Mills,  2015) and more, as well  as the study of  friction during oral processing

(Sarkar, Andablo-Reyes, Bryant, Dowson, & Neville, 2019). 

The last decade has seen an increased use of tribo-attachments to rheometers rather than tribometers

such  as  the  Mini  Traction  Machine  (MTM,  PCS  instruments,  UK),  commonly  used  for  tribological

measurements (Shewan, Pradal, & Stokes, 2019). Rheometers are generally ubiquitous in academic food

science labs and often present in large food companies (although they may be out of the price-range for



small to medium sized companies) and offer precise normal force control as well as an increased speed

range compared  to many conventional  tribometers;  however,  as  noted  recently  by  (Shewan et  al.,

2019), several disadvantages exist, namely: a lack of fundamental studies (as compared to the wealth of

fundamental studies on tribometers), limitations in the movement profile; i.e. only rotational, limited

knowledge  on  challenges  related  to  interpretation  and  understanding  of  the  output,  and  lack  of

reporting or consideration of surface wear (Sarkar & Krop, 2019; Shewan et al., 2019). 

This review aims to introduce tribology to food scientists, assuming no prior knowledge of the area but a

basic understanding of rheology and food physics/chemistry. The focus will be on comparison as far as

possible of methodologies across categories of food and tribological attachments, with an emphasis on

preparation protocols  and  measuring  system parameter  settings.  Most  tribology  studies  so  far  has

focused on dairy-related products or hydrocolloid solutions (Sarkar & Krop, 2019; Shewan et al., 2019)

however, measurements on beverages such as wine, tea and soft drinks are possible (see e.g. Chong et

al., 2019; Laguna & Sarkar, 2017; Steinbach, Guthrie, Smith, Lindgren, & Debon, 2014)  and as such, the

field of tribology could well be extended to include other beverages (e.g. beer and other malt-based

beverages).  Fermented wort  with  its  low viscosity;  low concentrations of  polysaccharides,  proteins,

polyphenols, and their complexes; presence of fermentation by-products; and hop-extracts presents a

new challenge for tribologists, with many avenues worthy of exploration. For example, hops (Humulus

lupulus)  polyphenols  and  bitter  acids  play  an  important  role  in  the  perceived  fullness,  bitterness,

astringency,  and  stickiness  of  beers  (Goiris  et  al.,  2014;  Oladokun et  al.,  2016);  these  are  sensory

phenomena that have already been correlated with tribological measurements in other food systems

(Sarkar & Krop, 2019) and so the relationship between these hop compounds and mouthfeel of beer

could potentially be further elucidated using tribology. Another potential area of investigation is the

effect of adjuncts on mouthfeel  of beer;  for example, recently  the effect of arabinoxylans from un-

malted rye on mouthfeel was investigated and was found to positively influence the perceived fullness



of beers (Langenaeken, De Schutter, & Courtin, 2020). Additionally, ways to instrumentally measure the

mouthfeel of beers could help in the improvement of beers that are generally perceived as having poor

mouthfeel, e.g. non-alcoholic beers (Bellut & Arendt, 2019; Krebs, Müller, Becker, & Gastl, 2019)

For reviews and articles dealing with the difference between rheology and tribology  (Chen & Stokes,

2012), in depth introductions to the theoretical background of tribology (Sarkar, Andablo-Reyes, et al.,

2019; Stokes, 2012), theoretical work on lubrication of soft viscoelastic surfaces  (Pandey, Karpitschka,

Venner, & Snoeijer, 2016) as well as linking tribology and sensory data (Sarkar & Krop, 2019; Shewan et

al., 2019), and more complex modelling in tribology  (Chen & Opara, 2013; Smith, Guthrie, Steinbach,

Lindgren, & Debon, 2015; Vakis et al., 2018) the references cited here are recommended. 

2 Fundamentals of soft tribology

2.1 Tribology is a system property

An important theoretical framework to be considered before embarking on tribological  work is  that

tribology is a system property (Hutchings, Gee, & Santner, 2006). This means that careful consideration,

especially when interpreting and comparing tribological data, should be given to the nature of

a) The measuring system – e.g. type of machine, tribopair configuration and type of movement

b) The surfaces – e.g. roughness, hydrophobicity, viscoelasticity

c) The  lubricant  (food)  –  e.g.  rheological  properties,  heterogeneity  (emulsion,  particle  size,

presence of gas, surface-active ingredients) (Sarkar & Krop, 2019; Shewan et al., 2019)

A  wide  array  of  parameters  (figure  1)  influence  mouthfeel  and  play  a  role  doing  tribological

measurements. An important implication of this is that, when performing a tribological measurement,

the output (data) is not only a reflection (product) of the food-systems lubricating properties as affected

by structural and compositional characteristics. It is also a measurement of the mechanical and surface

properties of the surfaces used as affected by composition, production method, treatment before use,



humidity, temperature and other environmental factors as well as a result of the choice of measuring

system, protocol and data-gathering strategy (Joyner et al., 2014a; Sarkar, Andablo-Reyes, et al., 2019;

Sarkar & Krop, 2019; Shewan et al., 2019). 

Figure  1:  Graphical  representation of  the  characteristics  of  (a)  the  food,  (b)  the  mouth,  and  (c)  their  interaction that  are

important for measuring mouthfeel with tribology. Adapted from (Pradal & Stokes, 2016)

2.2 Quantifying mouthfeel

Guinard  and  Mazzucchelli  (1996) state  that  “mouthfeel  includes  all  of  the  tactile  (feel)  properties

perceived from the time at which solid, semi-solid or liquid foods or beverages are placed in the mouth

until they are swallowed” and further define residual effects of mouthfeel as after-feel, much in the



same way as after-taste refers to residual taste sensations. Before entering the mouth, food is defined

by its  history;  i.e.  composition and structure as affected by production and processing method and

ingredients used. Upon entering the mouth, it is generally accepted that the mouthfeel of semi-solid and

fluid foods like beverages is initially dominated by rheological properties where sensory sensations such

as  thickness  and  creaminess  are  perceived  and,  as  the  food  is  swallowed and  surface  interactions

become  more  important,  tribological  properties  begin  to  dominate  (Chen  &  Stokes,  2012;  Stokes,

Boehm, & Baier, 2013). For solid foods the initial stage (first bite) is dominated by characteristics such as

mechanical strength and fracture properties until the bolus is formed whereupon tribology becomes

important (Witt & Stokes, 2015). Kokini, Kadane, & Cussler (1977) recognised that viscosity was not the

only parameter necessary in order to predict sensory perceptions such as smoothness and slipperiness.

Hutchings  &  Lillford  (1988) proposed  a  theoretical  framework  for  analysing  the  texture  of  food

succinctly described along three axes: Time; e.g. changes in temperature and number of chews, degree

of structure;  bulk  and particulate  properties,  and degree of  lubrication;  e.g.  influence of  saliva and

sample  moisture  and  fat  content.  The  Hutchings  and  Lillford  Breakdown  Path  (HL  BP)  provided  a

qualitative conceptual approach to the eating experience/perceived texture/mouthfeel using intuitive

physical properties of food and additionally gave the important insight that texture exists in the brain

and is therefore a psychophysical phenomenon that needs an integrative research approach combining

psychology, rheology and physiology in order to be properly explained  (Boehm, Yakubov, Stokes,  &

Baier, 2019; Hutchings & Lillford, 1988; Sarkar, Andablo-Reyes, et al.,  2019). This also illustrates the

importance  of  realising  the  difference  between  sensory  properties  as  perceived  by  the  brain  and

material  properties  as  measured  by  instruments  and  the  complexity  involved  in  trying  to  directly

correlate these two properties, not to mention the complexity of looking for causality in these empirical

relationships  (Chen,  2020).  Trying  to  quantify  mouthfeel  is  further  complicated  by  the  continuous

transformation food undergoes after entering the mouth; i.e. structural breakdown and incorporation of



saliva causing changes in lubricating properties, meaning that determination of exactly which property;

e.g. chemical, rheological, mechanical or structural, of the food-bolus at any given time correlates with a

given  textural  sensation  is  an  open  question  (Stokes  et  al.,  2013).  Recently,  Boehm  et  al. (2019)

proposed to adapt  the HL BP into a quantitative model  based on an analytical  research approach,

changing the nature of the model from a conceptual realm to applied, concrete recommendations. The

authors stress the importance of conducting fundamental studies into foods interaction with saliva and

the  underlying  mechanisms  of  lubrication  of  food,  as  well  as  combining  several  approaches  (e.g.

rheology, tribology) in order to provide quantifiable attributes of the breakdown of food during oral

processing. 

2.3 Surfaces – approximation to the physiology of the mouth

As previously mentioned, the choice of surface material for tribological measurements will affect the

output. Two considerations are important in this aspect: getting as close to the properties of the mouth

as possible and reproducibility of those conditions  (Sarkar, Andablo-Reyes, et al., 2019). The need for

easily accessible and cheap surface materials means that a trade-off between these two considerations

will often be necessary. 

In  terms  of  surface  properties,  roughness  (Ra)  characterised  by  the  topography  of  the  surface;  i.e.

asperities’ height or well depth, width and between-distance [µm] (Krzeminski, Wohlhüter, Heyer, Utz,

& Hinrichs, 2012; van Stee, de Hoog, & van de Velde, 2017), hydrophobicity (wettability) measured as

the contact angle (θ) between surface and specimen (Bongaerts, Fourtouni, & Stokes, 2007; Bongaerts,

Rossetti, & Stokes, 2007), and Elastic (Young’s) modulus (E) i.e. “stiffness” [Pa] are important parameters

that influence friction (Selway & Stokes, 2014). 

The tongue (figure 2) is covered by four types of papillae with differing spatial distributions: filiform,

fungiform,  foliate  and  circumvallate  and  it  is  believed  that  the filiform papillae  are  responsible  for



mouthfeel perception as they are the most numerous and lack taste receptors  (Hanh & Frank, 2014).

This  renders  the human tongues topography highly variable  (Laguna,  Bartolomé, & Moreno-Arribas,

2017).  Roughness  values  are  generally  reported  as  ranging  between  42-95  µm  (distance  between

asperities) with a well depth between 200-300 µm (Godoi, Bhandari, & Prakash, 2017; Pradal & Stokes,

2016; Wang, Wang, Upadhyay, & Chen, 2019). The oral cavity is generally hydrophobic with contact

angle ranging between 72-83° depending on time of day measured (Mei, White, & Busscher, 2004), but

will  become increasingly hydrophilic  (θ = 51°)  upon addition of  saliva  (Sarkar,  Andablo-Reyes et  al.,

2019). Despite this relatively rough surface (comparable to 100 grit sandpaper) the tongue does not feel

rough, mainly due to its reduced Elastic modulus of approximately 2.67 kPa or2.53 kPa for the soft

palate (Cheng, Gandevia, Green, Sinkus, & Bilston, 2011). The movement of the tongue is in the range of

30 mm/s at the beginning of food intake and 5 mm/s just before swallowing, with contact pressure

between 15-60 kPa between tongue and palate translating to a normal force of 0.5 N (van Stee et al.,

2017); however, the tongue is capable of producing normal force ranging between 0.1-90 N (Pradal &

Stokes, 2016). 



Figure 2: Graphical representation of the physiology of the mouth. (a) Schematic illustration of oral cavity highlighting the soft

(tongue) and hard (tooth enamel and palate) oral surfaces with the lubricant (saliva). (b) Building blocks of soft tongue surface

(θw is the water contact angle, θwl is the water contact angle upon adsorption of salivary film of nanometre scale). (c) Bulk saliva

and adsorbed salivary pellicle. Reproduced with permission from Sarkar et al. (2019)

Several studies have investigated the use of biological tongues; e.g. pig’s tongue (Carpenter et al., 2019;

Dresselhuis, de Hoog, Cohen Stuart, & van Aken, 2008; Ranc et al.,  2006), however, it is noted that

variability, accessibility and issues with decomposition makes research using pig’s tongue challenging.

The most commonly used material for either one or both surfaces is polydimethylsiloxane (PDMS) due

to its many favourable characteristics such as easily alterable hydrophobicity, roughness and surface

topology (Stokes et al., 2013). PDMS is highly compliant (E = 0.57-3.7 MPa) depending on cross linkage

(Wang, Volinsky, & Gallant, 2014) and can relatively easily be made hydrophilic by plasma-treatment,

however hydrophilicity is generally short-lasting depending on treatment (Tan, Nguyen, Chua, & Kang,

2010). The Young’s modulus of PDMS is highly dependent on ratio of elastomer base to curing agent, an



aspect to be considered if production of PDMS is done in-house (Z. Wang et al., 2014). In addition, the

surface of PDMS can easily be altered by casting in moulds with desired surface topography (Fitzgerald

et al., 2019) and its transparent nature allows microscopical observation of lubricating behaviour in real-

time  (Carpenter  et  al.,  2019).  Other commonly  used materials  for  the lower  soft surface(s)  include

surgical  tape,  typically  3M  Transpore  Surgical  Tape  1527-2,  whey  protein  isolate  (WPI),

Polytetrafluoroethylene (PTFE), polyurethane and rubber; natural, foamed and styrene butadiene. For

upper hard surfaces glass or steel is commonly used, but polypropylene or PDMS are also sometimes

used. Carpenter  et al. (2019) found that PDMS mimics the tongue better compared to agarose gels,

however, Di Cicco et al. (2019) found that whey protein isolate was a better replacement for the human

tongue and yielded more reproducible results compared to PDMS when applied to yoghurts. 

2.3.1 Saliva

Saliva plays a key role during oral processing of food: it  is a hydrating, lubricating, antibacterial and

buffering  agent,  providing a medium for  diffusion and/or mechanical  transfer  of  taste-molecules to

receptors,  precipitation of proteins resulting in the sensation of astringency, as well  as contributing

significantly to enzymatic degradation and finally bolus formation and thereby safe swallowing of food

(Boehm et al., 2019; Laguna & Sarkar, 2017). The composition of saliva varies significantly depending on

which salivary gland it is excreted from as well as circadian rhythm, collection method, age, gender, diet,

blood type and medicines (De Almeida, Grégio, Machado, De Lima, & Azevedo, 2008; Schipper, Silletti, &

Vingerhoeds, 2007). In addition, it is often difficult to determine whether constituents of saliva are of

human  or  bacterial  origin  and  the  composition  of  saliva  will  change  over  time  as  a  result  of

contamination (Schipper et al., 2007). Generally, saliva is composed of 99% water with the remaining 1%

being composed of minerals; sodium, potassium, calcium, magnesium, bicarbonate, and phosphates,

nitrogenous compounds; urea and ammonia, enzymes; e.g. α-amylases and lipases and immunoglobins,

proteins and mucin;, a glycoprotein thought to be largely but not solely responsible for the lubricating



and flow behaviour of saliva (Humphrey & Williamson, 2001; Sarkar, Xu, & Lee, 2019). Variation of any

of these constituents will influence the frictional properties of saliva; either by reducing or increasing

friction, by moving transition points between regimes, or by changing the slope of the curves  (Sarkar,

Xu, et al., 2019) . Although human saliva is readily available, the use of biological samples will introduce

some degree of variability, complicating interpretation and comparison of results across studies (Boehm

et al., 2019). Sarkar, Xu, et al (2019) examined the use of human saliva and model saliva (i.e. artificial)

and concluded that 1) although there have been advances, model saliva systems still exhibit significant

differences in terms of lubricating properties, 2) out of the commercially available mucin sources, bovine

submaxillary mucin is superior to pig gastric mucin and 3) more systematic research investigating model

saliva systems containing  mucins and polycationic  additives  is  needed before a standardised model

saliva formulation can be agreed upon (Sarkar, Xu, et al., 2019). However, recipes for synthetic saliva do

exist for other purposes, e.g. in vitro digestion studies (Minekus et al., 2014). Although some recipes are

quite different (see table 1), often the ionic composition is the same. The ionic composition of the saliva

will  determine  the  charge   and  pH  of  the  solution  which  again  will  influence  the  solubility  and

configuration of the negatively charged mucins (Sarkar, Xu, et al., 2019). Further, the buffering capacity

of the model saliva plays a role in stabilising the mucin proteins when mixed  with food systems and

adhering to surfaces  (Sarkar, Xu, et al., 2019).



Compound name

Chemical

formula

Upadhyay &

Chen (2019)

Minekus et

al. (2014)

Krop et al.

(2019;

Torres et al.

2019)

Laguna et

al. (2017)

Cai et al.

(2017)

Sarkar et al.

(2019)

pH 7 7 6.8

Sodium chloride NaCl 0.117 0.16 1.594 0.111 1.594

Ammonium nitrate NH4NO3 0.33 0.328

Dipotassium phosphate K2HPO4 0.64 0.636 0.636

Potassium citrate monohydrate KH2PO4 0.5032

Monopotassium phosphate KCl 0.149 1.13 0.2 0.202 1.492 0.202

Potassium citrate monohydrate K3C6H5O7.H2O 0.31 0.308

Uric acid C5H3N4O3Na 0.02 0.021 0.021

Urea H2NCONH2 0.2 0.198 0.198

Sodium lactate C3H5O3Na 0.15 0.146

Sodium carbonate NaHCO3 2.1 1.14 3.948

Magnesium chloride MgCl2(H2O)6 0.031 0.096

Ammonium carbonate (NH4)2CO3 0.006

Calcium chloride CaCl2 0.083 0.278

Carboxymethylcellulose - 0.65

Glycerin C3H8O3 1

Porcine gastric mucin type II - 1.5 3 3 1.2 0-30

Alpha-amylase - 2 g/L 75 U/mL 75 U/mL
2 g/L

Table 1: Overview of various recipes for artificial saliva from literature
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2.4 Stribeck curves
A Stribeck curve is the two-dimensional representation of friction coefficient as a function of (relative)

sliding  entrainment  speed  of  the  tribopairs,  the  two  surfaces.  The  friction  coefficient  (µ)  is  a

dimensionless number defined as the ratio between the kinetic (sliding) force (Fk) exerted orthogonally

to the normal (load) force (FN) (figure 3) (Blau, 2001). Assuming a constant FN and that the kinetic force is

equal to the friction force (Ff), this linear relationship gives a quantitative measure of friction:

µ=
F k
FN

The entrainment speed (U) is commonly presented as a dimensionless number, either the Sommerfield

number (ηUR/W) or, in the case of deformable surfaces, the elasto-hydrodynamic number (ηUE1/3R5/3/

W4/3). Load or normal force (W), radius (R) and Young’s modulus (E) is often considered constant so that

the entrainment speed (U) is either presented alone or scaled by the viscosity of the fluid ( η) in the case

when viscosity changes as a function of speed, i.e. shear rate (Shewan et al., 2019; Stokes, 2012). 

Figure 3: Graphical representation of friction showing Fkinetic (torque of the measuring system), FN (the load, W), the lubricant and

the FFriction. 

The classic Stribeck curve (figure 4a) is often divided into three regimes depending on the film thickness

between the surfaces,  i.e.  boundary,  mixed and hydrodynamic.  In  the case  of  deformable  surfaces
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where the visco-elasticity of the surface influences measurements, the hydrodynamic regime is referred

to  as  the  elasto-hydrodynamic  regime  (Sarkar  &  Krop,  2019;  Shewan  et  al.,  2019;  Stokes,  2012).

Depending on the capabilities of the measuring system, i.e. range of speeds, a fourth regime can be

included: The static regime as shown in figure 4b, which occurs at very low speeds, typically below 10 -6-

10-5 m/s, in which movement is imperceptible  (Pondicherry, Rummel, & Laeuger,  2018). This regime

shows an increase in friction from 0 until a yield point signifying transition into the kinetic regime. In

principle,  there  is  no  macroscopic  movement  in  this  regime  and  the  speed  depicted  is  due  to

deformation of  the surfaces  and the lubricant  (Kieserling,  Schalow,  & Drusch,  2018).  The boundary

regime is  dominated  by  surface  properties  as  there  is  physical  contact  between the  two surfaces’

asperities and is therefore characterised by high friction coefficients, as observed by a peak or plateau.

While there is fluid between the surfaces in the boundary regime, the effect is negligible compared to

the impact of the two surfaces. In the mixed regime the fluid begins to be entrained between the two

surfaces and thus an increase in distance and thereby contact between surface asperities is observed,

resulting  in  decreasing  friction due  to  thin  film lubrication.  In  the  mixed  regime,  effects  of  size  of

particles can be observed as the distance (D) approaches the dimensions of a given particle (Yakubov,

Branfield, Bongaerts, & Stokes, 2015). In some instances “stick-slip” events are also observed in this

regime, resulting in erratic behaviour and variation of the curve, the friction coefficient jumping up and

down  (Sanahuja et al., 2017). In the hydrodynamic regime the high speeds entrain the lubricant and

generates enough lift force and hydrodynamic pressure to support the applied load and increase the

distance between surfaces and is thus largely dominated by fluid dynamics. In the hydrodynamic regime

the internal resistance (viscous drag) of the fluid begins to play a role leading to an increase in friction

(Selway, Chan, & Stokes, 2017). It is generally assumed that the mixed and boundary regimes are highly

relevant  to  food  oral  processing  due  to  the  rough  and deformable  nature  of  the  tongue  (Malone,

Appelqvist, & Norton, 2003; Selway & Stokes, 2014).
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Figure 4: Four representations of Stribeck curves. (a) Classic Stribeck curve with graphical representation of gap distance (D) and

asperity  interactions.  Adapted  from  Pondicherry  et  al.  (2018).  (b)  Extended  Stribeck  curve  showing  the  static  regime and

transition points.  Adapted from  Kieserling,  Schalow, & Drusch (2018).  (c)  Example of  Stribeck curve obtained by collapsing

several measurements on fluids with varying viscosity (entrainment speed scaled by viscosity).  Adapted from  Goh, Versluis,

Appelqvist, & Bialek (2010). This Master curve (d) can then be approximated by fitting power law coefficients as per Bongaerts,

Fourtouni and Stokes (2007). (d) Stribeck curve for a complex fluid (yoghurt) showing phase-dependent behaviour. Adapted from

Nguyen, Kravchuk, Bhandari, & Prakash (2017). 
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2.5 Analysing  soft  tribological  data  –  deviating  from  the  classic  Stribeck

curve

The  classic  Stribeck  curve  was  proposed  in  the  early  1900s  by  Stribeck  and  colleagues  working  as

mechanical engineers. These Stribeck curves were generated using relatively simple Newtonian lubricant

and  hard,  non-deformable  surfaces  using  speeds  relevant  to  balls  in  ball-bearings.  However,  the

complex and variable microstructures of food, e.g. emulsion-systems often displaying non-Newtonian

behaviour,  means that Stribeck curves obtained in soft-tribology using compliant surfaces will  often

deviate  from the classic  Stribeck curves  (Jacobson,  2003;  Rudge et  al.,  2019).  One  approach  when

investigating surface properties is the Master Curve Approach, where entrainment speed for several

Stribeck curves for a range of Newtonian fluids with different viscosities is scaled by their respective

viscosities and then collapsing these onto a single curve in  a log-log  coordinate system (figure 4c),

thereby generating a classic Stribeck curve specific to the measuring system, lubricant and tribopairs

(Bongaerts, Fourtouni, et al., 2007; Shewan et al., 2019). This Master Curve can then be approximated

by  fitting  a  set  of  equations  involving  Power  law  coefficients  describing  each  part  of  the  curve.

Comparison of a Master Curve generated with hydrophilic and hydrophobic fluids with data obtained

from actual complex food systems enables elucidation of the dominant phase in each regime as well as

comparison with other tribopairs (Sarkar & Krop, 2019; Shewan et al., 2019). 

In  a  slightly  different  approach,  the  entrainment  speed  can  be  scaled,  i.e.  multiplied,  by  the  food

system’s dynamic viscosity at that shear rate if available, thereby generating a Master Curve for that

food system  (Joyner et al., 2014a). Care should be taken however, as the assumption that effects of

viscosity are effectively “normalised” through this scaling is not necessarily valid, as viscosity and wetting

behaviour of a fluid impacts the viscoelastic behaviour such as hysteresis and squeeze-out dynamics of

the compliant surfaces and these effects will also alter the shape of the Stribeck curve  (Selway et al.,

2017). 
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Other approaches have also been attempted to account for the Stribeck curves obtained for complex

food systems that are not easily interpretable using the terminology of classic tribology. Nguyen et al.

(2017) proposed a new interpretation scheme based on data obtained for yoghurts (figure 4d). In the

first zone it is assumed that initially only the fluid is entrained, and friction decreases as more and more

fat globules enter the gap. With increasing speeds, a thin lubricating film is forming and the friction rises

again (zone 2) until the surfaces are partly separated and the curve enters zone 3 (corresponding to the

mixed  regime)  and  finally  the  hydrodynamic  regime  (zone  4)  is  reached.  In  case  of  gel  structure

breakdown, the friction may decrease (broken line) and friction in this zone is assumed to not only be

governed by viscosity but also by gel  strength.  A similar  shape of  Stribeck curve was found by  Ng,

Nguyen, Bhandari, & Prakash (2017).  Pondicherry, Rummel and Laeuger (2018) extended the Stribeck

curve to include the static regime (figure 4b),  however,  as the build-up of  friction in this  regime is

assumed to be largely due to elastic and plastic deformation of the surfaces, it is still unknown whether

this  regime will  offer insights into lubricating behaviour of  food systems,  but it  could possibly be a

valuable tool in studying the frictional properties of surfaces at nanoscales.

Different ways of interpreting Stribeck curves generated from different food systems will  be further

discussed  in  section  3.3,  with  an  emphasis  on  how  to  obtain  quantities  that  can  be  subjected  to

statistical analysis. 

2.6 Rheometers with tribo-attachments (instruments)

Several rheometers have been used for tribological measurements using different measuring systems

(figure 5a-c).  Measuring system in this  context refers to the attachment holding the surfaces;  these

include  both  commercial  tribology  attachments  or  modified  rheology  attachments.  The  measuring

system setup varies, being comprised of single ball on three pins or three plates, two or three balls on

plate, and ring or half-ring on plate. Rheometers used in the studies included in this review include:
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MCR301,  MCR302 and MCR502 (Anton Paar,  Austria)  and Discovery  Hybrid  Rheometer  (DHR-3)  (TA

Instruments, USA). 

Figure 5: Main tribological attachments used in literature. (a) Ball-on-3 plates, adapted from Shewan, Pradal and Stokes (2019).

(b)  Double  ball-on-plate,  adapted  from  Joyner,  Pernell  and  Daubert  (2014c).  (c)  Half-ring-on-plate,  adapted  from  Godoi,

Bhandari and Prakash (2017)

2.6.1 Other tribology devices

Tribology measurements can also be undertaken using dedicated tribometers such as the MTM and the

Tribolab (UMT, Bruker, Billerica USA). The MTM uses a ball-on-disk configuration that allows rotational

and rolling/sliding movements as the surfaces can move independently of each other. This differs from

rheometers where one surface is static. The Tribolab offers among other things a pin-on-disk setup and

more complex multi-directional movement profiles that simulates the motion patterns of the tongue

and can be used to study e.g. soft solid foods and boli  (Campbell, Foegeding, & van de Velde, 2017;

Fuhrmann, Aguayo-Mendoza, Jansen, Stieger, & Scholten, 2020; van Stee et al., 2017). 

An alternative approach is to design a device or attachment in-house in order to fulfil requirements

specific  to  the  investigation.  Many  interesting  and  innovative  solutions  can  be  found  in  literature,

ranging from custom-built attachments for rheometers (Rudge, Scholten, & Dijksman, 2020) or texture

analysers  (Morell,  Chen,  & Fiszman,  2017) to  devices  using  optical  interferometry  to  study  wetting
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transitions  (Martin,  Clain,  Buguin,  & Brochard-Wyart,  2002),  devices fitted with cameras or confocal

microscopes  for  imaging-based  techniques  (Dresselhuis  et  al.,  2007;  Wandersman,  Candelier,

Debrégeas, & Prevost, 2011; Yashima et al., 2015), devices for investigating molecular organisation of

soft polymer interfaces in contact (Cohen, Restagno, Poulard, & Léger, 2011) and wholly in-house built

tribometers (de Wijk & Prinz, 2005).

3 Tribology using rheometers

3.1 Approaches to tribological studies

Generally,  3 approaches towards increasing understanding of mouthfeel  with the aim of  generating

explanatory and/or predictive models can be distinguished: Conceptual, fundamental, and empirical or

applied. The conceptual approach provides a theoretical framework and aims to build models that can

then be tested and validated by experiments  (Boehm et al.,  2019; Gabriele, Spyropoulos, & Norton,

2010; Hutchings & Lillford, 1988; Kokini et al., 1977). The fundamental approach will often be applied

using model fluids, e.g. concentration gradients of compound(s) of interest, and can be divided into two

often overlapping categories: Methodology; development of reproducible methodologies by varying test

protocols, e.g. cleaning, sample preparation, surfaces etc  (Joyner, Pernell and Daubert, 2014a, 2014b,

2014c;  Kieserling,  Schalow  and  Drusch,  2018) and/or  Mechanism;  investigation  of  the  underlying

mechanisms of mouthfeel as described by tribological and complimentary data to generate explanatory

models of mouthfeel. The latter includes e.g.:

- Investigations  into  the  lubricating  properties  of  saliva  and  its  interaction  with  either  synthetic

surfaces (Bongaerts, Rossetti, et al., 2007; Carpenter et al., 2019) 

- Biological materials e.g. pigs tongue (Dresselhuis et al., 2008; Ranc et al., 2006) or the food matrix

(Laguna, Bartolomé, et al., 2017; Morell et al., 2017) 

- The characteristics of the tribological surfaces (Dresselhuis et al., 2007; Kim, Wolf, & Baier, 2015)
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- The relationship between lubricating behaviour and micro/nano-structures of the food  (Garrec &

Norton, 2012; Stokes, Macakova, Chojnicka-Paszun, De Kruif, & De Jongh, 2011) 

- Influence of fluid viscosity and wetting on viscoelastic lubrication (Selway et al., 2017)

- Studies on the topography and physiological characteristics of the oral cavity (X. Wang et al., 2019)

The empirical (applied) approach is aimed at practical applications and strives to generate predictive

models that correlate tribological (as well as chemical, rheological and physical parameters) to sensory

data depending on differences in production process or composition of the given food.

3.2 Methodologies

A common approach when selecting measurement parameters is to choose conditions that mimic oral

conditions the best as this enables elucidation of lubrication mechanisms and interpretation of results in

relation  to  what  actually  happens  in  the  mouth.  There  is  considerable  variation  in  measurement

parameters among studies and the aim of this review is not to provide a golden standard or one-size-

fits-all solution, but rather to present different methods to achieve a similar goal. 

12 of the 24 studies included in table 2 below worked with dairy products (yoghurt, milk, cream cheese,

custard or dairy substitutes), 7 investigated with model systems (e.g. corn syrup, mineral oil or model

emulsions, as well as yoghurt), 2 worked with chocolate, and 1 each for gluten-free bread, soft drinks,

and saliva. When testing a particular system  e.g. reproducibility, effect of surface characteristics, and/or

measuring  parameters,  a  common practice  is  to  use  either  mineral  oil  alone,  due  to  its’  relatively

standardised lubricating properties, or a combination of demineralised water, mineral oil and yoghurt as

examples  of  two  opposites  i.e  hydrophilic/hydrophobic  and  an  emulsion  system  exhibiting  both

properties. 

Of  the rheometers  used,  only  two commercial  producers  were represented:  The Modular  Compact

Rheometer, MCR301, MCR302 and MCR502 (Anton Paar, Austria) and the Discovery Hybrid Rheometer
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(TA Instruments, USA).  Steinbach, Guthrie, Smith, Lindgren, & Debon (2014) compared the use of an

MCR301 with ball-on-3 plates and the MTM with single contact ball on plate on de-gassed soft drinks i.e.

cola and lemon lime And these authors reported a measured difference in friction coefficients in the

boundary regime for both machines. However, the MCR301 showed an increased analytical sensitivity,

as calculated by the difference in friction coefficient divided by the pooled standard deviation, by up to a

factor of 200, indicating that the MCR301 with ball-on-3 plates could provide better discrimination of

aqueous solutions in the lower regimes. 

29



Table 2: Table of original papers using rheometers with tribology attachments. Abbreviations: Approaches of investigation; Mech: Mechanism, Appl: Application, Meth: Method.
E.o.:  Effect  on/of.  Rheo:  Rheological  properties.  Tribo:  Tribological  properties.  EPS:  Exopolysaccharides.  FN:  Normal  force.  D:  Gap distance  between  tribopairs.  µ:  Friction
coefficient. T: Temperature. U: Entrainment speed; in cases where speed was not given in mm/s, this is based on own calculations. PDMS: Polydimethylsiloxane. WPI: Whey
protein isolate. PTFE: Polytetrafluoroethylene. HDPE: High Density Polyethylene. SBR: Styrene butadiene rubber. NR: Natural rubber. FR: Foamed rubber. SEBS: Styrene–ethylene–
butylene–styrene block co-polymer

Purpose Food
Tribological

attachment

Tribopairs FN

(N)

T

(°C)
U (mm/s) Reference

Upper Lower

Saliva lubricity and cationic astringents (Mech/app)

Saliva, 

astringent 

cations

Ball-on-3

pins

Steel

ball

PDMS (lab

made)
6 N/A

0.01-1000,  60

mins @ 1

(Biegler,  Delius,  Käsdorf,

Hofmann, & Lieleg, 2016)

Modified dietary fibres e.o. structural, mechanical,

sensory (Appl)

Gluten-free 

bread

Three-balls

on sample

Steel

ball
Bread 0.2 20 1

(Kiumarsi,  Shahbazi,

Yeganehzad,  Majchrzak,

& Benjamin, 2019)

Ex-vivo chocolate boluses, material properties and

texture perception (Appl)
Chocolate

Ball-on-3

plates

Steel

ball

PDMS (lab

made)
3 40 0.02-750 (He et al., 2018)

Differentiation  of  two  chocolate  samples  with

identical composition and viscosity (Appl)
Chocolate

Ball-on-3

plates

Steel

ball
Polyurethane 0.5 37 0.001-420

(Carvalho-da-silva  et  al.,

2013)

Investigate discrimination by sensory compared to

tribo and rheo (Appl)

Custard, starch, 

carrageenan, fat

Half-ring-

on-plate

Steel

ring
Surgical tape 2 35 0.15-100 (Godoi et al., 2017)

Development  of  tribological  method  for  dairy

(Meth)

Milk, cream 

cheeses

Half-ring-

on-plate

Steel

ring
Surgical tape 1, 2 35 1-600 (Nguyen et al., 2016)

Mapping in-mouth creaminess (Appl) Yoghurt
Ball-on-3

plates

Steel

ball
SBR 3 10 0.0007-667 (Sonne et al., 2014)

Surface properties (Ra) to sensory (Meth/appl)

Demin, 

sunflower oil, 

yoghurt

Ball-on-3

plates

Steel

ball

NR, FR, SBR,

PTFE
3, 9 20 0.07-2000 (Krzeminski et al., 2012)

Compare  whey  protein  isolate  and  PDMS  for

yoghurts (Meth)

Demin, 

sunflower oil, 

yoghurt

Ball-on-3

plates

Steel

ball
WPI, PDMS 0.1 20

100-1,  1000-

1, 200-2
(Di Cicco et al., 2019)

Whey  protein  phase  volume,  fat  free  yoghurts,

rheology, tribo, sensory (Appl)

Fat-free 

yoghurts

Ball-on-3

plates

Steel

ball
SBR 3 10 0.0007-667 (Laiho et al., 2017)

Gelatine, xanthan gum, carrageenan and modified

starch e.o. texture of yoghurts (Mech/appl)
Yoghurt

Half-ring-

on-plate

Steel

ring
Surgical tape 2 35 0.008-60 (Nguyen et al., 2017)

Storage,  homogenisation,  pasteurisation,  fat  e.o.

mechanical, sensory (Appl)
Milk

Double-ball-

on-plate

Polypro-

pylene

PDMS (lab

made)
1 25 0,15-750

(Li,  Joyner,  Carter,  et  al.,

2018)
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Pasteurisation,  storage  and  fat  content  e.o.

rheo/tribo and astringency (Appl)
Milk

Double-ball-

on-plate

Polypro-

pylene

PDMS (lab

made)
1 22 0.15-750

(Li,  Joyner,  Lee,  et  al.,

2018)

Inulin, pectin, galacto-oligosacchs, beta glucan e.o.

physical, rheo, tribo, sensory (Mech/appl)
Yoghurt

Half-ring-

on-plate

Steel

ring
Surgical tape 2 35 0.8-90 (Ng et al., 2017)

Temporal  dominance  sensations  (TDS)  and  tribo

(Mech/appl)
Cream cheese

Half-ring-

on-plate

Steel

ring
Surgical tape 2 35 0.1-600 (Ningtyas et al., 2019)

Fat e.o. tribo, rheo, structure (Mech) Cream cheese
Half-ring-

on-plate

Steel

ring 
Surgical tape

1, 2,

3, 5
35 0.3-300 (Ningtyas et al., 2017)

Introduction of attachment (Meth/appl)

Milk, 

maltodextrin, 

xanthan gum

Ball-on-3

plates

Steel

ball

Thermoplastic

elastomer
3 20 0.4-20 (Baier et al., 2009)

Tribo/rheo  properties,  glucone-delta-lactone  or

EPS cultures (Mech)
Soy yoghurt

Full  ring-on-

plate

Steel

ring
Surgical tape 1 4 0.2-200 (Pang et al., 2019)

Demonstration reproducible results on soft drinks,

comparison of MTM and MRC301 (Meth)

Soft drinks, guar

gum, locust 

bean gum, 

sodium 

carboxymethyl 

cellulose

Ball-on-3

plates

Steel

ball
SEBS 3 20 0.47-263 (Steinbach et al., 2014)

Method development and validation (Meth)

Demin, 

sunflower oil, 

yoghurt

Ball-on-

plates/pins

Steel/

glass

PTFE, PDMS,

SBR
3 20 10-6-1000 (Kieserling et al., 2018)

Validation of tribo using rheometer (Meth) Corn syrup
Double-ball-

on plate

Steel

ball
Silicon 3 20 0.23-2300 (Goh et al., 2010)

Influence of measurement methodology (Meth) Mineral oil

Double-ball-

on-plate/

ball-on-3

plate

Polypro-

pylene

PDMS, HDPE,

WPI
3, 5 22 0.8-9 (Joyner et al., 2014a)

Emulsion  pH,  salt,  homogenisation  pressure  e.o.

friction, rheology and physics (Meth/appl)
Oil in water

Double-ball-

on plate

Polypro-

pylene
WPI 2, 1 25 10-1 (Joyner et al., 2014b)

Effect of parameter settings on FN, D, µ (Meth) Mineral oil
Double-ball-

on plate

Polypro-

pylene
WPI, steel

1, 2,

3, 5
22 0, 1, 10 RPM (Joyner et al., 2014c)

.
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3.2.1 Tribological attachments

The tribological attachment chosen will influence the output and hence comparison between studies

using different systems, e.g. ball-on-3 plates and half-ring-on-plate, is generally not feasible. Only one of

the included studies has systematically compared two different systems; comparing the use of ball-on-3

plates  and  double-ball-on-plate  on  the  MCR302  (Anton  Paar,  Austria),  Joyner  et  al.  (2014a) found

differences in the magnitude of friction coefficients of mineral oil but not in the regimes observed. This

difference was attributed to the fact that the plates in the ball-on-plate system are at an angle, meaning

that the small amount of oil used would have flowed to the bottom of the plates, thereby reducing the

lubricating contact.  More  research is  needed in  order  to  quantify  the potential  effects  of  different

attachments  on the shape,  magnitude,  reproducibility,  comparability,  and variability  of  the Stribeck

curves obtained. 

3.2.2 Surfaces

The question of whether to produce surface materials in the lab or buy commercially available surfaces

comes down to a question of the aim of the study and practical considerations. While producing surface

materials  in-house offers control  over  Elastic  modulus and roughness,  the disadvantage is  potential

introduction of variability  and the requirement for investigation of surface properties from batch to

batch to ensure uniformity, reproducibility and accurate comparison between studies. Taking PDMS as

an example, in short, the production of this polymer consists of mixing a silicone elastomer base and a

curing agent, followed by degassing in vacuum to remove air bubbles and subsequent curing in an oven.

The mixing ratio has profound effects on the Elastic modulus;  the Elastic modulus (in  MPa) can be

expressed as 20 MPa/PDMS base:curing agent ratio (Wang et al., 2014).  Kim et al. (2015) investigated

the effects of PDMS production protocols (base:curing agent ratio, curing temperature and time, and

mould  finishing  amongst  others)  on  friction  measurements  and  found  that  the  consistency  of  the

Stribeck  curves  are  highly  sensitive  to  these  parameters,  suggesting  the  implementation  of  a
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standardised material/synthesis protocol to overcome these potential biases.  Similar introduction of

variability could be imagined for other in-house made polymer solutions.

The  choice  of  surfaces  used  varies  considerably  between  studies.  Commonly  used  upper  surface

materials  include  steel  (either  as  a  ball  or  ring),  polypropylene  and  glass.  For  the  lower  surfaces

materials  used include polydimethylsiloxane (PDMS) (either lab-made or  commercial),  polyurethane,

surgical  tape,  natural  rubber  (NR),  foamed  rubber  (FR),  styrene  butadiene  rubber  (SBR),

polytetrafluoroethylene  (PTFE),  whey  protein  isolate  (WPI),  and  high  density  poly  ethylene  (HDPE).

Krzeminski et al. (2012) compared the use of PTFE (hard surface) and various rubbers (natural, foamed

and styrene butadiene) with varying Elastic moduli (soft surfaces) and surface roughness. The harder

surfaces  resulted  in  unstable  friction curve progressions  and a  negative correlation using  Pearson’s

correlation  coefficient  from  Multiple  factor  analysis  was  observed  between  surface  roughness  and

friction coefficient at low speeds. This led to the conclusion that SBR was the most suitable material for

discriminating between yoghurt samples measured; however, the authors did not investigate effects of

wettability of the surfaces.  Joyner et al. (2014a) compared the use of HDPE, WPI and PDMS using a

double ball-on-plate setup and reported that WPI is the most suitable due to its’ low Elastic modulus

and hydrophilic nature, making it comparable to the tongue. These results are corroborated by Di Cicco

et al. (2019); these authors reported a higher discriminative power of WPI compared to PDMS using a

ball-on-3 plates setup when measuring several commercial yoghurt samples, showing the suitability of

WPI across measuring systems. Kieserling et al. (2018) compared the use of glass or steel balls on PTFE,

PDMS and SBR on a ball-on-3 plates/pins system working with demineralised water, sunflower oil, and

yoghurt.  Through systematic investigation of wear and reproducibility,  these authors concluded that

PDMS showed the least variation, however, the authors did not investigate discriminatory power when

comparing similar samples, e.g.  yoghurts with varying fat or protein content. The body of literature
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comparing surfaces when using rheometers with tribology attachments is scarce and more research is

needed.

The effects of hydrophobicity of PDMS have been studied using the MTM; adherence of hydrophobic

lubricants to surfaces with low wettability, i.e. hydrophobic, results in lower friction coefficients in the

boundary and mixed regimes  (Bongaerts,  Fourtouni,  et  al.,  2007; Dresselhuis  et  al.,  2007);  however

aqueous solutions of guar gum and xanthan gum resulted in higher friction coefficients between steel

and a hydrophilic surface compared to steel and a hydrophobic surface (De Vicente, Stokes, & Spikes,

2005), indicating that the relationship between wettability and friction coefficient is not straight-forward

and  needs  further  elucidation.  Besides  comparing  different  polymers  exhibiting  differences  in

wettability, such as PDMS and WPI, another strategy is to alter the hydrophobicity of a surface material,

thereby eliminating confounding variables such as Elastic modulus and surface roughness. In this regard,

PDMS can be made long-term hydrophilic to varying degrees, (Hemmilä, Cauich-Rodríguez, Kreutzer, &

Kallio, 2012; Shahsavan, Quinn, d’Eon, & Zhao, 2015). However, these techniques require specialised

knowledge and equipment. Another possible method is the inclusion of saliva during measurements, as

saliva has been shown to render surfaces hydrophilic (Macakova, Yakubov, Plunkett, & Stokes, 2011). In

a  study  investigating  the  lubricating  properties  of  whey  protein  microgel  particles  under  biological

conditions,  Sarkar,  Kanti,  Gulotta,  Murray,  &  Zhang  (2017) rendered  PDMS  surfaces  hydrophilic  by

plasma-treatment and reported an immediate drop in water-contact angle (from 108° to 30°) followed

by a rapid  recovery  of  hydrophobicity  over  3 days  before  stabilisation at  63° for  up to  a week.  By

addition of a mucin layer, the contact angle of the PDMS surfaces dropped to 47 ° and thereby mimicked

oral mucosa-coated surfaces well. 
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In conclusion, the choice of surfaces will  depend on availability and substrate tested. WPI or PDMS

reduce variability when compared to other surfaces and PDMS is a good candidate when hydrophobicity

needs to be controlled or altered. 

3.2.3 Running-in

An often overlooked potential cause of variation in Stribeck curves is surface wear during measurements

(Pradal & Stokes, 2016). Running-in refers to the initial conditioning and “smoothing” of surfaces before

or during measurements until a steady-state is reached, thereby minimising effects of any differences in

surface  topology  arising  from  production  (Blau,  2005).  Running-in  presents  a  challenge  when

investigating food; consideration should be given to how often surfaces should be changed, i.e. whether

it is possible to run several samples on a single surface or change with every new sample, and how to

condition,  i.e.  prepare  them  for  tests  and  reach  a  steady-state,  the  surfaces  if  at  all  before

measurements. The first problem is relatively easily solved by comparing surfaces before and after a

given number of runs, a run in this case meaning one sweep up or down the chosen speed range, and

determining  the  appropriate  number  of  runs  by  either  statistical  analysis  or  topographical

determination.  The  latter  does,  however,  require  access  to  equipment  capable  of  accurately

characterising surfaces, such as a scanning electron microscope and atomic force microscope (Kieserling

et al., 2018) or a profilometer (Arvidsson, Ringstad, Skedung, Duvefelt, & Rutland, 2017). If new surfaces

are used with every new measurement (a measurement in this case can be either one single run or

several consecutive runs) running in of the surfaces is necessary. Kieserling et al. (2018) conducted an in-

depth investigation of running-in of PDMS, SBR and PTFE surfaces using mineral oil as lubricant. These

authors did measurements comprised of 10 consecutive runs and found that a steady state was reached

after approximately 5 runs, after which the obtained Stribeck curves stabilised, and the wear rate of the

surfaces became defined.  The first  5 runs were characterised by an undefined wear rate with high

variation and a decreasing trend in friction coefficient. Additionally, the effect of multiple compressions
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and between-run sample exchange were investigated; between each run, the lubricant was exchanged

and the tribopairs were cleaned resulting in an increase in coefficient of variation of the Stribeck curves

(Kieserling  et  al.,  2018).  Carvalho-da-silva,  Damme, Taylor,  Hort,  & Wolf  (2013) employed a  similar

strategy working with chocolate samples; a measurement consisted of 7-8 runs and only the last 3 were

included  for  further  analysis.  A  different  approach  was  used  by  Steinbach  et  al.  (2014);  when

investigating lubricating properties of soft drinks, a 10 minute interval at constant speed (0.47 mm/s)

was employed after samples had been loaded, followed by a recording interval (single run).  Goh et al.

(2010) employed a similar strategy only with a 1 minute running-in period at 10 mm/s when working

with corn syrup solutions. When working with chocolate samples, He et al. (2018) used a higher speed

(100 mm/s) for 10 seconds. A common strategy when working with dairy products (custard, milk, cream

cheese, yoghurt) is to pre-shear the samples for 1-2 mins at 1 rad/s (speed will vary depending on upper

tribopair geometry) in order to ensure homogeneous distribution of sample material as well as condition

the tribopairs  (Godoi et al., 2017; Lee, Park, & Whitesides, 2003; Nguyen, Bhandari, & Prakash, 2016;

Nguyen et al., 2017; Ningtyas, Bhandari, Bansal, & Prakash, 2017). The above examples and results carry

significant implications in the case of research focused on foods with e.g. gelling properties or foods that

might  experience  structural  changes  resulting  in  altered  lubricating  behaviour  when  subjected  to

shearing. If the objective of a given study is to measure lubricating properties before structural changes

are  induced,  then  reaching  the  steady  state  (defined  wear  rate  of  the  surfaces)  without  sample

exchange would prove a challenge. If, on the other hand, surfaces are pre-conditioned with a run-in

period using a defined lubricant, e.g. mineral oil or a glycerol solution, then subsequent cleaning and

compression of the tribopairs may introduce variation and lower reproducibility.

3.2.4 Entrainment speed and normal force

Entrainment  speed  is  generally  increased  or  decreased,  ramp-up  or  ramp-down,  respectively,  in  a

logarithmic fashion,  so that  the faster  the speed is,  the shorter  is  the time between measurement
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recordings. Speed ranges used vary between studies from below 1 order of magnitude to 9 orders of

magnitude (table 2) and even though most rheometers are capable of speeds down to the nanoscale,

the static regime is often left unexplored. In general, the speed ranges used are chosen based on food

oral  processing  speeds and preliminary studies to determine the best  range in order  to obtain  the

friction regimes of interest. For samples such as chocolate, yoghurt, cream cheese, custard, and corn

syrup, a speed range from 0.001-0.1 up to 100-500 mm/s adequately captures the boundary, mixed and

elasto-hydrodynamic regimes (Carvalho-da-silva et al., 2013; Godoi et al., 2017; Goh et al., 2010; He et

al., 2018; Laiho, Williams, Poelman, Appelqvist, & Logan, 2017; Ng et al.,  2017; Nguyen et al., 2017;

Ningtyas et al.,  2017; Ningtyas, Bhandari,  Bansal, & Prakash, 2019; Pang et al.,  2019; Sonne, Busch-

Stockfisch, Weiss, & Hinrichs, 2014), while for more liquid samples such as milk or soft drinks, even at

speeds up to 750 mm/s, the elasto-hydrodynamic regime is not observed (Baier et al., 2009; Li, Joyner,

Carter,  & Drake,  2018; Li,  Joyner,  Lee,  & Drake, 2018;  Nguyen et  al.,  2016;  Steinbach et  al.,  2014) .

Although, as previously mentioned, it is generally assumed that the boundary and mixed regimes are the

most  relevant  to  measuring  mouthfeel,  the  lack  of  a  minimum in  friction coefficient  to  define the

beginning of the elasto-hydrodynamic regimes could cause problems in interpretation. In addition, this

potentially  signifies  that  friction  at  lower  speed  towards  the  static  regimes  could  hold  significant

information regarding low-viscosity fluids. 

Di Cicco et al. (2019) found that the narrow speed range could discriminate between non-fat and fat

containing samples, but not between fat containing samples. The wide speed range resulted in higher

discriminatory  power,  possibly  due  to  release  of  fat  globules  during  the  higher  shearing.  Another

interesting method of this study is the use of ramp-down rather than ramp-up, however, this method is

not replicated in any of the other studies. As no studies have systematically investigated the influence of

speed range,  it  is  hard  to  make any conclusive  recommendations,  except  to  state  that  preliminary

studies before any measurements should aim to minimise effects from speed range as well as determine
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the optimum range in order to capture the relevant friction regimes. In a unique investigation, Joyner et

al. (2014a), using continuous or step-wise increases in entrainment speed, found that step-wise increase

resulted in the lowest variation of normal force and friction coefficient, possibly due to the system being

unable  to  equilibrate  during  continuous increase.  To increase comparability  between studies,  these

authors recommend that the method of speed ramp should be reported as part of the experimental

design of all tribology studies.  

The effect of normal force variation has been systematically investigated on a range of attachments and

surfaces.  Krzeminski  et al.  (2012) observed that with an increase in normal force from 3 to 9 N on

deformable surfaces, the overall friction is reduced. This trend is likely due to higher deformation of

asperities resulting from the higher pressure (Rudge, Scholten, & Dijksman, 2020 and Urueña et al.,

2018). Joyner et al. (2014c) investigated the effect of measurement parameters on normal force when

using mineral oil as a lubricant and recommends proper selection of surface, rheometer base (dynamic

rather than static) and dynamic normal force control (set to 100%) to reduce variation of normal force

during measurements. Fluctuations in normal force during measurements can cause variability of the

data, especially when using soft, deformable surfaces due to changes in contact area and normal load

distribution  however,  Joyner  et  al.  (2014c) notes  that  as  normal  force  is  part  of  the  equation  for

calculating  friction coefficient,  small  variations  in  normal  force  are  mitigated.  Joyner  et  al.  (2014a)

observed that friction coefficients are generally unaffected by normal force (3 and 5 N tested) when

working with mineral oil. A strategy to account for any variation due to fluctuations in normal force

could be to remove any data points collected when normal force was above or below a specified range

(e.g.  ±5%)  (Joyner et  al.,  2014c,  2014a).  Nguyen et  al.  (2016) tested differences in  friction of  dairy

products  (milk  and  cream  cheese)  depending  on  normal  force  (1  and  2  N)  and  found  only  small

differences in friction coefficient and no differences in the regimes obtained. In a similar study, Ningtyas,

Bhandari, Bansal, & Prakash (2017) investigated the effects of normal force (1, 2, 3 and 5 N) on friction
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coefficients of cream cheese and found that an increase in normal force led to a decrease in friction

coefficients. No clear explanations for the behaviour of non-Newtonian materials under different normal

forces is currently known, but it could be due to effects on the pressure in the gap distance altering the

tribological behaviour of the materials  (Myant, Spikes, & Stokes, 2010). Across studies included in this

review, a variety of normal forces have been applied, generally between 1-5 N.  Preliminary studies

should aim to pinpoint the normal force at which variation is the smallest and the highest discriminatory

power  is  achieved.  In  addition,  fundamental  studies  to  investigate  the  effects  of  normal  force  on

Newtonian and non-Newtonian materials should be undertaken. In summary, relatively narrow speed

ranges are sufficient to capture the relevant friction regimes of viscous samples, e.g. chocolate spread or

yoghurt.  For  less  viscous  samples,  a  wider  speed  range  may  capture  more  information.  A  general

tendency  is  that  friction  decreases  with  increases  in  normal  force.  A  dynamic  rheometer  base  is

preferred with dynamic normal force control set to 100%. 

3.2.5 Temperature

A wide range of temperatures is used in the included studies, ranging from 4-40  °C. A general trend

seems to be to use higher temperatures (e.g. 35-40 °C) when investigating mechanisms of lubrication

and room-temperature when defining methodologies. It  is generally accepted that viscosity, density,

emulsion stability, and solubility show temperature-dependent behaviour, and as such, temperature is

expected to affect tribological measurements to various degrees. Although the rationale for using a

specific  temperature  is  generally  justified,  e.g.  mimicking  in-mouth  conditions,  the  variation  in

temperatures used makes comparison between studies infeasible.  

3.2.6 Cleaning of the tribopairs

The cleaning regime used when preparing the tribopairs  and tribopair  holders  before and between

measurements  will  inevitably  have  an  impact  on  the  output,  especially  if  even  minute  residues  of

cleaning agents ,e.g. surfactants, or previous samples are left on the surfaces. As such, it is crucial that a
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thorough  and  consistent  cleaning  regime  is  employed.  In  some  cases,  the  cleaning  regime  is  not

specified,  or  it  is  unclear  which  cleaning  agents  were  used  (see  supplementary  material).  Several

strategies are employed and the choice of which cleaning agent (if any) to use will also depend on the

specific food to be tested or the nature of the tribopairs, as well as the choice of whether or not to reuse

the surface a number of times. Taking PDMS, one of the most commonly used surfaces, as an example,

solvent  compatibility  ,solvent  here  referring  to  any  compounds  being  soluble  in  PDMS  or  able  to

solubilise PDMS present in either the sample or cleaning agent, has three aspects to it: (1) solubility of a

given solvent in PDMS causing swelling and ensuing induction of changes to the surfaces’ properties, (2)

loss of solutes to PDMS causing changes in composition of the measured sample, and (3) dissolution of

PDMS oligomers (potential contaminants present in the cross-linked PDMS) into the measured sample,

also causing compositional changes (Lee et al., 2003 and Lee, Park and Whitesides, 2003). Going from

the “lightest” to most rigorous cleaning regimes, the studies included here have employed: rinsing with

deionised water and wiping with lab-wipes when working with dairy products  (Nguyen et al.,  2016,

2017); rinsing with isopropanol when working with mineral oil/emulsions and dairy (Joyner et al., 2014c,

2014b, 2014a; Krzeminski et al., 2012; Laiho et al., 2017; Sonne et al., 2014); rinse with ethanol when

working with dairy (Di Cicco et al., 2019; Li, Joyner, Lee, et al., 2018); rinsing with detergent, followed by

either a rinsing with deionised water alone (Baier et al., 2009) or using ethanol wipes (Li, Joyner, Carter,

et al., 2018) when working with milk; rinsing in an acetone ultrasonic bath when working with corn

syrup solutions (Goh et al., 2010); or rinsing with deionised water, followed by washing with detergent,

rinsing  with  deionised  water,  followed  by  isopropanol,  wiping  with  lab-wipes  and  drying  with

compressed air when working with yoghurt  (Kieserling et al., 2018). The wide variety of surfaces and

measurement  protocols  makes  comparison  between  cleaning  regimes  difficult,  and  ultimately  the

choice of cleaning agents and method will be at the researchers’ discretion. For the purposes of the

present research, the cleaning regime of Kieserling et al. (2018) was used. 
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3.3 Data processing

Processing of the Stribeck curves obtained from tribological measurements can generally be done in two

ways:  semi-quantitatively  by  visually  comparing  curves  for  different  samples  in  conjunction  with

theoretical knowledge and hypotheses, or by extraction of quantitative data for further analysis, which

again can be broadly divided into two approaches. While the first is a valuable and often used tool for

elucidating mechanisms of lubrication and taking into account that visual exploration of data should

always be the first  step in any statistical  analysis  if  possible,  visual  assessment will  quickly become

infeasible in the context of large sample sized and multivariate data analysis. This is not to say that visual

exploration of Stribeck curves is not a valid approach, but rather that generation of statistical models

requires numeric data. In addition, the first approach requires in-depth knowledge of tribology and the

food-matrix,  while  for  most  practical  applications  food  scientists  will  be  more interested  in  finding

correlations between variables, e.g. sensory data and physical/chemical parameters. Attempts to infer

statistically  significant  differences  between  samples  have  resulted  in  a  few  different  strategies.  A

common pre-processing step when each data point of each run consists of several data collections is to

exclude outliers above or below a certain threshold. As per good common practice, Stribeck curves are

presented as mean ± standard deviation of triplicate or more measurements for each data point and any

parts  of  the  curves  of  different  samples  not  overlapping  are  assumed  to  be  significantly  different

(Carvalho-da-silva et al., 2013; Goh et al., 2010; He et al., 2018; Joyner et al., 2014c, 2014a, 2014b; Li,

Joyner, Carter, et al., 2018; Li, Joyner, Lee, et al., 2018; Ningtyas et al., 2019; Pang et al., 2019) . Stribeck

curves  can  then  either  be  visually  assessed  and  discussed  considering  complementing  data  or

quantitatively analysed to obtain variables for further multivariate data analysis. Further extraction of

numerical information generally follows two approaches; (1) comparison of friction coefficients at given

set speeds, e.g. 1, 10, 100... mm/s, (Baier et al., 2009; Krzeminski et al., 2012; Laiho et al., 2017; Sonne

et al., 2014; Steinbach et al., 2014) or (2) determination of µ and U at transition points between regimes
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and slopes within regimes (note that axes are generally semi-log or log-log) (Di Cicco et al., 2019; Godoi

et al., 2017; Kieserling et al., 2018; Ng et al., 2017; Nguyen et al., 2016, 2017; Ningtyas et al., 2017)  . The

first approach seems most applicable when Stribeck curves between samples follow the same trend, i.e.

transition points occur around the same speeds, or when magnitude of friction within a given regime is

the  object  of  investigation.  The  second  approach  yields  information  about  when  transitions  occur

depending on e.g. composition and how fast friction increases or decreases in a given regime. Taking the

analysis a step further, Di Cicco et al. (2019) first extracted 8 variables from the Stribeck curves, average

friction in each regime, slope in the mixed regime, and µ and U at transition points between regimes, of

9 commercial yoghurts with varying fat-content and applied analysis of variance (ANOVA) followed by

Tukey’s  pairwise  comparison  to  determine  which  of  these  8  variables  best  discriminated  between

samples. These authors then applied 2 times Principal Component Analysis (PCA) to the dataset, both

the 8 variables extracted as well as the full set of measurements (9 samples x 3 runs/sample x 61 data

point/run). PCA on the 8 variables in a biplot proved a valuable tool to extract information about which

variables explained variation of a given sample, as well as reveal clusters of samples and correlations

between variables. Similarly, PCA on the full dataset provided good separation of groups and proved a

valuable tool in identifying which regimes (speed intervals) explained the largest part of the variance of

the dataset. 

A strategy that has so far seemingly been left unexplored is the application of calculus (e.g. area under

the curve) or fitting of e.g. polynomials to bell shaped parts of the Stribeck curve.

4 Linking tribology and sensory

Recent  reviews  have  examined  the  application  of  tribology  as  a  means  of  explaining  mouthfeel

sensations and providing a link between sensory data and instrumental measurements (Sarkar & Krop,

2019; Shewan et al., 2019). Looking at the relationship between friction coefficient and sensory data
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across instruments and foods,  Sarkar & Krop (2019) identified three clusters based on food, sensory

characteristic  and  friction  regime:  Cluster  1  contained  full  fat  milk  and  yoghurt,  o/w  emulsions,

chocolate,  and cream cheese and correlations with viscosity,  astringency and smoothness;  cluster  2

contained low fat cream cheese, low fat yoghurt, and no fat milk and correlations with creaminess,

graininess,  and  smoothness;  cluster  3  contained  emulsion-filled  gels,  bread,  and  hydrogels  and

correlations with roughness, fattiness, stickiness, firmness, chewiness, dryness, pastiness, slipperiness

and salivating effect,  with  some overlap between cluster  1 and 3.  Although these relationships  are

system-specific and have often been obtained using different sensory analysis techniques, interpretation

strategies and data analyses, e.g. Pearson’s correlations, PCA and Partial least squares regression (PLS),

the evidence points towards tribology as a valuable tool in determining certain mouthfeel characteristics

of foods (Sarkar & Krop, 2019). 

Several  studies  have  explored  the  link  between  sensory  data  and  tribology.  The  link  between  the

mouthfeel  of  wine,  especially  the  attribute  astringency,  and  instrumental  measurements  has  been

explored recently: the use of tribology has helped in elucidating some of the mechanisms responsible

for this sensation, specifically the interaction between saliva and polyphenols found in wine and the

correlation with friction (Laguna & Sarkar, 2017). Using a modified Texture Analyzer with stainless steel

on PDMS, Stribeck curves of mixtures of whole human saliva and tannin-solutions or red wines were

measured and a positive correlation was found between the friction coefficient at 0.075 mm/s and both

perceived intensity of astringency and level of tannins in the samples (Brossard, Cai, Osorio, Bordeu, &

Chen, 2016). In contrast, in a study using model wine systems consisting of ethanol, glycerol and oak

tannins mixed with artificial  saliva measured on an MTM using PDMS on PDMS, no correlation was

found between presence of tannins and perceived astringency (Laguna, Sarkar, et al., 2017). A possible

explanation for this could be the difference in measuring systems and experimental protocol  (Laguna,

Sarkar, et al., 2017), highlighting the importance of instrumental choice and setup in tribology.  More
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recently, in a study using the MTM and PDMS surfaces, Wang, Olarte Mantilla, Smith, Stokes, & Smyth

(2020) investigated the effect of tannins and pH in wine with human saliva on level of astringency; no

overall correlation could be found between astringency and friction, however, by dividing astringency

into  sub-qualities  “rough”,  “drying”  and “pucker”,  it  was found that  “drying”  is  driven by  levels  of

tannins and is related to the boundary regime while “pucker” is explained by pH and rate of increase of

friction. The authors conclude that explaining astringency based on interactions between saliva and

astringent compounds may not be adequate and that astringency itself is multi-modal. He et al. (2018)

measured  Stribeck  curves  of  expectorated  chocolate  boluses  and  found  that  differences  in

mouthcoating  was  reflected  in  the  mixed  regime  while  thickness  could  be  correlated  to  the

hydrodynamic regime. This  is  perhaps not surprising,  as thickness has previously been shown to be

correlated with viscosity and bulk properties (He et al., 2016; Wagoner, Çakır Fuller, Shingleton, Drake,‐

& Foegeding, 2019),  which are the main contributors to friction in the hydrodynamic regime. These

results are corroborated by  Carvalho-da-silva et al. (2013), who investigated the melting and friction

properties of two iso-viscous chocolate samples and found among other things, that mouthcoating and

friction coefficients were negatively correlated at higher speeds. For yoghurts of various composition,

e.g. differences in fat, protein, hydrocolloids and production method, it has been shown that friction

coefficients  at  specific  speeds  can  be  successfully  correlated  to  perceived  creaminess  and  viscosity

(Laiho et  al.,  2017; Sonne et  al.,  2014) as well  as stickiness,  oiliness and thickness  (Ng et  al.,  2017;

Nguyen et al., 2017). Similar results correlating creaminess/thickness to rheology/tribology data have

also been found for cream cheese  (Ningtyas et al., 2019). These results come together to show that

correlations do exist and can be achieved by careful consideration of measuring system and protocols.
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5 Conclusions

There has been a recent surge in studies successfully relating tribological measurements to mouthfeel of

food and beverages. The need for (1) fundamental studies to determine underlying mechanisms and (2)

development of  standardised methods and measurement protocols  to increase comparability  across

studies  (and  potentially  improve  correlations  between  sensory  and  tribological  data)  is  becoming

increasingly necessary. Compared to the solid knowledge base and amount of publications using the

MTM,  information  on  fundamental  properties  of  tribological  attachments  on  rheometers  is  sparse

(Shewan et al., 2019). Although some of the knowledge obtained on the MTM is highly relevant and

perhaps  transferrable  to  rheometers,  further  investigations  are  needed  in  order  to  verify  this

assumption.  Based  on  the  above,  several  directions  for  further  potential  investigations  have  been

identified:

- Effect  of  hydrophobicity  (by  incorporation of  saliva,  modification of  surfaces,  comparison of

surfaces from different polymers with different wettability)

- Running-in procedures as a means to reduce variability of measurements

- Differences  between  tribology  attachments  as  well  as  comparisons  of  tribometers  and

rheometers to determine differences in Stribeck curves and analytical sensitivity of different

systems

- Influence of temperature on Stribeck curves

- Potential effects of different cleaning regimes and the chemicals used

- Potential  valuable  information  extracted  by  ramp-up  and  ramp-down  of  speed,  and  the

influence of speed range on measurements

General considerations when choosing a suitable methodology should be based on the aim of the study.

More precisely, whether the measurement parameters and conditions are meant to mimic the in-mouth
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conditions during oral processing as closely as possible, e.g. by using surfaces, speed ranges, normal

force, and temperature etc with similar characteristics to the mouth, or whether the focus should be on

capturing as much data as possible, e.g. wide speed range, with as a high a discriminating power and

reproducibility as possible, e.g. for correlations with sensory and compositional data etc. This trade-off

will influence the possible interpretations of the Stribeck curve, and the data obtained will reflect these

considerations. Naturally, the data analysis and information extraction should be tailored to the specific

aim,  whether  it  be  explanatory  or  predictive  power.  Figure  6  gives  a  graphical  representation  of

parameters to consider at each step of planning a tribological study. 

For better comparability between studies, it is recommended to:

- Conduct  preliminary  studies  to  determine best  speed range,  running-in  procedure,  cleaning

regime

- Report  in  detail  on  production method of  surface  polymers,  cleaning  regime,  temperature,

running-in procedure, and method of speed ramp

- Use surfaces with standardised characteristics and in the case of in-house made surfaces report

surface roughness, wettability and Elastic modulus

- Gather  as  much  data  as  possible  on  the  samples  to  provide  high  statistical  power,  and

potentially  conduct multivariate data analysis  on friction data alone (to eliminate redundant

variables and identify relevant variables/friction regimes) and in conjunction with other data

collected
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Figure 6: Graphical representation of suggested flow chart highlighting important steps and considerations at each step.
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Chapter II Development  of  a  tribology  method  and

correlation with sensory data from an online database

1 Introduction

The  mouthfeel  of  any  beverage  is  an  important  indicator  of  acceptance  and  liking  by  consumers

(Guinard & Mazzucchelli, 1996), and beer is no exception. Current trends in the beer market are the

continuing  rise  and  increasing  market  share  of  craft  breweries  (BA,  2019;  ICBI,  2018) with  an

accompanying demand for beers with more complex sensory attributes than the traditional lager beer

(Gabrielyan et al., 2014; Thurnell-Read, 2018), as well as increasing interest in non-alcoholic beers (NAB)

and low-alcoholic beers (LAB) (Bellut & Arendt, 2019). The choice of beer by consumers is influenced by

a  number  of  factors,  ranging  from  extrinsic  factors  such  as  brand,  price,  alcohol  content;

sociodemographic and cultural  background; biological,  genetic, and psychological  characteristics;  the

context and environment of consumption;  as well as product-intrinsic factors such as sensory attributes

of  the beer  (Betancur  et  al.,  2020).  In  the context  of  NABs,  mouthfeel  is  often described as  being

deficient, especially in NABs produced by physical dealcoholisation processes (Krebs et al., 2019; Malfliet

et al., 2009; Müller et al., 2017; Schmelzle et al., 2013). The mouthfeel of beer is attributed to a diverse

number of beer constituents and can be modified by changing ingredients and processing method. The

content of ethanol has a significant impact on the perception of mouthfeel, as exemplified by research

on NABLABS  (Krebs et  al.,  2019;  Ramsey et  al.,  2018).  In addition,  polyphenols  (Goiris  et  al.,  2014;

Wannenmacher  et  al.,  2018),  dextrins  (Rübsam  et  al.,  2013),  chloride  ions,  glycerol,  beta-glucan

(Langstaff et  al.,  1991a),  proteins  (Langstaff & Lewis,  1993;  Steiner  et  al.,  2012),  and  arabinoxylan

(Langenaeken et al., 2020) are key contributors to mouthfeel of the final product. The concentration of

these compounds can be altered by, e.g.  brewing with adjuncts  (Bellut  et  al.,  2019) or altering the

mashing profile (Krebs et al., 2020), but will also be altered by the dealcoholisation process (Krebs et al.,
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2019; Müller et al., 2017). In the search for innovative products using novel ingredients or production

methods, rapid screening protocols of prototypes are often required to circumvent costly and time-

consuming sensory trials. Recent years has seen a rise in the use of various experimental approaches to

quantifying mouthfeel using a combination of techniques often including tribology in combination with

rheology and chemical characterisation  (Fox et al., 2020; Sarkar & Krop, 2019; Shewan et al., 2019).

Mouthfeel  is  a  complex  sensory  percept  elicited by  physical,  tactile  sensations as  governed  by  the

interaction between the food or beverage and the surfaces found in the oral cavity (Sarkar et al., 2019).

In the early 1990s, pioneering work (Langstaff & Lewis, 1993; Langstaff et al., 1991a, 1991b) explored

the mouthfeel of beer and proposed a modification of the position of mouthfeel, previously placed as a

subcategory  under the headings aroma and taste  (Meilgaard et  al.,  1979),  in a  category of  its  own

(Langstaff et al., 1991b). Furthermore, mouthfeel was divided into three main classes: 1. Carbonation;

sting,  bubble  size,  foam volume and  total  carbon dioxide  2.  Fullness;  density  and  viscosity,  and  3.

Afterfeel;  oily  mouthcoating,  astringency and stickiness.  A  further  modification was  proposed more

recently, with an emphasis on clearer communication with consumers (Schmelzle, 2009): 1. Mouthfeel;

tingly, warming, astringent, pungent, 2. Body; density, viscosity and 3. Foam; volume and structure. 

The purpose of the present research is to 1. Determine the chemical composition as well as pH, total

titratable acids (TTA) and extract of 10 beers, 2. Develop a method for measuring frictional parameters

of beers and NABs, and 3. Analyse the tribological characteristics of the selected beers. 

2 Methods

A shotgun-approach was used, whereby as many variables as possible were extracted from the friction

curves and then the number of variables was reduced by various dimension reduction techniques: PCA,

clustering and Spearman's correlation. Secondly,  sensory data from an online database on these 10

beers were collected and used to 1) compile keywords chosen by consumers to describe mouthfeel of
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beer and 2) conduct multivariate data analysis to examine correlations between physical and chemical

characteristics and mouthfeel of the beers.

2.1 Beer samples

A range of different styles of beers was selected based on availability of a non-alcoholic counterpart

aimed at mimicking as closely as possible the alcoholic version. Five different beers; Heineken (lager),

Krombacher  Pilsner,  Leffe  blond  (Belgian  lager),  Hoegaarden  witbier  (wheat  beer),  and  Paulaner

hefeweiss  (wheat  beer)  and  their  non-alcoholic  version  were  chosen  representing  different

dealcoholisation processes.  Samples were prepared by degassing  for  10 mins  in  an ultrasonic  bath,

followed by filtering through Whatman™ filter paper grade 1 (Merck, Darmstadt, Germany). Filtering

was done to remove any residues, e.g.  lees, from the beers in order to be able to perform further

analysis. While this will inevitably have an impact on the mouthfeel of the samples, it is assumed that

this is negligible.

2.2 Characterisation of beers

2.2.1 Sugars and acids

Sugar  contents  of  the  beers  were  determined  by  high  performance  liquid  chromatography  (HPLC)

Agilent 1260 Infinity (Agilent Technologies,  Santa Clara CA, U.S.A.)  equipped with a refractive index

detector (RID) and a Sugar-Pak I 10 mm, 6.5 mm by 300 mm column (Waters, Milford MA, U.S.A.) with

0.1 mM of Ca-EDTA as the mobile phase and a flow rate of 0.5 mL/min at 80  °C. Organic acids were

quantified by HPLC (Waters 2690 Separations Module, Waters, Milford MA, U.S.A.) with diode array

detector (Agilent Technologies, Santa Clara CA, U.S.A.) with 5mM (DAD) and a Hi-Plex H 8 mm, 7.7 mm

by 300 mm column with 5 mM H2SO4 as the mobile phase and a flow rate of 0.5 mL/min at 60 °C.
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2.2.2 pH, TTA, extract and ethanol content

Total  titratable acidity and pH was measured on an EasyPlus™ Titration (Mettler  Toledo, OH, USA).

Extract and alcohol content were measured using a density meter DMA 4500M with an Alcolyzer Beer

ME (Anton Paar GmbH, Graz, Austria). 

2.2.3 Viscosity

Dynamic viscosity measurements were performed using a Haake falling ball viscometer Type C (Thermo

Fisher Scientific, MA, USA) according to MEBAK method 2.25.1.

2.3 Tribology

Tribological measurements were carried out using an MCR301 using the BC-12.7 ball-on-3-pins tribology

attachment (Anton Paar GmbH, Graz, Austria). Tribopairs, glass balls and PolyDiMethyl Siloxane (PDMS)

pins, were supplied by Anton Paar (Pondicherry et al., 2018). The choice of surface, as well as cleaning

regime and test configuration, was based on Kieserling et al. (2018). Briefly, new tribopairs were used

for each test; a test consisted of a run-in period and three consecutive measurements of friction curves.

Before each test, the pin-holder and ball-holder were washed gently using a dilute detergent solution,

rinsed  thoroughly  with  demineralised  water  and  wiped with  70% ethanol  before  being  dried  using

compressed air. Tribopairs were rinsed twice in acetone and dried with lab-wipes before being dried

using compressed air and subjected to a final visual examination. 

The following measuring system parameters were used: Trurate™ was set at 80%, normal force dynamic

of 50% was chosen, and range limitation was set at 150 mN*m. All  measurements and run-in were

performed  at  a  normal  force  of  3  N  and  a  temperature  of  20  °C.  Measuring  system  inertia  was

calibrated, and normal force was set to zero before each test. The glass ball was lowered slowly until the

desired  normal  force  was  reached  and  then  held  for  2  mins  for  equilibration.  A  run-in  sequence

consisting of  5 speed steps logarithmically  increasing from 10 -4-100 m/s (5 mins at each speed) was
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employed, followed by a resting period of 2 mins. For each sample, three consecutive measurements of

friction  curves  were  performed using  stepwise,  logarithmic  increases  in  speed  (from  10 -8-100 m/s),

recording 80 data points with logarithmically decreasing ramps in data recording intervals (from 10-1 s).

Between each measurement, a rest of 90 s was employed. The two last runs of each test were used for

further analysis, and each sample was measured in independent triplicates.

Figure 7: Overview of variables extracted from the friction curves and the friction regimes identified for the beers. s_slope: linear

slope of the static regime; s_f and s_s; friction and speed at the end of static regime; s_area: area under the curve of static

regime; b_slope and b_intc: slope and intercept of logarithmic trendline of boundary regime; b_f and b_s: friction and speed at

the end of boundary regime; b_area: area under the curve of boundary regime; b1-5: parameters of 4th-degree polynomial

fitted to boundary  and mixed0; m0_co and m0_exp: coefficient  and exponent  of  power law fitted trendline of  the mixed0

regime; m0_area: area under the curve of mixed0; p_f and p_s: friction and speed at the start of plateau; p_area: area under

the curve of plateau; ratio_bp: ratio of b_f/p_f; p_mean: mean friction in plateau; m1_slope and m1_intc: slope and intercept of

logarithmic trendline of mixed1; m1_f and m1_s: friction and speed at the beginning of mixed1; m1_area: area under curve of

mixed1; m2_f and m2_s: friction and speed at the beginning of mixed2.
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Data processing and extraction of relevant variables were carried out in excel. Figure 7 describes which

parameters for each regime were extracted. These include the friction factor and speed at transition

points between regimes; parameters obtained by fitting a trendline to each regime as appropriate, i.e.

linear, logarithmic, polynomial, exponential or power-law; the area under the curve of each regime,

obtained  by  manual  integration  of  the  curves;  as  well  as  the  ratio  between  the  maximum  of  the

boundary regime and onset of the plateau after the first mixed regime period. 

The obtained variables were then subjected to PCA (supplementary figure 1). After inspection of the

screeplot (supplementary figure 2) PCs 1 and 2 were retained, accounting for 52.21% and 15.52% of

variation,  respectively.  Variables  with  high  quality  of  representation  (Cos2)  on  PCs  1  and  2

(supplementary figure 3) were considered for further use and subjected to cluster analysis. Based on

clustering (supplementary figure 4) using the varclus function (hierarchical clustering, complete linkage)

based on the similarity matrix of Hoeffding's D statistic to account for monotonic and non-monotonic

relationships  from  Hmisc  package  (Harrell  Jr  &  Others,  2020),  variables  were  grouped  and,  after

inspecting  the  correlation matrix  (Spearman's  rho)  of  tribology  variables  alone  as  well  as  tribology

variables with sensory data (supplementary figures 5 and 6), variables describing the same quality and

exhibiting  the  same  pattern  of  correlations  were  further  grouped  for  ease  of  interpretation  and

reduction of redundancy. 

2.4 Sensory data

Sensory  data  was  collected  from  www.ratebeer.com,  a  website  that  provides  a  free  platform  for

submitting and viewing reviews of beers. For each beer between 28-191 reviews were used depending

on availability. This number was chosen to avoid a disparate number of observations between beers as

some of the beers (especially the NABs) had a relatively low number of reviews (~30). The selection
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criteria for the reviews were the number of reviews submitted by the reviewer. This choice was made on

the assumption that reviewers with a high number of reviews were more likely to 1) have a vested

interest in providing accurate and meaningful reviews, i.e. to maintain their reputation and be respected

by  their  fellow  beer-reviewers  and  2)  be  competent  beer-tasters  with  experience  and  ability  to

accurately assess and describe mouthfeel (Giacalone et al., 2016; Van Doorn et al., 2020). 

The written reviews were converted to a text corpus and uncluttered by removing common English stop-

words (e.g. and, or, if etc.), numbers, white space, punctuation, and words were lemmatised (Welbers et

al., 2017). Lemmatisation is the process of grouping together inflected words (e.g. "pours", "pouring"

and "poured" are reduced to the root-word, or lemma, "pour") according to a dictionary of English. This

process is not always perfect and sometimes leaves words with the same lemma in the corpus as can be

seen  in  table  3  below  (e.g.  "sour"  and  "sourness").   The  reviews  were  then  converted  into  a

DocumentTermMatrix (DTM): a matrix where rows are reviews and columns are words, and each cell

contains the frequency (e.g. 1, 2, 3 etc.) of a given word in that review. A list of  32 terms commonly

used  to  describe  or  associated  with  mouthfeel  of  beer  was  created  based  on  literature  findings

("mouthfeel",  "mouth",  "feel",  "body",  "bodied",  "aftertaste",  "taste",  "water",  "watery",  "smooth",

"creamy",  "palate",  "light",  "heavy",  "thin",  "thick",  "crisp",  "clean",  "clear",  "foamy",  "carbonation",

"head",  "full",  "flat",    "warm",  "round",  "oily",  "astringent",  "astringency",  "texture",  "foam",

"carbonate") (Guinard & Mazzucchelli, 1996; Langstaff et al., 1991b; Schmelzle, 2009A function designed

to find associated words, the 'findAssocs' function from tm-package (Feinerer & Hornik, 2019), searched

the DTM for mouthfeel associated terms, resulting in a total of 2202 descriptors. After filtering for words

with a frequency higher than 10, a total of 300 words remained. These were manually cropped to 49

words by removing words not holding any association with mouthfeel. This list was then checked for

correlation  to  mouthfeel  by  only  retaining  words  significantly  correlated  (p  <  0.05)  to  words  with

"neutral" mouthfeel connotations, e.g. "body", "mouth", "mouthfeel", "bodied", "aftertaste", "tongue",
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"palate", as well as the numeric mouthfeel rating and further reduced to 23 distinct terms by removing

ambiguous terms, e.g. "finish", "palate", "mouthfeel" etc.. These terms were clustered using the varclus

function,  based  on  Hclust.method,  from  Hmisc  package  (Harrell  Jr  &  Others,  2020) to  produce  a

dendrogram (figure 14). 

Figure 8: Dendrogram displaying similarities (Spearmans Rho2) between mouthfeel terms. 

Based on these relationships and at the discretion of the authors, the terms were grouped into 7 overall

mouthfeel attributes: "watery", "smooth", "bitter", "thick", "foam", "astringent", and "sour" (table 3).

Perceived bitterness and sourness and related terms were included even though they technically fall

under  the  category  of  taste,  as  consumers  often  use  these  words  to  describe  the  sensation  of

astringency (Vidal et al., 2015). 

Water

y
0.25

Smoot

h
0.23 Bitter 0.29 Thick 0.12 Foam 0.15 Astringent 0.03 Sour 0.08

Thin 0.11 Smooth 0.07 Bitter 0.16 Dense 0.02 Foamy 0.03 Astringent 0.005 Sour 0.04

Watery 0.11 Creamy 0.09 Bitterness 0.13 Full 0.02 Bubbly 0.02 Dry 0.02 Sourness 0.01
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Water 0.02 Soft 0.07 Heavy 0.02 Bubble 0.02 Dryness 0.01 Sourish 0.01

Flat 0.01 Oily 0.01 Thick 0.05 Frothy 0.05 Sharp 0.01

      Thickness
0.00

1
Fizzy 0.03    

Table 3: Relevant mouthfeel descriptors and their frequencies.

2.5 Statistics and R-packages

Statistical  analysis  was  done  using  R-studio  (RStudioTeam,  2020).  For  text-mining,  the  package  tm

(Feinerer & Hornik, 2019) was used. For Principal Component Analysis (PCA), the packages FactoMineR

(Lê et al.,  2008) and factoextra  (Kassambra & Mundt,  2020) were used. Evaluation, processing, and

extraction of tribological  parameters (min/max, mean, area under curve, trendline fitting) was done

using Excel. Trendlines; linear, polynomial, power, logarithmic or exponential, were fitted manually to

the friction curves by determining beginnings and ends of regimes and excluding values at either end

until an R2 > 0.95 was achieved. Analysis of variance was, where relevant, followed by Tukey's test in R

using the agricolae package (de Mendiburu, 2020). For all analyses, where relevant, a significance level

of p < 0.05 was applied. 

3 Results and discussion

3.1 Chemical and physical data

Table  5  summarises  the  chemical  and  rheological  data  on  the  10  beers.  Information on  the  exact

method of de-alcoholisation is not freely available for all the beers included but based on the chemical

data, some educated guesses can be made. The glycerol content of Heineken NA is low, indicating that

this beer was produced by limited fermentation. According to the Heineken website, it is double-brewed

followed by vacuum-distillation and blending with natural flavourings. All the NABs have <0.1 % ABV

except for Paulaner NA with 0.4 % ABV, indicating that this NAB was possibly made by blending a de-

alcoholised beer with a normally  brewed beer.  The low content of  fermentable  sugars  in Leffe NA

indicates  that  this  was  fully  fermented  and  then  de-alcoholised,  while  both  Krombacher  NA  and
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Hoegaarden NA were possibly blended after being fully fermented and de-alcoholised. The beers are

very  different  in  viscosity,  ranging  from 1.2  for  Heineken  NA to  1.7  for  Leffe  NA.  Interestingly,  no

correlation was found between pH and TTA or between TTA and citric acid or lactic acid concentration

(table 4), which could be related to the buffering capacity, either naturally occurring or altered, of the

worts/beers (Peyer et al., 2017).

Table 4: Correlation matrix (Pearson r) of chemical data. tta: Total Titratable Acids; rex: Real extract; oex: Original extract; abv:
Alcohol by volume (%); suc.mal: Sucrose/maltose; glu: Glucose; fru; Fructose; man: Mannitol; cac: Citric acid; lac: Lactic acid;
glyc: Glycerol. Numbers in bold are statistically significant (p < 0.05).

pH tta rex oex abv suc.mal glu fru man cac lac glyc

pH 1.00 0.03 -0.53 -0.58 -0.20 0.16 -0.12 -0.15 -0.24 -0.20 0.40 -0.49

tta 1.00 -0.18 0.24 0.27 -0.16 0.12 0.19 0.53 0.01 0.02 0.04

rex 1.00 -0.31 -0.70 0.36 0.73 0.63 -0.08 -0.13 0.06 0.12

oex 1.00 0.90 -0.54 -0.43 -0.29 0.47 0.31 -0.48 0.51

abv 1.00 -0.57 -0.66 -0.51 0.39 0.29 -0.39 0.32

suc.ma

l
1.00 0.14 -0.13 -0.69 -0.79 0.66 -0.16

glu 1.00 0.96 0.06 -0.07 0.08 0.09

fru 1.00 0.27 0.15 -0.10 0.12

man 1.00 0.59 -0.46 0.11

cac 1.00 -0.73 -0.24

lac 1.00 -0.36

glyc 1.00
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Beer pH TTA Lactic acid Citric acid
Sucrose/

maltose
Glucose Fructose Mannitol Glycerol % ABV Real extract

Original

extract
Viscosity

Heineken
4.6±0.0

6
1.6±0.03 0.0±0.0 0.3±0.0 0.7±0.0 0.0±0.0 0.1±0.01 0.8±0.01 0.4±0.0 4.2±0.0 3.1±0.0 9.5±0.0 1.3±0.0

Heineken NA
4.6±0.0

4
1.9±0.02 0.4±0.0 0.3±0.0

10.6±0.0

1
2.2±0.0 1.1±0.01 0.8±0.0 0.1±0.0

0.1±0.0

1
5.2±0.0 5.3±0.01 1.2±0.0

Hoegaarden
4.4±0.0

1
1.9±0.03 0.4±0.0 0.2±0.01 0.7±0.0 0.0±0.0 0.1±0.0 1.1±0.0 0.4±0.0 5.3±0.0 4.3±0.0 12.4±0 1.4±0.01

Hoegaarden NA
4.4±0.0

6
2.4±0.1 0.2±0.0 0.2±0.01 2.2±0.01 14.6±0.02 13.3±0.02 1.3±0.0

0.4±0.0

1

0.0±0.0

1
7.6±0.0 7.7±0.01 1.3±0.0

Krombacher
4.4±0.0

1
2.2±0.08 0.1±0.0 0.3±0.0 1.3±0.0 0.0±0.0 0.1±0.0 0.8±0.0 0.4±0.0 5.4±0.0 3.8±0.0 12.0±0.01 1.4±0.0

Krombacher

NA

4.4±0.0

7
1.8±0.03 0.4±0.01 0.0±0.0

25.9±0.0

2
6.2±0.01 2.3±0.0 0.1±0.0 0.4±0.0

0.1±0.0

1
7.8±0.0 7.9±0.01 1.4±0.0

Leffe
4.1±0.0

2
2.1±0.15 0.0±0.0 0.3±0.0 2±0.0 2.0±0.01 1.9±0.01 1.4±0.0 0.4±0.0

6.9±0.0

1
6.0±0.0 16.2±0.01 1.5±0.03

Leffe NA
4.1±0.0

5
1.5±0.05 0.0±0.0 0.3±0.04 0.3±0.0 6.7±0.01 6.0±0.0 1.0±0.0 0.4±0.0

0.0±0.0

2
9.6±0.01 9.7±0.04 1.7±0.01

Paulaner
4.4±0.0

1
2.4±0.06 0.1±0.0 0.2±0.01 0.9±0.0 0.0±0.02 0.1±0.01 1.3±0.0 0.4±0.0

5.6±0.0

2
4.5±0.01 13±0.02 1.6±0.01

Paulaner NA
4.4±0.0

1
2±0.05 0.2±0.0 0.1±0.0

18.7±0.0

1
2.7±0.0 0.7±0.0 1±0.01 0.4±0.0

0.4±0.0

1
7.0±0.0 7.7±0.01 1.5±0.01

Table 5: Chemical data and viscosity of the beers. TTA is presented as mL NaOH/10 mL sample; lactic acid, citric acid, sucrose/maltose, glucose, fructose, mannitol and glycerol 

are presented in g/L; % ABV is per cent alcohol by volume; extracts are presented in ° Plato; viscosity (dynamic) is presented in mPa*s.
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3.2 Tribology

For the static regime, the intercept was excluded from analysis as this parameter is zero in all cases

(table 6); for the plateau, no trendline was fitted because of the large fluctuations in friction leading to

low R2; for the mixed regime, no trendline was fitted because of too few data points. A large number of

variables were eventually grouped under mean friction of the plateau (p_meanf). Additionally, m2_s

was retained despite a low cos2 based on its' correlation with astringency.

Table 6: Overview of variables retained from friction curves.

Retained Overlap
Dropped (low

Cos2)

s_slope s_s b_slope

b1-4

m0_exp

m0_co 

m1_s

m1_area

 

b_intc b_area

p_meanf p_area, m1_f, 

s_area, s_f, b_f,

b_s, ratio_bp, 

b5, m0_area, 

p_f, p_s
m1_slop

e

m1_intc

m2_s m2_f

A general trend is that NABs have lower overall friction coefficients than their alcoholic counterpart. The

wheat-beers, normal and NA all exhibited high lubricating properties while Krombacher, normal and NA,

Heineken, normal and NA, and Leffe, normal, have high friction coefficients. Leffe NA positions itself in

the middle and as such confirms itself as an outlier according to tribological measurements as well as

sensory data (section 3.3).  The tribological profile of the beers differs from that of the classic Stribeck

curve in several ways. The classic Stribeck curve is commonly divided into boundary, mixed and elasto-

hydrodynamic regimes  (Sarkar et al., 2019). The present curves include the static regime as well as a

mixed regime not immediately conforming to the norm. In the static regime, friction increases linearly;

note  that  the x-axis  of  the graph shown is  logarithmic,  due to the frictional  resistance of  the two
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contacting surfaces until a distinct "break-away"-point occurs, the limiting friction  (Pondicherry et al.,

2018), and the boundary regime starts. The friction coefficient continues to rise as more and more of the

sample is entrained between the surfaces, until enough has been entrained that the surfaces do not

touch. The mixed regime seems to be divided into distinct sections: the first part starts at the maximum

of the boundary regime and ends with the onset of what the authors of this paper have dubbed the

plateau. Indeed, if the obtained friction curves were analysed only in the speed range 10 -5-10-3 m/s, one

could argue that the onset of the plateau is the beginning of the elasto-hydrodynamic regime. The first

"hump", or stick-slip event, in the plateau seems to be a characteristic of the measuring system, rather

than something related to the actual samples, as it occurs at almost the same speed across samples.

Whether this is a property of beer or the measuring system needs to be verified by further research. The

plateau ends, and the second mixed regime starts. In the present analysis, this second mixed regime is

separated into m1 and m2 based on the logarithmically falling nature of the curve, until it breaks and

starts to flatten. 
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Figure 9: Frictional parameters of the measured beers (error bars indicate standard deviation).
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Based on friction curve variables, the beers divide into two clusters, with the wheat beers on one side

and lagers/pilsner on the other side (Fig 16). Comparing the two graphs, it is evident that the mixed

regimes describe the Hoegaarden, normal and NAB, while Paulaner, normal and to some extent NAB, is

described by s_slope. It  is also evident that viscosity is important,  as the beers align themselves on

either side along the axis of this variable.

  

Figure 10: Individuals plot and variables plot of retained tribology variables and viscosity.

3.3 Sensory data

3.3.1 Initial analysis

The preliminary question to answer regarding this dataset is its' validity and credibility. Given that the

origin  of  the  data  is  online  and  the  reviews  are  anonymous,  controlling  for  bias;  age,  gender,

socioeconomic background etc., is impossible, and the purpose and intention; e.g. economic interests,

of the reviewer in providing the review is unknown. The maintainers of the website, however, conduct

strict  quality  control  to  ensure that  all  reviews are  authentic;  fraudulent  reviews and accounts  are

deleted,  and  ratings  by  brewers  or  brewer  affiliates  of  their  own  products  are  strictly  forbidden

(Ratebeer.com, 2020). 
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Any bias introduced as a consequence of effects of number of reviews by reviewers as well as the time

of reviewing, e.g. changes in the product over time, were excluded by correlating these two variables

with all  other relevant variables and calculating Pearson's r which, in all  cases, were either low (r <

[0.23]) or insignificant (p < 0.05) (table 7). Flavour and aroma are highly positively correlated (r > 0.8)

with  overall  rating,  mouthfeel  is  highly  correlated  (r  =  0.72)  while  appearance  (r  =  0.51)  seem  to

contribute less to the overall score. This is in line with findings by Van Doorn et al. (2019), who found

that appearance has only moderate influence on other sensory rating terms (e.g. flavour, taste, aroma). 

Table  7:  Correlation  matrix  (Pearson's  r)  of  numeric  sensory  variables,  average  number  of  reviews  by  reviewers  pr  beer
(rev_no_revs) and average year of reviewing pr beer (year). Numbers in bold are statistically significant (p < 0.05).

appearance mouthfeel aroma flavour overall rev_no_revs year

appearance 1.00 0.53 0.50 0.49 0.51 -0.01 -0.04

mouthfeel 1.00 0.63 0.71 0.72 0.11 -0.21

aroma 1.00 0.83 0.82 0.09 -0.18

flavour 1.00 0.88 0.10 -0.21

overall 1.00 0.09 -0.23

rev_no_revs 1.00 -0.34

year 1.00

Given that the average number of reviews by reviewers is 5377.1±6427.4 at its lowest (Leffe, NA) and

14593.1±7561.6 at its highest (Hoegaarden), it  is very likely that most reviewers in this study would

consider  themselves  beer-experts  or  -connoisseurs;  however,  the  level  of  beer  expertise  does  not

necessarily correlate with an increased ability to distinguish between beers, i.e. perceptual abilities, but

rather raises the specificity of the sensory terminology (Giacalone et al., 2016; Van Doorn et al., 2020).

As part of the aim of this work is to break down an encompassing sensory attribute, mouthfeel, into

several specific attributes, the ability to verbalise sensory perceptions is considered as necessary. The

selection of reviews by beer-experts does however potentially introduce a certain amount of bias; beer-

experts generally preferring stronger, more complex beers and they tend to rate in more extreme terms,

i.e. liked beers are rated higher and disliked beers rated lower as compared to a rating by a beer novice

(McAuley & Leskovec, 2013). This raises the possibility that the lighter lagers will generally be rated
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lower than, e.g. the wheat beers. This is also exemplified by a brief look at the highly rated beers section

on ratebeer.com: most are dark beers or sour beers, e.g. lambics, Berliner Weisse, melomels/fruited

beers, and there is no mention of pilsners or lagers  (Ratebeer.com, 2020). Another source of bias is

brand recognition; the possibility that beers from certain producers, i.e. conglomerate breweries, will be

rated based on brand recognition and sentiments towards that particular brand rather than sensory

quality.  In  terms  of  geography,  the  USA accounts  for  23.6% of  the  reviews  followed  by  Denmark,

England and the Netherlands (figure 17).
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Figure 11: Country of origin of reviewers (%).

All of the non-alcoholic beers are rated similarly and group with Heineken as having a low mouthfeel

rating.  Paulaner  and  Hoegaarden  both  have  high  mouthfeel  ratings  with  Leffe  and  Krombacher

following. Despite reportedly being brewed with the same ingredients as the alcoholic version, all the

NABs have low mouthfeel scores. The three pilsner/lager style beers, in increasing order, Heineken,

Krombacher,  Leffe,  were  rated  relatively  low.  Interestingly,  Leffe  NA with  its'  low concentration of

fermentable sugars (indicating higher degree of attenuation) (Table 8) is the highest rated NAB. 
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Table 8: Summary of the numeric sensory ratings of the beers as well as the mean number of reviews per reviewer. Mouthfeel
and appearance are rated on a scale of 1-5, aroma and flavour on a scale of 1-10 and overall on a scale of 1-20. Different letters
in superscript signify significant differences (p < 0.05).

Beer N

Mouthfee

l Aroma Flavour Appearance Overall

Mean number of

reviews

Heineken 191 2.3±0.6d 3.8±1.3e 4.1±1.2d 2.5±0.7f 7.9±2.7f 13925.9±7569.8a

Heineken NA 151 2.1±0.8d 4.1±1.4e 4.1±1.5d 2.7±0.9ef 8.1±2.8ef 8056.2±8548.1b

Hoegaarden 190 3.4±0.7ab 6.8±1.0a 6.7±0.9ab 3.5±0.8ab 13.9±2.0a 14593.1±7561.6a

Hoegaarden NA 73 2.2±0.6d 4.8±1.3cd 4.2±1.4d 2.8±0.6ef 8.2±2.9ef 8729.2±9725.6b

Krombacher 190 2.9±0.6c 5.2±1.0c 5.3±1.1c 3.1±0.7d 10.7±2.2c 12563.4±8079.9a

Krombacher NA 121 2.3±0.8d 4.1±1.4e 4.2±1.6d 2.9±0.9de 8.1±3.4ef 7550.6±9812.3b

Leffe 190 3.2±0.6b 6.4±1.0b 6.4±1.1b 3.4±0.6bc 13.0±2.2b 14566.9±7633.3a

Leffe NA 28 2.4±0.7d 5.1±1.5cd 5.1±1.3c 3.0±0.8de 9.9±3.0cd 5377.1±6427.4b

Paulaner 191 3.5±0.6a 6.8±1.0a 6.9±0.9a 3.6±0.7a 14.0±1.9a 14439±7655a

Paulaner NA 169 2.3±0.7d 4.6±1.2d 4.3±1.2d 3.2±0.7cd 8.8±2.6de 8903.5±9150.4b

3.3.2 Text-mining of reviews

The  numeric  sensory  descriptor  mouthfeel,  although  valuable,  only  holds  information  on  the

liking/rating of mouthfeel as understood by each individual reviewer. The guidance from ratebeer.com

on the rating of mouthfeel is as follows: "The body of the beer, carbonation and astringency" with no

further indications or explanations. In order to further analyse mouthfeel and separate it  into more

descriptive  terms,  the  individual  reviews  were  analysed  by  text-mining  (section 2.5).  An  important

limitation to the text-mined dataset is that as each word is analysed on its' own, the context in which it

is used gets lost. This means that the use of the word watery does not necessarily mean that the beer in

question is actually watery, as the connotation of the word can be drastically altered by a conjunction,

i.e. not watery (Stavrianou et al., 2007). The basic assumption in this analysis is therefore that the higher

the frequency, the higher the likelihood that the word in question is used to directly describe the beer.
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Figure 12: Wordclouds and individuals plot from PCA. Starting from Paulaner and moving clockwise, numeric mouthfeel rating

decreases

As previously stated, the reviews were reduced to first 23 terms and then clustered together to give 7

overall mouthfeel attributes. Using the non-clustered list, wordclouds were created for each beer and

centred around the individuals plot from PCA on this data set (Figure 18). The relative size of the words

within a wordcloud gives some indication of the relative frequencies of the words used to describe that

beer but is not directly comparable between beers. From the wordclouds, some relationship between

mouthfeel  descriptors  and  mouthfeel  rating  is  evident;  starting  with  Paulaner,  mouthfeel  rating

decreases clockwise. Firstly, it is evident that the non-alcoholic beers are positioned on the left-hand
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side, low mouthfeel rating, with terms such as "watery" and "thin" dominating, while on the right side

terms such as "creamy" and "smooth" are more pronounced. Two outliers can be identified; Heineken,

although alcoholic, clearly groups together with the non-alcoholic beers, while Leffe NA groups closer to

the alcoholic beers than to the non-alcoholic versions. Figure 18 also illustrates the difficulty in directly

extrapolating the use of a word with a positive or negative mouthfeel score, as bitterness and bitter

seem almost ubiquitous and the terms "watery" and "thin" are relatively frequently used to describe

Paulaner  and  Hoegaarden,  even  though  these  beers  scored  the  highest  in  terms  of  mouthfeel.

Krombacher is an outlier in terms of descriptive mouthfeel terms, being described mainly as "bitter", but

also "watery" and "thin", yet scoring higher in mouthfeel than other beers described similarly, i.e. the

NABs). 

Table 9: Correlation matric (Spearman's rho) of numeric mouthfeel rating (mouthfeel) and sensory descriptors. Numbers in bold
are statistically significant (p < 0.05).

mouthfeel watery smooth bitter thick foam
astringen

t
sour

mouthfeel 1.00 -0.85 0.71 -0.05 0.65 -0.05 0.71 -0.01

watery 1.00 -0.71 0.16 -0.68 -0.05 -0.68 0.20

smooth 1.00 -0.32 0.78 -0.38 0.53 0.26

bitter 1.00 -0.25 0.68 0.42 -0.64

thick 1.00 0.05 0.53 -0.14

foam 1.00 0.39 -0.84

astringent 1.00 -0.33

sour 1.00

Table 9 presents the correlation matrix (Spearman's rho) of the descriptive mouthfeel variables. A strong

negative  correlation occurred  between "watery"  and  overall  mouthfeel  rating,  while  "smooth"  and

"thick" are positively correlated with mouthfeel rating. These results confirm those of  Malfliet et al.

(2009) who found that non-alcoholic beers with high perceived fullness were generally preferred by a

taste  panel.  As  expected,  both  "smooth"  and  "thick"  are  negatively  correlated  with  "watery".  The

positive  correlation  between  "foam"  and  "bitter"  is  also  expected  because  of  the  well-established

relationship  between hops  bitter  compounds  and their  role  in  foam stability  (Ferreira  et  al.,  2005;
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Hughes,  2000).  The  correlation  of  "smooth",  "thick"  and  "watery"  to  "astringency"  seems  more

circumstantial than causal, while the positive correlation (although smaller) of "astringency" to "bitter"

and  "foam"  is  expected.  The  negative  correlation  of  "sour"  to  "bitter"  and  "foam"  and  the  non-

significant correlation with astringency seems to confirm, rather than disprove, the assumption that

"sour" is sometimes wrongly used to describe perceived astringency: if a reviewer describes a beer as

sour with the intention of describing astringency, then it is unlikely that the reviewer will also use the

word  astringent.  The  negative  correlation  with  "bitter"  can  be  explained  by  the  fact  of  mutual

exclusivity, i.e. if a reviewer describes something as sour with the intention of describing bitterness or

astringency, then it is unlikely that all three words will appear in the same review. 

3.4 Link between sensory and physical and chemical parameters

Comparison of the current results with literature is  complicated by a number of factors, namely ; 1)

tribological measurements and their output are heavily dependent on the system parameters, i.e. the

measured sample, the measuring system, and the surfaces used, making comparison between studies

challenging at best (Fox et al., 2020; Sarkar & Krop, 2019; Shewan et al., 2019), 2) no published literature

involving beers and tribology exist, and 3) the sensory data is uncontrolled and unsupervised, in contrast

to many existing studies comparing sensory perception to tribology where trained sensory panels are

often used (Sarkar & Krop, 2019). 

s_slope b_intc p_meanf m1_slope m2_s viscosity mouthfeel

mouthfeel 0.59 -0.48 -0.40 0.28 -0.16 0.65 1.00

watery -0.32 0.24 0.34 -0.26 0.17 -0.49 -0.85

smooth 0.52 -0.46 -0.58 0.45 -0.07 0.58 0.71

bitter -0.17 0.24 0.75 -0.79 -0.73 -0.05 -0.05

thick 0.52 -0.63 -0.42 0.31 -0.19 0.72 0.65
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foam -0.24 0.15 0.69 -0.68 -0.57 0.01 -0.05

astringent 0.24 -0.30 0.14 -0.30 -0.64 0.61 0.71

sour 0.20 -0.21 -0.60 0.56 0.60 -0.02 -0.01
Table 10: Correlation matrix (Spearman's rho) of tribology variables and viscosity versus mouthfeel descriptors (numeric rating

and sensory descriptors). Numbers in bold are statistically significant (p < 0.05).

Table 10 presents correlation coefficients (Spearman's rho) between selected friction curve parameters

and sensory attributes of the 10 beers. Starting from the top, the numeric mouthfeel parameter is highly

correlated with the slope of the static regime as well as viscosity but less correlated with b_intc and

p_meanf. It is perhaps not surprising that viscosity is negatively correlated with "watery" and positively

correlated with "thick" which is in line with results obtained by He et al. (2016) and Kokini et al. (1977).

The  static  regime  is  a  relatively  underexplored  area  of  friction  curves,  having  only  recently  been

introduced (Pondicherry et al., 2018). The slope of the static regime is correlated with the "break-away"

point", signifying the beginning of boundary lubrication. The lower the slope, the less energy is needed

to commence movement of the tribopairs and thereby the higher the lubricating properties of the beer.

Both "smooth" and "thick" are positively correlated with lower friction as can also be evidenced by

correlations with b_intc and p_meanf. Using a steel ball and PDMS disk, smoothness has previously been

correlated  with  the  mixed  and  hydrodynamic  regime of  oil-in-water  emulsions  (Upadhyay  & Chen,

2019).  The  lower  viscosity  of  the  beer  might  explain  a  shift  towards  lower  speeds  of  this  sensory

descriptor. Of the mouthfeel descriptors, "watery", "smooth", "thick" and "astringent" are correlated

with mouthfeel  rating, showing that these concepts are heavily  weighted by reviewers  when rating

mouthfeel. A watery or thin mouthfeel has previously been associated with NABs  (Krebs et al., 2019)

and astringency is generally considered undesirable in beers, being associated with expired or aged beer

(François et al., 2006). Astringency is considered a multimodal sensory perception, depending largely on

interactions between salivary proteins and plant polyphenols (Laguna & Sarkar, 2017). Astringency has

so far been studied using tribology in wine (Laguna et al., 2017) or tea (Rossetti et al., 2009). Laguna et
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al. (2017) found no relationship between friction and concentration of wine tannins, which is in contrast

to findings by  Wang, Olarte Mantilla, Smith, Stokes, & Smyth (2020) who found that tannins and pH

were  both  critical  for  explaining  the  sub-qualities  "drying"  and  "pucker"  in  a  model  wine  system

including saliva. In beer, astringency is caused by polyphenols from barley husk or hops (François et al.,

2006; Goiris et al., 2014). The mechanisms underlying astringency in beer could be further explored by

using tribology and model beer systems, as well as incorporation of saliva. "Foam", "sour" and "bitter"

on  the  other  hand,  seem  not  to  influence  the  mouthfeel  rating  of  the  beers,  but  do  show  some

interesting and high correlations with the plateau and mixed regime. Foam depends mainly on barley

proteins  and  hop  acids  (Evans  &  Sheehan,  2002).  Protein  content  (albeit  the  origin  is  dairy)  has

previously  been  shown  to  be  negatively  correlated  with  friction  (Sonne  et  al.,  2014),  and  future

endeavours could explore the role of barley proteins and the possible link between foam and friction. 
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4 Conclusion

In conclusion, a reproducible method for measuring the friction profile of beers was developed. Using

this  tribology  method,  the  beers  could  be  distinguished  into  those  with  high  and  low  mouthfeel

depending on their alcohol content. A distinct friction profile deviating from the classic Stribeck curve

could be observed. It was possible to extract valuable sensory profiles for the selected beers by text-

mining online reviews and correlate these sensory profiles with tribological parameters. However, the

method of text-mining online reviews for sensory data should be validated by cross-referencing and

comparing with a sensory panel.

The  two wheat-beers  and  the  Belgian lager  were the  most  favoured  beers  in  terms of  mouthfeel,

characterised  by  reviewers  as  being  predominantly  "creamy"  and  "smooth".  All  the  NABs  were

described  as  being  "thin"  and  "watery"  except  for  Leffe  NA,  the  highest  scoring  NAB,  which  was

described mainly as "creamy" and "bitter". 

Overall,  "smooth",  "watery"  and  "thick”  were  correlated  with  parameters  at  lower  speeds

corresponding to  the  static,  boundary  and  beginning of  the mixed regime,  while  at  higher  speeds,

sensory perceptions of "bitter", "foam", "astringent" and "sour" could be discerned. 

Several interesting relationships were discerned from the data of the present study, especially the clear

(expected) positive correlation of "smooth" and "creamy" with overall mouthfeel rating (and conversely

negative correlation with "watery". 

Future efforts should look into the correlation between astringency and concentration of barley and

hops polyphenols  and pH.  Additionally,  the impact  of  incorporation of  saliva  on the friction curves

should be investigated.
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6 Supplementary materials

Supplementary figure 1: Variables and individuals of tribology data plotted against PC 1 and 2. 

Supplementary figure 2: Scree plot of PCA of all tribology variables.
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Supplementary figure 3: Quality of representation of tribology variables on PCs 1 and 2. 

Supplementary figure 4: Dendrogram of tribology variables using Hoefding’s D to test for non-monotonic dependence.
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Supplementary figure 5: Correlation matrix (Spearman’s rho) of all tribology variables and viscosity.
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Supplementary figure 6: Correlation matrix (Spearman’s rho) of numeric mouthfeel rating and sensory descriptors vs tribology 

variables.
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