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Abstract 

We describe the formation of long, highly ordered arrays of planar oriented anodic 

aluminium oxide (AAO) pores during plane parallel anodisation of thin aluminium “finger” 

microstructures fabricated on thermally oxidised silicon substrates and capped with a silicon 

oxide layer.  The pore morphology was found to be strongly influenced by mechanical 

constraint imposed by the oxide layers surrounding the Al fingers.  Tractions induced by the 

SiO2 substrate and capping layer led to frustrated volume expansion and restricted oxide flow 

along the interface, with extrusion of oxide into the primary pore volume, leading to the 

formation of dendritic pore structures and meandering pore growth.  However, partial relief 

of the constraint by a delaminating interfacial fracture, with its tip closely following the 

anodisation front, led to pore growth that was highly ordered with regular, hexagonally 

packed arrays of straight horizontal pores up to 3 µm long.  Detailed characterisation of both 

straight and dendritic planar pores over a range of formation conditions using advanced 

microscopy techniques is reported, including volume reconstruction, enabling high quality 

3D visualisation of pore formation. 

KEYWORDS. AAO, mechanical constraint, anodisation, stress, pores, planar, order 
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1.  Introduction 

Anodic aluminium oxide (AAO) is a common host material to template the growth of ordered 

arrays of semiconducting[1-5] and metallic[6-9] nanowires and nanotubes[10,11] by various 

methods, including chemical vapor deposition (CVD)[2,4], supercritical fluid (SCF) 

deposition[1,3], electrochemical deposition[6-9] and self-assembling methods.[10]  These 

self-organised templates demonstrate potential for enabling the integration of ordered 

nanostructured arrays into functional electronic devices.[12-14]  Such devices could require 

Al to be anodised in a planar orientation, within multilayered device architectures, such that 

the encapsulated nanostructures, under strict dimensional control and precision placement, 

could be exploited, e.g. as high density metal interconnects.  Importantly, nanostructure 

arrays produced by plane parallel AAO could potentially be integrated with planar integrated 

circuits, which is not the case for the commonly used vertical template.  

Masuda and co-workers[15] were the first to report the generation of a two dimensional 

porous AAO template with pores parallel to the substrate, produced through the anodisation 

of an aluminium film deposited on a glass slide and covered by a sputtered aluminium oxide 

layer.  The edge of the sandwiched Al was exposed to the electrochemical bath and a 

horizontal porous structure was achieved.  Recently, other groups have realised similar 

horizontally-oriented nanochannels following this idea.[16-19]  In these reports, an 

aluminium film deposited onto an oxidised silicon substrate was etched in parallel strips and 

then capped with a silicon oxide layer.[16-19]  The short edges of the strips were dipped into 

the electrolyte and the anodisation proceeded along their lengths.  Cojocaru and co-

workers[17] have shown scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) images of horizontal pores, 200-300 nm long, with pore diameters 
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between 3-4 nm.  Xiang and co-workers[16] reported the fabrication of horizontal porous 

templates with controlled pore diameters between 10-130 nm and interpore distances ranging 

from 30-275 nm, and described a transition from a hexagonal to a square arrangement in the 

pore ordering when the interpore distance increased to about one quarter of the 225 nm film 

thickness.  Gowtham et al.[18] reported the fabrication of arrays of in-plane nanopores within 

patterned Al fingers wedged between SiO2 layers with a mean pore diameter of 20 nm.  

Recently, Xiang et al.[19] demonstrated the concept of multi-contact anodisation on a single 

chip, in which Al fingers were individually anodised with either sulfuric, oxalic or 

phosphoric acid at different applied voltages ranging between 20-110 V.  On a single chip, 

two Al fingers were contacted and anodised separately, one at 50 V with phosphoric acid, and 

the other at 40 V with oxalic acid to obtain mean pore diameters of 80 and 27 nm 

respectively.   

As with all porous systems, complete morphological characterisation requires determination 

of pore length and direction/orientation, morphology and ordering of pores, as a function of 

length.  With the exception of Cojacoru et al., the work cited above reports structural 

characterisation of the confined planar AAO through analysis of pore nucleation and 

arrangement of pores at the surface only, with no measurement of ordering as a function of 

length along the pore array.  For example, Masuda et al. estimated the pore length from the 

anodisation time.[15]  Estimation of pore length from the anodisation time assumes the 

formation of straight pores oriented perpendicularly to the imaged surface at the same rate as 

vertical AAO formed in an Al foil.  However, currently there is no direct evidence to support 

this assumption.  Gowtham et al. include an image of a ‘front on’ section exposed by a 

focused ion beam along the anodised Al finger length.[18]  The distance of this section from 

the edge was not defined, and since the image shown was not related to any image at the 
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surface, no 3D information was provided from this section.  Xiang et al. included a growth 

rate but no physical characterisation of pore length, morphology or ordering as a function of 

length.[19]  An exhaustive study regarding in plane pore growth of confined Al fingers, 

including pore length and direction/orientation, morphology and ordering of pores, as a 

function of length, is therefore still required.  Such a characterisation study will provide 

insight into the fundamental processes governing AAO pore formation in a constrained 

environment and enable subsequent exploitation of the governing factors to prepare highly 

ordered, long, planar oriented AAO, which has not yet been reported. 

The influence of mechanical stress on pore formation within vertical AAO membranes was 

first reported by Jessensky et al.[20], who suggested that stress is induced at the metal/oxide 

interface during the anodisation process due to the volume expansion associated with 

aluminium conversion to aluminium oxide.  The induced interfacial stress is believed to be 

the origin of pore self-organisation in free-standing vertical AAO membranes producing 

hexagonally ordered porous templates.  Later, Garcia-Vergara et al.[21] employed a tungsten 

tracer to show that vertical AAO pores form in Al foils anodised in phosphoric acid due to 

the flow of Al2O3 in the barrier layer region beneath the porous layer.  During the anodisation 

process, aluminium oxide migrates through the barrier layer region toward the metal 

interface, then outward and upward in the oxide pore walls.  This path of oxide movement 

was suggested to be facilitated by the field-assisted plasticity of the oxide film material and 

driven by growth stresses within the film.  Recently, Houser et al.[22], using finite element 

analysis, simulated the viscous flow of oxide as generated by local compressive stresses close 

to the pore base under steady state anodisation conditions, in a geometric domain based on 

one cell of porous anodic alumina.  This compressive interfacial stress may result from the 

competition between anion adsorption and oxide growth at these sites. 
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The effect of externally induced stress on Al anodisation has been studied by Sulka and co-

workers.[23]  Al anodisation was carried out under an externally applied tensile stress, by 

clamping the Al foil into a holder in contact with a ceramic plate which was then screwed 

from the opposite side to apply a ‘low’ or ‘high’ tensile stress, depending on the number of 

rotations of the driving screw.  The Delaunay triangulation method was used to determine the 

number of defects present within the AAO film.  The number of defects observed in the AAO 

membrane was directly related to the degree of external stress during anodisation for levels 

ranging as ‘non-stressed’, ‘low stressed’ and ‘highly stressed’.  The vertical anodisation of 

mechanically constrained aluminium is known to induce compressive stress at the 

aluminium/confining wall interface.[24]  The retardation of the anodisation rate has been 

observed in the vertical anodisation of aluminium within patterned trenches, as a result of the 

contact between aluminium and the vertical sidewalls, which inhibits the linear vertical 

expansion of the AAO developing at this interface.  The boundary between the AAO which 

develops and the remaining aluminium forms a curved interface due to this retarded AAO 

growth rate at the Al/trench sidewall interface, compared to the rate of AAO formed in the 

centre of the confining trench.[24]  A similar curved AAO/Al interface was observed when a 

patterned substrate with alternating regions of aluminium and thick barrier layers of 

aluminium oxide was anodised on a SiO2-coated Si wafer at 40 V with oxalic acid.[25]  The 

dense aluminium oxide barrier layer used to pattern the substrate remained firmly attached to 

the aluminium during anodisation and prevented pore formation in the underlying aluminium 

in these regions.  The profile of the AAO formed in the aluminium/aluminium oxide 

boundary regions was shown to be curved with retarded pore growth close to the barrier 

oxide film.[25]  In the case of highly confined structures, such as encapsulated aluminium 

films for horizontal pore templates, mechanical stress induced by both volume expansion and 

oxide flow greatly affects pore development and morphology.  Very recently, Oh et al.[26] 
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showed cross sectional SEM micrographs of dendritic structures formed when anodising an 

aluminium film sandwiched between silicon oxide layers.  They suggested that dendritic 

porous templates form due to the restriction of aluminium oxide flow by traction at the 

Al/silicon oxide interface. 

In this paper we analyse pore development in a mechanically constrained template, where a 

patterned aluminium film is sandwiched between two silicon oxide layers.  For the first time, 

an ordered array of horizontal AAO pores ~ 3 µm long is shown by cross sectional TEM 

along the pore axes.  There have been few reports of horizontal oriented AAO pores.  None 

have explicitly demonstrated straight, ordered, horizontal AAO pores that extend for 

distances of several micrometers.  The influence of film constraint on the pore morphology is 

discussed in light of these results.  In particular, the relationship between porous dendritic 

structures and the stress developed during the anodisation process is considered. 

 

2.  Experimental Methods 

Substrate Fabrication and Preparation.  Substrates consisted of p-type Si wafers terminated 

by a thermally grown 500 nm silicon dioxide (SiO2) layer with a 5 nm Al2O3 adhesion layer.  

Al (99.999 %) films for anodisation, either 200 or 550 nm thick, were deposited on these 

substrates by electron-beam evaporation using a Temescal FC-2000.  The Al film was then 

patterned into fingers 40 μm long and 2, 4 or 6 μm wide, in the centre of each 1 cm2 chip of 

10 cm wafers by metal lift off from the underlying optical lithography mask.  These fingers 

were connected to a square Al contact pad on the corner of each chip.  Fingers of Al 200 nm 

thick were then sputter coated with SiO2 to a nominal thickness of 300 nm (substrate type I) 
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and fingers of Al 550 nm thick were sputter coated with SiO2 to a thickness of 800 nm.  The 

SiO2 layer was also patterned by lift off.  Anisotropic wet etching of Al, using a solution of 

H3PO4/HNO3/acetic acids, was then used to expose the Al finger edge.  In the case of the 550 

nm thick Al fingers, controlled over-etching of the Al fingers enabled variation of the SiO2 

layer thickness from 250 to 800 nm over the first ~ 5 μm of the finger length (substrate type 

II).  Figure 1 displays TEM cross sections of the two substrates used, type I: Al 200 nm thick 

and SiO2 300 nm thick, and type II: Al 550 nm thick and SiO2 thickness varied between 250 

and 800 nm.  Following dicing of the wafer into 1 cm2 chips, focused ion beam (FIB) milling 

was used to polish the end of each Al finger; using a 30 kV accelerating voltage in two steps, 

i.e. at 1 nA and 93 pA, to ensure a flat edge perpendicular to the Al finger length, so that the 

anodising current was directed parallel to the Al surface. 

Anodisation of Substrates.  Anodisation was carried out in a custom built electrochemical cell 

with the chip held at a constant separation of 6 cm from the lead counter electrode.  Electrical 

contact to the Al fingers was improved by applying silver contact paste (Agar Scientific) to 

the exposed Al pad.  The chip was then partially immersed in the electrochemical bath and 

anodised at a constant potential using a direct current (dc) power supply (Thurlby Thandar 

Instruments model EX752M).  Three different electrolytes were prepared for the 

electrochemical process: 2 M sulfuric acid (H2SO4), 0.3 M oxalic acid (H2C2O4) and 1 M 

phosphoric acid (H3PO4).  Different voltages, temperatures, anodisation times were 

employed: substrates were potentiostatically anodised over a range of 10-130 V at room 

temperature or cooled down to 0-5 C for between 30 min and 8 h.  Each anodisation was 

carried out using the electrolyte for which the voltage applied was within a self ordering 

regime. 
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Characterisation.  Samples were imaged by scanning electron microscopy (SEM) and 

prepared for analysis by transmission electron microscopy (TEM) on a FEI Helios NanoLab 

600i dual-beam focused ion beam (FIB) instrument.  SEM images were acquired at 5 kV & 

47 pA as standard using the through lens detector (TLD) in high resolution mode.  Gold and 

palladium were sputtered onto the surface of some samples before SEM imaging to reduce 

charging effects (Agar sputter coater operating at ~37 mA).  The resulting porous fingers 

were analysed by serial sectioning via FIB milling and SEM imaged with the Helios 

NanoLab 600i system.  No metal rich layer was deposited due to the presence of a SiO2 

directly above the porous layer which served as a protective coating.  A 30 keV ion beam at a 

current of 1 nA was used to expose the region of interest with a cross sectional mill.  

Subsequently, serial milling was carried out at the lowest possible beam current of 9.3 pA 

over a total length of ~4 μm.  SEM micrographs acquired during the sectioning procedure 

were used to reconstruct the volume of individual pores within the anodised samples.  For 

TEM cross section specimen preparation a platinum rich protective layer was built up over 

the site of interest using electron beam induced, and ion beam induced deposition steps with a 

Pt gas injection system on the FIB.  A lamella was then isolated with FIB milling and 

undercut at 45˚ to the ion beam.  Once attached to the micromanipulator probe (Omniprobe 

Micromanipulator) with Pt, the lamella was cut free from the substrate and reattached to a 

TEM half grid.  TEM images were acquired with a JEOL 2100 high-resolution instrument 

operating at 200 kV. 

Volume Reconstruction.  Volume reconstruction was carried out using the 3D visualisation 

software Amira, from Visage Imaging.  The reconstruction process incorporated the 

following steps: (a) correction of voxel (3D pixel) dimensions for oblique-angle imaging (52 

degrees), (b) digital image alignment to compensate for x–y drift (image registration).  
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Although an effort can be made to obtain well aligned images during the sectioning process, 

these images are always offset to some extent due to thermal drift of the stage and mechanical 

system instabilities.  In particular, for a given sequence of images, an intrinsic shift of the 

included features was observed in the y direction since the images were acquired at a tilt of 

52˚ to the electron beam.  Therefore, alignment of the stack was carried out in pairs of 

consecutive sections until sub-10 nm resolution, or a so called ‘quality function’ of close to 

100 %, was achieved; (c) crop-out of a suitable sub-volume; (d) image segmentation into 

material categories.  The segmentation of images can be carried out using an automatic 

function based on pixel brightness levels, or manually by selection of pixels deemed to 

belong to a particular material category, in this case simply ‘pore’ or ‘oxide’ and (f) 3D 

visualisation and representation.  False colouring was applied to the image segments, to 

highlight the different parts of the reconstructed volume. 

 

3.  Results and Discussion 

Horizontal anodisation of aluminium thin films was carried out for aluminium fingers 

sandwiched between insulating SiO2 films.  This configuration ensured that the electric field 

was directed parallel to the surface of the evaporated Al film.  Figure 1 depicts a schematic of 

the substrates and characterisation steps used for the planar anodisation process.  Figures 1 

(b) and (c) present TEM cross sections along the length of an as-fabricated Al finger from 

each of the two substrate types, before anodisation.  As mentioned above, the stress induced 

by anodisation in this mechanically constrained environment strongly affects the morphology 

of the resultant AAO pores.  Figures 1 (d) and (e) depict the resultant AAO obtained for the 

two substrate types.  For samples with a 200 nm thick Al film and uniform, 300 nm thick 
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SiO2 capping layer (substrate type I), the capping layer always remained intact throughout the 

anodisation process.  We infer that a high level of stress was generated within the aluminium 

film, leading to the observed dendritic pore growth similar to results shown by Oh et al.[26]  

Alternatively, for samples with a 550 nm Al film and non-uniform SiO2 capping layer that 

ramped from 250 to 800 nm thickness along the axis of the finger (substrate type II), the SiO2 

capping layer was partially removed due to delamination from the alumina film.  Stress 

induced by aluminium oxide formation was relieved in the delaminated region yielding 

straight pores while the closed region with the intact SiO2 capping layer showed dendritic 

pore formation. 

Substrate Type I.  Anodisation of 200 nm thick Al fingers deposited on thermally oxidised 

silicon substrates (500 nm oxide thickness) and coated with a 300 nm SiO2 capping layer 

resulted in the formation of AAO films with visible ‘front-on’ pore openings.  Figure 2 shows 

typical SEM images for type-I substrates anodised under various conditions: (a) with H2SO4 

at an applied voltage of 20 V, (b) with H2C2O4 at 40 V, (c) with H2SO4 at 80 V and (d) with 

H2C2O4 at 130 V.  An empirical relationship between the mean pore diameter (DP) and the 

applied voltage (V) was determined by analysing the SEM micrographs.  Values for DP were 

obtained from Lorentzian pore diameter distributions for anodisations over the applied 

voltage range between 10-130 V, as detailed in Supplementary Information, Figure S1.  

O’Sullivan and Wood first showed that DP is directly dependent on the applied voltage 

according to the equation DP = kpV.[27]  The linear coefficient kp for vertical pores grown on 

thick aluminium foils was found to be 1.29 nm V-1.  A plot of pore diameter vs. voltage for 

our data is shown in Figure 3.  From a linear fit we find the coefficient kp to be 0.26 nm V-1, a 

marked decrease from the reported value for Al foils.  A decrease in kp to 0.9 nm V-1 has 

previously been reported for vertically anodised Al films supported on Si substrates.[28]  
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This apparent decrease in kp was rationalised as a voltage drop across the semiconducting Si 

wafer thickness, as contact was made to the Al from the back of the doped Si wafer.  

However, recently we reported the case of vertical anodisation of supported Al thin films on 

silicon where contact was made directly to the Al.  In this case, a significant drop in the value 

of kp to 0.5 nm V-1 was still observed.[29]  Thus, we find the drop to be a real phenomenon.  

We attribute the effect to the silicon substrate which may induce residual stress in the initial 

evaporated Al film, limiting plastic flow and inhibiting expansion of the alumina film in the 

lateral directions.  This effect has also been reported by other researchers.[30]  The presence 

of four Al/SiO2 interfaces in this study should result in even greater mechanical constraint: a 

further reduction in kp is therefore not surprising.  In addition, we anticipate an 

electrostrictive stress at the anodisation front due to the establishment of a charge capacitor 

consisting of electrolyte/SiO2/Al layers in unanodised regions.  However, for the voltages 

used, we calculate this electrostriction to be a minor effect on the order of a few MPa, much 

smaller than the > 100 MPa stress that might be expected from frustration of volume 

expansion and plastic flow.  The images displayed in Figure 2 are selected examples from the 

range of conditions used.  These images are comparable to those published by Xiang et al., 

Gowtham et al., Zhang et al., and Kim et al.[18,19,31,32]  In all cases the pores appear to be 

oriented horizontally but it is difficult to detect any hexagonal ordering. 

Pore development along the anodisation direction, which is critical to our study, was 

investigated by the preparation of longitudinal cross sectional specimens.  Subsequent TEM 

analysis revealed pores less than 2 μm long, despite the relatively long anodisation times 

used.  In addition to the disordered pore arrangement observed from the ‘front on’ SEM 

images presented in Figure 2, a number of defects can be identified along the pore length.  

These include pore meandering, dendritic ‘fish-boning’ and dendritic pore splitting.  Figure 4 
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displays some examples of porous structures obtained at different anodisation conditions.  

Figure 4 (a) shows a 200 nm film anodised with oxalic acid at an applied voltage of 40 V for 

7 h, while the insets (b) and (c) display magnified views of the branched pore ends and pore 

openings from Figure 4 (a), respectively.  Dendritic pore splitting of the two primary pores is 

observed, along with dendritic ‘fish-boning’ of both the primary and secondary pores.  The 

front view of this substrate can be seen in Figure 2 (b).  The length of the nanochannels for 

these anodisation conditions was ~1.5 µm.  Figure 4 (d) displays a cross sectional view of a 

sample anodised with sulfuric acid solution at 10 V for 3 h.  The pores extend for ~500 nm 

and a highly defective structure also develops under these conditions.  Finally, a cross section 

of the substrate shown in Figure 2 (d) is presented in Figure 4 (e).  The substrate was 

anodised in oxalic acid at 130 V for 3 h producing ~300 nm long pores with many secondary 

branches from the single primary pore stem. 

Our results show that specific application of mechanical constraint of the anodising Al finger 

can control pore morphology, resulting in anything from highly ordered arrays through 

heavily defective dendritic forms.  It is believed that the plastic flow of alumina is prevented 

along bounding interfaces due to adhesive tractions.  As discussed by Oh et al.,[26] the pore 

formation by plastic flow in the expected horizontal pore growth direction is inhibited by 

traction at the pinned SiO2 interfaces, so the extra volume of newly formed Al2O3 extrudes 

inside the primary pore, leading to the dendritic ‘fish-boned’ structure.  The formation of 

such oxide ‘fins’ along the oxide/SiO2 interface disrupts the stress gradients within the AAO 

film, which determine the direction in which the aluminium oxide flows.  This may result in a 

‘knock on’ effect of oxide flow into neighboring pores, and the development of ‘fish-bone’ 

structured pores throughout the Al finger thickness.  The pore meandering and dendiritc 

splitting is likely to be a consequence of a rough Al/SiO2 interface, as can be seen in Figures 
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4 (a) and (b).  Such pore bending and branching have been observed in studies on the 

anodisation of curved surfaces by Lelonek et al.[33] 

Given that the expansion associated with AAO formation is related to the anodisation 

voltage,[34] Oh et al. proposed that anodisation at low applied voltage, when the expansion 

coefficient (volume of porous AAO formed/volume of Al consumed) is close to unity, should 

minimise the effects of confinement on horizontal AAO formation, and result in straight 

rather than dendritic structures.  However, in our study, even at an applied voltage of 10 V, 

we observed branching of the pore structure, as shown in Figure 4 (d).  We conclude that the 

formation of oxide ‘fins’ will occur under any conditions of mechanically constrained 

formation, regardless of the expansion coefficient, resulting in an overall dendritic pore 

morphology.  This morphology occurs because oxide flow along the SiO2 interfaces is a 

requirement for horizontal pore formation. 

Substrate Type II.  Anodisation experiments were also performed using substrates containing 

a thicker Al film of 550 nm with a graded SiO2 capping layer where the thickness was varied 

from 250 to 800 nm.  A remarkable difference was observed in these samples compared to 

type I substrates.  In the first 4.5 microns the SiO2 capping layer thickness gradually 

increased from approximately 250 to 800 nm on the surface of the 550 nm Al film (see 

Figure 1), such that the component of top-side constraining force acting at the travelling 

anodisation front increases throughout this region.  Transverse cross section SEM images of 

the resultant samples, displayed in Figure 5, showed partial delamination of the Al film from 

the underlying SiO2 and in most cases delamination of the capping SiO2 film.  Where the 

capping silica was significantly thinner than the Al, delamination was observed.  Thinning of 

the SiO2 layer reduced its stiffness, such that the constraining stress was weaker at the 
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SiO2/AlOx interface leading to delamination in this region.  Figures 5 (a) to (d) display 

identical Al fingers (all 4 μm wide) anodised at increasing voltages, from 20 to 80 V, at 20 V 

increments.  From these images we observed that as the applied voltage was increased, the 

degree of delamination from the substrate also increased, when other conditions of 

anodisation (electrolyte, temperature, anodisation time etc.) were held constant.  Given that 

the anodisation voltage affects the rate of anodisation through higher current density, this can 

be understood to determine the extent of delamination.  We repeated anodisation at 80 V with 

H2SO4 for 30 minutes and 5 hours.  These samples anodised at the same voltage but for 

different times showed little difference in the extent of the delamination.  This provides 

strong evidence that the anodisation voltage alone determines the extent of delamination.  

The magnitude and even physical mechanisms of stresses induced by anodisation are already 

known to be highly dependent on the oxide formation rate[35] which supports the theory that 

stress induced during the anodisation process initiates substrate delamination.  This 

delamination is only possible when the capping silica is below a threshold thickness. 

A finger of one such sample that had been anodised at 80 V with H2SO4 was subsequently 

cross sectioned with a focused ion beam to expose different transverse sections of this SiO2 

‘cap-free’ region (see Figures 5 (e) to (g)).  After anodisation, the tips of the pores in this 

delaminated region resemble alumina nanotubes (Figure 5 (f), inset), however, upon exposing 

a section along this region, highly ordered, hexagonally arranged pores were visible, which 

were significantly different to the disordered pores obtained with the 200 nm thick films (see 

Figures 5 (e) and (g)).  We believe that the overall increased expansion, and increased stress 

associated with anodisation of such a film, along with the reduction of the SiO2 thickness 

such that the imposed constrictive force is reduced results in partial delamination of the 

alumina film and also of the SiO2 capping layer.  During this process the stress associated 
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with the mechanical constraint at the anodisation front is relieved and straight, horizontal 

pores result. 

FIB sectioning was carried out for ~ 4 µm in total along one such sample.  Serial sectioning 

for part of this region yielded a stack of micrographs which imaged a length of over 2 μm at 

30 nm intervals.  Using Amira software these images were used to reconstruct the sectioned 

volume.  Figure 6 displays two reconstructed sub-volumes obtained from stacks of images 

acquired along the pore length.  Figure 6 (d) illustrates a straight horizontal pore which was 

reconstructed from images sectioned in the SiO2 ‘free’ region, where the SiO2 had partially 

delaminated.  Figure 6 (e) follows the same pore in the SiO2 ‘capped’ region, where the SiO2 

remained intact.  A selection of the SEM images used for each reconstruction is presented in 

Figures 6 (a) to (c).  From these volume reconstructions, the morphology of the selected pore 

may be followed along its entire length.  This analysis revealed a straight horizontal pore in 

the stress relieved region, from which the SiO2 cap had delaminated.  The region extended for 

several microns, which was observed by this sectioning.  As this reconstruction process was 

continued into the region where the SiO2 cap had remained intact, a change in morphology as 

the pore splits in two can be observed in detail.  The ability of the dual beam FIB 

sectioning/in-situ imaging method to reconstruct a region with extremely high site selectivity 

is apparent from this work.  This capability makes this technique particularly powerful 

compared to other techniques used to image buried features, e.g. TEM cross sectional 

imaging. 

To confirm that the volume reconstructions were accurate representations of the pore lengths, 

longitudinal TEM cross sections were taken to provide 2 D imaging along this length, as 

displayed in Figures 6 (f) to (h).  Again, long, straight horizontal pores were observed in the 
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delaminated and presumably stress-relieved region.  The estimated points of constraining 

contact with the upper and lower silicon oxide are indicated in the Figure 6 (h) with red 

arrows.  For this experiment, the anodised region extends well under the SiO2 capping film 

by ~1 µm.   At its furthest extent on the left of the image where delamination has ceased, pore 

splitting has clearly begun. 

From this cross-sectional analysis we propose a mechanism for the formation of pores under 

constrained and constrain-relieved conditions, as outlined schematically in Figure 7.  During 

constrained pore growth of type I substrates, the forbidden flow of oxide along the Al/SiOx 

interface induces oxide flow towards the pore centre, as indicated by white arrows in Figure 7 

(b), and consequently dendritic pore morphology results.  In the case of type II substrates, an 

anodisation front and a mechanical delamination front both travel horizontally along the Al 

finger length, as indicated by the blue and purple arrows, respectively, in Figures 7 (d) and 

(e).  At the start of the anodisation process, these two fronts are very close together, the 

anodisation front just ahead of the delamination front (Figure 7(d)).  The fact that ordered 

pores arise very quickly, within the first 3 μm of our system compared to tens of microns 

typical for vertical anodisation, suggests that the mechanically constraining silicon oxide 

layers play an important role in the establishment of an ordered array.  It is currently accepted 

that the origin of this self-ordering is pore-to-pore repulsion arising from plastic flow of 

alumina at pore cell walls.  In our experiments, the intimate presence of surrounding hard 

walls bounding the plastic flow of alumina establishes this repulsive ordering after a short 

duration of pore growth.  However, this ordering influence also restricts the plastic flow of 

alumina behind the anodisation front, leading to bifurcation and eventually meandering in the 

pore growth, for pores constrained throughout their length (type I substrates).  Only by stress 

release through delamination is this effect suppressed, as outlined by the flow of oxide along 
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the pore side walls, indicated by white arrows in Figure 7 (d), leading to the formation of 

long, straight, ordered pore formation.  Our results clearly show that the loss of this 

delamination front quickly results in ‘fish-bone’ branching and meandering pore growth, as 

depicted in Figure 7(e). 

4.  Conclusions 

In summary, we have studied the behaviour of planar pore formation in AAO in a 

mechanically constrained environment.  Structural characterisation indicates that the 

mechanical constraint strongly affects the morphology and dynamics of pore formation.  

Mechanical coupling between the confining silicon dioxide and anodised aluminium layers 

imposes an overall stress on the anodisation and restricts the flow of oxide at the interfaces.  

Consequently, oxide flows towards the pore centre and a dendritic ‘fish-boned’ pore 

morphology results.  However, the release of this constraint by an interfacial fracture tip that 

closely tracks the anodisation front can result in the fortuitous condition of long, straight 

pores that are nevertheless well ordered.  Figure 7 schematically summarises the conditions 

which lead to both disordered pores with ‘fish-boned' pore morphology and long, straight 

ordered pores.  These ordered planar pores have been characterised by electron microscopy 

and for the first time an array of ~3 µm long horizontal pores has been shown using  3 D 

reconstruction and by cross sectioning along the pore axes.  This study contributes a deeper 

understanding of planar pore formation in AAO films in a mechanically constrained 

environment, which is important when considering the applications of AAO as a 

template/host material in various device architectures. 



19 

 

Acknowlegdements 

We acknowledge financial support from the Irish Research Council for Science, Engineering 

and Technology (IRCSET) and CRANN/SFI (Project 08-CE-I1432).  We also acknowledge 

the National Access Program (NAP) under which the substrates were provided by Tyndall 

National Institute (NAP 115).  We thank Drs Richard Hobbs and Justin O’Byrne for TEM 

imaging.  This research was also enabled by the Higher Education Authority Program for 

Research in Third Level Institutions (2007-2011) 35 via the INSPIRE program. 



20 

 

Figures

 

Figure 1.  Schematic depiction of the samples before (a) and after (d) & (e) anodisation.  Two 

substrate types were used for anodisation, detailed by cross sectional TEM analysis along the Al 

finger (b) and (c).  Paths 1 and 2 outline the results obtained for the two substrate types. 
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Figure 2.  ‘Front on’ SEM images of 200 nm thick fingers (substrate type I) anodised at various 

conditions: (a) 20 V H2SO4 with higher magnification inset, (b) 40 V H2C2O4, (c) 80 V H2SO4 and (d) 

130 V H2C2O4.  Images were acquired at a tilt of ~45º to the electron beam. 
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Figure 3.  Graph of pore diameter vs. voltage for substrates containing 200 nm thick Al fingers 

anodised at constant potential ranging between 8.5 and 130 V (black trace), including linear fit (red 

trace) to the data and traces of this empirical law for free standing AAO membranes (magenta)[27] 

and for supported thin films (blue).[28]  Electrolytes were employed based on the applied voltage 

ranges for self-ordering regimes. 
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Figure 4.  Longitudinal TEM cross sections of 200 nm thick films (substrate type I) for various 

anodisation conditions: (a) 40 V H2C2O4 with (b) and (c) higher magnification inset of the branched 

ends and pore openings, (d) 10 V H2SO4, (e) 130 V H2C2O4. 
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Figure 5.  ‘Front on’ SEM images of 550 nm thick Al fingers (substrate type II) anodised at (a) 20 V, 

(b) 40 V, (c) 60 V and (d) 80V with H2SO4.  (f) SEM of a different sample anodised at 80 V with 

higher magnification inset.  (e) and (g) Transverse SEM cross sections exposed by FIB milling at the 

positions indicated with dashed red lines on (f). 
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Figure 6.  (a) to (c) SEM images exposed by FIB serial sectioning which were used to reconstruct 

volumes (d) and (e).  The sectioned sample, substrate type II, was anodised at 80 V with 20 wt% 

H2SO4 for 7 h.  (d) Reconstructed pore volume sectioned in the ‘SiO2 cap- free’ region and (e) 

reconstructed pore volume sectioned in the SiO2 covered region of the same sample.  (f) to (h) 

Longitudinal TEM Cross Sections of another finger anodised under the same conditions.  Red arrows 

indicate where delamination occurred. 
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Figure 7.  Mechanism of constrained (a) and constrain-released (b) pore growth.  The white arrows 

indicate the direction of oxide flow during anodisation in each case. 
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