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Notation

Notation

H(T ) Shannon’s information entropy of the given text T.

Θ(·) Indicating the average growth rate of the function.

O(·) Indicating the upper bound on the growth rate of the function.

Pr(T [i]) Probability of occurrence of symbol i in text T .

ΣS+
Observed symbols from a given text.

ΣS−
Non-observed symbols from a given text.

Σ Alphabet of a given text.

T A given text.

ϕ Compression ratio.

dxe The smallest integer greater than or equal to x.

bxc The largest integer less than or equal to x.

∝ Proportionality.
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Abstract

Abstract

A substantial amount of information in companies and on the Internet is present in

the form of text. The value of this semi-structured and unstructured data has been

widely acknowledged, with consequent scientific and commercial exploitation. The

ever-increasing data production, however, pushes data analytic platforms to their limit.

This thesis proposes techniques for more efficient textual big data analysis with an

emphasis on content-aware compression schemes suitable for the Hadoop platform.

In current big data analysis environments, the main purpose of data compression is to

save storage space and reduce data transmission cost over the network. Since modern

compression methods endeavour to achieve higher compression ratios by leveraging

meta-information and contextual data, this context-dependency forces the access to

the compressed data to be sequential. Processing such compressed data in parallel,

such as desirable in a distributed environment, is extremely challenging. Even though

information retrieval systems have developed algorithms that allow operations on com-

pressed data without decompression, they are not sufficiently efficient or flexible in

accommodating data updates for big data processing.

This research explores the direct processing of compressed textual data. The focus is

on developing novel compression methods with a number of desirable properties to

support text-based big data analysis in distributed environments. The novel contri-

butions of this work include the following. Firstly, a Content-aware Partial Compres-

sion (CaPC) scheme is developed. CaPC makes a distinction between informational

and functional content in which only the informational content is compressed. Thus,

the compressed data is made transparent to existing algorithms and software libraries

which often rely on functional content to work. Secondly, a context-free bit-oriented

compression scheme (Approximated Huffman Compression) based on the Huffman al-

gorithm is developed. This uses a hybrid data structure that allows pattern searching

in compressed data in linear time. Thirdly, several modern compression schemes have

been extended so that the compressed data can be safely split with respect to logical

data records in distributed file systems (Record-aware Compression). Furthermore,

an innovative two layer compression architecture is used, in which each compression

layer is appropriate for the corresponding stage of data processing (Record-aware Par-

tial Compression). Peripheral libraries are developed that seamlessly link the proposed

content-aware compression schemes to existing analytic platforms and computational

frameworks, and also make the use of the compressed data transparent to developers.

The compression schemes have been evaluated for a number of standard MapReduce

analysis tasks using a collection of public and private real-world datasets. In compari-

son with existing solutions, they have shown substantial improvement in performance

and significant reduction in system resource requirements.
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Chapter 1

Introduction

Big data is now at the frontier of research, innovation, business, and productivity

[JPHS10] [MMCJBB11] [MCB+11]. The term big data is understood to be datasets:

whose size (Volume) is beyond the ability of traditional database software tools to

capture, store, and manage; whose rate of production (Velocity) exceeds the speed

of current systems to process; whose complexity in mixed type and format (Variety)

challenges existing algorithms to perform efficiently and effectively. These three di-

mensions 1 of Volume, Velocity, and Variety together characterize big data [Lan01].

1.1 The State of Big Data

The value hidden in big data is the driver that pushes research in big data. Indepen-

dent research [MMCJBB11] [Fra15] [AtS15] and much evidence [Joh15] [WVF15]

[Ama13] have shown the real-world value of big data. This has led to big data

starting to play an essential role in a wide range of applications. Examples include:

banking (through analyzing customers’ transaction and propensity models [DD13]);

healthcare (through analyzing patients’ behaviour and sentiment data, clinical data,

and pharmaceutical data [PGK13]); education (through collaborative online social

media [KRB13]); government (through utilizing new sources of data, engaging pub-

lic talent, institutionalizing public and private partnerships [Mor15]); social science

(through machine learning and causal inference [Gri14]).

As a valuable asset, data is constantly being collected and accumulated from almost

all aspects of life. The term datafication 2 was coined to capture this phenomenon.

1There is also a need to include other dimensions, such as veracity which indicates the quality and
trustworthiness of source data and data source, and variability which denotes the variation in data over
time from the same source [ZCJW14], that have been evident from real-world applications by industrial
practitioners from diverse backgrounds.

2Datafication was first coined by [Ken13]. It is defined as a process of turning all aspects of the world
(information) into data.
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It is predicted that the global datafication process will generate 44 zetabytes of data

by 2020 compared to 4.4 zetabytes in 2013 [VTM14]. The social media giant Face-

book was producing over 60 terabytes data per day, as reported in 2010 [TSA+10],

and Twitter has scaled out their analytical infrastructure from the initial 30 nodes to

several thousand nodes, capable of analyzing 100 terabytes of data every day, as re-

ported in 2013 [LR13a]. It should also be noted that a substantial amount of data

being collected is semi-structured or unstructured 3, primarily in text format [Rus07].

The sheer volume of data and the aggressive speed of growth(velocity) are present-

ing challenges to all aspects of big data analysis from analysis platforms to scalable

algorithms. Furthermore, the wide variety of data sources often generate data in var-

ious formats at different speeds. Consider the rise of the IoT (Internet of Things) as

an example. Billions of different things are being connected to the Internet such as

pnalersonal wearable devices, smart phones, home appliances, and smart sensors. It is

estimated that there are 200 billion things on the planet at present, over 25% of them

producing data [VTM14]. The IoT creates additional challenges in big data analysis,

such as in correlation and regression analysis.

1.2 Big Data Development

In order to deal with the challenges brought by big data, there is very active ongoing

development of new tools, algorithms, computational frameworks, analytic platforms

and deployment provisioning strategies. These provide a basis for solutions to big data

analysis. In this section, we discuss current trends toward solutions for big data. We

aim to identify the research gaps, propose our solutions and contextualize our work in

the field.

• Scalable algorithms. The main goals of big data analysis are to extract

knowledge and summarize actionable intelligence [CCS12] [FDCD12] from

data, and then deliver meaningful results, based on a data-driven ap-

proach [ZCJW14] [JGL+14]. Many traditional algorithms in statistical inference,

machine learning and data mining are inadequate for big data in terms of par-

allelism and algorithmic efficiency [MM15]. They are either hard to implement

in parallel, for example, Markov chain Monte Carlo (MCMC) simulation for ap-

proximating posterior distributions of non-conjugative functions in Bayesian in-

ference, or they need to be redesigned for parallel processing, for example, Matrix

Factorization (Collaborative Filtering), Naive Bayes (Classification) and k-means

(Clustering), as seen in Apache Mahout [Apaf]. There are also developments in

approximation and sub-linear algorithms for quickly gaining an insight into big

3"In semi-structured data, the information that is normally associated with a schema is contained within
the data, which is sometimes called self-describing" [Sem97], whereas unstructured data is not organized
by pre-defined schemes.
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data [WH15].

• Computational Frameworks and Paradigms. Currently, computational frameworks

developed for big data analytics are mainly designed for processing stream or

batch data. Stream processing is designed to capture, analyze, and act on

real-time (near real-time or time framed) data streams, such as when monitor-

ing sensors. Widely recognized open-source stream processing frameworks in-

clude Apache Storm [Apag], Yahoo! S4 [NRNK10] and Massive Online Analysis

(MOA) [BHKP10]. In contrast, batch processing is designed for analyzing large

datasets offline. MapReduce [DG08], Spark [Apa15] and Dryad [IBY+07] are

several frameworks widely used at present. There are also stream-processing

enabled versions of MapReduce and Spark.

Additionally, the paradigm of parallel computation can be split into computation-

centric and data-centric aspects. Computation-centric parallelism endeav-

ours to seek better ways of splitting tasks (e.g., Message Passing Interface

(MPI) [Ope] [MPI]), whereas data-centric parallelism looks for optimal parti-

tioning of data.

• Analytic Platforms. As data volume increases, a distributed file system and stor-

age system are desirable, and analysis based on parallel computing is inevitable.

Apache Hadoop [Apad] is the de facto dominant, open-source analytic platform

currently in use. It provides a unified solution that addresses various aspects of

the data analysis life-cycle and includes a distributed file system (HDFS [Apad]),

computational frameworks (MapReduce and Spark) and task coordination ser-

vices (e.g., ZooKeeper [Apaj]). More features are constantly being integrated

into the umbrella Hadoop project. Several other analytic platforms exist, such as

Microsoft Dryad [IBY+07] and R [The]. In comparison with Hadoop, Microsoft

Dryad development has been discontinued and the R framework is primarily fo-

cused on statistical computing and graphical techniques. R was not developed

for massive parallel data processing and R lacks data life-cycle management in a

distributed environment.

• Deployment Strategy. Traditionally, the deployment of big data analytic platforms

such as Hadoop requires a cluster of servers. An on-site deployment faces scalabil-

ity constraints. As cloud computing becomes widely available, it has become the

main enabling technology for big data analysis due to its dynamic provisioning

of resources, cost-efficiency, scalability and elasticity [LQ14] [Col14] [RWZ+15].

Many existing big data solutions are already using cloud computing such as Open-

Stack Sahara [Sta] and Amazon Elastic MapReduce (EMR) [Ama].

Current solutions attempt to react to big data by scaling up/out analytic plat-

forms [TSA+10] [LR13a] [GSZS14] [RD15] and/or using approximation algo-

rithms [OP15] [BB01]. A question to ask is whether we can do something about the
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1. INTRODUCTION 1.3 Our Approach

source data. This aspect of leveraging compression for big data analysis in distributed

environments has not been given much attention.

Scope of this thesis: Our research sets out to explore new approaches using

novel compression schemes for mitigating the challenges for big data analy-

sis created by the unprecedented volume of data. We focus on data-centric

batch-processing on textual data using the MapReduce computational frame-

work in the Hadoop data management ecosystem.

1.3 Our Approach

Compressed Input Data
(Hadoop HDFS)

Full Decompression
(Sequencial)

Map Process (Mapper)
(MapReduce: Map Phase)

Compression
(Intermediate Data)

Distributing Intermediate Data
(MapReduce: Shuffling Phase)

Decompression
(Intermediate Data)

Reduce Process (Reducer)
(MapReduce: Reduce Phase)

Compression
(Final Output Data)

Final Output Data
(Hadoop HDFS)

Figure 1.1: An illustration of compression as employed by Hadoop and MapReduce.

The main purpose of employing compression in Hadoop is to reduce data size in order

to save storage space and lower the data transmission cost over the network. Currently,

compressed data cannot be directly involved in MapReduce-based analysis [Whi15]. In

order to carry out an analysis, the compressed data must firstly be decompressed fully

in a sequential manner, as shown in Figure 1.1 (label 1). This is due to the fact that

modern compression schemes often employ data transformation and/or contextualiza-

tion techniques which create strong dependencies within the compressed data. The

data decompression requires the underlying storage system to maintain sufficient free

space for holding the decompressed data, and thereafter a MapReduce program can

be initiated. Additionally, depending on the compression algorithms, decompression

speed varies largely. This can delay considerably the delivery of analysis results when

the data volume is large. It should also be noted that previous research has identified

that the Input and Output (I/O) system is often the bottleneck for data-centric analy-

sis in a distributed environment [DH15a] [PPR+09] [JOSW10]. We can improve this

I/O efficiency by compressing data as much as possible so that the latency created by

loading data from persistent storage to memory can be minimized.
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Research Question 1: the first question that arises here is, when data is

compressed by modern compression schemes such as Gzip and LZO, whether

we can perform decompression in memory as data is being consumed at each

computational node of Hadoop (parallel decompression in memory) so that

the total decompression time can be reduced in proportion to the number of

parallel processes, the data loading time can be kept to a minimum, and the

use of extra storage space can be avoided.

If we are to decompress data in memory, in parallel, in a distributed environment, we

will have to ensure that the compressed data is splittable and that each data split is

self-contained. It also requires maintaining the logical completeness, with respect to

the data contents, for each data split. This is because computational frameworks, such

as MapReduce and Spark, process data in parallel on a per split basis, independently;

each data split is further broken into a group of logical records 4; a parallel process

then deals with a single record at a time.

Our solution to Research Question 1 is to make the compression process

aware of the organization of the data contents, control the use of contextual

data, and develop appropriate packaging mechanisms so that compressed

data is splittable to the underlying file/storage systems and maintains the

logical completeness of each data split to the computational frameworks,

without sacrificing much compressibility.

During analysis, intuitively, a MapReduce program will process data in its original for-

mat. This is because MapReduce developers can understand the logic and organization

of the original data contents to be processed. Also, many existing algorithms and soft-

ware packages are designed to work with specific data formats, for example, Apache

Xerces [Apai] and Apache Commons CSV [Apac] are commonly used software libraries

for parsing eXtensible Markup Language (XML) and Comma Separated Values (CSV)

formatted documents, respectively.

Research Question 2: the second question is whether we can compress data

in such a way that the compressed data can be directly processed in MapRe-

duce without decompression, while ensuring the compressed data is compat-

ible with existing algorithms and software packages as well as transparent

to MapReduce program developers.

However, manipulating compressed data poses non-trivial technical challenges, espe-

cially in a distributed environment. Traditional solutions to this question are mainly

4What constitutes a record is data- or application-specific. For example, a record can be a sentence in
a plain text file or a row in a database table. This will be further elaborated on in Section 2.1
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Analytics

Source Data

Developers

Source Data Compression Compressed Data Analytic Platform

Translation

public class SentaMapper 
extends MapReduceBase 
implements
Mapper<Object, Text, Text, 
DoubleWritable> {
 ………...
  public void map(Object key, 
Text value, utputCollector<Text, 
DoubleWritable> output, 
Reporter reporter) ……...

MapReduce Program
(As programmed with source data)

Figure 1.2: An illustration of the conceptual architecture.

based on indexing techniques [DHL92] [FM00] [WMB99] [CWC+15] [Fal85]. They

are developed for information retrieval systems and focus on random access to, and

querying of, immutable data content with a cost of high complexity and constraints on

being application or domain specific. Since big data analysis often requires manipulat-

ing data (for example, extracting columns and re-forming data records), this requires

a special way of compressing data so that the element of information (a character or

a word) being compressed is independent of its context, thus the compressed data can

be freely manipulated. In other words, we need to develop a context-free (referring

to [WMB99]) scheme for compression. Although, context-free schemes in general re-

sult in moderate compression ratios, the unprecedented volume of big data offers an

opportunity for the context-free compression schemes to show their advantages. At the

same time, we also need to take several non-functional requirements into consideration

including data compatibility, transparency, and accessibility.

• Compatibility. Since many existing algorithms and software packages rely on spe-

cific data formats and/or pre-defined functional characters to work, we need to

compress data in such a way that the original data format and functional contents

can be preserved.

• Transparency. As data is in compressed format, source information is replaced

by codewords. For example, if a developer is to search for a phrase "big data" in

the source data, they will have in a Java program something like "contains("big
data")". In order to search for the phrase in the compressed data, they will have

to know the corresponding codewords that are used for replacing the phrase in
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the compressed data. This makes the compressed data opaque to MapReduce de-

velopers. We need to bridge this gap between the developers and the compressed

data so that the developers can implement analysis logic as if source data is used.

This conceptual idea is illustrated in Figure 1.2.

• Accessibility. Traditional compression algorithms organize compression model(s)

(Section 2.2.2) as a header to the compressed contents. In a distributed environ-

ment, data splits are generally processed independently. This requires the com-

pression model(s) to be available to all data splits that belong to the same com-

pressed file. We must separate the compression model(s) from the compressed

contents in order to support the requirement on transparency.

Our solution to Research Question 2 is to develop a context-free com-

pression scheme that can partially compress data in which the informational

contents are compressed whereas functional contents are left intact to meet

the compatibility requirement, and to provide translation functions as an

extension to Hadoop and MapReduce for supporting data transparency and

accessibility. Hence, the scheme proposed here is in fact a full solution for

Hadoop and MapReduce to work with compressed data rather than a once-

off application-specific compression scheme.

Following the work-flow of MapReduce, as shown in Figure 1.1, a Mapper often pro-

duces intermediate output data, and this data needs to be temporarily stored in the

local hard disks until the MapReduce framework decides to deliver it to the correspond-

ing Reducers for further processing. In order to efficiently distribute the intermediate

output data over the network, data can be compressed by one of those general purpose

compressors (including Bzip, Gzip, LZO, Snappy and LZ4) that are currently supported

by Hadoop. On arrival, the compressed data is then decompressed and fetched into the

Reducers. Eventually, the final output data can be optionally compressed for storage in

HDFS. This is shown in Figure 1.1 (Label 2).

Positive effect of the solution for Research Question 2. If a MapReduce

program can perform analysis with compressed data without decompression,

the Mappers will also produce intermediate data in the compressed format,

and applying the aforementioned general purpose compression schemes to

the compressed data can further reduce the time required for compression

as well as data size.

Note that we can achieve high compression ratios by employing customized modern

compression schemes, thus data decompression and loading time can be reduced; us-

ing context-free compression schemes allows MapReduce programs to manipulate com-

pressed data directly without decompression, thus improving analysis performance and
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further reducing cost of data transmission over the network.

Research Question 3: the third question is whether we can combine the

two approaches to take advantage of both.

The fact is that we cannot apply two different compression schemes to a single dataset

at the same time. However, observations have indicated that the first and second re-

search goals can be employed at different stages of the MapReduce processing.

Our solution to Research Question 3 is to design a layered architecture

so that a MapReduce program can, at different stages, take advantage of

the corresponding layers. In other words, we firstly compress data using

our context-free compression scheme and then apply our customized mod-

ern compressor to the compressed data. As a result, we can achieve data

compression ratios close to the Bzip compressor and gain a substantial im-

provement on analysis performance (up to 72%) over using original data.

The research questions together set up the hypotheses for this thesis. Our contributions

lie in the solutions to the research questions and their concrete implementations. As

a result, we present Content-aware Compression (CaC) schemes suitable for big data

analysis in the Hadoop distributed environment.

In addition, cloud computing platforms provide a very suitable environment for par-

allel processing of big data, and often support Hadoop/MapReduce frameworks. The

efficiency and management of the underlying cloud computing environments are con-

cerns that have also been addressed in this research, and solutions have been developed

that improve on the pre-existing techniques. This work is described in Appendix E and

is not addressed in the main thesis. Improvements in cloud computing efficiency are

independent of, and complementary to, the source data analysis improvements. The

cloud computing environment solutions can be ported to other analysis frameworks,

especially those that are derived from the MapReduce/Hadoop paradigm. In summary,

the Content-aware Compression techniques to improve source data analysis efficiency

and the management techniques to improve underlying cloud computing efficiency, can

separately, and in combination, contribute to better use of resources to cope with the

challenge of big data analysis.

1.4 Thesis Structure

In this chapter, we have discussed the importance of big data and how it influences

many aspect of our lives. We have explained the challenges related to big data and

current trends toward solutions for big data analysis. We have clarified our research
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direction of leveraging novel data compression schemes to mitigate big data issues and

contextualized our work in the field. The remaining chapters are organized as follows.

• In Chapter 2, we explain data organization in Hadoop. We then analyze conven-

tional and various ad-hoc compression methods that are important for big data.

• In Chapter 3, we present Content-aware Partial Compression (CaPC) [DH14a]

which is our initial attempt towards accelerating textual big data analysis us-

ing compression. CaPC focuses on separation of informational and functional

contents, and providing complete transparency between analytic platforms, com-

putational frameworks and developers.

• In Chapter 4, we introduce Approximated Huffman Compression (AHC) which

was established at an early stage of our research. AHC allows flexible compressed-

string searching in linear time using hybrid data structures.

• In Chapter 5, we present Record-aware Compression (RaC) [DH15a]. RaC em-

ploys modified higher-order compression methods that can drastically reduce

data size while ensuring the compressed data is splittable to the underlying dis-

tributed file system. Additionally, RaC is made aware of logical records during

compression.

• In Chapter 6, we present Record-aware layered Partial Compression (RaPC)

[DH15b]. RaPC uses two different compression schemes that are layer-specific

to the corresponding stage of data analysis in MapReduce. RaPC achieves com-

pression ratios comparable to modern general purpose compressors such as Bzip.

• In Chapter 7, we present conclusions and discuss future work.

1.5 General Convention

Several definitions and conventions are used throughout this thesis as listed below.

• Compression ratio ϕ is given as a percentage and is defined as:

ϕ = So − Sc

So
∗ 100

where, So is source data size and Sc is compressed data size.

• The terminology source data, raw data, original data, and uncompressed data are

interchangeable.

• Compressed data, by default, indicates compressed textual data, unless indicated

otherwise.
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• Several compression schemes are introduced in this thesis. We use the term

Content-aware Compression (CaC) to refer in general to all these devised

schemes.

• In the context of MapReduce, the terms Map output and intermediate data are

interchangeable.

1.6 Publications

The publications associated with this thesis are listed below.

• The Content-aware Partial Compression (CaPC) scheme for textual big data

analysis acceleration in Hadoop was presented at the 6th IEEE International Con-
ference on Cloud Computing Technology and Science (CloudCom 2014), Singapore,

in December 2014 [DH14a].

• The Record-aware Compression (RaC) scheme was presented at the 2015 IEEE
International Conference on Big Data (IEEE BigData 2015), Santa Clara, CA, USA,

in October 2015 [DH15a].

• The Record-aware layered Partial Compression (RaPC) scheme was presented at

the 7th IEEE International Conference on Cloud Computing Technology and Science
(CloudCom 2015), Vancouver, Canada, in December 2015 [DH15b].

In addition to the main contributions given in chapter 3 ∼ 6, several studies on efficient

management of underlying cloud platforms conducted at an early stage of our research

are listed below.

• An efficient server consolidation algorithm for clouds was presented at the 13th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid
2013), Delft, The Netherlands, in May 2013 [DH13b].

• A reference architecture for automation of private cloud management was pre-

sented at the 6th IEEE International Conference on Cloud Computing (CLOUD
2013), Santa Clara, CA, USA, in June 2013 [DH13c] and a journal version of

this paper has been published by the International Journal of Cloud Computing
(IJCC) [DH13a].

• A File System as a Service (FSaaS) solution for data management in clouds was

presented at the 38th Annual IEEE International Computers, Software & Applica-
tions Conference (COMPSAC 2014), Västerås, Sweden, in July 2014 [DH14b].
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Chapter 2

Background Research

“Some people see the glass half full. Others see it half empty. I see a glass that’s twice
as big as it needs to be.”

— George Carlin

We have witnessed a rapid evolution of research and development on big data tech-

nologies. Important current concerns include efficient algorithms [Apaf] [Spa], paral-

lel computational frameworks [DG08] [Apa15] [Apag] [NRNK10] [IBY+07], compre-

hensive analytic platforms [Apad] [Clo] [IBMa], scalable deployment strategies [Sta]

[Ama], and auxiliary services [Apaj] [HCG+14] [Apae] [Apah] that contribute to an

effective big data ecosystem. However, related literature on incorporating compression

schemes with big data analysis is limited. Current emerging techniques for compressing

big data are mostly ad-hoc approaches optimizing for data-specific and domain-specific

datasets. They are not provided as principled solutions. In this context, we firstly

analyze how big data is organized in modern distributed file systems, specifically the

Hadoop Distributed File System (HDFS), followed by explaining how big data is pro-

cessed using the MapReduce computational framework [DG08] [Apad]. We aim to

identify where and how compression can be used with existing analytic platforms to

mitigate big data issues. We then analyze various conventional compression schemes

and investigate several important ad-hoc algorithms to discover their potential and

limitations for use in big data analysis. We also discuss recent literature on emerg-

ing techniques including splittable compression, probabilistic data structures, data de-

duplication and domain-specific compression. Finally, we summarize the background

analysis provided as a foundation to our content-aware compression schemes.

2.1 Big Data Organization in Hadoop

Hadoop is a widely adopted data analysis ecosystem. It consists of several components

that together provide a platform for managing and analyzing data on a large scale.
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2. BACKGROUND RESEARCH 2.1 Big Data Organization in Hadoop

A brief history of the development of Hadoop is given in [Whi15]. Many existing

big data solutions are based on the Hadoop ecosystem of technologies for example,

Cloudera [Clo], OpenStack Sahara [Sta] and IBM BigInsights [IBMa], to name just a

few. In this section, we explain how data is organized in the HDFS distributed file

system and how data is processed in the MapReduce framework.

Hadoop Cluster

Data Nodes

Name
Node

HDFS

Data
Blocks

(HDFS-Block)

Physical
Storage

Data
Splits

Records

Mappers

Figure 2.1: Data organization in HDFS and Map processing of MapReduce.

Figure 2.1 illustrates a typical organization of a Hadoop cluster from the physical layer

to the MapReduce application layer. At the bottom, a Hadoop cluster consists of a group

of physical servers in which one of the servers acts as a controller of the cluster, namely

the NameNode, and the other servers provide storage space and computation power,

namely DataNodes, as shown in Figure 2.1 (Label 1). The NameNode is responsible for

coordinating MapReduce jobs and managing HDFS meta-data. The DataNodes are re-

sponsible for storing data and providing computation power for MapReduce programs.

Each DataNode contributes a part of its local storage space (a partition of the local hard

disk) to HDFS, as illustrated in Figure 2.1 (Label 2). Thus, HDFS is a virtualized storage

system that is comprised of a number of geographically distributed physical hard disks,

as shown in Figure 2.1 (Label 3). A file stored in HDFS is split into a series of fixed-size

blocks (HDFS-Blocks), as shown in Figure 2.1 (Label 4). HDFS-Blocks are often dis-
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2. BACKGROUND RESEARCH 2.1 Big Data Organization in Hadoop

tributed across DataNodes, but are virtually continuous in HDFS. Unlike the traditional

organization of storage systems such as NTFS 1 and Ext3 2 using 4KB data block size,

HDFS uses a very large data block size (HDFS-Block size is 128MB by default) chosen

for better hard-disk read/write performance. A HDFS-Block is the minimum storage

unit in HDFS. It cannot be broken further into smaller pieces.

HDFS only provides a logical view and hides the complexity of organizing data in the

underlying distributed storage system. It is an independent service (file system service)

provided as a part of Hadoop for data organization and management. Data analysis

is carried out by the MapReduce 3 computational framework. As the name implies, a

MapReduce program consists of two phases: Map and Reduce. The Map phase operates

on a set of key/value pairs. The Reduce phase reduces the outputs from the Map phase

by values which share the same key. However, the Map phase can also perform the

Reduce logic locally, thus there is no clear separation of responsibility for the Map

phase and Reduce phase. It may be better to understand the MapReduce paradigm

by an intuitive example. For instance, given a job of finding the maximum value(s)

in a large financial report dataset, the dataset will be firstly broken into a series of

data blocks, and each data block will be processed independently by a dedicated Map

process (Mapper, as indicated in Figure 2.1 <Label 7>) to find the local maximum

value(s). The results from all Mappers will then be aggregated to a Reduce process

(Reducer) to find the global maximum value(s).

As described, each Mapper will be assigned to a HDFS-Block. Within a HDFS-Block,

data will be further broken into logical records (this depends on the dataset, for exam-

ple a logical record can be a sentence in a text file or a row in a database table), as

indicated in Figure 2.1 (Label 6). The record parsing process is done by the MapReduce

Record Reader component. A Mapper will process a record at a time. However, HDFS

simply splits data by size. It is very likely that a HDFS-Block will contain incomplete

records at the boundaries. To ensure record completeness, MapReduce further orga-

nizes HDFS-Blocks into data splits, (Figure 2.1 <Label 5>). Essentially, a data split is

a logical view of a data block which is guaranteed to contain a set of complete records

as shown in Figure 2.1.

Intermediate output data from each Mapper is firstly cached in an in-memory buffer, as

indicated in Figure 2.2 (Label 1). When the utilization of the caching buffer reaches a

certain threshold, all cached data in the buffer will be materialized to persistent storage

(local hard disks). This process is called Spilling in the context of MapReduce. Data in

a spill will then be sorted by keys and partitioned according to the number of Reducers

1NTFS stands for Microsoft® New Technology File System. NTFS has default 4KB block size for storage
volume less than 16TB on Windows® 7 or above.

2Ext3 is Linux Third Extended File System. It commonly uses 4KB block size to address 16TB storage
volume.

3http://hadoop.apache.org/. A comprehensive introduction to MapReduce can be found in
[MVE+14].
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Mapper
Spills with
Partition

Buffer
Merge
Local Shuffle

Sort and 
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Reducer Output

Reducer Nodes

Figure 2.2: Data organization in HDFS and Reduce processing of MapReduce.

configured for the job, as indicated in Figure 2.2 (Label 2 and 3). Upon completion of

the Map processes, each sorted partition will be distributed to a corresponding Reducer

over the network. At each Reduce computational node (the physical server that runs

the Reduce phase of the program), the received partitions will be sorted again and

merged into a single data block, and then fetched to the Reducer, indicated in Figure 2.2

(Label 4). The final results (Reduce output data) will be stored in HDFS eventually, as

indicated in Figure 2.2 (Label 5).

Questions arise when using compressed data in Hadoop.

1. If source data is compressed using general purpose compression schemes such as

Gzip [Gzi] and Bzip [Bzi], after splitting the compressed data into HDFS-Blocks,

can we ensure that each HDFS-Block is still independently de-compressible?

2. If data is in compressed format, how can we organize HDFS-Blocks in data splits
and guarantee record completeness?

3. If data is in compressed format, can we break a data split into records efficiently?

4. Can we process data in compressed format without sacrificing performance?

5. How can we distribute the Map output data (intermediate data) to corresponding

Reducers more efficiently?

These questions set requirements on compression schemes suitable for big data analy-

sis in Hadoop. The criteria we focus on are whether the compressed data is splittable,

directly consumable 4, and aware of source data contents. In the following sections, we

4There are two scenarios in big data analysis. In the first case, data will be analyzed by existing
algorithms without modification (read-only) throughout the analysis. In the second case, data will be
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discuss related work by examining existing conventional and random access compres-

sion algorithms for textual data, and recent emerging techniques specifically designed

for dealing with big data.

2.2 Conventional Compression Schemes

Data compression originated in communication systems. Since the invention of the

Morse code [ITU09] in the early nineteenth century to the development of informa-

tion theory [Sha48] and several subsequent important compression related coding

schemes [Sha49] [Huf52] in the middle of twentieth century, the research and de-

velopment on data compression had developed slowly due to absence of demand. The

rise of the Internet and information explosion prompted a rapid development of data

compression methods from the simple LZ77 (Lempel-Ziv) [ZL77] in 1977 to the state-of-

the-art LZMA2 (Lempel–Ziv Markov Chain) [Igo15] at present. Over the years, numer-

ous general purpose and specialized data compression methods have been developed.

It is infeasible to examine all of them. In this section, we examine several important

compression techniques which are often used as building blocks for modern compres-

sors. As a typical compression scheme often consists of three phases: Transformation,

Modeling, and Encoding, we discuss commonly employed techniques for each phase. A

representative algorithm is thereafter selected to further evaluate the benefits and lim-

itations of their use in the context of big data. The emphasis is on textual data related

compression methods.

2.2.1 Transformation

Transformation is selective and often used as a preprocessor for compression. It in-

volves reordering data. It does not compress data. But it leads to interesting results

where the same characters or a similar set of characters tend to be grouped together.

The repetitiveness can then be captured by subsequent modeling and coding schemes,

and thereby it supports higher compression ratios. Generally, transformation is per-

formed on a per data block basis, thus it is also known as block sorting. There are sev-

eral common methods for data transformation operating at the character level includ-

ing Burrows-Wheeler Transform (BWT) [BW94], Symbol Ranking [Fen97] and Lexical

Permutation Sorting Algorithm (LPSA) [AM97]. Data transformation has also been ex-

tended to word level [IM01] with extra cost in terms of complexity on parsing words

from a given text, but based on the same principles. Among these transformation tech-

niques, BWT is one that is widely used, such as in the well-known Bzip [Sew00]. We

use BWT as a case study to further examine the suitability of using transformation

modified and processed, for example, extracting columns and re-forming database records. In the context
of this thesis, if compressed data is directly consumable, it must fulfill the requirements for both scenarios.
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techniques for compressing big data with regards to splittable and directly consumable

data.
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Figure 2.3: An example of Burrows-Wheeler transformation.

The BWT transformation starts by taking a block of data in a row. Imagine we fit the

block of data into a cyclic queue and move the first element of the queue to the end of

the queue until all of the characters in the block have been moved once. For example, if

we are trying to perform BWT transformations on the given text "textdata", by recording

the rotation steps, we will have a matrix generated for the text "textdata" as illustrated

in Figure 2.3 (left). When we sort the matrix by the first column in a lexicographical or-

der, we will have a second matrix shown in Figure 2.3 (right). This rotation and sorting

do not shrink data size. It produces an interesting result. If a symbol occurs frequently

in the block, after sorting the first column F , the prefix character of the symbol which

is now in the last column, L, tend to group together. This result makes other compres-

sion methods, for example, Move-To-Front (MTF) coding [BSTW86], more effective.

Most importantly, the transformation process is reversible by only knowing L and the

starting index I∗.
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Figure 2.4: An example of Burrows-Wheeler inverse transformation.
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The inverse process firstly sorts L lexicographically. The outcome is in fact the column

F we have seen during the transformation phase. Once we have L and F , we need to

build a transformation index vector T that indicates the relationship between L and F .

The relationship is as follows. The ith value of T is the index of the ith character of L

in F , as illustrated in Figure 2.4 (left). After calculating vector T , the original message

can be retrieved from L using the relationship defined by L[T [i]] ⇐ L[i] in reverse

order. The last character of the original message is given by L[I∗]. In this example, I∗

= 6, this indicates that the last character of the original text is the 6th character in the

column L, which is the character "a" (note that the index of L starts from zero). This is

illustrated in Figure 2.4 (right).

Given a block size n, the rotation phase takes O(n) time and the sorting process re-

quires as least O(n · log(n)) time assuming we use quick-sort or merge-sort algorithms.

A bigger n potentially improves the compression ratio, but it consumes more time. A

compression scheme that employs block-sorting techniques needs to consider this over-

head. For example, Bzip uses BWT as a preprocessor. In comparison with Gzip, Bzip
is much slower both in compression and decompression speed but with slightly higher

compression ratios. In principle, a BWT enabled compressor can produce a series of

self-contained outputs. By knowing the block size, the compressed data is splittable

to the HDFS. However, subsequent compression processes determine whether inter-

block connections are created. In addition, the permutation of characters (rotation and

sorting) prevents random access to information in the internal blocks without special

indexing techniques as will be explained in Section 2.3.3.

2.2.2 Modeling

Generally, a text compressor is either an implementation of a statistical or dictionary

method. Statistical methods are based on the principle that a symbol with a higher

probability of occurrence can be represented by fewer bits subject to Shannon’s the-

orem [Sha48]. It is also referred to as symbolwise compression [WMB99]. In digital

computers, compression aims to use a minimum binary alphabet sequence to represent

a given message. In information theory, if a message X consists of n independent sym-

bols 5 {x1, x2, ...xn}, the probability of occurrence of each symbol xi in X is given by

Pr(xi), then the expected number of bits needed for X is given by Equation 2.1.

H(X) = −
n∑

i=1
Pr(xi)log2Pr(xi) (2.1)

In the context of statistical compression, the function of a model is defined as:

5Depending on the context, a symbol can be a character, a group of characters, or a word.
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“The function of a model is to predict symbols, which amounts to providing a proba-
bility distribution for the next symbol that is to be coded.” [WMB99]

There are three basic categories of modeling techniques: static, semi-static, and adap-

tive. A static model is built based on prior knowledge or experience gained from similar

data. It is often a subjective choice. For example, a static list of characters can have

pre-assigned probability for each character. Using static models often results in poor

compression ratios and is rarely used by modern compressors. However, static models

can be useful when the data contents are known or well-defined. For example, social

media data such as Facebook posts often contain commonly used English words. A

simple static word list can be an effective model for such type of data. Especially for

big datasets, constructing model(s) on the fly can be very time consuming.

In contrast, building semi-static models requires scanning through data contents, hence

an accurate symbol probability distribution table can be constructed. This implies

that compression schemes based on semi-static models require two passes over the

data. The first pass is used to build a model(s) and the second pass carries out the

actual compression. There are two basic issues with the use of semi-static models.

Firstly, in the big data context, traversing large datasets twice can be extremely in-

efficient. Secondly, when data size becomes larger, potentially, the probability dis-

tribution of symbols become smoother. This implies that codes for symbols (assume

using character-based compression) tend to have length similar to the standard ASCII

codes, thus resulting in poor compression. To overcome these issues, many applica-

tions [Sew00] [lGA] [Igo15] [FMMN04] [ZL77] [Deu96] employ block-wise compres-

sion. Dedicated models are built for each block of data. It is not necessary for each

block to have the same size. For example, the Deflate algorithm [Deu96] uses two

dedicated Huffman trees [Huf52] (compression models built from the Huffman algo-

rithm) for encoding symbols of a single data block. The size of each data block is

decided by the usage of the internal buffer and the efficiency of the associated Huff-

man trees. Nevertheless, the variable-length input data blocks result in variable-length

compressed output data blocks, thus splitting compressed data in HDFS requires the

recording of block boundaries. It is even more challenging to form higher level data
splits for MapReduce. Additionally, using multiple models for a single dataset makes

accessing compressed data very problematic in distributed environments. This will be

further elaborated in the following chapters.

An adaptive model 6 starts with a flat probability distribution. For example, consider-

ing an arbitrary text file that contains standard ASCII codes and extended ASCII codes,

such as multi-language articles, there are in total 256 characters, and each character

will be given a probability of 1
256 initially (there are other ways for the initial probability

6Adaptive models and adaptive coding should not be confused. An adaptive model evolves with new
contents. Adaptive coding implies changes caused by new inputs to a model at a sender can be dynamically
updated in the model at a receiver [LR81], as used in data communication systems.
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Figure 2.5: An example of adaptive arithmetic coding step-by-step.
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Figure 2.6: An example of adaptive arithmetic model evolution.

assignment [WMB99]). Regardless of what the first character is in the given text, the

estimated probability for the first character is given by 2
257 . Based on Shannon’s theo-

rem as given in Equation 2.1, we can calculate the minimum number of bits needed to

encode the first character. When compression moves forward in the text file, the model

evolves accordingly. This is also known as an order-zero model. Adaptive Arithmetic

coding [LR81] and Adaptive Huffman coding are two widely used schemes based on

order-zero models. We use Adaptive Arithmetic coding to further examine the potential

and limitations of using order-zero models with respect to splittable and random access

in big data analysis.

Using the same example given in Section 2.2.1, in order to encode the message "text-
data" using an Adaptive Arithmetic coder, we assume the alphabet {a, d, e, t, x} is

known. Then, we need to assign an initial probability to each character with equal
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weights as shown in Figure 2.5. The algorithm treats the message to be encoded as

a stream. When a new character is encountered, the probability assignments for all

characters in the model are adjusted accordingly as shown in Figure 2.6 (step <1 –

10>). For each step forward, the previous probability interval indicated by upper and

lower bound will be proportioned by the evolving model. For example, "t" is the first

character in the given message. Initially, a flat probability of 0.2 is given to each char-

acter (five distinct characters in the alphabet share the entire interval [0, 1], and are

sorted in lexicographical order). The probability given to character "t" is allocated an

interval [0.2, 0.4]. Moving forward, the second character is "e". Within the interval

assigned for the first "t", the new probability distribution for "e" is then calculated as

the interval assigned for "t" divided by six since the character "t" was observed before

"e". Thus, the new interval is [0.3, 0.33] as shown in Figure 2.6 (step 3). The process

moves on until the last character is reached. This implies that message decoding must

start from the beginning of the compressed message in order to identify the initial in-

terval. When the compression reaches the last character, the final interval becomes very

narrow (depending on the length of the message) and constrained by upper and lower

bounds in real numbers. In fact, these real numbers in decimal can be very long. They

do not provide any obvious compression. To achieve compression, these real numbers

are converted into binary real numbers 7 as shown in Figure 2.6 (step 10). In principle,

any number between the final upper and lower bound can be used as the compression

result. Therefore, it is unnecessary to use the full length of the binary real numbers.

Just the common part of the upper and lower bound (as indicated in Figure 2.6 by

<Label A>) plus a single bit in difference (as indicated in Figure 2.6 by <Label B>)

are sufficient to decode the original message. The remaining part of the binary real

number (as indicated in Figure 2.6 by <Label C>) can be ignored. From this exam-

ple, we can see that the Adaptive Arithmetic coding is very efficient as it uses only 20

bits to encode 8 characters (64 bits in the ASCII encoding scheme). However, due to

the stream-based processing, we cannot split the compressed data nor have random

access to it. Thus, a common shortcoming when using an adaptive model is lack of

random access. Further explanation and variations of Arithmetic coding can also be

found in [Sal08] [WMB99] [Ris76] and [MT02].

There are higher-order models based on various prediction techniques such as finite-

context, finite-state and neural networks. Prediction by Partial Matching (PPM) is a

representative algorithm [CW84] that uses finite-context prediction. PPM maintains

several models from lower order (order-zero) to higher order (order-4 is common). A

higher order model uses longer contextual data. For example, using the same mes-

sage "textdata", an order-zero model calculates probability for the last character "a" by

counting how many "a" occurred previously, an order-1 model counts how many "ta"

7Floating-point to binary arithmetic is defined in IEEE 754 standard (the most recent version is defined
in IEEE 754-2008). http://grouper.ieee.org/groups/754/
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were observed. Probability of symbol occurrence is estimated by all models and the

highest value is selected for encoding. This is due to the fact that higher probability

results in lower information content subject to Shannon’s theorem. Similarly, Dynamic

Markov-Chain (DMC) [CH87] uses finite-state and PAQ 8 [Mah05] employs neural net-

works for predicting symbol probability. A final point should be noted for statistical

models. Static and semi-static models are context-free models. They are different from

order-zero models. A context-free model is non-predictive whereas an order-zero or

higher-order model is predictive. These adaptive models make great use of contextual

data and this makes random access to the compressed data much harder.

Dictionary methods are also commonly used for textual data compression. They

achieve compression by eliminating repetitiveness and achieve greater compression

ratios by leveraging contextual data. Many existing state-of-the-art compressors are

based on dictionary methods. For example, Gzip [lGA], 7-Zip [Igo15], Lempel-Ziv-

Oberhumer (LZO) [Mar15] and Roshal Archive compRessed (RAR) [RAR15]. They are

ultimately derived from LZ77 [ZL77] and LZ78 [ZL78]. LZ77 is one of the earliest

dictionary methods, developed in the 1970’s. The algorithm works by maintaining a

context buffer (Sliding Window) which contains the recent input stream (source for-

mat) that has already been encoded. It works by finding the longest immediate suc-

ceeding string starting at the current compression position for a match in the context

buffer, and replaces it by a triple which comprises of the starting position in the con-

text buffer, length of the matched string and the immediate succeeding character of

the matched string in the current compression stream. LZ78 [ZL78] and its variant

Lempel–Ziv–Welch (LZW) [Wel84] maintain an in-memory dictionary which contains

strings that have been observed so far. A new string that is found in the dictionary is

replaced by a pointer to the index of the match in the dictionary. The use of context in-

formation causes the same problems as decoders can only decode compressed contents

sequentially. This means that splitting compressed data requires recording boundaries

of compressed blocks (non-stream based). Additionally, the size of the context buffer

varies depending on the algorithm. For example, LZ77 can use an arbitrary size for the

context buffer (64MB or even bigger). Deflate uses a 32KB/64KB context buffer. The

longer buffer potentially yields better compression ratios, but it makes the dependen-

cies between compressed blocks stronger and subsequently makes splitting compressed

data harder for HDFS.

In contrast to context-dependent compression, a simple dictionary-based compression

method is described in [Sal08]. The algorithm is a two-pass compression scheme. It

starts by calculating probability distributions for each ASCII character (0 ∼ 255) from

a given text in the first pass, and sorts characters by probabilities in descending order.

8PAQ is the name of an experimental open source project working on specialized compression algo-
rithms that aim to achieve the highest compression ratio possible while ignoring constraints on space and
time complexity.
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The compressor then reads the input stream again, and replaces each character by its

corresponding index in the probability distribution table and prepends three extra bits

to indicate the length of the index. This method is simple and intuitive. The problem

is that when the input data size is big, going through the data twice leads to poor

compression speed, for example, at terabyte, petabyte or even exabyte scale. Also, the

compression ratio of the scheme is poor and so that makes it much less interesting for

big data.

2.2.3 Encoding

Huffman coding [Huf52] and Arithmetic coding [LR81] are the two most widely used

encoding schemes. Both can produce optimal codewords. They are often referred to

as entropy encoders [WMB99] [Sal08]. Arithmetic coding creates dependencies along

the compression stream regardless of whether a static, semi-static or adaptive model is

used. In contrast, Huffman coding with a static or semi-static model generates prefix-

free codewords for symbols, and codewords are independent.

The basic task of Huffman coding is to generate shorter codes for more frequently

occurring symbols in a given message. The algorithm takes the probability distribution

of symbols as an input and starts by constructing a Huffman tree. Each symbol is treated

as a leaf in the tree. The construction process starts by pairing lowest probability

symbols in a recursive manner until all symbols are connected in the tree. Given the

same input (message and model), Huffman codes are not unique. For example, if two

symbols have the same probability, which symbol is placed on the left/right branch

of the tree will result in different codewords. To avoid ambiguity in decoding, the

Huffman tree construction process needs to agree on some rules. For example, the

left branches of the tree are always labelled with 0 and 1 for the right, or vice versa.

For symbols having the same probability, symbols with lower values (e.g., converted

to ASCII code values) are placed on the left or vice versa. The decoder reads bit by

bit from the compressed data to follow the branches in the Huffman tree until a leaf

is reached. Then it can be safely assumed that the bit pattern was used for encoding

the symbol stored in the leaf and the decoder emits the corresponding symbol to the

output.

As mentioned above, the Huffman coding algorithm produces independent codewords.

Codewords have variable-length measured in bits. But, starting at a random position

in the compressed data, it does not indicate how to determine boundaries between

codewords. It works only when the decoding proceeds in order from the beginning to

the end. This implies the Huffman coding does not allow random access unless we can

develop techniques that can effectively detect codeword boundaries such as indexing,

or package Huffman compressed data in a specific format. Further explanation and

solutions for using Huffman compressed data in Hadoop and MapReduce are given in

Chapter 4.
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Huffman coding can work with characters. It can also work with words in a differ-

ent way. The method is called Canonical Huffman coding [HL90]. Instead of using

characters for leaves, words are used. Given the probability distribution of words, the

conventional Huffman algorithm is used to calculate the length of codewords for words.

Words are then sorted and partitioned by the length of their corresponding codewords.

Within each partition, words are sorted in alphabetical order. A prefix-free code is

given to the first word in each partition and codewords for the following words in the

same partition are given by incrementing the first codeword of the partition [WMB99].

This makes the algorithm very efficient for decoding, because codewords and their cor-

responding words can be quickly identified from a lookup table. However, Canonical

Huffman coding produces variable-length bit codes. This requires all information in

a given text to be coded including words and non-words (e.g., punctuation charac-

ters). Considering that Internet generated data often contains Unicode contents, how

to split words and build a complete word-to-code map is a problem. Several other cod-

ing schemes [Sha49] [FK96] [Mar79] are also available, but less commonly used for

textual data compression. They present similar issues as described for Huffman and

Arithmetic coding.

2.3 Random Access Compression Scheme

Random access on compressed data is an active topic in the field of information re-

trieval. It allows one to obtain the original records at random positions and offers a

certain degree of freedom in terms of content manipulation without decompression.

Common approaches are based on context-free compression, self-synchronizing codes,

and indexing techniques.

2.3.1 Context-free Compression

Context-free compression uses various coding schemes with static or semi-static mod-

els/dictionaries. The main driver for this approach to be successful is codeword in-

dependence. In this thesis, we classify context-free schemes into three categories as

shown in Figure 2.7. A bit-oriented/word-based scheme is characterized by relatively

higher compression ratios, byte-oriented schemes achieve better performance on com-

pressed string matching, whereas character-based schemes support searching for arbi-

trary strings.

In the early development of context-free compression, byte-oriented word-substitution

approaches [Man97] [SdMNZBY00] [Cra99] were common. [Man97] introduces a

scheme that uses a single byte drawn from the extended ASCII code pool to replace

a pair of characters (digram) in a given text. The code space is limited to 128 as that
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Character-based

Word-based

Bit-oriented

Byte-oriented

Figure 2.7: Classification of context-free compression schemes.

is the maximum number of characters available in the extended ASCII table (128 ∼
255). The advantage of the scheme is that it allows string searching directly on the

compressed data. The drawbacks are that:

• it requires scanning through the entire dataset(s) to find appropriate digrams,

• it is difficult to identify most frequently occurring digrams.

Thus, the algorithm is only suitable for data with reasonable size and the achievement

on compression ratio is relatively low. If the source data contains Unicode characters,

the algorithm for decompression may fail due to the fact that the Unicode scheme em-

ploys extended ASCII codes. A similar word-based compression using Huffman coding

combined with a semi-static model was proposed by Silva et al. [SdMNZBY00]. Re-

call that Huffman coding produces variable-length codewords (bit-oriented). Decoding

must start from the beginning of the compressed data. To overcome this problem, the

authors [SdMNZBY00] use byte-oriented Huffman coding. Each codeword is guaran-

teed to have a whole number of bytes in length. Furthermore, the Most Significant Bit

(MSB) of each byte is used to indicate whether this is the beginning of a codeword.

This mechanism sacrifices some leading and trailing bit(s) to allow random access. But

the limitation is clear. The irregular use of the extended ASCII codes (setting MSB to

one) makes it difficult for these aforementioned schemes to deal with Unicode contents.

Most importantly, the current version of the MapReduce framework only supports stan-

dard ASCII and UTF-8 encoding schemes for strings. When a MapReduce program

reads textual data from HDFS, it automatically converts text into UTF-8 strings by de-

fault. This will very likely cause Invalid Format errors during the conversion processes,

because the use of extended ASCII codes does not follow the rules defined by UTF-

8. Re-Pair [LM99] is another byte-oriented compression scheme. The authors [LM99]

use a single byte-symbol to replace the most frequently occurring character-pairs. The

process iterates until no more common pairs can be found. Because of the iteration

process, previously generated byte-symbol(s) are also treated as character(s) which

can be treated as a part of a new pair in a subsequent iteration process and this creates

embedded dependencies which prevents random access to compressed data.

For many domain specific datasets, splitting data into words can be difficult, for exam-

ple, in a genome sequence or financial report. In contrast, a character-based scheme
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provides flexibility for arbitrary string searching. Ternary Digit [Kat12] is a character-

based, bit-oriented scheme. It uses a ternary digit 9 and binary 11-pair scheme to gener-

ate variable-length codewords. Codeword assignment is based on the probability of oc-

currence of characters in a given text. It is based on the same principle as used in Huff-

man coding. Thus, this compression method presents the same issues that have already

been identified for Huffman coding. Similarly, Canonical Huffman coding [HL90] (bit-

oriented) is often used for word-based compression. As per described in Section 2.2.3,

Canonical Huffman provides faster decoding speed using lookup tables. However, the

variable-length encoding scheme poses the same problem for splitting compressed data.

Several other ad-hoc algorithms such as grammar-based [BLR+11] [AL98] and com-

pressed string matchings [BDM13] [FT98] [WM92] [BFG09] are specific for random

access to static contents. Generally, grammar-based compression looks for compact

grammars that can be used to represent source messages. However, depending on

data contents, finding compact grammars for arbitrary messages is a Non-deterministic

Polynomial-time hard (NP-hard) task. Compressed string matching often employs suc-
cinct data structures [Jac88] and indexing techniques which create strong dependencies

between data contents, thus making splitting compressed data non-trivial. Additionally,

in big data analysis, especially in MapReduce programs, manipulating data is common.

We need more than just random access.

2.3.2 Self-synchronizing Codes

Recall that character-based schemes are flexible for arbitrary string searching. The

per-character encoding needs to employ bit-oriented approaches in order to achieve

compression. In fact, many existing coding schemes such as Huffman coding [Huf52]

and Arithmetic coding [HL90] are variable-length and bit-oriented. On the other hand,

most modern operating systems, software and applications manipulate data at byte-

level. In HDFS, data is split into a number of bytes (128MB by default). This poses a

concern in that splitting compressed data will very likely create a broken code at the

splitting point. For example, the last byte of the first HDFS-Block and the first byte

of the immediate succeeding HDFS-Block may each contain a partial codeword for a

single character. In the worst case scenario, the second HDFS-Block can be successfully
decoded, but produce completely different erroneous information from the source data

(error propagation).

Data communication and information retrieval systems use synchronization points and

self-synchronizing codes to solve the broken code problem [WMB99]. A synchroniza-

tion point can be a single byte or a sequence of bytes that never occur in the compressed

data placed at pre-specified locations. It is a simpler approach in general, but less effec-

9Ternary digit is a base-3 number system that uses digits {0, 1, 2} only. In information theory, a
ternary digit contains log2 3 information.
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tive in HDFS and MapReduce. Recall that MapReduce is intended to process a record

at a time. Inserting synchronization points on a per record basis will firstly degrade

compression ratio. Secondly, synchronization points may differ depending on the data

contents. If a MapReduce program needs to process a dataset that contains several

separate files, it can be difficult to find common synchronization points (the same byte

or group of bytes that is used as a synchronization point). If different synchronization

points are used, it will make it more complex for the MapReduce program to determine

records.

An alternative solution is to use self-synchronizing codes which can self-determine

whether a codeword has been corrupted when it is received or within a synchronization

cycle. Many self-synchronizing codes are suboptimal or only optimal under strict con-

ditions [FT13] [Tit96] [Gol66] [FK96]. Temporarily putting code optimality aside, in

order for Mapper to read records directly from, for example, Huffman compressed data,

we need to determine record delimiters and check codeword integrity. At a large scale,

this process can seriously impair overall performance of a MapReduce program. Also,

note that synchronization points and self-synchronizing codes are not designed (due

to context dependencies) to facilitate random access to data compressed by schemes

using adaptive models.

2.3.3 Indexing

Indexing is one widely used technique that facilitates fast information retrieval and

random access to data. Two common approaches to indexing are full-text indexing and

self-indexing. Full-text indexing either builds indices on source data or compressed

data. Inverted-file indexing [DHL92] [ZM06] builds an index on a text file by con-

structing a list of vectors. Each vector contains a distinct word/non-word (as a key)

followed by a list of positions of the word/non-word occurring in the file. Searching on

word(s) can be done quickly by looking up the index without referring to source data.

In contrast, a Bitmap is a form of relaxed Inverted-file indexing [WMB99] [CWC+15].

It does not store the exact position of words/non-words. Instead, a Bitmap only tells

whether a word/non-word exists in a given source data.

A Signature File [Fal85] [ZMR98] builds indices using bit-vectors (also referred to as

Descriptors or Signatures) and hash functions. For example, in order to create a De-

scriptor for text message "text data", each word in the message is hashed twice by two

different hash functions. In Figure 2.8, in a simple form, words are hashed using the

Fowler–Noll–Vo (FNV_1_1) [GFE12] and Murmur3 10 functions. Each hashed value is

modulated by the Descriptor length (16-bit in this example). The results are integer

10Murmur3 is a non-cryptographic hash function. It is commonly used by storage and database systems
for fast information lookup. https://sites.google.com/site/murmurhash/
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values indicating the positions projected on the bit-vector as shown in Figure 2.8 (bot-
tom). The bit-vector is then used as the Signature/Descriptor of the message. Searching

information from the Signature File requires hashing the pattern to be searched and us-

ing the bit-position values derived from the hash functions to verify whether the pattern

exist in the source data. Note that there is a chance that two words can result in the

same hash values, thus the Signature File only indicates whether a pattern exists in the

source data with a certain level of confidence.

Descriptor

HashFNV_1(“text”) = 0xB12BFA38 

0

1 0 0 0 0 1 0 00 0 0 1 1 0 0 0

15

HashFNV_1(“data”) = 0x74CB23BD 

0x3B12BFA38 mod 0x10 =

0x74CB23BD  mod 0x10 =

HashMurmur3(“text”) = 0xC624AE24 0xC624AE24    mod 0x10 =

HashMurmur3(“data”) = 0x3AF4B6D3 0x3AF4B6D3  mod 0x10 =

13

8

4

3

Figure 2.8: An example of Signature File indexing. Each message is hashed separately
using FNV_1 (32-bit/x86) and Murmur3 (32-bit/x86).

Inverted-files, Signature Files and Bitmaps are techniques for building indices on source

data. These techniques consume more storage space for faster information retrieval and

so are suitable for database and storage systems. In this thesis, we aim to improve data

analysis performance in Hadoop and MapReduce without sacrificing storage space.

Full-text indexing on compressed data is commonly based on Rank and Select opera-

tions [Jac88] [FLPnSP09]. A Rank operation calculates the number of occurrences of a

symbol up to a given position in a source text. For example, given a text T (text data)

with length 8 (ignoring the white space character), Rankx(T, 8) gives the number of

occurrence of character "x" in T which is one. Select is an "inverse operation" of Rank.

Selectx(T, j) returns the position of jth occurrence of character "x" in T . If given j =

1, Selectx(T, 1) will return three. Rank and Select are often used with succinct data

structures [Jac88] to facilitate random access to compressed data. Figure 2.9 shows

an example of how to use Rank and Select for random access to data compressed using

a Wavelet Tree [GGV03]. The alphabet for T is divided into left and right sets with

symbols on the left indicated by "0" and right indicated by "1". Based on the left and

right, we split the source data into two sub-strings. Each sub-string at the next level

is treated as new independent source data and the splitting process continues until all

leaves contain the same symbols as shown in Figure 2.9. As a result, symbols in the

source data are rearranged such that the same symbols are grouped together. Similar

to the BWT transformation, further compression algorithms such as Run-Length En-
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Source Data a d e t x

1 0 1 1 0 0 1 0

t e x t d a t a

0 0 0 1 1

Left Right

Index (I0)

1 0 0 0

e d a a

0 1 0 0

t x t ta d e

0 0 1

t x

0 1

1 0 0

d a a e t t t xa d

0 1

a a d

Left Right Left Right

Left Right

I1 I3

I4

Alphabet Source Data

Figure 2.9: An example of using Rank and Select for random access in Wavelet Tree.

coding (RLE) [Sal08] can take advantage of the repetitiveness for compression. The

binary bit sequences at each level of the tree are indices. The following shows how to

count the number of occurrence of character "a" in T . Given that the alphabet Σ =

{a, d, e, t, x} for T is known, dividing Σ into two parts, we know that symbol "a" is at

the left, therefore we need to calculate Rank0(I0, dN
2 e) = 4 (returning the number of

zeros in index I0), where N is the length of the source data. In the second step, we cal-

culate Rank0(I1, 4) = 3 and calculate Rank0(I4, 3) = 2 in the third step. This gives the

final results. A Select operation starts from the leaves and follows similar processes as

demonstrated for Rank. In general, counting, locating and extracting arbitrary patterns

can be achieved using a combination of Rank and Select operations.

Rank and Select operations can also be generalized to word level [FLPnSP09] or bit

level [Jac92]. In [Jac92], a two-level index was built for Huffman compressed files.

The index records the starting point of a codeword for every kth symbol. The scheme

supports fast locating and extracting of patterns as codeword boundaries can be quickly

identified by appropriate combination of Rank and Select operations. However, random

access to compressed data requires having both the index and the compressed data.

The authors [Jac92] indicate that the two-level index occupies the same amount of

space as the compressed data. Thus, using bit-oriented Huffman coding with full-text

indexing for random access will double the total space occupancy. This makes this

scheme less attractive for big data.

In contrast, self-indexing is particularly interesting. It can be used standalone for

counting, locating and extracting patterns from compressed data without decompres-

sion. Self-indexing builds indices for compressed data using succinct data structures.
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FM-Index [FM00] and its variants [FMMN04] [GNS+06] are typical self-indexing al-

gorithms. FM-Index and Huffman FM-Index both use the Burrows-Wheeler Transfor-

mation (BWT) and succinct data structures such as suffix arrays for compression and

indexing. But, this also poses problems for searching strings that span BWT blocks.

Additionally, textual data processing often requires complex operations, for example,

splitting a record by specified delimiters, merging multiple fields to form a new record,

string to numerical value conversions. Using self-indexing thus makes an analysis pro-

gram difficult to manipulate the underlying data as modifying data involves changing

its corresponding indices or even requiring re-compressing of the data.

2.4 Emerging Techniques for Big Data Compression

Considering the dynamic nature of the compressed contents, block-based compression

will work favourably for HDFS, because each compressed block can be made self-

contained. Due to the variable size of the compressed blocks, an additional indexing

process must be applied to the compressed contents to log the block sizes, so that the

MapReduce Record Reader component can effectively and safely parse records. In prin-

ciple, any block-based compression can be indexed. In practice, LZO-splittable [Twi]

used in Twitter® implements such an approach. LZO-splittable uses standard LZO for

data compression, then uses a separate program to scan through the LZO compressed

data and log the block boundaries in separate files. In order to consume the LZO-

splittable compressed data, a MapReduce program will need both the compressed data

and the log file(s). If a dataset contains several files, each compressed file must be

associated with a dedicated log file. This makes a MapReduce program more complex

and error-prone due to the tracking of block boundaries.

As well as of LZO-splittable, [LRW11] builds inverted file indexing (Section 2.3.3) on

compression blocks. This allows a MapReduce program to quickly identify desired in-

formation (records) in a compressed block without decompression. On the other hand,

the LZO compression scheme is speed-oriented. It compresses data at a relatively low

ratio. Adding extra indices to the compressed data makes the aggregate compres-

sion ratio even lower. More importantly, as Mappers are independent processes, par-

titioning and distributing indices with aware of data locality can be very problematic.

Hadoop++ [DQRJ+10] is other independent work on indexing big data for MapReduce.

Hadoop++ does not relax the HDFS storage burden as indices are build on top of source

data. Moreover, indices are built when source data is being uploaded to HDFS. This

implies that the indices on source data are static. Different type of analysis jobs may

not suit the same indices at all. In contrast, [RQRSD14] provides an adaptive index-

ing technique for HDFS. Indices are built gradually during the Map processes. The

main drawback is that sharing the adaptively built indices across clusters may cause

Content-aware Compression for Big Textual Data
Analysis

29 Dapeng Dong



2. BACKGROUND RESEARCH 2.4 Emerging Techniques for Big Data Compression

synchronization problems. [ZIP14] [YP09] [ZAW+09] are several other indexing tech-

niques that have many common properties to the approaches discussed above. The

majority of those developed for Hadoop and MapReduce are targeted on source data.

They provide better performance for specific types of MapReduce jobs at a cost of more

storage space and higher complexity.

Apache Avro [Apaa] is a data serialization system. It provides functionalities for orga-

nizing and splitting compressed data in specific Object Container File format. Each file

consists of a schema (meta-data that describes the data, e.g., data size, block number

and compression codec) and a series of data blocks. Each data block is self-contained

and contains a group of compressed objects (records) and 16-byte synchronization

markers which are used for determining boundaries between data blocks, thus making

compressed data splittable. The inconvenience of using Avro is that:

• it requires maintaining a separate system for the organization of compressed data,

• transferring Avro compressed data to other systems (e.g., another Hadoop envi-

ronment) requires the Avro system to be present and to be a compatible version.

In big data query systems, column-wise compression [FPST11] [MGL+11] [LAC+11]

[LR13b] [HCG+14] [LOOW14] is commonly seen. [FPST11] uses a method that sim-

ply compresses column data into a series of self-contained blocks. A group of in-order

blocks are then packed into HDFS-Blocks. This makes the compressed data splittable.

However, coordinating column-wise blocks horizontally (columns aligned in rows) dur-

ing data processing can be very difficult. Another scheme, Llama [LAC+11] allows

grouped-column compression with different schemes best suitable for groups. It builds

indices for compressed blocks. Hive [HCG+14] is a data management system that al-

lows column-wise compression. Data is organized like database tables in a Optimized

Record Columnar (ORC) format which is specific to Hive. Internally to ORC, data is

partitioned into groups of records, namely stripes. Within each stripe, records are sep-

arated into columns. Each column is compressed twice. The first level compression is

based on a dictionary method. This is because data in the same column is considered

to have similar attributes and therefore shares a common vocabulary. Using a dictio-

nary method can achieve better compression. The first level compression results are

then forwarded to the second level compression which uses general purpose compres-

sors such as LZO to pack data into fixed-size blocks (256KB). Hive ORC can potentially

achieve high compression ratios and it is splittable. A concern is that ORC is data ag-

nostic. Many datasets cannot simply be formatted in columns. For example, eXtensible

Markup Language (XML) and JavaScript Object Notation (JSON) formatted data often

contains nested records. Pzip [BCC+00] (and its improvement [BFG03]) is another

specialized compression scheme designed for table data. The algorithm uses heuristics

to group column data so that the combination can yield better compression. However,

Pzip relies on a strong assumption that the width of columns is fixed.
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From another perspective, it has shown that I/O operations including reading data

to Mappers, materializing data to HDFS and transferring intermediate data over the

network, are the dominant factors that affect the overall performance of MapRe-

duce [PPR+09] [JOSW10]. To minimize network traffic, [ZYTC14] proposed an adap-

tive compression that compresses data according to network traffic patterns. This is

more beneficial in cloud and HPC (High Performance Computing) environments where

data traffic varies greatly in time. Hadoop is said to be moving computation to data. The

network traffic is dominated by the MapReduce Shuffling process which is generally

predictable. Hadoop also supports compression before delivering data to designated

computational nodes.

2.4.1 Probabilistic Data Structures

Recently, we have witnessed the use of probabilistic data structures and associated al-

gorithms for dealing with big data in computational biology [RH15] [SKA+10]. Prob-

abilistic data structures are based on Bloom Filters 11. They provide an efficient way of

verifying whether a given message exists in a dataset. Using Bloom Filters can signifi-

cantly reduce data size as a group of messages will be transformed into a single finite

series of bits [Blo70]. However, the information transformation is a one-way process.

In other words, we can query a Bloom Filter, but we cannot retrieve information that

has already been stored in it due to the use of hash functions 12. This limits the ap-

plicability of probabilistic data structures to domain-specific use only, such as genome

sequencing. Another application of probabilistic data structures is big data queries, for

instance, BWand [AL13] for fast query on Twitter tweets, content filtering in MapReduce

programs [MS12] and NoSQL (Not Only Structured Query Language) databases such

as Google BigTable [CDG+08], Apache HBase [Apae] and Apache Cassandra [Apab].

In these cases, the probabilistic data structures are used as an indexing technique to

quickly locate information in a distributed storage system. Yet, the original datasets are

still needed. There are many other constraints such as immutability and uncertainty

that limit the scope of using probabilistic data structures in big data analysis, for ex-

ample, when modifying the original messages or reading financial records. Generally,

probabilistic data structures are suitable for assisting queries on large datasets and ap-

plications that can tolerate errors. They are in principle the same as Signature Files as

discussed in Section 2.3.3.

11The Bloom Filter [Blo70] was first introduced by Burton Howard Bloom in 1970. Basically, a Bloom
Filter is a m bits array. A number n original messages are fed into a number k hash functions. Each hash
function will produce a uniform randomly distributed bit sequence that maps to the Bloom Filter. It tells
how likely a given message exists in the Bloom Filter given in probabilities defined by (1− e−kn/m)k.

12Note that most hash functions are one-way. Meaning that transforming a source message to a hash
value is computationally easy whereas the reverse process is extremely hard.
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2.4.2 Data De-Duplication

Data de-duplication is not a new idea. It derives from delta coding [KMMV02]. Tradi-

tionally, it is used in storage systems for backup services and software patching. The

basic idea of data de-duplication is to organize information in a hierarchical structure

in which the commonality of information flows from top to bottom. It is recently be-

coming popular for big data due to achieving very high compression ratios. Industry

applications such as Google Drive [Goo], Dropbox [Dro] and RainStor [Rai] heavily

rely on data de-duplication for saving storage space. RainStor has demonstrated that

using composite de-duplication schemes can reduce data size by up to 97%. Although,

the achievement on compression ratio is surprisingly good, retrieving original text can

be time consuming due to the need to go through several de-duplication processes

from byte-level to field-level. Interestingly, but not directly related, industrial imple-

mentations often use de-duplication across users (at service provider level) [ABKY15].

Special encryption techniques and mechanisms for verifying ownership of duplica-

tions [RMW15] [DAB+02] are used for data protection. More specifically, [DKS08]

and [KLA+10] examined de-duplication for Uniform Resource Locator (URLs). The ba-

sic process is to extract URL patterns and define rules so that URLs can be fitted into

pre-defined templates and repetitiveness thereafter can be eliminated. Generally, the

pattern extraction and template-based de-duplication are very useful. But this approach

is less generic. Depending on the data format, it is relatively easy to find patterns in

URLs, but in other situations such as plain text, it is not obvious how to find patterns.

Several similar schemes for de-duplication are summarized in [PP14].

2.4.3 Domain-specific Compression

Apart from general approaches, several data-specific compression schemes are also de-

veloped for accelerating domain-specific analysis. The ever-increasing popularity of

using mobile devices produces large volumes of sensor data. Processing, storing and

managing such discrete-time streaming data is challenging. In [FSR12], the authors

propose an algorithm for approximating Global Positioning System (GPS) and Light

Detection And Ranging (LiDAR) data. The compression is achieved using Line Simplifi-

cation [AK93] [CWT06] with k segments. Source data is segmented in such a way that

data points in the range of the segment have minimum projection distance to the seg-

ment line. TribleBit [YLW+13] is designed for storing Resource Description Framework

(RDF 13) data in a compact format while providing better resource query performance.

TribleBit takes advantage of the fact that RFD data only contains three attributes for

13RDF is a specification defined by W3C (World Wide Web Consortium) for interchange of data on the
Web. It is also known as a data modeling framework for the semantic Web. A RDF statement for a Web
resource is comprised of a Subject (resource), Predicate (relationship between a subject and an object),
and an Object [GB14].
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describing a Web resource. Compression is achieved by compressing columns sepa-

rately using a dictionary-method based on symbol-substitution. Indexes are built on

top of compressed data. Because a dictionary-method symbol-substitution method is a

context-free scheme, hence queries can be performed directly on the indices. [UMB10]

proposed a parallel compression algorithm implemented in MapReduce for semantic

Web data based on a word-substitution method. The authors in [UMB10] use a static

dictionary as a compression model which can be replicated and distributed to Map-

pers, thus the compression of data blocks can be performed independently in parallel

and compression results can be aggregated at Reducers for the final outputs. However,

how to split the compressed data in HDFS and decompress HDFS-Blocks in parallel

have not been addressed.

In [BbXb15], the authors propose a lossy compression scheme for big time-series data

based on estimation methods with irregular sampling [bJfLSW13]. The scheme uses an

adaptive mathematical model to capture features and regularities with corresponding

sampling density. Features are sampled with more data points whereas steady states

are sampled less, the total number of sampling points is generally less than sampling

with fixed intervals, thus achieving compression. However, capturing features in a

time-series is computationally expensive and defining what a feature is in a time-series

depending on the type of analysis. [BO14] and [BOY14] are two lossy compression

schemes designed for 3-Dimensional (3D) time varying data. The algorithms start by

segmenting 3D data into time frames. Data points in a frame are converted into a point

vector. This in fact transforms 3D data into a point matrix. Based on the point matrix,

a base vector, a coefficient vector and a mean vector are calculated [Cha00]. Source

data can then be approximated using the three vectors, thus achieving compression.

Considering the popularity and growth of streaming data (potentially from multiple

sources), entirely software implementations of data-specific compression schemes may

be inadequate for real-time compression. [JFAE12] introduced a hardware assisted

scheme for online data compression using Field-Programmable Gate Arrays (FPGAs). It

has been shown that the FPGA-based compressor can perform several times faster than

general purpose compressors implemented solely in software. But the speed efficiency

is offset by the complexity of porting compression schemes implemented in common

programming languages to FPGA enabled operating systems such as LEAP [PAF+10].

SIMD-Group-Scheme [ZZSY13] is another hardware specific compression for fast en-

coding and decoding of textual big data (online and offline) in parallel using Intel®

SSE 14 instruction sets.

14SSE stands for Streaming SIMD (Single Instruction Multiple Data) Extensions. It is a CPU instruction
set that is specific to video/audio/image encoding/decoding and string processing. SSE is available on
both Intel® and AMD® CPUs.
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2.5 Summary

Processing compressed data in parallel in distributed environments requires the com-

pressed data to be splittable; a context-free scheme is an appropriate method that

allows compressed data to be directly processable; being content-aware allows the

seamless integration of compression, HDFS and MapReduce.

We have seen how big data is organized on the Hadoop platform. In order to consume

compressed data transparently in a distributed environment, an effective compression

algorithm must fulfil the requirements of being splittable and allow random access

without sacrificing too much compressibility. Conventional compression schemes strive

to achieve higher compression ratios by leveraging preprocessing and contextual infor-

mation. As this process creates strong dependencies, data accessibility is forced to be

sequential. In order to explore the possibility of accessing compressed data in parallel

in distributed environments, we decompose conventional algorithms into three phases

including transformation, modeling and encoding. We have identified that using trans-
formation can make random access to compressed data extremely hard and incurs a

high cost for compression/decompression due to permutation of symbols as demon-

strated in Section 2.2.1. Avoiding transformation, an encoding scheme based on static

or semi-static modeling techniques can often result in the desired properties allowing

splitting and manipulating for compressed data. However, attention must be paid when

using context-free schemes for big data processing and analysis.

It should be noted that Unicode is the dominant encoding scheme on the Internet

at present. The majority of textual contents are encoded in, for example, UTF-8 or

UTF-16 (Unicode Transformation Format 8-Bit/16-Bit) format. Current context-free

schemes do not deal with Unicode data. More importantly, these schemes compress

data without concern for the organization and format of the underlying data. This

makes the compressed data non-transparent to the existing analysis algorithms and

software packages. Therefore, new compression schemes, that are content-aware and

able to effectively deal with Unicode contents, are needed.

A drawback of using static or semi-static models is relatively poor compression. In

contrast, employing adaptive modeling techniques (higher-order compression) gener-

ally yields much higher compression ratios, but creates strong dependencies. Special

indexing techniques have been developed to allow random access to compressed data.

Indexing is an effective mechanism for fast information retrieval from large datasets.

Full-text indexing builds indices on top of source data or data compressed using

context-free schemes. This makes the scheme less attractive for big data. In contrast,

self-indexing can build indices for data compressed by higher-order entropy schemes. It

provides better compression ratios while allowing several primitive operations on data

without decompression. However, self-indexing presents shortcomings on data struc-
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ture complexity and ease of data splitting. In order to consume data, in a distributed

environment, that has been compressed by a higher-order compressor, and avoid using

these complex indexing techniques, a new compression format is needed.

Emerging techniques developed for big data mainly focus on reducing data size for

saving storage space. In general, these techniques are data- or application-specific

schemes which often result in much higher compression ratios as the algorithms are

optimized for the particular data with respect to format and contents, compared to

general purpose compressors. Considering the variety of big data, maintaining het-

erogeneous data requires managing multiple data- or application-specific compression

schemes. This makes the current emerging compression schemes specific to datasets

and uni-functional.

Overall, we see that conventional compression schemes are not designed for use in dis-

tributed environments. Existing algorithms seem to deal poorly with the new character-

istics brought by big data. The emerging techniques are less general and similar work

such as LZO-splittable still need to be improved. Thus, new compression schemes are

needed. In the following chapters, we introduce content-aware compression schemes

that are designed for large scale textual data while allowing the compressed data to be

consumed in parallel in the distributed analytical environment of Hadoop.

Content-aware Compression for Big Textual Data
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Chapter 3

Content-aware Partial Compression
(CaPC)

“Simple can be harder than complex: You have to work hard to get your thinking
clean to make it simple. But it’s worth it in the end because once you get there, you
can move mountains.”

— Steve Jobs

Previously, we have discussed several existing methods for data compression. The ad-

vanced implementations of those compression schemes are very effective in terms of

compression ratio. These algorithms generally reduce data size by using context infor-

mation and disregarding the organization of data contents, for example, information

ordering and data format. This makes accessing the compressed data extremely dif-

ficult without decompression. There are several special cases where compressed data

can be searched, but at a cost of high complexity [Ven14]. In contrast, a context-free

compression scheme (also referred to as context-independent compression), in princi-

ple, allows direct data manipulation without decompression.

In this chapter, we introduce the Content-aware Partial Compression scheme

(CaPC) [DH14a] for textual big data analysis on Hadoop. We take a naïve dictionary-

based approach by simply replacing any matched string by its corresponding code,

while maintaining the original properties of the data, such as information ordering,

data format and punctuation. The rationale behind CaPC is that any meaningful string,

for example, an English word, is only meaningful to humans. A string and its trans-

formed form (code) do not make any difference to machines, as long as the machines

process them in the same way. In contrast, functional characters are usually meaning-

less to humans but functionally useful, for example, a white-space character is com-

monly used as a delimiter to separate words. Additionally, information is often orga-

nized in a certain format, for example, JSON or XML, so that the data can be easily
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understood by a suitable interpretor, parser or algorithm. If we replace strings with

shorter codes while keeping the functional information intact, then the compressed

data can be made transparent to analysis algorithms.

In addition, CaPC provides a unique feature that the codes are valid strings, and they

are compatible with ASCII and UTF-8 encoding schemes, rather than simple binary

sequences. This is particularly useful for the MapReduce computational framework.

The current version of MapReduce only supports ASCII and UTF-8 1 schemes, and a

MapReduce program will automatically convert text data to UTF-8 strings during the

data loading process. Therefore, CaPC is transparent to MapReduce. As part of CaPC, a

set of supporting utility functions are also provided to assist the development of CaPC

enabled MapReduce programs. These functions transform strings or string variables

into their corresponding codes and deal with regular expressions at the program com-

pilation stage.

CaPC can be considered as a lossless compression scheme under the assumption that

strings are case-insensitive. This condition holds for many analyses, for example, sen-

timent analysis, semantic analysis and PageRank calculations. We evaluate CaPC using

a set of real-world datasets with several standard MapReduce jobs on Hadoop. The

evaluation results show that CaPC works well for a wide variety of analysis jobs. CaPC

can achieve ∼30% data size reduction on average and up to ∼32% performance in-

crease for I/O intensive jobs. While the gains may seem modest, the point is that these

gains are "for free" and act as supplementary to all other optimizations. Moreover,

CaPC consists of two independent parts. The first part is the compression algorithm.

It is implemented in C++ for better performance. The second part is a utility library

implemented in Java for MapReduce programs. Thus, CaPC is provided as a integrated

solution in MapReduce rather than a standalone compression scheme.

3.1 Compression Scheme

The CaPC architecture is shown in Figure 3.1. CaPC takes source data and a static

base-dictionary as inputs and produces compressed data and two compression model

files. The first model file is the static base-dictionary. The second model file is built

when the compression process starts, as detailed in Section 3.1.1. The compression

process is as simple as replacing any compressible string found in the compression

models by its corresponding code. The base-dictionary is essentially a static word-list

which contains ∼60 thousand of the most frequently used English words (spoken and

written)[LRW01]. The length of each word (number of characters in the word) in

the base-dictionary must be greater than four. This is limited by our coding scheme as

detailed in Section 3.1.2. Before starting an analysis, the CaPC compressed file(s) and

1MapReduce uses UTF-8 encoding scheme for strings by default.
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Figure 3.1: Content-aware Partial Compression architecture overview

dictionary.put(capc.T(word), score);dictionary.put(word, score);

if(lines[i].startsWith(capc.T("review/summary:")) { … }if(lines[i].startsWith("review/summary:") { … }

Original CaPC

Figure 3.2: Examples of using CaPC in a MapReduce program.

its associated model files must be loaded into HDFS and HDFS Distributed Cache 2,

respectively. In a MapReduce program (existing or new), any string or string variable

needs to be enclosed by the CaPC library function - T( ), as demonstrated in Figure 3.2.

The T( ) function transforms a string or a string variable into its corresponding code

during the Mapper and Reducer initialization and processing phases. This guarantees

that the MapReduce program can work with CaPC compressed data directly without

decompression. Other utility functions are available to deal with aspects such as regular

expressions. Finally, analysis results are in CaPC compressed format. They can be

optionally decompressed to store directly in HDFS.

In designing CaPC, preserving the original data format is one of the primary goals.

To comply with this, any functional character must be untouched, and the characters

used for codes must not contain any functional characters. This is mainly driven by

the fact that existing algorithms or parsers rely on the data format and/or pre-defined

functional characters for processing, for example, XML or JSON parsers. A string that

2HDFS Distributed Cache is a temporary storage space drawn from the Hadoop distributed file system
and provided for MapReduce programs to cache application-specific files, for example, 3rd party libraries
and text files. Transmitting files from HDFS Distributed Cache to Hadoop computational nodes generally
through the network. It has implications of transmission delays.

Content-aware Compression for Big Textual Data
Analysis

38 Dapeng Dong



3. CONTENT-AWARE PARTIAL COMPRESSION

(CAPC) 3.1 Compression Scheme

of_the_GNU_Free_Documentation_License" title="Wikipedia:Text 
of the GNU Free Documentation License">GNU Free 
Documentation License</a>. (See <b><a class='internal' 
href="http://en.wikipedia.org/wiki/Wikipedia:Copyrights"

Original

Compressed

Figure 3.3: An example of CaPC compressed data comparing to the original data.

can be compressed must meet two conditions:

• It must contain consecutive characters in [a - z] and [A - Z] inclusively.

• The length of the string must be longer than the length of its corresponding code

(2 or 4 bytes).

The compression process breaks a text file into string tokens separated by functional

character(s). In CaPC, any character outside of the range [a - z] and [A - Z] is consid-

ered as a functional character. Each string token will be searched for in the compression

models. If it is found, the string token will be replaced by its corresponding code. Oth-

erwise, it will be sent to the output unchanged. Figure 3.3 shows an example of a CaPC

compressed file in comparison to its original format. Note that, the first condition given

above means that numerical information is not compressible. This is due to the fact that

if the numerical string is a data value (for example, in a financial report), it will be in-

feasible to generate a unique code for each value; if it is used as text (for example, part

of a user ID or product ID), extra information about the context is needed in order to

understand how the numerical string should be interpreted. To be more generic, CaPC

does not compress numerical information. In the following sections, we introduce the

codeword design and model construction strategies used for CaPC.

3.1.1 Compression Model

The basic technique used in CaPC is to replace any compressible string by a shorter

code. As mentioned in Section 3.1, the base-dictionary contains approximately 60

thousand commonly used words. In fact, for a given text data, the majority of the

contents may not be regular English words. For example, the Memetracker memes
dataset [LBK09] mainly contains a big list of Website URLs, and the most repetitive

strings are "http" and "https" which are not found in our base-dictionary. As another

example, Twitter tweets are usually organized in JSON format when collected through
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Twitter Stream APIs. The Twitter data contains a considerable amount of repetitive

strings, for example, JSON attribute names, some of which are not in a regular form,

for example "id_str". To deal with application-specific strings and improve the compres-

sion ratio, the CaPC compression model consists of two dictionaries: sampled-dictionary
and base-dictionary. The sampled-dictionary is much smaller in size. It contains the

most frequently used compressible strings gathered from a sampling of the input data.

It takes priority over the base-dictionary. In another words, our search algorithm will

firstly examine the sampled-dictionary since there is a higher probability a match will

be found there. If there is a hit, the string will be replaced by its corresponding code,

otherwise, the base-dictionary is searched.

Prior to the actual compression process, CaPC takes samples from each file of a given

dataset. From the samples, we start building a word frequency table by simply counting

the occurrence of each word that is observed. After the sampling process is complete,

the frequency table will be sorted by word count and words of the same frequency will

be sorted by word length. The top 888 words (this limit is due to our coding scheme

as detailed in Section 3.1.2) will be selected for the sampled-dictionary. Note that the

sampling process is on a per dataset basis. If a dataset contains multiple files, there will

be only one sampled-dictionary built for the dataset. For accumulated data, if the initial

dataset is large enough and the data comes from the same source, for example, Twitter

tweets or server log files from the same data centre, the compression model generated

from the initial dataset can be directly used by CaPC for compressing incremental data

without a sampling process. This can dramatically improve compression performance.

A similar strategy can also be used to compress very large datasets where a small por-

tion of the data can be selected to do an initial compression. The rest of the data will

be compressed using the generated compression model(s) without sampling. Detailed

sampling strategies are given in Section 3.1.3.

Note that there is no overlap between the sampled-dictionary and the base-dictionary.

The maximum size of each dictionary is limited by our coding scheme.

3.1.2 Coding Scheme

Codes generated for the sampled-dictionary have fixed length of two bytes and for the

base-dictionary have fixed length of four bytes. Each code starts with a signature char-

acter followed by one or three characters. We choose a number of control characters 3

from the ASCII code table (Appendix D) as signature characters. 12 control characters

are used for the sampled-dictionary and one is used for the base-dictionary. Referring to

the CaPC compression example in Figure 3.3, the special character (the 4th charac-

3Control characters are non-printing characters that do not represent written symbols. They are used
for device signalling. For example, the Carriage Return character (0x0D) triggers a printer to start a new
line.
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ter) is a signature character indicating the beginning of a compressed symbol 4. A full

list of signature characters used in CaPC is given in Table 3.1. The reason for choosing

these ASCII codes is due to the fact that Hadoop currently only supports standard ASCII

and UTF-8 encoded text and these codes are valid characters for both standard ASCII

and UTF-8 encoding schemes, but they are never used for textual data.

Table 3.1: A table of signature characters used in CaPC compression scheme.

Hex Char Hex Char Hex Char Hex Char

0x04∗ EOT 0x05∗ ENQ 0x06∗ ACK 0x0E∗ SO

0x0F ∗ SI 0x12∗ DC2 0x13∗ DC3 0x14∗ DC4

0x15∗ NAK 0x16∗ SYN 0x19∗ EM 0x1A∗ SUB

0x11+ DC1

*: used for sampled-dictionary; +: used for base-dictionary.

Recall that CaPC needs to preserve any functional character that appears in a given text.

Thus, the available characters for codes are limited and they are taken from [0 - 9],

[a - z], and [A - Z] inclusively. Signature characters are also valid for codes (acting as

part of the code rather than a signature character). Due to this constraint, the sampled-
dictionary can encode 888 words, because codes for the sampled-dictionary are two

bytes long. The first byte is the signature character which is one of the 12 characters

listed in Table 3.1. The second byte can be any one of the 12 signature characters or

comes from the range listed above. The total code space is therefore given by 12*(10 *

Number Symbols + 26 * Upper Case Letters + 26 * Lower Case Letters + 12 * Signature

Characters) = 888. The base-dictionary has a total code space of ∼250 thousand which

is given by (1 * Signature Character) * (10 * Numbers Symbols + 26 * Upper Case

Letters + 26 * Lower Case Letters + 1 * Signature Characters)3 = 250047.

Because CaPC code characters are drawn from the range [0 - 9], [a - z] and [A -

Z] inclusively, and signature characters are valid for both ASCII and UTF-8 encoding

schemes, the compressed data is also a valid text file. This makes the CaPC compressed

data freely available for processing and analysis. In principle, any valid character can

be used as a code, for example the full stop (·) or the question mark (?) characters.

There are mainly two reasons why we cannot use them:

1. for preserving the transparency between compressed data, the existing algorithms

and software packages.

For example, given a code "0x11A ·A" which is comprised of a signature character

"0x11" and two characters "A" and a full stop character "·". If the full stop character

4A symbol can be a word that is separated by specified delimiter(s) or a single character. It depends on
the context. For example, in the CaPC compression, a symbol implies a word. In other cases, for example
in the AHC (Chapter 4) compression, a symbol is a character.
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"·" is used as a delimiter in the given text, then using a blind searching algorithm,

the code will be separated into two parts: "0x11A" and "A" which will make the

first part undecodable and the second part another string. In order to avoid this

situation, we cannot use these functional characters.

2. to avoid broken codes in distributed file systems.

Recall that HDFS organizes big files by splitting them into a series of blocks and

then the data blocks are distributed across cluster nodes (DataNodes in the con-

text of Hadoop). The data splitting process is done simply by size. Each data

block will be assigned to a dedicated Map process. Moreover, at the boundary of

each data block, the MapReduce Record Reader will check the logical complete-

ness of a record. If it contains a partial record, the remaining part of the record

will be streamed to the local (current) Mapper from the immediate succeeding

HDFS data block, which is very likely located on anther physical DataNode. Using

the same code as above, if the data splitting occurs after the full stop character,

the string "0x11A·" will be included at the end of the first data block, and the "A"

will be at the beginning of the second data block. Because the full stop character

is at the very end of the first data block, the Record Reader will assume this data

block does not contain a partial record (assuming the full stop character is used

as the delimiter). Thereafter, the string "0x11A·" and "A" will be processed by

completely independent Map processes and eventually produce incorrect results.

Since the code space is limited, we need to use the codes efficiently in order to achieve

as high a compression ratio as possible. We use sampling techniques to gather statistical

information about the data, so that shorter codes can be assigned to more frequently

occurring words.

3.1.3 Sampling Strategy

The main objective of the sampling process is to build an approximate word probability

distribution table, so that we can get an insight in a timely fashion into which words

are most frequently used. Designing an appropriate sampling procedure is crucial to

get relatively accurate estimates, therefore resulting in better compression. Research

results from computational linguistics show that biased sampling is a well known issue

that leads to an inaccurate estimate of vocabulary size [Tuk77]. In parallel, a study

from lexical statistics indicates that data length can heavily influence both vocabulary

richness 5 and word probability distribution [TB98]. These studies suggest that samples

taken should be evenly spread across the entire data. Empirical studies also demon-

strate that textual cohesion is one of the main factors that brings a bias to estimation

of vocabulary richness [Baa96]. In addition, the authors state that words do not ran-

5Vocabulary Richness describes the lexical diversity of a given text.
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Figure 3.4: An illustration of CaPC data sampling strategy.

domly occur in a meaningful text. As a result, samples should be taken randomly and

on a per-sentence basis. In practice, we use a block-based sampling strategy instead of

a per-sentence approach for efficiency reasons. In summary, these previous studies led

us to a sampling strategy of Stratified Random Sampling with Non-replacement.

Given an input dataset, each individual file will be treated as a stratum, hence stratified.

Besides, each stratum will be partitioned and within each partition a randomly posi-

tioned block of data will be sampled, hence random. Partitions are non-overlapping,

meaning that any piece of data will not be sampled twice, hence non-replacement. The

number of partitions P is simply determined by the sample size n and sample-block size

bs, given by, P = bn/bsc. This is illustrated in Figure 3.4. It serves as a general sampling

strategy throughout this thesis. Thereafter, word frequencies are collected from sam-

ples. Note that although Complete Random Sampling with Non-replacement has better

statistical properties, it is found to be inefficient, especially when the sampling rate is

relatively high, due to the need to track sample positions to ensure non-overlapping

samples. To comply with the research results from [TB98] and considering compres-

sion speed, the default sampling rate is chosen to be logarithmically proportional to the

file size.

3.1.4 Algorithm Efficiency

CaPC compression space efficiency mainly depends on the quantity of compressible

strings and effectiveness of the sampling process. The CaPC compression ratio ϕCaP C

for a given textual dataset can be calculated using Formula 3.1, where n is the total

number of characters in the dataset; fi and fj are the frequencies of word i and word j

from the sampled-dictionary and base-dictionary, respectively, that have been observed
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in the given dataset; l is the length of the word; SD and BD indicate the size of sampled-
dictionary and base-dictionary, where sampled-dictionary

⋂
base-dictionary = φ.

ϕCaP C =
∑SD

i=1 fi(li − 2) +
∑BD

j=1 fj(lj − 4)
n

(3.1)

Recall that CaPC does not compress numerical data and leaves the functional con-

tents intact. The main processing in CaPC is searching string tokens in either the

sample-dictionary or base-dictionary and replacing the matched strings with their cor-

responding codes. Because both the sampled-dictionary and base-dictionary are static

(no insertion, modification or deletion during the compression), therefore, they can

be organized using HashMap data structures 6. This allows searching and retrieving a

string from either the sampled-dictionary or base-dictionary in O(1) time. Also consid-

ering that functional contents and numerical information are left intact, this leads to a

sub-linear compression time for CaPC. The decompression process is the same as com-

pression where finding the code (key) in the HashMap data structure (decompression

model) and replacing it by the corresponding original string also takes sub-linear time.

3.2 Evaluation

We evaluate the effectiveness of CaPC using an on-site Hadoop cluster. The cluster

consists of nine nodes, each with Dual core Intel E8400 (3.0GHz), 8GB RAM, and disk

storage of 780GB 7200RPM SATA drives. All nodes are connected to a Cisco 3560G-

24TS Gigabit Ethernet switch. All nodes run Linux kernel version 2.6.32 and Hadoop

version 2.0.0. We use a set of real-world datasets for the experiments as listed in

Appendix A (Table A.2) with various standard MapReduce jobs as summarized in Ta-

ble 3.2. We deliberately choose these experiments to demonstrate various aspects of

introducing CaPC to MapReduce, including analysis performance, cluster storage re-

quirements and memory constraints over a wide range of problems. Specific to the

underlying distributed file system (HDFS), it is configured with three replicas and a

128MB data block size. Snappy compression [Sna] is used for compressing the inter-

mediate data across all experiments.

6A HashMap data structure is essentially an associative array. It is a structure that can map keys to
values. It uses hash function to compute an index into an associative array from which the desired value
can be found in O(1) time. For example, if a given HashMap contains two pairs of key/value {{big-
data, code-1}, {small-data, code-2}}, the keys "big-data" and "small-data" will be hashed separately and
the hashing result is an integer value indicating the index of each corresponding key/value pair in the
HashMap. In searching a pattern, for example, the string "small-data", we need to hash the pattern, then
locate the key/value pair based on the hashing results.
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Table 3.2: A summary of MapReduce jobs used for evaluating the CaPC compression scheme.

Job Dataset Input Type Input Intermediate Output Duration
Performance

Gain

Size Reduction

(Input)

Sentiment Analysis DS-Amazon∗
O : 9.6 GB 23.3 GB 7.1 MB 5m52s

C : 6.5 GB 23.3 GB 7.1 MB 5m48s 0.1% 32.3%

PageRank DS-Memes∗
O : 19.7 GB 4.5 GB 1.5 GB 3m45s

C : 14.5 GB 3.7 GB 1.1 GB 3m43s 0.1% 26.4%

5-Gram DS-WikiEN∗
O : 40.0 GB – 144.8 GB 17m8s

C : 26.9 GB – 97.0 GB 11m38s 32.1% 32.8%

WordCount DS-WikiEN∗
O : 40.0 GB 48.8 GB 1.8 GB 9m3s

C : 26.9 GB 35.7 GB 1.3 GB 8m0s 11.6% 32.8%

O: Original datasets;

C: CaPC compressed datasets.

1GB = 1073741824 Bytes
∗: Subset of the data were used in the evaluation
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3.2.1 Performance

In the Sentiment Analysis job, we evaluate how CaPC works with third party libraries.

We use the SentiWordNet lexicons [ES06] to mine opinions from the Amazon movie
review dataset [ML13]. The dataset contains ∼8 million reviews. For each movie, our

MapReduce job takes each single word from the "summary" and "review" sections from

all reviewers who have reviewed this movie, then checks against the entire vocabular-

ies in SentiWordNet to get a positive or negative score. The final rating score is the sum

of scores from all reviewers. The original lexicons in the SentiWordNet are in plain En-

glish. In order to work with CaPC compressed data, the lexicons need to be converted

to CaPC codes. However, this additional process does not require any change to the

existing MapReduce program logic. We only need to enclose variables or strings with

the provided CaPC library function T( ) (As shown in Figure 3.2).

Referring to Table 3.2.1, for this particular dataset, CaPC reduces data size by 32.3%.

We observe no performance gains from the job using CaPC compressed data. This is

due to the fact that the CaPC model files are initially uploaded to the HDFS Distributed

Cache (referring to Figure 3.1) during the Mapper and Reducer initialization phase.

The model files need to be loaded on each computational node from the HDFS Dis-

tributed Cache and then a string to code map must be built up by the CaPC library.

This extra overhead, plus the fact that the analysis duration is short, neutralize the

advantage of using the CaPC compressed data. With larger datasets, we can expect

better performance gains. Also, notice that the Map outputs (intermediate data) and

the Reducer outputs have the same size for both jobs using the source data and the

CaPC compressed data. This is because CaPC does not compress numerical values and

the results are lists of movie alphanumeric identifiers and their associated scores.

The PageRank experiment is chosen for demonstrating the advantage of using CaPC

when analyzing with skewed records (where the length of the record is exception-

ally large or small). Using the Memetracker dataset, the Map processes produce

some highly skewed records that expand to approximately 800MB in size. This re-

quires adjusting the Java Heap Space accordingly to accommodate such large records

in memory. For the original source data, the MapReduce job requires the parameter

mapred.reduce.child.java.opts = 1GB to successfully avoid the Java Heap Space Error.
In contrast, 768MB is sufficient for the same analysis with the CaPC compressed data.

Also, notice that there are no performance gains for this analysis. This is due to the

same reasons given in the Sentiment Analysis discussion.

In contrast to computationally hard jobs (Sentiment Analysis and PageRank), we use

5-Gram analysis to evaluate the impact of CaPC on disk I/O and network I/O intensive

jobs. The jobs are optimized with 320 and 240 Mappers for source data and CaPC com-

pressed data, respectively. The 5-Gram job only has a Map phase, so the majority of the

time is spent on loading the input data to memory and materializing the Map outputs
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WordCount (raw input) WordCount (CaPC compressed input)
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Figure 3.5: Statistics on HDFS I/O and network I/O for 5-Gram and WordCount jobs
with original data and CaPC compressed data, respectively. (X-axis indicates job dura-
tions)

to HDFS. In Figure 3.5 and Figure 3.6, we observe heavy disk writing operations on

HDFS. Using the CaPC compressed data, we obtain a 32.1% speed-up compared to the

same analysis with the source data. CaPC reduces the input and output data (still in

CaPC compressed format) size by 32.8% and 33%, respectively.

In the WordCount job, we observe a 11.6% performance gain by using CaPC compressed

data. Four sources contribute to the overall performance gains.

1. CaPC compressed data is 32.8% smaller than the original data size. Loading
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smaller data from disks to memory takes less time.

2. The majority of the time spent on the WordCount job is finding word tokens. The

process involves searching for delimiter(s) in the text and extracting string tokens

individually. By default, using the indexOf( ) function of the String class (provided

by the Java library) for pattern searching requires O(m(n −m)) time, where m

is the length of the pattern string to be searched, n indicates the length of the

underlying text. Using CaPC compressed data, n has been shortened by 32.8%

on average for this particular dataset. The m remains the same because in this

case, pattern strings are delimiters and they are functional characters. CaPC does

not compress functional contents. This leads to a theoretical time complexity of

O(m(0.672n−m)) for the same pattern search with CaPC compressed data.

3. After the Map phase, the intermediate outputs need to be distributed to their

corresponding Reducer nodes over the network. Using CaPC compressed data,

the Map processes produce 26.8% smaller intermediate output data. Transmitting

smaller data over the network takes less time.

4. Because the Reduce nodes also process CaPC compressed data, the final outputs

are still in CaPC compressed format, which is 27.8% smaller than the outputs

produced by the same analysis with the original data. Materializing smaller data

to HDFS takes less time.

3.2.2 Further Compression

In order to efficiently distribute data between cluster nodes, Hadoop allows compres-

sion on intermediate data with options of several compression algorithms, including

Gzip (v1.4), Bzip (v1.0.6), LZO (v1.03), and Snappy (v1.1.0). Gzip and Bzip algorithms

offer better compression ratio; LZO and Snappy are speed-oriented. In CaPC, since

data is encoded, the original patterns of the data contents have been changed. This

will affect the compression ratio of the aforementioned algorithms. Taking Bzip as an

example, it is one of the best compression algorithms and achieves a very high compres-

sion ratio by employing a block-wise Burrows-Wheeler Transformation (BWT) process.

The BWT transformation results in an interesting result where similar characters tend

to be grouped together, and hence repetitive patterns are identified for further stages

of compression. In CaPC, given a fixed size of BWT block, it will fit in more CaPC com-

pressed data, but the results may look more random compared to the results produced

from the original text. If the CaPC compressed data contributes negatively to these

compression algorithms, it will consequently harm the efficiency of data distribution

over the network during the MapReduce Shuffling phase. In Figure 3.7, we use Hadoop

supported compression algorithms to compress original data and the CaPC compressed

data. We found that, although the CaPC encoding changes the original patterns of the
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Figure 3.6: Statistics on Disk I/O and CPU utilization (DataNodes) for 5-Gram and
WordCount jobs with original data and CaPC compressed data, respectively. (X-axis
indicates job durations)

data contents, it still results in smaller size. The results suggest that applying further

compression when distributing intermediate data during the Shuffling phase can fur-

ther improve the overall performance of analysis when using CaPC compressed data.
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Figure 3.7: Applying compression on original data and CaPC compressed data. The
original dataset is 1GB of Wikipedia articles in XML format and the CaPC compressed
original data is 686MB.

3.2.3 Summary

Overall, we can reduce by approximately 30% the storage space required for storing

data. This is not only for persistent storage. Performing analysis with CaPC compressed

data can also reduce the volatile memory required, for example, the Java Heap Space,

as demonstrated in the PageRank experiment. In the Sentiment Analysis and PageRank
calculation jobs, we observe no performance gains. On the other hand, the 5-Gram and

WordCount analysis show a large difference in performance. Comparing the input, the

intermediate and the output data size, as well as taking our cluster configuration into

consideration, we conclude from these experiments that the performance gains largely

come from the more efficient data distribution over the network and loading smaller

data from persistent storage to memory. Hence, a Hadoop cluster which has limited

network and storage will find CaPC beneficial, especially for data-centric analysis.

3.2.4 CaPC Characteristics

We use several state-of-the-art compression algorithms, including Bzip, Gzip, LZO and

LZMA, as benchmarks to evaluate CaPC, although the purpose of CaPC is different from

the others. Table 3.3 lists the compression/decompression speed, memory consumption

and compression ratio for each algorithm. Because CaPC needs to preserve the original

format of the data and uses a selective compression approach, it results in the least

compression ratio. The performance hits for CaPC mainly come from the sampling

process. In the experiment, the sampling rate was set to 0.1%. The sampling rate is

adjustable. A higher sampling rate may offer a better compression ratio but poorer
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performance. Dictionary lookup is implemented using HashMap data structures which

give O(1) time complexity. However, as mentioned in Section 3.1.4, HashMap uses

hash functions and the hashing process can take extra time. Memory requirements are

determined by the size of data chunk that CaPC can process at a time. It depends solely

on the implementation choice. The experimental results are generated by compressing

and decompressing 4.3GB Wikipedia articles in XML format. For LZMA, Gzip, Bzip and

LZO, compression levels are set to -1 (fastest). The time and memory requirements

include the tar process.

Also, note that compression ratio and performance varies depending on the contents of

datasets. The above test results only give an idea on the characteristics of the CaPC. The

test platform has the same configuration as the cluster nodes specified at the beginning

of the section.

Table 3.3: Comparing CaPC with state-of-the-art compression algorithms. The original
dataset is 4.3GB of Wikipedia articles in XML format. Compression levels for LZMA,
Gzip, Bzip and LZO are set to -1 (fastest).

Compression Decompression

Algorithm Time(mins) RAM(MB) Time (mins) RAM (MB) Ratio

LZMA(5.1) 1.87 13.36 2.11 2.91 96.6%

Gzip(1.4) 1.04 1.81 0.68 1.79 93.6%

Bzip(1.0.6) 14.52 7.95 1.54 5.09 91.1%

LZO(1.03) 1.75 2.48 2.35 1.73 79.9%

CaPC(1.0) 3.64 ∼500 1.94 ∼500 33.4%

3.3 Conclusion

In this chapter, we presented the Content-aware Partial Compression scheme that,

while not useful for small data, is effective for big data. Based on the observation

that textual data often contains lengthy and repetitive strings, CaPC reduces the data

size by replacing those strings with shorter codes. The overhead of the CaPC model files

is trivial compared to the size of the data to be compressed. We evaluated CaPC using

various standard MapReduce jobs and demonstrated its advantages in analysis perfor-

mance, storage space, memory consumption and compatibility with existing software

systems. Additionally, CaPC is particularly useful for repetitive analysis of large textual

data, such as server logs, social media and web pages. One of the unique features

of CaPC is that the partially compressed data can be used by existing algorithms and

packages directly without modification.

CaPC is designed to make it effective for a variety of textual data analysis tasks. It as-
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sumes that the contents of the original data are irregular, for example, web pages and

Twitter tweets, in which strings are separated by some application specific delimiters

(e.g., white-space characters or colon characters), so that individual strings can be eas-

ily identified and replaced by shorter codes. Thus, it is not suitable for certain datasets,

such as, genomic sequences, financial reports or sensor data, where the entire dataset

may be considered as a single string or contains mostly numerical information. Also,

because a string is simply replaced by a shorter code and the code does not contain

any internal information about the string that has been replaced, sub-string searching

is therefore impossible without referring to the compression model(s). However, fre-

quently looking up the compression model(s) during analysis is highly discouraged as

it will seriously impair performance.
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Chapter 4

Approximated Huffman
Compression (AHC)

“Only those who will risk going too far can possibly find out how far one can go.”
— T. S. Eliot

Data processing and analysis often require flexible operations on data, for example,

arbitrary string pattern searching. A word-based encoding scheme treats a word as

the minimum unit. This limits the flexibility of querying arbitrary strings in a given

text. A word-based compression also produces large size compression models in gen-

eral. Referring to the architecture given in Chapter 3 (Figure 3.1), compression models

need to be loaded from the HDFS Distributed Cache to each independent Map and

Reduce nodes during the initialization phase of a MapReduce program. The larger

model files make the initialization process slower. In contrast, a character-based en-

coding scheme exhibits flexibilities in string searching and produces very small com-

pression models 1. It generally implements a statistical method which is based on the

principle that frequently occurring symbols can be represented using fewer bits. This

implies a variable-length bit-oriented encoding scheme. There are several widely used

bit-oriented encoders [Huf52] [Vit89] [LR81] [Eli75] [FK96] [Sal08] with each having

different properties. Considering that our primary goal is to process compressed data in

MapReduce, a successful candidate must fulfil the requirements that the encoded data

can be directly modified and is splittable. The former requires a context-free scheme

as discussed in Chapter 2 (Section 2.3.1). Among the existing encoding schemes, the

Huffman algorithm [Huf52] is particularly suitable.

In general, splitting compressed data at arbitrary points will create the problem of

1In character-based compression, a model generally consists of all distinct characters (256 characters
in ASCII encoding scheme) and associated frequencies. They can be organized in a very compact format
and occupy very small space (∼2KB).
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broken codes which is also known as the code synchronization issue in information

retrieval and telecommunication systems. Solutions to the problem include using syn-

chronization points or using self-synchronizing codes. Ideally, self-synchronizing codes

are preferred, since code boundaries are self identifiable or a broken code can be de-

termined after examining a small number of consecutive codes. Previous research has

attempted to obtain self-synchronizing codes from the Huffman algorithm to make the

compressed data robust to the broken code issue without losing optimality. However,

in general, Huffman algorithms can generate a set of valid codes for symbols based

on a given probability distribution of symbols (compression model). But, the gener-

ated codes are not guaranteed to be self-synchronizing codes. According to Ferguson’s

theorem [FR84], self-synchronizing Huffman codes only exist when the probability dis-

tribution of symbols exhibit certain patterns. Given an arbitrary text, the probability

distribution of symbols varies greatly. We need to adjust the probability distribution

of symbols until they match the required patterns. This leads to a situation where an

inaccurate probability distribution of the symbols is used with the Huffman algorithm

to generate self-synchronizing codes which are very likely sub-optimal codes. This sub-

sequently results in a poor compression ratio.

Using a synchronization point technique is another approach to deal with the broken

code problem. We have discussed the drawbacks of using synchronization points in

Chapter 2 (Section 2.3.2). The two main drawbacks are the space inefficiency due

to frequently inserting extra information (synchronization points) and the difficulty of

finding valid synchronization points that can be used across multiple files of a given

dataset. To this end, we define a special packaging format that avoids the need for

synchronization points and makes the Hadoop Record Reader component able to read a

block of AHC compressed data efficiently.

Beside the coding issues, we also need to consider the efficiency of manipulating com-

pressed data in MapReduce. Regardless of which encoding scheme is used, it is known

that manipulating data at bit level is inefficient compared to that at byte level, es-

pecially for binary string searching and decoding. This is one of the main concerns

when adopting bit representations for applications in data processing. To minimize the

bit-operation inefficiency, we develop special data structures allowing a MapReduce

program to efficiently and effectively process AHC compressed data without decom-

pression.

Using bit-oriented encoding poses another concern regarding compression ratio. When

the symbol richness 2 of a given text is relatively high, the average bit-code length tends

to come close to the code length defined in the standard ASCII scheme. This will result

in a low compression ratio. But, in fact, a substantial amount of the information on

the Internet is produced by machines such as server logs and sensor outputs. These

2Symbol richness describes the number of distinct symbols (characters in the context of AHC) of a
given text.
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machine generated data files usually have fixed structure and low textual symbol rich-

ness. Other domain-specific data such as DNA/RNA sequences are very low in symbol

richness. By employing a bit-oriented encoder, these types of data can be represented

in a very compact format.

In this chapter, we present the AHC compression scheme that allows a MapReduce

program to consume the AHC compressed data directly without decompression, while

making the use of the compressed data transparent to developers. AHC is especially

suitable for machine generated data and domain-specific data. In this work, we develop

a hybrid data structure for AHC achieving O(1) symbol decoding time. In addition, the

AHC compression model can be used as a key to unlock the compressed contents and

hence provides a certain level of protection on data privacy for data processing in public

environments. The contributions of this work are:

1. the technique for upgrading the default Huffman tree to reduce sub-optimality

introduced by the sampling processes;

2. the use of a lookup-table in conjunction with a conventional tree data structure

to achieve constant decompression time;

3. providing supporting libraries for processing and manipulating data in com-

pressed format in MapReduce.

4.1 Compression Scheme

AHC is based on the Huffman algorithm. It consists of two independent parts. The

first part is the compression algorithm. It starts by building an approximated sym-

bol probability distribution table through data sampling. Based on the sampling re-

sults (the probability distribution of symbols which is the compression model), we use

the Huffman algorithm to generate bit-codes for symbols (ASCII characters). In ad-

dition, some enhancements are also made to the original Huffman algorithm in order

to minimize the code sub-optimality under special circumstances as will be explained

in Section 4.1.2. Specifically, we use a hybrid data structure for decoding a symbol in

constant time. The second part of AHC includes the extension packages for Hadoop.

The goal is to provide transparency between MapReduce programs, HDFS and the AHC

compressed data. As a system, AHC follows the simple model illustrated in Chapter 3

(Figure 3.1). Both the compressed data and the compression model must be stored

in HDFS and HDFS Distributed Cache, respectively. A MapReduce program uses the

AHC supplied library functions to facilitate reading, processing and writing data in

compressed format without decompression.
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4.1.1 Compression Model

AHC is a statistical compression scheme based on the principle that a symbol with a

higher probability of occurrence can be represented by fewer bits, subject to the princi-

ples of Shannon’s theorem [Sha48]. Recall that a statistical compression method often

comprises of three phases: Transformation, Modeling and Encoding. The transformation

phase is selective and it involves reordering data. It does not compress data. However,

the data reordering process makes the further compression process more effective when

capturing and eliminating repetitive information, thereby a higher compression ratio

can be achieved. For example, Bzip [Sew00] employs the Burrows-Wheeler Transfor-

mation [BW94] technique for data transformation at block level. As information is

reordered in the block, direct access to Bzip compressed contents is extremely difficult.

This can be overcome with the help of self-index techniques such as FM-Index [FM00],

AF-Index [FMMN04] or Huffman-FM-Index [GNS+06]. But, the main limitation with

self-indexing is that it does not allow modification of the compressed data. Several

other issues related to transformation and self-index techniques were discussed in Sec-

tion 2.2.1 and Section 2.3.3. Considering all these, AHC does not use transformation

techniques.

In Chapter 2, we have identified that using a context-free compression scheme al-

lows one to manipulate compressed data freely without decompression. This requires

AHC to work with either a static or semi-static compression model. Recall that a static

method builds models based on prior knowledge or experience gained from compress-

ing data having similar properties, for example, a pre-built codeword-map or a static

dictionary. This can also be a subjective choice. It often results in poor compression

ratios and is rarely used by modern compressors. Building a semi-static model requires

scanning through the data contents in order to gain an insight into the symbol probabil-

ity distribution of the data. The conventional semi-static compression algorithms use a

two-pass approach to gather statistical information from an input dataset. The first pass

performs a full-scan of the given dataset and uses the second pass to carry out actual

data compression. In the big data context, a given dataset often has very large vol-

ume on the scale of gigabyte, terabyte or even petabyte. Scanning through such large

scale data leads to an inefficient algorithm. It also poses a technical problem. When

scanning big data, frequency of popular symbols can grow beyond the boundaries of a

given data type defined in programming languages (e.g., an integer data type defined

in Java has maximum value of 231). In practice, many compressors perform symbol

scanning on a per block basis, for example, Gzip and Bzip. This results in dedicated

models per block. Recall that the main goal of AHC is to allow a MapReduce program

to process compressed data without decompression. If models are built on a per block

basis, the intermediate outputs from different Mappers will be encoded differently for

the same information. This will cause confusion at the Reducers. For this reason, AHC
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must build a single compression model for the entire dataset(s). Rather than gathering

precise information on symbol probability distributions through a full-scan, approxi-

mate information via sample statistics is more appropriate. AHC employs the sampling

strategy explained in Chapter 3 (Section 3.1.3).

Once the symbol probability distribution table is built, the corresponding codes can

be produced from Huffman algorithms. The compression process is simply replacing

symbols by their corresponding Huffman codes. However, special care must be taken

when using sampling. When performing a full-scan of a given dataset, we can collect

exact information about which symbol has occurred. In contrast, a sampling process

can not guarantee this. It is very likely that some rare symbols will be missed, especially

when the sampling rate is relatively low. If the missing symbols are encountered during

compression, it will lead to the termination of the entire compression process. It is often

referred to as the zero-probability problem. Note that in a bit-oriented character-based

compression, each character must have a valid code associated with it. A set of codes

generated from Huffman algorithms are said to be prefix-free codes which guarantees

no ambiguity between codes when decompression starts from the beginning of the

compressed data in a sequential manner. This also implies that all information of a

given text must be compressed. We can not treat informational and functional contents

separately as done in the CaPC scheme introduced in Chapter 3.

4.1.2 Huffman Tree Upgrading

In order to fix the zero-probability problem, all possible symbols from both the standard

(0 ∼ 127) and the extended (128 ∼ 255) ASCII codes must be present. A minimum

frequency count (one) must be given to each symbol as an initial value as suggested

in [WMB99]. After the sampling process, the observed symbols have frequency counts

greater than one and the others are in place as a precaution. Eventually, all of the

symbols will join the process of building a Huffman tree.

Statistically speaking, those non-observed symbols (ΣS−
) have much lower probability

of occurrence in the source data. In the situation where some of the observed sym-

bols have relatively low frequency counts, more precisely, when a symbol’s frequency

counts fs are less than the cardinality of the ΣS−
, (fs < |ΣS− |), then the non-observed

symbols will affect the bit-code length of those observed symbols. This is illustrated by

the following example. Given a text T drawn from Σ, with a full-scan on T , symbols

occurring in T and their corresponding frequencies F (si) can be accurately detected.

Following the Huffman algorithm, starting with pairing the symbols having the lowest

frequencies first, we can build up the Huffman tree for T as shown in Figure 4.1 (left).
In this example, we use the path convention of left "0" and right "1". Following the tree

branches, we can retrieve the Huffman codes for each symbol occurring in T as shown

in Figure 4.1 (right). These are entropy codes. Based on this Huffman table, we can
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Figure 4.1: An example of a Huffman code table generated based on a semi-static
compression model through a full-scan.

calculate the length of the coded text H(T ) using Equation 4.1, where ` denotes the

length of the codewords.

H(T ) =
∑

(` ∗ F (si)) (4.1)

Referring to the statistics given in Figure 4.1, the Huffman compressed text for this

example is 424 bits. The original T is 1248 bits (` = 8 for ASCII codes). The compres-

sion ratio is therefore given by ϕ ≈ 66%. If the symbol frequencies are gathered from

the sampling process, all possible symbols from alphabet Σ must be present to avoid

the zero-probability problem. In the above example, if we set |Σ| = 12 (assume that

characters in text T drawn from 12 distinct characters to keep this example simple and

clear), |ΣS+ |
⋃
|ΣS− | ≡ |Σ|, where ΣS+

indicates the symbols that are observed from

sampling of the text, according to [WMB99], for any si ∈ ΣS−
denoted by s−i , F (s−i )

= 1. The results make the s−i participate directly in the Huffman tree construction pro-

cess shown in Figure 4.2 (left). Assuming that the sampling results can truly reflect the

population distribution of symbols, the codewords generated from the new Huffman

tree are shown in Figure 4.2, note that the last four symbols shown in the table on the

right is part of the alphabet |Σ|, but they are not used in the given text T . The H(T ) is

now 444 bits.

To minimize this sub-optimality, we need to upgrade the frequency of the symbols that

have been observed from the sampling process, to a certain level by multiplying the

observed frequencies by a factor α defined in Equation 4.2, where min(F (si)) is the

lowest frequency count for a symbol as observed from samples. The upgrading process

is equivalent to building a Huffman tree for all observed symbols with a specially in-

serted pseudo-symbol as shown in Figure 4.3 (left), denoted by S(H). All these hapax
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Figure 4.2: An example of Huffman code table generated based on a semi-static com-
pression model through sampling.

legonemas3 (non-observed symbols) are placed underneath the pseudo-symbol. This

ensures that the inclusion of these hapax legonemas does not affect the length of the

codewords generated for those symbols that have been observed from samples. Refer-

ring to the upgraded Huffman tree as shown in Figure 4.3 (right, note that the last four

symbols showing in the table are part of the alphabet |Σ|, but they are not used in the

given text T ), we have |ΣS− | = 4, min(F (si)) = 2, thus α = 2. Based on the upgraded

codewords, the size of the compressed text is reduced to 438 bits now.

α =
⌈
|ΣS− |

min(F (si))

⌉
(4.2)

The upgrading process does not rely on how accurately the samples reflect the true

population distributions, but it depends on the coverage of the captured symbols. If

some rare symbols are missed in the sampling process, they will be placed underneath

the pseudo-symbol. These missed symbols will have longer codewords than expected.

4.1.3 Algorithm Efficiency

The conventional Huffman algorithm is an entropy coder. Given a text T [1, n] drawn

from the alphabet Σ = {s1, s2, · · · , sm} (distinct symbols occurring in T ), according to

Shannon’s Theorem [Sha48], the average number of bits needed to encode a symbol

in Σ is given by Equation 4.3, denoted by H0 (entropy), when a static or semi-static

compression model is used with the Huffman algorithm to produce codes. The subscript

3Hapax legonema is a terminology commonly seen in the field of computational linguistics and natural
language processing, meaning that a symbol only occurs once in a given text. It is a transliteration of
Greek.
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Figure 4.3: An example of the upgraded Huffman code table generated based on a
semi-static compression model through sampling.

0 indicates a context-free compression. n denotes the number of characters in T , m

indicates the number of distinct symbols in Σ. The space efficiency of the Huffman

algorithm in compressing T is given by Θ(n ·H0(Σ)).

H0(Σ) = −
m∑

i=1
Pr(si) · log2Pr(si) (4.3)

AHC is based on the Huffman algorithm. It has similar space efficiency properties

to the conventional Huffman algorithm, but, due to the upgrading effects, the space

efficiency of AHC is conditional. The probability of symbol Pr(si) is conditional on

whether symbol si is observed by the AHC sampling process or added as a child to

the pseudo-symbol, as shown in Equation 4.4, where F (s+
j ) indicates the frequency

counts of the symbol j observed in samples drawn from T , |ΣS− | is the number of

non-observed symbols in Σ.

Pr(si) =



α · F (si)

α ·
∑|ΣS+ |

j=1 F (s+
j ) + |ΣS− |

if si ∈ ΣS+

1

α ·
∑|ΣS+ |

j=1 F (s+
j ) + |ΣS− |

if si ∈ ΣS−


(4.4)

Additionally, AHC uses a block-based packaging scheme to avoid the broken code prob-

lem. The packaging format for blocks requires extra bits. This will be elaborated in

detail in Section 4.1.4. Referring to Figure 4.7, each AHC-Block occupies one full byte

(8 bits) used as an indicator byte. Each AHC-Block may also insert a variable num-

ber of extra bits at the end of the block (before the indicator byte) to make the entire

AHC-Block contain a whole number of bytes. In the worst case scenario, the number
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of trailing bits needed is equal to the longest codeword minus one (max(`)− 1) where

` is the length of a codeword. Thus, the AHC space efficiency for compressing text T

containing n characters, is given by Equation 4.5, where bAHC indicates the size of the

AHC-Block.

O(n ·HAHC
0 (Σ))⇒ O(n ·H0(Σ) +

⌈
n

bAHC

⌉
· 8 +

⌈
n

bAHC

⌉
· (max(`)− 1))

⇒ O(n ·H0(Σ) +
⌈

n

bAHC

⌉
(max(`) + 7))

(4.5)

The time efficiency of the Huffman algorithm using a conventional method 4 is given

by Θ(|Σ| · log2(|Σ|)). This is the time complexity for constructing a Huffman tree for |Σ|
distinct symbols. It should not be confused with the time complexity of encoding and

decoding Huffman compressed data. Once the Huffman tree is built, the data encoding

time using the Huffman algorithm is given by O(n).

The decoding performance has a big influence on pattern searching, counting and ex-

traction. This is one of our major concerns when manipulating the AHC compressed

data in MapReduce. Generally, the decoding time is determined by the depth of the

tree. Further improvement has been made by [Has04] taking Θ(n · t) time, where

t is the number of distinct codeword-lengths and n is the number of characters in a

given text. The most recent research improves the Huffman decoding performance to

Θ(n · dmax(`)
z e) [LHY12] by extracting multiple symbols at a time. The improvement

is conditional on min(`) > z
2 , where z is defined as the size of the processing unit.

The main limitation of this method is the complexity of constructing the decoding data

structures by splitting a Huffman tree into a number of sub-trees and thereafter merg-

ing the sub-trees to form a valid recursive Huffman tree. Furthermore, specialized

binary string searching algorithms are also studied in the literature [SD06] [FL08], in

which the q-Hash algorithm [FL08] achieves a time complexity of O(n ·
⌈

m
q

⌉
), where

m is the length of the binary string pattern to be searched and q is the length of the

sub-string of the pattern. However, the cost of the preprocessing time and the high

complexity involved in constructing the decoding data structures associated with the

aforementioned algorithms makes them less practical in general.

AHC employs the lookup-table approach used by the open-source Gzip compres-

sor [lGA] [ZL77] [Deu96] with a fine adjustment to it. A lookup-table is essentially

a static codeword to symbol map in which a codeword is the index in the lookup-table.

So that, given a codeword, its corresponding symbol can be found in O(1) time. In

4The conventional method constructs a Huffman tree using a heap data structure. Each distinct symbol
is a leaf in the heap and the property of the heap data structure needs to be maintained after each symbol
insertion by keeping the symbol having the largest probability value at the higher level. The heapifying
processes dominate the time consumption for the Huffman algorithm which is affected by the number of
leaves in the tree [SW14].
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Gzip, data is compressed on a per block basis. Each block is compressed using a com-

bination of LZ77 [ZL77] and the Huffman algorithm. The important part is that the

Huffman trees 5 are built specifically for each block (there are two Huffman trees per

block [Deu96]). During decompression, the lookup-tables will be constructed based

on the individual Huffman tree for each block. When the size of the compressed data

is large, the accumulated time used for the lookup-table construction is considerably

long. This forces Gzip to seek a balance between the performance and the lookup-table

size. Gzip uses hierarchical lookup-tables. By default, Gzip uses 29 (512 entries) for

the first level lookup-table. In contrast, AHC is required to build a single compression

model for the entire dataset(s), so that multiple files can share the same compression

model in MapReduce in a distributed environment. Recall that each Mapper receives a

block of data, thus the lookup-tables only need to be constructed once for each Map-

per. And the size of the data block (128MB in default configurations of HDFS) is much

larger compared to the block size used in Gzip (depending on the internal buffer usage

and the efficiency of the current Huffman trees [Deu96]), therefore, AHC does not lose

performance due to frequently constructing lookup-tables as seen in Gzip. In AHC, we

can use much larger lookup-tables. As a result, AHC can be much faster than using the

traditional Huffman trees in decompression.

AHC uses 212 (4096) entries for the lookup-table. Codewords longer than 12 bits will

be decoded using a Huffman tree. That is, the lookup-table covers all possible com-

binations of 12 bits. Any codeword having length less than or equal to 12 bits will

be decoded using the lookup-table. This is a much bigger table than the one used by

Gzip. It consumes more system memory. But, considering modern clusters are often

configured with large amounts of memory, the memory required for the decoding data

structure is trivial. The main reason that drives us to use both the lookup-table and

Huffman tree is the complexity and time for constructing hierarchical lookup-tables. In

Gzip, if a codeword is longer than nine bits, a hierarchical lookup-table(s) will be built.

How many levels of lookup-table are needed depends on the variations of the code-

words. Recall that Gzip builds Huffman trees on a per block basis and the variation

of the symbols is confined to each block. Additionally, Gzip terminates a block when

the current Huffman trees become inefficient. This makes the process of constructing

lookup-table(s) much lighter. In contrast, AHC uses a single Huffman tree for the entire

dataset(s). All possible symbols must be included when building a Huffman tree. For

efficiency and complexity reasons, we use a single lookup-table to cover the majority

of the symbols and use a Huffman tree for decoding long codewords. Probabilistically,

a symbol having a longer codeword has less chance of occurring in a given text. Thus,

AHC still can achieve constant time decoding. We use an example to explain how the

lookup-table and Huffman tree are used together for AHC decompression. The details

5Huffman tree is a data structure built based on a given compression model (probability distribution
of symbols). It will be used for compressing and decompressing data.
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are illustrated as follows.

000000000000
000000000001

000000111111

6 0x79

Codeword L S

101000000000

3 0x20

101111111111

111111111111 * HT

111110000000

5 0x72

110000011111

111011011111

010000011100

0xE6 0x1C0xBC0x8A0x89 0x1F0x5E 0x51 0x1E

Root

0 0x00

Figure 4.4: An illustration of AHC lookup-table with Huffman tree.

In Appendix B, we have codewords generated for 2GB of Wikipedia articles (dataset:

DS-WikiEN). There are in total 256 symbols in the standard and extended ASCII table.

237 of them are included when building the hybrid data structure. 19 of them are elim-

inated as listed in Appendix B (Table B.2) because these symbols are never used in text

files. Removing the unused symbols can reduce the maximum length of codewords.

If we adopt the Gzip approach by building multiple lookup-tables, then, for the list of

codewords as shown in Appendix B (Table B.1), there will be at least 12 lookup-tables

organized hierarchically (lookup-tables can have different sizes). In AHC, we build a

single lookup-table of size 212. The lookup-table is filled up by all combinations of the

212 binary sequences. In order to identify the codeword length and the symbol associ-

ated with the codeword, we need to do codeword masking. For example, referring to

Appendix B (Table B.1), codeword "000000" is assigned to symbol "y" (0x79) and has

length 6 bits. We take a 12-bit sequence from the input data and logical AND the 12-bit

sequence with a 12-bit mask of "111111000000", and if the first six bits of the 12-bit

sequence are "000000", then regardless of the other six bits, we are certain that the

first symbol of the 12-bit sequence is the symbol "y" with codeword length six. That is,

the codewords in the range [000000000000, 000000111111] point to the same symbol

"y". For the same reason, when we read 12 bits from any input data and convert them

into a numerical value which will become the index of the lookup-table, then the first

symbol can be found in one operation. The lookup-table index size (12 bits) can be

seen as the minimum processing unit. Subsequently, the input data can be advanced

six bits and the decoding of the next 12 bits can begin.

In another example, to decode a given bit sequence of "101000000101111110001010"

as shown in Figure 4.5, we need to read the first 12 bits from the given bit sequence and

convert them into a numerical value (2565) which is the index into the lookup-table.
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000000000000
000000000001

000000111111

6 0x79
C L S

6 0x79

6 0x79

101000000000 3 0x20

101111111111 3 0x20

111111111111 5 0x72

111110000000 5 0x72

110000011111 -- HT

111011011111 -- HT

010000011100 -- HT

101000000101111110001010

101000000101111110001010

101000000101111110001010

101000000101111110001010

101000000101111110001010

Index
0

63

2560

3071

4095

3968

3103

3807

1052

12565

47

3057

3978

3

6

3

In
p
u
t

St
ep

s

Figure 4.5: An example of AHC lookup-table.

The index is between [2560, 3071] which is the range generated from the codeword

"101XXXXXXXXX" masked with "111000000000". The index points to the corresponding

symbol and the codeword length. Based on the codeword length, we can advance the

input three bits and start decoding the next consecutive 12 bits. The decoding steps are

shown in Figure 4.5. This does not cause any codeword confusion because the Huffman

algorithm generates prefix codes. This means that a shorter code is never going to be a

prefix of any longer code in the same Huffman tree.

If a codeword is longer than 12 bits, for example, the symbol "@" (0x40) has codeword

"01000001110011111" and length 17. The first 12 bits can be found in the lookup-

table, however the associated fields do not contain a valid symbol, but point to a Huff-

man tree for decoding. This makes AHC decoding time conditional. Decompressing

text T [1, n] is therefore conditional on the length of the codewords expressed in Equa-

tion 4.6, where s ∈ Σ, t denotes the lookup-table size. Because we use the lookup-table

to cover 1 ∼ 12 bit patterns inclusive, the most frequently occurring symbols will be

found directly from the lookup-table in one operation, thus the AHC decompression

time is very close to Θ(n).

n · (
∑

i

(Pr(si)) +
∑

j

Pr(sj) · `(sj)) {i, j|`(si) 6 t, `(sj) > t} (4.6)

It is assumed that the samples reflect the true population distribution of symbols.

Referring to statistics given in Appendix B (Table B.1), there are 91 symbols hav-

ing codeword length less than or equal to 12. The probability of symbols can

be calculated by their corresponding frequency counts. We have i = 91 and
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∑91
i=1 Pr(si) = 0.9959750685739751; j = 237 − 91 = 146, and

∑146
j=1 Pr(sj) · `(sj) =

0.05645490855757191. Inserting these numbers into Equation 4.6, we get 1.05n. Thus,

for this particular example, the time complexity grows asymptotically as fast as n and it

is given by Θ(n). Using the conventional Huffman tree to decode the compressed text

will take n ·
∑237

j=1 Pr(sj) · `(sj) time. For the same example, this gives 5.19n, which is

79.8% slower than the AHC.

Algorithm 1: AHC pattern searching
Data: P ←− Pattern to be searched in plain string format.
Data: S ←− Source data in AHC compressed format.
Result: Index of the first found or "-1" if not found.
begin

/* Transform P from string to AHC compressed binary */
Pb ←− AHC.T (P )
if (Pb.length > S.length) then

return -1

idx←− 0
while (idx < S.length− Pb.length) do

if (Pb ⊕ S[idx, idx+ Pb.length]) then
idx + = lookup(idx)

else
return idx

return -1

The lookup-table is mainly used for decoding symbols or finding how many bits need to

be advanced during pattern searching. In AHC, all input strings will be transformed to

binary bit sequences. For example, if we want to search for string "data" in an AHC

compressed bit sequence of "1100100*0011*011101*101*00001*0101*1000*0101"

(referring to Appendix B <Table B.1>, the given binary sequence corresponds to the

string "big data"), we need to transform the pattern "data" into the AHC coded bit se-

quence "00001*0101*1000*0101". Note that the asterisk characters are used to split

the codewords for clear presentation. They are not used in the actual compression. The

search procedures for the binary sequences are given by Algorithms 1 and 2.

From an algorithmic point of view and ignoring the inefficiency of operations at the

bit level of the underlining system, the pattern searching efficiency is also given by

Θ(m(n·(
∑

i(Pr(si))+
∑

j Pr(sj)·`(sj))−m)). When the majority of symbols have length

less than the lookup-table size, the AHC searching complexity is also Θ(m(n−m)).

4.1.4 AHC Block Packaging

Hadoop is a distributed environment. Data stored in HDFS is divided into blocks and

distributed across cluster nodes. A MapReduce program takes advantage of this dis-
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Algorithm 2: AHC table lookup

LT ←− initialize lookup-table.
HT ←− initialize Huffman tree.
t←− 12 /* Processing unit bit length. */
Function lookup(pos)

Data: S : Source data.
Data: ` : Codeword length.
Data: pos : Current position of S.
Result: Codeword length.
if (LT [S[pos, pos+ t]] 7→ codeLength) then

return T [S[pos, pos+ t]] −→ `

else if (T [S[pos, pos+ t]] 7→ HT ) then
currentNode←− HT.root
while (currentNode 6= HT.leaf) do

if (S[pos+ `] = 0) then
currentNode←− HT.left

else if (S[pos+ `] = 1) then
currentNode←− HT.right

`++
return `

tributed data storage by processing data blocks in parallel. This requires that the AHC

compressed data is splittable to the HDFS.

Data Block 1 Data Block 2Cutting Point

S1 S2 S3 S4 S5 S6 S7 S8

11010110 11000011 00001111 01100000

S1 S2 S3 Error S3 S6 S8 S4

Error

Encoding

Decoding

Figure 4.6: An illustration of broken codes in AHC.

Recall that HDFS splits data into a series of fixed-size data blocks (HDFS-Block). The

data block size is chosen for the best disk I/O performance as explained in Chapter 2.

Each data block contains a whole number of bytes. Note that AHC is a variable-length

encoding scheme. Breaking AHC compressed data at an arbitrary point will highly

likely create a broken code at the data boundary. An example is shown in Figure 4.6,

using the codewords showing in Figure 4.3. In this example, the AHC compressed

data is split in the middle of the codeword generated for symbol "S4". After splitting

the compressed data, each data block will be assigned to and processed by a dedicated

Mapper. Mappers are independent of each other. This means the Mapper that processes
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DataBlock-2 does not know whether the symbol "S3" was correctly decoded or not. In

general, the position of the cutting point is determined by the configured HDFS-Block

size. In our experimental environment, the HDFS was configured with a 128MB block

size. Thus, at least, we need to prevent the broken code problem from happening at

every 128MB data boundary in the AHC compressed data.

S8S2 S3 S4 S5

1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0

S1 S6

0 0 0 0 0 0 1 0

End of Compression

Trailing Bits

End of File

Indicator Byte

Cutting Point

S7

00

Trailing Bits

0 0 0 0 0 0 1 0

Indicator Byte

A Full Byte

00

Figure 4.7: AHC block-packaging scheme.

In fact, letting each Mapper process 128MB data as a whole at a time is inefficient.

More often in the MapReduce framework, each HDFS-Block is further broken down

into smaller records which are often specific to the dataset and/or application domain.

The Record Reader component of the MapReduce framework is responsible for parsing

and fetching records to Mappers. In general, each Mapper will process a single record

at a time. Considering that records can have variable length, taking care of the broken

code problem for every single record is inefficient in terms of compression ratio and

speed. To this end, we develop a fixed-size block packaging scheme as illustrated in

Figure 4.7. That is, the Record Reader of MapReduce reads a fixed block of data and

fetches the data block to the Mappers. Mappers are responsible for parsing records

from the data block received.

By default, AHC uses a fixed-size block of 512KB (AHC-Block). The last byte of the

AHC-Block is reserved and used as the Indicator Byte which indicates how many trail-

ing bits have been inserted to make the AHC-Block a whole number of bytes. Addition-

ally, the HDFS-Block size must be divisible by the AHC-Block size. The Indicator Byte

occupies a full byte. It can indicate up to 255 Trailing Bits. This is sufficient to cover

the worst case scenario, when the model is left or right skewed, for example, when

the probability of the 256 possible symbols grows in a Fibonacci sequence [Sal08]. Be-

sides the splittable requirement, the compression model file must be available to all

data blocks. A conventional compressor would put a compression model as the header

of the compressed file. In contrast, we need to store the compression model and the

compressed contents in separate files.
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4.1.5 AHC Hadoop Extension

Recall that, using the AHC scheme, we have shifted the responsibility of parsing records

from the Record Read component to each individual Mapper. To be able to break a data

block (AHC-Block) into records at the Map stage and write compressed output at the

Reduce stage, customized Input Format, Record Reader and Output Format classes 6 are

needed as extensions to Hadoop. In addition, AHC is a bit-oriented and variable-length

encoding. Each record must be held by a bit-set 7 like data structure as implemented

in the BBP_BitSetWritable class for the AHC scheme. This class must implement all

equivalent operations found in the standard Java String class. Other utility classes

are also implemented to make operation transparency between developers and the

compressed data.

For many data analysis jobs, parsing data records is necessary. With clear text, manipu-

lating data is simple as the data content is readable by developers. In AHC, we provide

a transformation function, AHC_T(), that converts between original text and AHC com-

pressed data. For example, if we write a regular Java clause for searching a phrase

"value.contains("big data");", in AHC, it is simply "value.contains(AHC_T("big data"));".
In this example, the variable "value" in the regular program can be a String data type. In

AHC, the variable "value" needs to be a BBP_BitSetWritable data type. The "contains()"

function in AHC is an implementation of the "contains()" function found in the regular

Java String class for the BBP_BitSetWritable data type. The transformation from reg-

ular data-type to AHC bit-set or vice versa requires the AHC compression model file.

This model file needs to be loaded at the Map or Reduce initialization phase so that the

AHC hybrid data structure can be built and ready for data-type transformation. This

may incur a small delay due to loading the model file from HDFS Distributed Cache

to each computational node over the network. Note that the model file contains 237
characters and their associated frequency counts. The model file size is approximately

2KB.

4.2 Evaluation

We evaluate the effectiveness of AHC using an on-site Hadoop cluster. The characteris-

tics of AHC and the impact of using AHC in MapReduce are demonstrated using stan-

dard MapReduce jobs summarized in Table 4.1. A list of real-world datasets used in the

evaluation is shown in Appendix A (Table A.2). The cluster hardware specification and

the topology of the experimental environment are given in Appendix A (Table A.1 and

6In object-oriented programming, "a class defines an object’s interface and implementation. It specifies
the object’s internal representation and defines the operations the object can perform" [GHJV95].

7A bit-set data structure is also known as bitmap, bit array, or bit vector. It is essentially an array data
structure that compactly stores bits. The size of the array can grow as needed.
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Figure A.1). The cluster was configured with Linux kernel version 2.6.32 and Hadoop

version 2.5.0. HDFS replication was set to one and the HDFS data block size was set to

128MB. The AHC default sampling rate is used across all experiments. Exceptions are

explicitly indicated.

4.2.1 Performance

Table 4.1: A summary of MapReduce jobs used for evaluating the AHC compression
scheme.

Jobs

Parameters Music Rank Finding Implant Sequence

Dataset DS-Yahoo DS-mRNA

Data Type Original AHC Original AHC

Input 10.9 GB 4.9 GB 13.2 GB 3.7 GB

Intermediate 4.5 GB 4.4 GB 11.6 MB 4.7 MB

Output 3.2 MB 3.2 MB 17.0 Bytes 17.0 Bytes

Duration 11m48s 11m43s 2m05s 1m34s

Performance Gains – 0.1% – 24.8%

Size Reduction – 55.0% – 72.0%

1GB = 1,073,741,824 Bytes

In the Music Ranking job, we use the Yahoo! Music User Rating dataset [Yah06] to rank

∼136 thousand songs from ∼700 million ratings given by ∼1.8 million users. The

dataset only contains numerical values. Records are separated by new-line characters.

Fields of each record are separated by Tab characters. The symbol richness of this

dataset is relatively low. AHC compression reduced the data size by 55%. In this job,

we observed no performance gains. This is due to two reasons.

1. Firstly, the dataset has low symbol richness. AHC achieves the same O(m(n−m))
time complexity on pattern searching as if it is operated at byte level. The inef-

ficiency is mainly due to the data manipulation, such as binary string concatena-

tion, at bit level. In more detail, when concatenating two strings at byte level, a

new internal buffer long enough for two strings is created, then followed by copy-

ing the two string into the new buffer in order. At bit level, if the first binary string

does not occupy a full number of bytes, the last several bits in the last byte of the

first binary string need to be merged with the first several bits in the first byte of

the second binary string. The merged result produces a full byte and all the suc-

cessive bytes of the second binary string need to be left shifted accordingly. The

shifting process creates a non-negligible overhead when the second binary string
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is relatively long. This can be improved by employing indexing techniques which

can be used to remember the concatenation point of the two binary strings, thus

bit shifting operations can be avoided for the second binary string. The problem is

that working with indexing techniques requires maintaining both the index files

and the original files. This makes the total data size much larger.

2. Secondly, when Mappers receive data from the Record Reader component, the

received data is organized as a String data-type. When comparing numerical val-

ues, if the original data is used, the data in the String data-type will be converted

to corresponding numerical value data-type (e.g., Integer, Float and Double). If

AHC compressed data is used, the compressed data needs to be decompressed

first and then converted to the corresponding numerical value data-type (we can

not directly convert from AHC compressed data to other data-types). This decom-

pression process takes extra time. In addition, in order to perform the data type

conversion, we also need to load the AHC compression model from the HDFS

Distributed Cache to each Mapper and/or Reducers over the network, which is

another extra step.

However, as AHC has reduced data size by 55%, loading the 55% smaller data from

persistent storage (hard disks) to memory requires much less time. Also, considering

that AHC achieves similar string searching complexity at bit level in compressed format

compared to that at byte level in clear text format, thus searching strings (compressed

binary strings) in AHC compressed data is faster than searching the same strings in the

original text. Although, we do not get overall performance improvements, we have

saved 55% storage space without sacrificing analysis speed.

In the Finding Implant Sequence job, we demonstrate a special case where AHC can save

a surprisingly large amount of storage space. We chose to use a human mRNA (mes-

senger Ribonucleic Acid) dataset [Con09]. Using a word-based compression approach,

this would not be possible, since the entire dataset may be presented as a single string.

The task is to find an implanted mRNA sequence in the given dataset(s) and count its

appearances. It may be argued that mRNA can be represented in a 2-bit format since

it only contains four valid characters {C, G, A, U}. This only applies to a dataset that

has been preprocessed and cleaned. Generally, a mRNA sequence may contain upper-,

lower-case and other characters, for example, character "N" for missing and new-line for

segmentation, then the 2-bit representation can not be used. For this particular dataset,

AHC reduces the data size by 72% and increases the performance of the MapReduce

program by 24.8%.

In general, using the AHC compressed data requires much less system memory. This is

because Mappers are independent processes, each of them has a dedicated Java Heap
Space 8 assigned to it. The more Mappers the more aggregated memory is required.

8Hadoop MapReduce is implemented in the Java programming language. A MapReduce application
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Figure 4.8: Comparison of AHC compression speed using sampling methods with the
default sampling rate and full-scan methods. 2GB data from each dataset was used in
the experiments.

Recall that the input data size is the dominant factor affecting the number of Mappers.

After compression, the data size is significantly smaller than the original data. This

leads to a smaller number of Mappers and consequently less memory consumption.

Also, data structures used to store compressed binary strings in memory require much

smaller internal buffers.

4.2.2 Effectiveness of Sampling

Scanning through large dataset(s) for statistical sampling is time consuming. To im-

prove compression speed, the default sampling process uses a small fraction of the

source (the default sample size for 2GB data is 1.8MB). The default sample size is log-

arithmically proportional to the file size. Figure 4.8 shows that using the default sam-

pling rate can save up to 20 seconds (25%) compared to a full-scan on 2GB datasets.

The difference is solely dependent on the original data size. When the original data size

increases, the difference will become larger. In addition, we gradually increase sam-

pling rate to examine its effects on compression ratio, as shown in Figure 4.9. For each

dataset, with a carefully designed sampling strategy, a 5% sampling rate can accurately

reflect the true population distribution for most datasets. From the default (1.8MB) to

{5% (102.4MB) ∼100% (2GB)} sample size, there is only an improvement of several

hundred kilobytes. The fluctuation in the mRNA sequence is due to the random nature

is also a Java application that complies with the MapReduce programming paradigm. Java applications
are only allowed to use a certain amount of memory (Java Heap Space) specified in the Java runtime
environment.
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Figure 4.9: Sampling rate effects on compression ratio.

of the genome sequence.

4.2.3 Upgrading Effect
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Figure 4.10: Huffman upgrading effects on compression ratio.

The effectiveness of the Huffman upgrading relies on the symbol coverage of the sam-

pling. In this experiment, we draw a set of data from dataset DS-WikiEN. We compress

each dataset with the upgraded Huffman and non-upgraded Huffman to identify the

difference. We use a 5% sampling rate for all the tests in this section. Note that in

the previous section, we learned that a 5% sampling rate can accurately reflect the
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true population distribution of symbols. In Figure 4.10, we can see that in the worst

case scenario, using the upgraded Huffman tree can produce the same compression

ratio as the non-upgraded Huffman tree. In other cases, the upgraded Huffman can

further reduce data by several kilobytes. The bottom line is that if the sampling pro-

cess can obtain all the symbols that have actually occurred in a given text, regardless

of whether the symbol probability distribution is accurate or not, in the worst case

scenario, the upgraded Huffman will produce the same compression ratio as if the con-

ventional Huffman was used. In Figure 4.10, the difference shows no pattern as the

data size increases. This is solely because of the randomness of the sampling and the

source content.

4.2.4 Further Compression
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Figure 4.11: Evaluation of the impacts on applying a further compression to the AHC
compressed data.

Hadoop allows compression of the input, intermediate and output data with options

of using various compression algorithms, including Gzip, Bzip, LZO, Snappy and most

recently LZ4. When using AHC with MapReduce, the data has already been compressed

and the original pattern in the source data is lost. We evaluate whether there is value

in applying further compression to the AHC compressed data, especially for the inter-

mediate output data.

In this experiment, we use 2GB of data taken from each dataset. We compress the 2GB

data using AHC, then apply other compression algorithms to the AHC compressed data.

The results are shown in Figure 4.11. In general, we can still obtain several hundred

megabytes further reduction in size. There are two extreme cases. For the Google
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Server Log files (dataset: DS-Google), there is a significant size reduction after applying

further compression. This is due to the repetitiveness of the original data. The AHC

compression by definition only replaces symbols by shorter bit-oriented codewords.

It does not break the repetitive nature of the original contents. By applying further

compression, this repetitiveness can be captured by those general purpose algorithms

which utilize context information for compression, hence this results in further size

reduction. In contrast, applying further compression on the mRNA sequence does not

have much effect, it is even slightly worse for LZO and Snappy. This is mainly due to

the randomness of the contents. In principle, if a given dataset is known to contain

very repetitive contents, it may be worth applying further compression.

4.2.5 AHC Characteristics
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Figure 4.12: AHC compression speed comparing to Hadoop supported algorithms with
the default compression level configured for Bzip, Gzip and LZO.

AHC has different goals to other compressors. To give a sense of compression/decom-

pression speed and ratios, we compare AHC with four other compressors supported by

Hadoop: Gzip (v1.4), Bzip (v1.06), LZO (v1.03) and Snappy (v1.1.1). For Gzip, Bzip and

LZO, the compression level is set to -1 (fastest). Time requirements include the tar 9

packaging process. Results are obtained from compressing 2GB of data taken from

each dataset. In Figure 4.12, AHC shows relatively stable compression speed across

datasets. After the sampling process, a Huffman tree is built and codes are generated

for symbols. The compression process is then just finding a symbol-code mapping in a
9tar is a Linux tool that is used for collecting, distributing, and archiving files, while preserving at-

tributes associated with those files. These attributes, for example, include user access permissions and
directory structures.
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Figure 4.13: AHC decompression speed comparing to Hadoop supported algorithms
with the default compression level configured for Bzip, Gzip and LZO.

static look-up table. The slight speed variations are due to the content variation in the

source text. In general, AHC is several times faster than Bzip and approximately twice

as fast as Gzip. Compared with Gzip, AHC does not use the LZ77 algorithm and a single

Huffman tree is built for the entire dataset rather than two Huffman trees per block.

This is the main reason why AHC is faster than Gzip.

AHC decompression speed is also stable. Recall that AHC uses hybrid data structures

for decoding symbols. In most situations, AHC can achieve constant time for decoding

a symbol. The slight difference is due to the sampling and code length variations. If

some symbols are missing from samples, their codes will be much longer than expected,

especially when their code length is longer than 12 bits, then they must be decoded

using a Huffman tree which takes much longer time.

The compression ratio is content dependent. Figure 4.14 shows the compression re-

sults from compressing 2GB of data taken from each dataset, in which Gzip and Bizp
performed the best overall, with AHC the best on mRNA sequences. This is because

the Gzip algorithm is based on the Sliding Window technique. It replaces any string

that has occurred previously by pointers. Unfortunately, the mRNA sequence does not

present much repetitiveness that can be easily found in a Sliding Window and/or the

repetitive stings are too short and that makes it worthless to replace them by pointers.

The Bzip algorithm uses the block based Burrows-Wheeler Transformation to group

the same symbols and/or similar symbols together, therefore more repetitiveness can

be artificially created. But, auxiliary information about the transformation must be

logged which consumes some extra space. In contrast, AHC statically replaces symbols
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Figure 4.14: AHC compression ratio comparing to Hadoop supported algorithms with
the default compression level configured for Bzip, Gzip and LZO.

by codes. The mRNA data has very limited symbol richness so that the codewords for

symbols are very short. This results in the best compression ratio. In contrast, dataset

DS-WikiML contains Wikipedia articles in multiple languages. Characters in the stan-

dard and extended ASCII table tend to be evenly distributed. This means the dataset

has relatively high symbol richness and longer codeword length on average and thus

leads to a lower compression ratio.

4.3 Conclusion

In this chapter, we introduced the Approximated Huffman Compression scheme. AHC

is not a standalone compressor. In fact, it is a solution to the textual data analysis

on Hadoop. We have demonstrated the effectiveness of using AHC with Hadoop via

two MapReduce jobs with real-world datasets. Evaluation results show that AHC can

reduce data size significantly and improve data processing speed accordingly. We use

hybrid data structures to improve performance for decoding and pattern searching in

AHC compressed data. Theoretical analysis shows an O(n) time complexity. AHC is

especially suitable for domain specific and machine generated data. As these types of

data often have low symbol richness, AHC can achieve better compression ratios and

guarantee to decode in constant time. Additionally, AHC is a character-based encoding

scheme. Compared to a word-based scheme, AHC is more flexible in sub-string search-

ing. The main drawback of using AHC with Hadoop is the compatibility issue. Existing

algorithms or software packages by default work at the byte level. In order to work
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with AHC, a translation layer or rewrite of existing software packages seem inevitable.

From another perspective, storing and analysing data in the public environment of-

ten raises privacy concerns. Many large volume datasets, for example, cluster usage

traces and music ratings, may not be worth encrypting, but often some data fields are

anonymized using hashes. To retrieve the original information, an additional set of

mapping files must be maintained. In AHC, the compression model can be used as a

key to unlock the compressed contents for trusted users. Regarding the security level,

it has been shown that Huffman coded data can be difficult to decipher [GMR96]. Con-

sidering that we calculate probability distributions for symbols from randomly selected

samples, this makes it more difficult for cryptanalysis.
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Chapter 5

Record-aware Compression (RaC)

“Those who cannot change their minds cannot change anything.”
— George Bernard Shaw

In the previous chapters, we have seen that context-free compression works out

favourably for MapReduce. The context-free aspect makes processing and modifying

compressed data in MapReduce feasible. From the experimental results, we have ob-

served that the increase in performance was due to a combination of loading less data

from persistent storage to memory; transmitting less data over the network; and pro-

cessing shorter strings in compressed format. The main limitation with CaPC and AHC

is the moderate compression ratio. This can be improved by employing higher-order

context-dependent schemes. Currently, several such compression methods have been

made available to the Hadoop platform including Gzip, Bzip, LZO, Snappy and recently

LZ4. The main objectives of using these compression methods in Hadoop are to effi-

ciently deliver the intermediate data generated by the Map processes to the correspond-

ing Reducers during the Shuffling phase and to accelerate the process of materializing

in-memory data to local persistent storage. In this chapter, we extend the use of these

modern compression methods to the data loading phase of MapReduce, while ensuring

the compressed data is splittable to HDFS and the split data can be decompressed by

Mappers independently in a distributed environment.

Using compressed data (compressed by modern compressors) raises a concern on

MapReduce parallelism. Recall that HDFS organizes big files by splitting them into

a series of data blocks. Data blocks are distributed across computational nodes. In

the MapReduce context, each data block is assigned to a dedicated Mapper and pro-

cessed independently. This poses a question as to whether each data block can be

decompressed independently. In other words, whether the entire compressed data is

splittable. Modern compressors endeavour to achieve higher compression ratios by

leveraging contextual data and meta-information about the data. This creates depen-
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dencies between compressed data and forces the decompression to be a sequential

process starting at the beginning of the compressed data. Splitting compressed data

at arbitrary points makes data blocks highly unlikely to be decompressable except for

the first data block. In order to allow a MapReduce program work with compressed

data, all HDFS data blocks must be assigned to a single Mapper due to the sequential

decompression process. This defeats the data parallelism goal and is inappropriate for

the MapReduce computational model. Additionally, the decompression process takes

non-negligible time, as for example when decompressing several gigabytes or terabytes

of compressed data sequentially.

In order to address the splittable issue, hope for a solution is given by block-based

compression. In general, a block-based compressor takes a block of input data and pro-

duces variable-length compressed output. At the end of the each compression block,

the compression context buffer 1 needs to be flushed fully to make the current com-

pressed data block self-contained. In addition, the boundaries of each compressed data

block must be logged, since they are variable-length. In principle, any block-based com-

pression can be made splittable. However, frequently flushing the compression context

buffer greatly impairs compression ratio [Sal08] [WMB99]. The LZO-splittable algo-

rithm [Twi] has been made available to Hadoop by Twitter. Twitter uses the standard

LZO algorithm to compress data, then uses an extra indexing program to determine

and record splittable boundaries in a separate file. But, this is not the end of the story.

Recall that each HDFS data block is assigned to a dedicated Mapper and the Mapper

process will be launched on the cluster node where the HDFS data block resides, hence

moving the computation. Moreover, each HDFS data block will be further organized as

a logical data split in the context of the MapReduce framework. A data split guaran-

tees no partial records at the boundaries of a HDFS data block. A data split is further

divided into logical records which are often specific to the dataset and the MapReduce

programs. The Record Reader component of MapReduce is responsible for supplying

records to Mappers and a Mapper will process a single record at a time. Therefore, the

MapReduce paradigm can be also seen as record-oriented processing.

It is very likely that each HDFS data block will contain incomplete records at the bound-

aries. Using original data, if a HDFS data block contains a partial record at the begin-

ning of the block, the partial record will be ignored by the MapReduce Record Reader; if

a partial record is at the end of the HDFS data block, the remaining part of the partial

record will be streamed from the immediate succeeding HDFS data block to the current

HDFS data block, to make a complete record. Note that if the immediate succeeding

HDFS data block is located on the same cluster node, streaming partial records can

be done quickly. More often, HDFS data blocks are distributed across cluster nodes,

1In many compression algorithms [ZL78] [ZL77] [Wel84], an internal memory buffer is often used to
cache a part of the previously compressed input stream as a dictionary for encoding successive data in the
stream. This is often the place where the dependencies are created.
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Figure 5.1: An illustration of the issues with none content-aware compression in HDFS.

and data must be streamed across the network which takes much longer time. To this

end, a data split is formed and ready for processing. This can become complicated

when forming a data split from compressed data. Figure 5.1 shows an example of a

blind compression (compression without being aware of record completeness and block

boundaries). There are two extreme scenarios.

• In the first scenario, the original record R6 and the first part of R7 are com-

pressed in B4. The compressed data blocks from B1 to B4 are allocated to H1.

B5 to B7 and part of B8 are assigned to H2. (Note that in a real application sce-

nario, the splitting point is purely determined by the pre-defined HDFS block size

for a Hadoop cluster.). Assume that three Mappers are started simultaneously.

They work concurrently and each Mapper is assigned to a HDFS data block in

ordinal order. Before Mapper-1 starts processing the last record (R7) in B4 of

H1, the MapReduce Record Reader that serves Mapper-1 must ensure that the last

record (R7) is a complete record. If the record is incomplete, the Record Reader
component must stream the second part of the record from H2 (the immediate

succeeding HDFS data block of H1). Since data is compressed, in order to stream

the second part of R7, the entire block of B5 must be streamed to H1. Then B5 is

decompressed in order to figure out the second part of R7. This can be a time con-

suming process especially when the size of B5 is relatively large and consequently

delays the completion time of the entire Map processing phase.

At the same time, Mapper-2 decompresses B5, skips the first record (which is the

second part of R7) and then starts from the second record.

• In the second scenario, when a compressed data block is split into two different

HDFS data blocks as shown in Figure 5.1 for B8, this can be more problematic as
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the first part of B8 is not decompressable (it will fail the data integrity check, for

example, using Cyclic Redundancy Check (CRC) algorithm [PB61]). The Record
Reader that serves Mapper-2 must be notified beforehand with the assistance of an

extra logging file(s). Thus, before Mapper-2 starts decompressing the first part of

B8 in H2, the remaining part of B8 in H3 must be streamed to H2. Furthermore,

when Mapper-2 starts processing the last record in B8, it still needs to stream

block B9 of H3 to H2 for verifying record completeness. At the same time, Mapper-
3 must be notified that the second part of B8 must be ignored and it should start

from B9.

Another side-effect is when the compressed data blocks (for example B8 and

B9) are relativity large, frequently streaming data blocks between computational

nodes can break the data-locality property which is one of the design principles

of MapReduce, namely moving computation to data. Also, because of this data

streaming process between HDFS data blocks, the logical data splits which are

actually assigned to Mappers for processing, have different sizes as shown in

Figure 5.1 (S1, S2, S3). The different data split sizes leads to different completion

time among Mappers, which will consequently delay the overall completion time

of the MapReduce program.

In this context, we introduce Record-aware Compression (RaC). RaC is a block-based

compression. It takes variable-length input and produces fixed-length compressed out-

put. Each compressed block is guaranteed to contain a set of complete records. A

record is determined by user defined rules expressed in Regular Expression 2 clauses.

Because of the fixed-length blocks, the compressed data can be easily split and MapRe-

duce Record Readers do not have to track the block indices, hence it is splittable and

lightweight. More importantly, there is no need for a decompression process to de-

termine the logical record completeness at the boundary of each HDFS data block as

explained above.

5.1 Compression Scheme

In a conventional MapReduce program, the process starts with the reading of blocks

from HDFS. The Record Reader component is responsible for parsing and splitting the

data block into records and then supplying a single record to the corresponding Map-

per for processing. While the Mapper is doing the processing, the Record Reader starts

preparing the next record for the Mapper in the background. When the Mapper com-

pletes processing the current record it does not have to wait for the Record Reader to

parse the next record, thus improving performance. Mappers will generate intermedi-

2"Regular Expressions (REs) provide a mechanism to select specific strings from a set of character
strings" [The13].
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Figure 5.2: An illustration of the default work-flow of MapReduce.

ate data and the intermediate data will be distributed to corresponding Reducers over

the network for further processing. The final results produced by Reducers will be

eventually stored in HDFS. This work-flow is illustrated in Figure 5.2.

Because this interaction between a Mapper and its associated Record Reader influ-

ences MapReduce performance, three strategies have been designed for using RaC with

MapReduce as illustrated in Figure 5.3.

1. In strategy-1, the RaC Record Reader 3 is only responsible for reading a fixed-size

block of data (RaC-Block) as shown in Figure 5.3 (left, Label 1). In this case, the

RaC Record Reader is lightweight as it only reads one RaC-Block at a time and

supplies the RaC-Block to the corresponding Mapper. The Mapper is responsible

for decompressing the received RaC-Block, then parsing and splitting records as

shown in Figure 5.3 (left, Label 2). This is useful when the RaC-Block is relatively

large and the computational power of the Mapper is relatively high, so that the

difference between the time spent on loading the RaC-Block by the RaC Record
Reader and processing the RaC-Block by the Mapper is small. Thus the waiting

time, as discussed above, can be minimized.

2. In strategy-2, the RaC Record Reader reads a RaC-Block and decompress it. The

decompressed results are then fetched to the corresponding Mapper. In fact, the

RaC Record Reader supplies a group of records to the Mapper as shown in Fig-

ure 5.3 (middle, Label 1). The Mapper is responsible for parsing and splitting

records as shown in Figure 5.3 (middle, Label 2). This strategy is designed to

deal with dataset(s) containing small records. For example, the Yahoo! Music
3By default, the MapReduce framework provides a set of pre-defined Record Readers to deal with

various data formats. In the RaC scheme, we provide a set of specially designed Record Readers (RaC
Record Reader) to deal with RaC compressed data.
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Rating dataset (DS-Yahoo) contains approximately 700 million records. The av-

erage record length is about 16 characters long. Supplying a single record to

a Mapper for processing as done by conventional MapReduce programs is ex-

tremely inefficient. In contrast, the RaC Record Reader supplies a group of records

to a Mapper at a time, so that we can reduced the unnecessary burden on the RaC
Record Reader component and at the same time improve the memory utilization

at Mappers.

3. In strategy-3, the RaC Record Reader is responsible for reading, decompressing,

parsing and splitting records. A single record is therefore fetched to the corre-

sponding Mapper for processing as shown in Figure 5.3 (right, Label 1). This

strategy is designed for dataset(s) containing large records where processing a

record will take a long time. Also, this strategy makes the implementation of a

Mapper generic, as the Mapper does not have to contain the record parsing and

splitting logic.

Apart from the RaC usage strategy, RaC compression has two implementations which

are based on the Deflate (RaC-Deflate) and LZ4 (RaC-LZ4) algorithms respectively,

where RaC-Deflate offers high compression ratios and RaC-LZ4 is speed-optimized.

The reason for implementing RaC in two flavours is because the compression ratio and

decompression speed often conflict. When using RaC with MapReduce we can save

time by loading less data from persistent storage to memory, but at the same time, we

must spend extra time on decompressing the data. We aim to identify whether the

higher compression ratio with relatively slower decompression speed approach or the

lower compression ratio with higher decompression speed approach can achieve better

overall performance.

Recall that RaC takes variable-length input and then produces fixed-size compressed

output. We use a 512KB block size for RaC-Block (the size is adjustable). This makes

every 512KB of compressed data self-contained. Using a naïve approach, we can fetch

a single record at a time to the RaC compressor until a RaC-Block is full, then we start

from a new RaC-Block. In practice, parsing records can be very time consuming particu-

larly when a complicated delimiter(s) is used to split records. To improve compression

speed, RaC starts with a lightweight sampling process (RaC uses the same sampling

strategy explained in Section 3.1.3). Each sample drawn from the underlying dataset

is a fixed-size block (Sample-Block) of data. We use a default 128KB Sample-Block size.

Each sample is compressed using Deflate or LZ4 (depending on whether RaC-Deflate

or Rac-LZ4 are used) and the mean length of the compressed samples is used to esti-

mate how much data will be needed to fill a 512KB RaC-Block. In other words, the

estimation results are used to decide the input buffer size for RaC compression.

Once the input buffer size is calculated, a block of data will be read into the input

buffer. Starting from the end of the input buffer, we seek the first record delimiter

Content-aware Compression for Big Textual Data
Analysis

84 Dapeng Dong



5. RECORD-AWARE COMPRESSION (RAC) 5.2 Evaluation

0 0 0 0 0 0 0 0

Every 512KB

0

Giant Record Indicator

0 0 0 0 0 1 0 0

Trailing Byte Indicator

Block of Compressed Records

0 0 0 0 0 1 0 0

Trailing Bytes

Figure 5.4: RaC block-packaging scheme.

defined by the user. Any partial record will be removed from the current input buffer

and postponed to the next iteration. This ensures that the input buffer contains a set

of complete records and so the corresponding compressed data block is self-contained.

After compressing an input block, the size of the compressed data block must be less

than or equal to the size of the RaC-Block. Since we guarantee the same RaC-Block

size, any gaps will be filled up by trailing bytes. The last three bytes of the RaC-

Block are reserved and used to indicate how many trailing bytes have been appended.

Additionally, the Most Significant Bit (MSB) of the third last byte is used to indicate a

giant record which spans multiple RaC-Blocks. The packaging format is illustrated in

Figure 5.4. In the situation where the compressed data size is greater than the size of

the RaC-Block, a single full record will be removed from the current buffer (at the end

of the buffer) and postponed to the next iteration. The process continues until the size

of compressed data is less than or equal to the size of RaC-Block with the consideration

of the three reserved trailing bytes. This also implies that the accuracy of the estimation

of the input buffer size from sampling is an important factor affecting RaC compression

performance.

5.2 Evaluation

We evaluate the effectiveness of RaC using an on-site Hadoop cluster. The cluster

topology and configuration are given in Appendix A (Figure A.1 and Table A.1). The

experimental environment was configured with Hadoop version 2.5.0 and Linux ker-

nel version 2.6.32. The Hadoop HDFS was configured with a single replication and

64MB block size. A set of standard MapReduce jobs were used for evaluating RaC with

MapReduce as summarized in Table 5.1. The RaC strategy-2 was used across all experi-

ments. The evaluation was conducted using a collection of real-world datasets as listed

in Appendix A (Table A.2). The evaluation includes MapReduce performance, cluster

storage requirements, memory constraints, RaC compression ratio and RaC compres-

sion/decompression speed.
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Table 5.1: A summary of MapReduce jobs used for evaluating the RaC compression scheme.

Job Dataset Data Type Input Intermediate Output
Memory

Allocation
Duration

Performance

Gain

Size Reduction

(Input)

Sentiment

Analysis
DS-Amazon

O : 33.4 GB 834.5 MB 990.0 MB 12.0 GB 23m35s

D : 12.5 GB 798.8 MB 990.0 MB 7.8 GB 15m09s 35.8% 62.6%

L : 20.5 GB 812.8 MB 990.0 MB 9.3 GB 18m17s 22.6% 38.6%

Page Rank
DS-Memes∗

O : 50.5 GB 630.5 MB 19.1 MB 10.2 GB 21m17s

D : 28.1 GB 630.5 MB 19.1 MB 4.2 GB 15m29s 27.3% 44.4%

L : 40.3 GB 630.5 MB 19.1 MB 8.3 GB 19m10s 9.9% 20.2%

Server Load

Analysis
DS-Google

O : 158.9 GB 530.9 MB 371.1 KB 21.2 GB 42m10s

D : 46.9 GB 315.4 MB 371.1 KB 14.8 GB 29m05s 31.0% 70.5%

L : 79.1 GB 530.8 MB 371.1 KB 19.3 GB 38m32s 8.6% 50.2%

5-Gram DS-WikiEN∗
O : 13.0 GB – 63.1 GB 3.9 GB 7m50s

D : 3.2 GB – 63.1 GB 2.5 GB 5m00s 36.2% 75.4%

L : 3.9 GB – 63.1 GB 2.6 GB 5m21s 31.9% 70.0%

continued . . .
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. . . continued

Job Dataset Input Type Input Intermediate Output
Memory

Allocation
Duration

Performance

Gain

Size Reduction

(Input)

Word Count DS-StackEX

O : 40.6 GB 20.9 GB 9.0 GB 22.9 GB 44m57s

D : 19.3 GB 13.1 GB 9.0 GB 19.1 GB 40m23s 10.2% 52.5%

L : 20.3 GB 13.1 GB 9.0 GB 20.4 GB 38m23s 14.6% 50.0%

Music Rank DS-Yahoo

O : 10.2 GB 3.0 GB 3.2 MB 5.0 GB 11m50s

D : 3.3 GB 3.0 GB 3.2 MB 3.9 GB 9m30s 19.7% 67.7%

L : 5.7 GB 3.0 GB 3.2 MB 4.5 GB 10m06s 15.2% 43.3%

Finding Implant

Sequence
DS-mRNA

O : 12.5 GB 21.5 MB 17.0 Bytes 2.0 GB 4m22s

D : 5.3 GB 9.6 MB 17.0 Bytes 951.7 MB 2m03s 53.1% 57.6%

L : 10.8 GB 18.8 MB 17.0 Bytes 1.5 GB 3m18s 24.4% 13.6%

O: Original datasets

D: RaC-Deflate compressed datasets

L: RaC-LZ4 compressed datasets

1GB = 1,073,741,824 Bytes
*: Subset of the data was used for the evaluation.
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5. RECORD-AWARE COMPRESSION (RAC) 5.2 Evaluation

5.2.1 Performance

Table 5.1 contains our main experimental results. We use seven standard MapReduce

jobs to evaluate the effectiveness of RaC with MapReduce. We run each job three

times with the original, RaC-Deflate and RaC-LZ4 compressed data, respectively. On

average, RaC-Deflate and RaC-LZ4 can reduce data size by 61.5% and 40.8%; and

improve analysis performance by 30.5% and 18.2%.

In the Sentiment Analysis job, we use the SentiWordNet lexicons [ES06] to mine cus-

tomer opinions on Amazon products. In comparison to the Sentiment Analysis carried

out in the CaPC evaluation (Chapter 3, Section 3.2), we use the full dataset which

contains approximately 35 million reviews for ∼2.5 million products given by ∼6.6

million Amazon online store customers. Using RaC-Deflate and RaC-LZ4 compression,

the original data size is reduced by 62.6% and 38.6%, respectively. As a result, when

using RaC compressed data, we can save a significant amount of time for loading data

from persistent storage to memory as indicated by the performance gains of 35.8% and

22.6%.

The Server Log Analysis was selected to evaluate RaC with a comparatively large analy-

sis task. The main task is to determine the over/under utilized servers from Google

cluster log files. For this particular dataset, RaC-Deflate and RaC-LZ4 reduce the orig-

inal data size by 70.5% and 50.2%, respectively. The performance gains of 31% and

8.6% mainly come from loading less data (RaC compressed) from disk to memory and

distributing smaller intermediate output to Reducer nodes over the network. The dif-

ferent size of the intermediate output is a result of the MapReduce Local Combiner
effects 4. In this evaluation, the MapReduce Local Combiner was used for the Sentiment
Analysis, Server Log Analysis and Finding Implant Sequence jobs. The details about the

Local Combiner effect will be explained in Chapter 6 (Section 6.3).

Recall that a standard MapReduce job generally consists of Map tasks and Reduce tasks.

The Map phase comprises of Record Reader, Map Logic, Partition, Sorting, Spilling, Merg-
ing and Shuffling steps. The Reduce tasks can be further divided into Sorting, Merging,

Reduce Logic and Spilling steps. The 5-Gram job consists of Map tasks only. There are

no Partition, Sorting and Shuffling phases, thus the network I/O is kept to a minimum.

In the experiment, the observed performance gains come purely from the data loading

processes. As shown in Figure 5.5 (5-Gram), the aggregated CPU times spent on the

Map tasks are similar for the analysis with the original, RaC-Deflate and RaC-LZ4 com-

pressed data (as indicated by Map_Task_CPU_Total). In contrast, the aggregated total

time spent on Map tasks differ largely, as indicated by Map_Task_Total. Subtracting the

time spent on the Map Logic (indicated by Map_Task_CPU_Total) from the total time

spent on the Mapper (indicated by Map_Task_Total), the difference is mainly due to

4MapReduce uses a combining function to merge records having the same key in the output of a
Mapper.
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5. RECORD-AWARE COMPRESSION (RAC) 5.2 Evaluation

loading different size data from disk to memory.

In the Word Count analysis, the job with RaC-LZ4 compressed data performed better

than the job with RaC-Deflate compressed data. This is because both RaC-Deflate and

RaC-LZ4 achieve a similar compression ratio (52.5% and 50.0%) and both jobs produce

the same size of intermediate output. The only major difference is the decompression

speed. Recall that the RaC Record Reader reads a block of data and decompresses it

in memory, then forwards the decompressed data to the corresponding Mapper. As

shown in Figure 5.9 and Figure 5.10, the decompression speed of RaC-LZ4 is approxi-

mately 20% faster than the RaC-Deflate performed on the StackExchange Posts dataset

(DS-StackEX). This leads directly to the 14.6% performance gain from using RaC-LZ4

compressed data compared to the 10.2% gained from RaC-Deflate. However, when the

data size becomes larger as shown in the Finding Implanted Sequence jobs, we can find

that the decompression speed becomes much less significant.

SentimentAnalysis 5−Gram ServerLogAnalysis

WordCount MusicRank FindingSequence
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Figure 5.5: Aggregated CPU time and total time consumed by both Map and Reduce
tasks.

In the Music Rank and the Page Rank jobs, the MapReduce Local Combiner was disabled.

This forces Mappers to produce the same size of intermediate data. Because each Map-

per is treated as an independent process, Mappers generate their own output data.

The total number of intermediate data blocks produced by Mappers differs largely as

indicated by the MapReduce Framework Counter: Merged_Map_outputs = {815, 265,

460} for {Original, RaC-Deflate, RaC-LZ4} (this is the same as the number of Mappers)
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Figure 5.6: Averaged time allocation for MapReduce Map, Shuffle, Merge, and Reduce
tasks.

for the Music Rank job. Recall that the Map output data needs to be sorted and par-

titioned before the Shuffling phase. And during the Shuffling phase, Map output data

must be distributed to the designated Reducers according to the Partition results. The

higher volume of Map output data potentially leads to a higher number of partitions.

Distributing highly fragmented data from Map nodes to Reducer nodes will increase

the transmission delay on the network due to the fact that each transmission requires

a separate network connection. It may also create disk I/O contention when reading

multiple data blocks from the same disk concurrently for parallel data transmission. It

also increases the delay on Reducer nodes because the partitioned data that has been

received from Mappers needs to be sorted again and then merged. This is shown in

Figure 5.5 as indicated by the difference in the Reduce_Task_Total and in Figure 5.6 as

indicated by the large variation in the Average Shuffling time.

In addition to the Music Rank job, the Yahoo! Music Rating dataset contains a large

number of small records (approximately 16 characters per record on average) and pro-

cessing effort for each record is lightweight. Using the original dataset, the MapReduce

Record Reader is heavily loaded due to supplying a single record to a Mapper at a time.

Using RaC compressed data, we can supply a block of records to a Mapper which makes

the Record Reading process more efficient.
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In summary, we observe a considerable improvement in analysis performance for all

types of jobs and a significant data size reduction. RaC shows its particular usefulness

on reducing the burden on the MapReduce Record Reader component and enhancing

the effects of the MapReduce Local Combiner. We also find that the decompression

overhead does not have much influence on analysis performance. Instead, the size

of the input data and the intermediate output data play vital roles. In general, using

RaC-Deflate or RaC-LZ4 compressed data requires much less memory to be allocated.

The reasons are as follows. Mappers are independent processes and each Mapper has

a dedicated Java Heap Space assigned to it. The higher number of Mappers leads

to the more memory being required. Because the source data size is the dominant

factor affecting the number of Mappers, with compressed data, the data size has been

significantly reduced. This results in fewer Mappers and consequently less aggregate

memory consumption. Moreover, supplying a block of data to a Mapper at a time can

use system memory more efficiently. This is particularly useful for a multi-tenant cluster

in which the saved memory can be assigned to more users.

5.2.2 Compression Speed and Ratio
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Figure 5.7: RaC compression speed comparing to Hadoop supported algorithms with
highest compression level configured for Bzip, Gzip and LZO.

The RaC compression/decompression speed and ratio are compared with Gzip (v1.6),

Bzip (v1.0.6), LZO (v1.03) and Snappy (v1.1.2). The time requirements include the

tar process. 2GB data drawn from each dataset listed in Appendix A (Table A.2) was

used in the evaluation. It should be noted again that the compression speed and ratio

are often in conflict. Modern compressors provide flexibility in adjusting the weighting
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Figure 5.8: RaC compression speed comparing to Hadoop supported algorithms with
default compression level configured for Bzip, Gzip and LZO.
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Figure 5.9: RaC decompression speed comparing to Hadoop supported algorithms with
highest compression level configured for Bzip, Gzip and LZO.

between compression speed and ratio to meet user requirements. Experiments in this

section provide two configurations (highest compression ratio and fastest compression

speed) for the aforementioned compression schemes. Figure 5.7 (configured with fastest
compression speed) and Figure 5.8 (configured with highest compression ratio) show that

the compression speed of RaC-Deflate is similar to Gzip and RaC-LZ4 is close to Snappy.

The main reason for the slight variations in the compression speed is due to the extra
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Figure 5.10: RaC decompression speed comparing to Hadoop supported algorithms
with default compression level configured for Bzip, Gzip and LZO.

processes for sampling, estimation of RaC-Block size and determining record complete-

ness a the end of each RaC-Block. Generally, RaC-LZ4 is much faster when compared

to Bzip, Gzip and RaC-Deflate. This is because of the speed-oriented nature of the LZ4
algorithm. But, comparing with LZO and Snappy, RaC-LZ4 is still slower due to the

same reasons given for RaC-Deflate (the extra processing involved in compression).

Note that LZO is exceptionally slow when the highest compression level is used. In de-

compression, RaC-Deflate performs similarly to Gzip, and RaC-LZ4 performs similarly

to Snappy, as shown in Figure 5.9 and Figure 5.10. Interestingly, the configuration of

compression level has almost no impact on the decompression speed. This is shown in

both Figure 5.9 and Figure 5.10. These two figures are almost identical.

Compression ratio is content dependent. Figure 5.11 and Figure 5.12 show the com-

pression results from compressing 2GB data drawn from each dataset listed in Ap-

pendix A (Table A.2). RaC-Deflate and RaC-LZ4 do not have options for configuring

compression levels. Thus, the compression ratios are identical as shown in both figures.

Because both RaC-Deflate and Gzip are based on the Deflate algorithm, they performed

similarly. In contrast, the compression ratio of RaC-LZ4 varies greatly depending on

the data contents. This is because, internally, the LZ4 algorithm will break a sample

data block into smaller data blocks related to the size of the internal buffer used. LZ4
firstly examines whether the current input data is compressible or not. If the data is

not compressible, it will simply skip the current data block without further trying and

move to the next data block in order to accelerate the compression process. During the

RaC sampling process, if LZ4 performs badly on the sample data as explained above,

the mean length of the compression results will be longer. Eventually the estimated
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Figure 5.11: RaC compression ratio comparing to Hadoop supported algorithms with
highest compression level configured for Bzip, Gzip and LZO.
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Figure 5.12: RaC compression ratio comparing to Hadoop supported algorithms with
default compression level configured for Bzip, Gzip and LZO.

length for the RaC input buffer will consequently become longer, which leads to poorer

compression ratio overall.
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Figure 5.13: Applying Further compression to RaC compressed data.

5.2.3 Further Compression

Recall that MapReduce uses compression to reduce the intermediate data so that the

cost of distributing the intermediate data over the network can be minimized. Also,

data is often compressed for saving storage space in HDFS. In RaC, we employ a rela-

tively loose format for packaging compressed data blocks (Section 5.1). Thus, it may

be worth investigating whether applying compression (using the aforementioned stan-

dard schemes) to RaC compressed data can further reduce data size so that the data

transmission cost can be further reduced and more HDFS storage space can be saved.

In this experiment, we take 2GB data drawn from each dataset. We compress the

2GB original data using RaC. The RaC compressed data is then fetched into Bzip, Gzip,

LZO and Snappy, respectively. We observe that any further compression applied to the

RaC-Deflate compressed data does not give much improvement. The slight variation

in the RaC-Deflate group (as shown in Figure 5.13) is mainly due to the use of the

packaging format in RaC. The compression results indirectly prove that our block size

estimation technique is relatively accurate as there are not many trailing bytes used for

packaging. In contrast, RaC-LZ4 is a speed-optimized scheme. Applying Gzip and Bzip
to RaC-LZ4 compressed data can further reduce the data size by several hundreds of

megabytes. Note that in this experiment, Gzip, Bzip and LZO are configured with their

default compression levels.
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5.3 Conclusion

In this chapter, we introduced Record-aware Compression for Hadoop. In general, RaC

can be used with other analysis platforms such as Spark [Apa15] as well as higher level

abstractions of MapReduce such as Hive [HCG+14], with extended supporting libraries

for each platform. In the evaluation, we show that using RaC can greatly reduce data

loading time and the system memory required. More importantly, we observe that the

time spent on decompressing data in memory is insignificant compared to the time re-

quired for loading data from persistent storage to memory. This can be more important

for big data analysis in cloud environments because in cloud environment computa-

tional nodes often receive data from remote centralized storage systems rather than

from local hard disks. The experimental results lead us to believe that content-aware

and data-specific compression is very promising for big data processing and analysis.

RaC serves as a preliminary study to the main work presented in the following chapter.
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Chapter 6

Record-aware Partial Compression
(RaPC)

“The worm in the radish does not think there is anything sweeter.”
— Sholem Aleichem

As previously discussed, the design of the CaPC scheme centres around the separation

of informational and functional contents. This is mainly driven by the fact that most

Internet generated texts have a format defined by a set of functional characters. Many

existing algorithms and software packages rely on those pre-defined characters for pro-

cessing. CaPC only compresses the informational contents while keeping the functional

contents intact. This allows the existing algorithms to work with the CaPC compressed

data without modification. The compression is a process of replacing informational

contents by specially designed codes which makes the compressed data splittable to

the HDFS. More importantly, it can be directly consumed by MapReduce programs.

The main limitation of the CaPC is the limited code space which results in a rela-

tively low compression ratio. In addition, due to the use of a word-based compression

method, sub-string searching is not supported. According to our evaluation results, as

shown in Section 3.2, CaPC can reduce data size by approximately 30%. In order to im-

prove the compression ratio and support arbitrary string searching, we introduced the

AHC scheme in Chapter 4. AHC is a bit-oriented, character-based, context-free entropy

encoder based on the Huffman algorithm. Given a text T [1, n] drawn from an alphabet

set Σ, AHC can achieve O(n ·H0(Σ) +
⌈

n
bAHC

⌉
(max(`) + 7)) (as given in Section 4.1.2)

space efficiency. The higher compression ratio of AHC is due to the lower cardinality

of the alphabet Σ. Because of the smaller data size, using AHC compressed data with

MapReduce programs can further reduce the I/O cost when: loading data from persis-

tent storage to memory; materializing in-memory data to HDFS; and transmitting data

over the network between cluster nodes. Furthermore, AHC uses a hybrid data struc-
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ture for decoding symbols in constant time. However, manipulating data at bit level

exhibits inefficiencies due to the underlying operating systems and compilers. This can

be improved by employing indexing techniques such as Ranking and Selection [Jac92].

On the other hand, this increases the data size. In contrast, manipulating strings at

byte level is much more efficient.

Both CaPC and AHC are context-free coding schemes. In order to achieve higher com-

pression ratios, we must employ a higher order coding scheme or utilize context infor-

mation during compression. Because the standard compressors such as Bzip, Gzip, LZO,

Snappy and LZ4 that are currently supported by Hadoop only allow decompression in

a sequential manner, we introduced the RaC scheme in Chapter 5. RaC supports de-

compression on a per pre-defined block basis. The main goal of RaC is to reduce data

size to close to that achieved by general purpose compressors, while at the same time

making the compressed data splittable to the HDFS. Thus, the compressed blocks can

be supplied to Mappers and decompressed in memory in parallel.

For CaPC and RaC, we have identified that the performance gains in the evaluation

came from three sources. The first source is that loading the compressed data, which

is much smaller than the original data size, from hard disk to memory takes much

less time. The extra time spent on the data decompression in memory is insignif-

icant compared to the data loading time. Especially, when there are multiple Map

processes running concurrently on a single physical cluster node, loading smaller data

can potentially reduce disk I/O contention. This is the major contribution of the RaC

compression. Secondly, when using CaPC, the compressed data is directly consum-

able by MapReduce programs, and the size of the data flowing in the cluster is smaller

than the same analysis using the original text, thus reducing the data transmission cost

over the network. When using the RaC compressed data with the MapReduce local
combiner mechanism, the Map processes produce smaller intermediate output data.

This also reduces the data transmission cost during the MapReduce Shuffling phase.

We explain the third part using an example scenario. Most data-centric analysis in-

volves pattern searching. When searching a pattern of length m from a source data

of length n, a naïve search algorithm requires Θ(m(n − m)) time; or using the more

efficient Knuth–Morris–Pratt algorithm [KJHMP77] requires Θ(m) preprocessing time

and Θ(n) matching time. In contrast, assuming that CaPC can reduce data size by

∼30%, the length of the CaPC compressed source is therefore given by 0.7 · n and the

compressed pattern length is 0.7 · m, and this gives ∼30% faster searching speed re-

gardless of which algorithm is used. Theoretically, if we combine the two features from

the CaPC and the RaC, we can further improve the performance of MapReduce.

To this end, we introduce the Record-aware Partial Compression scheme [DH15b].

RaPC comprises a two-layer compression in which the Layer-1 scheme inherits the

main features of CaPC with an improved design and the Layer-2 scheme inherits the
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main features of RaC with improved compression ratio and speed.

6.1 Compression Scheme

The RaPC is a nested two-layer compression scheme. The algorithm used at each layer

is specifically designed for improving MapReduce performance and reducing Hadoop

cluster resource usage. Each layer is appropriate for the corresponding stage of data

processing. This is the novelty of the RaPC scheme. The design goals for the outer layer

are to maximally reduce the data size for reducing data loading time while making the

compressed data splittable to the HDFS. It is based on a modified Deflate algorithm.

The inner layer is a word-based context-free compression scheme which makes the

compression results directly consumable by MapReduce programs using the supporting

libraries.

6.1.1 RaPC Layer-1 Compression Scheme

0 0 0 0 0 0 0 01

Code-Byte Indicators

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01
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Figure 6.1: RaPC Layer-1 encoding template. The length of codewords increases from
one byte to three bytes depending on the amount of compressible information in a
given dataset.

The RaPC Layer-1 (RaPC-L1) encoding is a byte-oriented, word-based partial compres-

sion scheme. RaPC-L1 separates informational contents and functional contents. Any

character or group of consecutive characters from the range [a - z], [A - Z] and [0 - 9]

are considered to be informational, other characters are treated as functional. RaPC-L1

only compresses informational contents.

The RaPC-L1 code length grows from one byte to the maximum of three bytes de-

pending on the number of compressible strings in the text. A compressible string is a

string that is firstly categorized as informational content. Secondly, the string length

must be longer than the current code-length (code-length grows dynamically during

the compression). Functional characters are used as delimiters to split informational
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contents. Every unique compressible string will have an integer value assigned to it in

the order of their discovery. The integer value is then used to fill in one of the tem-

plates as shown in Figure 6.1. The Most Significant Bit (MSB) of each code-byte is

set to one. This ensures that the code-bytes are distinguishable from uncompressed

contents. For example, given a message "Big Data Analysis", the encoded message is

"10000000*00100000*10000001*00100000*10000010". During the compression, the

three strings are discovered in order. Their corresponding codes are therefore the inte-

ger values 0, 1, 2. The integer values will be used to fill in the template as illustrated

in Figure 6.1 and subsequently replace the corresponding strings in the compressed

message. The byte "00100000" is the white-space character defined in the standard

ASCII scheme. It is not RaPC-L1 compressed but used as a delimiter to split strings.

The asterisk symbols are only used to indicate byte boundaries for clear presentation

in this example. In addition, Unicode characters often use the extended ASCII codes

which have the MSB set to one. In order to avoid conflict, Unicode characters are en-

closed with a pair of special characters (0x11 and 0x12). 0x11 and 0x12 correspond to

the standard ASCII code Device Control 1 and Device Control 2 characters, respectively.

They are never used in text data, therefore it is safe to use them as special characters

for RaPC-L1 compression.

Currently, we do not compress complex Unicode texts such as Chinese or Korean texts,

because these languages do not use explicit delimiter(s) to separate words in a sen-

tence. In order to compress complex Unicode texts, a language specific grammar-based

parser or dictionary must be employed. This will make the compression content-specific

and slower.

Referring to the code template (Figure 6.1), the RaPC-L1 encoding scheme offers a code

space of size 221. Before the actual compression process starts, a lightweight sampling

process is carried out to gather statistics on the most frequently used words. The top

27 words will then be selected. Each selected word will have an integer value assigned

to it. This guarantees that these most frequently used words from a given text have the

shortest code of one byte. Increasing the number of selected words and/or the sample

size will improve the compression ratio, but the compression speed will be slower due

to the fact that the process of sorting words by frequency requires O(n · log(n)) time,

where n is the number of words observed from the samples to be sorted, the higher

sampling rate will increase n.

During the compression, compressible strings and their corresponding codes are tem-

porarily stored in a HashMap data structure. Thus, searching for existing strings has

Θ(1) complexity on average. The compressible strings will be replaced by their corre-

sponding code-byte(s) and non-compressible strings will be sent to the output intact.

This gives the RaPC-L1 compression sub-linear complexity in time.

RaPC-L1 generates two output files: one is the compressed file(s), the other is the com-
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pression model. The separation of the compressed data and the model is driven by the

MapReduce framework. In a MapReduce program, Map processes are independent of

each other (the same rules apply to Reduce processes). For many cases in textual data

analysis, the textual contents often need to be converted into other data types (e.g.,

text to integer values, yes/no to boolean values and strings to dates). This requires

transforming the compressed data into its original format, then converting to other

data types. Because each Mapper loads and processes its assigned data blocks inde-

pendently, this requires the model file to be available to all Mappers and/or Reducers

when it is needed. Technically, the HDFS Distributed Cache is the best place to store

the compression model file as explained in Chapter 3. The compression model file is

a list of compressible strings collected during compression. The index of each string

in the list is determined by its corresponding code converted to an integer value. The

RaPC-L1 decompression process reads the compression codes and converts them into

integer values, then, based on the values, we can quickly identify their corresponding

original strings. Also, consider that data is partially compressed by RaPC-L1, there-

fore the RaPC-L1 decompression exhibits sub-linear complexity in time. Another point

worth noting is that the model file can be reused for compressing future data. If data

files are generated from the same source, they often share a common vocabulary, as,

for example, data generated by machines.

Recall that the RaPC-L1 scheme compresses data partially. Functional characters such

as white-space, comma and new-line are left untouched. This unique feature allows a

program to manipulate the compressed data freely, for example, splitting fields by a

comma, removing words and adding new contents, etc. Furthermore, it guarantees

the manipulated contents are still decodable. However, it should be noted that using

the RaPC-L1 compressed data on Hadoop poses a concern. Hadoop currently only

supports ISO-8859-1 and UTF-8 encoding for text. Because of the use of the extended

ASCII codes in RaPC-L1 compression, the RaPC-L1 compressed contents are no longer

in a traditional text format. In another words, the data cannot be simply converted

to strings (e.g., UTF-8 encoded format). This is because of the irregular use of the

extended ASCII characters (MSB set to 1). Thus, the RaPC-L1 compressed data must

be treated as byte sequences and processed as byte sequences.

6.1.2 RaPC Layer-2 Compression Scheme

The RaPC Layer-2 (RaPC-L2) compression can be used with the original text or used

to compress the RaPC-L1 compressed data. The purpose of RaPC-L2 is to maximally

reduce data size and package logical records into fixed-length blocks which then makes

the compressed data splittable to the HDFS. It is based on a modified Deflate algorithm.

The conventional Deflate algorithm is block-based [Deu96]. The actual Deflate com-

pression employs a dictionary method (LZ77 [ZL77]) and a statistical method (Huff-
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Figure 6.2: An illustration of the default compression work-flow of Deflate algorithm
(specification 1.3).

man Coding [Huf52]). The basic algorithm works as follows. It takes a stream of input

and moves the data through a Sliding Window buffer (32KB by default) as shown in

Figure 6.2 (Label 1). It starts by checking if there is any string with length up to 258

bytes in the Sliding Window matching the string starting from the current position (the

position in the Sliding Window as indicated by Label 2 in Figure 6.2) backwards up to

a length of 258 bytes maximum. The longest match wins. The matched string will be

replaced by a literal l and a pair of values, as illustrated in Figure 6.2 (Label 3, 4, and

5). The literal (Figure 6.2 <Label 3>) is the immediate succeeding character of the

matched string. The first value of the pair is the length of the matched string m (Fig-

ure 6.2 <Label 4>). The second value is the distance d (Figure 6.2 <Label 5>) from

the current position to the matched string. Then, the Deflater advances m characters in

the input stream. If there is no match, the algorithm moves one character forward. This

process iterates until the current input buffer is exhausted or the algorithm decides to

start a new block of input when the current Huffman trees become inefficient.

The output from LZ77 is a set of literals and pairs of values "l <m, d>". The Deflate
algorithm splits them into two columns. The literal and value m are encoded by a

Huffman tree (Figure 6.2 <Label 6>), the distance d is encoded by a separate Huffman

tree (Figure 6.2 <Label 7>). Both encoding results are merged and prepended with the

two Huffman trees (both of the Huffman trees will be further encoded by the Huffman
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Figure 6.3: An illustration of RaPC Layer-2 block-packaging.

algorithm) for the final outputs as shown in Figure 6.2 (Output Blocks). Each output

block corresponds to an input block. In principle, if each output block is self-contained

and the boundaries of each block can be recorded, the default Deflate output data could

be splittable to the HDFS. But, the Deflate algorithm tends to use the contents of the

previous input buffer for the Sliding Window of its immediate succeeding input block

in order to improve the compression ratio. These linkages between the input blocks

create dependencies between the output blocks and cause the decompression process

to be sequential as shown in Figure 6.3 (upper). If we simply remove these linkages,

the overall compression ratio will degrade significantly.

In the RaCP-L2 scheme, we design a higher level buffer with a much larger and fixed

size. We refer to this buffer as L2-Block and a Deflate output data block as DO-Block

to avoid confusion. The L2-Block is used to accommodate a variable number of DO-

Blocks. We force a break in the linkage between the last DO-Block in the current

L2-Block and the first DO-Block in the succeeding L2-Block as illustrated in Figure 6.3

(lower). Thus, the compressed data in each L2-Block is completely self-contained (each

L2-Block can be decompressed independently) which makes the RaPC-L2 splittable to

the HDFS. The size of the L2-Block strikes a balance between the MapReduce analysis

performance and the compression ratio. This will be further discussed in Section 6.3.

Moreover, recall that in the MapReduce framework, the Record Reader component sup-

plies one logical record to a Mapper at a time. If we blindly compress data per block, it

is very likely that the beginning and/or end of each Deflate input block (DI-Block) will
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contain incomplete record(s). An example is given in Figure 6.5 (upper). This makes

the Record Reader complicated and inefficient at runtime in either of the two possible

scenarios.
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Figure 6.4: RaPC Layer-2 data organization using hierarchical structures.

• The first scenario (Intra-L2-Blocks) is about determining record completeness be-

tween two adjacent DO-Blocks in an L2-Block (Figure 6.4). In Hadoop, each

HDFS-Block is processed by a dedicated Map process. The Record Reader that

serves the Map process will firstly decompress one L2-Block (containing a num-

ber of Compressed Data <CD> blocks) at a time. Before fetching the decom-

pressed data to the Map process, the Record Reader needs to determine whether

the data contains partial records at both the beginning and end of the data. In

fact, without decompressing the immediate succeeding L2-Block, we cannot be

sure whether the last record is partial or complete. Therefore, we must remove

and temporarily store the last record from the current decompressed data and

wait until the next L2-Block is due for processing.

• The second scenario (Inter-L2-Blocks) is about determining record completeness

between L2-Blocks (Figure 6.4). Recall that Hadoop HDFS organizes big files by

splitting them into a series of fixed-size blocks (HDFS-Blocks in the context of

this thesis). A series of HDFS-Blocks are distributed across the Hadoop cluster

Data Nodes. There is no guarantee that logically adjacent HDFS-Blocks will be

stored consecutively and/or on the same physical hard disk. Both the L2-Blocks

(referring to Figure 6.4 CD4 and CD5) belong to separate HDFS-Blocks and are

possibly on different physical Data Nodes. The L2-Block (containing CD5) needs

to be streamed to the current Map node (which is processing the L2-Block con-

taining CD4) and decompressed. Then, record completeness must be checked as

explained in Chapter 5. Both scenarios are time consuming and error-prone.

To remove this complication and improve the MapReduce work-flow efficiency, we en-

sure record completeness at the boundaries of each L2-Block during the data compres-

sion phase, hence making it record-aware. What constitutes a record is often dataset
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Figure 6.5: RaPC Layer-2 record-aware compression scheme.

specific. To determine records, record delimiters must be given at the beginning of the

data compression. At the last DI-Block (corresponding to the last DO-Block) of each

L2-Block, we check for record completeness. Any partial record will be postponed to

the next DI-Block which will eventually be packed into the next L2-Block. This process

only occurs between DO-Blocks. An example is shown in Figure 6.5. Complex delim-

iters can be expressed in Regular Expressions. The compression scheme guarantees that

each L2-Block contains a set of complete logical records.

0 0 0 0 0 0 0 0

A Full Block (Fixed Size)

1

Giant Record Indicator

Trailing Byte Indicator

Block of Compressed Records

0 0 0 0 0 1 0 0

Trailing Bytes

Figure 6.6: RaPC Layer-2 block-packaging scheme.

As we have noted, DO-Blocks have variable length and L2-Blocks have fixed size. When

packaging a number of consecutive DO-blocks in a L2-Block, there is no guarantee that

the L2-Block will be filled up exactly. We need to define a packaging format to tell

RaPC how much of the payload is contained in the L2-Block. The detailed layout of

the packaging format is illustrated in Figure 6.6. The gaps at the end of each L2-Block
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Figure 6.7: RaPC Layer-2 block size verses compression ratios

are filled by trailing bytes. The last two bytes of the L2-Block are reserved and used

to indicate how many trailing bytes are used. In addition, the MSB of the second last

byte is used to indicate whether there is a giant record that spans multiple L2-Blocks.

This is designed for an occasion when a dataset contains very long records. Overall, the

trailing byte indicator can only allow 215 = 32KB of trailing bytes to be inserted. In the

case where there are only a small number of DO-Blocks left for packaging at the end

of the compression, the number of trailing bytes needed may exceed this limit. For this

reason, an exception is made so that the size of the last L2-Block is the total length of

the last several DO-Blocks exactly. That is, no trailing bytes are inserted into the very

last L2-Block.

Note that an increase in L2-Block size will slightly improve the compression ratio. Fig-

ure 6.7 shows the results from compressing dataset DS-WikiEN (the original dataset is

47GB, referring to Appendix A <Table A.2>) with various L2-Block sizes. In this ex-

periment, we start with a L2-Block size of 256KB and gradually increase the block size

to 30MB. In Figure 6.7, we observe a rapid drop in compressed data size (increased

compression ratio) from 256KB to 2MB; and very slight drop in compressed data size

when the L2-Block size is beyond 2MB. This is due to two reasons.

• Firstly, we break the Inter-DO-Block linkages to make the compressed data split-

table. This implies that the current DI-Block cannot use the information from

its immediate predecessor for the contents of the current Sliding Window. The

disconnection leads to the compression for the current DI-Block to accumulate its

own new context. At the beginning of this context accumulation phase, much less

information can be compressed. This results in a lower compression ratio.
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In addition, the Sliding Window is 32KB by default so that in the worst case

scenario, if no information can be compressed during the context accumulation

phase, there will be 32KB of incompressible data at the beginning of every L2-

Block. When the L2-Block size is small, the 32KB incompressible data will occupy

a relatively large proportion of the total ( 32KB
L2−Block size) and thus has a bigger

influence on the compression ratio. This is the main cause of the rapid drop

in the compressed data size (increase in compression ratio) as the L2-Block size

increases.

• Secondly, during the L2-Block packaging processes, trailing bytes and indicator

bytes must be appended to the last DO-Block to fulfil the requirements for a

record-aware L2-Block. By increasing the L2-Block size, we have statistically re-

duced the number of trailing bytes and indicator bytes needed, thus improving

compression ratio.

This case study gives us a general idea how the L2-Block size affects the compression

ratio. The results in Figure 6.7 may vary slightly depending on the contents of a given

dataset. Choosing a bigger L2-Block size can improve compression ratio, but it has side-

effects on MapReduce program performance. This will be studied further in Section 6.3.

6.2 RaPC on Hadoop

In order to use RaPC compressed data on Hadoop with maximum transparency for

MapReduce programs and developers, we provide a set of utility functions including:

a customized RaPC Record Reader for decoding the RaPC-L2 compressed data; a RaPC
TextWritable data type which implements equivalent operations found in the Hadoop

Text data type for handling the RaPC-L1 compressed data; and a SequenceFileAsBinary-
OutputFormat Record Writer for writing RaPC-L1 compressed data and general binary

data to the HDFS.

The RaPC work-flow is as follows. The RaPC compressed files must be stored in the

HDFS. If it is needed, the RaPC-L1 compression model file(s) must be loaded to the

HDFS Distributed Cache. A MapReduce program must set the provided record reader

(RaPCInputFormat) as the default input format class. This ensures that the RaPC Layer-

2 compressed data can be correctly read and decoded. The input value type for Mappers

must be set to RaPCTextWritable or the regular Text type. If the data is compressed

by RaPC-L2(L1) (RaPC-L1 embedded in RaPC-L2), then the records received by the

Mapper are in fact a block of binary data in the RaPC Layer-1 compressed format, then

the RaPCTextWritable data type must be used. If the data is compressed by RaPC Layer-

2 only, the decoded data is the original text, then the regular Text data type (in the

context of the MapReduce framework) can be used.
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For many data analysis jobs, parsing data records is necessary. For the original text, ma-

nipulating data is simple as the data contents are readable by developers. In RaPC, we

provide a transformation function T( ) that converts between original text and RaPC-L1

compressed data. For example, if we write a regular Java clause for searching a phrase

"value.contains("big data");", then in RaPC, it is simply "value.contains(RaPC.T("big
data"));". In this example, the variable "value" in the regular program can be a String

data type. In RaPC, the variable "value" needs to be declared as a RaPCTextWritable data

type. The "contains( )" function in RaPC is an implementation of the "contains( )" func-

tion found in the regular Java String class for the RaPCTextWritable data type. Indeed,

the transformation requires the RaPC-L1 compression model file(s) to be loaded to the

Map and/or Reduce during initialization. This may incur a small delay due to loading

the model file(s) from HDFS Distributed Cache to the local computational nodes. For

some type of jobs, for example, the N-Grams analysis, there is no need for model file(s),

thus those MapReduce programs can take full advantage of using RaPC.

Another point worth mentioning is that the final MapReduce output data can be in

the original text format or RaPC-L1 compressed format. In the former case, the RaPC-

L1 decompression needs to be carried out at each Reducer before writing any results

to HDFS. The second case needs more attention. By default, writing binary records

to HDFS requires the SequenceFileAsBinaryOutputFormat provided by the MapReduce

framework. This default Record Writer writes some auxiliary information about each

binary record including record key/value length. It also periodically inserts synchro-

nization points (0xFF) to the final output data. The record key/value length are di-

rectly converted from their numerical values to the byte sequences; this makes the final

output data specific to Hadoop. Furthermore, the synchronization point is a charac-

ter drawn from the extended ASCII codes which is very likely to clash with RaPC-L1

codes and confuse the RaPC-L1 decompression process. An additional requirement for

writing the output data in RaPC-L1 compressed format to HDFS is therefore to use our

customized RaPCSequenceFileAsBinaryOutputFormat which has those synchronization

points removed and has well formatted key/value length.

Sample programs are given in Appendix C to demonstrate how the RaPC-L2 and RaPC-

L2(L1)-enabled MapReduce programs differ from the same MapReduce programs with

original text input as indicated by the highlighted code segments. In a RaPC-L2-enabled

MapReduce program, configuring file input format is the only major difference; for an

RaPC-L2(L1)-enabled program, we need to load the model file, configure the file input

format, output format and corresponding data types.
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6.3 Evaluation

We evaluate the effectiveness of RaPC using an on-site Hadoop cluster. The cluster’s

hardware specification and topology diagram are included in Appendix A (Table A.1

and Figure A.1). Specifically, the cluster is configured with Hadoop version 2.6.0 and

Linux kernel 2.6.32. The HDFS is configured with single replication and 64MB block

size. The MapReduce jobs used in the evaluation are summarized in Table 6.1. We

use several real-world datasets listed in Appendix A (Table A.2) for the evaluation.

The evaluations of the RaPC compressor and RaPC with MapReduce include measur-

ing analysis performance, cluster storage requirements, memory constraints and com-

pression performance. In the experiments, the number of Mappers and Reducers are

optimized for each job. RaPC-L2 block-size was set to 1MB across all the experiments.

We compare our approaches with the state-of-the-art Hadoop-LZO (also know as LZO-

splittable, Twitter implementation), version 0.4.20.

6.3.1 Performance

Table 6.1 contains our main evaluation results. We use ten different MapReduce jobs to

evaluate the effectiveness of the RaPC on Hadoop with a range of real-world datasets

having different properties. We run each job three times with original, RaPC-L2 and

RaPC-L2(L1) compressed data. We record the input data size, intermediate output data

(Map output data) size, final output data (Reduce output data) size, memory allocation

and analysis duration for each job with the three different input data types.

The Site Rank job is selected to demonstrate the full advantage of using RaPC with

MapReduce. In this job, we calculate the rank for each website in the given dataset

based on a ranking algorithm defined for an undirected graph. According to [Gro15],

given an undirected graph G(V, E), calculating the rank for vertex vi in G is equivalent

to calculating the degree distribution of vi defined by d(vi)
2|E| , where d(vi) is the degree

of vertex vi in G. Thus, the site rank job is to obtain a vector as given by Formula 6.1,

where the edges E are the connections between websites V.

SiteRank(G) = 1
2|E|


d(v0)
d(v1)

...

d(vn)

 (6.1)

In fact, the calculation part of the Site Rank job is relatively lightweight. The heavy

part is parsing the dataset and finding out all of the connections between websites.

The first iteration of the MapReduce job involves parsing the Uniform Resource Locator

(URL) for each website, then finding and formatting edges E. A sample record from the
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Table 6.1: A summary of MapReduce jobs used for evaluating the RaPC compression scheme.

Job Dataset
Input

Type
Input Intermediate Output

Memory

Allocation
Duration

Performance

Gain

Size Reduction

(Input)

Site Rank DS-Memes

O : 52.5 GB 2.1 GB 20.7 MB 7.5 GB 16m32s

H-LZO : 21.0 GB 2.0 GB 20.7 MB 4.1 GB 8m56s 46.0% 60.0%

L2 : 13.5 GB 2.0 GB 20.7 MB 3.1 GB 6m39s 59.8% 74.3%

L2(L1) : 10.9 GB 1.3 GB 13.8 MB 2.2 GB 4m38s 72.0% 79.2%

5-Gram DS-WikiEN

O : 47.0 GB – 150.9 GB 12.7 GB 25m19s

H-LZO : 20.5 GB – 150.9 GB 10.0 GB 19m19s 23.7% 65.1%

L2 : 13.4 GB – 150.9 GB 8.8 GB 16m52s 33.4% 71.5%

L2(L1) : 10.9 GB – 87.6 GB 7.1 GB 16m18s 35.6% 76.8%

Word Count DS-StackEX

O : 40.6 GB 30.6 GB 9.0 GB 24.1 GB 74m39s

H-LZO : 17.3 GB 19.5 GB 9.0 GB 15.8 GB 30m35s 59.0% 57.4%

L2 : 11.5 GB 19.1 GB 9.0 GB 14.7 GB 28m33s 61.8% 71.7%

L2(L1) : 9.6 GB 16.4 GB 6.3 GB 13.7 GB 26m22s 64.7% 76.4%

Publication

Indexing
DS-PubMed

O : 3.1 GB 2.3 GB 482.8 MB 873.2 MB 2m01s

H-LZO : 2.1 GB 2.2 GB 482.8 MB 777.4 MB 1m47s 11.6% 32.3%

L2 : 1.3 GB 2.2 GB 482.8 MB 736.4 MB 1m38s 19.0% 58.1%

L2(L1) : 1.0 GB 1.0 GB 198.6 MB 368.2 MB 1m09s 21.3% 67.7%

continued . . .
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. . . continued

Job Dataset
Input

Type
Input Intermediate Output

Memory

Allocation
Duration

Performance

Gain

Size Reduction

(Input)

Music Rank DS-Yahoo

O : 10.2 GB 235.6 MB 3.2 MB 3.4 GB 6m48s

H-LZO : 4.2 GB 294.6 MB 3.2 MB 2.9 GB 5m39s 16.9% 58.8%

L2 : 2.4 GB 166.1 MB 3.2 MB 2.3 GB 4m35s 32.6% 76.5%

L2(L1) : 2.2 GB 156.6 MB 2.8 MB 2.4 GB 4m37s 32.1% 78.4%

L2(L1-C) : 2.2 GB 156.6 MB 3.2 MB 2.5 GB 4m45s 30.1% 78.4%

Customer

Satisfaction
DS-Amazon

O : 33.4 GB 223.1 MB 496.2 MB 4.8 GB 10m16s

H-LZO : 17.1 GB 194.2 MB 496.2 MB 3.2 GB 6m50s 33.4% 48.8%

L2 : 11.1 GB 183.3 MB 496.2 MB 2.0 GB 4m24s 57.2% 66.8%

L2(L1) : 8.3 GB 154.8 MB 350.7 MB 3.5 GB 6m48s 33.8% 75.1%

L2(L1-C) : 8.3 GB 154.8 MB 496.2 MB 3.5 GB 6m54s 32.8% 75.1%

Data

Preprocessing
DS-Memes

O : 52.5 GB 15.1 GB 29.5 GB 7.9 GB 17m56s

H-LZO : 21.0 GB 15.0 GB 29.5 GB 4.8 GB 11m33s 35.6% 60.0%

L2 : 13.5 GB 15.0 GB 29.5 GB 3.7 GB 8m46s 51.1% 74.3%

L2(L1) : 10.9 GB 11.0 GB 16.3 GB 2.3 GB 5m57s 66.8% 79.2%

continued . . .
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. . . continued

Job Dataset
Input

Type
Input Intermediate Output

Memory

Allocation
Duration

Performance

Gain

Size Reduction

(Input)

Format

Conversion
DS-Twitter

O : 17.3 GB – 30.4 GB 3.2 GB 6m34s

H-LZO : 10.0 GB – 30.4 GB 2.5 GB 5m01s 23.6% 42.2%

L2 : 6.5 GB – 30.4 GB 2.0 GB 3m58s 39.6% 62.4%

L2(L1) : 6.1 GB – 28.1 GB 1.6 GB 3m18s 49.7% 64.7%

Event

Identification
DS-Google

O : 158.9 GB 282.1 MB 32.7 KB 18.1 GB 39m52s

H-LZO : 60.9 GB 108.7 MB 32.7 KB 9.5 GB 19m55s 50.0% 61.7%

L2 : 36.0 GB 64.8 MB 32.7 KB 6.4 GB 13m12s 66.9% 77.3%

L2(L1) : 31.1 GB 56.6 MB 20.9 KB 8.4 GB 16m41s 58.2% 80.4%

L2(L1-C) : 31.1 GB 56.6 MB 32.7 KB 8.4 GB 16m49s 57.8% 80.4%

Server Log

Analysis
DS-Google

O : 158.9 GB 1.0 GB 371.1 KB 26.3 GB 54m57s

H-LZO : 60.9 GB 414.1 MB 371.1 KB 14.6 GB 29m08s 47.0% 61.7%

L2 : 36.0 GB 246.8 MB 371.1 KB 11.4 GB 22m26s 59.2% 77.3%

L2(L1) : 31.1 GB 196.2 MB 273.5 KB 12.1 GB 23m16s 57.7% 80.4%

L2(L1-C) : 31.1 GB 196.3 MB 371.1 KB 12.5 GB 24m04s 56.2% 80.4%

O: Original dataset; H-LZO: Hadoop-LZO; L1: RaPC Layer-1 compression; L2: RaPC Layer-2 compression. The final output is in original

format; L2(L1): RaPC Layer-1 embedded in RaPC Layer-2 compression. The final output is in RaPC Layer-1 compressed format; L2(L1-C):

RaPC Layer-1 embedded in RaPC Layer-2 compression. The final output is in original format. 1GB = 1,073,741,824 Bytes
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dataset is shown in List 6.1. For this particular dataset, each record is separated by an

empty line. Lines starting with "P" indicate the source Web link. The lines starting with

"L" indicate the Web links that are referenced by the source Web link. Lines starting

with "T" and "Q" need to be ignored in this job. The head and tail of each Web link

(highlighted in shaded grey in List 6.1) need to be trimmed off. The key/value pairs in

the Map output data for this sample record is given in Table 6.2. Then, we will receive

d(vi) at the Reduce phase. In the second iteration, the duplicate links generated from

the previous iteration need to be removed for the purpose of calculating |E|. Then

finally the SiteRank(G) can be obtained.

Listing 6.1: A sample record from the Memetracker memes dataset [LBK09]� �
1 P http:// dotshout . com /news/view.php?post_id=216331

2 T 2008−08−01 00:00:29

3 Q the impact of the economic downturn i s r e a l l y twofold

4 Q we encourage everybody to get onto the same page

5 L http:// gizmodo . com /tag/early-termination-fees

6 L http:// gizmodo . com /tag/etf-fees

7 L http:// mercurynews . com /ci_10039461?source=most_viewed

8 L http:// tech . yahoo . com /blogs/null/99655� �
Table 6.2: Examples of the intermediate outputs (results for the Map processes) from
parsing the Memetracker memes dataset.

Record Index Key Value

1 dotshout.com gizmodo.com

2 dotshout.com gizmodo.com

3 dotshout.com mercurynews.com

4 dotshout.com tech.yahoo.com

5 gizmodo.com dotshout.com

6 mercurynews.com dotshout.com

7 tech.yahoo.com dotshout.com

Using the RaPC-L2 compressed data for the Site Rank job, we accelerated the calcu-

lation speed by 59.8% compared to the same job with the original text data. The

performance gains come from two sources. Firstly, the RaPC-L2 compressed data is

approximately four times smaller than the original data (RaPC-L2 reduces the original

data size by 74.3%). Loading the RaPC-L2 compressed data from hard disks to mem-

ory requires much less time. Secondly, due to the MapReduce Local Combiner effects,

the intermediate data is smaller. This reduces the time required to transmit data from

Mappers to the Reducers over the network.
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In addition to using RaPC-L2 compressed data, using RaPC-L2(L1) compressed data

can further improve the analysis performance. When parsing the URLs, we need to

split each URL using the forward slash character "/". The splitting result gives an array

of sub-strings drawn from the Web link. We are interested in the website link part only.

The access protocol and the page identifier parts must be omitted. The string splitting

process is about searching for the delimiter "/" and taking the sub-string from the link

iteratively. By default, the Java implementation of the string split function invokes the

indexOf( ) function to locate patterns which takes O(m(n − m)) time, where m and

n are the pattern length and source string length, respectively. In this case, m = 1,

therefore each search on pattern "/" takes O(n − 1) time. Recall that the RaPC-L1

compression does not compress functional contents. We can search for the forward

slash character from the RaPC-L1 compressed data directly without using the model

files. The compression ratio for this particular dataset can be found in Figure 6.13. It

is approximately 49%. This implies searching the same pattern from the new source

O(n′ − 1) is approximately twice as fast as O(n− 1), where n′ = 0.49n.

In the second job, we use a N-gram task for evaluating the RaPC under intensive disk

I/O operations. N-gram analysis is a common technique for speech recognition. We

use 5-Gram to produce sufficient in-memory data to increase the frequency of memory

to disk I/O operations. The job consists of Map tasks only. There are no Partitioning,

Shuffling and Reducing phases, thus the network I/O is kept to a minimum. Compar-

ing the results for the original and RaPC-L2 compressed data, RaPC-L2 improves the

processing speed by 33.4%. Because both analyses generate the same output data size,

therefore the main performance gain is from distributing MapReduce data splits to

Mappers. Using RaPC-L2(L1) compressed data can further improve the analysis speed

by ∼2.2% because of the smaller final output data in RaPC-L1 compressed format.

Besides the efficiency, there is a useful side-effect when using RaPC-L2(L1) compressed

data. Recall that the 5-Gram job reads, manipulates and writes data in the RaPC-L1

compressed format. During the lifetime of the job, the RaPC-L1 model files are not

required. As the RaPC-L1 compression encrypts (encodes) the informational contents,

using the RaPC-L2(L1) compressed data can provide a certain level of protection on

data privacy in a shared cluster or in a public cloud environment.

The Word Count job is used as a standard benchmark for results comparison. Also,

the Word Count job generates comparatively larger intermediate and final output data.

Using RaPC-L2 or RaPC-L2(L1) compressed data, we can reduce the size of the inter-

mediate output data by 33.5% and 43.5%, respectively. Thus, the transport cost of

distributing the Map output data to corresponding Reducers over the network (MapRe-

duce Shuffling phase) can be reduced significantly. It also reduces the cost of material-

izing in-memory data to local persistent storage (local hard disks). The reduction of the

size of the intermediate output data is due to the MapReduce Local Combiner effects.
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Recall the work-flows in the Map phase and note that the following parameters and

figures are the default values in Hadoop version 2.5.0 or above. When processing a

data split, the Map output data is temporarily stored in an in-memory buffer (100MB).

When the buffer fills to a certain threshold (80%), a background process starts mate-

rializing the in-memory data to the local persistent storage. During this spilling phase,

the buffered data is firstly partitioned according to the number of Reducers configured

for this particular job. Within each partition, records are sorted by keys. The sorting

results are then fetched to the Local Combiner process to combine the records with du-

plicate keys. The output data from the Local Combiner is called a "spill" and it is then

written to local hard disks. Generally, the data processed by a Local Combiner is much

smaller depending on the number of records with duplicate keys found. Thus, we can

reduce the time used to write spill data to disks.

For each individual Mapper, if the generated intermediate data is larger than the in-

memory buffer size, each Mapper will produce a series of spills. Upon the completion

of processing a data split, all partitions from the group of spills that belong to the same

Mapper will be merged based on their partition number and then sorted by record keys.
The sorting results are again fetched to the Local Combiner to further examine records

with duplicate keys. This is the place where the RaPC can reduce the intermediate data

size. The reasons are as follows. In any given cluster environment, the HDFS-Block

size is fixed. Assume processing each data split will generate m records on average.

With the original text data, the Local Combiner process is about finding records with

duplicate keys in m. With RaPC compressed data, each Mapper will receive a block

of data with the same size, but in compressed format. Given the compression ratio ϕ,

defined as ϕ = So−Sc
So

(Section 1.5), each Mapper will actually receive Sc
1−ϕ sized data.

If m increases proportionately with the data split size m ∝ So, then the Local Combiner
will search records from the RaPC compressed data with duplicate keys in Sc

(1−ϕ)So
m.

For example, in this particular job, using the original text data, each Mapper will receive

64MB (equal to the HDFS-Block size) data split on average and produce m records. For

the RaPC-L2 compressed data with a compression ratio of 71.7%, each Mapper will

receive 64MB
(1−0.717) ≈ 226MB data (after RaPC-L2 decompression) and produce ∼3.5m

number of records. When m increases, we will have a statistically greater chance of

finding more records with duplicate keys and/or more duplicate keys for a record, thus

further reducing the size of the intermediate outputs. In general the bigger the size of

L2-Block, the more the effects of Local Combiner with RaPC are further enhanced.

In the Publication Indexing job, we calculate the descriptive statistics for each publica-

tion based on the importance of the author(s) which is further defined by the number of

publications from the author. Thereafter, the index of the publication can be sorted by

designated statistics. We use the PubMed database [LAB+09] for this job. The dataset

contains ∼22 million publications and ∼11 million authors. Referring to Table 6.1,

RaPC-L2 compresses the data by 58.1% which is the lowest ratio among the ten jobs.
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Considering the similar intermediate and final output data size, this low compression

ratio leads directly to the low performance gains of 19%. Further improvement of 2.3%

is given by using the RaPC-L2(L1) compressed data which is the combined contribution

from the smaller intermediate/final data size and faster string manipulation speeds.

Table 6.3: Comparison of the number of Map input records with respect to the original,
RaPC-L2 compressed, and RaPC-L2(L1) compressed data.

Number of Map Input Records

Job Original RaPC-L2 RaPC-L2(L1)

Site Rank 919061195 13810 11160

5-Gram 805750261 13823 11027

Word Count 6126845962 11745 9881

Publication Indexing 21788173 1370 1020

Music Rank 699640226 2435 2268

Customer Satisfaction 381554470 11397 8490

Data Preprocessing 919061195 13810 11160

Format Conversion 468854886 6622 6232

Event Identification 1232799308 36915 31840

Server Log Analysis 1232799308 36915 31840

In the Music Rank job, we use the Yahoo! Music Rating dataset [Yah06] which contains

a large number of very small records (approximately 16 characters per record on aver-

age). The dataset contains ∼700 million ratings on ∼136 thousand songs provided by

Yahoo! Music services. The task is to calculate the mean scores and standard deviation

for each song. For this task, the MapReduce Record Readers are heavily loaded supply-

ing records to the corresponding Mappers. The default Record Reader provided by the

MapReduce framework treats a line as a record. The records processed by a Mapper

will have on average 16 characters. This makes the default Record Reader inefficient

and wastes a lot of cluster resources such as Java Heap Space (memory) assigned to

the Mapper. With compressed contents, our RaPCRecordReader is in fact supplying a set

of records to a Mapper at a time. Table 6.3 shows the number of records received by

Mappers for each job with different input data types. It works by reading a fixed-size

block of data (L2-Block, the size of L2-Block is adjustable). The block of data will be

decompressed in-memory and then forwarded to a Mapper. Because the L2-Block size

is fixed and more importantly, each L2-Block contains a set of complete records, there

is no need to track record length and worry about partial records at the boundaries

of L2-Blocks and HDFS-Blocks. This makes the RaPCRecordReader more efficient and

lightweight than the default MapReduce Record Reader. Additional to the RaPC-L2(L1)

compressed data, in order to calculate music scores, we must convert the text contents

to real numerical values. This conversion requires loading the RaPC-L1 compression
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model files to each Mapper. The loading process and the text to numerical value con-

version take extra time and occupy more memory. This leads to the job with the RaPC-

L2(L1) compressed data being slightly slower than the job with RaPC-L2 compressed

data.

The Customer Satisfaction job is a special case. When processing RaPC-L2 compressed

data, the job results in a relatively high performance gain of 57.2%. Two sources

contribute most to this result. The first source is the lower data transmission cost

due to the smaller data size. The second source is the Group Record Effect. Records

in this particular dataset are split by empty line(s). Each record consists of multiple

fields delimited by a new line character. Records contain a variable number of fields.

By default, the MapReduce framework treats the new line character as the delimiter.

The default Record Reader supplies a line of text to a Mapper at a time. This requires

Mappers to wait for the Record Reader until a full logical record is received. The waiting

time is the main cause of the delay. With RaPC compressed data, a group of complete

records are given to one Mapper at a time, therefore it saves on waiting time. Indeed,

writing a customized Record Reader using a traditional approach for this particular

dataset can improve the analysis performance on the original dataset. But, it will incur

extra programming and will still suffer from the big data size.

The Data Preprocessing job is used to evaluate the effectiveness of RaPC-L2(L1) when

dealing with highly skewed giant records. In this job, we create records that have a

source website link as the key and all web pages that refer to the source website as

the value. The preprocessed data thereafter can be used for other calculations, for

example, web site popularity and centrality analysis. We use the Memetracker memes
dataset [LBK09] in this experiment. The dataset contains∼418 million web page URLs.

Some extremely popular websites are referenced by many web pages. Formatting and

appending the referring web page links to a source website can result in a giant record.

If the size of the giant record is larger than the size of the Java Heap Space that is

currently available to the Mapper, it will cause very frequent in-memory data to disk

swapping processes. This event was captured and shown in the shaded area in Fig-

ure 6.8 during the task executions. The disk I/O bursts occurred in both the tasks with

original text and RaPC-L2 compressed text. We have observed that the bursty levels are

similar in the two tasks shown in Figure 6.8 (upper) and (middle). This is because both

tasks process the text in its original format. The Map output data must be identical

for both jobs regarding the data contents and length. This irregular event also causes

extra delay to the job completion time. Note that these big peaks occurred during the

Reducing phase while writing the final output data to the HDFS (Figure 6.8).

In contrast, when processing RaPC-L2(L1) compressed data, it is hard to identify any

obvious disk I/O bursts in Figure 6.8 (lower). Referring to Figure 6.13, the RaPC-L1

compression ratio for this particular dataset is ∼49%. The length of the records in
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Figure 6.8: The Data Preprocessing job generates highly skewed records causing a disk
I/O burst due to swapping.

RaPC-L1 compressed format is approximately half the length of those produced by the

same tasks with either original or RaPC-L2 compressed text.

Additionally, in the previous version of Hadoop, when the record size is larger than

the size of the Java Heap Space available to the Mapper, the MapReduce frame-

work will throw Java Heap Space Errors. To solve this, the corresponding parameter

"mapred.reduce.child.java.opts" needs to be re-adjusted to a bigger value and then the
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entire cluster needs to be restarted to pick up the changes.

The Format Conversion job is similar to the previous task. In this job, we convert the

Twitter tweets from Tab Separated Values (TSV) format to the JavaScript Object Nota-

tion (JSON) format. The basic process is to split each tweet by the functional character

"Tab". The separation produces a group of strings which will be treated as attribute

values in a JSON object. Values will be prepended with corresponding attribute names

and enclosed with a pair of curly brackets to form a legitimate JSON object. Again,

this task does not require the RaPC-L1 compression model file(s). The main purpose of

this job is to zoom in on the differences between the MapReduce tasks with RaPC-L2

and RaPC-L2(L1) compressed data. Referring to Table 6.1, using RaPC-L2(L1) com-

pressed data further improves the processing speed by 11.1% comparing to RaPC-L2.

Notice that both jobs have a similar input and output data size, thus the time saved on

reading and writing data contributes a small portion to the overall improvement. The

majority of the contributions are from manipulating RaPC-L1 compressed data. Based

on the previous analysis, the improvement can be roughly estimated using the RaPC-

L1 compression ratio. For this particular job, the job with RaPC-L2 and RaPC-L2(L1)

data took 288 and 235 seconds, respectively. If we assume that the major part of the

data processing is the pattern searching, using the RaPC-L2(L1) compressed data can

approximately reduce the searching time by ϕL1. Referring to Figure 6.13, the ϕL1 for

dataset DS-Twitter is ∼19%. Thus, the performance gain from using the RaPC-L2(L1)

data can be estimated by 288 − 288 ∗ ϕL1 = 233.28 which is close to the observed 235

size.

The Server Log Analysis and the Event Identification jobs are used to evaluate RaPC

with comparatively large jobs. The main task of the Server Log Analysis is to determine

the over/under utilized servers from Google Cluster Log files [CRH11]. The dataset

contains ∼1.2 billion records in Comma Separated Value (CSV) format. For this par-

ticular dataset, RaPC-L2 and RaPC-L2(L1) can reduce the original data size by 77.3%

and 80.4%, respectively. The size of the intermediate output data is significantly smal-

ler because of the MapReduce Local Combiner effects discussed above and the highly

repetitive nature of the data. Due to the significant data size reduction (both input and

intermediate output), we have achieved 59.2% and 57.7% performance gains from the

job with RaPC-L2 and RaPC-L2(L1) compressed data, respectively. During the analy-

sis, numerical values in the RaPC-L1 format need to be decoded to standard strings

and then converted into real numerical values. This requires the RaPC-L1 compression

model file to be available to each Mapper, which makes the RaPC-L2(L1) job slower

than the job with the RaPC-L2 compressed data. The level of the performance degra-

dation is influenced by the number of Mappers and how much RaPC-L1 compressed

data needs to be decoded during the analysis. If we increase the HDFS-Block size (the

same as reducing the number of Mappers), we can improve analysis speed and mem-

ory consumption, accordingly. Note that the RaPC-L1 compression model file(s) needs
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to be loaded to each Mapper separately. The smaller number of Mappers results in

less memory (aggregated) being used to hold the RaPC-L1 model file(s). Rationally,

if a considerable portion of the RaPC-L1 data needs to be decoded during the job ex-

ecution, then just using the RaPC-L2 compression for the data is a more appropriate

approach. The same reasoning also applies to the Event Identification job.

In the Event Identification job, we aim to identify the abnormal events that occur on

each cluster node and produce a list of the unhealthy nodes with the event IDs and

time stamps. In addition to the three jobs with original, RaPC-L2 and RaPC-L2(L1)

compressed data, we also run an additional job RaPC-L2(L1-C) with the final output

data in the original format. This requires loading the RaPC-L1 compression model

file(s) to Reducers which will take extra time and delay the completion of the entire

job.

SiteRank 5-Gram WordCount PublicationIndexing MusicRank

CustomerSatisfaction DataPreprocessing FormatConversion EventIdentification ServerLogAnalysis
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Figure 6.9: Number of Mapper processes configured for each job with original, RaPC-L2
compressed, and RaPC-L2(L1) compressed data, respectively.

In general, using the RaPC-L2 or RaPC-L2(L1) compressed data requires much less

memory. The reasons are as follows. Firstly, Mappers are independent processes and

require dedicated Java Virtual Machines (JVMs). Each has a default and dedicated

Java Heap Space assigned to it. The more Mappers the more memory is required.

Because the input data size is the dominant factor affecting the number of Mappers, the

compressed data size is significantly smaller resulting in a smaller number of Mappers

and consequently less aggregate memory consumption. Figure 6.9 shows the default

number of Mappers configured for each job with the original, RaPC-L2 and RaPC-

L2(L1) compressed data. Moreover, supplying a block of data to a Mapper at a time

can make more efficient use of memory .

The following applies to the RaPC-L2(L1) compressed data. At a lower level, text data
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Table 6.4: Performance of the Hadoop-LZO compression.

Dataset
Original

Data Size

LZO Compressed

Data Size

Compression

Time

Indexing

Time

Index

Size

DS-Amazon 33.4 GB 17.1 GB 6m44s 6m46s 1.0 MB

DS-Google 158.9 GB 60.9 GB 30m17s 10m04s 5.1 MB

DS-Memes 52.5 GB 21.0 GB 10m17s 3m53s 1.6 MB

DS-PubMed 3.1 GB 2.1 GB 0m38s 0m54s 98.0 KB

DS-StackEX 40.6 GB 17.3 GB 8m19s 2m53s 1.3 MB

DS-Twitter 17.3 GB 10.0 GB 3m34s 4m10s 555.0 KB

DS-WikiEN 47.0 GB 20.5 GB 8m38s 4m41s 1.5 MB

DS-Yahoo 10.2 GB 4.2 GB 1m50s 0m45s 325.0 KB

is often held by a String (in Java) or Text (in MapReduce) object. Each String or Text

object will have an internal buffer to hold the actual data and the length of the buffer is

determined by the length of the record to be held, with some redundancy in this case.

During the analysis, since records are often split, re-formed or concatenated, a large

number of such temporary objects will be created and disposed of. This has negligi-

ble effects on the overall aggregate memory consumption. With RaPC-L1 compressed

data, the average length of temporary objects can be shortened. Reducing memory

consumption can be particularly useful for a multi-tenant cluster in which the saved

memory can be assigned to more users.

Furthermore, we compare the RaPC scheme with the state-of-the-art Hadoop-LZO. Us-

ing Hadoop-LZO compressed data in Hadoop is similar to our RaPC scheme. Hadoop-

LZO compresses data using the standard LZO compressor. The compressed data is then

uploaded to HDFS. A special indexer program is used to index and record the splittable

boundaries of the compressed data. The output of the indexer is a set of indexing files

which are associated with each individual file in the given dataset. In MapReduce, each

Mapper uses the indexing files to calculate splittable boundaries and take the data block

for processing. Table 6.4 shows the performance of the Hadoop-LZO, in terms of com-

pression ratio, compression speed and the size of the indexing file(s). As the number of

files increases, maintaining and processing the indexing files can be complicated. The

main comparison results are shown in Table 6.1. In general, using RaPC compressed

data can improve MapReduce performance by 13.5% (RaPC-L2) and 15.1% (RaPC-

L2(L1)), further reduce data size by 16.2% (RaPC-L2) and 21.0% (RaPC-L2(L1)), on

average, compared to that using Hadoop-LZO compressed data.

In brief, we have demonstrated the flexibility and effectiveness of using RaPC with

MapReduce using a variety of standard MapReduce jobs. Using RaPC-L2 does not

exhibit any shortcomings and RaPC-L2(L1) can further improve efficiency of analysis
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Figure 6.10: RaPC-L2 block-size verses analysis performance and memory consump-
tion.

speed, cluster memory usage and storage usage. It can be most beneficial to clusters

that are I/O bound and for which storage space is a concern. For some jobs that need

many conversions, for example, an analysis on financial reports, using the T( ) function

frequently can affect the overall performance. In those cases, using RaPC-L2 compres-

sion alone may be more appropriate.

6.3.2 RaPC-L2 Block Size Effect

As we have seen in the previous section, using RaPC-L2 or RaPC-L2(L1) compressed

data can improve MapReduce program performance and decrease memory consump-

tion. By default, we use a 1MB L2-Block for all experiments given in Table 6.1. In this

section, we aim to identify the relationship between the L2-Block size, analysis perfor-

mance and memory consumption. Note that the L2-Block size is the size of a block

of data supplied to a Mapper at a time. Increasing the L2-Block size is equivalent to

increasing the workload for each individual Mapper at a time. In the experiments, we

compress dataset DS-WikiEN with different L2-Block sizes from 256KB to 10MB (when

the L2-Block size is greater than 10MB, the MapReduce framework starts reporting

Java Heap Space Errors as limited by the current cluster configuration). We use 5-Gram
and Word Count jobs as two test cases. These jobs are then performed giving each com-

pressed data different L2-Block sizes. We keep the same number of Reducers and use an
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Figure 6.11: RaPC-L2 block-size verses analysis performance and memory consumption
for the Word Count job.

optimal number of Mappers for each run. Figure 6.10 shows very interesting results.

Increasing the L2-Block size slightly decreases the MapReduce program performance

and increases memory consumption.

In particular, we observe a performance and memory usage degradation when L2-Block

size increases from 256KB to 1MB for both the 5-Gram and the Word Count jobs. To

find the root cause, referring to Figure 6.7 again, there is a sharp drop in compressed

data size when the L2-Block size increases from 256KB to 1MB. This reduction in com-

pressed data size leads to a change in the number of Mappers per MapReduce program.

When the L2-Block size is above 1MB, the compression ratio tends to be constant. The

exact values of the compressed data size and the corresponding number of Mappers

are shown in Figure 6.11 for the Word Count job. We have already identified that an

increase in the number of Mappers implies more aggregate memory needed and more

time required for loading data from disks to memory. The change in the number of

Mappers is one of the main reasons for the sudden increase in performance and the

decrease in memory consumption from 256KB to 512K/1M.

Starting from an L2-Block size of 1MB, the changes to the number of Mappers be-

comes insignificant as shown in Figure 6.11 (bottom-right). The increase in memory

consumption is now due to the internal buffer size required to hold the decompressed
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data at the Mappers and the Record Readers. Given that the RaPC-L2 compression

ratios for dataset DS-WikiEN for L2-Block sizes of {1MB, 2MB, 3MB, 4MB, 6MB, 8MB,

10MB} are {71.28%, 71.55%, 71.63%, 71.68%, 71.72%, 71.75%, 71.76% }1, when the

L2-Block size increases, the buffer size needed to store the decompressed L2-Block in-

creases super-linearly. The average decompressed data sizes are then given by {3.48MB,

7.03MB, 10.57MB, 14.12MB, 21.22MB, 28.32MB, 35.41MB}, respectively.

The performance degradation is due to several reasons. Firstly, the size of the input

data (the number of Mappers) is certainly affecting the overall performance. Secondly,

when the L2-Block size increases, the RaPC-L2 decompression and the processes for

further parsing records at each Mapper will take longer time, accordingly. Figure 6.11

(upper-left) shows the average time used by Mappers for the Word Count job. Addition-

ally, before the intermediate data is shuffled to the corresponding Reducers, there are

Partitioning, Sorting and Combining (optional) processes. These processes are operated

on a per Map output data basis. That is, each Mapper takes a data split (with the

size equal to the HDFS-Block size) and produces a group of intermediate records. The

intermediate output data from each individual Mapper will have to go through the pro-

cessing pipelines in order (Partitioning, Sorting and Combining). When the L2-Block

size increases, the compression ratio increases accordingly as we have seen before.

Given the fixed size of the data split, the higher compression ratio implies more data

needs to be processed by each individual Mapper. This potentially increases the num-

ber of intermediate records per Mapper. With the increased number of intermediate

records, the partitioning and sorting process will take longer to complete. However,

considering the dynamic network activity in the cluster, for example, communications

required by other services such as HDFS monitoring and orchestration components,

thus the shuffling time varies slightly as shown in Figure 6.11 (upper-right).

From the compression algorithm perspective, when the L2-Block size is greater than

1MB, the compression ratio tends to be stable. This is a general characteristic of the

RaPC-L2 scheme. An increase in L2-Block size does not have much effect on reduc-

ing the data size. Especially, when the HDFS-Block size is larger, the influence of the

number of data splits (number of Mappers) becomes smaller, but it increases the work-

load per Mapper super-linearly and it also implies that more time is required for data

preprocessing, such as forming internal data structures. In balancing MapReduce per-

formance and resource usage, an L2-Block size from the range [512KB, 2048KB] is

generally optimum.

1Note that, in Figure 6.13 and Figure 6.14, the compression ratio for dataset DS-WikiEN is shown
as 67.51% for a L2-Block size of 1MB. Here we show the RaPC-L2 compression ratio is 71.28% for the
same L2-Block size. This is because the former compression ratios were calculated from compressing 2GB
data which was drawn from the entire dataset. In this experiment, the compression ratios are calculated
from compressing the entire 47GB dataset. Due to the different data sizes and content variation, the
compression ratio varies accordingly.
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6.3.3 Further Compression
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Figure 6.12: Further compression on RaPC-L1 compressed data using general purpose
compressors with default compression level configured for Bzip, Gzip and LZO.

In order to efficiently distribute the Map output data to Reducer nodes during the

shuffling phase, Hadoop allows us to compress the intermediate data with options of

several compression algorithms, including Gzip, Bzip, LZO, Snappy and LZ4 (recently).

Gzip and Bzip offer high compression ratios; LZO, Snappy and LZ4 are speed-optimized.

The following experiments exclude the LZ4 compressor as it has similar results to LZO.

When using the RaPC-L2(L1) compressed data, the Mapper output data is in RaPC-L1

compressed format. Since the data has already been compressed, the original pattern

of the contents is changed. This may affect the compression ratios produced by the

general purpose compressors. In this experiment, we study whether it is worth applying

further compression using the aforementioned compressors to the RaPC-L1 compressed

data. Figure 6.12 shows the compression results from Gzip, Bzip, LZO and Snappy on

RaPC-L1 compressed data. We compress exactly 2GB data from each dataset (as given

in Appendix A <Table A.2>) using the RaPC-L1 compressor. The compressed data from

RaPC-L1 is then fetched to these general purpose compressors. From the results shown

in Figure 6.12, we observe an over 50% data size reduction for most of the datasets,

thus we still can take advantage of those general compressors for the data Shuffling
process when working with RaPC-L2(L1) compressed data.
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6.3.4 RaPC Characteristics

In this section, we evaluate the characteristics of the RaPC-L1, -L2 and -L2(L1) schemes

including compression ratio and compression/decompression speed. The results are

thereafter compared with four common compressors that are currently supported by

the Hadoop system, including Gzip (v1.6), Bzip (v1.0.6), LZO (v1.03) and Snappy
(v1.1.2). Exactly 2GB of data is drawn from each dataset (as given in Appendix A <Ta-

ble A.2>) for the experiments. There are five runs for each experiment. The compres-

sion ratio for Gzip, Bzip, LZO and Snappy are identical across the five runs. In contrast,

there are some slight variations in the RaPC-L1, -L2 and -L2(L1) compression results

due to the random sampling effects. The compression/decompression speed also varies

slightly due to system variation of the testbed. The mean values and standard mean

errors are calculated and included in the experimental results. All experiments are

carried out on a Linux kernel version 3.19.0 and x86_64 architecture platform with

dual WD5000AAKS-75V0A0 500GB hard disks (7200RPMs) and Ext4 (version 1.0) file

system.

6.3.4.1 Compression Ratio
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Figure 6.13: RaPC compression ratio comparing to Hadoop supported algorithms with
highest compression level configured for Bzip, Gzip and LZO.

Compression ratio is content dependent. Figure 6.13 shows the compression results

from RaPC, Gzip, Bzip, LZO and Snappy. Specifically, Gzip, Bzip and LZO are configured

with the highest compression level. RaPC-L1 can compress data by ∼50% on average.

There are two exceptions on dataset DS-Twitter and dataset DS-WikiML. Recall that
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Figure 6.14: RaPC compression ratio comparing to Hadoop supported algorithms with
default compression level configured for Bzip, Gzip and LZO.

RaPC-L1 does not compress Unicode contents. Dataset DS-WikiML is multi-language

Wikipedia articles, where the majority of the contents are complex Unicode texts which

are incompressible. Additionally, we must use the 0x11 and 0x12 character pair to en-

close any Unicode strings. This leads to the low RaPC-L1 compression ratio on dataset

DS-WikiML. Dataset DS-Twitter contains ∼490 million Twitter tweets collected world

wide. A large number of records contain Unicode texts. Moreover, each tweet record

is comprised of time-stamp, anonymized user ID (hash codes) and tweet topics. This

makes the vocabulary size for the dataset much larger. Considering that the RaPC-L1

code length increases with the vocabulary size, this makes the average code-length

longer for the dataset. In practice, if the data is known to contain a lot of Unicode

content, it is better to avoid using RaPC-L1 compression at all.

RaPC-L2 is a block-based compression based on the Deflate algorithm. In principle, it

can achieve the same compression ratio as Gzip. Recall that in RaPC-L2 we intentionally

break the connections between DO-Blocks and stuff trailing bytes at the end of each

L2-Block; this makes RaPC-L2 compression slightly worse than Gzip. In fact, RaPC-L2

compression ratios are very close to Gzip.

RaPC-L2(L1) is a composite compressor. It applies the RaPC-L2 compression on the

RaPC-L1 compressed data. In practice, it can achieve compression ratios close to Bzip
and sometimes even better than Bzip. For example, the compression results from Bzip
and RaPC-L2(L1) for dataset {DS-Google, DS-Memes, DS-Twitter, DS-WikiEN} are given

by {{152.2MB, 150.5MB}, {465.6MB, 442.4MB}, {663.5MB, 663.3MB}, {456.3MB,

427.1MB}}, respectively.
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Many modern compressors have an option to compress data at different levels. Com-

pressing at a higher level can achieve better compression ratios. On the other hand, it

will take considerably longer time. In Figure 6.13, Bzip, Gzip and LZO are configured

with the highest compression level. Figure 6.14 shows the comparison results when

configured with default compression levels. The compression ratios for RaPC-L1, -L2,

-L2(L1) and Snappy remain unchanged; Bzip produced almost identical results. For

Gzip, there is a slight drop in the compression ratio. This makes our RaPC-L2 as good

as Gzip and even slightly better on dataset DS-Google. There is a big drop for LZO of

approximately 15% on average between highest and default compression levels. Note

that the drops are percentages. If the original dataset is large, this drop can be signif-

icant. For example, the precise figures of the compression results from RaPC-L1, -L2,

-L2(L1), Gzip, Bzip and LZO with the highest and default compression level on dataset

DS-Amazon (2GB original data size) are given by {962MB, 670MB, 496MB, 664MB,

492MB, 757MB} and {962MB, 670MB, 496MB, 668MB, 492MB, 1051MB}, respec-

tively. The LZO compression ratios dropped by 14.3% from 63.0% (2048MB−757MB
2048MB ) to

48.7% (2048MB−1051MB
2048MB ), corresponding to a 294MB size difference. If we assume that

the compression ratio is constant with data size, referring to Appendix A (Table A.2),

the total data size of dataset DS-Amazon is 33.4GB, with the best and default compres-

sion level configured for LZO, the compressed size is ∼21GB and ∼16GB, respectively,

giving a 5GB difference. The comparison results are not intended to argue against

the use of LZO compression. But, they reveal whether the compression algorithms are

consistent across data contents. It is important for RaPC to use a relatively consistent

algorithm for the RaPC-L2 compression.

6.3.4.2 Compression Speed

For compression speed, the current implementation of RaPC-L2 achieves similar speed

to Gzip and RaPC-L2(L1) is similar to Bzip. Figure 6.13 and Figure 6.14 show the

comparison results for the highest and default compression levels configured for Gzip,

Bzip and LZO, respectively. In general, Bzip is the slowest compressor because it has

an extra step for block sorting. The speed is often influenced by block size. Interest-

ingly, when LZO is configured with the highest compression level, it takes much longer

than all other compressors as shown in Figure 6.15, but it still remains the fastest on

decompression. In contrast, RaPC-L2 and Gzip are relatively stable and consistent.

Figure 6.17 and 6.18 shows the decompression speed for each compressor configured

with the highest and default compression levels. Comparing the two figures, the re-

sults are almost identical. There are only tiny differences due to the compressed data

sizes being slightly different. Thus, the decompression speed is not correlated with the

compression levels.

In designing RaPC, we aimed to reduce the data size as much as possible. This is driven
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Figure 6.15: RaPC compression speed comparing to Hadoop supported algorithms with
highest compression level configured for Bzip, Gzip and LZO.
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Figure 6.16: RaPC compression speed comparing to Hadoop supported algorithms with
default compression level configured for Bzip, Gzip and LZO.

by the fact that data size is the predominant factor affecting the overall performance

of MapReduce programs. Also, from the previous chapter, the evaluation results from

comparing RaC-Deflate and RaC-LZ4 show that the decompression time is insignificant

compared to the time used for loading data from hard disks to memory. RaPC Layer-2

needs to be a scheme that is best balanced between compression ratio and speed. Gzip
is the best candidate for RaPC-L2 and it is based on the Deflate algorithm.
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Figure 6.17: RaPC decompression speed comparing to Hadoop supported algorithms
with highest compression level configured for Bzip, Gzip and LZO.
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Figure 6.18: RaPC decompression speed comparing to Hadoop supported algorithms
with default compression level configured for Bzip, Gzip and LZO.

6.4 Conclusion

For big data, analytic platforms are mainly challenged by data volumes. Reducing data

size without affecting its integrity and usability is our overall objective in mitigating the

big data issue. In this chapter, we presented the RaPC, a new two-layer architecture

for textual data compression. Each layer of compression is designed to improve the
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(RAPC) 6.4 Conclusion

performance of the corresponding stage of data processing in MapReduce. Generally,

RaPC Layer-1 can achieve compression ratios similar to LZO and Snappy, RaPC Layer-2

is close to Gzip, and RaPC-L2(L1) is comparable with the Bzip compressor.

The effectiveness and flexibility of RaPC was demonstrated through various standard

MapReduce jobs with a set of real-world datasets having different properties. Our ex-

perimental results have shown that reducing data size can effectively improve analysis

performance and make corresponding efficient use of resources. Furthermore, we stud-

ied the relationships between the workload per Mapper, number of Mappers per job,

MapReduce analysis performance and resource utilization. Our analysis results indicate

that the RaPC Layer-2 block size is the single parameter that most affects the balance

between performance, memory usage and compression ratio. Finally, RaPC is a plat-

form independent solution. It can be used with other analysis frameworks (e.g., Spark

and R) with supporting libraries for each framework.

The general idea is therefore if algorithms can be tuned for particular tasks, data can

also be optimized for improving data processing and analysis efficiency at different

stages.
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Chapter 7

Conclusion

“That which is achieved the most, still has the whole of its future yet to be achieved.”
— Lao Tzu

The sheer size of the data is a major challenge to big data analytics. The use of com-

pression is an attractive approach to mitigate the big volume issue. However, existing

compression schemes do not have the desired properties for allowing the compressed

data to directly participate in big data analysis in a seamless fashion.

This research set out with the goal of investigating novel compression schemes for mit-

igating big data issues. In seeking solutions, we analyzed the data organization in the

Hadoop Distributed File System (HDFS) and data processing in the MapReduce compu-

tational framework. The outcome of this analysis is a set of requirements that must be

satisfied by a potential compression scheme. We then conducted a literature review on

conventional and emerging compression schemes in order to identify their suitability

and potential. We summarized our findings: that processing compressed data in par-

allel in a distributed environment firstly requires the compressed data to be splittable;

that a context-free scheme is an appropriate method that allows the compressed data to

be directly processable; that separating compression models and compressed contents

is necessary for providing transparency between the compressed data and MapReduce

developers; that being content-aware allows the seamless integration of compression,

HDFS and MapReduce. The resulting outputs of this research are the Content-aware

Compression (CaC) schemes. We evaluated CaC with a set of standard MapReduce

jobs using a collection of real-world datasets. The evaluations show very encouraging

results when compared to standard analysis methods.

In this chapter, we begin by summarizing our contributions, followed by possible future

work, finally discussing implications of the research.
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7. CONCLUSION 7.1 Contributions

7.1 Contributions

Leveraging novel compression schemes for improving performance and reducing re-

source requirements for big data analysis is our overall contribution to the field of big

data research. In this thesis, we presented several compression schemes having dif-

ferent properties suitable for a variety of big data analysis scenarios. This section is

organized in such a way that we map the research questions set up in Chapter 1 to our

contributions.

Research Question: Whether we can compress data in such a way with

regards to the characteristics of big data, so that the compressed data can

be directly processed in MapReduce without decompression, while ensuring

the compressed data is compatible with existing algorithms and software

packages as well as transparent to MapReduce program developers.

Our first contribution is the Content-aware Partial Compression (CaPC) scheme pre-

sented in Chapter 3. The CaPC design was based on several observations. Firstly,

textual data produced from a single source (e.g., social media or a machine log) gener-

ally shares a common vocabulary. Thus, the vocabulary can be used as a compression

model. For a small dataset, the compression model can be as big as the original dataset.

It may not offer any advantage for compression. However, as the data size increases,

the size of the compression model remains relatively constant, and then better com-

pression is achieved. Secondly, data is being produced from a great variety of sources.

Different data sources organize information in various formats. There is a wealth of

available software packages and algorithms developed for efficiently parsing and pro-

cessing data in specific formats. In order to make the compressed data transparent to

the existing software and algorithms, we compress data selectively in which informa-

tional content is compressed and functional content is left intact. Thirdly, the current

version of MapReduce only supports limited string (text data) encoding schemes. Com-

pression should not break the rules used by standard encoding schemes. As a unique

feature, we use specially designed codes that are valid strings rather than simply binary

sequences. Lastly, the separation of compression model(s) and compressed contents

along with the provided supporting library, together make the use of CaPC compressed

data transparent to MapReduce developers. CaPC was implemented for English text in

this work. It can be also used for compressing other languages by building the static

compression models for each language.

Our second contribution is the Approximated Huffman Compression (AHC) which

is designed for domain-specific data, presented in Chapter 4. AHC is a bit-oriented,

character-based compression scheme. It thus supports arbitrary pattern searching. We

use a hybrid data structure that combines a lookup table and a Huffman tree to achieve

data decompression in constant time. We also provide algorithm analysis on AHC per-
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formance in terms of compression ratio and decompression speed. As an addition,

AHC generates a very small (approximately 2KB) compression model per compressed

file. The compression model can then be used as a security key for protecting data

in a public environment, when encryption is not necessary but some privacy is useful.

Additionally, as AHC is a character based compressor, it supports compressing texts in

multiple languages.

Our first and second contributions are based on specially designed context-free schemes

which balance compression ratio and direct processability (without decompression).

Additionally, if a MapReduce program can perform analysis with compressed data with-

out decompression, the Mappers will also produce intermediate data in the compressed

format. Compressing the intermediate data using general purpose compressors can

further reduce the data size, thus improving efficiency for data transmission over the

network.

Research Question: Whether, when data is compressed by modern compres-

sion schemes such as Gzip or LZO, it is possible to perform decompression in

memory as data is being consumed at each computational node of Hadoop

(parallel decompression in memory) so that the total decompression time

can be reduced in proportion to the number of parallel processes, the data

loading time can be kept to a minimum and the use of extra storage space

can be avoided.

Our third contribution explores using modern compressors to achieve a high level of

compression without considering direct processability. That provides a more generic

solution. Whereas modern processor and memory speed have improved greatly, there

has been little progress on improving I/O performance (especially the I/O system be-

tween commodity hard disks and memory which still presents a bottleneck in Von Neu-
mann architectures). Therefore, the adoption of the procedures of reading compressed

data from hard disks to memory, then decompressing it in memory has the potential

(decompression time also needs to be taken into consideration) advantage of better

performance over reading original data straight into memory. This has been shown

by LZO-splittable developed by other practitioners [KML13] and further proved by our

Record-aware Compression (RaC) schemes. However, LZO-splittable and similar ap-

proaches perform blind compression on data which often requires additional auxiliary

indexing files or a separate system to make compressed data splittable to HDFS. This

subsequently leads to data locality preservation issues as discussed in Chapter 5. In

contrast, the RaC scheme is designed to overcome these issues by making compres-

sion content-aware at the level of logical records of a dataset, controlling the use of

contextual data, and using an efficient packaging mechanism that avoids the need for

indexing or dedicated systems without sacrificing much compressibility.

Moreover, as compression algorithms often have to achieve a balance between compres-
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sion ratio and decompression speed, we investigated whether a scheme with higher

compression ratio and lower decompression speed can achieve better overall perfor-

mance than one with a lower compression ratio and higher decompression speed. This

has not been addressed previously.

Our fourth contribution lies in the conclusion that a higher compression ratio with

relatively slower decompression speed can achieve better overall performance on com-

modity servers. This conclusion is based on comparing two implementations of the RaC

scheme, namely RaC-Deflate and RaC-LZ4, in the environment as given in Appendix A.

Research Question: Whether we can combine the CaPC/AHC and RaC ap-

proaches to take advantage of both.

Our fifth contribution lies in synthesizing our previous findings. We note that a

MapReduce program benefits from the CaPC and AHC at the data processing stage,

whereas RaC improves performance at the data loading stage. We designed a layered

architecture (RaPC) so that the MapReduce process can at different stages take advan-

tage of the corresponding layers.

RaPC consists of two compression schemes. The first scheme (RaPC Layer-1) is byte-

oriented context-free compression. We developed a dynamic coding scheme in which

the codeword length increases along with the compression according to the variety

of information to be encoded. RaPC Layer-1 compression follows the same principles

used in CaPC and AHC. The output of RaPC Layer-1 is directly processable data and

achieves a data size reduction of approximately 50%. In other words, processing RaPC

Layer-1 compressed data in Hadoop requires half of the system memory used when

processing data in the original format. The RaPC Layer-2 scheme is based on a modified

Deflate compression algorithm. The scheme follows the principles used by RaC. We

also developed a more compact version of the packaging mechanism compared to that

used by RaC, for an improved compression ratio. RaPC works by firstly compressing

data using the Layer-1 scheme and the compressed data is then compressed by the

Layer-2 scheme. As a result, we can achieve data compression ratios close to the Bzip
compressor. In MapReduce, the Layer-2 compressed data is unpacked during the data

loading phase; the Layer-1 compressed data is directly used for processing/analysis.

Evaluations based on several standard MapReduce jobs with a set of real-world datasets

show that using RaPC can achieve substantial improvement on analysis performance,

up to 72%. Additionally, the RaPC-L2 schemes can potentially be used for other types

of data, such as images, audio and video, as long as the data splitting boundaries can

be identified.

In this thesis, We have presented several novel compression schemes with concrete

implementations coping with different scenarios for textual data analysis on Hadoop.

The CaC schemes proposed here are in fact full solutions for Hadoop and MapReduce
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to work with compressed data rather than once-off compression schemes. The CaC

schemes improve performance for various aspects of data analysis including analysis

efficiency, cluster memory usage, storage requirements and cost of transmitting data

over the network. The evaluations of CaC schemes were conducted using standard

analysis jobs (written in MapReduce), for a set of well-known real-world datasets as

listed in Appendix A (Table A.2), in a fully operational Hadoop cluster as shown in Ap-

pendix A (Figure A.1), with detailed configurations as listed in Appendix A (Table A.1).

Thus, our experimental environment is replicable. Examples of CaC schemes (AHC

and RaPC) are given in Appendix C. As illustrated, they have minimum impact on

writing MapReduce programs. Additionally, introducing CaC schemes to other analytic

platforms, such as Spark, only requires extra supporting utility functions without mod-

ification to the underlying system. As a result, there is no barrier to industry adoption

of CaC schemes and the value of using CaC schemes can be realized immediately.

7.2 Future Directions

The general idea of CaC schemes can be adopted by any big data analytic platform. In

this work, we conducted evaluation and implemented supporting libraries primarily for

Apache Hadoop. As CaC schemes are presented as systematic solutions, possible future

work using the same idea are apparent. Moving forward from the current implementa-

tion, future directions involve extending CaC schemes to:

1. other analytic platforms. In this work, we evaluated CaC schemes on the HDFS

file system of Hadoop. In principle, CaC schemes are agnostic to the underlying

distributed file systems and storage. It may also be worth investigating how CaC

schemes can be beneficial to Hadoop based on other storage systems such as

GFS (Google File System) [GGL03], QFS (Quantcast File System) [ORR+13] and

NoSQL (Not Only Structured Query Language) [Cat11] databases.

A computation framework is another important component of an analytic plat-

form. Apart from MapReduce, Spark is an increasingly popular framework which

focuses on in-memory processing and supporting Directed Acyclic Graph (DAG)

work-flows. As memory is still considered to be an expensive hardware resource

(comparing to commodity hard disks), using CaPC or RaPC Layer-1 compression

can greatly reduce memory consumption, since the CaPC or RaPC Layer-1 com-

pressed data can be processed directly without decompression. We will extend

CaC schemes to work with Spark in future work.

2. other data processing paradigms. Currently, batch and stream are the two main

data processing paradigms for big data. In this work, we primarily focused on

batch processing where data has already been collected and is thereafter ana-

lyzed/processed offline. In contrast, stream processing presents different charac-

Content-aware Compression for Big Textual Data
Analysis

136 Dapeng Dong



7. CONCLUSION 7.3 Epilogue

teristics. It requires data to be collected, analyzed and acted upon in real-time.

To improve performance, data can be compressed using the lightweight CaPC or

RaPC Layer-1 scheme at source (this is especially suitable for sensors or devices

that are not capable of carrying out complex computations), then sent to analytic

platforms for processing in compressed format.

Other future work involves investigating application-specific data in which the data

contents do not vary much (examples like machine log files and sensor data), so that

static compression models are appropriate. For these cases, compression models can

be built into the analysis programs, statically. This can improve overall analysis per-

formance by avoiding the need to load the compression models on the fly. It is also

possible for stream processing where compressed data is being received.

7.3 Epilogue

The real value of big data has been gradually realized and boosted recently by successes

in both public and private sectors. This encourages decision makers to accumulate more

data and perform analysis at an increasingly larger scale. To what extent this can be

done, perhaps is a hard question. As the ever-increasing volume of data is continuously

challenging data analysis tools, algorithms and platforms, data compression is an ef-

fective way of reducing data size. However, existing compression schemes do not offer

significant benefits to big data analysis, as already discussed in this thesis. In order to

integrate data compression and big data analysis, designing new compression schemes

that take into consideration the characteristics of data content, computational model

and analytic platform is necessary. In response, we have developed the CaC schemes.

The CaC schemes have been implemented as full solutions supporting ease of use by

developers and orthogonal to other possible optimizations. The advantages of the CaC

schemes for textual data analysis have been demonstrated using a variety of standard

real-world benchmarks. As well as the existing benefits, the CaC schemes also provide

the basis for future extensions to other types of data such as audio and video, and for

future applications in other analytic platforms.
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Appendix A

Experimental Environment

The hardware specification (Table A.1) and cluster topology (Figure A.1) remain the

same for the evaluations carried out for the AHC, RaC and RaPC schemes. Cluster nodes

are connected to a NetGear GS716T Gigabit Ethernet switch. In total, there are eleven

datasets (Table A.2) used for the evaluation of the proposed CaC schemes introduced in

Chapter 3 4 5 and 6. Additionally, 2GB of data from each dataset is used for evaluating

the performance of CaC schemes in terms of compression ratio, compression speed and

decompression speed. Some of the datasets may not be directly accessible. Contact the

corresponding organizers to obtain an access link.

Table A.1: Experimental environment: hardware specification.

Node CPU Memory Storage Network

NameNode
Intel Core i5

(2415M) 2.30 GHz

DDR3

8 GB

WD7500BTKT

750 GB

BCM57765

Gigabit NIC

DataNode-1
Intel Core 2 Duo

(E8400) 3.00 GHz

DDR2

8 GB

WD10EZRX

1.0 TB

Intel 82567LM-3

Gigabit NIC

DataNode-2
Intel Core 2 Duo

(E8400) 3.00 GHz

DDR2

8 GB

WD10EZRX

1.0 TB

Intel 82567LM-3

Gigabit NIC

DataNode-3
Intel Core 2 Duo

(E8400) 3.00 GHz

DDR2

8 GB

WD10EZRX

1.0 TB

Intel 82567LM-3

Gigabit NIC

DataNode-4
Intel Core 2 Duo

(E8400) 3.00 GHz

DDR2

8 GB

WD10EZRX

1.0 TB

Intel 82567LM-3

Gigabit NIC

DataNode-5
Intel Core 2 Duo

(E8400) 3.00 GHz

DDR2

8 GB

WD10EZRX

1.0 TB

Intel 82567LM-3

Gigabit NIC

Management
Intel Core 2 Duo

(E6550) 2.33 GHz

DDR2

8 GB

WD5000AAKS

500 GB

Intel 82566DM-2

Gigabit NIC

A1
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Figure A.1: Experimental environment: Hadoop cluster topology
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Table A.2: List of public and private datasets used for evaluating the Content-aware compression schemes.

Index Dataset and Source Format Size (GB) Description
DS-Amazon Amazon Product Reviews∗ [ML13] TXT 33.4 The dataset contains∼35 million reviews on∼2.5 million products from

∼6.6 million users.
DS-Google Google Server Logs [CRH11] CSV 158.9 The dataset contains∼1.2 billion server usage traces from a Google clus-

ter (US Eastern) of ∼11 thousand machines.
DS-Memes Memetracker Memes∗ [LBK09] TXT 52.5 The dataset contains ∼96 million documents; ∼211 million memes; and

over 418 million URL links from Memetracker.
DS-PubMed PubMed Records [LAB+09] CSV 3.1 The dataset contains ∼22 million publication records of ∼11 million

authors from PubMed database.
DS-Reddit Reddit Submissions∗ [LML13] HTML 13.0 The dataset contains ∼132 thousand submissions from reddit.com.
DS-StackEX StackExchange Posts [Int] XML 40.6 The dataset contains an anonymized dump of user-contributed contents

on the Stack Exchange network.
DS-Twitter Tweet Topics [WM14] TSV 17.3 The dataset contains ∼490 million tweet records. Each record consists

of timesamp, anonymized user_id, and topics.
DS-Yahoo Yahoo! Music Ratings∗ [Yah06] TSV 10.2 The dataset contains∼700 million ratings on∼136 thousand songs from

∼1.8 million users of Yahoo! Music service.

DS-WikiEN
Wikipedia Article Abstract [Wika]
(English)

XML 47.0 The dataset contains the latest article abstracts (English) from Wikipedia
(09-December-2014).

DS-WikiML
Wikipedia Article Abstract [Wikb]
(Multi-Language)

XML 4.3 The dataset contains the latest article abstracts (Multi-language) from
Wikipedia (09-December-2014).

DS-mRNA Human mRNA Sequence [Con09] TXT 12.5 GenBank mRNAs from the part of human genome (hg19,
GRCh37 Genome Reference Consortium Human Reference 37
<GCA_000001405.1>).

*: Dataset may not be directly accessible. Contact corresponding sources to retrieve download links.
1GB = 1,073,741,824 Bytes
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Appendix B

AHC Codeword Example

Table B.1: Codeword generated for dataset DS-WikiEN using the AHC compression.

Hex Frequency Codewords Hex Frequency Codewords

0x20 1654020 101 0xB9 837 11000001110110
0x6E 557901 0001 0x9D 864 11000001110111
0x6F 591786 0010 0xB8 891 11000001111001
0x69 601101 0011 0xA9 918 11000001111010
0x61 634338 0101 0x58 945 11000001111111
0x74 745767 1000 0x82 999 11101101111011
0x65 934983 1101 0x9B 270 010000011100010
0x64 264843 00001 0xA3 270 010000011100011
0x68 312903 01001 0xB4 270 010000011100100
0x6C 366390 01111 0xCB 270 010000011100101
0x73 494559 11100 0x85 297 010000011111110
0x72 517185 11111 0xAA 297 010000011111111
0x79 127818 000000 0xB7 297 011010001001100
0x66 180846 011100 0xAB 324 011010001001101
0x67 182223 011101 0x86 351 100101111000110
0x70 186840 100100 0xB0 351 100101111000111
0x6D 209763 100111 0xAF 378 100101111011110
0x75 253611 111100 0xA6 432 110000011110000
0x63 261063 111101 0xB3 459 110000011110110
0x27 68418 0000011 0xC5 459 110000011110111
0x76 75924 0100011 0xC9 459 110000011111100
0x2F 77031 0110000 0x88 486 111011011110100
0x30 81864 0110011 0xBB 486 111011011110101
0x31 85455 0110101 0xBE 513 111011011111001
0x2C 89586 0110110 0xBF 513 111011011111010
0x26 94149 1001010 0xA2 540 111011011111100
0x3B 99603 1001100 0xA5 540 111011011111101
0x0A 107136 1100001 0xB5 540 111011011111110
0x7C 108162 1100010 0xBA 540 111011011111111
0x3D 109269 1100011 0xB6 135 0100000111001100
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0x62 111240 1100100 0xCC 135 0100000111001101
0x2E 115992 1100110 0xE5 135 0100000111001110
0x5D 123768 1110100 0x5C 162 0110100010110100
0x5B 124146 1110101 0x87 162 0110100010110101
0x77 125226 1110111 0x8E 162 0110100010110110
0x7B 33669 00000101 0x97 162 0110100010110111
0x7D 33696 01000000 0xA0 162 1001011110000000
0x71 36828 01000011 0xC4 162 1001011110000001
0x39 37422 01000100 0x90 189 1001011110111110
0x54 39744 01100101 0x92 189 1001011110111111
0x53 43119 01101001 0xA8 189 1100000110011000
0x41 45522 01101111 0xAE 189 1100000110011001
0x43 46791 10010110 0xE3 189 1100000110011010
0x6B 50787 11000000 0x98 216 1100000110011011
0x32 61020 11001111 0xAC 216 1100000111100010
0x2D 61209 11101100 0xAD 216 1100000111100011
0x45 16497 000001000 0x8A 243 1100000111111011
0x4E 17874 010000010 0x91 243 1110110111110000
0x44 18198 010000100 0x95 243 1110110111110001
0x57 18306 010000101 0x8C 270 1110110111110111
0x4C 19035 010001010 0x40 81 01000001110011111
0x46 19359 010001011 0x8B 81 10010111100000100
0x2A 19494 011000100 0x9A 81 10010111100000101
0x28 19656 011000101 0x9F 81 10010111100000110
0x29 19656 011000110 0xE4 81 10010111100000111
0x48 19710 011000111 0x5E 108 11000001111110100
0x52 19737 011001000 0x8F 108 11000001111110101
0x3E 19899 011001001 0xE6 108 11101101111101100
0x3C 19980 011010000 0x89 135 11101101111101101
0x78 21978 011011100 0xFC 1 0100000111001111000000
0x42 23544 100101110 0xFD 1 0100000111001111000001
0x49 24786 100110100 0xFE 1 0100000111001111000010
0x36 25299 100110101 0xFF 1 0100000111001111000011
0x37 25299 100110110 0x01 1 01000001110011110001000
0x5F 25299 100110111 0x02 1 01000001110011110001001
0x3A 26838 110000010 0x03 1 01000001110011110001010
0x38 27324 110010100 0x09 1 01000001110011110001011
0x34 28107 110010101 0x0B 1 01000001110011110001100
0x4D 28350 110010110 0x0C 1 01000001110011110001101
0x33 29430 110011100 0x0D 1 01000001110011110001110
0x35 29484 110011101 0x10 1 01000001110011110001111
0x50 31401 111011010 0x1C 1 01000001110011110010000
0xE2 8370 0000010010 0x1D 1 01000001110011110010001
0x56 8640 0000010011 0x1E 1 01000001110011110010010
0x80 8802 0100000110 0x1F 1 01000001110011110010011
0x7A 10422 0110100011 0x60 1 01000001110011110010100
0x6A 11070 0110111010 0x7F 1 01000001110011110010101
0x4F 11367 0110111011 0x96 1 01000001110011110010110
0x55 12339 1001011111 0x9E 1 01000001110011110010111
0x4A 14094 1100101110 0xC0 1 01000001110011110011000
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0x47 15444 1110110110 0xC1 1 01000001110011110011001
0x25 7371 11001011110 0xC6 1 01000001110011110011010
0x4B 8046 11101101110 0xC7 1 01000001110011110011011
0x23 2322 010000011110 0xC8 1 01000001110011110011100
0x3F 2619 011010001010 0xCA 1 01000001110011110011101
0xC3 2943 100101111010 0xCD 1 01000001110011110011110
0x59 3294 110000011010 0xD2 1 01000001110011110011111
0xD0 3294 110000011011 0xD3 1 01000001110011110100000
0xCE 3321 110000011100 0xD4 1 01000001110011110100001
0x21 3834 110010111110 0xD5 1 01000001110011110100010
0x93 3834 110010111111 0xD6 1 01000001110011110100011
0xD9 1134 0100000111010 0xD7 1 01000001110011110100100
0x24 1188 0100000111110 0xDA 1 01000001110011110100101
0x99 1215 0110100010000 0xDB 1 01000001110011110100110
0xD1 1242 0110100010001 0xDC 1 01000001110011110100111
0xD8 1323 0110100010111 0xDD 1 01000001110011110101000
0xA4 1431 1001011110010 0xDE 1 01000001110011110101001
0x22 1512 1001011110110 0xDF 1 01000001110011110101010
0x2B 1539 1100000110000 0xE7 1 01000001110011110101011
0x94 1539 1100000110001 0xE8 1 01000001110011110101100
0xE0 1566 1100000110010 0xE9 1 01000001110011110101101
0xCF 1674 1100000111010 0xEA 1 01000001110011110101110
0x51 1863 1100000111110 0xEB 1 01000001110011110101111
0x5A 1917 1110110111100 0xEC 1 01000001110011110110000
0xBC 540 01000001110000 0xED 1 01000001110011110110001
0x83 567 01000001110110 0xEE 1 01000001110011110110010
0xA1 594 01000001110111 0xEF 1 01000001110011110110011
0xB2 594 01000001111110 0xF0 1 01000001110011110110100
0x84 621 01101000100100 0xF1 1 01000001110011110110101
0xA7 621 01101000100101 0xF2 1 01000001110011110110110
0xBD 648 01101000100111 0xF3 1 01000001110011110110111
0xC2 648 01101000101100 0xF4 1 01000001110011110111000
0xE1 675 10010111100001 0xF5 1 01000001110011110111001
0x8D 702 10010111100010 0xF6 1 01000001110011110111010
0x9C 729 10010111100110 0xF7 1 01000001110011110111011
0xB1 729 10010111100111 0xF8 1 01000001110011110111100
0x81 756 10010111101110 0xF9 1 01000001110011110111101
0x7E 837 11000001100111 0xFA 1 01000001110011110111110

0xFB 1 01000001110011110111111

Codewords generated for 2GB data from dataset DS-WikiEN with default sampling rates.

Table B.2: Unused symbols in AHC compression.

Hex Char Hex Char Hex Char Hex Char Hex Char
0x00 NUL 0x04 EOT 0x05 ENQ 0x06 ACK 0x07 BEL
0x08 BS 0x0E SO 0x0F SI 0x11 DC1 0x12 DC2
0x13 DC3 0x14 DC4 0x15 ACK 0x16 SYN 0x17 ETB
0x18 CAN 0x19 EM 0x1A SUB 0x1B ESC
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Appendix C

MapReduce with RaPC
Demonstrated

Listing C.1: MapReduce code segments for processing text in the original format.� �
1 pub l i c c l a s s P roces s ingC learTex t {
2 pub l i c s t a t i c c l a s s PCT_Mapper extends Mapper<Object , Text , Text ,

↪→ In tWr i tab le> {
3 p r i v a t e s t a t i c Text outputKey = new Text () ;
4 p r i v a t e s t a t i c In tWr i t ab l e outputValue = new In tWr i t ab l e () ;
5 pub l i c void map( Object key , Text value , Context contex t ) throws Except ion {
6 S t r ing [] record = ( value . t o S t r i n g () ) . s p l i t ( " \ t " ) ;
7 outputKey . s e t ( record [1]) ;
8 outputValue . s e t ( In t ege r . pa r s e In t ( record [2]) ) ;
9 contex t . wr i te ( outputKey , outputValue ) ;

10 }
11 }
12

13 pub l i c s t a t i c c l a s s PCT_Reducer extends Reducer<Text , In tWr i tab le , Text ,
↪→ In tWr i tab le> {

14 p r i v a t e In tWr i t ab l e outputValue = new In tWr i t ab l e () ;
15 pub l i c void reduce ( Text key , I t e r a b l e <IntWr i tab le> values ,
16 Context contex t ) throws Except ion {
17 i n t sum = 0;
18 f o r ( In tWr i t ab l e value : va lues )
19 sum += value . get () ;
20 outputValue . s e t (sum) ;
21 contex t . wr i te ( key , outputValue ) ;
22 }
23 }
24

25 pub l i c s t a t i c void main( S t r ing [] args ) throws Except ion {
26 Conf igura t ion conf = new Conf igura t ion () ;
27 S t r ing [] otherArgs = new Gener icOpt ionsParser ( conf , args ) .

↪→ getRemainingArgs () ;

C1
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28 i f ( otherArgs . length < 2) {
29 System . e r r . p r i n t l n ( " Usage : P roces s ingC lea rTex t <input> <output>" ) ;
30 System . e x i t (1) ;
31 }
32 Job job = Job . ge t In s t ance ( conf , "MR with Clear Text " ) ;
33 job . se t InputFormatClass ( TextInputFormat . c l a s s ) ;
34 job . setOutputFormatClass ( TextOutputFormat . c l a s s ) ;
35 job . s e t Ja rByC la s s ( Proces s ingC lea rTex t . c l a s s ) ;
36 job . setMapperClass (PCT_Mapper . c l a s s ) ;
37 job . se tReducerC lass ( PCT_Reducer . c l a s s ) ;
38 job . setMapOutputKeyClass ( Text . c l a s s ) ;
39 job . setMapOutputValueClass ( In tWr i t ab l e . c l a s s ) ;
40 job . setOutputKeyClass ( Text . c l a s s ) ;
41 job . se tOutputVa lueClass ( In tWr i t ab l e . c l a s s ) ;
42 TextInputFormat . addInputPath ( job , new Path ( otherArgs [0]) ) ;
43 TextOutputFormat . setOutputPath ( job , new Path ( otherArgs [1]) ) ;
44 System . e x i t ( job . waitForCompletion ( t rue ) ? 0 : 1) ;
45 }
46 }� �

Listing C.2: MapReduce code segments for processing RaPC-L2 compressed data.� �
1 pub l i c c l a s s ProcessL2CompressedText {
2 pub l i c s t a t i c c l a s s L2_Mapper extends Mapper<Object , Text , Text ,

↪→ In tWr i tab le> {
3 p r i v a t e s t a t i c Text outputKey = new Text () ;
4 p r i v a t e s t a t i c In tWr i t ab l e outputValue = new In tWr i t ab l e () ;

5 private static Iterable<String> records;

6 pub l i c void map( Object key , Text value , Context contex t ) throws Except ion {

7 records = Splitter.on(’\n’).split(value.toString());

8 for (String record : records) {

9 S t r ing f i e l d s [] = record . s p l i t ( " \ t " ) ;
10 outputKey . s e t ( f i e l d s [1]) ;
11 outputValue . s e t ( In t ege r . pa r s e In t ( f i e l d s [2]) ) ;
12 contex t . wr i te ( outputKey , outputValue ) ;
13 }

14 }
15 }
16

17 pub l i c s t a t i c c l a s s L2_Reducer extends Reducer<Text , In tWr i tab le , Text ,
↪→ In tWr i tab le> {

18 p r i v a t e In tWr i t ab l e outputValue = new In tWr i t ab l e () ;
19 pub l i c void reduce ( Text key , I t e r a b l e <IntWr i tab le> values , Context

↪→ contex t ) throws Except ion {
20 i n t sum = 0;
21 f o r ( In tWr i t ab l e value : va lues )
22 sum += value . get () ;
23 outputValue . s e t (sum) ;
24 contex t . wr i te ( key , outputValue ) ;
25 }
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26 }
27

28 pub l i c s t a t i c void main( S t r ing [] args ) throws Except ion {
29 Conf igura t ion conf = new Conf igura t ion () ;
30 S t r ing [] otherArgs = new Gener icOpt ionsParser ( conf , args ) .

↪→ getRemainingArgs () ;
31 i f ( otherArgs . length < 3 ) {

32 System . e r r . p r i n t l n ( " Usage : ProcessL2CompressedText <record length> <

↪→ input> <output>" ) ;
33 System . e x i t (1) ;
34 }

35 RCaPCInputFormat.setRecordLength(conf, Integer.parseInt(otherArgs[0]));

36 Job job = Job . ge t In s t ance ( conf , "MR with RaPC−L2 Compressed Text " ) ;
37 job . se t InputFormatClass ( RCaPCInputFormat . c l a s s ) ;

38 job . setOutputFormatClass ( TextOutputFormat . c l a s s ) ;
39 job . s e t Ja rByC la s s ( ProcessL2CompressedText . c l a s s ) ;
40 job . setMapperClass (L2_Mapper . c l a s s ) ;
41 job . se tReducerC lass ( L2_Reducer . c l a s s ) ;
42 job . setMapOutputKeyClass ( Text . c l a s s ) ;
43 job . setMapOutputValueClass ( In tWr i t ab l e . c l a s s ) ;
44 job . setOutputKeyClass ( Text . c l a s s ) ;
45 job . se tOutputVa lueClass ( In tWr i t ab l e . c l a s s ) ;
46 RCaPCInputForma . addInputPath ( job , new Path ( otherArgs [ 1 ]) ) ;

47 TextOutputFormat . setOutputPath ( job , new Path ( otherArgs [ 2 ]) ) ;
48 System . e x i t ( job . waitForCompletion ( t rue ) ? 0 : 1) ;
49 }
50 }� �

Listing C.3: MapReduce code segments for processing RaPC-L2(L1) compressed data.� �
1 pub l i c c l a s s ProcessL2L1CompressedText {

2 pub l i c s t a t i c c l a s s L2L1_Mapper extends Mapper<Object , RaPCTextWritable ,

↪→ RaPCTextWritable , In tWr i tab le> {

3 p r i v a t e s t a t i c RaPCTextWritable outputKey = new RaPCTextWritable() ;

4 p r i v a t e s t a t i c In tWr i t ab l e outputValue = new In tWr i t ab l e () ;
5

6 @Override

7 protected void setup(Context context) throws IOException, InterruptedException {

8 if (context.getCacheFiles().length > 0) {

9 File modelFile = new File("./model.ip");

10 T.buildModel(modelFile);

11 }

12 }

13

14 pub l i c void map( Object key , RaPCTextWritable value , Context contex t )
↪→ throws Except ion {

15 List<RaPCTextWritable> records = value . copyBytes () . s p l i t ( ’ \n ’ ) ;

16 f o r ( RaPCTextWritable record : records ) {

17 List<RaPCTextWritable> f i e l d s = record . copyBytes () . s p l i t ( ’ \ t ’ ) ;
18 outputKey . s e t ( f i e l d s . get (0) ) ;
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19 outputValue . s e t (RaPC . T( f i e l d s . get (1) ) ) ;
20 contex t . wr i te ( outputKey , outputValue ) ;
21 }

22 }
23 }
24

25 pub l i c s t a t i c c l a s s L2L1_Reducer extends Reducer< RaPCTextWritable ,

↪→ In tWr i tab le , RaPCTextWritable , RaPCTextWritable > {

26 p r i v a t e RaPCTextWritable outputValue = new RaPCTextWritable() ;

27 pub l i c void reduce ( RaPCTextWritable key , I t e r a b l e <IntWr i tab le> values ,
↪→ Context contex t ) throws IOException , In te r rup tedExcep t ion {

28 i n t sum = 0;
29 f o r ( In tWr i t ab l e value : va lues )
30 sum += value . get () ;

31 String temp = ’\t’ + String.valueOf(sum) + ’\n’;

32 outputValue . s e t ( temp . ge tBytes () ) ;
33 contex t . wr i te ( key , r e s u l t ) ;
34 }
35 }
36

37 pub l i c s t a t i c void main( S t r ing [] args ) throws Except ion {
38 Conf igura t ion conf = new Conf igura t ion () ;
39 S t r ing [] otherArgs = new Gener icOpt ionsParser ( conf , args ) .

↪→ getRemainingArgs () ;
40 i f ( otherArgs . length < 4 ) {
41 System . e r r . p r i n t l n ( " Usage : ProcessL2L1CompressedText

↪→ <record length> <model> <input> <output>" ) ;

42 System . e x i t (1) ;
43 }

44 RCaPCInputFormat.setRecordLength(conf, Integer.parseInt(otherArgs[0]));

45 Job job = Job . ge t In s t ance ( conf , "MR with RaPC−L2(L1) Compressed Text " ) ;

46 job.addCacheFile(new URI(otherArgs[1] + "#model.ip"));

47 job . se t InputFormatClass ( RCaPCInputFormat . c l a s s ) ;

48 job . setOutputFormatClass ( RCaPCSequenceFileAsBinaryOutputFormat . c l a s s ) ;

49 job . s e t Ja rByC la s s ( ProcessL2L1CompressedText . c l a s s ) ;
50 job . setMapperClass ( L2L1_Mapper . c l a s s ) ;
51 job . se tReducerC lass ( L2L1_Reducer . c l a s s ) ;

52 job . setMapOutputKeyClass ( RaPCTextWritable . c l a s s ) ;
53 job . setMapOutputValueClass ( In tWr i t ab l e . c l a s s ) ;

54 job . setOutputKeyClass ( RaPCTextWritable . c l a s s ) ;

55 job . se tOutputVa lueClass ( RaPCTextWritable . c l a s s ) ;
56 RCaPCInputFormat . addInputPath ( job , new Path ( otherArgs [ 2 ]) ) ;

57 RCaPCSequenceFileAsBinaryOutputFormat . setOutputPath ( job , new Path ( otherArgs [

↪→ 3 ]) ) ;
58 System . e x i t ( job . waitForCompletion ( t rue ) ? 0 : 1) ;
59 }
60 }� �
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Appendix D

ASCII Table

Table D.1: Standard ASCII code table.

Control Symbol Number Upper Case Lower Case

NUL DLE SP 0 @ P ‘ p

SOH DC1 ! 1 A Q a q

STX DC2 " 2 B R b r

ETX DC3 # 3 C S c s

EOT DC4 $ 4 D T d t

ENQ NAK % 5 E U e u

ACK SYN & 6 F V f v

BEL ETB ’ 7 G W g w

BS CAN ( 8 H X h x

HT EM ) 9 I Y i y

LF SUB * : J Z j z

VT ESC + ; K [ k {
FF FS , < L Space l |
CR GS − = M ] m }
SO RS . > N ^ n ~

SI US / ? O __ o DEL
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Appendix E

Efficient Cloud Server
Consolidation Supported by Online
Data Analysis Services

The deployment of big data analytics platforms such as Hadoop requires a cluster of

servers. Depending on the characteristics of the analysis, the resource requirements on

server configuration often vary greatly. As cloud computing becomes widely available,

it has become the main enabling technology for big data analysis due to its dynamic

provisioning and cost-efficiency. Many existing private and commercial big data so-

lutions are already deployed on clouds, such as IBM SmartCloud [IBMb], OpenStack

Sahara [Sta], Amazon Elastic MapReduce (EMR) [Ama] and Cloudera [Clo]. Moving

optimization from source data to computing nodes. We also look at the efficient use of

cloud resources in this work.

As the utility computing paradigm requires massive server deployment, one of the main

concerns for a cloud service provider is the operational cost, especially the cost of

power consumption. Survey research indicates that servers in many organizations typ-

ically run at less than 30% of their full capacity [BH07] [SM10]. Thus, it is possible

to reduce power consumption of the hardware by means of allocating more Virtual

Machines (VMs) to less hosts. This is known as server consolidation. It is one of

the key techniques used for energy saving in clouds. The basic principle of server

consolidation is to allocate as many VMs on a physical server as possible, while sat-

isfying various constraints specified as part of the system requirements. Depending

on business strategy or user preference, previous work has focused on improving VM

performance and availability [JPE+11], scalability [JLH+12] [BCF+12] [MPZ10], en-

ergy conservation [BAB12] [VAN08], Service Level Agreement (SLA) violation preven-

tion [BB12], VM live migration cost [CFH+05] [LXJ+11] [VBVB09] or some combina-

tion of these [GGP12] [XF10].
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SUPPORTED BY ONLINE DATA ANALYSIS

SERVICES E.1 System Architecture

Additionally in the commercial use of cloud computing, SLA is one of the main methods

to deal legally with Quality of Service (QoS) guarantees such as service availability and

performance and, as such, has attracted the attention of both consumers and service

providers. Technically, QoS can be guaranteed through resource provisioning through

pre-defined policies and/or dynamic methods such as resource utilization predictions.

Due to the dynamic and heterogeneous nature of cloud services, a dynamic method is

preferable. However, predictions are often inaccurate. An improved prediction accu-

racy is achieved in this work by allowing each individual VM to build its own utilization

model on demand over an appropriate time horizon. Thus, the utilization model can

reflect accurately the characteristics of resource usage of the VM. The utilization model

is supported by a sophisticated data analysis system implemented as a service. More

specifically, the R open source data analysis framework [The] is employed as a model-

ing and decision support system. The R Decision Support System (rDSS) is designed

and deployed as a cloud-based solution. It provides services to the server consolida-

tion algorithms. In this work [DH13b], both energy conservation and SLA violation

prevention are considered.

We employ several advanced data modeling and forecasting techniques. Results from

simulation-based experiments show that the proposed server consolidation algorithm,

supported by the data analysis service, can effectively reduce power consumption, the

number of VM migrations and SLA violation. It also compares favourably with other

start-of-the-art heuristic algorithms.

E.1 System Architecture

 1. Log history

2. Data address 

& method

4. Forecast results

5. Consolidation 

process

i. Embedded data and methods

3. Read data

ii. Forecast results

Storage

Cloud 

ServersController

Cloud simulation 

environment for 

experiment and 

research

rDSS

R 

Cluster

VM

Figure E.1: The proposed rDSS system architecture.

The rDSS system is a cloud-based solution. Resource utilization information from each

VM and host is logged to a centralized location as shown in Figure E.1. The data collec-
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tion process can be carried out by a Hypervisor or a third party software. Data analysis

services that employ the R framework as an engine are pre-packaged Virtual Machines

which can be easily deployed on clouds. The number of data analysis servers can be

scaled out/in on demand depending on the number of VMs and Servers need to be

monitored. In the rDSS, servers are divided into groups. Each group is managed by

a Controller component. The Controller has three responsibilities. Firstly, it segments

the VM/Server utilization data in a specified length. This segmented data is then used

for building resource forecasting models. Secondly, the Controller forwards the address

of the data stored in the cloud and a specified modeling algorithm to the rDSS. Infor-

mation is sent programmatically by calling program functions which are embedded in

the R language clauses. Communication can also be done asynchronously via a queuing

system. In this case, information will be sent and received as messages through queues.

The asynchronous communication approach is particularly useful when the dataset is

large. The returned results from the rDSS can also be received synchronously. Finally,

based on the forecast model and prediction results returned from rDSS, the Controller
carries out the VM consolidation process.

E.2 Problem Formulation

Server consolidation falls into the field of multi-objective optimization. It is often for-

mulated as a Bin Packing or a Constraint Programming problem. [CZS+11] proposed

an Effective Sizing guided server consolidation algorithm. The consolidation process is

modeled as a bin packing problem. The proposed Effective Sizings are calculated by

computing least workload correlations with other VMs on the target Server. It is based

on a strong assumption that workload distributions are stationary over time. [JPE+11]

is an another algorithm that the complexity of the optimization is reduced by group-

ing VMs into location-aware clusters. As server consolidation is often an NP-complete

task, many researchers employ heuristic algorithms in order to provide sub-optimal so-

lutions in a timely fashion. A Power Aware Best Fit Decreasing (PABFD) heuristic was

proposed in [BAB12]. The PABFD algorithm starts by identifying over/under utilized

Servers, then selects VMs from an over/under utilized Server to migrate to other Server

in order to reduce the number of bins (active Servers) used. Each selected VM is then

pseudo-assigned to a Server. Power consumption for each trial is calculated by the

given power consumption models of Servers and the CPU requirements of the VM. This

process iterates through all active Servers, then a target Server with minimum power

consumption is selected. All selected VMs go through the same process sequentially

until they are all assigned to a Server.

More advanced heuristic algorithms such as Genetic Algorithms (GAs) are also

used [XF10]. GAs are known to be effective for optimization problems with large
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search domains. The authors [XF10] consider power consumption and cooling cost

as the main factors in their multi-objective optimization formulation. They formulate

Servers and VMs as chromosomes in the GA context, then go through the conventional

process of crossover, mutation and fitness in order to find an optimal solution. The final

solution is also a sequence of numbers (chromosomes) that represents a new mapping

of VMs to Servers. Although GAs may provide better solutions than simple heuristic

algorithms (such as First Fit Decreasing and Best Fit Decreasing), but it is not able to

provide optimal solutions in a timely fashion. Another weakness of GAs, pointed out

by the authors, is that the GA approach has high possibilities of causing a large amount

of unnecessary VM migrations in cloud.

In parallel, recent research also found that network communication consumes a con-

siderable portion of energy in cloud data centres [MPZ10] [BCF+12]. This is not

surprising if one considers moving a number of VMs with memory footprint ranging

from several hundred megabytes to tens of gigabytes. Using VM migration as a tech-

nique for VM consolidation can therefore cause both network performance and VM

performance to degrade considerably [LXJ+11][CFH+05][VBVB09] consequently af-

fects QoS. [MPZ10] proposed a traffic-aware algorithm for server consolidation. The

authors formulate the server consolidation process as a Quadratic Assignment Prob-

lem and makes their solution aware of network topologies and network traffic pat-

terns. In order to make the algorithm feasible for real deployment, VMs are grouped

into clusters; further simplifications are also made for homogeneous VM configuration;

and each server is only able to contain the same number of VMs. Simple statistical

and polynomial curve fitting [BB12] and more advanced technique using Kalman fil-

ters [KKH+08] are also used for server consolidation. [KKH+08] uses a trained Kalman
filter to produce estimates of the number of workload requested and to forecast the

future state of the system. The accuracy of the algorithm relies on a properly trained

filter. It is not clear how the filter can be properly trained and to what extent the filter

is properly trained.

min
∑
i∈V

∑
j∈H

pijvij +
∑
j∈H

fjhj

s.t.
∑
i∈V

rivij 6 Chj ∀j ∈ H

∑
i∈V

{r̂i(t+n)}vij 6 Chj ∀j ∈ H

∑
j∈H

vij = 1 ∀i ∈ V

vij 6 hj ∀i ∈ V, j ∈ H

vij ∈ {0, 1} ∀i ∈ V, j ∈ H

hj ∈ {0, 1} ∀j ∈ H
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In contrast, the objectives of rDSS are to minimize both power consumption and SLA

violation. Given a set H of Servers, a set V of virtual machines in a cloud data centre

and power consumption models for each Server, the objectives are to decide how to

rearrange V on H such that the total power consumption in the data centre is mini-

mized, while the SLA violation rate is kept as low as possible. All v ∈ V requirements

ri, such as CPU, memory and storage, must be satisfied by the target Server, all v ∈ V
predicted CPU requirements {r̂i(t+n)} must be satisfied by the target Server in order

to minimize SLA violations. Each h has a resource capacity limit C. The total power

consumption is the sum of power pij consumed by CPUs of each VM i on Server j, plus

a fixed power fj consumed by the other components of Server j, such as memory and

I/O, etc. Let hj = 1 represents choosing Server j to be switched on and 0 otherwise.

Also, let vij = 1 represents the assignment of VM i to Server j and 0 otherwise. The

mathematical model is outlined below. The first constraint enforces the capacity limit

on each Server. The second constraint minimizes SLA violations. The third constraint

ensures that each VM is assigned to exactly one Server. The fourth constraint guaran-

tees a Server to be switched on if and only if there is a VM assigned to that Server.

The last two constraints indicate that the state of a VM or Server is either on or off

(Equation E.1).

E.2.1 SLA Violation Minimization

SLA violation has various aspects. One of the main causes of SLA violation is that the

requested resources from VMs can not be satisfied by the resource providers (Servers).

SLA violation minimization is accomplished in two parts.

In the first part, forecast models are built for each VM based on a certain length of

historical data. The forecast model is then used to predict the future CPU requirements

for each VM. The SLA is controlled as follows. Let the matrix A ∈ R+m∗n denotes the

total m VMs in a cloud. Each VM associates with a list which contains n step-ahead

forecast values. The number of steps is adjusted according to the consolidation process

frequency, where r̂i(t+n) denotes the predicted CPU requirements for VM i at time t+n.

For all VMs that have been placed or are going to be placed on Server j construct a

matrix A′, A′j ⊆ A, i 6 m:

A′j =


r̂0(t+1) r̂0(t+2) · · · r̂0(t+n)

r̂1(t+1) r̂1(t+2) · · · r̂1(t+n)
...

...
. . .

...

r̂i(t+1) r̂i(t+2) · · · r̂i(t+n)



Such that,
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SLA(A′j) |= {α
i∑

k=0
r̂k(t+n) 6 Chj , ∀n} (E.1)

Forecasting often has limited accuracy. The second part of SLA protection is to re-

serve a certain amount of resources on each Server to tolerate forecast errors and

accommodate sudden bursts in CPU requests as indicated by a factor α in Equa-

tion E.1. The resource reservation strategy is outlined as follows. If the available

resource on a Server is less than the reserved resources (resource buffer), the Server

will be seen as over utilized, then one or more VMs will be selected to migrate to

other Server(s). The results of VM(s) migration to the target Server(s) must not vi-

olate the condition specified in Equation E.1. However, VM migration often results

in VM performance degradation, extra load on the network and more energy con-

sumption [LXJ+11] [CFH+05] [VBVB09]. Additionally, [BB12] states that migrating

smaller VMs is desirable. [LXJ+11] asserts that the time required for VM live migration

is mainly determined by memory size, memory dirtying rate and network bandwidth.

Based on these conclusions, the principle of smallest memory size first is used in the

selection of VMs for migration. For simplicity, it is assumed that the memory dirtying

rate and network bandwidth are kept constant. In this work, we reserve resources on

each Server using a fixed value.

As the proposed VM placement algorithm relies heavily on the forecast results, an ac-

curate forecast model is at its foundation. Since VMs are continuously running in a

cloud, the sampled CPU utilization of each VM can be treated as a time series data.

It should be noted that due to the heterogeneity of workload, the time series of VMs

often exhibit different properties, hence we need an adaptive way of building forecast

models without prior knowledge about the types of workload. Employing the powerful

R framework as the decision support system allows us to produce forecast results based

on five different models including Auto Regressive Integrated Moving Average model

(ARIMA), Exponential sTate Space model (ETS), Independent Identically Distributed

model (IID), Random Walk model (RW) and Structural Time Series model (STS).

A prerequisite for the proposed algorithm is to establish connections between VMs and

rDSS services. Once the connections are established, VMs remain connected during

their lifetime and the algorithm maintains a map of VMs to connections. The map

is used as an input to the optimization algorithm. The events of an VM joining or

leaving will correspond to a map refresh action. The VM placement process follows the

same principle as the Power-aware Best Fit Decreasing (PABFD) algorithm [BB12]. The

differences are that any successful placement needs to satisfy both hardware require-

ments (such as memory and storage) and SLA requirements. An over utilized Servers

are determined by examining the condition SLA(A′host). Given the power consump-

tion model of each Server, the reason for choosing PABFD is that it allows VMs to be
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placed on more power efficient Servers in a heterogeneous environment. Given a list

of Servers H, a list of VMs V and Server power consumption model PM , the process of

placing VMs selected from over utilized Servers is outlined in Algorithm 3. The process

for determining under utilized Servers is described in [BB12].

Algorithm 3: Server consolidation algorithm
Input: H,V,M,PM
A←− construct(M,V )
for host ∈ H do

A′ ←− construct(host, A)
if overUtilized(A′) then

vm←− selectV M(host)
E ←−∞
candidateHost←− ∅
foreach activeHost ∈ H do

A′ ←− construct(activeHost, vm,A)
if SLA(A′) & reqHW (activeHost, vm) then

E′ ←− energy(activeHost, vm, PM)
if E > E′ then

E = E′

candidateHost = activeHost

if candidateHost = ∅ then
candidateHost←− selectIdelHost(H)

deploy(candidateHost, vm)

E.3 Evaluation

Several sets of simulations are used for conducting the evaluation on the effectiveness

of the proposed server consolidation algorithm and the rDSS system. The simulated

environment is Infrastructure-as-a-Service (IaaS). It consists of 80 HP ProLiant ML110

G4 and G5 Servers, randomly selected to build a heterogeneous cloud environment.

Power consumption models of the Servers are shown in Figure E.2. Depending on

the experiment, the number of VMs ranged from 25 to 150 with memory assignment

uniformly distributed in the range [256MB, 1GB]. A set of mixed, real-world server

workloads [BB12] is used in the experiments. The type of servers include Domain

Name Servers (DNS), Dynamic Host Configuration Protocol servers (DHCP), File Trans-

fer Protocol servers (FTP), Hypertext Transfer Protocol servers (HTTP), Proxy servers,

Database servers and Application servers. Each server workload is given to a dedicated

VM during the simulation. The evaluation is twofold. The proposed consolidation

algorithm with five different prediction models is firstly evaluated against the PABFD

algorithm, then the characteristics and performance of the rDSS system are evaluated.
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Figure E.2: Server power-models used in the experiments.

E.3.1 Algorithm Performance

We use three sets of experiments to evaluate our One-step ahead Forecast-based Power-

aware Best Fit Decreasing (F1PaBFD) algorithm. All of the experiments are configured

with one hundred VMs randomly deployed on eighty Servers, initially. The experiments

simulate a cloud environment continuously operational for six hours, with the consoli-

dation frequency set to five minutes. We use the default fitted models generated by the

corresponding algorithms in the R framework.

The new F1PaBFD algorithm is evaluated using the five forecast models, hence named

F1PaBFD-ARTIMA, F1PaBFD-ETS, F1PaBFD-IID, F1PaBFD-STS and F1PaBFD-RW, re-

spectively. These five versions of our algorithms are compared with the standard state-

of-the-art PABFD heuristic algorithm which is based on the Local Regression and Mini-

mum Migration Time techniques [BB12]. Forecast models are built for each individual

VM based on two hours of historical data. Figure E.3(a)(c)(e) and (g) show the results

from the first set of experiment. A set of mixed, real-world server workloads is given

to each VM during the simulation. The workload is directly mapped to the CPU utiliza-

tion of each VM. Overall, the average CPU utilization of all Servers is approximately

10.74%. Figure E.3(a)(c)(e) and (g) show the total power consumption, number of

VM migrations, SLA violation per active Server and overall SLA violation for each of

the F1PaBFD based algorithms in comparison with the existing algorithm. We observe

that our F1PABFD based algorithm is able to save 0.03 ∼ 0.17 electricity units (KWh)

over the six hours of operation comparing to the PABFD. It is also shown that F1PaBFD

can reduce the total number of VM migrations significantly for all algorithms apart

from the algorithm that uses Random Walk. Among the algorithms, F1PaBFD-IID pro-

duces the lowest power consumption and minimum number of VM migrations (39%
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Figure E.3: Experimental results from real-world server-workload and randomly gen-
erated workload.
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less than PABFD). However, this gain is offset by higher SLA violation as shown in Fig-

ure E.3(e) and (g). In contrast, based on sophisticated forecasting techniques, we can

effectively prevent the SLA violation by reducing SLA violation per active Server to the

best result of 0.96% (F1PaBFD-ARIMA) and overall SLA violation to the best result of

0.12%, comparing to 2.09% and 0.23% given by the PABFD, respectively. This leads

to a choice of statically or dynamically selecting among the F1PaBFD algorithms with

regard to the deployment strategies.

In the second experiments, we evaluate the robustness of our algorithms. We per-

form exactly the same experiments but with random workload. The artificially gen-

erated random workload reflects approximately 53.2% CPU utilization on average. In

Figure E.3(b), the power consumption patterns are similar to that produced in Fig-

ure E.3(a). Because the random workload is heavier, thus the power consumption

is higher. With the random and heavier workload, our algorithms start saving more

energy, 0.03 ∼ 0.44KWh. In Figure E.3(d), we still observe a significant drop in the

number of VM migrations. In contrast with the real-world workload, using the random

workload greatly increases SLA violations as shown in Figure E.3(f) and (h). The in-

crease in SLA violations is mainly due to the randomness of the workload that affects

the accuracy of the forecasting results.

In the third experiment, we eliminate the F1PaBFD-RW due to having the highest

number of VM migrations and F1PaBFD-ETS due to having the lowest performance as

shown in Figure E.5. We evaluate how the size of workload affects our algorithms. We

generate eight sets of workloads artificially based on the real-world server workloads

used in the first experiment. To preserve the characteristics of the original workloads as

much as possible, such as trends and periodicity, etc., we add constant values to each

workload, then gradually increase the weight of the average utilization of the workload

from 10.74% (original) up to 90%. In Figure E.4, we observe that all F1PaBFD based

algorithms consume less power (ranging from 0.03 ∼ 1.14KWh) than the non-forecast

based PABFD (as shown in Figure E.4(Default)). A significant power drop is observed at

an average workload at 90%. This is because when the average workload (average CPU

utilization of each VM) is reaching the full capacity of a Server, the changes in the CPU

utilization curves become more smooth. Our forecasting then becomes more accurate.

Additionally, when the level of the average workload is high, the bursty level of CPU

utilization becomes smaller which results in lower SLA violation as shown in Figure E.4.

In contrast, the SLA violation becomes higher when average workload becomes lower.

This is because when CPU utilization of each VM is lower, more VMs will be assigned

to a Server, thus it increases uncertainty of resource requirements. An improvement

can be made by dynamically reserving more resources on each Server according to the

level of the average workload. This is planned for future implementation. Overall, our

F1PaBFD algorithms perform generally better than the original PABFD, especially in re-

ducing the number of VM migrations. In the middle facet of Figure E.4, we observe that
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F1PaBFD-IID, -STS and -ARIMA algorithms can reduce the number of VM migrations by

{3, 1.5, 1.5} times on average, comparing to PABFD. Among the algorithms, F1PaBFD-

STS and F1PaBFD-ARIMA perform consistently well on power conservation, reducing

the number of VM migrations and preventing SLA violation. F1PaBFD-IID shows bet-

ter ability to reduce the number of VM migrations. Considering that F1PaBFD-ARIMA

algorithm is much slower than F1PaBFD-STS and F1PaBFD-IID as shown in Figure E.5,

F1PaBFD-STS and F1PaBFD-IID are recommended. Depending on the conditions of

the network in a cloud environment, the F1PaBFD-IID may be preferred over F1PaBFD-

STS due to less VM migrations. Thus, there is an opportunity for research in dynamic

algorithm switching based on network conditions.

E.3.2 RDSS System Performance

In the experimental environment, two R servers (VMs) are deployed as the decision

making engine. Each of the R servers is configured with 1GB memory, single core

2.2GHz processor, 60GB local hard disk. The R servers are connected to the simulation

environment over FastEthernet (100Mb/s). VMs created in the simulation environment

are randomly assigned to rDSS servers initially. The R packages are compiled based on

Linux kernel version 3.20.0, 64-bit architecture. We choose to use R version 2.15.1.

We also configure Rserve services (version 1.7.0) on each VM so that our simulation

environment can talk to the decision making servers using Java. We use synchronous

communication through Rserve for all experiments. Historical data of VMs and R com-

mands are encapsulated into Java objects and they are sent to the decision making

servers as serialized objects over a Transmission Control Protocol/Internet Protocol

(TCP/IP) socket.

Figure E.5 shows the algorithm performance on a single rDSS server including

F1PaBFD-ARIMA, -ETS -IID, -RW and -STS. Using the same length of historical data,

forecasting based on the ETS and ARIMA model are relatively time consuming. On

the other hand, forecasting based on the IID, Random Walk and StructTS models are

extremely fast. The best results are obtained from the F1PaBFD-IID algorithm for fore-

casting 150 VMs in 0.75 seconds. Results from Figure E.5 can also be used for deter-

mining the number of rDSS servers needed in order to meet the desired performance.

In this experiment, we gradually increase the number of VMs from 25 to 150. Overall,

we observe a linear performance degradation with an increasing number of VMs. This

is because the forecasting models in the R baseline version are implemented as a single

threaded program. Every request is dealt with sequentially. This is also the main reason

we configure virtual machines with a single processor for each rDSS server. There are

exceptions for some packages which support parallel processing such as the automatic

ARIMA process. Figure E.6 shows the system performance using multi-core processors

for the automatic ARIMA process. We observe that performance increases slowly when
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Figure E.4: Evaluation of the proposed F1PaBFD algorithm.

the number of cores are greater than four. This is because the Hyper-Threading tech-

nology is seen as physical processors by the underlining operating system, but it does

not preform as well as physical processors. In future work, other high performance

solutions will be investigated, for example, the Revolution R [Nie11].

The average run time for each algorithm with the historical data length of {2, 4, 8}

hours is shown in Figure E.7. In Figure E.7, the performance of F1PaBFD-IID, -RW and

-STS algorithms exhibit no clear changes when data length increases. On the other
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hand, F1PaBFD-ARIMA and -ETS performance decrease rapidly. The results depend

solely on the complexity of the algorithms. Figure E.8 shows the memory footprint

size increases slightly when the number of VMs increases. The results are heavily

influenced by the experimental methods. In the experiment, at the beginning of the

simulation, we create connections for each VM to the rDSS system. Each connection

remains connected until the simulation ends. Each connection consumes approximately

140KB memory. We also do memory garbage collection at the end of each request,
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Figure E.8: Memory and bandwidth requirements for single node rDSS system.

so that the system memory does not get dirty after executing for a while. Memory

requirement can be estimated by 140∗c+D+P in KB, where c is number of connections,

D is data length and P is the memory required by the R framework itself. Network

bandwidth consumption depends solely on the length of the historical data used for

building the models.

E.4 Conclusion

In this work, we introduced a forecast-based power-aware server consolidation algo-

rithm. The main objectives are to maximize energy efficiency while keeping SLA vio-
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lation as low as possible. The rDSS system is provided as a service and deployed on

clouds. It can be used as a plug-in service or integrated into existing clouds. The rDSS

builds forecast models for each individual VM and predictions are made as to their fu-

ture CPU resource requirements. We evaluated the new forecast based algorithms using

several advanced modeling techniques including auto ARIMA, ETS, STS, IID and RW.

The simulation based evaluations were conducted for the proposed versions of the algo-

rithm with respect to their consistency, robustness and performance. The experiments

also included, for comparison, a state-of-the-art alternative VM placement algorithm.

The results show that the proposed approach can significantly reduce power consump-

tion, the number of VM migrations and SLA violation comparing to other heuristic

algorithms. We also evaluated the rDSS system in terms of its performance.
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