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This paper introduces a screw theory based method termed constraint and position identification (CPI)
approach to synthesize decoupled spatial translational compliant parallel manipulators (XYZ CPMs)
with consideration of actuation isolation. The proposed approach is based on a systematic
arrangement of rigid stages and compliant modules in a three-legged XYZ CPM system using the
constraint spaces and the position spaces of the compliant modules. The constraint spaces and the
position spaces are firstly derived based on the screw theory instead of using the rigid-body
mechanism design experience. Additionally, the constraint spaces are classified into different
constraint combinations, with typical position spaces depicted via geometric entities. Furthermore, the
systematic synthesis process based on the constraint combinations and the geometric entities is
demonstrated via several examples. Finally, several novel decoupled XYZ CPMs with monolithic
configurations are created and verified by finite elements analysis. The present CPI approach enables
experts and beginners to synthesize a variety of decoupled XYZ CPMs with consideration of actuation
isolation by selecting an appropriate constraint and an optimal position for each of the compliant

modules according to a specific application.

Keywords: compliant parallel manipulator; conceptual design; position space; constraint space; screw
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1. Introduction

The last decade has witnessed the rapid development of compliant parallel manipulators (CPMs). CPMs are
used to transmit/transform displacements, forces and energy via the deflection of their flexible parts, rather than
employing traditional sliding or rolling interfaces [1]. The application of CPMs has been experiencing a rapid
increase due to their advantages such as high precision, simplified manufacture, low part count, and ability to
miniaturize [2-6]. Planar translational CPMs [7] play a very important role in a variety of fields such as the
atomic force microscope [8, 9], micro-assembly [10], data storage [11], and MEMS process [12]. Recent years,
XYZ CPMs are gaining more and more attentions in a wide range of potential applications, especially in
micro/nanomanipulation, adjustable mounting, precision alignment and actuation instruments, MEMS sensors
and actuators, energy harvesting, as well as consumer products [13-15].

Desired XYZ CPMs should provide highly decoupled translations along three orthogonal axes (X, Y and Z),
while the rotational stiffness about the three axes should be much higher than the translational stiffness along the
three axes [14, 15]. An XYZ CPM has three non-redundant parallel legs where each leg should assist to actuate
one of the translations between the motion stage (MS) and the base stages (BSs). The legs should have the
following characteristics [15, 16]: (a) each leg should have an actuated stage (AS) that is permitted to translate
in the actuation direction only for actuation isolation (only widely used linear translational actuators such as
voice coils, linear motors, and piezoelectric stacks are considered, which cannot tolerate off-axis loads or
displacements); (b) the translational motion of an AS should be transmitted to the MS by the leg without
influencing the other motions of the MS; and (c) undesired rotational motions of the MS should be constrained
by the three legs. Considering the above desired characteristics, the synthesis of XYZ CPMs is still a
challenging issue [15].

Most existing XYZ CPMs were designed based on qualitative arguments and rationale [15]. Recent years,
many XYZ CPMs were synthesized based on pseudo-rigid-body model (PRBM) substitution approach including
the direct substitution and the building block based substitution [14, 17-19]. This method often begins with a
rigid-body manipulator which can provide the same motions as the desired XYZ CPM. And then the rigid-body
manipulator can be converted to an XYZ CPM by replacing the rigid kinematic joints/chains with equivalent
compliant modules/building blocks [3]. It is an efficient approach to synthesize XYZ CPMs for the designers
who have a lot of knowledge about the type of rigid-body parallel manipulators. However, this PRBM
substitution method only leads designers to the XYZ CPMs which are characterized by the associated rigid-body

manipulators [3]. Fortunately, a constraint map for the XYZ CPM synthesis was proposed by Awtar et al in [15].



This constraint map decomposes an XYZ CPM into rigid stages and compliant modules, and each compliant
module is allocated specific constraints. In [15], all compliant modules were designed based on the allocated
constraints, and an XYZ CPM was presented via assembling the rigid stages and the compliant modules together.
As known, different compliant modules can be designed on the basis of the specific constraints, thus new XYZ
CPMs can be obtained through replacing the compliant modules of the XYZ CPM designed in [15] with other
compliant modules with the same constraints. However, the constraint map is only suitable for certain types of
XYZ CPMs, as the constraints of the compliant modules in the XYZ CPMs as shown in [17-19] are beyond the
range of the constraint map. Overall, the existing methods of synthesizing XYZ CPMs are limited to some types
of XYZ CPMs; hence a more efficient approach of synthesizing XYZ CPMs with consideration of the actuation
isolation is needed.

The existing approaches to design compliant modules/joints such as the constraint-based method [20], the
screw-theory-based method [21-26], and the freedom and constraint topology (FACT) approach [27-31] have
been adopted widely. The constraint-based method is based on the concepts: (a) the motions of a given module
is determined by the locations and orientations of the constraint members, wire beams and/or sheets, applied on
it; and (b) one non-redundant constraint removes one degree of freedom (DOF) from the given module [32-34].
The constraint-based method is widely used to synthesize compliant modules via selecting appropriate
constraints and identifying their locations and orientations [20]. The screw-theory based method and the FACT
approach provide mathematical expressions and geometric shapes, respectively, to efficiently help designers
identify the location and orientation of each constraint member [21-31]. Besides, the screw-theory-based method
and the FACT approach were also employed to design decoupled XYZ CPMs [24-26, 31]; however, the
actuation isolation [15] was not taken into consideration. Hopkins et al [35] recently reported several planar
CPMs that can decouple displacement-based actuators using the FACT approach. But the FACT method still
has the difficulty in synthesizing XYZ CPMs since there is no a three-DOF translational DOF space for a
parallel module.

Based on the statements above, an ideal XYZ CPM design process can rely on the following steps: (a)
decomposing an XYZ CPM into rigid stages and compliant modules; (b) designing the rigid stages; (c)
designing the compliant modules individually using the existing methods, and (d) assembling the rigid stages
and compliant modules together. In this design process, the main work is to identify the constraints and
positions (locations and orientations) of the compliant modules, which are used to design and assemble the

compliant modules. This paper will introduce a screw theory based approach termed constraint and position



identification (CPI) approach to identify the constraints and positions of the compliant modules followed by a
systematic XYZ CPM design procedure. The constraints of the compliant modules identified by the CPI
approach can produce much more types of XYZ CPMs compared with the constraints obtained using the
constraint map in [15].

The CPI approach focuses on the conceptual design of decoupled XYZ CPMs with consideration of
actuation isolation to meet the kinematic requirements. In early-stage conceptual design, all wire beams are
regarded as ideal constraints, which means that the stiffness along the constraint line is infinite large, but those
along other directions are infinite small. In addition, this paper assumes that all the compliant modules produced
by the decomposition of an XYZ CPM are independent of each other. This means each of the compliant
modules can constrain a DOF of the connecting rigid stage totally depending on its own structure rather than
using the help of other compliant modules.

The remainder of this paper is organized as follows. Sections 2 and 3 consider the fundamental theories to
be used in the CPI approach and the XYZ CPM decomposition, respectively. In Sections 4 and 5, constraint
spaces and position spaces of the compliant modules are studied. The design procedure based on the CPI
approach is summarized in Section 6, followed by several detailed example demonstrations in Section 7. Finally,

the conclusions are drawn in Section 8.

2. Background knowledge
2.1. Twist and wrench

It is well known that motions and constraints can be represented by screw vectors, twists and wrenches,
respectively [36]. Twists and wrenches can be represented as twist lines and wrench lines, with locations,
orientations and pitches. The pitch describes the translational displacement per rotation in the twist, and it also
refers to the coupling between the translational force and the rotational force in the wrench. In practice, a
translational constraint can restrict the translational motion along the wrench line with two opposite directions.
Similarly, a rotational constraint can restrict the rotational motion about the wrench line with two opposite
directions.

Therefore, a constraint can be represented as a wrench with two possible opposite directions, which can be

written as Eq. (1) and illustrated in Fig. 1(a).



[fi rx fj+qu]T force and moment

{{:ﬂ: (A A q=0, pure force 1)
[0 rj]T g—>o0,pure moment
where {'is a wrench. f and z are two three-dimensional vectors which represent translational and rotational loads,
respectively. r is a 3x1 location vector which points from the origin of the coordinate system to a point on the
wrench line. The pitch is defined by g=(f-z)/(f-f). Here, j=+1 which describes the two possible opposite
directions of the wrench.
The motion that can be restricted by a constraint can be represented as a twist with two possible opposite

directions, which can be written as Eq. (2) and illustrated in Fig. 1(b).

[wi cxwi+ pwi]T screw motion
Wi . T .
&= il [wi oxwi] p =0, pure rotation 2)
[0 vi]' p—>oo, pure translation

where & is a screw vector associated with the motion, w and v are two three-dimensional vectors which represent
rotational and translational motions, respectively. ¢ is a 3x1 location vector which points from the origin of the
coordinate system to a point on the twist line. The pitch is defined by p=(w-v)/(w-w). And i=+1 which describes

the two possible opposite directions of the twist.

Fig. 1 lllustration of a wrench and a twist: (a) a wrench ¢ with a location vector r, an orientation vector f, and a scalar value

of pitch g; and (b) a twist & with a location vector c, an orientation vector w, and a scalar value of pitch p.

In a coordinate system O-XYZ, the twists and wrenches along and about the three axes are defined as
principal twists as shown in Fig. 2(a) and principal wrenches as shown in Fig. 2(b), respectively [23]. Based on

Egs. (1) and (2), the principal twists and the principal wrenches can be written as
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where the subscripts tx, ty and tz indicate the translations along X-, Y- and Z-axes, and the subscripts rx, ry and
rz indicate the rotations about X-, Y- and Z-axes, respectively. All non-zero elements in the screw vectors equal
to +1, which represent the two possible opposite directions of the screw vector. Obviously, any one twist or

wrench can be described as the linear combination of the principal twists or principal wrenches.

X (b)

Fig. 2 Hlustration of principal twists and principal wrenches: (a) principal twists, and (b) principal wrenches.

kfX X kf T
X s iy Y

Fig. 3 Representation of the linear combination of the principal wrenches.

In an O-XYZ coordinate system, the constraint of a compliant module can be described as the linear
combination of the principal wrenches as shown in Fig. 3, denoted by

=K, & Ky &y K, & Rt G K, L 4)

where Ky, Ky, Kg, Ko Kry and ki are termed stiffness coefficients as the value of each stiffness coefficient is

directly proportional to the stiffness of the compliant module in the same direction. For a compliant module, if

the stiffness in a direction is infinitely large compared with others, the compliant module has a degree of

constraint (DOC) in this direction; else if the stiffness in a direction is infinitely small compared with others, the



compliant module has a DOF in this direction. For convenience, this paper specifies that the stiffness coefficient
equals 1 if the associated stiffness is infinitely large, while the stiffness coefficient equals O if the associated
stiffness is infinitely small. In other words, if a stiffness coefficient equals to 1, the direction associated with the
stiffness coefficient is the direction of a DOC, otherwise it is the direction of a DOF.

The principal twist or the principal wrench has two possible opposite directions, and the instantaneous
direction of a principal wrench is always in the opposite instantaneous direction of the counterpart principal
twist. Take ¢ and &, as shown in Fig. 4(a) for instance, the wrench ¢, always resists the motion denoted by the
twist &, hence the instantaneous directions of the wrench and the twist are always opposite, which are

represented in Figs. 4(b) and 4(c).

Y Y Y
é‘tx é: tx X é“x étx X 4‘”( é:tx X
< />o > /o /o >
Z
Z (@ (b) 2 ©

Fig. 4 The instantaneous direction of a principal wrench: (a) {xand &, are bidirectional screw vectors, (b) and (c) ¢y is

always in the opposite direction of &,.

2.2 DOF identification based on the relationship of twists and wrenches
This section briefly reviews how to identify the DOF of a rigid stage based on the screw theory. The dot

product of a wrench and a twist in a coordinate system is introduced in Eqg. (5) [36, 37].
ki .
Eod =i wl]|: szl-ﬂwLwl'Tj (5)
T

The operator ‘°” means the dot product of a twist and a wrench. If the result of the dot product equals to zero,
the motion associated with the twist will not produce work under the action of the wrench. In other words, if the
dot product equals to zero, the wrench will not resist the motion associated with the twist, i.e., the wrench is
reciprocal to the twist. Therefore, if a twist of a rigid stage is reciprocal to all wrenches applied to the rigid stage,
the motion associated with the twist will not be constrained, and the twist is a DOF of the rigid stage. However,
if the dot product is not equal to zero, the motion associated with the twist will be constrained, i.e., it is a DOC

of the rigid stage.



2.3 Coordinate transformation of wrenches
This section depicts review how to transform a wrench from a coordinate system ‘A’ to another coordinate
system ‘B’. Equation (6) [37] shows that a coordinate transformation matrix T, which can be used to perform

the transformation of a wrench from one coordinate system to another.

0 -d, d

T R 0 here D= d OZ oT
ToR, R, where D= d, - (6)
-d, d 0

y X
where the sub-matrix Ry, is a 3x3 rotation matrix and the sub-matrix D is a 3x3 location skew-symmetric
matrix. Based on this transformation matrix, a wrench in a coordinate system ‘A’ can be represented in another
coordinate system ‘B’ via pre-multiplying the coordinate transformation matrix T. The entries dy, d, and d, in

the sub-matrix D are the coordinates of the origin of the coordinate system ‘A’ in the coordinate system ‘B’.

3. XYZ CPM decomposition

As mentioned in Section 1, a desired XYZ CPM has three non-redundant parallel legs, each leg of which
should assist to actuate one of the translations between the MS and the BSs, and should include an AS.
Therefore, the rigid stages in an XYZ CPM are MS, ASs (AS-X, AS-Y and AS-Z are associated with the
motions of the MS along the X-, Y- and Z-axes, respectively) and BSs (BS-X, BS-Y and BS-Z are associated
with the motions of the MS along the X-, Y- and Z-axes, respectively). The compliant module between the MS
and the AS is defined as the passive module (PM) and the compliant module connecting the AS to the BS is
termed as the active module (AM). Hence, the compliant modules in an XYZ CPM are the PMs (PM-X, PM-Y
and PM-Z are associated with the motions of the MS along the X-, Y- and Z-axes, respectively), and the AMs
(AM-X, AM-Y and AM-Z are associated with the motions of the MS along the X-, Y- and Z-axes, respectively).
Note that the compliant modules, PMs and AMs, can be of the parallel, serial or hybrid type. The rigid stages
and compliant modules of an XYZ CPM are represented in Fig. 5(a).

Note that this paper assumes that the compliant modules, PMs and AMs, are independent of others as
mentioned earlier. Due to this assumption, a small number of decoupled XYZ CPMs such as the one shown in
Appendix A won’t be synthesized using the CPI approach, which, however, can be obtained using the

appropriate modifications on the decoupled XYZ CPMs proposed in this paper.



AS domain MS domain AS domain

(a) (b)
Fig. 5 Hllustration of the rigid stages and compliant modules of an XYZ CPM: (a) the rigid stages and compliant modules in

an XYZ CPM, and (b) the rigid stages and compliant modules in different analysis domains, MS domain and AS domains.

Based on the above decomposition, the main work of synthesizing an XYZ CPM is to design the compliant
modules, which includes: (a) identifying the constraints of the compliant modules to synthesize the compliant
modules using the existing design approaches; and (b) identifying the positions (locations and orientations) of
the compliant modules in an XYZ CPM. For the XYZ CPM shown in Fig. 5(a), the permitted motions of the
MS and the ASs are specified. More specifically, the MS is permitted to translate in the three orthogonal
directions, and each AS is constrained to translate in the direction of the force of the actuator. The motions of
the MS or the ASs are controlled by the compliant modules connecting with them. Therefore, the constraints of
the compliant modules can be identified according to the permitted motions of the MS and ASs. In order to
identify the constraints of the compliant modules easily, the rigid stages and the compliant modules are assigned
to different analysis domains as shown in Fig. 5(b). The constraints of the compliant modules in a domain are
subject to the permitted motions of the rigid stage in the domain. That is to say that the constraints of the MS
arise from the three connected PMs in parallel, and the constraints of each AS arise from the adjacent PM and
AM in parallel. Therefore, the DOC of the MS equals to the total contribution of the DOC of the three PMs.
Similarly, the DOC of each AS equals to the total contribution of the DOC of the PM and the AM in the same
leg. This paper decomposes compliant modules based on DOC (or constraints) only since the DOC relationship
between a rigid stage and the associated compliant modules can be represented by simple addition expression
only. In addition, Due to decomposing compliant mechanisms based on constraints only, the AM does not need
to be a translational joint so that some of the AM’s constraints can be transmitted to the PM to constrain the AS

motion.



The constraint space of a compliant module is the combination of all the permitted constraints of the
compliant module. As shown in Fig. 5(b), the three PMs are all included in the MS domain, and there are
intersection fields between the MS domain and the AS domains, thus the constraint spaces of the PMs and those
of the AMs interrelate with each other. For this reason, this paper names both the constraint spaces of the PMs
and those of the AMs as the constraint spaces of compliant modules. The position space of a compliant module
is the combination of all permitted positions in an XYZ CPM system where the constraint of this compliant
module in the XYZ CPM system remains unchanged if the position of the compliant module changes within the
position space. The position space of a compliant module can obtained according to the constraints of the

compliant module.

4. Constraint spaces
4.1 Actuation constraints and coordinate system definition

In an XYZ CPM system, the three translational motions of the MS are actuated by the three linear
translational actuators, and the forces of the actuators can be regarded as wrenches. A linear translational
actuator can provide a translational force along the actuation axis, but cannot tolerate transverse
forces/displacements [15]. Therefore, the force of a linear translational actuator can be represented by a pure
force wrench. This is also the reason why an AS is allowed to translate in one direction only. The pure force

wrenches of the three actuators in an XYZ CPM system can be written as Eq. (7a) based on Eq. (1).

cAfd wofdl AT nfi] cand e L0 nesi] (7a)

where &, ¢, and ¢; are the three pure force wrenches in a global coordinate system Op-XnY mZnm. Ty, fy and f, are

the directions of the three pure force wrenches, and ry, r, and r, are the three location vectors. In the global

coordinate system, the MS is permitted to translate along the X,-, Y- and Z,,-axes, which can be described as

three translational twists &n.x, &mty @and &n., Dased on Eq. (2). As required by the decoupling characteristic, each

actuator drives one of the three motions without influencing other two motions, thus the following equations can
be obtained based on Eg. (5).

Enx 8320, €106, =0, €4 °C, =0, &1y =0, &1y o8, 20, €,y o8, =0, 8y, 06, =0, &, o6, =0, and &, o, #0 (7h)

It can be concluded from Eq. (7b) that: (a) fy, f, and f, should be parallel to the Xy-, Y- and Zy-axes,

respectively; and (b) ry, ry and r, can be any vectors. In other words, the three actuation forces only need to

parallel to the X,,-, Y ,- and Z,-axes, respectively.
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A PM is used to transmit the force of an actuator from the AS to the MS without influencing the forces
transmitted by the other two PMs, so the PM cannot be compressed and elongated along the direction of the
actuation force transmitted by the PM, i.e. the PM has a pure force wrench along the actuation direction. A PM
connects the MS and one of the ASs using its two ends, so the force of the actuator is input from the end
connecting the AS and output from the end connecting the MS. Both the input force and the output force of a
PM should be parallel to the axis of the global coordinate system, but the input force and the output force are not
always collinear. According to the description above, three PM local coordinate systems (O px-XpxY pxZpxs Opy-
XoyYpyZoy and Op-X,,Y 5, Zy,) and three AM local coordinate systems (Ou-XaxYaxZaxs OayXayYayZay and Og,-
Xa Y a2Zs,) are set up as shown in Fig. 6.

Figure 6 shows that: (a) the MS is permitted to move in the X,,-, Y- and Z-axes of the global coordinate
system; (b) the PM local coordinate systems are located at the center points of the interfaces between the MS
and the three PMs, and are fixed to the MS; (c) each PM is represented as two parallel lines, a parallel line
connector, and two small virtual rigid stages which are used to connect the PM to the MS and the AS. The two
parallel lines indicate the input direction and the output direction of the actuation force transmitted by the PM;
(d) each PM has a pure force wrench along the X-axis of the PM local coordinate system; (e) each AS is
constrained to translate only along the X-axis of the PM coordinate system; (f) the AM local coordinate systems
are located at the center points of the interfaces between the ASs and the AMs, and fixed to the ASs; (g) each
AM is expressed by one straight line and two virtual rigid stages which are used to connect the AM to the AS
and the BS; and (h) each BS is bound to the ground, whose six DOF are completely constrained by the ground.
The constraint spaces and the position spaces will be identified based on the established coordinate systems (Fig.

6) in the next two sections.
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Connecting stage

Actuation force input in PM-X

Actuation force output in PM-X

Parallel line connector

Fig. 6 lllustration of the rigid stages, compliant modules and actuators in an XYZ CPM system and representation of the
coordinate systems (global coordinate system Opn-XmYmZm; PM local coordinate systems Opy-XoY pxZpx: Opy-Xpy Y pyZpy and

Opz~Xpz Y p2Zpz; and AM local coordinate systems Oau-XaxY axZaxs Oay=XayYayZay and Oqp-Xy, Y ,Z5,). (Online version in color.)

4.2 Constraint space identification

The motions of the rigid stages and the constraints of the compliant modules are defined as shown in Table 1.
In Table 1, &y, Eetyy Entzy Eourxy Exry, @Nd ey, (47 denotes m, ax, ay, az, bx, by or bz) are the three translational
DOF along X-, Y- and Z-axes and three rotational DOF about X-, Y- and Z-axes of the global or local
coordinate systems. &, ¢y and &y, are the constraints of the three PMs, and {,, oy and &, are the constraints of
the three AMS. (e, $etyy otz Crarxs Gory aNd Gy, (47 denotes px, py, pz, ax, ay, or az) are the principal wrenches
in the local coordinate systems, and K«_i, Kx.y, Kx.iz, Kx.rx, Kx.ry @nd kv, (‘+* can be px, py, pz, ax, ay, or az) are the
stiffness coefficients in the local coordinate systems.

For an XYZ CPM, the motions associated With ., &m-tys Emetzr Eaxetr Say-t AN Eartx are permitted, while the
others should be constrained. All the motions of the BSs are restricted by the ground. Moreover, the permitted
constraints of the compliant modules can be identified in the different domains based on Eg. (5). The twist and
the wrench in Eqg. (5) should be in the same coordinate system, so the wrenches in Table 1 should be
transformed to the appropriate coordinate systems. More specifically, the ¢, ¢y and ¢, should be transformed
to the global coordinate system, because these wrenches are used to identify whether the twists &n.x, Emetyr Sm-tzs

Enro Emary @nd &n.r, are constrained or not. Similarly, the ¢, ¢,y and ¢, should be transformed to the coordinate

12



system Opy-XoxY pxZpxs Opy=Xpy Y pyZpy and Opr-Xp, Y .2y, respectively. These coordinate transformation matrices

can be derived as shown in Egs. (8) and (9) based on Eq. (6).

Table 1 The definitions of the motions of the rigid stages and the constraints of the compliant modules in an XYZ CPM.

Item Motion of rigid stage Constraint of compliant module Coordinate system
MS fm-tx: fm-tv: fm-tp fm-rx: fm-rvx 'fm-rz / Om'XmYmZm
PM-X / Cpx: kpx-thpx-tx"' kpx-tprx-ty"' kpx-tszx—tz"' kpx-erpx—rx Opx'xprprpx

+ kDX-I’VCDX-I’V-'- kpx-rszx-rz

PM-Y / Goy™ Koy-opy-ct Koy-tyCpy-tyt Koy-tzlpy-tzt Koy-rpy-rx  Opy=XpyYpyZpy
+ knv—rv(ov—rv"' va—rzCﬂV-rz
PM-Z / sz: kpz-txépz-tx"' kpz-ty{pz-ty+ kpz-tzépz-tz'*' kpz-rx{pz-rx Opz'xszpzsz
+ kuz»rvcoz»rv"' knz»rz{nz»rz
AS-X éax-txr ‘szax-tv: fax-tz: fax-rx: fax-rvx fax-rz / Onx'xanannx
AS-Y fav-tm fav—tv- éav—m fav—er fav—rw fav—rz / ODV'XDVYDVZDV
AS-Z é:az-t)o é:az-tw é:az-tb éaz-er éaz-rw faz-rz / ODZ-XDZYDZZDZ
AM-X / Cax: kax»txiax»tx*’ kax-ty{ax-ty+ kax»tz{ax-tz"' kax-rx{ax-rx Oax'xaxYaxZax
+ kax»rvcax»rv"' kax»rz{ax»rz
AM-Y / Cay: kay-txé‘ay-tx"' kay»ty{ay»ty+ kay-tzé‘ay-tz"' kay—rx{ay-rx an'xayYayZay
+ kav—rvé‘av-rv"' kav-rzé‘av-rz
AM-Z / Caz: kaz-txé‘az-tx"' kaz-ty{az-ty+ kaz-tz;az-tz"' kaz-rxé‘az-rx Oaz'xazYazZaz
+ kaz-rv{az-rv"' kaz-rzé‘az-rz
BS-X ‘ssz-tx: é‘bx-tv: fbx-tz: fbx-rx: fbx-rvx fbx-rz / Om'XmYmZm
BS-Y ébv-txr ‘szbv-tv: fbv-tz: fbv-rx: fbv—rvx fbv-rz / Om'XmYmZm
BS-Z sz-t)o é:bz-tv‘ ébz-tb sz-r)o sz-er sz-rz / Om'memZm
1 0 0 000 [O -1 0 000 [O0O 0 -1000]
0 1 0 000 1 0 00O 0 1 0 00O
0 0 1 000 0 0 1 00O 1 0 0 00O
Toq o ~Z, Yy 100 Ty -z, 0 vy, 0-10 T = Y. -2, 0 00 -1 8)
z, 0 —x, 010 0 -z, x, 100 X, 0 -z, 010
Y ¥ 0 001 Xy Yy 0 001 0 x, vy, 100

where Ty, T,y and T, are the coordinate transformation matrices from the PM local coordinate systems to the
global coordinate system. Points (Xpx Ypx Zpx)s (Xpys Yoys Zpy) @nd (Xpz, ez, Zpz) are the coordinates of the origins of

the PM local coordinate systems in the global coordinate system.

1 0 0 00O 1 0 000 1 0 0 000
0 1 0 000 0 1 0 000 60 1 0 o000
0 0 1 000 0 1 000 0 0 1 o000

ToT] Ty= Te= 9
0 -z, VY¥n 100 | 0 -z, ¥y, 100 0 -z, v, 100
z, 0 -x, 010 z, 0 -x,010 z, 0 -x, 010
|~V X 0 00 1] Yoy X%y O 00 1] Yy X, 0 00 1]

where T, Tay and T, are the coordinate transformation matrices from the AM local coordinate systems Ogy-
XaxY axZaxs Oay-XayY ayZay and Ogr-Xy,Y5,Zo, t0 the PM local coordinate systems Opy-XpxY puZpxs Opy-XpyY pyZpy and Op,-
Xp2Y p2Zpzs r€SPECtively. POINtS (Xax, Yaxs Zax), (Xays Yays Zay) @Nd (Xaz, Yaz, Zaz) are the coordinates of the origins of the

AM local coordinate systems in the PM local coordinate systems.
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Based on Egs. (6), (8) and (9), the ¢, ¢y and &, can be transformed to the global coordinate system via pre-

multiplying Tp, Tpy and Ty, respectively, which are represented in Eqgs. (10)-(12). And the i, &y and &, can

be transformed to the PM local coordinate systems via pre-multiplying Tay, T,y and T, respectively, which are

shown in Egs. (13)-(15).

. . . . . . . . T
ot =T e = K T Koy oy Ko Tt Ko B Koy By + 2o T Ko s =i e |

pr =pr{py :[kny-ﬁy JPy-ty ! kpy-ﬁx pr-tx ’ kpy-lz pr—u ’_kw»ry pr-ry _Zny pr-tx ’ kpy-rx pr»rx ’ kny-rz pr-rz +Xpy pr-lx ]

. . - . . . . . T
{pz':szcpz =[kpz-(z Jpz-tz ! kpz-ty Jpz-ry ’ kPZ-tx JPZ-(x ’ ypz Jpz»tx _kpz»rz Jpz-rz ! kpl-ry Jpz-fy —sz JPZ-M ’ kPZ"x JPZ"X ]
. . . . . . . . . T
=T~ Ko oo Ky Kot Ja Koo o Kary Ty *Za Jocs Ko Jocrn =Y Joc )
. . . . . . . . . T
€ =T oy Ky By Koy Tayy Ko By K JogrKayy By 2y T Kapre e =Yy oy |

Caz' :Taz{az :[kaz—!x Jazos kaz—ly Jaz—ly ' kazrtz Jazes kaz—rx Jazr kaZ—ry JBZ"V 2 Sz ka“z Jooe ™Ya Jeois ]

(10)

(11)

(12)

(13)

(14)

(15)

In Egs. (10)-(15), the jrix Jrtys J*tzs Jom Jory @Nd jurz (*+* denotes px, py, pz, ax, ay, or az) equal to =1. As

discussed in Section 2.1, the instantaneous direction of a principal wrench is always in the opposite

instantaneous direction of the counterpart principal twist. Therefore, the elements in an entry of the screw

vectors as shown in Egs. (10)-(15) should have the same sign. Take Eq. (10) for example, the elements Koy.rzjpx-rz

and —YYpyjox-tx IN the entry Koxrzjpx-rm—Ypxipx-tx are always with the same sign. So Kox.rzipx-rz—Ypxipx-tx €an be rewritten

as +1 multiplied by the sum of the absolute values of Kyy.r, and Yy, i.€. £(|Kox-rz|+[ypx[)- As a result, Egs. (10)-(15)

can be rewritten as

k

+|

Zox

) =(

) ! kpy-rx jPY"K o+ ( ‘ kpy'rz

HYpe

w13} ]
)]
) Ko |
) (K ) |
) (e}

)t (Kl |

&= K e Ky o Kt e K dpeors ([ Ky

é'rlyl :pr{rly :|: kpy-ty jpy-ty ’ kpy-tx jpy-tx ’ kpy-tz jpy-tz ’ i(‘kp)’-fy ‘+‘ ZP)’

+‘ I(pz—rz

(pzlszz{pz =|:kpz—'z jpz—tz ! kpl—tv jpz—ty : kpz'!x jpz'tx i+ (‘ Yoz )’ t (‘ kpZ'ry ‘+‘ Xoz

=T K s Ky docy K T K oo (Ko [ #1200

& =T Koo Koo By Ko B Koo By 2 ([ {2y

kaz-ry ‘+‘ Zy

caz‘ :—I—az é’az :|: kaz-tx jaz-tx ’ kaz-ty jaz-ty ’ kaz-tz jaz-tz ! kaz-rx jaz-rx ’ i(

(16)

a7

(18)

(19)

(20)

(21)

According to the permitted motions of the MS, Eq. (22) can be derived based on Eg. (5) in the MS domain.

And the values of the stiffness coefficients as shown in Eq. (23) can be identified based on Eqgs. (16)-(18) and

(22).
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fm—tx Oé‘px #0 and é:m—tx Oé‘py =0and é:m—tx O{pz =0
Emyoln =0and &, oL, '#0and & . of,, '=0
fm-tz O{px '=0and ‘fm-tz ngy '=0and fm-lz Oé‘pz #0

S olpx 20 andfor &, oL, "#0andfor &, o, '#0 )
ém—ry °¢px '20 and/or fm—ry Oé‘py '20 and/or fm—w ngz %0
ém-rz Ocpx '#0 and/or fm-rz Oé‘py ‘=0 and/or ‘fm-rz Oé‘pz #0

px-tx =land kpx-ty =0and kPX"Z =0

wu=Landk,,  =0andk, =0

wn=Landk . =0andk =0 (23)

=lor/andk,, =1 or/andk,, =1

PX-rX

mry=L0rfandk, . =1 orlandk , =1
=lor/andk,, =1 orfandk , , =1

px-rz py-rz

~ X X X " =~

It should be noted that Eq. (23) shows the completed solutions for the PM constraints to the MS including
the exact constraints and redundant constraints. However, only independent constraints within each PM are
considered. It should be elaborated that the process of deriving the values of the stiffness coefficients associated
with the rotational DOF of the MS. Take &nnedpx’#0, Ennedpy’#0, and &n.xedy’#0 in Eq. (22) for example,
based on Egs. (16)-(18), the following equations can be obtained: Kp.x#0 or/and |Kpy.yl+|Zpy[#0 or/and |Kg,.-
izl Yz #0. Suppose that Kp.n=0 Kpy-,=0 and k,.,=0, the motions associated &.x cannot be constrained if the
global coordinate system is moved to the locations where z,,= y,,=0. In other words, if Kp.x=0 Kpy.,,=0 and k.
=0, there is still a line about which the MS can rotate. Therefore, at least one of the stiffness coefficients Ky.rx,
Kpy-ry @nd Ky, should not be zero as shown in the fourth row in Eq. (23). Other stiffness coefficients in Eq. (23)
associated with the rotational DOF of the MS can also be obtained based on the process described as above. It
should be pointed out that the results as shown in Eq. (23) are independent of the positions of the PM local
coordinate systems (or the PMs).

In the same way, according to the permitted motions of the ASs in the AS domains, Eq. (24) can be derived
based on Eq. (5) if the constraints of the PMs to the ASs are not considered. And the values of the stiffness
coefficients can be identified as shown in Eq. (25) based on Egs. (19)-(21) and (24). The values of the stiffness

coefficients in Eq. (25) are not subject to the positions of the AM local coordinate systems (or the AMSs) neither.

Ear 0 =0and &, o, ' #0and &, o4, " #0and &, 0 C, "= 0and &, oL, "= 0and &, , oL, " #0
Cayrx © {ay '=0and Sayty © {ay '#0and Saytz © Cay '#0and Cayrx © gay '#0and Capry © {ay '#0and Eayrr © g"ay '=0 (24)
éaz-b( °© cm '= Oand ‘faz-ty ° é‘az ' * oand éaz-tz ° é‘az ' * oand é:az-rx ° éaz ' * Oand faz-ry © éu ' * Oand éaz-rz ° Caz ' * o

Ko =0andk, ,, =1andk,, =landk,  =landk, . =landk,,, =1
Ky =0andk, . =1andk,, =landk,  =landk,  =landk, =1 (25)
Ky =0andk,., =1andk,, =landk,, =landk, =landk, =1
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Equation (23) shows that there are 27 (3x3x3=27) permitted constraint combinations for the PM-X, PM-Y
and PM-Z if the redundant constraint from the three PMs to the MS is not considered, i.e. exactly-constrained
design. It can be seen from Eq. (25) that each AM has five constraints in the AM local coordinate system if the
constraints of the PM to the AS are not considered.

At this stage, ASs are completely constrained by the AMs (each AM has five constraints in the AM local
coordinate system) with the 27 permitted exact-constraint combinations for the PMs, which are shown in Table
B.1 in Appendix. B. The constraint combinations in Table B.1 form the basic constraint space of the compliant
modules (i.e. B-constraint space), which is a subspace of the constraint spaces of the compliant modules.

As shown in Fig. 5(b), each PM is included not only in the MS domain but also in the AS domain. Therefore,
each AS can be constrained by the PM besides the AM. The following two conditions should be met if a PM can
constrain an extra rotational DOF of the AS connecting to the PM: (a) the PM in one leg should have the
constraint associated with the extra rotational DOF of the AS; and (b) this extra rotational DOF of the AS should
be restricted by the other leg(s). Based on the two conditions specified above, another subspace of the constraint
space termed as T-constraint space can be gained via transmitting some of the rotational constraints (each PM
has one translational constraint which is used to actuate the MS, so the translational constraints of the PMs
cannot be transmitted to the AMs) from the AMs to the PMs in the B-constraint space. One or more redundant
constraints can be added for the PMs and AMs in the B-constraint space and the T-constraint space, and
therefore the constraint space with redundant constraints is defined as S-constraint space. Overall, the complete
constraint space of the compliant modules consists of the B-constraint space, the T-constraint space and the S-

constraint space, the relationships of which are represented in Fig. 7.

Constraint spaces

' '

B-constraint space T-constraint space S-constraint space
Transmit some constraint(s) T Add some redundant T
from AMs to PMs rotational constraint(s)
Add some redundant rotational constraint(s)

Fig. 7 Relationships among the B-constraint space, T-constraint space and S-constraint space.
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5. Position space
5.1 PM position space

From the discussion in Section 4.2, the results of the stiffness coefficients shown in Eq. (23) are independent
of the positions of the PMs. Therefore, PMs can translate freely, which cannot affect the constraints of the PMs
to the XYZ CPM system. Moreover, each PM cannot rotate about the Y- and Z-axes of the PM local coordinate
system, because the direction of the pure force wrench of the PM should be parallel to the local X-axis. If using
three straight lines to represent the three PMs and ignoring considering the rotations of the three PMs about the
three X-axes of the three PM local coordinate systems, the permitted positions of the three PMs can be shown in

Fig. 8.

Zm Zm Zn
Ym/ = Yo -Xm Ym Xm

(@ (b) (c) (d)
Fig.8 Permitted positions of the three PMs excluding considering the rotations about the X-axes of the three PM local
coordinate systems: (a) permitted positions of the PM-X (red lines), (b) permitted positions of the PM-Y (green lines), (c)
permitted positions of the PM-Z (blue lines), and (d) permitted position combination of the three PMs. (Online version in

color.)

The following work is to identify if a PM can rotate about the X-axis of the PM local coordinate system via
taking PM-X for example. Based on Table 1 and Eq. (23), the wrench of the PM-X can be written as

L RS S RIS (26a)

The coordinate transformation matrix in terms of the rotation about the X-axis is shown in Eq. (26b) based

on Eq. (6).
(1 0 0 0 0 0 ]
0 cos(ar) -sin(x) O 0 0
|0 sin(a) cos(a) O 0 0
ToxTo g 0 1 o0 0 (26b)
0 0 0 0 cos(a) —sin(ex)
10 0 0 0 sin(a) cos(a) |
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where « is the angle of the rotation about the X-axis of the PM local coordinate system Op-XpiY pxZpx. After the
rotation, the wrench of the PM-X in the PM local coordinate system can be represented as .., which can be

written in Eq. (27) based on Eqgs. (26a) and (26b).

M ] [ k X-tX. J X-1X ]
kpx-lx Jpx-tx P 0 P
0
0 0
{px—r :TPX'TXCPX = J = pX-TX. jpxrrx (27)
PX-rx Jpx-rx
K,.., COS(@) Ty =K, SIN(A) i( Koy C08(05)\+ Koz Sln(a)\)
| Ky SIN@) Jyy Ko, COS() ]y | i( Koy SIN(@)HKp cos(a)\)_

where Kox.ryCOS(a)jpx-ryKpxrzSIN(0)jpxr 18 eQUivalent to £(|Kpy.r,COS(a)|+|Kpx-rzSin(a)[) because Kpx.ryCoS(at)jpx-ry and

—KpxrzSIN(@)jpxrz Always have the same sign. Similarly, KoxrySin(a)jox-ry+Kox-rzCO8(a)jpx-rz 1S equivalent to (|Kox.

ySIN(@) [+Kpxc2C08(01))-

The PM-X is able to rotate about the X-axis of the PM local coordinate system if the wrenches ¢ and ¢pxr
maintain equivalent. It can be concluded from Eq. (27) that: (a) the PM-X can rotate about the X-axis if Ky
=Kpxz=0 0or 1; and (b) the PM-X cannot rotate about the X-axis if Kpx.ry#Kpx-rz-

Overall, the position space of a PM is summarized as follows:

(@) The PM can translate freely, but cannot rotate about the Y- and Z-axes of the PM local coordinate system,
which is represented in Fig. 8;

(b) The PM can rotate about the X-axis of the PM local coordinate system if the PM has the rotational
constraints about the Y- and Z-axes in the PM local coordinate system, else if the PM has no the two
rotational constraints.

(c) The PM cannot rotate about the X-axis of the PM local coordinate system if the PM can provide one of the
two rotational constraints about the Y- and Z-axes in the PM local coordinate system.

Note that in this section only the position space for the PM as a whole is considered. Actually, each PM can
be comprised of several compliant joints in series, so the position spaces for the individual compliant joints exist

within the PM [38], which is out of the scope of this paper.

5.2 AM position space

According to Section 4.2, the results of the stiffness coefficients as shown in Eq. (25) are independent of the
positions of the AMs. Therefore, the AM can translate freely, which cannot affect the constraints of the AMs to
the XYZ CPM system. Moreover, each AM cannot rotate about the Y- and Z-axes of the AM local coordinate

system so that the DOF direction of the AM keeps the same as the direction of the force of the actuator.
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The following work is to identify whether an AM can rotate about the X-axis of the AM local coordinate
system via taking AM-X for example. Based on Table 1 and the AM constraint space discussed in Section 4.2,
the general wrench of the AM-X can be written as

Cox= Gty Kaxerx€aerct KaxeryCaxery Kaserzlaerz-
The coordinate transformation matrix in terms of the rotation about the X-axis is shown in Eq. (28) based on

Eq. (6).

1 0 0 0 0 0
0 cos(B) -sin(B) O 0 0
|0 sin(B) cos(B) O 0 0
ax-rx | 0 0 0 1 0 0 (28)
0 0 0 0 cos(B) -sin(p)
10 0 0 0 sin(B) cos(B) |

where g is the angle of the rotation about the X-axis of the AM local coordinate system. ¢, can be transformed

to ax.r as shown in Eq. (29) after the rotation.

0 0
Koty COS(A) vy Koz SIN(B) S +([cos(B)|+sin(8)))
Kacy SIN(B) Joey o OS(B) Iy +([sin(B)|+[cos(B)])

é‘ax-r :Tax-rx 4‘ax = i Jax-rx N kax—rx jax—rx (29)
kax-ry Cos(ﬂ) jax-ry _kax-rz Sm(ﬁ) jax-rZ i( kax"y COS(,B)“"‘ kax-rz Sm(ﬂ)‘)
_kax-ry sm(ﬁ) jax-ry +kax-rz Cos(ﬂ) jax-fZ i _i( kax"y Sin(ﬂ)‘+ kax'rz COS(ﬂ)‘)

On the basis of Eq. (29), one can obtain that: (a) the AM-X can rotate about the X-axis if Kay.ry=Kax.r=0 Or 1;
and (b) the AM-X cannot rotate about the X-axis if Kax.ry#Kax-rz-
Overall, the position space of an AM is summarized as follows:
(@) The AM can translate freely, but cannot rotate about the Y- and Z-axes of the AM local coordinate system;
(b) The AM can rotate about the X-axis of the AM local coordinate system if the AM has the rotational
constraints about the Y- and Z-axes in the AM local coordinate system, else if the AM has no the two
rotational constraints. The permitted rotations of the three AMs are illustrated in Fig. 9.
(c) The AM cannot rotate about the X-axis of the AM local coordinate system if the AM can provide one of the

two rotational constraints about the Y- and Z-axes in the AM local coordinate system.
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Fig. 9 Permitted rotations of the AMs about the X-axes in the three AM local coordinate systems (PM-X and AM-X are
regarded as red lines; PM-Y and AM-Y are regarded as green lines; and PM-Z and AM-Z are regarded as blue lines).

(Online version in color.)

Similar to the position space discussion for the PM in Section 5.1, if one AM is comprised of several joints
in series, the position spaces for the individual compliant joints within the AM is also out of the scope of this
paper.

6. CPI approach based synthesis procedure

The CPI approach is summarized as follows: once the constraint spaces and the position spaces are
identified using the screw theory at first, the compliant modules in an XYZ CPM can be synthesized based on
the constraints selected from the constraint spaces, and then the compliant modules are combined with the rigid
stages based on the positions selected from the position spaces. The selections differ from case to case
depending on the design requirements. In practice, the final XYZ CPM is chosen from several candidate XYZ
CPMs designed based on different selections. In addition, further modification is needed to make the XYZ CPM
have good characteristics such as compact configuration and easy fabrication. It should be emphasized that the
CPI approach is based on a systematic arrangement of rigid stages and compliant modules using the constraint
spaces and position spaces.

The CPI approach based synthesis procedure is described in Fig. 10.
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>

Input the design requirements Output the XYZ CPM

'

Select constraints for the PMs and AMs
from the constraint spaces derived in
Section 4.2

'

Synthesize the PMs and AMs using the
existing methods such as FACT approach

' I

Implement further modifications on the
Design the MS and set up the global XYZ CPM such as adding redundant

coordinate system constraints to make the design compact
and easily manufacturable

' f

Design the ASs, and then assemble the
AMs to the ASs based on the AM local
coordinate systems as shown in Fig.6 and
identify the positions of the AMs within the
position spaces

Check if the XYZ CPM meets the
design requirements

Design the BSs

Assemble the PMs to the MS based on
the PM local coordinate systems as >

shown in Fig.6, and identify the positions
of the PMs within the position spaces

Fig. 10 Flow chart for the CPI approach design procedure.

7. Synthesis of XYZ CPMs using the CPI approach
This section will use design examples to demonstrate how to synthesize XYZ CPMs using the present CPI
approach. Suppose that the objective is to design XYZ CPMs with monolithic configuration such as the ones

proposed in [15, 19].

Step 1: Select constraints for the PMs and AMs from the constraint spaces shown in Appendix B. According to
the design requirement, it is better to select the combination in which the PM-X, PM-Y and PM-Z have
the same constraints and the AM-X, AM-Y and AM-Z also have the same constraints, i.e., isotropic legs.
The reason is that compliant modules can be designed with the same structure if the compliant modules
have the same constraints. Thus the combination 16 in the B-constraint space (Appendix B) is selected

as the constraints of the compliant modules. In order to obtain more monolithic XYZ CPMs, other three
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cases are derived based on the combination 16, which are shown in Table 2. In Table 2, the case 1 is the
combination 16 in Appendix B. The case 2 is derived via selecting three redundant rotational constraints
for the PMs in the case 1 so that the case 2 belongs to the S-constraint space. The case 3 is determined
through transmitting three rotational constraints (the underlined rotational constraints in the case 1) from
the AMs to the PMs in the case 1 and then adding three redundant rotational constraints for the PMs, so
the case 3 still belongs to the S-constraint space. If all redundant rotational constraints are selected for

the PMs and AMs, the case 4 is generated, which is a case within the S-constraint space.

Table 2 Four constraint combination cases for the PMs and AMs.

Constraints of the compliant modules in the PM and AM local coordinate systems

Item Module
X Y Z
PMs Tpx thpx rz pr thpy ry sz-thpz-ry
Case 1
AMs Tax tyTax tzRax-prMRax rz Tay tyTay tzRay eray-ryBgy;rz Taz-tyTaz tzRaz eraz-ryBM
c 2 PMs Tpx thpx-rprx-rz pr thpy rpry rz sz-thpz-rprz rz
ase
AMs Tax tyTax tzRax-erax ryRaX rz Tay tyTay tzRay eray ryRay-rz Taz-tyTaz tzRaz-eraz ryRaz rz
c 3 PMs Tpx thpx erpx-rprx rz pr thpy erpy rpry rz sz-thpz erpz ryfR\pz-rz
ase
AMs Tax IyTax tzRax erax rz Tay tyTay tzRay eray ry Taz-tyTaz tzRaz eraz ry
c 4 PMs Tpx thpx-erpx-rprx rz pr thpy erpy rpry rz sz-thpz erpz rprz rz
ase
AMs Tax IyTax tzRax erax ryRax rz Tay tyTay tzRay eray ryRay-rz Taz-tyTaz tzRaz eraz ryRaz rz
Step 2: Synthesize the PMs and AMs based on the constraints selected in Step 1. In this example, several

Step 3:

Step 4:

parallel compliant modules are designed using the FACT method [27] as shown in Fig. 11. The
compliant module in Fig. 12(a), a 4-DOC parallel module, is designed via deleting two of the beams of
the compliant module shown in Fig. 11(c). The compliant module in Fig. 12(b)/(c), a 4-DOC serial
module, is conceived by stacking two compliant modules in Fig. 11(d) together. These compliant
modules include all required compliant modules to be used in the 4 cases in step 1; however, other
compliant modules can be designed based on the same constraints if necessary.

Choose cubes as the MSs (the dimensions can be ignored in this early-stage design) for these cases, and
set up the global coordinate system as shown in Fig. 6.

Assemble the PMs based on the PM local coordinate systems as shown in Fig. 6 and the position spaces
of the PMs as illustrated in Fig. 8(d). Here, the rotations of the PMs about the X-axes of the PM local
coordinate systems should be identified based on the specific constraints of the PMs. The 2-DOC

module in Fig. 11(a) is selected as the PM for the case 1. The positions of the three PMs are identified as
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Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

shown in Fig. 13(a), and the orientations of the PMs should be subject to the PM local coordinate
systems as illustrated in Fig. 13(b). The three PMs cannot rotate about the three local X-axes due to their
constraints based on the results in Section 5.1. Similarly, the PMs and their selected positions for the
cases 2-4 are shown in Figs. 14-17, of which both Figs. 16 and 17 are for the case 4.

Design ASs for the four cases. There are no specific requirements about the ASs.

Identify the positions of the AMs in terms of the position spaces. For the case 1, the 5-DOC-1 module,
shown in Fig. 11(c), is selected as the AM. The permitted positions and selected positions of the AMs
are represented in Fig. 13(c) based on Fig. 9 where the translations of the AMs are not considered in
these cases. The positions for the three AMs as shown in Fig. 13(c) are selected to make the XYZ CPM
compact. Similarly, the positions of the AMs for the cases 2-4 are shown in Figs. 14-17, of which both
Figs. 16 and 17 are for the case 4.

Make further modifications for the four cases. For example, an inactive module is added to the XYZ
CPM in the case 1.

Design BSs for the four cases. It should be noticed that the intermediate stages of the PMs of the XYZ
CPMs as shown in Figs. 15 and 16 are selected as the equivalent BSs, because the intermediate stages
can also provide the equivalent constraints to the ASs.

Check if the final XYZ CPMs in the four cases meet the design requirements. The three novel XYZ
CPMs, 4-4-XYZ CPM, 4-5-XYZ CPM-1 and 4-5-XYZ CPM-2 as shown in Figs. 15 and 16, are created
in this paper. The FEA results shown in Figs. 18-20 validate their decoupled translational motions. The
2-5-XYZ CPM and 3-5-XYZ CPM as shown in Figs. 13 and 14 were also proposed by Hao in [18] and
[19]. A prototype for the 3-5-XYZ CPM is also demonstrated in Fig. 21. The 4-5-XYZ CPM-3
illustrated in Fig. 17 was already reported by Awtar et al in [15]. Apparently, these resulting XYZ CPMs

can be manufactured easily via cutting in the three orthogonal directions.

It can be concluded that all the obtained XYZ CPMs meet the early-stage design requirement, and they are

compact and can be fabricated easily. Further comparisons can be made based on specific working conditions,

non-linear kinematostatic analysis, dynamic analysis, etc. In addition, two non-monolithic designs showing the

PM rotations about the X-axes of the PM local coordinate systems can be seen in Appendix C.
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3-DOC Module

©

5-DOC Module-1

(d)

5-DOC Module-2

Fig. 11 Parallel compliant modules with different DOC (or constraints) designed using the FACT method: (a) a 2-DOC
module design, (b) a 3-DOC module design, (c) a 5-DOC module termed 5-DOC-1 module design, and (d) a 5-DOC module

termed 5-DOC-2 module design. (Online version in color.)
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(@) (b) ©

Fig. 12 Compliant modules with different DOC (or constraints): (a) a 4-DOC module termed 4-DOC-1 module, (b) a 4-DOC

module termed 4-DOC-2 module, and (c) a 4-DOC module termed 4-DOC-3 module. (Online version in color.)

PM-Z po§ition space X

Z-N\NV

Fig. 13 An XYZ CPM designed based on the constraints in the case 1: (a) determining the PM positions, (b) the orientations
of the PMs in the PM local coordinate systems, (c) selecting the AM positions, (d) adding an inactive module, and (e) the

final XYZ CPM termed 2-5-XYZ CPM (i.e. XYZ CPM with 2-DOC PM and 5-DOC AM). (Online version in color.)
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Fig. 14 An XYZ CPM designed based on the constraints in the case 2: (a) replacing the PMs of the XYZ CPM shown in Fig.
13(d) with the 3-DOC module in Fig. 11(b), and (b) the final XYZ CPM termed 3-5-XYZ CPM (i.e. XYZ CPM with 3-DOC
PM and 5-DOC AM) obtained by adding redundant constraints on the AMs of the XYZ CPM shown in Fig. 14(a). (Online

version in color.)

PM-Z position space

AM-Z
Position space

Fig. 15 An XYZ CPM designed based on the constraints in the case 3: (a) determining the PM positions, (b) selecting the
AM positions, (c) selecting the intermediate stages as the BSs (because the intermediate stages can provide the constraints
which the BSs can offer), and (d) the final XYZ CPM termed 4-4-XYZ CPM (i.e. XYZ CPM with 4-DOC-2 PM and 4-

DOC-1 AM). (Online version in color.)
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Fig. 16 An XYZ CPM designed via replacing the AMs of the 4-4-XYZ CPM with the 5-DOC-1 module based on the
constraints in the case 4 and adding redundant constraints: (a) the final XYZ CPM termed 4-5-XYZ CPM-1 (i.e. XYZ
CPM-1 with 4-DOC-2 PM and 5-DOC AM) via adding two wire beams to the AM-Z, and (b) the final XYZ CPM termed 4-
5-XYZ CPM-2 (i.e. XYZ CPM-2 with 4-DOC-2 PM and 5-DOC AM) via adding other four wire beams to the AMs of the 4-

5-XYZ CPM-1. (Online version in color.)

AM-Z

AMs selected

Redundant constraints

(®)

Position space

Fig. 17 An XYZ CPM designed via replacing the AMs of the 4-4-XYZ CPM with the 5-DOC-2 module based on the
constraints in the case 4: (a) determining the AM positions, (b) adding redundant constraints, and (c) the final XYZ CPM

termed 4-5-XYZ CPM-3 (i.e. XYZ CPM-3 with 4-DOC-2 PM and 5-DOC AM). (Online version in color.)
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Fig. 18 The FEA results of the 4-4-XYZ CPM: (a) X motion only, (b) Y motion only, and (c) Z motion only.
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Fig. 19 The FEA results of the 4-5-XYZ CPM-1: (a) X motion only, (b) Y motion only, and (c) Z motion only.
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Fig. 20 The FEA results of the 4-5-XYZ CPM-2: (a) X motion only, (b) Y motion only, and (c) Z motion only.
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Fig. 21 A prototype of the 3-5-XYZ CPM.

8. Conclusion

A novel CPI approach for synthesizing decoupled XYZ CPMs with consideration of actuation isolation has
been proposed in this paper. The XYZ CPMs designed using the CPIl approach have the following
characteristics:

(a) Each XYZ CPM has three non-redundant parallel legs between the MS and the BSs. Note that redundant legs
can be added in the further modification design step for symmetrical arrangement etc.

(b) Each leg has an AS that is permitted to translate in one actuation direction only.

(c) The translational motion of each AS is transmitted to the MS without influencing the other two translations
of the MS.

(d) Non-desired rotational motions of MSs are constrained by the three legs.

(e) The structures and positions of the legs can be adjusted under the constraint spaces and the position spaces to
meet a variety of design requirements and applications.

The CPI approach is a systematic arrangement approach for the rigid stages and the compliant modules in an
XYZ CPM system according to the constraint spaces and the position spaces. The constraint spaces and the
position spaces have been derived based on screw theory rather than design experience. The constraint spaces
are classified into three different types (B-constraint space, T-constraint space, and S-constraint space), and the
mainly-used positions in the position spaces are illustrated by geometric shapes. Therefore, the CPI approach is
an efficient method not only for experts but also for beginners. The synthesis process has been demonstrated
step by step via several monolithic XYZ CPMs.

The proposed constraint spaces contain a number of constraint combinations. Moreover, a number of XYZ
CPMs can be designed based on only one of the combinations, because: (a) each compliant module in an XYZ

CPM system has many permitted positions to select; and (b) each compliant module can be designed with

29



different structures such as parallel structure, serial structure, hybrid structure. Therefore, a variety of XYZ
CPMs can be synthesized using the CPI approach based on the constraint spaces and position spaces.

It is noted that the present CPI approach focuses on the early-stage conceptual design. The nonlinear
characteristics such as parasitic motion over the large range of motion are left for future work. Additionally,
coupled XYZ CPMs can be synthesized through further modifications of the decoupled XYZ CPMs presented

using the CPI approach, which is detailed in Appendix D.
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Appendix A: Monolithic decoupled XYZ CPM design with PM constraints coupled

The decomposition method used in this paper is an effective way to analyze the compliant modules of an
XYZ CPM, which is suitable for designing most decoupled XYZ CPMs with considering actuation isolation.
However, there is a limitation resulting from the decomposition. As the aforementioned assumption in Section 1,
the PMs and AMs are regarded as independent compliant modules. Take an AS which is constrained by one PM
and one AM for example, if the PM and the AM are independent to each other, any one DOF of the AS can be
constrained by the PM and/or the AM, but is not constrained by the combination of the PM and the AM without
redundant constraints. Due to this assumption, one kind of decoupled XYZ CPMs cannot be synthesized using
this CPI approach. This kind of decoupled XYZ CPMs have the following characteristics: (a) the PMs in
different legs are combined together to constraint a DOF of the MS, but any one of the PMs cannot resist the
DOF. and/or (b) the AM and the PM in a leg are combined together to constrain a DOF of the AS, but the AM
or the PM cannot resists the DOF of the AS separately. One specific example is shown below.

If two redundant constraint beams are added for each AM of the XYZ CPM as shown in Fig. 13(c), the XYZ
CPM-1 as demonstrated in Fig. A. 1(a) can be obtained by the CPI approach. The XYZ CPM-2 as illustrated in
Fig. A. 1(b) can be obtained through rotating the three PMs of the XYZ CPM-1 at the same 45 degrees. The
decoupled translations of the XYZ CPM-2 can be seen in Figs. A. 1(c)-(e).

Each of the PM in the XYZ CPM-2 system cannot constrain any one of the rotations of the MS of the XYZ
CPM-2 about the X-, Y- and Z-axes with regard to the coordinate system O-XYZ, but the three rotations can be
resisted by the three PMs of the XYZ CPM-2 together. Therefore, the constraints of the PMs in XYZ CPM-2
system are not independent to each other. The coupled constraints of PMs can be explained by understanding

constraint devices such as spheres in vees [33].
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Fig. A.1 Decoupled XYZ CPM designs: (a) decoupled XYZ CPM-1, (b) decoupled XYZ CPM-2, (c) X direction motion of
the decoupled XYZ CPM-2, (d) Y direction motion of the decoupled XYZ CPM-2, and (e) Z direction motion of the

decoupled XYZ CPM-2. (Online version in color)
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Appendix B: Constraint spaces of PMs and AMs

B-constraint space is represented in Table B.1, where T and R mean translational constraint and rotational
constraint, respectively. The subscripts px, py and pz indicate the three PM local coordinate systems, and the
subscripts ax, ay and az indicate the three AM local coordinate systems. The subscripts -tx, -ty and -tz represent
the translational constraints along the three axes of each local coordinate system, and -rx, -ry and -rz indicate the
rotational constraints about the three axes of each local coordinate system. The underlined rotational constraints
can be transmitted from the AMs to the PMs.

The T-constraint space can be derived via transmitting some of the underlined rotational constraints from the
AMs to PMs. The S-constraint space can be obtained through adding redundant rotational constraints to the
AMs and PMs in the B-constraint space and T-constraint space. The B-constraint space, T-constraint space and

S-constraint space compose the constraint spaces of the compliant modules.

Table B.1 B-constraint space.

DOC of the modules in the three legs in the local coordinate systems

Combination Module

X Y Z

Combination 1 PMs Tpx-thpx erpx rprx rz pr-tx sz-tx

AMs Tax-tyTax-tzRax erax-ryRax-rz Tay-tyTay-tzBMngy-_ryBgy;rz Taz-tyTaz-tzBMxBMB@
Combination 2 PMs Tpx-thpx erpx ry pr—thpy-rz sz-tx

AMs Tax-tyTax tzRax erax-ryBM Tay-tyTay-tzBMngy-_ryRay-rz Taz tyTaz tzRaz-prMRaz 74
Combination 3 PMs Tpx-thpx-erpx-ry pr—tx sz thpz-rx

AMs Tax-IyTax tzRax-erax ryRax rz Tay tyTay tzR LXB MR ay-rz Taz tyTaz tzRaz-prMRaz rz
Combination 4 PMs Tpx-thpx-erpx rz pr thpy rx sz-tx

AMs Tax-IyTax tzRax-prMRax rz Tay tyTay tzRay pr MR ay-rz Taz-tyTaz tz; R az-rx xB Raz rz
Combination 5 PMs Tpx-thpx rx pr thpy erpy rz sz-tx

AMs Tax-tyTax tzRax-nﬁMRM Tay tyTay tzRay r>Bgy_ryRay rz Taz-tyTaz t;B@xBﬁyB@
Combination 6 PMs Tpx-thpx X pr thpy X sz—thpz X

AMs Tax-tyTax tzRa r)ﬁﬂyRaX rz Tay-tyTay tzRay r@MRL Taz-tyTaz tzRaz-pr@yB@
Combination 7 PMs Tpx-thpx-erpx-rz pr-tx sz—thpz-ry

AMs Tax-lyTax-tzRax-prmRax-rz Tay-tyTay-tngyixBa -1 BM Taz-lyTaz lzRaz eraz ryRaz rz
Combination 8 PMs Tpx-thpx-rx pr-thpy-rz sz thpz ry

AMs Tax-lyTax-tzRax-prmBM Tay-tyTay-tngyixBeiy-_ryRay-rz Taz lyTaz lzRaz eraz-ryBM
Combination 9 PMs Tpx-thpx-rx pr tx sz-thpz-erpz-ry

AMs Tax-tyTax tzRa r)ﬁMRax rz Tay tyTay tzR L)Bgy_yR ay-rz Taz-tyTaz-tzRaz-eraz-ryB@
Combination 10 PMs Tpx-thpx-rprx rz pr thpy ry sz—tx

AMs Tax-tyTax tzBMRax-ryRax-rz Tay tyTay tszRay-ryBQyﬂ Taz-tyTaz-tzB@xB@yB@
Combination 11 PMs _ TocoRpery ToyRoyyRoye Do

AMs Tax tyTax tzRax erax-ryBM Tay tyTay-tzBa -eray-ryRay-rz Taz-lyTaz-lzBuxBMBw
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DOC of the modules in the three legs in the local coordinate systems

Combination Module
X Z

Combination 12 PMs Tpx thpx ry pr thpy ry sz—thpz-rx

AMs Tax tyTax tzRMRax-ryBM Tay tyTay tzRMRay ryR ay-rz Taz-tyTaz-tzRaz-ryBMB@
Combination 13 PMs Tpx thpx rz pr thpy erpy ry sz-tx

AMs Tx tyTx-tzBﬂwaRx-rz Tay tyTay tzRay eray ryRa rz Taz-tyTaz-tzBﬁyB@yB@
Combination 14 PMs Tpx-tx pr tXpr erpy Wpr = sz-tx

AMs Tax tyTax tzR prax r Rax rz Tay tyTay tzRay eray ryRay rz Taz-tyTaz-tzB@xB@yBM
Combination 15 PMs Tpx-tx pr thpy erpy ry sz thpz X

AMs Tax-tyTax-tzB ;rxgmygw Tay tyTay tzRay eray ryR ay-rz Taz-tyTaz tzRaz praz ry R
Combination 16 PMs Tpx-thpx-rz pr thpy ry sz—thpz-ry

AMs Tax ty | ax- tzRax I’)&MRE{X-TZ Tay tyTay tzRMRay ryRL Taz tyTaz tzRaz eraz-ryB@
Combination 17 PMs Tpx-tx pr tXpr rpry = sz-thpz-ry

AMs Tax-tyTax-tzBaxiaaxinaXﬂ Tay tyTay tzRa eray-ryRay-rz Taz-tyTaz tzRaz eraz-ryB@
Combination 18 PMs Tpx-tx pr thpy ry sz thpz erpz ry

AMs Tax-tyTax tzR ;prMRM Tay-tyTay-tzBa -eray-ryBgy;rz Taz tyTaz tzRaz eraz-ryBM
Combination 19 PMs Tpx-thpx-rprx rz pr-tx sz-thpz-rz

AMs Tax-tyTax-tzB JRax ryRax-rz Tay tyTay tzRMXBMBa -1z Taz tyTaz tzRaz pr@Raz-rz
Combination 20 PMs Tpx-thpx-ry pr thpy rz sz thpz rz

AMs Tax tyTax tzRax erax-ryBM Tay-tyTay-tszixBMRay-rz Taz tyTaz tzRaz-prMRaz-rz
Combination 21 PMs Tpx thpx ry pr—tx sz thpz erpz rz

AMs Tax tyTax tzRax erax-ryBM Tay tyTay tzR Lngy-_ryBM Taz tyTaz tzRaz prMRaz-rz
Combination 22 PMs Tpx thpx vd pr thpy X sz-thpz-rz

AMs Tax-IyTax [ZBMXBMRED( rz Tay tyTay tzRay-prMyBgy;rz Taz tyTaz tzBaz prMRaz-rz
Combination 23 PMs Tpx-tx pr thpy erpy rz sz-thpz-rz

AMs Tax-tyTax-tzBMmeyB@ Tay tyTay tzRay prMRay-rz Taz-tyTaz tzBa prMRaz-rz
Combination 24 PMs Tpx-tx pr thpy rx sz-thpz erpz rz

AMs Tax-tyTax tZRu)ﬁmRM Tay-tyTay-tzRay-prgy-_ryBM Taz-tyTaz tzRaZ pr MRaz-rz
Combination 25 PMs Tpx-tx px-rz pr—tx sz-thpz rprz rz

AMs Tax-tyTax tzRuamRax rz Tay-tyTay-tzawangM Taz-tyTaz tzBaz eraz-ryRaz-rz
Combination 26 PMs Tpx-tx pr—thpy-rz sz-thpz rprz rz

AMs Tax-lyTax-tzBMmeBM Tay-tyTay-tngyixBMRay-rz Taz-lyTaz tzBmRaz ryRaz-rz
Combination 27 PMs Tpx-tx pr-tx sz-thpz erpz rprz rz

AMs Tax-lyTax-tzR xB ax-I R Tay-tyTay-tngyixBegﬂyBM Taz tyTaz tzRaz-eraz-ryRaz-rz

Appendix C: Non-monolithic decoupled designs

Based on the position space concept as studied in Section 5, each of the PMs in the XYZ CPM as shown in
Fig. 17(a) can rotate as a whole about the X-axis of the PM local coordinate system. Figure C. 1(a) shows an
XYZ CPM obtained by rotating the PMs of the XYZ CPM shown in Fig. 17(a) at 45 degrees about the X-axes

of the PM local coordinate systems. And the decoupled translational motions of the XYZ CPM are derived
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using FEA method and demonstrated in Figs. C. 1(b)-(d). Another XYZ CPM illustrated in Fig. B. 2 can be
designed by rotating the PM-X of the XYZ CPM shown in Fig. 17(a) at 90 degrees about the X-axis of the PM
local coordinate system. The two novel XYZ CPMs are proposed firstly in this paper, which can be used in

some specific applications.

AS-Z

Fig. C.1 An XYZ CPM with PMs of the XYZ CPM shown in Fig. 17(a) rotating at 45 degrees about the X-axes of the PM
local coordinate systems: (a) XYZ CPM without motion, (b) X motion only, (c) Y motion only, and (d) Z motion only.

(Online version in color.)
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© (d

Fig. C.2 An XYZ CPM with PM-X of the XYZ CPM shown in Fig. 17(a) rotating at 90 degrees about the X-axis of the PM
local coordinate system: (a) XYZ CPM without motion, (b) X motion only, (¢) Y motion only, and (d) Z motion only.

(Online version in color.)

Appendix D: Coupled XYZ CPM design

The CPI approach does not focus on designing coupled XYZ CPMs, but a number of coupled XYZ CPMs
can be obtained through making appropriate modifications on the decoupled XYZ CPMs obtained using the CPI
approach. The modification is usually based on the position space concept with one typical example
demonstrated as below.

Figure D. 1(a) shows a decoupled XYZ CPM, which is also illustrated in Fig. 17(a). If the decoupled XYZ
CPM is decomposed into one motion stage (MS) and three legs, each of the legs has three translational DOF
along the X-, Y- and Z-axes of the coordinate system O-XYZ. Therefore, each of the legs can constrain the three
rotational DOF of the MS. Based on the method of identifying position space of a compliant module studied in
Section 3, each of the legs can freely rotate and translate along and about the X-, Y- and Z-axes without
affecting the MS three-axis translations. However, in order to make the MS controllable by the three actuation
forces to have a spatial motion, the directions of any two of the three actuation forces cannot be parallel or

collinear. Since when any two actuation forces are parallel or collinear, there is at least one leg to be redundant.
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As a result, the coupled XYZ CPM as shown in Fig. D. 1(b) is gained via rotating the three legs about the
specific axes through the following steps. The Leg-X rotates about the Z-axis at minus 45 degrees and then
rotates about the Y-axis at minus 45 degrees; the Leg-Y rotates about the X-axis at 45 degrees and then rotates
about the Y-axis at 45 degrees; and the Leg-Z rotates about the Y-axis at minus 45 degrees and then rotates
about the X-axis at minus 45 degrees. These rotations result in the coupled actuation forces for the MS’s motion.
When only one of the three forces is applied, the MS will translate along the X-, Y- and Z-axes at the same time
as represented in Figs. D. 1(c)-(e). When F, and F5 forces are applied, the motions of the MS can be seen in Fig.
D. 1(f). In other words, if only one of the three motions along the X-, Y- and Z-axes is needed, the three forces

should be exerted simultaneously.
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Fig. D.1 A coupled XYZ CPM designed via some appropriate modification on the decoupled XYZ CPM as shown in Fig.
17(a): (a) the decoupled XYZ CPM also shown in Fig. 17(a), (b) the coupled XYZ CPM, (c) F; force applied only, (d) F,

force applied only, (c) F; force applied only, and (d) F, and F; forces applied. (Online version in color.)
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