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Recent experiments have demonstrated how quantum-mechanical impurities can be created within strongly
correlated quantum gases and used to probe the coherence properties of these systems [S. Palzer, C. Zipkes, C.
Sias, and M. Köhl, Phys. Rev. Lett. 103, 150601 (2009)]. Here we present a phenomenological model to simulate
such an output coupler for a Tonks-Girardeau gas that shows qualitative agreement with the experimental results
for atom transport and output coupling. Our model allows us to explore nonequilibrium transport phenomena
in ultracold quantum gases and leads us to predict a regime of atom blockade, where the impurity component
becomes localized in the parent cloud despite the presence of gravity. We show that this provides a stable
mixed-species quantum gas in the strongly correlated limit.
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Ultracold gases provide an extremely versatile resource of
quantum matter. The possibility of applying external electro-
magnetic potentials means that one can create macroscopic
harmonic traps and microscopic periodic structures that are
sensitive to the quantum states of the atomic species [1]. One
recent breakthrough has been the realization that quasi-one-
dimensional quantum degenerate gases can be created by using
strong transverse trapping potentials [2]. Such settings allow
the radial (transverse) degrees of freedom to be frozen out and
in addition to tune the effective one-dimensional interaction
strength [3]. The resulting quantum many-body system of
interacting bosons can be described by the Lieb-Liniger
model, which possesses exact solutions [4]. In the limit of
strong repulsive interactions these can be simplified due to
the existence of a mapping theorem to an equivalent gas of
noninteracting fermions [5]. This so-called Tonks-Girardeau
(TG) limit was recently experimentally reached independently
in two separate laboratories [6,7] and the initial experiments
were followed by several spectacular experimental studies.
These included the exploration of the relationship between
integrability and thermalization [8] and also the creation and
detection of metastable excited states [9].

Very recently Palzer et al. [10] demonstrated an output
coupler for an optically trapped quantum gas in the TG
regime. An array of one-dimensional clouds was created in a
two-dimensional optical lattice and then probed using a radio-
frequency pulse to locally populate an untrapped hyperfine
level. The transport properties of this untrapped “impurity”
as it fell under gravity, passing through the parent cloud,
were subsequently observed. This experiment constitutes a
genuine open quantum system and also one of the first
experiments that explores the important topic of quantum
transport in a clean ultracold environment (see also [11]).
Here we propose a theoretical framework that can describe the
effects experimentally observed and predict the existence of a
regime of atom blockade, in which the interaction between
two components is strong enough to trap and localize the
impurity state. This phenomenon of self-trapping of neutral
impurity atoms in quantum degenerate gases has received
a significant amount of theoretical attention in recent times

[12–14] and our description paves the way for an immediate
experimental realization of the effect in this one-dimensional
configuration. Moreover, our work complements and extends
recent theoretical interest in the area of general impurity
embedding in the Tonks-Girardeau regime [15–17].

A low-density gas of N identical bosons trapped in a
quasi-one-dimensional waveguide can be described by the
Hamiltonian

H =
N∑

i=1

[−h̄2

2m

∂2

∂z2
i

+ V (zi)

]
+ κ

∑
i<j

δ(|zi − zj |), (1)

where m is the mass of the particles, z the axial coordinate,
and V (zi) = 1

2mω2
‖z

2
i , is the axial trapping potential, with

ω‖ the corresponding axial angular frequency and a‖ is
the corresponding trap length. The strength of the atom-
atom contact interactions is given by κ , the one-dimensional
coupling constant, which can be derived by a renormalization
procedure from the three-dimensional scattering process as
κ = 4h̄2a3D

ma⊥
(a⊥ − Ca3D)−1 [3]. Here a⊥ = √

h̄/mω⊥ is the
radial trap width and ω⊥ the radial trapping frequency. The
standard s-wave scattering length is denoted by a3D and C ≈
1.4603. For the 87Rb isotope we have a3D ≈ 5.3 × 10−9 m
for both hyperfine states used in [10], and m ≈ 1.44 ×
10−25 kg. For finite κ the Hamiltonian describes an inhomo-
geneous Lieb-Liniger gas and we characterize the strongly
interacting regime by demanding that the contact interaction
dominates the kinetic energy κ � h̄2n1D/m, where n1D is the
mean linear density of the atoms. In this limit the many-body
problem admits a unique and particularly elegant solution,
as it allows one to replace the contact interaction in Eq. (1)
with the nodal boundary condition �B(z1,z2, . . . ,zN ,t) = 0 if
|zi − zj | = 0, for i �= j and 1 � i � j � N . Such a constraint
can be enforced a priori by Slater determinant factoriza-
tion, �F (z1,z2, . . . ,zN ,t) = 1√

N!
det(N−1,N)

(n,j )=(0,1) ψn(zj ,t), where
the ψn are the single-particle eigenstates of the noninteracting
system. We have adopted the convention of labeling the
first N single-particle eigenfunctions with the index n =
0,1,2, . . . ,N − 1. This, however, leads to a fermionic rather
than bosonic exchange symmetry, which is corrected by
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proper symmetrization, A = ∏
1�i<j�N sgn(zi − zj ) to give

�B = A�F [5]. From this exact solution, the time-dependent
single-particle density is given by [18,20]

ρ(z,t) = N

∫ +∞

−∞
|�B(z,z2, . . . ,zN ; t)|2dz2 . . . dzN

=
N−1∑
n=0

|ψn(z,t)|2. (2)

In the experiment by Palzer et al. [10] an array of one-
dimensional clouds was created with the axis vertically
aligned. A localized excitation of a small section (near the
center) of the cloud to an untrapped hyperfine state was
introduced. While these untrapped atoms fall under gravity,
they remain strongly confined in the transverse direction
created by the optical fields. The dynamics of the system can
therefore be split into the description of its two components: a
trapped background gas of initially Nb atoms, and an impurity
wave packet of Ni atoms, with atom densities ρb(z,t) and
ρi(z,t), respectively.

Girardeau originally used his famous mapping theorem
to find the unique solution to the single component many-
body problem. The solution of the full time-dependent two-
component many-body problem is challenging and only a
small number of exact solutions exist for time-independent
mixtures [19]. Here we suggest that a two-component system
with transport can be treated using a phenomenological
approach based on the time evolution of nonlinearly coupled
single particle states. The density distributions are then built
from these states by assuming single component Tonks-
Girardeau gases for both the impurity and parent components
[see Eq. (2)].

At time t = 0, all atoms in the system are assumed to
be in the trapped TG gas state, the density of which can
be calculated without approximation using Eq. (2). We then
simulate the experiment through the application of a short,
broadband pulse, f (z,t), with a Gaussian spatial intensity of
FWHM σ = 2.3 µm, for a duration of tpulse = 200 µs. The
intensity of this pulse, γ , is chosen such that the population
transfer corresponds to the experimental situation in which,
on average, three atoms were coupled out [10]. The integrated
densities (norms) of the two components vary in time and
according to a set of coupled nonlinear Schrödinger equations
of the form

ih̄
∂ψn

∂t
=

[
− h̄2

2m

∂2

∂z2
+ 1

2
mω2

‖z
2 + κρi

]
ψn + γf (z,t)φn,

(3)

ih̄
∂φn

∂t
=

[
− h̄2

2m

∂2

∂z2
+ mgz + κρb

]
φn + γf (z,t)ψn.

The densities of the impurity and background components
are then built according to ρb(z,t) = ∑N−1

n=0 |ψn(z,t)|2 and
ρi(z,t) = ∑N−1

n=0 |φn(z,t)|2, respectively. Here g is the grav-
itational acceleration and we have assumed that the inter-
component scattering is in mean-field regime. This can be
justified by realising that the impenetrability of the nonalike
atoms in the Tonks limit is overcome by the gravitational pull
on the impurity, which leads to an increase in the scattering
parameter k|a1D|, where k is the linear atomic momentum and
a1D is the atomic scattering length. In this regime the collisions
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FIG. 1. (Color online) Density profiles of the two-component
Tonks gas system for different times (a) t = 200 µs, (b) t = 1400 µs,
and (c) t = 2000 µs for Nb = 50 87Rb atoms and ω‖ = 2π × 39 Hz.
The gray (lighter) curves show the trapped component, while the
red (darker) curves show the impurity wave packet. The width
of the out-coupling pulse is σ = 2.3 µm and the intercomponent
interaction strength is κ = 1.35 × 10−36 Jm. (d) shows the center-
of-mass trajectory of the impurity atoms for different interaction
strengths κ .

between particles in different states can no longer be treated
as collisions between impenetrable particles. The strength of
this scattering, κ , is calculated from the data given in [10]
to be κ ∼ 1.35 × 10−36 Jm. In the following we will show
results from simulating these coupled equations for a gas of
initially Nb = 50 atoms, from which the out-coupling process
transfers Ni ≈ 3 into the impurity. All parameters are chosen
such that a direct, qualitative comparison to the experiment is
possible [10].

The densities of the components after the out-coupling
process and during the subsequent dynamics are shown in
Fig. 1. Initially, after the coupling pulse is switched off
(t = 200 µs), the impurity component is localized at the
origin (z = 0 µm) and subsequently disperses and displaces
as it is dragged through the trapped component by gravity
(t = 1400 µs and t = 2000 µs). The response of the back-
ground cloud on these timescales is mainly determined by
the interaction with the falling impurity and our results agree
qualitatively well with the experimental findings of Palzer
et al. [10]. This provides support for our specific phenomeno-
logical model, as other approaches, for example assuming
coherence within the impurity, led to a dynamics that agreed
very poorly.

The transport process was studied by analysis of the
impurity’s center-of-mass motion, which is shown in Fig. 1(d)
for three different values of the interaction strength, κ . It can
be seen that a finite interaction produces noticeable deviations
from parabolic flight. Firstly, the center-of-mass is expelled
downward, on a very short time scale. This can be understood
by realizing that the resonance position for the coupling is
moved toward negative z values for increasing magnitude of
the nonlinear terms in Eq. (3) (see also discussion below).
After this the fall of the out-coupled atoms is slowed by
the trapped cloud as compared to the free-fall case. We
find that for κ = 1.35 × 10−36 Jm eventually all atoms exit
the overlap region with the trapped component, however the
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FIG. 2. (Color online) (a) Atom blockade: shown is the fraction
of out-coupled atoms remaining within the confines of the trapped
gas after t = 3000 µs. (b) Density profile taken at t = 2000 µs for a
gas in the intermediate regime at κ = 1.44 × 10−36 Jm.

significant slowdown for κ = 1.55 × 10−36 Jm points toward
the interesting possibility of blockade within the gas.

Being able to trap the impurity and leave it embedded in
the parent cloud is an exciting prospect for a novel mixed
quantum gas. We therefore calculate the fraction of impurity
atoms that might be retained within the confines of the
trapped cloud ([−20,20] µm) after 3000 µs. In each case
approximately three atoms are present in the impurity wave
packet and Fig. 2(a) shows how the fraction remaining within
the cloud region varies as a function of κ . Three regimes can be
identified: (i) at interaction strengths below κ ≈ 1.35 × 10−36

Jm the entire impurity wave packet is able to pass through
the trapped component and exit the cloud; (ii) in the region
between κ ≈ 1.35 × 10−36 Jm and κ ≈ 1.5 × 10−36 Jm the
impurity wave packet splits into two components of which one
leaves the cloud and the other remains trapped in the center;
and (iii) above κ ≈ 1.5 × 10−36 Jm maximum self-trapping
is achieved, with >90% of the atomic density blockaded
inside the trapped gas for long timescales. A typical density
plot for an interaction strength in the intermediate regime
(κ = 1.44 × 10−36 Jm) after 2000 µs is shown in Fig. 2(b).
Approximately half of the out-coupled density is clearly visible
to be localized in the center of the background gas, while the
other half has been significantly accelerated by gravity. This
part will continue to travel out of the cloud.

Let us in the following consider the effects due to the
asymmetry induced by the gravitational potential. For this we
look at the situation in which the center of the out-coupling
pulse is located away from the origin of the harmonic potential.
Figure 3(a) shows the results for the number of out-coupled
atoms when the pulse is focused around z0 = ±6 µm. One
immediately notes that the out-coupling yield at both positions
is dramatically reduced in comparison with coupling from the
center. While this can be partly explained by the lower density
of the TG gas at z = ±6 µm, it alone is not sufficient for the
dramatic reduction. In fact, the low efficiency is due to the
increasingly off-resonant nature of the out-coupling process
for larger distances from the center, which stems from the
presence of the strong gravitational potential in the out-coupled
channel. This is also consistent with the increased value of the
Rabi frequency as can be seen from Fig. 3(a) for z0 = 6 µm. In
fact, carrying out simulations for a system in which the strength
of gravity can be decreased (corresponding to the optical
lattice being rotated from vertical to horizontal), shows in
increase in Rabi frequencies with decreasing detuning between
the channels [see Fig. 3(b)]. Note that while during the time of

FIG. 3. (Color online) Output yield for a pulse of duration tpulse =
200 µs. (a) shows the asymmetry present when the focus of the pulse
is offset by a distance z0 = ±6 µm from the center of the cloud. (b)
shows how the frequency of the Rabi oscillations (at z0 = 6 µm) are
affected for different strength of gravity, geff/g = 0.2,0.4,0.6,0.8,1
corresponding to the curves from top to bottom. The curves are
vertically offset for clarity by �N = 0.2. Note that the justification
for the nonlinear term in Eq. (3) requires a finite gravitational strength.

the out-coupling process the gravitational pull has only a small
effect on the position of the out-coupled atoms, the dephasing
of the output can already be seen in the damping of the Rabi
oscillations.

To understand the yield variations observed in Fig. 3(a)
let us, in the following, investigate the reaction of the system
to a change in the width, σ , of the out-coupling pulse. In
the middle panel of Fig. 4 we show the output yield at the
end of the coupling pulse (t = 200 µs) as a function of the
position of the focal point for a pulse of the experimental
FWHM of σ = 2.3 µm. Focusing on or close to the center
of the trap ensures the expected large efficiencies, and the
strong asymmetry observed in Fig. 3(a) becomes visible for
increasing values of |z0|. The visible fine structure is due to the
existence of Rabi oscillations. The strong fall-off away from
the trap centre shows that the effect of gravitational detuning
is important over the scale of a few microns and therefore can
be important over the spatial profile of the out-coupling pulse.
It will, in particular, influence the coherence of the coupling
process and we show in the left and right panels of Fig. 4 that an
increase of the pulse width, σ , leads to a decay of the coherent,
high-contrast Rabi oscillations. The fact that for out-coupling
pulses of the same duration the number of oscillations visible
for small values of σ is different for coupling above and below
the cloud centre can be understood by remembering that the
resonance point is below the the trap center. Therefore the

FIG. 4. (Color online) The effect of pulse width σ on the atom
output yield from a TG gas below and above the center of the
trap. Left: Atom yield for a pulse focused at z0 = −6 µm. Center:
Output yield (at the end of the pulse) as a function of focal point
for σ = 2.3 µm. Right: Yield for focus at z0 = 6 µm. Well-defined
Rabi oscillations are clearly visible for small σ for for both situations,
above (right) and below (left) the trap center.
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detuning at positive z0 is larger than at negative z0, leading to
higher frequency oscillations.

As the spot size increases the detuning gradient gives rise
to different phase components in the out-coupled pulse, which
leads to the vanishing of the Rabi oscillations. This is also the
reason for the displacement of the oscillations with increasing
spot size, as broader spots are able to sample areas closer to
the resonance (which for our parameters lies at zR = −1.9 µm)
with lower Rabi frequency. As the spot size increases further a
pulse at z0 = −6 µm significantly overlaps with the resonance
point and its output becomes dominated by a single (coherent)
component from the high-density central region of the trap.
This leads to the increase observed in the upper right hand
side corner of the left panel of Fig. 4. While the spot size for
the out-coupling pulse cannot be made arbitrarily small, these
effects could be experimentally observed by weakening the
longitudinal trapping, for example.

In conclusion, we have presented a model for transport in
strongly correlated quantum gases that is able to reproduce
key features of recent experiments. Furthermore, our model
predicts several features which could be explored further

experimentally. We have brought strong evidences that even
in the presence of gravity a strong interaction between an
out-coupled and a residing component in a Tonks gas can
lead to a self-localization of the out-coupled component.
Although atom blockade was not observed in the experiment
of Palzer et al., the regime could be reached by tuning a
Feshbach resonance between the hyperfine states. In addition
our work has shed light on interesting aspects of the out
coupling process which are unique to the configuration under
consideration. Using our model to investigate other condensed
matter phenomena in these correlated systems, such as spin-
charge separation and analogues of Cherenkov radiation, are
subjects of ongoing research.
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G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature (London)
429, 277 (2004).

[7] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125
(2004).

[8] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature (London) 440,
900 (2006).

[9] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart,
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