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Supplementary Material
This document contains additional information on the article ”Grating couplers in Silicon-on-Insulator: The
role of photonic guided resonances on lineshapes and bandwidth”. In particular, we provide:

• Details on FDTD simulations;

• Summary of parameters of the presented structures;

• Details on fitting procedure;

• Details on the calculation with Rigorous Coupled Wave Analysis;

• Details on optimization procedure;

• Parameters of the structures composing the Pareto fronts;

• Tolerance analysis with respect to small variations in position, width and etching depth of the grooves;

• Comparison between 2D and full 3D FDTD simulations of the optimized structures with 4 µm MFD.

I. FINITE DIFFERENCE TIME DOMAIN SIMULATION

As the main numerical technique in this work, we
employ the standard Finite Difference Time Domain
method, implemented in the commercial software Lumer-
ical FDTD Solutions. The idea of the method is to dis-
cretize the magnetic and electric fields in two interlaced
grids in space and time and solve the discretized Maxwell
equations in time domain. For the FDTD method to
work properly, it is necessary to set up the environ-
ment of the simulation, specifying the discretization grid
(mesh), the boundary conditions at the terminations of
the simulation box, the sources and the monitors. In
our case we decided to analyze the structures with 2D
FDTD (an example of a simulated structure as directly
extracted from the software can be seen in Supp. Fig. 1),
a comparison with 3D FDTD simulations is presented in
Suppl. Sec. VIII. We use the following settings:

• mesh: we opted for automatic non-uniform meshing
(with maximum precision setting) for the whole sim-
ulation region, except in the waveguide region, where
a vertical mesh in steps of 10 nm was forced to better
reproduce the vertical geometry of the grating;

• boundary condition: we adopt the Perfectly
Matched Layer (PML) formulation provided by the
software, which absorbs almost all the radiation in-
cident on the boundary;

• source: the source is chosen to inject a Gaussian beam
on top of the grating structure with TE polarization
and an axis inclined at 10◦. This source injects a short
broadband pulse with a sufficiently wide energy spec-
trum centered around the wavelength of 1.55 µm;

• monitor: we use a single monitor placed in the waveg-
uide region at the end of the grating. This monitor
calculates run-time the power flow through its surface,
and after normalizing to the input power at the end
of the simulation it directly provides the coupling effi-
ciency spectrum.

The typical simulation time for one structure spans from
a few second to a few minutes (depending on the simula-

tion area, influenced by the MFD) on a standard quad-
core desktop PC.

II. DETAILED PARAMETERS OF THE INVESTIGATED
STRUCTURES

A grating coupler is characterized by a number of
parameters, which define the vertical waveguide struc-
ture (silicon thickness and bottom-oxide thickness, etch
depth), the grating area and the incident fiber mode
(footprint FOOT, mode-field diameter MFD, fiber offet
FIO, fiber distance FID, incidence angle θ), and the pa-
rameters defining the grating (period and duty cycle of
the grooves in the case of uniform gratings, positions and
widths of each groove in the case of apodized gratings).
Most of these parameters are quoted in the article, how-
ever for the sake of clarity we summarize in Supp. Tab. I
the complete set of parameters for all the structures per-
taining to the data presented in the article.

III. FITTING OF SPECTRA

To better understand the physics at the origin of
the coupling for uniform gratings we decided to fit the
FDTD spectra to obtain their relevant parameters. For
each spectrum we tried fitting with 3 different functions,
namely Gaussian, Lorentzian and Voigt (a convolution
between Lorentzian and Gaussian) profiles.

For the Gaussian and Lorentzian case we defined the
fitting functions as standard (unnormalized) Gaussian
and Lorentzian profiles, namely:

G(x;A, x0, σ) = Ae−
(x−x0)2

2σ2

L(x;A, x0, γ) = A γ2

(x−x0)2+γ2 .

(S1)

both with 3 fitting parameters. Note that in this unnor-
malized versions the coefficient A gives directly the value
of the functions at their maximum (corresponding to the
coupling efficiency).
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The Voigt profile can be obtained as a convolution of
Lorentzian and Gaussian, namely given the two normal-
ized profiles:

Gn(x;σ) = 1
σ
√
2π
e−

x2

2σ2 Ln(x; γ) = 1
π

γ
(x−x0)2+γ2 . (S2)

the normalized Voigt profile can be defined as:

Vn(x;σ, γ) =

∫ +∞

−∞
Gn(x′;σ)Ln(x− x′, γ)dx′ (S3)

For the practical implementation of the Voigt profile as
fitting function it is worth noting that the Voigt profile
can be related to the real part of the Faddeeva function
w(z) as:

Vn(x;σ, γ) =
1

σ
√

2π
<
[
w

(
x+ iγ

σ
√

2

)]
(S4)

where the Faddeeva function is a complex error function
defined as:

w(z) = e−z
2

(
1 +

2i√
π

∫ z

0

et
2

dt

)
. (S5)

Since the Feddeeva function is often provided as a mod-
ule in standard scientific software, this provides a more
practical implementation of the Voigt profile. As fitting
function in the case of Voigt profile we define the function
V (x;A, x0, σ, γ) with 4 fitting parameters as:

V (x;A, x0, σ, γ) = AVn(x− x0;σ, γ) (S6)

The fitting procedure was carried out within a
Python framework, utilizing the standard non-linear
least-square method provided by the Scipy mod-
ule (scipy.optimize.curve_fit). The same mod-
ule is also used to calculate the Faddeeva function
(scipy.special.wofz).

To verify the goodness of our fits we decided to analyze
the residual of the least-square minimization, namely the
square root of the mean quadratic deviation:

R =

√∑N
i=1(f(xi)− yi)2

N
. (S7)

A small value of this parameter (with respect to the val-
ues of the fitted quantity) should indicate that the fit is
good. We performed this analysis for each of the uniform
structures analyzed in the article. We found that in al-
most all the cases, the Voigt profile provides a good fit
with a small R (around 10−1 or smaller). Furthermore
we found that the Gaussian profile provides a R value
similar to the Voigt (and hence a good fit) only for small
MFD and a bad fit for large MFD, while the opposite
happens for the Lorentzian profile. This confirms the
evolution of the spectra from Gaussian to Lorentzian on
increasing the MFD. An example of the analysis of the
residual is reported in Supp. Fig. 2.

IV. PARAMETER EXTRACTION FROM RCWA

As an analysis method for the infinite grating we opted
for Rigorous Cuopling Wave Analysis. This method,
based on an application of the Scattering Matrix, was
developed to analyze multilayered structures in which
each layer presents an independent 2D periodic pattern-
ing (with the only restriction of having the same 2D lat-
tice in each layer). With the RCWA available to us it is
possible to calculate reflection and transmission spectra
of the infinite 1D grating under plane wave illumination
at different angles and energies (and for both TE/TM po-
larization). From the analysis of the reflectance spectra
it is possible to extract information on the quasi-guided
mode that mediates the coupling, in particular the real
part (resonance frequency) and the imaginary part (half
the resonant linewidth) of the energy. To proceed with
this analysis we have to model the reflection spectra for
this kind of structures. The reflection in this case is com-
posed of two contributions: a background contribution,
given by the vertical structure of the multilayer, and a
resonant one, provided by the 2D patterning. This kind
of behavior is known in the literature as a Fano resonance,
and it is characterized, in the reflection and transmission
spectra, by a Fano lineshape, which can be parametrized
as:

F (x;A, x0, g, q) = A

(
q + 2(x−x0)

g

)2
1 + 4(x−x0)2

g2

(S8)

where x0 is the position of the resonance, g its width, q is
the ratio between the resonance and the background and
A is a multiplicative constant introduced for fitting pur-
poses. It is worth noting that in case of no background,
the parameters q tends to infinity and the Fano lineshape
tends to a Lorentzian with γ = g.

An example of a reflection spectrum calculated with
RCWA can be seen in Supp. Fig. 3b. We could try to fit
directly this curve to estimate the parameters, but there
is still one subtlety. In order to obtain a Fano lineshape,
a constant background (i.e., independent of energy) is
usually assumed. This is not the case here since the back-
ground contribution is given by constructive/destructive
interference in the vertical direction, and it is thus energy
dependent. To remove this effect we tried to calculate
the contribution of the background only, substituting the
patterned region with a uniform slab with the averaged
dielectric constant (this is also plotted in Supp. Fig. 3b).
After rescaling the spectrum by eliminating the back-
ground, we fitted it with Eq. S8 to obtain the real part
(x0) and the imaginary part (g) of the resonance. An ex-
ample of this fit is presented in Supp. Fig. 3c. Knowing
the energy of the resonance, it is also possible to calcu-
late the effective index of the patterned slab noting that
the wavevectors of the incident and guided mode have to
be related by momentum conservation:

kg = ki +
2π

Λ
(S9)
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where Λ is the period of the grating. Once this equation
is rewritten as:

ω

c
neff =

ω

c
nclad sin θi +

2π

Λ
(S10)

it can be used to calculate the effective index neff of the
quasi-guided mode.

V. DETAILS ON OPTIMIZATION PROCEDURE

Since the MO-PSO algorithm is very time consuming
from a computational point of view, we performed a se-
ries of preliminary studies for each value of MFD in order
to get a valid starting point for the MO-PSO. In particu-
lar, we decided to include knowledge of the linear chirped
grating in the optimization for each MFD, setting one of
the agents of the swarm to start in this configuration. For
the 10.4 µm MFD we directly included in the MO-PSO
the knowledge of the apodized structure with maximum
CE reported in the literature, so the following procedure
was carried out only for the three smaller MFDs.

To find the chirped structure with maximum coupling
efficiency we first conducted a sweep along the param-
eters of the uniform grating, namely duty cycle, etch-
ing depth, bottom oxide thickness and fiber offset. The
period of each uniform grating was chosen to tune the
maximum CE at 1550 nm.

After this first step we moved to linear chirped struc-
tures, namely structures in which the duty cycle is varied
along the grating in a linear way from a value DCstart to
a value DCstop along a length Lc following:

DC(x) =

{
DCstart + (DCstop −DCstart) x

Lc
x < Lc

DCstop x > Lc
(S11)

We optimized the coupling efficiency with a single objec-
tive PSO with the free parameters DCstart,DCstop,Lc,
etching depth, bottom oxide thickness and fiber offset
around the parameters obtained for the uniform grating
(still modifying the period at each iteration to keep the
maximum CE at 1550 nm). The results of this optimiza-
tion can be seen in Supp. Tab. II. Then for the MO-PSO
we fixed etching depth, bottom oxide thickness and fiber
offset at the value provided by the chirped optimization,
and optimized the position and width of each groove (but
setting at least one agent to start in the chirped config-
uration already found).

VI. PARETO FRONTS’ DATA

We include the detailed parameters of the structures
obtained by the MO-PSO optimization. The data are
presented in the attached files (one .dat file for each value
of Mode Field Diameter). At the beginning of each file
we report the parameters common to all structures in
the Pareto front (corresponding to Fig. 1 in the main

text). This is followed by tables with widths and po-
sitions of each groove for each specific structure, which
is numbered with increasing Coupling Efficiency and de-
creasing Bandwidth. In the following, the links for the
files containing these data are reported.

• supp MFD 4.txt for MFD=4µm;

• supp MFD 6.txt for MFD=6µm;

• supp MFD 8.txt for MFD=8µm;

• supp MFD 10.txt for MFD=10.4µm.

For some of the optimized structures (three for each value
of MFD) we plot the grooves’ widths versus their posi-
tions, to give a feeling of the effect of apodization. These
plots can be seen in Supp. Fig. 5. The interpretation is
discussed in the article.

VII. TOLERANCE ANALYSIS

The fabrication of grating couplers by lithograpy and
etching is prone to introducing random variations of the
parameters from the designed optimal structure. In the
lack of an experimental validation of our designs, we de-
cided to address this issue by performing a tolerance anal-
ysis of the results employing again FDTD simulations.
We split the tolerance analysis in two parts: tolerance
against variation of the etching depth of the grooves, and
tolerance to variation in their width and position.

A. Etching depth

Controlling the etching depth in the fabrication of grat-
ing couplers is a critical and not easy task. In fact, the
etching process has to be adapted and re-tuned every
time the nominal etching depth is changed. Due to the
difficulties in controlling an etching process to obtain the
exact groove depth, the resulting fabricated structure
may be slightly different from the designed one. This
variation in etching depth, which should be no larger
than ±10 nm, tends to be uniform among the different
grooves of a given structure. Hence, we hereby study the
tolerance with respect to the etching depth by consider-
ing a selection of the structures in the Pareto front, and
we recalculate them at varying etching depth in the range
±20 nm from the optimal value, with a 1 nm step. In
order to be sensitive to such small variations, the FDTD
mesh along the vertical direction was refined down to 1
nm in the grating region. In Supp. Fig. 4 we report the
behavior of CE and bandwidth for some of the structures
in the Pareto front. As a general trend, we notice that a
good tolerance to variations of the etching depth exists.
In fact, all structures present a 10-15 nm range in which
the CE is fairly constant, although it is not always sym-
metric around the starting value. This follows from the
fact that the Pareto fronts were obtained at fixed etch-
ing depth, as explained in the main text. Around the
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position of maximum CE the bandwidth tends to mono-
tonically increase with etching depth, but the variations
are limited to a few nm. Summarizing, tolerance against
variations of the etching depth is quite good. In principle
the results of the main text could be slightly improved
by taking the etching depth as an optimization parameter
when calculating the Pareto fronts, however this requires
a much finer mesh along the vertical direction (1 nm in-
stead of 10 nm) and would lead to a minor improvement
in CE or bandwidth, of the same order of the tolerance
against fabrication control.

B. Widths and positions

Another potential issue for the performances of fabri-
cated structures is the random variation in the widths
and positions of each groove, as induced by the fabri-
cation process. The latter typically introduces a ran-
dom and uncorrelated variation of the parameters in each
groove of the designed structure. To test the tolerance of
our designs against these variables, we run a Monte Carlo
analysis limited to the structures in the Pareto fronts.
For each structure a set of 20 new structures was gen-
erated and analysed, as obtained by varying the width
and position of the grooves in the original structure by
applying a uniform distribution of ±10 nm broadening
around the original one. In the case of 10.4 µm MFD
we took the new configurations given by the tolerance
analysis as starting points for an additional optimization
run of the MO-PSO algorithm, which was found to im-
prove convergence of the Pareto front. The results are

reported in Supp. Fig. 6. We notice that the spread of
performances is quite small (at least for the designs with
the largest CE), and the general trend of the Pareto front
is well reproduced. We also notice the presence of a few
points lying slightly above the Pareto fronts, which can
be explained by the uncertainty in convergence of the
MO-PSO algorithm. Since most of the structures close
to the optimal ones lie below the Pareto fronts, we con-
clude that convergence of the algorithm is comparable
with the precision of fabrication, thus a better conver-
gence should not improve the design of the fabricated
structures.

VIII. COMPARISON WITH 3D SIMULATION

Since 1D grating couplers are uniform along the direc-
tion of the grooves, they are usually studied by using 2D
simulation techniques. This is an approximation, which
provides remarkably good results with considerably less
computational effort as compared to full 3D simulations.
In fact, the main source of approximation is due to the
finite size of the excitation spot, which makes the sim-
ulated system non-uniform along the groove direction.
The effect is larger for structures with smaller footprint.
We hereby report a test of our 2D FDTD results for the
4 µm MFD Pareto front, by recalculating a few selected
structures with this very small footprint. Results are
shown in Supp. Fig. 7, where a very good agreement be-
tween 3D and 2D results is found. This analysis validates
the use of 2D FDTD as a reliable tool for this problem.
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Supplementary Figure 1. CAD representation of the simulation area as directly extracted from Lumerical FDTD Solutions.
The orange rectangle represents the boundary of the simulation region. The grey line and shaded region represent the source
and its intensity profile, while the purple arrow represent the injection direction of the light and the blue arrow its polarization.
The yellow line represent the monitor.

curve DC (%) Etch T box Period MFD FOOT FIO FID θ
(%) (nm) (nm) (nm) (µm) (µm) (µm) (µm) deg

Figure 2
– 25 80 not def. 619 ∞ ∞ not def. not def. 10

Figure 3
green 25 40 2000 603 varying 1.344*MFD 0.470*MFD 1.28 10
blue 25 60 2000 610 varying 1.344*MFD 0.470*MFD 1.28 10
red 25 80 2000 619 varying 1.344*MFD 0.470*MFD 1.28 10
black 25 120 2000 642 varying 1.344*MFD 0.470*MFD 1.28 10

Figure 4
– 25 80 2000 619 varying 1.344*MFD 0.470*MFD 1.28 10

Figure 5
– 25 80 2000 619 varying 1.344*MFD 0.470*MFD 1.28 10

Figure 6
red not def. 150 2100 684 (av.) 4 5 2.6 1.28 10
blue not def. 120 2000 662 (av.) 6 8 3.7 1.28 10
black not def. 100 2000 644 (av.) 8 10 4.2 1.28 10
green not def. 100 2000 634 (av.) 10.4 15 7.5 1.28 10

Supplementary Table I. Summary table of all parameters of the structures whose data are presented in the article.

MFD CE Bandwidth Start DC End DC Chirp Length Period Etch T BOX FIO FID Footprint
(µm) (%) (nm) (%) (%) (µm) (nm) (nm) (nm) (µm) (µm) (µm)

4 56.7 89 10 35 2.13 684 150 2.10 2.48 1.28 9.0
6 60.1 67 10 40 4.97 662 120 2.02 3.68 1.28 10.6
8 61.6 54 10 40 4.98 644 100 2.00 4.19 1.28 12.9

Supplementary Table II. Parameter of the linear chirped configuration with maximum Coupling Efficiency.
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Supplementary Figure 2. Representation of the residual of the fit from the same uniform structure as in Figs. 4 and 5 in the
article (DC=25%, Etching = 80 nm, T BOX= 2 µm). We can notice the goodness of the Voigt fit and the evolution of the
spectrum from Gaussian to Lorentzian.

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.76  0.78  0.8  0.82  0.84  0.86  0.88  0.9

(b)

R
e
fl
e
ct

a
n
ce

 (
%

)

ω (eV)

Background
Fano Resonance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.76  0.78  0.8  0.82  0.84  0.86  0.88  0.9

(c)

R
e
sc

a
le

d
 R

e
fl
e
ct

a
n
ce

 (
a
.u

.)

ω (eV)

Data
Fit

Supplementary Figure 3. How to extract data from RCWA calculations. (a) Unit cell for the calculation (the shaded areas
are assumed to be semi-infinite). (b) Reflection spectra obtained from RCWA, with the pattern (red curve) and with the
substitution of the patterned region with an uniform effective slab (blue curve). (c) Rescaled reflectance with no background
variation and corresponding Fano fit for parameters.
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Supplementary Figure 4. Representation of CE and Bandwidth as a function of etching depth for four of the structures in the
Pareto front. Each structure is identified in the table by its MFD and number, as reported in the .dat file containing the data
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Supplementary Figure 7. Comparison between 2D and 3D FDTD simulations of four selected structures along the 4 µm Pareto
front. A summary of the performances of these structures as calculated with the two methods is given in the table. The
“Structure n◦” column refers to the number of the structure as reported in supp MFD 4.dat
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