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Abstracts 
The absence of rapid, low cost and highly sensitive biodetection platform has hindered 

the implementation of next generation cheap and early stage clinical or home based point-

of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, 

compactness, and low cost, plays an important role to resolve these diagnostic challenges 

and pushes the detection limit down to single molecule. Optical nanostructures, 

specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based bio-

detection are promising in this context. 

The main element of this dissertation is design, fabrication and characterization of RWG 

sensors for different spectral regions (e.g. visible, near infrared) for use in label-free 

optical biosensing and also to explore different RWG parameters to maximize sensitivity 

and increase detection accuracy. Design and fabrication of the waveguide embedded 

resonant nano-cavity are also studied. Multi-parametric analyses were done using 

customized optical simulator to understand the operational principle of these sensors and 

more important the relationship between the physical design parameters and sensor 

sensitivities. 

Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency 

across the whole infrared, visible and part of UV spectrum, and comparatively higher 

refractive index than glass substrate. SixNy based RWGs on glass substrate are designed 

and fabricated applying both electron beam lithography and low cost nano-imprint 

lithography techniques. A Chromium hard mask aided nano-fabrication technique is 

developed for making very high aspect ratio optical nano-structure on glass substrate. An 

aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the 

highest presented so far. The fabricated RWG sensors are characterized for both bulk 

(183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful 

detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer 

and serum. 

Widely used optical biosensors like surface plasmon resonance and optical microcavities 

are limited in the separation of bulk response from the surface binding events which is 

crucial for ultralow biosensing application with thermal or other perturbations. A RWG 
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based dual resonance approach is proposed and verified by controlled experiments for 

separating the response of bulk and surface sensitivity. The dual resonance approach gives 

sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 

2.5. The improved performance of the dual resonance approach would help reducing 

probability of false reading in precise bio-assay experiments where thermal variations are 

probable like portable diagnostics. 
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ecent progress in nanoscale optical bio-detection technologies has paved the 

way to the sensitive, label-free and low cost detection of bio-molecules such as 

virus, DNA and proteins, which are particularly important for implementing 

next generation clinical diagnostic assays.  Such assays implemented on chip scale bio-

sensor (lab-on-a-chip) will replace the current labour intensive, time consuming and 

expensive lab based bio-chemical diagnosis. This chapter gives a brief overview of 

different types of label-free optical biosensors, their pros and cons, and commercial 

availability in Section 1.1-1.3. The motivation and context of this thesis work is presented 

in Section 1.4. Following that, Section 1.5 has provided the outline of this thesis. 

1.1 Optical Biosensors 
Optical biosensors comprise of an optical transducer that converts a biological response 

into a quantifiable and processable signal, similar to other types of conventional 

biosensors that utilize electrochemical [1], acoustic [2], or magnetic [3] transducer. The 

primary advantages of optical techniques over analogous mechanical or electrical label-

free methods are: high specification, sensitivity, small size, cost effectiveness and the broad 

range of applications they can be used for. Typically, in an optical biosensor, a 

biorecognition layer (i.e., biological probe) is placed in contact with the surface of the 

sensor. The biorecognition layer is either biomaterial like ligands, functional proteins, or 

antibodies, or a biological system e.g., living cells, bacteria, or tissues. The interaction 

between a target analyte and the biorecognition layer produces a change in optical 

properties of the system which is detected by the optical transducer and used to directly 

quantify the binding of the target molecules in a sample. 

 

Generally, two detection protocols are used in optical biosensing: fluorescence based 

detection [4, 5] and label-free detection [6, 7]. In fluorescence based detection either the 

target molecule or the biorecognition molecule is labeled with tags e.g., fluorescence dye. 

The intensity of fluorescent signal determines quantitatively the presence of target 

molecule or the interaction strength in between the probe and target molecule. The 

R 
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fluorescence based detection is very sensitive and can detect down to single molecule [8], 

but the process of tagging is not only laborious and costly but also alters the natural 

functionality of the tagged molecule. Precise quantitative analysis in fluorescence based 

detection is also challenging because of the fluorescence signal-bias as the number of 

attached fluorophore in each molecule can not be fully controlled [9]. On the other hand, 

Label-free detection is also easy to perform, cheap, and allows quantitative and kinetic 

measurements. In label-free detection, the target molecule is not labeled and the 

functionality is not altered so that it can interact naturally. As label-free sensing is 

normally based on a refractive index (RI) change instead of the total sample mass, the 

detection signal does not scale with sample volume. In contrast, in fluorescence based 

detection, the signal depends on total number of analyte in the detection volume. So, label-

free detection is advantageous over fluorescence based detection for diagnosis where 

ultrasmall (ng/ml or fg/ml) detection volume is involved.  

1.2 Refractive Index based Label-free Optical Biosensing 
In the category of label-free optical detection, there exist mainly two types of detection 

methods: RI based detection and Raman spectroscopic detection. Raman spectroscopic 

detection [10, 11] is label-free in a sense that it does not require labeling of biomolecule 

with tags, but it uses scattered Raman light for sensing similar to fluorescence based 

detection. However, the scope of this thesis is limited to RI based label-free detection 

only. 

Label-free RI sensors [12, 13] based on optical resonance techniques have already drawn 

huge interest because of the need to develop a simple, low-cost, high throughput detection 

technology for application like label-free bio-diagnosis. This sensing paradigm will 

facilitate real-time detection and minimal sample preparation with no requirement of 

fluorescent tagging of bio-molecule. Examples of optical RI sensors technology include 

surface plasmon resonance (SPR) [14-17], resonant waveguide grating (RWG) [12, 18-

20], 1D [21-24] and 2-D photonic crystal structure [25, 26], long-period fiber grating 

(LPFG) [27, 28], and ring resonators [29, 30].  
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1.2.1 Surface Plasmon Resonance (SPR) based Sensors 

SPR is nothing but oscillating charges at the interface of two media with dielectric 

constants of opposite signs such as metal (Gold or Silver) and a dielectric [14].  When 

polarized light containing a range of incident angles, falls on an electrically conducting 

metallic film (e.g., gold), the incident light is totally reflected but generates an evanescent 

field penetrating into the metal layer. At a certain resonance angle and wavelength the 

propagation constant of the evanescent field matches that of the oscillating charge wave 

at the metal dielectric interface. The evanescent field interacts with and is absorbed by the 

free electron cloud in the metal generating surface plasmon resonance which results 

reduction in the intensity of the reflected light at the resonant incident angle and 

wavelength.  

 

 

Figure 1.2-1 Schematic of operational principle of prism coupled SPR based bio-sensing 

technique. The receptor antibody is coupled to the surface of the gold layer. The incident 

light is directed by the prism. The reflection spectrum shows notch which represent the 

Plasmon resonance wavelength. When the target molecule binds to the immobilized 

receptors the resonance wavelength shifts. 

 

However, surface plasmons are of two distinct types; localized surface plasmons (LSPs) 

and surface plasmon polaritons (SPPs). LSPs occur when surface plasmon is excited and 
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confined in metallic nano-structures of size smaller than the shone wavelength of light. 

For most noble metals (Gold, Silver etc.) this occurs in visible wavelength. The electric 

field enhances near the surface of the nanoparticle and then decreases quickly with 

distance from the surface. This enhanced resonant evanescent wave near the surface is 

exploited for sensing. On the other hand, SPPs can be excited on flat metal surfaces 

travelling along the metal-dielectric or metal-air interfaces until its energy is lost by metal 

absorption or scattering. This SPP based sensing scheme on flat metal surface is 

traditionally called as SPR which had been first demonstrated back in 1968 by Otto [31] 

but was not commercialized for bio-sensing until the fall of 1990 by Biacore® [32], 

whereas LSP based sensing with nanostructured metal is more recent. The important 

differences between the LSP and SPP or SPR are in their bulk sensitivity and the 

evanescent decay length (electric field penetration depth) to the sensing medium. The 

extraordinary spectral sensitivity of SPR sensors is commonly attributed to the unique 

dispersion of surface plasmons or the multi-mode nature of the sensing scheme [33].  

Though the bulk sensitivity of the SPR is few orders of magnitude higher than that of the 

LSP [34], in terms of biomolecular detection (surface sensitivity) they are comparable in 

performance because of very short decay length (15-20 nm) of LSP with intensified 

electric field than the long decay length of SPR (200-300 nm) with comparatively low 

electric field distribution [34]. 

 

The dispersion relation of an SPP can be expressed by Drude model which essentially 

correlates the relationship between the wave vector (β) along the interface and the angular 

frequency (ω) as shown in Eq. (1.1). 

 

 

 

(1.1) 

 

where c is the speed of light in a vacuum, while εm and εd are the permittivity of a metal 

and a dielectric material, respectively. The real part of Eq. (1.1) determines the SPP 

wavelength, while the imaginary part determines the propagation length of the SPP along 

the interface.  
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An SPP is a transverse-magnetic I wave i.e., magnetic vector is parallel to the plane of 

interface. The Electromagnetic (EM) field of the SPP decays evanescently in both the 

dielectric and the metallic media but, because of low damping in dielectric medium, the major 

portion of the evanescent EM field is present in the top dielectric medium as shown in Figure 

1.2-1. As a result, the real part of the dispersion function is very sensitive and changes 

proportionally to changes in the refractive index [16]. The principle of SPR, however, only 

occurs when the light’s wave vector component parallel to the metal surface matches that of 

the SPP. This condition is only satisfied at distinct angles of incidence and wavelength of 

light, appearing as a drop in the reflectivity of incident light at that wavelength (Figure 1.2-1). 

 

The SPR sensors [14, 18, 35] exploits the evanescent wave at the metal-dielectric interface 

to characterize the molecular interaction or alteration in biomolecular layer at or near the 

sensor surface. As the resonance angle or wavelength, is a function of the RI of the 

solution close to the metal layer of the sensor, any local change due to the binding event 

causes shift in the resonance angle or wavelength or intensity. So, the detection and 

quantification of the biomolecular binding event can be accomplished either by measuring 

the shift in the resonance angle [36] or wavelength [37] or drop in intensity [38]. There 

are different methods of exciting SPR in the metal-dielectric interface e.g., prism coupling 

[39], waveguide coupling [40], fiber optic coupling [41], and grating coupling [42]. Prism 

coupling is the most convenient and common SPR configuration.  

Since the first demonstration of SPR sensor in 1983 by Leidberg et al. [40], the technology 

has been extensively explored as a label-free tool for studying the interaction between the 

target and bio-recognition molecule. But, the low throughput and limit of the SPR system 

limits its use in rapid biodetection for application specially where very low volume of 

analyte solution is involved. Besides, the rebinding of the analyte seems to be a major 

factor affecting the accuracy of SPR-based kinetics for biomolecule (e.g. antibody) 

profiling [43]. 
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1.2.2 Resonant Waveguide Grating based Sensing 

The history of the resonant waveguide grating (RWG) started with a strange optical 

phenomenon observed by Wood in 1902 [44]. He found a sudden decrease in the 

diffracted light spectrum of a metallic grating which he was unable to explain and so, 

named it an “anomaly”. Later, Rayleigh [45], Fano [46], Hessel and Oliner [47], and many 

others tried to explain the anomaly for metallic grating. Nevertheless, it was not until 1980 

when Mashev and Popov [48] demonstrated Wood’s anomaly in an all dielectric RWG 

instead of metallic RWG. 

 

 

 

Figure 1.2-2 Schematic drawing of the RWG sensor showing the operational principle of 

surface bound bio-molecular sensing for both TE and TM polarized light. The wavelength 

of the resonance notch in the transmission spectrum shifts because of the surface 

attachment of the bio-molecules. 

 

In RWG, when polarized light is incident upon the subwavelength grating (Figure 1.2-2), 

the higher order diffracted light is phase matched with the zeroth order of the reflected 

light for a narrow range of wavelengths and angles resulting a resonance and a reflection 

peaks (i.e., transmission notch) in the spectrum. The localized electric field gets 

intensified near the sensor surface and increase the light-matter interaction producing the 

RWG based sensing.  An active layer of biological material e.g. functional protein or 

antibody, is immobilized on the biosensor surface to bind with the target biomolecule. 
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The interaction of the target biomolecule with the active biolayer on the sensor surface 

causes local change of RI and thus makes a shift in the resonance wavelength as shown 

in the transmissivity spectra in Figure 1.2-2.  

 

The RI change also induces a change in resonance angle of incident light. So the binding 

event can also be interrogated by tracking the resonant angle. The amount of shift in the 

resonance wavelength or angle is used to quantify the concentration of the target 

biomolecule in the sample solution. The physical basis of RWG and its sensing 

mechanism are later discussed in detail in Chapter 2 and Chapter 4. However, Magnusson 

et al. [49, 50], Brian T. Cunningham et al. [51, 52] and others [20, 52, 53] had explored 

different materials and design procedures of the RWG for biosensing applications. 

 

Though the history of RWG is comparatively older (started in 1902), the first ever use of 

RWG as a commercial biosensor is not earlier than 2006 by Corning Inc. with their high-

throughput Epic® technology. Unlike SPR, the RWG technology normally measure 

equilibrium biomolecule binding affinity by microplate well based steady static analysis 

instead of flow based system. The temperature induced perturbation is still a factor in 

RWG sensing that is why a temperature control unit is always needed in RWG system 

which limits its use as a low cost portable biosensing platform. Though not explored that 

much in literature, RWG sensors can separate the bulk and surface sensivity (see Chapter 

5 for detail) which would be very helpful for ultra-low concentration (~pg/mL) analyte 

detection.  

1.2.3 Photonic Crystal Cavity Biosensors 

Photonic crystal (PhC) biosensors are another addition to the label-free optical biosensing 

platform, which has been presented in the literature [25, 26, 54, 55]. A PhC is nothing but 

periodic subwavelength structure to form photonic bandgap which restricts certain range 

of wavelength of light to propagate through the PhC and a wide bandgap emerges on the 

transmission (or reflection) spectrum. However, a local disturbance to the PhC’s periodic 

structure either by missing or reshaping a single or few cells (air holes or pillar) causes 

photonic “defect” within the bandgap leading to the formation of the defect mode. The 
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light resonant with the defect mode can propagate in the PhC resulting a relatively sharp 

peak of the defect mode within the bandgap in the transmission 9ptimize. The spectral 

position of the resonant defect mode is highly sensitive to the change in the local 

environment around the “defect”. The binding of biomolecules in the defect area causes 

local RI change and shifts the resonance wavelength which is used to quantify the analyte 

concentration.  

 

 

Figure 1.2-3 PhC (2D) biosensor with point defect made by increasing the size of the 

central hole and then removing the first layer of surrounding holes demonstrated by Lee 

and Fauchet et al [26]. Light is injected to the cavity by integrated optical waveguide. 

 

A two-dimensional (2D) photonic crystal microcavity biosensor [26] is illustrated in 

Figure 1.2-3. The point defect can be formed by either by increasing or decreasing the 

central hole. Chow et al. demonstrated the detection of 0.002 ambient RI changes by a 

PhC cavity sensor with a Quality factor (Q) around 400 in 2004 [25]. Later in 2007, Lee 

and Fauchet for the first time demonstrated the monitoring of protein binding on the walls 

of the defect hole of a PhC cavity biosensor and quantitatively measuring the protein 

diameter [26]. 
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Figure 1.2-4 Schematic 3D illustration of 1D PhC sensors (a) PhC cavity embedded into 

the feeding waveguide with grating coupler in both ends for in and out coupling of light 

(Chapter 6), (b) PhC cavity section is placed separately adjacent to the bus waveguide [56]. 

 

1-D PhC cavity [22, 23, 56-58] has been demonstrated as a significant alternative to the 

2D slab based PhC cavity. Here, the PhC cavity (line of air holes with defect at the center) 

is either embedded in the feeding waveguide (Figure 1.2-4a) or placed adjacent to the 

waveguide for evanescent coupling (Figure 1.2-4b). The cavity comprises two PhC Bragg 

mirrors placed face to face with a certain length of separation which acts as a cavity. The 

waveguide material, width of the waveguide, air hole filling fraction, cavity separation, 

Bragg mirror ending type (tapered or not) and mirror strength etc. all play important roles 

to the overall Q of the cavity. 1-D PhC cavities can achieve Q (~ 80,000 experimental 

value [23]) as high as  those found in the slab based geometries but with much smaller 

footprint which is beneficial for small analyte detection. Furthermore, it has a naturally 

convenient geometry for integration with the optical waveguide. The in and out coupling 

of light from the feeding waveguide can be done either by grating coupler or by edge 

coupling as shown in Figure 1.2-4a&b respectively. The 1D PhC cavity has already found 

its application not only in bio-sensing [24, 59], but also in opto-mechanics [60], optical 

trapping [61] and opto-fluidics [62] etc.  
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1.2.4 Whispering Gallery Mode (WGM) based Resonant Optical 

Microcavity  

Resonant optical microcavity is some sort of closed loop circular/spherical optical 

waveguide where coupled light propagates through the loop in the form of whispering-

gallery modes (WGM) in such a way that constructive interference is generated in the 

multiple roundtrips over the circumference. The cavity is evanescently coupled by a 

tapered-fiber/waveguide for in and out coupling of the sustained resonant mode.  

 

 

 

Figure 1.2-5 (a) Schematically presented biomolecular binding event on a ring resonator 

and corresponding resonance wavelength shift in the transmission spectrum, (b) SEM 

image of the SOI micro-ring resonator seen through an annular opening of polymeric 

cladding. Image adapted from ref. [63], (c) a microsphere of diameter d ≈ 80 µm is melted 

from an optical fiber used for monitoring single-molecule nucleic acid interactions, and (d) 

Silica microtoroid optical resonator of 80 μm diameter fabricated on a silicon wafer using 

planar lithography and reflowed using a CO2 laser. Figure c&d are adapted from ref. 

[64]&[65] respectively.   

 

 

 Mλ=2πrneff (1.2) 
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where m is an integer, λ is the wavelength of light, r is the radius of the cavity, and neff is 

the effective refractive index of the waveguide mode. 

Specific wavelengths of light followed by Eq. (1.2) are supported in a resonant 

microcavity which emerges as notches in transmission spectrum. Any local change of RI 

induced by biomolecular binding event is quantified by the amount of shift in the resonant 

wavelength. 

The example of WGM based non-planar resonant optical micro-cavities are microsphere 

(formed by melting a fiber tip [64] or by polystyrene microspheres in solution [66] or by 

silica preforms in a hydrogen-oxygen flame [67]), and microcapillary [68] cavity which 

have already been reported to have tremendously low detection limit, occasionally down 

to the level of resolving single molecule binding events. Nonetheless, these devices are 

not readily fabricated in a chip-based format and optical interrogation of such cavities is 

not trivial (often requiring positioning of extruded optical fibers with nanometer precision 

and alignment). In contrast, planar micro-ring resonators [29, 30, 69] with chip-integrated 

linear access waveguides have emerged as promising candidates for scalable and 

multiplexable biosensing.  

Though, theoretically, the resonance peaks of a ring resonator can become spectrally very 

narrow because of very high Q, practically, the Q-factor is highly dependent on the 

fabrication precision of the ring, and the sidewalls and surface roughness. The bulk 

sensitivity of the ring resonator is not very high (~200 nm/RIU for slotted ring resonator 

[70]), but the narrow peaks facilitate resolution of small shifts in the spectral position of 

the resonance, nevertheless, the actual detection limit of the sensor is practically 

dependent on the spectrometer resolution. 

1.3 Commercialization of Optical Biosensors 
Biacore, a Swedish company, launched world’s first SPR based analytical instrument for 

studying biomolecular interactions in 1990.  Since the launch of the first product named 

BIAcore®, the company had been improving the product performance and features by 

launching semi-automated (Biacore® X) to fully automated (Biacore® 3000) system. In 

2006, Biacore was acquired by GE Healthcare. The latest addition to the product line is 
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Biacore S200 which delivers affinity, kinetics, or fragment-screening data from a 384-

well microplate. Several other manufactures like IBIS Tech. have also attempted to 

expand the ability of SPR imaging based detection by an array of multiplexed system to 

speed up research by saving sample, labour and sensors. IBIS-MX96 tool claims 

analyzing 96 biomolecular interactions simultaneously using only 100 µl of sample 

volume overnight.  

Table 1.3-1 categories commercially available major optical biosensor platforms 

dedicated to drug discovery, proteomics, and clinical diagnostics. 

 

Table 1.3-1 Optical biosensor technology, their manufacturer, corresponding product 

name and manufacturer’s website. 

Technology Manufacturer Instrument Throughput Website  

SPR GE Healthcare 

(Initially 

Biacore®) 

BIACORE Low www.biacore.com 

IBIS Technologies 

(Hengelo, 

Netherleand) 

IBIS I and II Medium www.ibis-spr.nl 

Sierrasensors, 

Germany 

SPR-2 Low www.sierrasensors.com/  

RWG Corning Inc., NY Epic High www.corning.com/ 

lifeSciences 

MicroVacuum, 

Hungary 

OWLS Low http://www.owls-

sensors.com/ 

Interferometer Farfield, UK AnaLight Low  http://www.farfield-

group.com 

Ring 

resonator 

ForteBio (Menlo 

Park, CA) 

Octet System Low www.fortebio.com 

Genalyte, USA Maverick Medium www.genalyte.com/  

http://www.biacore.com/
http://www.ibis-spr.nl/
http://www.sierrasensors.com/
http://www.corning.com/lifeSciences
http://www.corning.com/lifeSciences
http://www.owls-sensors.com/
http://www.owls-sensors.com/
http://www.farfield-group.com/
http://www.farfield-group.com/
http://www.fortebio.com/
http://www.genalyte.com/
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Corning Inc. also moved into the optical bio-detection market by developing a RWG 

based Epic® technology in 2006, the first label-free screening technology for high 

throughput screening (HTS) for both cell-based and biochemical assays. The Corning 

Epic™ system uses RWG sensors in a temperature-controlled environment. A detection 

fiber bundled with the broadband illumination fiber collects the reflected light and then 

spectrally measure the ligand-induced wavelength shift for analysis. A series of 

detection/illumination heads are arranged in a linear fashion in the same column so that 

they can collect reflected light from multiple wells of a 384-well microplate at once which 

makes it a very high throughput system (HTS). This optical reader scans the whole 

microplate enabling up to 40,000 wells to be read in an 8 hour period only. MicroVacuum 

Inc. also launched their latest grating coupler based label-free detection system: OWLS 

210. The basic principle of the OWLS method is waveguide grating coupler where 

linearly polarized light (He-Ne laser) is coupled by a diffraction grating into the 

waveguide layer, provided that the incoupling condition is fulfilled. The incoupling is a 

resonance phenomenon that occurs at a precise angle of incidence, which depends on the 

refractive indices of the medium covering the surface of the waveguide. The light is 

guided by total internal reflection to the ends of the waveguide layer where it is detected 

by photodiodes. By varying the angle of incidence of the light the resonance condition 

can be obtained from which the effective refractive indices are calculated for both the TE 

and TM polarized modes. The analyte under investigation is in a cuvette fixed over the 

optical grating coupler waveguide sensor chip. This assembly is mounted on a precision 

goniometer, which adjusts the angle of incidence of the external laser beam. However, as 

the OWLS technology has not been engineered for multiplexed system yet, the throughput 

of the system is very low feasible for low volume users. Farfield Inc. from UK and 

ForteBio Inc. from USA also brought up interferometry and ring resonator based low 

throughput AnaLight and Octet® K2 System respectively targeting low volume users. 

1.4 Motivation of this Thesis Work 
Although RI sensors are widely used for surface affinity based bio-molecular detection, 

the information obtained by the present resonance technique is limited [71]. In these 
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sensors, the resonance wavelength (RW) of the sensor is tuned by a change in the optical 

density of the medium lying within the range of the evanescent wave. The evanescent 

wave is an electromagnetic wave at the interface of the sensor surface and analyte 

solution. The wave extends approximately a few hundreds of nanometer. Any change in 

RI probed by the resonant mode within the penetration depth causes a corresponding 

wavelength shift of the optical resonance of the sensor. In addition to refractive index (RI) 

changes associated with the surface-bound target biomolecular material which is 

altogether few tens of nanometer thin, thermal induced RI changes of the bulk liquid 

medium within the range of the penetration depth (hundreds of nm) on top of the bio-layer 

will also induce a shift in the RW [71]. This could be a significant problem in portable 

diagnostic applications [72] where thermal variations are likely. The suppression of this 

unwanted noise will be especially important for applications requiring the detection of 

smaller size bio-molecules or ultralow analyte concentrations (<ng/ml). 

 

To date, many of the label-free RI sensors including 1D and 2D photonic crystal cavity, 

some RWG sensors and ring resonator devices operate at infrared (IR) telecom 

wavelengths associated with the transparency of high index material like Silicon [21, 26, 

30, 73], Germanium [73], Gallium Arsenide [69, 74] and Indium Phosphide [75, 76]. 

There is great interest in extending these devices into the ultraviolet (UV), visible and 

near IR (~850 nm) wavelengths for bio-sensing applications. Specifically, the wavelength 

of 850 nm is in a spectral region which is free of overtone absorption resonance in bio-

media and low in biological auto-fluorescence. So, sensors operating around 850 nm 

would improve signal to noise and thus increase sensitivity of the sensor platform. Silicon 

nitride (SixNy) is a useful waveguide material in this case due to its relatively large index 

and transparency across the whole infrared,  visible and part of the UV spectrum [77]. 

Thus, it would be of huge interest to fabricate the SixNy based RI sensor for near IR and 

visible light spectral region.  

 

Optical nano-structured biosensor like PhC cavity, subwavelength RWG etc. are normally 

fabricated using electron beam lithography (EBL) on CMOS compatible Si substrate, but 

Si is not transparent in the visible and near infrared wavelength (λ<1000 nm). Transparent 
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glass substrate can benefit from illumination through the back of the sensor substrate 

while the active sensor surface on top is immersed in liquid with the species to be detected. 

SixNy-based bio-sensing is prospective because the SixNy material is not only optically 

viable for sensor at the near infrared or visible wavelength but also bio-compatible for the 

bio-assay experiments. 

Pattern writing on glass substrates using EBL is a challenge because of charging effect 

and corresponding drift during long-time writing on a 4-inch glass wafer. A conductive 

thin layer on top of the SixNy may solve the charging problem but the nano-fabrication 

process including that conductive metal etching recipe, pattern transfer recipe etc. should 

be developed for this purpose. Besides, EBL is very costly and the throughput is very low 

as it is a serial pattern writing technology. Whereas, using nano-imprint lithography 

technology will increase the fabrication throughput but it would be challenging to 

maintain the accuracy of the nano-pattern across the whole wafer. It is of great interest to 

fabricate the SixNy based RI sensor on transparent glass substrates such as Pyrex or 

Borosilicate glass with low cost nano-imprint technology. 

 

1.5 Outline of the Thesis 
This thesis explores the potential of optical nanostructures specifically the resonant 

waveguide grating and nano-ribbon cavity (1D PhC) for use in label free, real time optical 

sensing of biomolecules e.g., Immunoglobulin G (IgG) proteins. This chapter has 

provided the motivation and context of this thesis work, and a brief survey of ongoing 

research into the field of label free optical bio-sensing has been introduced in terms of its 

operating principle, commercial availability, and pros and cons. An overview of the 

resonant waveguide grating, its design principles for use in label free biosensor and 

selection of the sensor material will be detailed in chapter 2. Chapter 2 will also cover the 

development of a fully customizable finite difference time domain (FDTD) model for 

simulating the sensing response of the resonant waveguide grating. The sensor is designed 

for resonance wavelength at both around 633 nm and 850 nm. At the infrared 850 nm of 

wavelength, the overtone absorption of the bio media is very low which gives less noise 

in time of bio-characterization. Whereas with the high power He-Ne laser at the visible 
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633 nm of wavelength, the sensor characterization is easier than that of infrared 

wavelength. In chapter 3, the process steps of fabricating the optical nano-structures using 

electron beam lithography and nano-imprint lithography will be presented. Developing 

low loss SixNy waveguide material using Plasma enhanced chemical vapour deposition 

(PECVD) will be detailed. The use of Chromium (Cr) as a hard mask on the non-

conductive glass substrate for reducing charging effect in the nano-fabrication processes 

by EBL will be introduced. The fabrication of very high aspect ratio (1:10) nano-structure 

on glass will also be demonstrated in chapter 3. The fabricated sensors were characterized 

for both bulk (detection of liquid based on their bulk refractive index) and surface 

(quantification of biomolecular binding events) sensitivity, and these results will be 

summed up in chapter 4. Successful detection of Immunoglobulin-G (IgG) antibodies and 

antigen confirms that the developed sensors are suitable for bio-molecular diagnosis. For 

separating the response of bulk sensitivity from the surface binding events, a dual 

resonance approach will be proposed and verified in chapter 5. Chapter 6 will present the 

design and fabrication of the resonant nano-ribbon cavity for sensing application. Finally, 

in “Conclusions and Further Work,” the achievements and experiences will be summed 

up and a road map for future research will be set out. 
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2.1 Introduction 
his chapter presents a brief history of the resonant waveguide grating (RWG) 

(Section 2.1.1), its physical basis of operation (Section 2.2) and then introduces 

a numerical solver for designing and analyzing the RWG (Sections 2.3 and 2.4). 

A simple design procedure of RWG sensor is presented in Section 2.5 based on the 

findings from the multi-parameter analysis of the RWG. Two different types of bio-sensor 

sensitivity (bulk and surface) are defined and RWG’s sensitivities are analysed by varying 

its physical parameters (Section 2.6).  

2.1.1  Historical Background of RWG 

In 1902, while observing the spectra of a continuous light source diffracted by a metallic 

grating, instead of having a continuous spectra, Wood noticed a strange phenomenon: “I 

was astounded to find that under certain conditions, the drop from maximum illumination 

to minimum, a drop certainly of from 10 to 1, occurred within a range of wavelengths not 

greater than the distance between the sodium lines” [44]. He did mention that the incident 

is related to the polarization of the light: “It occurred to me that polarization might prove 

to be the key to the explanation of the very singular behavior of the grating of which I am 

writing” [44]. Wood was unable to explain the finding (Figure 2.1-1) and hence, called it 

as “singular anomalies”. He also concluded the problem as “one of the most interesting 

that I have ever met with”. 

 

Rayleigh proposed the 1st explanation [45] of Wood’s anomalies in the grating spectra 

relating them as the emergence of the new higher order of diffraction and the passing of 

the spectra. In another words, the anomaly occurring at a wavelength corresponds to the 

diffracted wave which emerges tangentially to the gating surface and so, are missing in 

the spectra. The Rayleigh conjecture proposed the now familiar grating Eq. (2.1) which 

became a valuable tool for prediction of Wood’s anomaly. 

 
𝑠𝑖𝑛 (𝜃𝑛) =  𝑠𝑖𝑛 (𝜃) + 

𝑚𝜆 

Ʌ
 

(2.1) 

 

T 
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where 𝜃𝑛 is the angle of the diffracted light, 𝜃 is the incident angle, 𝜆 refers to the 

wavelength, Ʌ denotes the period of the grating groove and 𝑚 is the order of the 

diffraction. 

 

 

Figure 2.1-1 Diffraction spectra (of a continuous light source) by metallic grating at ten 

different angles obtained by Wood [44]. The wavelengths are indicated at the top of the 

figure in ×10 nm unit, and the angles of incidence at the left.   

 

Though there was some mismatch between the Wood’s experimental anomaly wavelength 

values and Rayleigh prediction, the deviation was assumed to be in the range of 

experimental error.  

A few decades later, Fano made a breakthrough by pointing out two types of anomalies 

[46] (see Figure 2.1-1): 

- Sharp anomaly: a sharp edge of intensity drop in the spectrum defined by the 

Rayleigh diffraction equation 

- Diffuse anomaly: it consists of a dark and bright band (minimum and 

maximum of intensity) which normally occurs at higher wavelength than that 

of sharp anomaly. 

Fano explained the diffuse anomaly by “a forced resonance” related to the “leaky waves 

supportable by the grating”. 
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However, in 1965 Hessel and Oliner [47] were led to the same conclusion as stated by 

Fano [46]. They presented a numerical tool which showed two types of resonances: 

Rayleigh type which is related to the emergence of the new grating order and the 

resonance type that emerges from the guided complex wave supportable by the grating. 

Nevertheless, it was not until 1980 when Mashev and Popov [48] demonstrated the 

incident of Wood’s anomaly in an all dielectric diffraction grating instead of metallic 

grating showing a rapid increase in zeroth order reflection efficiency from 0 to 100 

percent. Because of the possible applications as a tunable, highly efficient, CMOS 

compatible narrowband spectral filter, further studies were carried out by Magnusson et 

al. [49, 50, 78-80] using rigorous coupled-wave theory mostly for telecom applications 

and by Brian T. Cunningham for biosensor applications [51, 52]. Throughout its history, 

this type of structure has been named differently i.e., ‘Guided mode resonance’ [49, 50, 

78-80], ‘Resonant waveguide grating’ [20, 53, 81], ‘Resonant 1D photonic crystal’ [51, 

52] etc. In this thesis, it will be termed as the ‘Resonant waveguide grating’ (RWG). 

2.2  Physical Basis of RWG Reflectance spectra 
Though the history of RWG started back in 1902, the explanation of the physical basis of 

this optical component is still a topic of study and debate as claimed in [82]. RWG is a 

periodic subwavelength grating structure with single or multilayer optical waveguide 

beneath. Figure 2.2-1a shows diffraction grating with period Ʌ, filling fraction FF, 

waveguide layer thickness hw, and etching depth hetch. The refractive indices (RI) of the 

cladding, waveguide and substrate are nc, nw, and ns respectively in Figure 2.2-1. The 

resonance in the RWG refers to a sharp peak in the reflection spectrum (or a sharp notch 

in the transmission spectrum in the same spectral location) for a certain polarization of 

light. When the polarized light is incident (at angle of θ) upon single/ multi-layer 

diffraction grating, the zeroth order of the diffracted light follows the Snell’s law of 

reflection and refraction while the higher order diffracted light either forms forward and 

backward waves or becomes evanescent mainly depending on the spatial frequency of the 

grating. Figure 2.2-1a shows that for grating period much larger than the wavelength of 

light, both zeroth and higher order (±1) diffracted forward wave (top of the grating) and 

backward waves (back of the grating) are sustained. For subwavelength gratings (period 
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sufficiently smaller than the wavelength of light) as shown in Figure 2.2-1b only zeroth 

order propagates (far field) and all the higher order waves are evanescent (i.e. starts 

propagating along the waveguide but shortly decays away). Here, the evanescent wave is 

defined as an electromagnetic wave that propagates along the surface of a grating, and its 

field amplitudes decay away from the surface exponentially [83]. 

 

Figure 2.2-1 Basic single layer waveguide grating (a) Low spatial frequency grating where 

both zeroth and higher order diffracted light is present, and (b) High spatial frequency 

grating where only zeroth order diffracted light sustains and rest of the orders are 

evanescent. 

 

When the subwavelength gratings are in resonance, the strong coupling between the 

external propagating waves (zeroth order) and the adjacent evanescent waves (higher 

order) occurs which produces rapid increase in the reflectance by constructive interference 

and concomitant decrease in transmittance by destructive interference. So, complete 

energy exchange between the forward and backward propagating zero-order waves occur. 

This resonance occurs when one of the diffracted waves generated by the grating element 

is phase-matched to a leaky mode admitted by the waveguide structure. This happens only 

for a narrow range of wavelength. The single-layer waveguide grating structures 
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consisting of gratings and homogeneous layer of same material beneath (i.e. the grating 

is partially/ fully etched) exhibit a guided mode resonance (GMR) effect as long as the 

structure functions as a waveguide (nc<neff & ns<neff) and grating layer acts as a phase 

matching element. The periodic element can provide the necessary phase matching even 

at normal incidence.  

2.3  Numerical Model for Design and Analysis  
The numerical methods normally used for designing and analyzing photonic structure like 

RWG, PhC cavity and grating coupler include time-based approach called the finite-

difference time-domain (FDTD) method, rigorous coupled wave analysis (RCWA), and 

finite element method (FEM) etc.  

The Finite-Difference Time-Domain (FDTD) method [84] is a common method for 

solving  time and space solution of complex computational electrodynamics (e.g. optical 

geometries) by Maxwell’s equations. As it is a time domain method, FDTD can cover a 

broad frequency range in single simulation run which is a distinct advantage of FDTD 

over FEM. In addition, by exploiting Fourier transforms, FDTD can also obtain the 

frequency solution which can calculate the complex Poynting vector and thus frequency 

specific electric and magnetic field distribution across the geometry. A commercially 

available FDTD simulator [85] is interfaced with MATLAB® to run customized script 

for this thesis work. 

2.3.1 Solver Physics 

This section will introduce the basic mathematical formalism behind the FDTD algorithm. 

FDTD solves Maxwell’s curl equations in non-magnetic materials: 

 

 

 𝜕�⃑⃑� 

𝜕𝑡
=  ∇ × �⃑⃑�  

 

�⃑⃑� (𝜔) =  𝜀0𝜀𝑟(𝜔)�⃑� (𝜔) 
 

𝜕�⃑⃑� 

𝜕𝑡
=  −

1

μ
0

∇ × �⃑�  

(2.2) 

 

 

(2.3) 

 

 

(2.4) 
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where �⃑⃑� , �⃑� , and �⃑⃑�  are the magnetic, electric, and displacement fields respectively. 

And, 𝜀𝑟(𝜔) =  𝑛2, is the complex relative dielectric constant with n as the refractive index. 

If we assume that the geometry is independent in z dimension (i.e. infinite in z direction) 

then 

 

 𝜀𝑟(𝜔, 𝑥, 𝑦, 𝑧) = 𝜀𝑟(𝜔, 𝑥, 𝑦) 
 

𝜕�⃑� 

𝜕𝑧
=  

𝜕�⃑⃑� 

𝜕𝑧
= 0 

(2.5) 

 

(2.6) 

 

So, the Maxwell’s equations can be split into two sets of equations each of which deals 

with three vectors which can be solved in x-y plane. These two sets of equations are 

termed as TE (transverse electric) and TM (transverse magnetic) equations. For TM case, 

the Maxwell’s equations reduce to: 

 

 𝜕𝐷𝑧

𝜕𝑡
=  

𝜕𝐻𝑦

𝜕𝑥
− 

𝜕𝐻𝑥

𝜕𝑦
 

 

𝐷𝑧(𝜔) =  𝜀0𝜀𝑟(𝜔)𝐸𝑧(𝜔) 

 
𝜕𝐻𝑥

𝜕𝑡
= −

1

μ0

 
𝜕𝐸𝑧

𝜕𝑦
   

 

(2.7) 

 

 

(2.8) 

 

(2.9) 

  

  

The FDTD method solves these equations on a discrete spatial and temporal grid/mesh to 

get the E and H fields of that grid. FDTD solver uses a rectangular, Cartesian style mesh. 

Smaller the mesh size more precise the geometrical representation would be but it would 

substantially increase the memory and processing power usages. To speed up simulations, 

a conformal meshing [86] is used with lower memory requirement. In addition, smaller 

meshing is used in high index material to have constant number of mesh points per 

wavelength across the geometry which ensures the accuracy of the simulator. In some 

cases, it was necessary to manually impose additional meshing constraints i.e. to force the 

mesh to be smaller near complex structures (often for metallic material and sharp bending) 

where the fields are changing very rapidly. However, the fundamental simulation 

quantities (material properties and geometrical information, electric and magnetic fields) 



Chapter 2. Design 

31 

 

are calculated at each mesh point.  The simulation evolves the E and H fields forward in 

time.  

Dispersive materials with experimental tabulated data in (n,k) format were incorporated 

into the model by fitting this data with a multi-coefficient material model (e.g. Drude, 

Debye or Lorentz model). 

2.4 RWG Simulation using FDTD 
The simulations are done on a unit cell (size of one period of the grating) bounded by 

orange colored box as shown in Figure 2.4-1. Periodic boundary conditions are applied in 

±X axis boundaries whereas perfectly matched layer (PML) is applied in the ±Y 

boundaries. PML is an absorbing boundary condition which uses the mathematical 

method of attenuating any signal travelling to that boundary and thus, deletes any back 

reflections coming from the boundary to the computational domain. 

 

 

Figure 2.4-1 RWG simulation setup in the FDTD graphical user interface.The larger 

orange rectangle is the simulation window (for unit cell of RWG) with PML in top and 

bottom, and periodic boundary condition at left and right side. The SixNy grating on glass 

substrate is set to be covered with buffer solution in the simulation. TE polarized 

planewave light source is applied from top of the grating and two monitors are at the top 

and bottom for calculating the RWG reflection and transmission spectra respectively. 

 

This work considered a partially etched Silicon nitride (SixNy) grating on a Borosilicate 

glass substrate as the RWG platform. The period (ʌ), SixNy waveguide layer thickness 
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(hw), etching depth (hetch), and filling fraction (FF) are initially set as 450 nm, 400 nm, 

150 nm, and 50% respectively. A planewave TM polarized light source is placed on top 

of the grating covered by buffer solution (RI=1.332) and a monitor is placed under the 

substrate to measure the transmittance of the RWG (Figure 2.4-1). The reflection and 

transmission spectra for both TE and TM polarization for the abovementioned RWG 

geometry is presented in Figure 2.4-2. 

 

Figure 2.4-2 Reflection and transmission spectra of a single layer RWG for both TE and 

TM polarization. 

 

The resonance wavelengths for TE and TM polarizations are 788 nm and 768 nm of 

wavelength respectively which are separated by 20 nm in this case.  

As there is no analytical expression for resonance linewidth and RWG sensor sensitivity 

dependence on the physical parameters of the structure, the numerical study is necessary.  
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2.4.1 Multi-order multimode RWG 

Much past research on RWG devices has focused on a thin waveguide layer which 

supports only a single leaky mode. In contrast, Liu and Magnusson explored properties of 

multi-order multimode RWG elements to design wideband and multi-wavelength filters 

[87]. Using a dielectric thin-film structure consisting of a coupling grating placed on top 

of an adjacent waveguide, guided-mode resonance filters exhibiting multiple reflection 

peaks within a specified wavelength range can be obtained. These peaks originate in the 

resonant waveguide modes that are excited by the diffracted waves dispersed by the 

grating. Subsequently, Boonruang et al. designed multiline RWG (also known as GMR) 

filters using two-dimensional (2D) grating structures with rectangular and hexagonal 

grids. They implemented spectral location control by inducing leaky modes into specific 

directions on these grids [88]. Greenwell et al. designed 1D multi-wavelength GMR filters 

based on multimode waveguides with particular emphasis on resonance separation control 

[89].  

 

 

Figure 2.4-3 Model of the device under study denoting thicknesses of the waveguide layer 

(hwav) and refractive indices (n) of the various regions as well as the period (Λ) of the 

grating. 

 

The RWG device under study is composed of a partially etched subwavelength grating in 

a single Si3N4 layer on top of transparent Quartz substrate as shown in Figure 2.4-3. The 

mth diffraction order indicated in Figure 2.4-3 excites a leaky waveguide mode at a 

particular wavelength. Under variation of the wavelength, the allowed modes will be 
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sequentially excited with a guided-mode resonance arising for each mode. The mode 

angle satisfies: 

 

sin (θ𝑚) =  
mλ

(Λ×𝑛𝑤)
     (2.10) 

 

with λ being the free-space wavelength, Λ the period, m the diffraction order and nw the 

refractive index of the waveguide. Multiple resonance modes from the same diffraction 

order can be generated by increasing the thickness of the waveguide layer and optimizing 

the etching depth for that corresponding layer thickness. Figure 2.4-3shows the FDTD 

simulated transmission spectrum of a RWG with Λ = 440 nm, hetch = 160 nm, filling 

fraction = 60% and different waveguide layer thickness (hwav) = 400, 600, 1000 nm. 

Inserting these RWG parameters in Eq. (2.10), it is found that only 1st order diffraction 

can contribute to the resonances. However, the spectral density of the RWG peaks in this 

device is controlled by the thickness hwav because it determines the number of modes 

sustained by the waveguide. The thicker the waveguide, the higher the number of modes 

available in the waveguide. 

 

Figure 2.4-4 Calculated transmission spectra of the RWG with different waveguide layer 

thickness, hwav = 400, 600, 1000 nm which excites 2, 3 and 4 resonance modes respectively. 
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Figure 2.4-4 shows all the resonance modes available within a wavelength range of 600 

nm to 850 nm for different waveguide thickness. For TE polarization of light incident 

upon the RWG two degenerate resonance modes arise for a thin waveguide layer thickness 

of 400 nm whereas for waveguide thickness of 600 nm and 1000 nm, 3 and 4 resonance 

modes at different phase matched wavelength arise. The formula for the appropriate 

number of modes supported by a homogeneous dielectric waveguide is defined as [90]   

 

𝑀~ 
2ℎ𝑤𝑎𝑣

𝜆
 √𝑛𝑤

2 − 𝑛𝑐
2    (2.11) 

 

For hwav = 1000 nm, nw = 1.9 (Si3N4) and nc = 1 (air), M is found ~ 4 at a wavelength of 

750 nm from Eq. (2.11). The FDTD simulated results as shown in Figure 2.4-4 also 

verifies the four guided mode resonances for hwav = 1000 nm.  

 

2.5 RWG Design Procedure 
The design procedure of RWG starts by choosing the initial grating material, substrate, 

light incidence angle, period, waveguide thickness and filling fraction of the grating 

targeting a given wavelength, linewidth and sensitivity (see Section 2.6) of the RWG 

sensor in resonance. It can be a single-layer, double-layer, or multilayer structure. For 

normal incidence, the initial grating period is estimated from [91]  

 ʌ = 
λ𝑟𝑒𝑠

𝑛𝑒𝑓𝑓
  

(2.12) 

 

where λres and neff are the resonance wavelength and effective refractive index of the 

grating waveguide layer. The trial filling factor is usually chosen to be 0.5, which gives 

the largest linewidth of the resonance spectrum (Section 2.5.1). 
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Figure 2.5-1 Flow-chart schematically shows the design procedure of the RWG targeting 

specific resonance wavelength, linewidth and sensitivity. 

 

The waveguide layer thickness defines the single and multi-resonance property of the 

RWG and so, set accordingly (see Section 2.4.1 for multi-resonance property). Next, the 

FDTD simulator is employed to find the appropriate reflection (R(λ)) and transmission 
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(T(λ))   spectra and locate the λres. The resonance wavelength can be further tuned by the 

period as λres is directly proportional to the period as shown in Eq. (2.12). The spectral 

response of the trial RWG structure is then examined to assess the linewidth and 

sensitivity (see Section 2.6). If the sensitivity requirement is not fulfilled, changing the 

waveguide layer thickness and etching depth of the grating would help changing the 

electromagnetic field overlap integral (see Section 2.5.1 and 2.5.2) and change sensitivity. 

The linewidth can be reduced to meet the requirement of Q-factor by either increasing or 

decreasing the filling factor from 0.5 or by etching more of the grating (i.e. increasing the 

hetch) as shown in Section 2.5.1. When the sensitivity and linewidth requirements are 

fulfilled, the resonance wavelength can be fine tuned by adjusting the period of the 

grating. The design procedure presented here is a simple numerical approach for designing 

RWG of specific resonance wavelength, Q-factor (~1/linewidth) and sensitivity. 

Alternatively, the RWG sensor can be designed using a global optimization method such 

as the Particle Swarm Optimization (PSO) technique [92]. 

2.5.1 Role of FF and hetch on RWG Spectral Linewidth  

The filling fraction (FF) and etching depth (hetch) of the grating were varied to investigate 

their role in the RWG transmittance spectra. Figure 2.5-2a and Figure 2.5-2b show the 

transmittance mapping of the RWG for different FF and hetch respectively. The linewidth 

of the resonance is very much dependent on both the FF and hetch. The maximum linewidth 

is found for FF=0.5 and the linewidth decreases to zero when FF approaches from 0.5 to 

either 0 or 1 (no grating). This behavior can be attributed to the coupling efficiency of the 

grating which is proportional to sin(π×FF). The local maximum value of sin(π×FF) is  for 

FF=0.5 and its value approaches to 0 when FF goes from 0.5 to 0 or 1. 
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Figure 2.5-2 Transmittance of the RWG for (a) Varying filling fraction (FF), and (b) 

Etching depth (hetch). 

 

2.5.2 Parameters of the Optimized RWG 

Simulations were carried out to find optimized structure parameters for a RWG working 

with wavelengths of 850 nm and 633 nm. The 850 nm wavelength was chosen because 

the bio-overtone absorption noise is low at this wavelength and also low cost VCSEL 

source is available at this wavelength. The wavelength of 633 nm was also selected 

because common optics (sources, detectors) are more sensitive and readily available at 

this wavelength. The optimized parameters for the two designs are reported in Table 

2.5-1. 

 

Table 2.5-1 Designed parameters of the RWG for visible and infrared wavelength. 

Sensor Type 
Targeted Resonance 

wavelength 
Parameters Design 

 

Visible RWG 

(Dual resonance) 

 

633 nm and 760 nm 

Filling fraction 60% 

Period 440 nm 

Etch depth 200 nm 

 

Infrared RWG 

 

850 nm 

Filling fraction 45% 

Period 510 nm 

Etch depth 250 nm 
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Figure 2.5-3 shows the transmission spectrum (in buffer) obtained with the optimized 

parameters for the visible RWG along with the electric field profile at the two resonance 

wavelengths. As can be seen, two resonance peaks are obtained, one is located at 633 nm 

and a second one at 760 nm.  

  

Figure 2.5-3 Transmittance of visible RWG with parameters listed in Table 2.5-1, shows 

dual resonances. Simulation of the electric field at the resonance wavelengths (left: 633 nm, 

and right: 760 nm) of the RWG sensor are presented. 

 

As shown in Figure 2.5-3 the first resonance has a sideband at the left side and also the 

shape is not fully symmetrical whereas the second resonance is almost symmetrical with 

no sideband. Reduction of the sideband and improvement of the shape can be done by 

adding anti-reflection (AR) layers beneath the RWG layer and furthermore independent 

controlling of these layer thicknesses [93]. The symmetry of the resonance peak shape 

and the sideband values are closely related because the symmetry of the peak is also 

influenced by the antireflection mechanism. Inclusion of multiple layers (3, 5 etc.) for 

antireflection mechanism along with the independent control of these layer thicknesses to 

minimize the sideband for two completely different spectral resonance modes would 

make the design and fabrication of the sensor complicated. So, it was intended to use 

single layer waveguide for easy fabrication of RWG though there is nominal sideband 

present at the 1st resonance as found in Figure 2.5-3. 
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2.6 Sensor Sensitivity 
The sensing mechanism in the RWG is the detected spectral shift of the resonance induced 

either by RI change of the medium surrounding the RWG or by local RI change for the 

attachment of biolayer on the RWG surface. The former is termed as ‘Bulk’ sensitivity 

whereas the later is known as ‘Surface’ sensitivity. 

2.6.1 Bulk Sensitivity 

The relationship between the small change in the bulk RI and the corresponding spectral 

shift of resonance can be quantified by the ‘Optical overlap integral’, f (Eq. 2.13), which 

describes the ratio of the electric field energy of the guided mode existing outside the 

dielectric structure (i.e. in the region covered by the liquid) with the total energy of the 

resonance mode. 

 

 

 

 

(2.13) 

So, the bulk sensitivity (S) can be defined as [94]: 

 

 

 

 

(2.14) 

 

where λres, neff, and f are the resonance wavelength, effective refractive index of the 

dielectric RWG waveguide, and optical overlap integral respectively. From Eqs. (2.13) 

and (2.14), it is recognizable that the large value of f means large portion of total electric 

field available for interacting with the change of RI of the liquid medium, and so increase 

the bulk sensitivity, S. The spectral location of the resonance wavelength and the material 

of the grating are also important in achieving high sensitivity, but all these three 
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parameters are interlinked to one another. So, a numerical study is essential for studying 

the bulk sensitivity. 

It can be seen from the electric field intensity distribution in Figure 2.5-3 that the field at 

633 nm penetrates deeper into the superstrate (in this case buffer solution on top of 

grating) while the electric field at 760nm stays confined to the interface. So, it can be 

deduced that the first resonance would act as a bulk sensor (i.e. capable of monitoring 

change of refractive index “away” from the surface) whereas the second resonance would 

act more likely as a surface sensor. See Chapter 5 for detail of the proposed dual resonance 

approach of RWG exploiting the different behavior of these two resonances. 

To calculate the bulk sensitivity of the 1st resonance (around 633 nm) of the sensor, 

resonance mapping with variation in the background refractive index of the medium on 

top of the grating is done as shown in Figure 2.6-1. The slope (
𝜕𝜆

𝜕𝑛𝑐
) of the envisaged blue 

curve (i.e. resonance tracking line) in Figure 2.6-1 gives the bulk sensitivity value in 

nm/RIU unit. 

 

 

Figure 2.6-1 Bulk sensitivity mapping using simulations. The refractive index of the 

medium (nc) on top of RWG is varied and the corresponding resonance transmittance 

spectra are mapped.  
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The slope (
𝜕𝜆

𝜕𝑛𝑐
) changes with the background RI (nc). The maximum value of bulk 

sensitivity is found 183.33 nm/RIU 

2.6.2 Surface Sensitivity 

The surface sensitivity refers to the spectral shift of the resonance due to the attachment 

of a thin layer (<30 nm) of bio-molecule on the RWG sensor surface which causes change 

in the effective RI (neff) of the waveguide layer and so to the resonance wavelength 

following Eq. (2.12). 

The  effective RI (neff) of the waveguide layer can be defined as the weighted average of 

the electric field intensity [91]: 

𝑛𝑒𝑓𝑓
2 = 

∬ ℇ(𝑥,𝑦)|𝐸(𝑥,𝑦)|2𝑑𝑥𝑑𝑦
∞,ʌ
−∞,0

∬ |𝐸(𝑥,𝑦)|2𝑑𝑥𝑑𝑦
∞,ʌ
−∞,0

                               (2.15) 

 

The shift in the resonance wavelength can be calculated by  

Δλ=Δneff ʌ       (2.16) 

 

Any change of RI in the superstrate (nc in Figure 2.2-1) or the increase in dielectic 

permittivity due to the adsorption of biomolecules will change the neff. Here, for the 

measurement of the surface sensitivity, it is assumed that there is no change in bulk 

medium and the only change is from the bio-molecular attachment. 

Since the neff is weighted by the normalized resonant E-field intensity at any given point, 

a computational model was developed which gives the electromagnetic field distribution 

across the RWG geometry as a function of material and geometric parameters to 

understand how to optimize RWG sensing performance. 
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Figure 2.6-2 Electric field distribution of the resonant mode of the RWG with marked 

biomolecular detection region. 

 

The computational window is divided into two regions: Detection region (marked as green 

in Figure 2.6-2) and the constant region (rest of the region). The change in neff can be 

written as   

𝛥𝑛𝑒𝑓𝑓 = √ℇ𝑐 + 𝐼𝐷ℇ𝐷2 − √ℇ𝑐 + 𝐼𝐷ℇ𝐷1     (2.17) 

 

where the contribution to the dielectric constant (ε) is divided into two parts: superscript 

‘c’ denotes for the contribution from the constant region whereas ‘D’ refers to the 

detection region. ΕD1 and εD2 are the initial and final dielectric permittivity in the 

detection zone. The contribution from the detection zone is given by the product of the 

permittivity in that region and the resonant mode’s field intensity overlap (ID) with the 

biomolecular detection zone. So, ID is defined as 

𝐼𝐷 =
∬ |𝐸(𝑥,𝑦)|2𝑑𝑥𝑑𝑦

𝐷

∬ |𝐸(𝑥,𝑦)|2𝑑𝑥𝑑𝑦
∞,ʌ
−∞,0

     (2.18) 

 

Eqs. (2.16-2.18) reveals three key parameters to increase the surface sensitivity of RWG. 

From Eq. (2.16) it seems evident that the larger the period (ʌ), the more the sensitivity, 

but this is not always true because the E-field distribution changes with period and 
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concomitantly changes 𝛥𝑛𝑒𝑓𝑓. Eq. (2.17) reveals that the low value of dielectric 

permittivity of the constant region (ℇc) i.e. the low RI grating material would yield more 

effective index tuning for a given index change in the detection region. The last but 

perhaps the most important parameter is the resonance mode E-field overlap integral with 

the detection region, ID which can be used as an indicator of RWG’s surface sensitivity.  

The maximum sensitivity would be achieved for ID=1 which corresponds to the ideal case 

of complete overlap of the mode’s field with the detection region. So, maximization of ID 

value is done by varying RWG parameters in simulations. While the thickness of the 

detection region will vary from application to application, for Igg protein sensing 

application I have considered the detection region of 20 nm of thickness. 

The ID value has been calculated for different FF and then, with the FF value which gives 

local maximum of ID, hw is varied to get the overall maximum value. 

 

Table 2.6-1 Calculated ID values from resonant mode E-field distribution for (a) Different 

FF values, and (b) Different values of grating waveguide thickness (hw) 

 

 

Further simulations of RWG with parameters of FF=45%, hw=500 nm, hetch= 500nm, 

period=440 nm revealed that an attachment of 20 nm (~7 nm of Antibody + 13 nm of 

Antigen) of bio-molecule (refractive index estimated to be 1.45) on the RWG surface 

induces a redshift of the resonance wavelength by 4.8 nm, see Figure 2.6-3. This structure 

shows a sensitivity of 0.32 nm per nm of bio-molecule attachment. 
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Figure 2.6-3 Transmittance spectra of the optimized RWG at different stages of the bio-

molecular detection. The E-field distribution of the resonant mode is presented inset.  

2.7 Conclusions  
The physical basis of operation of RWG is presented. A customized numerical FDTD 

simulator tool is developed to study and analyse the RWG as function of its physical 

parameters like period, filling fraction, etching depth etc.  Though RWG has quite a 

number of parameters that it is dependent on, based on the findings from the numerical 

tool and understanding of how resonance is related to the RWG parameters, a simple 

design procedure is presented for a systemic way of designing RWG of required 

wavelength, sensitivity and linewidth. Sensitivity of RWG is studied in detail and 

categorized into bulk and surface sensitivity though the commercial sensors do not define 

the sensitivity in that detail. Both of these sensitivities are mostly dependent on the 

electromagnetic field overlap integral in the region of interest. In addition, further 

analytical and numerical study reveals that the bulk sensitivity is dependent on period, 

resonance wavelength and the effective waveguide refractive index whereas the surface 

sensitivity is dependent mostly on RWG etching depth, filling fraction and waveguide 

layer which effectively redistribute the E-field of the resonance mode across the geometry 
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and change the overlap integral. Considering all these finding the best RWG sensor in our 

context shows a bulk sensitivity of 183.3 nm/RIU and surface sensitivity of 0.32 nm shift 

per nm of bio-molecular attachment. As the surface sensitivity is very much defined by 

the presence of percentage of E-field in the detection region (~20 nm of thickness for 

single layer of protein biomolecule), termed as ID in this chapter, tactical engineering of 

the RWG including multi-layer RWG, inclusion of metal/nanoparticle for subwavelength 

plasmonics confining etc. would increase the ID value and so the surface sensitivity.  
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3.1 Introduction 
or decades, micro- and nanolithography technology has been contributed to the 

manufacturing of integrated circuits (ICs) and microchips creating patterns with 

a feature size ranging from a few nanometers up to tens of millimeters. The term 

‘micro-’ and ‘nano-fabrication’ were coined based on the achievable minimum feature 

size of the targeted layout pattern. As the feature size of all the proposed sensors presented 

in the previous chapter are submicron and densely packed, a nanolithography technique 

is developed and implemented for the specific device material and substrate of interest. 

In general, the nanolithography technique can be superficially divided into two categories 

based on its throughput. Photolithography, laser interference lithography and nano-

imprint lithography would fall into the high throughput section because of their ‘do-at-

once’ nature whereas E-beam lithography (EBL) and focused ion beam (FIB) lithography 

are likely to be in the low throughput part as they function in  a serial fashion.  The EBL 

technique allows an ultrahigh-resolution patterning of any arbitrary shapes with a 

minimum feature size as small as a few nanometers but the throughput of this type is 

limited by its slow serial nature which makes it inappropriate for mass production. 

 

In this chapter at first different lithography techniques are introduced under Sections 

3.1.1-3.1.4 with their pros and cons. A comparative study of the different techniques is 

tabulated in Table 3.1-1. The fabrication schemes chosen to make the sensor chips are 

discussed in Section 3.2. The development of low loss Silicon nitride (SixNy) waveguide 

material is detailed in Section 3.3. Specifically, Plasma enhanced chemical vapor 

deposition (PECVD) process parameters e.g., precursor gas composition, plasma 

frequency, pressure etc. are studied in detail in Section 3.3.5 to reduce the optical loss of 

the deposited SixNy film. Surface roughness measurements of the developed films are 

presented in Section 3.3.7 and the waveguide loss measurement experiments are shown 

in Section 3.3.6. The refractive index measurement of the selected low loss SixNy film is 

measured by Elliposometry as shown in Section 3.3.8. However, both EBL and nano-

imprint are exploited separately as nano-patterning techniques which are presented in 

detail in Section 3.4 and 3.5  respectively.  The Cr dry-etching recipe is developed for 

F 
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transferring the EBL and nano-imprinted pattern; corresponding results are discussed in 

Section 3.6. Then, the procedure of transferring the pattern and dicing of the wafer into 

the SixNy sensor chips with alignment mark are shown in Section 3.7 and 3.8 respectively. 

The proposed nano-patterning technique using Cr as hard mask can achieve very high 

aspect ratio, tens of nanometer narrow lines on insulating substrate which is presented in 

Section 3.9. The chapter is then concluded discussing about the fabrication achievements 

and future prospects. 

3.1.1 Photolithography   

Photolithography is a process used in micro-fabrication for perfect replication of custom 

designed pattern in a thin film on a substrate. It is also termed as optical lithography or 

UV lithography. This branch of lithography utilizes templates, also known as photomasks, 

which has transparent and opaque areas done by patterning thin Chromium film on glass 

or Quartz plate. Based on the required resolution of the pattern, UV or deep UV light is 

shone through the photomask to the spin coated thin film of photo-sensitive resist on top 

of the substrate.   The light exposed area of the photoresist transforms into soluble 

(positive photoresist) or non-soluble (negative photoresist) depending on the chemistry of 

the photoresist. The soluble portion is then washed away by using photoresist specific 

solvent called developer. Light replicates patterns from photomask to the photosensitive 

film which is then used as local mask for further steps taken to transfer the copied patterns 

to the substrate.  

 

In the early 1970s, the required dimensions for the ICs were from 2 μm to 5 μm.  

Replication of these patterns was simply achieved by using mercury arc based UV-light 

and by bringing photomask and substrate in close proximity or into contact during the 

exposure. Systems based on this operating principle are still used today in 

microfabrication due to their simplicity, relatively low cost, high throughput and good 

process quality. These systems, called UV-contact mask aligner, can reach resolutions 

from a few micrometers to sub half micron level, depending on the exposure wavelength 

and the contact method. With fully automated systems the throughput can exceed 100 

wafers per hour (wph) and reach an overlay accuracy of < 1 μm [95] [96].  
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However, more complex exposure systems are exploited for the increasing demand of 

lower pattern linewidth. Immersion lithography (i.e., using a liquid in the space between 

the lens and substrate in order to increase the numerical aperture), a recent innovation, has 

allowed the minimum feature size to be reduced to 32 nm in 2010 without the requirement 

for Extreme UV sources. The 32 nanometer (32 nm) node (average half pitch of a memory 

cell) was launched  by Intel and AMD in 2010 following the 45 nanometer process 

in CMOS semiconductor device fabrication industry. Both of them produced commercial 

microchips using the 32 nanometer process in the early 2010s. Intel began selling its first 

32 nm processors using the Westmere architecture on 7 January 2010.  This was done by 

using deep-UV ArF-light sources operating at 193 nm wavelength and exposing patterns 

using immersion scanners, phase shift masks and double exposure schemes. Exposure was 

based on an image reduction technique that projected the photomask onto the substrate 

and simultaneously reduced the size of the patterns many times. This allowed the 

photomasks to be fabricated with looser tolerances than the final pattern. These systems 

were also very productive and able to pattern more than one hundred and fifty 300 mm 

wafers per hour [97].The 32 nm process was superseded by commercial 22 nm technology 

in 2012 [98]. 

 

These photolithography systems capable of reaching 32 nm or even 22 nm linewidths, 

cost tens of millions of euros and thus make these instruments economically viable only 

for very high volume production. For these reasons such instruments can only be owned 

by large IC-manufacturers. As feature linewidths get smaller the cost of nanofabrication 

using optical lithography grows rapidly and hence, research and utilization of alternative 

techniques is tempting.  

3.1.2 Focused ion beam lithography (FIB) 

Focused-ion beam lithography utilizes an accelerated ion beam (typically gallium ion) to 

directly punch a film on the substrate by removing material through ion bombardment 

[99]. This is possible due to the heavy mass of ions as compared to that of electrons. A 

focused ion beam can write patterns into a photoresist layer or directly onto the substrate. 

http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/45_nanometer
http://en.wikipedia.org/wiki/CMOS
http://en.wikipedia.org/wiki/Semiconductor_device_fabrication
http://en.wikipedia.org/wiki/Westmere_(microarchitecture)
http://en.wikipedia.org/wiki/22_nanometer
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Furthermore, focused ion beam systems are also employed for depositing materials such 

as tungsten, platinum, and carbon via ion beam induced deposition. When a precursor gas 

such as tungsten hexacarbonyl (W(CO6)) is added into the chamber, the precursor gas is 

hit by the focused-ion beam leading to gas decomposition which leaves a non-volatile 

component (tungsten) on the surface . 

Its main limitation however, is the processing time involved to machine large structures: 

it is clear that the FIB deposition and etching rates are low. Dimensions up to some tens 

of micrometres are easily feasible, but above 100 μm, the typical processing times become 

unacceptably high, and it is better to use other techniques. 

Another limitation is the charging of the sample and drifting of the ion beam for insulating 

substrate. Of course, any work involving charged particle beams and electrically 

insulating materials in a vacuum is prone to the effects of charging and same happens to 

FIB patterning. Various means have been developed to alleviate the problem of charge-

induced ion beam drift by supplying a source of negative charge, e.g. the electron flood 

gun, simultaneous electron and ion beam scanning [100]. 

FIB processes also induce some damage in the samples. The expected damage caused by 

the ion beam includes implantation of gallium ions, amorphization of crystalline 

structures and loss of fine structural detail. 

3.1.3 Electron beam lithography 

Electron beam lithography (EBL) has been the main techniques for fabricating nanoscale 

patterns. Instead of Gallium ion bombardment used in FIB, EBL [101, 102] utilizes an 

accelerated electron beam focusing on an electron-sensitive resist [103, 104] to make an 

exposure. With couple of nanometer spot diameter, the focused electron beam scans dot 

by dot on the surface in sequence to create the pattern. A typical EBL system closely 

resembles a SEM. The main difference between a SEM and an EBL is that in SEM, the 

beam is raster scanned over the sample in order to collect secondary electrons to form an 

image while in an EBL the beam is scanned onto the sample according to the instructions 

coming from the pattern generator. In terms of specifications, the resolution of electron 

beam lithography techniques are of the order of 5 – 20 nm [105] due to ultra-short 

wavelengths of electron beams in the order of a few nanometers.  
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Though the intrinsic resolution of the electron beam writing in the resist is as small as 3 

to 5 nm at high incident electron energy, practical resolution is limited by the development 

of the resist after exposure and by successive pattern transfer protocol. However, the lack 

of throughput limits their applications within research and mask fabrication.  

At this point, it would be good to introduce few terms used in EBL lithography like 

‘writing field’, ‘stitching’ and ‘exposure doses’. Writing field is the largest area exposed 

without the stage moving, with typical dimensions ranging from few tens of microns to 

few millimeters defined by the expected resolution of the system and EBL system 

configuration. Stitching happens when the pattern dimensions are such that the exposure 

needs more than one writing field. Then the fields are stitched together via stage 

movements. The accuracy of stitching depends on the quality of the stage, the stability of 

the system and its environment i.e., temperature, humidity and acoustic noise control, and 

also on the specific software implemented, which can compensate different types of drifts 

[105]. And, Exposure dosage is the amount of energy deposited per unit area. The dosage 

is actually measured in terms of current deposited per unit area, µC cm−2. The dosage at 

which each exposure is run depends chiefly on the resist used, and the density and 

dimension of the pattern being written. 

3.1.4 Nano-imprint lithography 

The nano-imprint lithography (NIL) process is a mechanical replication process where 

surface reliefs from the template are embossed into a thin layer on the substrate by 

mechanical force. There are two versions of NIL: thermoplastic NIL in which 

thermoplastic polymers are thermally embossed and the other is based on UV-curable 

polymers known as photo NIL. In thermoplastic NIL, resist (thermoplastic polymer) is 

spin coated on sample substrate. The mold which has predefined topography is then 

mechanically pressed together with the sample substrate at a temperature higher than the 

glass transition temperature of the resist. So, the resist becomes soft and follows the 

surface topography of the mold. The resist takes inverse shape of the pre-patterned mold. 

The system is then cooled down and the mold is separated from the sample substrate and 

thus, the resist layer gets patterned by the mold. Reactive ion etching (RIE) or inductively 

coupled plasma (ICP) etching is normally used to transfer the pattern from the resist to 
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the material underneath. On the other hand, photo NIL utilizes UV curable liquid resist 

on the mold which is normally made of fused silica. While the mold and the substrate are 

being pressed together, the resist is cured in UV light through the transparent silica mold. 

Because of UV curing, the resist become solid and is shaped into inverse of the mold’s 

surface topography. After mold separation, a similar pattern transfer process (RIE/ ICP 

etching) can be used to transfer the pattern in resist onto the underneath material. Please 

see Section 3.5 for detail of the photo NIL process. 

 

In principle, NIL does not have any limitations in pattern geometry, therefore NIL can 

copy any patterns produced by EBL or by other techniques. The NIL process and imprint 

instrument are conceptually very simple, but allow extremely good resolution and a 

relatively fast replication process [95]. 
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Table 3.1-1 Specifications and applications of the major nano-lithography techniques 

[101]. 

Lithography 

Technique 

Minimum 

Feature Size 

Throughput Applications 

Photolithography 

(contact & proximity 

printings) 

2-3 μm [102] very high typical patterning in 

laboratory level and 

production of various 

MEMS devices 

  

Photolithography 

(projection printing) 

a few tens of 

nanometers 

(37 nm) [106] 

high – very high 

(60-80 

wafers/hr) [107] 

commercial products 

and advanced 

electronics including 

advanced Ics [107], 

CPU chips 

  

Electron beam 

lithography 

< 5 nm [105] very low [107, 

108] 

(8 hrs to write a 

chip 

pattern) [107] 

Masks [108] and Ics 

production, patterning 

in R&D including 

photonic crystals, 

channels for 

nanofluidics [105] 

Focused ion beam 

lithography 

20 nm with a 

minimal lateral 

dimension of 5 

nm in 

semiconductor 

substrate [106] 

very low [108] patterning in R&D 

including hole arrays 

[109, 110], bulls-eye 

structure [111], 

plasmonic lens [112] 

  

Nanoimprint 

lithography 

6-40 nm [113, 

114] 

high 

(> 5 

wafers/hr) [107] 

bio-sensors [115], bio-

electronics [113], 

LOCs: nano channels, 

nano wires [116, 117] 
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3.2 Fabrication schemes to make the sensor chips 
The  resonant waveguide grating (RWG) sensor (proposed in previous chapter) is an array 

of subwavelength gratings of period 450 nm covering an sensing area of 500 μm × 500 

μm each. A sensor chip of size 1.5 cm × 1cm is designed to have 4 RWG sensors separated 

at fixed distances aligned with the micro-fluidic channel of the bio-characterization setup. 

Wafer scale sensor chips production was attempted with 100 mm diameter glass wafer. 

Each of the wafers was planned to contain 33 sensor chips each of which had 4 RWG 

sensors with proper alignment mark included for successive bio-characterization (photo 

deprotection for region specific biomolecular attachment). 

  

Though the projection photolithography systems are capable of reaching 22 nm linewidths 

(Table 3.1-1) which is far better than the minimum feature size of the RWG sensor, it 

cost tens of millions of Euros and thus makes these instruments economically viable only 

for very high volume industry based production. Direct writing by FIB milling on a large 

area (500 μm × 500 μm for the proposed sensor) is a bit challenging for insulating glass 

substrate. The charged Gallium ions get trapped while milling on the insulating SixNy 

layer. So, the exposed area gets charged and repels the incoming ions which cause the 

drifting of the beam and distorts the pattern to be written. A thin conducting charge 

dissipating layer on top of the insulating substrate and grounding of the sample may 

facilitate patterning on insulating substrate. However, as FIB is a serial direct writing 

procedure, it takes long time for making the whole structure by deep etching of the pattern 

as desired for the proposed RWG sensor. So, the FIB lithography can be a candidate for 

making a single RWG sensor but not feasible at all for the 100 mm full wafer scale 

production where more than hundred of this sensors are to be written in each wafer.  

EBL is also a serial process similar to FIB but it only patterns the ebeam resist instead of 

making the whole structure as done in FIB by time consuming direct milling into the 

material. In EBL only the pattern is written by electron beam and the full wafer etching is 

done by single step dry etching procedure. So, the throughput of EBL patterning is much 

higher than that of FIB in this case. On the other hand, nano-imprint lithography looks 

quite promising because of its very high throughput and low cost. So, the wafer scale 
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fabrication of the RWG sensor is studied for both EBL and nano-imprint lithography in 

Tyndall National Institute and VTT respectively. The flow chart shown below gives an 

idea of the process routes followed for fabricating RWG sensor chips in large numbers. 

3.2.1 Flow chart and schematic of the nano-fabrication process steps 

 

Figure 3.2-1 Flow chart of the nano-fabrication process steps. 
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The schematic of the RWG sensor wafer level patterning process steps on glass substrate 

is illustrated in Figure 3.2-2. Having transferred the pattern into the SixNy layer as shown 

in step (f) of Figure 3.2-2, another level of photolithography is done for putting the 

alignment mark in each sensor chip. Then the processed wafer is diced into separate sensor 

chips.  

 

Figure 3.2-2 The starting quartz wafer has Cr deposited on SixNy (a) ebeam/ 

nanoimprint resist is spun on (b) EBL pattern is written in resist, (c) pattern is 

transferred to the Cr layer by ICP dry etching, (d) removal of the resist, € transfer of the 

pattern into the SixNy layer by ICP dry etching and (f) removal of the Cr. 

 

 

3.3 Development of SixNy  Material  
As mentioned in the ‘Design’ chapter that SixNy layer on glass substrate is considered as 

the material platform for the proposed GMR and nano-ribbon cavity.  

Low Pressure Chemical Vapour Deposition (LPCVD) technique could be a prospective 

option for Silicon nitride (Si3N4) because of its very low optical loss (~0.2 dB/cm [118]). 

Unfortunately, its large internal tensile stress limits the maximum layer thickness to < 350 

nm not suitable for the proposed RWG of thickness 400 nm. Moreover, the high LPCVD 

process temperature (~800°C) is not compatible to the glass substrate of interest. On the 

other hand, plasma enhanced chemical vapour deposition (PECVD) is a low-temperature 

process (~ 300°C), making it suitable for glass substrate and enables thicker film 

deposition with lower material stress, but with comparatively higher optical loss (~0.7 
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dB/cm [119]). Therefore, a process for low-loss SixNy waveguides using PECVD was 

developed as part of this thesis work. 

3.3.1 SixNy deposition techniques 

Both PECVD and LPCVD techniques were carried out as part of this thesis work for 

depositing SixNy film. LPCVD was done at high temperature (800° C) whereas PECVD 

was carried out at lower temperature (300-500° C). It is mentioned in [120-123] that the 

LPCVD deposition technique produces lower H-content in the SixNy film than that of the 

PECVD deposited film. The disparity in H-content in between LPCVD and PECVD is 

mostly because of their associated process temperature, since at high temperature both Si-

H and N-H bond in Silane and Ammonia respectively can easily be broken with high 

kinetic energy and so produces SixNy films with lower H-content. As the optical 

waveguide loss of the SixNy thin film in the IR and near IR region is mostly because of 

the incorporation of the H content in the SixNy film [124], the LPCVD stoichiometric 

Si3N4 has been reported with lower loss than PECVD SixNy [122]. Many published works 

[124, 125] have already been reported in literature that this loss in the IR region can be 

reduced by optimizing the plasma parameters in the PECVD process. Though there is 

literature available for the IR region, it is little available in the visible light region to 

reduce the optical waveguide loss of SixNy film. So, to improve the waveguide loss of the 

SixNy material in the visible region, the role of the precursor gas ratio (NH3:SiH4) and 

other plasma parameters like plasma frequency, pressure, and temperature were 

investigated as part of this thesis work and presented in this chapter.  

3.3.2 Silicon-dioxide as an optical isolation  

The experiments of developing a low loss SixNy recipe were done on Si substrate which 

absorbs the whole visible and near infrared spectrum of light (wavelength < 1000 nm). A 

thick layer of PECVD Silicon-dioxide (SiO2) was chosen as an optical isolation layer in 

between the SixNy layer and the Si substrate.  For SixNy layer thickness of 275 nm (~ 

average thickness) and SiO2 optical isolation thickness of 300 nm, the simulated 

propagating mode decays while travelling along the waveguide as shown in Figure 

3.3-1a&c.  
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Figure 3.3-1 Leakage of optical mode to the Si substrate while propagating. Electric field 

distribution of the propagating mode optically isolated by SiO2 layer of thickness (a) 300 

nm, and (b) 2µm. Decay of the |E| field along the dashed line (center of the waveguide) for 

SiO2 thickness of (a) 300 nm, and (b) 2µm. 

 

About 35.5% of the launched guided light is leaked to the Si substrate and thus absorbed. 

For 2µm thick SiO2 optical isolation there is almost no leakage to the Si substrate as shown 

in Figure 3.3-1b&d. In order to maintain a good quality optical isolation, a 2 µm thick 

SiO2 layer was deposited on the silicon substrates by PECVD before depositing the SixNy 

layer. 

 

3.3.3 LPCVD SixNy 

The LPCVD method used Dichlorosilane (SiCl2H2) and ammonia (NH3) precursor gases 

at flow rate of 20 standard cubic centimeters per minute (sccm) and 60 sccm respectively 

to deposit a high quality silicon nitride film. The deposition was performed at a high 

temperature of 800° C for the reactions to occur. This high deposition temperature was 

not compatible with typical glass substrate and so, the film was grown on SiO2 with Si 

substrate. The deposition rate of the LPCVD Si3N4 was 30.3 nm/min. 
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3.3.4 PECVD SixNy 

PECVD uses radio frequency energy to create a plasma from the precursor molecules. 

Then, the precursor molecules go through chemical reactions to form the film. In the 

recipe developed0, the precursor gases used for depositing silicon nitride were SiH4, NH3 

and N2. The chemical composition of the film was controlled by the NH3 and SiH4 

precursor gas ratio, which in turn affected the refractive index and also the optical 

absorption of the film. However, the deposited film was non-stoichiometric and contained 

hydrogen [126, 127] instead of forming pure Si3N4. The higher H content in the PECVD 

film change its characteristics e.g., lower film density, higher etch rate, lower thermal 

stability etc. compared to the LPCVD grown Si3N4.   

 

 

 

Figure 3.3-2 PECVD system at the Tyndall’s III-V cleanroom. 

 

3.3.5 Deposition  

I used the PECVD machine (STS manufacturing Inc.) to deposit the SixNy film with 

variation in different process parameters e.g., precursor gas composition, plasma 
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frequency, pressure etc. The SixNy deposition was done on Si wafers with 2µm thick 

optical isolation layer (Section 3.3.2). This PECVD system used a Mixed Frequency 

deposition technique (combination of both lower frequency at 187 kHz and higher 

frequency at 13.56 MHz) with a SiH4, NH3 and N2 precursor gasses of 40, 40 and 1960 

sccm in a low pressure N2 background at 300°C to get low stress film for electrical 

isolation. The thin SixNy film developed using the aforementioned PECVD configuration 

resulted a waveguide loss of 4 cm-1 (loss calculation technique is presented in Section 

3.3.6), which was too high to form optical waveguides of couple of millimeter long nano-

ribbon (please see Section 7.4). It had been reported in the literature that losses could be 

reduced by employing only a low frequency process and by increasing the ratio of NH3 to 

N2 during deposition [128, 129]. So, separate experiments were carried out at two 

different low frequencies: 187 kHz (Tyndall III-V cleanroom) and 380 kHz (Tyndall 

Silicon MEMs laboratory) as shown in Table 3.3-1. 

 

Table 3.3-1 Controlled variation of PECVD process parameters 

Exp. 

No. 

Frequency (kHz) Pressure 

(mTorr) 

Gas Mixture 

N2/SiH4/NH3 

(sccm) 

Temp 

(°C) 

Power 

(Watt) 

Thickness 

(nm) 

Loss 

(cm
-1

) 

1 Mixed 

frequency 

187 kHz +  

13.56MHz 

900 1960/40/40 300 60 240 4 

2 

 

 

 

 

 

Single 

frequency 

380 kHz 550 1960/40/20 300 60 290 0.34 

3 380 kHz 550 1960/20/40 300 60 276 0.09 

4 

  

380 kHz 550 1960/10/40 300 60 276 0.2 

5 

  

187 kHz 650 1960/10/40 300 60 325 0.2 

6 

  

187 kHz 650 1960/7/43 300 60 315 0.2 
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The process pressure and precursor gasses composition (N2:SiH4:NH3) were varied to 

minimize the optical waveguide loss of the SixNy thin film. The best PECVD SixNy film 

showed an optical waveguide loss of 0.09 cm-1(Exp. No. 2 in the table) which is equivalent 

to 0.387 dB/cm compared well with the work in [119]. 

3.3.6 Waveguide loss characterization 

The waveguide loss of the films was estimated by imaging the decrease in scaled intensity 

of light propagating through the SixNy slab waveguide. The decrease in intensity was 

imaged using a camera and the trend of decreasing was fitted with an exponential curve 

which gave the waveguide loss () in cm-1 using the equation:  

 

     𝐼 = 𝐼0𝑒
−𝛼𝐿      (3.1) 

 

where, I0 is the initial intensity, I is the decreased intensity after travelling a length of L 

cm. An exponential fit was used to estimate the value of the loss ( The schematic of 

the experimental optical loss characterization setup is shown in Figure 3.3-3. 

 

 

Figure 3.3-3 Setup for estimation of SixNy film optical loss. 

 

Light of wavelength of 633 nm was coupled into the SixNy waveguide layer by free space 

coupling from the He-Ne laser. The coupled light travelled upto a certain length based on 

the optical loss of the SixNy material. The propagation length was measured tracking the 

drop in intensity of the light scattering from the SixNy’s top surface. 

 

Camera 

HeNe laser 

SixNy/SiO2/Si 
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Figure 3.3-4 Propagation length of SixNy thin film waveguide deposited by (a) Mixed 

Frequency PECVD, (b) single frequency PECVD, and (c) LPCVD. 

 

The differences in propagation lengths (∝ 1/waveguide-loss) for different deposition 

techniques are evident from Figure 3.3-4. The light scattered from the mixed frequency 

PECVD waveguide (Figure 3.3-4a) had a higher decay than that of the single frequency 

PECVD film (Figure 3.3-4b). The absence of scattered light in the LPCVD film in Figure 

3.3-4c is due to better quality (smoother top surface) of the LPCVD film as compared to 

the PECVD deposited films. Figure 3.3-5 shows the exponential curve-fitting for the 

decaying light intensity of the mixed and single frequency PECVD film along the length 

of light propagation. Switching the PECVD system form mixed to single frequency mode 

reduced the optical loss from 4 cm-1 to 0.6 cm-1. It was also noted that the loss also 

decreased with increasing waveguide thickness, therefore similar waveguide thicknesses 

were compared to give correct comparison of loss.   
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Figure 3.3-5 The guided light (Figure 3.3-4a&b) decays exponentially at different rate for 

mixed and single frequency PECVD SixNy films.  

 

It had been observed that the deposition of a thin layer (e.g., 350 nm) of SiO2 on top of 

the SixNy films reduced the loss to half of its original value, most likely due to the decrease 

in index contrast (from SixNy→Air to SixNy→SiO2) which reduced the surface roughness 

induced light scattering effect. The waveguide loss (∝ surface roughness) associated with 

the 187 kHz PECVD deposited films did not improve significantly with changes in plasma 

parameters (see experiment no. 4 & 5 in Table 3.3-1), therefore PECVD deposition was 

also tested in a different PECVD system which used 300 kHz (instead of 187 kHz) of low 

frequency plasma source. A slab waveguide loss of 0.09 cm-1 was achieved in the 300 

kHz system for gas composition of N2, SiH4, NH3 ≡ 1960, 20, 40 sccm and pressure of 

550 mTorr (Experiment no. 2 in Table 3.3-1). This was deemed as an acceptable slab 

waveguide loss for the sensor application because the proposed RWG (chapter 2) is of 

sub-millimeter size and the nano-ribbon waveguide (chapter 6) is of couple of millimeter 

size in length. However, no further reduction of loss was achieved by changing the 

PECVD process pressure, temperature or RF power. The deposition rate of the PECVD 

SixNy was measured as 13 nm/min. 

y = 201.95e-0.042x

y = 202.93e-9E-04x

0

50

100

150

200

250

300

0 100 200 300 400 500

In
te

n
si

ty
 (

A
.U

.)

Camera Pixel Count (87 Pixel = 1cm) 

Mixed frequency

PECVD

Single frequency

PECVD



Chapter 3. Fabrication 

67 

 

3.3.7 Surface roughness measurement 

The surface roughness of mixed and single frequency PECVD, and LPCVD SixNy films 

were measured by AFM as shown in Figure 3.3-6 which confirmed the smoother surface 

of the single frequency PECVD and the LPCVD film compared to the mixed frequency 

PECVD SixNy film. The RMS roughness of the mixed frequency PECVD, single 

frequency PECVD and LPCVD SixNy films are 3 nm, 0.5 nm and 0.3 nm respectively.  

 

 

Figure 3.3-6 Surface roughness measurements by AFM (a) RMS roughness = 3 nm for 

PECVD (Mixed Frequency), (b) 0.5 nm for single frequency PECVD and (c) 0.3 nm for 

LPCVD Si3N4 depositions. 

Despite better smoothness and apparent lower loss, LPCVD films could not be used with 

“glass” substrates in my project (Phast-ID [51]), because of very high deposition 

temperature of LPCVD process, approximately 800°C. Such a high temperature would 

cause huge stress in the glass substrates. However, the single frequency PECVD (Exp. 

No. 2 in Table 3.3-1) showed roughness of only about 0.5 nm resulting a low waveguide 

loss of 0.09 cm-1 which is good enough for the desired sensor application.     
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3.3.8 Refractive index measurement 

Normally, Ellipsometry measures the change of polarization of light upon reflection from 

the sample and compares it with a model to determine the thickness, refractive index and 

few other properties of the sample material. The thickness and refractive index of the thin 

SixNy film were measured using Woolam M2000 ellipsometer (Figure 3.3-7). A fit to the 

experimental value using the Cauchy dispersion model yielded the best result for the 

refractive index and thickness. The measured thickness determined by the Cauchy model 

compared well with the ‘Stylus Profilometer’ thickness measurement.  

 

 

Figure 3.3-7 Ellipsometer used to characterize optical properties of the developed SixNy 

film. 

 

The extracted refractive index values of the low loss SixNy film are plotted in Figure 3.3-8. 

Because of the dispersion of the material, the refractive index value decreases with 

increase in wavelength.   
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Figure 3.3-8 Measured refractive index of PECVD SixNy. 

 

 

3.4 EBL patterning processes  
The fabrication of SixNy nanostructures on semiconductor Si substrate have mostly relied 

on electron beam lithography (EBL) of a suitable resist followed by dry etching to transfer 

the pattern. However, glass (quartz) substrates are insulating and therefore they need a 

discharging mechanism during the EBL writing, otherwise a distortion in the patterned 

nanostructures can be observed. In [130] a water soluble conductive polymer was used as 

a charge dissipating layer which was removed after the EBL. However, SixNy generally 

exhibits poor etch selectivity with EBL resists which degrade the transferred pattern by, 

for example, sloped sidewalls that greatly reduce the quality (Q) factor of resonant cavity 

based devices [131]. Furthermore, the etching depth of SixNy RWGs is limited due to the 

thin EBL resist and the poor etch selectivity. One method to improve this is to use a hard 

etch mask such as chrome (Cr) or nickel (Ni) that does not degrade during the nitride dry 

etching because of much higher etch selectivity. Such metals can be patterned by a lift-

off technique where the metal is deposited on a EBL patterned resist mask that is 

subsequently removed [132].  
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3.4.1 Cr on top acting as both the charge dissipating layer during EBL 

and hard mask for successive etching 

As mentioned earlier that during the EBL pattern writing process on insulating glass the 

wafer surface gets charged and repels the incoming electrons. This charging effect distorts 

the pattern which limits patterning of nanostructures on insulating substrates [133]. Here, 

the charging effects were suppressed by using a 30 nm conductive Cr metal layer on top 

of the SixNy. Instead of using a lift off technique, a thin layer of Cr is deposited directly 

on the SixNy before the EBL. The conductive Cr layer not only resolves the electron 

discharging issue but also act as a hard mask for deep etching of SixNy. Using this method, 

we also achieved very high aspect ratio (10:1) nanostructures with a minimum dimension 

of 60 nm (please see Section 3.9) without sacrificing the quality of the flat top of the 

narrow lines. 

 

3.4.2 Sample preparation and EBL Process steps 

A 400 nm thick SixNy layer was deposited on a quartz wafer by using plasma enhanced 

chemical vapour deposition (PECVD). Then a 30 nm thin Cr layer was deposited on the 

SixNy by using electron beam evaporation. The Cr deposited wafer is cleaned by DI water 

and soft baked. Then, a resist adhesion enhancer, HMDS and the diluted positive tone 

ebeam resist (1:1 ZEP520 : ZEPA) were spun successively on the wafer at a speed of 3000 

rpm. The spinning gives about 190 nm thin ZEP resist on the Cr covered Quartz wafer. 

The wafer is then soft baked at 120°C for 3 minutes. The wafer is then loaded in the E-

Beam (JEOL JBX6000FS/E) system (please see appendix B for detail of the specifications 

of the JEOL JBX6000FS/E EBL system). The RWG pattern was written in the resist using 

electron beam with acceleration voltage of 50KV and writing field of 80 µm × 80 µm.  

The full wafer ebeam pattern had been generated separately in a database file format (.gds) 

using the CleWin layout editor. Each 1.5 cm × 1 cm sized chip is designed to have four 

RWG sensors (500μm × 500μm each) separated by such a distance which matches 

perfectly with the micro-fluidic channels. Altogether 33x 1.5cm by 1cm chips were 

designed on each four inch wafer.  
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Figure 3.4-1 Full wafer ebeam pattern consisting of 33 sensor chips of 1.5cm by 1cm size 

on a 100mm diameter wafer. Each chip has four RWG sensor of size 500μm × 500μm. 

 

However, the EBL procedure behaves differently for different nano-patterns, different 

substrates and even for different layers on the same substrate. When an electron from the 

writing beam strikes the surface of a substrate it undergoes various scattering events losing 

energy and causing the generation of secondary electrons. Two adjacent features will 

contribute a background dose of secondary electrons to each other resulting in a higher 

effective dose known as proximity effect.  This causes a broadening of the exposed 

features [134].  This is particularly apparent with dense features like gratings (1D RWG) 

or 2D RWGs. Thus a proximity correction has been imposed to the designed ebeam 

pattern (credit goes to Brendan MacCarthy, engineer at EBL facility at Tyndall National 

Institute) by the ‘Layout beamer’ software purchased from a German company named 

Genisys.  

Test exposures were performed to find the optimum electron beam energy dose for the 

pattern concerned. A dose of 120 μC/cm2 was found to be optimum for RWG pattern on 

a Cr covered Quartz wafer. At the start of the pattern writing the electron-beam is focused 

on the resist surface and the writing was started.  
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Figure 3.4-2 SEM image of stitching error during EBL writing. 

 

As mentioned in 3.1.3, in EBL, a large area pattern is divided into smaller writing fields. 

In our case the writing field was 80 µm × 80 µm. Each of this 80 µm × 80 µm field was 

then stitched together by stage movement to generate the large area pattern. Precise stage 

movement was essential otherwise stitching error occurs occasionally as shown in Figure 

3.4-2.  

 

When the pattern was written, the wafer was developed by ZEDN50 developer for 30 

seconds followed by an Isopropanol (IPA) rinse.  The wafer was then baked again at 

120°C for 3 minute. Then the pattern transfer was done by successive ICP Cr and SixNy 

dry etching (please see Section 3.6 for detail). 

 

3.5 Nano-imprint patterning process steps 
The RWG sensors were also manufactured by UV nano-imprint lithography (NIL) on a 

wafer-scale level with the help of VTT, Finland, one of the EU partners of my PhD 

project. The basic process of UV-NIL is depicted in Figure 3.5-1. All nano-imprints were 

made with VTT’s Obducat Eitre 6 nano-imprinter tool, which is based on the air pressure 
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imprinting technique. After the process optimisation for the specific geometry of the 

sensor, this method enabled good yield and uniformity across the almost full wafer area 

as well as ultra-thin (<20nm) residual layer, which is preferred for successful pattern 

transfer by ICP.  

 

 

Figure 3.5-1 Basic process scheme of the used UV-based nanoimprint lithography 

(drawing by Micro Resist Technology GmbH). Note: Mould means the same as stamp, 

which is the word used in this report (elsewhere also ‘template’ used sometimes), and 

polymer means the nano-imprint resist here. 

 
 
 

The master stamp was made by EBL method on the 4” Si wafer.  Before any copies can 

be taken from the master stamp it have to be anti-adhesion treated to enhance the releasing 

properties of the UV materials that are used to make the intermediate stamps (actual 

working stamps). The UV material was OrmoStamp (by Micro Resist Technology). The 

nano-imprint step for making intermediate stamps is depicted in the Figure 3.5-2. 
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Figure 3.5-2 Procedure to make intermediate stamps from the master stamp (drawing by 

Micro Resist Technology). 

 

Also the intermediate masters were anti-adhesion treated with the trichlorosilane. 

Intermediate masters were used to pattern the UV-resist layer on the glass wafers. These 

wafers have SixNy and Cr deposition. The nano-imprint resist used was mr-UVCur21-

200nm supplied by Micro Resist Technology. 200nm-thick layer of resist was spun on the 

glass wafer and pre-baked. After that the resist layers on the wafers were patterned by 

imprinting with the intermediate stamps. An example photograph of an imprint patterned 

resist layer on a glass wafer (including SixNy and Cr layers on top) is shown in Figure 

3.5-3 left. Some interference pattern (colour variation) is seen, especially near the edges 

of the resist area, due to the minor thickness variation in the layer. For comparison, 

similarly patterned resist layer but on a bare Si wafer is shown on the right. It does not 

include the parallel lines of the interference pattern seen on the left image, which indicates 

the lines are related to the glass wafer or SixNy and Cr layers on it. However, we were 

transferring the pattern from nano-imprint resist to Cr which was acting as hard mask. As 

over-etching was done to have clean and quality hard mask (please see Section 3.6.1), a 

little thickness variation in the resist layer was not an issue for post-processing. 
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Figure 3.5-3 Photographs of nano-imprinted resist layers patterned with the RWG on 4” 

wafers: left) Resist patterned on glass wafer that have SixNy and Cr layers; right) Resist 

patterned on bare Si wafer. 

 

Besides, there was variation in between the designed (EBL layout generated for master 

stamp) and the patterned feature dimensions. As mentioned earlier that at the beginning 

of the NIL process, normally a Si master stamp is produced by EBL which is used for 

making OrmoStamp (intermediate stamp). OrmoStamp is used later for nano-patterning 

on sample substrate. So, if the deviation from the designed dimension occurs at master 

stamp during EBL, it will be carried out to all the OrmoStamps and successive patterning 

procedure. So, optimization of the EBL procedure was needed.  

 

3.6 Chrome etching process development by Inductively 

Coupled Plasma (ICP)  
 

The Cr etching recipe was developed to get high selectivity with nano-patterned resist 

mask so that the pattern can be transferred from resist layer (limited thickness) to Cr layer 

easily. As shown later in this chapter that the etch rate of Cr is dependent on the size of 

the opening of the nanostructure (wider openings etch faster than narrower ones) and the 

size of the sample to be etched. As we are dealing with nano-structure of size about 100-

200nm, it would take quite a long time to get the Cr fully etched into that grove of the 
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grating and cleaned properly. Having a thin layer of resist (~200 nm), the selection of the 

thickness of Cr was crucial. The Cr should be thin enough that the Cr layer got fully etched 

by the time the ebeam/nano-imprint resist (acting as a mask now) was not fully etched 

away. At the same time, the Cr should be thick enough that it could survive as hard mask 

while deep etching of SixNy in the next step. So, a highly selective Cr dry etching recipe 

should be developed.  

 

Cr is the common metal used in photo-mask production and Cl2 – O2 based dry etching 

has been used for its patterning.  Nakata, et al. [135] have shown that oxygen and chlorine 

radicals are responsible for etching the chrome. As oxygen will also etch the resist and 

thus affect the selectivity it is necessary to have a good understanding of the etching 

chemistry and surface reactions. Kwon, et al. [136] used x-ray photoelectron spectroscopy 

to study the surface reactions during chrome etching. They found that chrome binds with 

oxygen and chlorine atoms at the surface. When Cr is etched using a pure Cl2 plasma, 

CrCln (n=1-3) is formed on the surface and is not easily removed because of its low vapour 

pressure. When O2 is included in the plasma CrCl2O2 is formed (Cr + 2O + 2Cl → CrOxCly 

) which is volatile at room temperature.  

From the above expression, it is clear that the concentration of oxygen and chlorine 

radicals are important factors that determine the Cr etch rate. In the ICP etching process 

the coil and platen power, the gaseous chemical composition, chamber pressure, substrate 

and chamber surface temperatures, and gas flow rate all play a role. It was also found that 

the etch rate usually had a radial distribution across a 4-inch wafer with the etch rate being 

lower towards the periphery of the wafer. The etch rate was also reduced by loading 

effects caused by the density of the pattern along with the size and shape of the 

nanostructure to be etched. To overcome the loading effect and feature size dependency, 

the Cr should be etched for longer as compared with an un-patterned layer. Thus it was 

necessary to optimise the etch selectivity between the Cr and resist to allow the required 

patterning. 

 

Different ICP parameters such as the chamber pressure, coil and platen power, and 

Oxygen : Chlorine ratio had been varied to obtain the selectivity trends. The selectivity 
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increased with the chamber pressure and gave the highest value for a pressure of 80 mT 

(Figure 3.6-1a). The increase of the ICP platen power reduced the selectivity before 

saturating (Figure 3.6-1b). We also found that the selectivity increased initially with the 

oxygen concentration and then saturated when the oxygen concentration was > 20% as 

shown in Figure 3.6-1c. In contrast, the coil power did not affect the selectivity 

significantly. Using the selectivity and Cr etch rate trends for different plasma parameters 

the best selectivity had been found as 1.41. The optimum parameters for the Cr etching 

recipe were shown in Table 3.6-1. This recipe gave a Cr etch rate of 58 nm/min in un-

patterned areas. 

 

Figure 3.6-1 Cr/ZEP resist etch selectivity due to variation in (a) chamber pressure, 

(b) platen power, (c) oxygen concentration ratio (O2/(O2+Cl2)) and (d) coil power. 
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Table 3.6-1 Parameters of the optimized Cr etch recipe which gives a selectivity of 1.41:1 

and a Cr etch rate of about 58 nm/min in un-patterned areas. 

 

Parameter Values 

Cl2 gas flow 70 sccm 

O2 gas flow 30 sccm 

Coil power 500 W 

Platen power 50 W 

Chamber pressure 80 mT 

Temperature of platen 10 ⁰C 

 

3.6.1 Loading effect 

It was found that the etch rate of Cr was dependent on the size of the opening of the 

nanostructure (wider openings etch faster than narrower ones) and the size of the sample 

to be etched. As an example, a 30 nm of Cr in an open area took 31 s to be fully etched. 

But, the SEM image in Figure 3.6-2a showed that a 30 nm-thick Cr nano-grating with 

groove openings of 240 nm on a 4 inch glass wafer when etched even for 1 minute did 

not fully remove the Cr and subsequently the SixNy etching did not proceed properly. 

Though etching for 2 min showed improvement, small residues remained at the edge of 

the grating after the Cr etching and subsequent SixNy etching as shown in Figure 3.6-2b 

and Figure 3.6-2c. Finally, when the Cr nano-grating was etched for 3 min, a fine grating 

structure was obtained as shown in Figure 3.6-2d.  All the images of Figure 3.6-2 were 

taken before stripping off the Cr (process step in Figure 3.2-2) with a very thin layer of 

Au deposited on the sample to avoid the charging during SEM imaging.  
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Figure 3.6-2 SEM images of the SixNy nano-grating after Cr and SixNy etching: (a) 

Cr etched for 1 min, (b) & (c) Cr etched for 2 min but dot-shaped residues remain 

at the edge of the nano-grating and (d) cleaner edge of the nano-grating when Cr is 

etched for 3 min. 

 

 

3.7 Pattern transfer 
The pattern transfer procedure for both ebeam patterned wafer and nano-imprinted wafer 

were same. The patterned wafer was loaded in the ICP chamber for etching the exposed 

Cr layer for 3 minutes using the developed optimal Cr etching recipe (Section 3.6). Then 

the resist layer on top of the Cr layer, was removed by the standard ‘MICROPOSIT resist 

remover 1165’, a pure organic solvent. Normally, the resist becomes very sticky when 

exposed to the Chlorine gas inside the ICP chamber during Cr etching and hence require 
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an additional 3 minutes of O2 plasma ashing before and after using the 1165 resist 

remover. At this stage, the wafer had the nano-pattern transferred into the Cr layer. 

 

 

Table 3.7-1 Parameters of the SixNy ICP etching recipe. 

 

Parameter Values 

Gas mixture CF4/CHF3 

Coil power 800W 

Platen power 75W 

Chamber pressure 50mT 

Chuck Temperature 10⁰C 

 

 

The pattern was subsequently transferred into the SixNy using another ICP etching recipe 

as shown in Table 3.7-1. The Cr layer acted as a hard mask for this etching. The etch rate 

of SixNy was measured as 6 nm per second. There was also an initial plasma settling time 

of about 9 seconds which causes an additional etching depth of 54 nm. So, for etching a 

depth of 400nm, the etch time was (400-54)/6 = 58 sec. As the etch rate was 6 nm/sec, 58 

seconds  of etching time gave the etching depth of 348 nm and the initial 9 seconds of 

plasma settling time gave an additional 54 nm of etching depth which yielded a grating of 

almost 400nm depth. However, the image in Figure 3.7-1 captures the front face of the 

full wafer after SixNy etching. The RWG sensors lit up at certain diffraction angle as 

shown in the Figure 3.7-1. 
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Figure 3.7-1 Snapshot of the processed full wafer after SixNy etching. 

 

 

3.7.1 Sidewall quality 

The influence of etching slope on cavity Q-factors in two-dimensional (2D) photonic 

crystal (PhC) slab is studied in [131]. RWG sensor is also prone to the reduction of Q 

factor for increasing grating sidewall slope. The Q-factor decreases with grating’s 

sidewall slope. So, the slope of the fabricated grating was measured by cross-sectioning 

of the grating using FIB milling and then imaging by SEM.  

Tilt angle measurement 

1. RWG sensor with different filling fraction (for making the measurement easy) was 

fabricated by using the presented EBL nano-fabrication technique.  

2. A portion of the grating (10 µm× 2 µm) was covered with 5µm thick protective 

layer of Tungsten+Platinum deposited by the FIB tool. 

3. A 5µm deep trench of 10 µm× 6 µm size was made perpendicular to the grating 

lines by ion bombardment. 
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4. SEM pictures were then taken in the SEM tool by tilting the grating chip at 52o 

angle.  

 

Figure 3.7-2 Cross-sectional image of the RWG sensor for sloped sidewall angle 

measurement. 

 

The groove width and height measurements shown in the above picture reveals that the 

SixNy etching recipe gives a sidewall angle (θ) of 84.7o which is very good in quality. 

 

3.8 Alignment mark and dicing  
 

To make it easy to find the sensor positions in a 1.5 cm by 1cm sensor chip and also for 

aligning with other bio-steps, an additional photolithography step was introduced to put 

dedicated alignment marks along with horizontal and vertical lines of Cr pointing towards 

the sensors. Two alignment marks were introduced in each sensor chip and those 

alignment marks were required for photo de-protection by Manchester Chemistry group, 

another EU project partner of my PhD project. Dicing marks were also printed from the 
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same photolithography procedure. The Cr was then wet etched and the wafer was ready 

for dicing along the dicing lines created from this photolithography step. 

 

A protective layer of thick resist (S1828 resist of thickness of 4μm) was coated on top of 

the full wafer to avoid any damage of the nano-sensors that might be caused by the debris 

during dicing of the wafer. A mechanical dicer was used to cut the quartz wafer at a slow 

speed to ensure a smooth edge and also avoid cracking. The 33 chips were diced from a 

single wafer. 

 

 

Figure 3.8-1 Detail of the final sensor chip (1.5cm × 1cm) with alignment marks.  

 

The protective resist layer is removed from each chip and then the chips were ready for 

inspection. Figure 3.8-1 shows the diced sensor chip (1.5 cm by 1 cm) with four sensors 

in the center. Four horizontal lines and two vertical Cr lines are heading towards the sensor 

so that the sensor can be easily located. Figure 3.8-2 shows the detailed SEM image of 

the fabricated sensor with period 430 nm, trench width 180 nm and grating teeth width 

250 nm. So the filling fraction is 58.1%. However, two or three chips from the different 

parts of the full wafer were randomly selected for optical characterization. The measured 

resonance spectrum at the desired wavelength verified that the fabrication procedure went 

well (please see chapter 4) and the thirty three sensor chips were ready for bio-

functionalisation. 
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Figure 3.8-2 SEM image of the fabricated RWG sensor shows period of 430 nm and filling 

fraction of (250/430) = 58.1%. 
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3.9 High aspect ratio nanostructure 
There is interest in the fabrication of high aspect ratio nanostructures on transparent and 

insulating substrates such as quartz, pyrex or borosilicate glass. High aspect ratio 

nanostructures can potentially be used for light trapping device for LEDs, solar cells with 

higher absorption coefficient, for batteries with greater energy densities and also in 

making nano-imprint moulds.  

As mentioned earlier that in the proposed nano-fabrication scheme, the Cr layer acts as a 

hard mask which facilitates deep etching of nitride layer as the etch selectivity of Cr to 

SixNy is around 25:1. So, it was challenged to achieve the highest aspect ratio nano-

structure in glass using the developed fabrication technique.  

A 2 µm thick layer of SiO2 is first deposited on the borosilicate glass wafer (100 mm in 

diameter) followed by 400 nm of SixNy and finally a 30 nm thick Cr layer. A 30 nm thick 

layer of Cr could survive for etching SixNy up to 750 nm with the selectivity of 25:1. 60 

nm wide periodic ridges in a grating structure were patterned by EBL on the wafer.  

The pattern was then transferred to the Cr layer using ICP Cr etching mentioned in Section 

3.6. After etching the patterned Cr layer, the pattern was then transferred into the SixNy 

and SiO2 layers by ICP dry etching to a total depth of 675 nm. Figure 3.9-1a and Figure 

3.9-1b show the SEM images of the high aspect ratio nano-grating with periods of 1.1 µm 

and 490 nm respectively. A very thin layer of Au was deposited on the sample to avoid 

the charging during SEM imaging. The Cr layer was not removed and the flat tops of 

gratings are preserved (Figure 3.9-1). A very high aspect ratio of 10:1 is achieved for ~60 

nm narrow lines of grating while preserving the quality of the flat top of these narrow 

lines. This is the highest achieved aspect ratio to date in glass substrate [137]. 
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Figure 3.9-1 SEM images of the fabricated high aspect ratio nanostructures in SixNy on glass 

substrates: ~60 nm wide (surface measurement - s)  and 675 ± 5 nm deep (cross-sectional measurement 

- cs) grating line with (a) 1.1 µm spacing and (b) 490 nm spacing. 

 

 

 

3.10 Summary 
Different potential fabrication techniques are discussed and contrasted to find out 

viable routes for fabricating the RWG sensor. A fabrication method for RWG 

nanostructures on insulating (quartz or glass) substrates has been presented using either 

EBL or NIL as patterning procedure. PECVD process was developed as a low temperature 

alternative for the development of low optical loss SixNy waveguide material. The study 

of the impact of different plasma parameters (e.g., precursor gas composition, plasma 

frequency, pressure etc.) in PECVD SixNy deposition reveals that the increase in NH3 

concentration and switching the plasma mode from mixed frequency (low + high) to the 

single (low) frequency improves the surface roughness of SixNy and hence, reduces the 

optical loss of the material. Deposition of hundreds of nm of SiO2 on top of the SixNy layer 

and thermal annealing can also be considered for further improvement of the optical loss 
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of the material. However, in the fabrication process, a thin Cr layer is used to act as a hard 

mask to permit deep SixNy etching and also to serve as a conductive layer which helps 

reducing the charging effect specifically during EBL. In order to transfer the pattern onto 

the Cr layer, an optimum Cr etching recipe was developed specially for etching 

nanostructures. It was found that the Cr etch rate was highly dependent on the size of the 

opening of the nanostructure with wider openings etching faster than narrower ones. For 

getting quality Cr etch mask a selective Cr etching recipe was required to allow longer Cr 

etching with a limited thickness of the resist layer. The developed Cr etching recipe 

showed selectivity of 1.41 which facilitates 6 times longer Cr etching to get a clean Cr 

etch mask. Having a clean nano-patterned Cr hard mask, the layout was transferred into 

SixNy using ICP nitride etching.  Higher SixNy etching selectivity of the Cr mask (25:1) 

than that of ebeam resist mask (1:1) allows deep etching of SixNy. So, an etching depth of 

400 nm in SixNy was easily achieved with initial resist thickness of only 200 nm. Using 

the developed nano-fabrication technique very high aspect ratio (highest to date in 

literature [137]) nanostructures of 10:1 is achieved for a very narrow 60 nm wide grating 

lines.  

 

Instead of bogged into single sensor chip production, wafer scale batch production of the 

RWG sensor was carried out at first using EBL for proof of concept and then NIL to 

reduce the cost of production further. The gathered knowledge for example, reducing 

charging effect during EBL, using Cr hard mask for nano-structure, Cr etch rate 

dependency on nano-structure openings, challenge of making high aspect ratio nano-

structure, residual layer thickness variation in NIL across the 4” wafer, optimization of 

NIL process steps to get the desired dimensions etc. would surely help others heading 

towards batch nano-structure production on glass. Further, study can be carried out on 

optimizing NIL processes to achieve micron and nano sized features printed at the same 

time in the same wafer for full layout solution in a single step.  
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4.1 Introduction  
n this chapter, we report on the characterization of the resonant waveguide 

grating (RWG) as a bulk and surface sensors designed and fabricated in Chapter 

2 and Chapter 3 respectively. Fiber based characterization and free space 

coupling based characterization are presented in Section 4.2.1 and 4.2.2 respectively. 

Both bulk and surface sensitivities are measured and presented in Sections 4.3 and 4.4. 

The characterization setup will require 4 main components:  the microfluidic delivery 

system to inject the analyte solution to the sensor surface, the sensor chip itself for 

detection of the target analyte, selective and binding efficient bio-attachment 

chemistry, and the optical readout system for interrogating the resonance wavelength 

shift to quantify the analyte.  

 

This multi-disciplinary project [14] involved the Nanotechnology group from Tyndall 

National Institute and Chemistry group from Manchester University, UK for 

developing a selective and efficient bio-assay [138], and Sierra Sensors from Germany 

to provide the microfluidic liquid delivery system [139]. The abovementioned four 

components of the characterization setup are interlinked and had to be compatible with 

one another to have a fully functioning bio-characterization setup. For example, the 

I 
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multiple sensors in the sensor chip had to be properly aligned with the corresponding 

microfluidic channels to work properly. 

4.2 Characterization setup 

4.2.1 Fiber based Characterization 

RWG sensors can be characterized in both transmission as well as in reflection mode 

because the resonance dip in the transmission spectrum appeared as a resonance peak 

in the reflection spectrum. The microfluidic setup was also amended 

(Polydimethylsiloxane, PDMS, material was used so that it was transparent to visible 

wavelengths) to accommodate optical transmission and reflection measurements. 

Experiments were initially carried out to assess this reflection based interrogation 

method. Basically, the RWG sample was loaded in the microfluidic holder and a 

bifurcated fiber was used to illuminate the sensor and collect the reflected light as 

shown in Figure 4.2-1. The fiber was connected to a portable spectrometer and 

reflected spectra was recorded as liquid of different refractive indices were injected 

into the RWG sensor through the microfluidics. The shift in the resonance reflection 

spectra was noticed by the spectormeter.  

 

Figure 4.2-1  Characterization setup in reflection mode uses a bifurcated fiber to get 

the broadband light in and reflected light (from RWG) out. Fiber tip is aligned to the 

RWG sensor hold by the microfluidic chamber. Reflected light is analysed by the 

portable ‘Ocean Optics’ spectrometer.  

The resolution of the spectrometer used here was ~2nm. The bulk sensitivity could be 

measured using this setup as the resonance wavelength shift was large in that case but the 

small shifts expected from the label-free bio-molecule sensing experiments (0.2-2 nm) could 
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not be detected and so, another optical setup was implemented with high resolution 

spectrometer. Nevertheless, this type of fiber based characterization setup is used in 

commercial EPIC® technology [26] but with higher resolution spectrometer. The benefit is 

that multiple fibers can be aligned with multiple sensors and interrogated at once. These fibers 

can be bundled together and scan the sensor chip at faster rate which increases the throughput.  

4.2.2 Bio-characterization Setup 

Free space coupling based optical characterization setup with high resolution 

spectrometer was used for biodetection.  The transmittance of the RWG sensor was 

measured to spectrally locate the position of the resonance. As shown in Figure 4.2-2, 

a polarized broadband white light source illuminated the sensor grating area and an 

objective lens collected the light transmitted through the sensor. The sensor was placed 

in a chamber where microfluidic channels are aligned with the sensor position. 

Different analyte solutions were injected manually through the microfluidic channels. 

The spectral location of the resonance was then tracked in the transmission spectrum 

to know the amount of resonant shift for different analyte solutions. The transmission 

spectrum was measured in a spectrometer with a resolution of 0.1 nm. The simplified 

schematic of the characterization setup is shown in Figure 4.2-2. 

 

Figure 4.2-2 Schematic representation of the transmission spectrum measurement 

setup with high resolution spectrometer for RWG sensor based biodetection. 

 

The detection limit of the sensor depends on how precisely the spectral shift of the 

resonance wavelength for bio-attachment can be measured. Both the sharpness of the 

spectral resonance peak / notch (~ Q-factor) and the spectral resolution of the 
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spectrometer determines the error bar or detection limit of the sensing system. The 

spectrometer resolution was 0.1 nm in the bio-assay measurement setup which 

corresponds to the lowest amount of detection of 300 ng/ml (or 0.77 nM) of C1q 

protein based on the bio characterization shown in 4.4.1.2.1. This can be further 

improved by using higher resolution spectrometer. 

4.3 Characterization of RWG sensor 

4.3.1 Bulk sensitivity 

As shown in Figure 4.3-1, the transmission spectrum of the fabricated (by Nanoimprint) RWG 

sensor gave resonances at the wavelength of 634.9 nm and 754 nm when the sensor was 

submerged into de-ionized (DI) water whose refractive index is about 1.3319. The change in 

the refractive index of the wetting liquid shifts the resonance wavelengths. For a salt solution 

of refractive index of 1.342, the 1st resonance wavelength shifted to 637nm. For further 

increment of the refractive index of the wetting liquid, isopropanol (IPA) of refractive index 

of 1.3776 was applied and it shifted the wavelength to 643.2 nm. The bulk sensitivity of the 

sensor is thus calculated as (643.2-634.9) nm/(1.3776-1.3319) RIU=181.6 nm/RIU. As 

calculated by simulations in Chapter 2, the bulk sensitivity was expected to be 183.33 nm/RIU 

for the 1st resonance. On the other hand the bulk sensitivity of the 2nd resonance was calculated 

as (752.4-750.3)nm/(1.3776-1.3319) RIU=45.9 nm/RIU. The 2nd resonance was actually 

designed for surface sensitivity and so less sensitive to the bulk refractive index change than 

the 1st resonance. See Chapter 5 for the distinctive use of both resonances in a ‘Dual resonance 

approach’ for separating bulk and surface sensitivities. 

 

Figure 4.3-1 Transmission spectrum of the RWG sensor for different sensing liquids to 

measure the bulk sensitivity. 
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4.4 Surface Sensitivity 
As detailed in Chapter 2, Section 2.6.2 that the surface sensitivity is nothing but the 

spectral shift of the resonance wavelength for the attachment of a thin layer of bio-

molecule on the RWG sensor surface which causes change in the local refractive index 

(RI) and so shifts the resonance wavelengths. 

The SEM image of the fabricated Nano-imprinted sensor (Figure 4.4-1 inset) showed 

that the dimensions of the fabricated sensor is bit different than designed in Chapter 

2. The period, filling fraction and etching depth was found 465 nm, 82%, and 450 nm 

respectively. These data was given input to the simulator and the RWG sensing 

performance was modeled again. The simulated transmittance spectrum showed 

resonance at the wavelength of 688.6 nm considering the RWG sensor is covered by 

PBS solution. Phosphate-buffered saline (abbreviated PBS) is a water-based salt 

buffer solution to maintain the pH level so that the proteins can survive. PBS buffer is 

modeled as a liquid solution of refractive index of 1.332 in the simulator. Then, 20 nm 

thin conformal layer of biomolecule is added on the sensor surface in simulations to 

know the amount of resonance shift. The refractive index of the bio-molecule layer is 

considered as 1.45. The attachment of the 20 nm thin layer shifts (~1.7 nm) the 

resonance wavelength from 688.6 nm to 690.3 nm as shown in Figure 4.4-1. 

 

Figure 4.4-1 Transmittance spectra of the modeled (considering fabricated parameters) 

RWG sensor for bio-molecular attachment. Simulation shows that 20 nm thin 

conformal layer of biomolecule added on the sensor surface shifts the resonance 

wavelength 1.8 nm. 

4.4.1 Bio-assay experiment 
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Immunoglobulin proteins: C1q and C3 antibodies and antigen were selected for bio-

assay experiments. The proteins C1q (complement 1q) and C3 (complement 3) are 

part of the complement system, which is part of the innate immune system. Bio-assays 

were carried out using both C1q and C3 proteins in PBS solution and C3 protein in 

serum. 

4.1.1.1 Contact angle measurement 

Contact angle is the measurement of the wettability of the solid surface by a liqud. For 

bio-assay experiment, it tells whether the sensor surface is wet enough to let the bio-

fluid go inside the nano-structure of the RWG sensor. From the contact angle 

measurement as shown in Figure 4.4-2a, it was found that the fabricated RWG sensor 

by the Nano-imprint technology was not wet enough (bit hydrophobic) to do the bio-

assay experiment. The contact angle found on average was 32°. However, O2 plasma 

treatment at 50W for 3 min made the RWG sensor surface very hydrophilic (contact 

angle is 6° only) as shown in Figure 4.4-2b.  

 

Figure 4.4-2 Contact angle measurement of the fabricated (by Nano-imprint) RWG 

sensor: (a) before, and (b) after the O2 plasma treatment. 

 

4.4.1.2 Bio-assay experiment in PBS solution 

4.4.1.2.1 Adsorption based C1q protein bio-assay experiment 

1. RWG sensor was fabricated by nano-imprinting. The size of the sensor was 

200µm × 200µm. 

2. O2 plasma surface treatment at 50W for 3 min which made the sensor surface 

hydrophilic (contact angle measurement showed 6° angle. See Figure 4.4-2b) 

favorable for bio-attachment. 
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3. Bio-attachment experiment was done based on adsorption principle. 

4. Transmission spectrum was taken in PBS before antigen immobilization. 

5. C1q antigen (Ag) were then attached to the surface of the sensors by incubating 

the sample with a 4 μg/ml single-chain variable fragment (scFv) C1q Ag 

solution for two hours. The sample was then washed in PBS buffer. 

6. The sample was then rinsed in PBS solution. 

7. Transmission spectrum was taken in PBS solution after antigen 

immobilization. 

As shown in Figure 4.4-3, the transmission spectra were taken before and after 

immobilisation of antigen on the RWG sensor surface. The RWG sensor showed 

resonance at the wavelength of 695.8 nm. The resonance wavelength shifted from 

695.8 nm to 697.1 nm which gave a resonance wavelength shift of 1.3 nm for 4µg/ml 

of C1q antigen immobilization.  The experimentally found value of resonance shift 

(~1.3 nm) is bit lower than the simulated value (~1.8 nm) because only antigen was 

adsorbed on the RWG surface, but in simulation both antibody and antigen was 

considered. 

 

Figure 4.4-3 Adsorption based bio-assay experiment with RWG sensor. 1.3 nm of 

resonance wavelength shift was observed for 4µg/ml of C1q antigen immobilization. 

 

4.4.1.2.2 EDC coupled C3 protein bio-assay experiment to show selectivity 

1-Ethyl-3-(3-dimethylaminopropyl) carbodimide (EDC) is a water-soluble 

carbodimide used as a carboxyl activating agent. In this experiment EDC was used in 
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combination with N-hydroxysuccinimide (NHS) for the immobilisation of C3 

biomolecules. 

1. The same type of RWG sensor of size 200µm × 200µm was used. The sensor 

was fabricated by nano-imprinting.  

2. The sensor surface was modified by single assembled monolayer (SAM) and 

then photo-patterned (UV light at 365 nm) through optical mask to activate the 

amino-terminated surface only at the sensing region. The work of surface 

functionalization [138] was done jointly with University of Manchester, UK.  

3. Bio-attachment experiment was done based on EDC coupling. Injection of 200 

μl of 200 mM EDC and 25 mM NHS supplied by Sierra Sensors, GmbH, 

Hamburg to activate the carboxyl groups of the precoated 

Mercaptohexadecanoic acid (MHDA). 

4. EDC/NHC incubation for 30 min. 

5. C3 Ab was then attached to the surface of the sensors by incubating the sample 

with a 7 μg/ml scFv C3 Ab solution for another two hours.  

6. The sample was then incubated for one hour and a half in a 4 μg/ml solution 

of C1q antigen in PBS to know the selectivity of the EDC coupled C3 antibody. 

7. The sample was then washed in PBS buffer. 

8. The sample was then again incubated for one hour and a half in a 4 μg/ml 

solution of C3 antigen in PBS. The sample was once again washed in PBS. 
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Figure 4.4-4 EDC coupled bio-assay experiment showed a total of 0.7 nm (0.5 nm for 

Ab and 0.2 nm for Ag) of resonance wavelength shift for 7µg/ml and 1µg/ml of C3 

antibody and antigen attachment respectively. There was no shift for C1q incubation 

which showed the selectivity of the sensor. 

 

Transmission spectra in PBS were acquired after each step of the assay. The spectra 

were taken before and after immobilisation of C3 antibody and again after binding of 

C3 antigen. The transmittance was also measured after C1q incubation to know 

whether the attachment was selective or not. Each time the sensor was rinsed in PBS 

before the spectrum was taken. As shown in Figure 4.4-3, the resonance wavelength 

shifted 0.5 nm for 7µg/ml of C3 antibody immobilization (step 5 in bio-assay 

experiment) and further 0.2 nm of resonance wavelength shift was achieved for 

1µg/ml C3 Antigen binding (step 8), but there was no shift in resonance for C1q 

incubation (step 6). So, a total of 0.7 nm of resonance wavelength shift was observed 

for both antibody and antigen attachment and no shift were observed C1q antigen 

incubation with C3 antibody which showed the selectivity of the sensor. The bio-assay 

was also done in serum instead of PBS. The process steps of the serum experiment 

were same as the EDC coupled C3 experiment upto step 5. Then 0.5% serum was 

incubated for two hours and got a shift of 0.4 nm from Ab to Ag attachment which 

was 0.2 nm in C3 experiment.  

4.5 Summary 
The fabricated RWG sensor was characterized for both bulk and surface sensitivity. 

Among the four components of the characterization setup ‘liquid delivery system 

(Microfluidics)’was done by Sierra Sensors, Germany, a partner of the project.  
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Whereas, bio-assay development (surface functionalization, bio-attachment) were 

done by both Nanotechnology group in Tyndall National Institute and a Chemistry 

group from Manchester University, UK. Optical fiber based reflectance measurement 

setup was made for characterization. EPIC® technology based biosensors from 

Corning Inc. use fiber based interrogation system. But, the fiber based spectrometer 

used in this project was low in resolution (~2 nm) and so was not good enough to use 

it for biomolecule detection (0.1 nm resolution expected). So, another simple 

transmittance measurement setup based on free space coupling of light into the RWG 

sensor was made with high resolution (0.1 nm) spectrometer for bio-assay experiment.  

The bulk sensitivity of the RWG sensor was measured by changing the refractive index 

of the liquid on top of the sensor and by measuring the amount of corresponding 

resonance wavelength shift for that change. The change of refractive index was done 

by changing liquids from DI water to another salt solution and then replacing that by 

IPA. The measured bulk sensitivity was 183.3 nm/RIU. 

As the fabricated sensor was not exactly the same as designed in Chapter 2, the 

dimensions of the fabricated RWG was measured by SEM and then those data was 

used in the simulator to predict the performance of the prepared RWG sensor in bio-

assay experiment. Immunoglobulin proteins: C1q and C3 antibodies and antigen both 

were used in the bio-assay experiments. Bio-assay experiments were done both by 

adsorption and EDC coupling. From the adsorption experiment 4 μg/ml C1q antigen 

was easily detected by observing 1.3 nm of resonance wavelength shift. The detection 

of 4 μg/ml solution of the C1q Antigen (410 kDa) corresponds to detection of just 

under 10 nM. The spectrometer resolution was 0.1 nm in the bio-assay measurement 

setup which corresponds to the lowest amount of detection of 300 ng/ml (or 0.77 nM) 

of C1q protein. This can be improved by using higher resolution spectrometer. Later, 

C3 antigen of 1 μg/ml was detected in an EDC coupled bio-assay experiment and 

showed selectivity with C1q proteins. The experiment was done in 0.5% serum and 

showed successful detection of C3 antigen in serum. 

However, the little less amount of resonance shift from the fabricated RWG sensor 

than the value predicted by the simulator may be attributed to poor bio-attachment. It 

was found that the EDC coupled RWG sensor was very hydrophobic and this may 

cause the bio-molecule not to go inside the RWG grating groove and attach on the 

surface and sidewall. In simulation the total thickness of the attached antibody and 

antigen layers was assumed to be 20 nm, but the bio-attachment is not static, rather 
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dynamic, and moreover the thickness is protein orientation dependent. So, the 

thickness of the single-chain variable fragment C3 and C1q proteins 

(antibody+antigen) may be less than 20 nm of thickness. 
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5.1 Introduction 
Label-free optical sensing based on the guided mode resonance (GMR) property [78, 140, 

141] in resonant waveguide grating (RWG) platforms has been used for more than a 

decade to detect the in-situ binding kinetics of enzymes, viruses and cells [142, 143]. Such 

sensors have refractive index discrimination down to 10−6 refractive index units (RIU) 

with a large dynamic range [142]. This sensing technique has been incorporated recently 

in a handheld smartphone based label free portable sensing platform [72]. Utilizing the 

integrated camera of the smartphone optically aligned with a custom-designed cradle as a 

spectrometer, accurate and repeatable measurements of shifts in the resonant wavelength 

of the sensor is demonstrated [72]. Although RWG sensors are widely used for affinity 

sensing, the information obtained by the present mono-polarized single resonance 

technique is limited [71].  

 

The resonance wavelength value (RWV) of the sensor is readily tuned by a change in the 

optical density of the medium lying within the range of the evanescent electric (E) field. 

Therefore, in addition to refractive index (RI) changes associated with the surface-bound 

target biomolecular material, thermal induced RI changes of the bulk liquid medium 

covering the sensor will also induce a shift in the RWV. This could be a significant 

problem in portable diagnostic applications where thermal variations are likely. The 

suppression of this unwanted noise will be especially important for applications requiring 

the detection of small molecules or ultralow analyte concentrations. A PhC sensor with 

an enhanced surface-to-bulk sensitivity [144] has been reported to suppress the noise 

coming from the bulk solution in the near ultra-violet wavelength region. By modifying 

the device structure and, hence, the evanescent electric field profile, the sensitivity 

characteristics of the biosensor was modified in [144]. They scale down the IR biosensor 

to curb down the extent of the evanescent electric field since the field extent is 

proportional to the resonant wavelength for a given angle of incidence and thereby 

enabled operation only at short wavelengths (UV) [144].  
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However, a single resonance of polarized light, normally used for detection, cannot 

simultaneously resolve changes in the biolayer and the surrounding in one measurement. 

R. Magnusson et al. [71] have proposed a dual (TE and TM) polarization based approach 

to determine individual attributes of the bulk and surface changes. 

 

Figure 5.1-1 Schematic of a RWG sensor system. The collimated beam from a broadband 

source is incident on the sensor at normal incidence. The reflected spectral response is 

monitored in real time with an optical spectrum analyzer. As binding events occur at the 

sensor surface, the resonance peak shift is tracked.  

 

The peaks result from individual, polarization-dependent resonant leaky modes that are 

the foundation of their technology. The unique responses of these two peaks to the 

biomolecular event enrich the data set available for event quantification. Thus, by 

modeling the binding event and fitting to a rigorous electromagnetic formalism, the 

individual attributes of the biolayer and its surroundings were determined and thus, a 

separate reference site for background monitoring was avoided [71]. Though further 

improvement of their backfit model was suggested [71] for precise separation of the 

attributes of the biolayer and its surroundings, fundamentally, the spatial electric field 

distribution of the TE and TM resonant modes are not distinctive enough for accurate 

decoupling of these contributions. 

 

In this chapter, I present a dual resonance (Section 5.2.1) based discrimination method 

(Section 5.4) which monitors the response of two spatially (electric field) and spectrally 

different resonance modes to decouple the interfering surface and bulk attributes. One 

resonance acts as a bulk sensor because of its larger electric field penetration depth into 
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the bulk solution whereas the other resonance serves mostly as a surface sensor. This 

approach also avoids the need of a separate reference site for background monitoring. In 

a controlled experimental (Section 5.4.1) test of the dual-mode operation, we differentiate 

the thickness of a deposited thin layer (imitates as a biolayer) on the sensor surface, with 

a superimposed bulk refractive index variation as a perturbation. The proposed dual 

resonance approach is also compared with the polarization based discrimination method 

in Section 5.4.2. 

 

5.2 Design  
As discussed earlier in Chapter 2 a RWG sensor is a subwavelength grating structure in a 

single or multilayer waveguide film designed to create a narrow resonant reflection peak 

at a selected wavelength of certain polarization. When the light is incident upon a 

subwavelength grating, the zeroth order of the diffracted light follows the Snell’s law of 

refraction while the higher order diffracted light is either guided by the waveguide of the 

RWG waveguide or becomes evanescent based on the grating and waveguide parameters. 

At the resonance wavelength, the strong coupling between the external propagating waves 

(zeroth order) and the adjacent evanescent waves (higher order) produces the rapid 

increase in the reflectance and concomitant decrease in transmittance. 

 

5.2.1 Dual resonance RWG 

As mentioned in the Section 2.4.1 the dual resonance in the RWG originates from two 

sustainable waveguide modes determined by the waveguide layer thickness (hwav) and 

etching depth (hetch). The device parameters are chosen such that m = ±1 are the only 

diffraction orders existing in the waveguide. Both of the degenerate resonant leaky modes 

are from the same diffraction order (±1) but with different sustainable waveguide modes 

in the Si3N4 waveguide layer at two different wavelengths. The TE+1,1 and TE-1,1 modes 

as well as TE+1,2 and TE-1,2   modes are degenerate due to the symmetry at normal 

incidence. Here, for TE m,a , ‘m’ refers to the diffraction order and ‘a’ refers to the 

sustainable mode number. 
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When the diffracted light from the grating structure is coupled with a leaky waveguide 

mode satisfying the phase-matching condition, sharp resonance peak/dips are observed at 

particular wavelengths in the reflection and transmission spectra [78]. Incident light at the 

resonance wavelength becomes spatially confined in a mode which generates a high 

optical field at the sensor surface. This localized electric field extends evanescently a short 

distance into the test analyte sample. This leads to a strong interaction between the 

structure and adsorbed biomaterial and to the ability to perform high resolution sensing 

of protein and cell attachment. 

 

The RWG sensor designed for our experiment consists of a partially etched 

subwavelength grating structure in a thin layer of silicon nitride (Si3N4) deposited on a 

quartz substrate as shown in Figure 5.1-1. For a 55% filling fraction grating with Λ = 420 

nm and hwav = 450 nm, hetch is varied to investigate its role in the resonance spectra.  

 

 

Figure 5.2-1 Transmission spectra map showing the resonance wavelengths (blue coloured 

regions shows resonance dips) for different etch depths. Inset shows the transmission 

spectrum for an etching depth of 190nm 
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Figure 5.2-1 shows transmission spectra mapping of the sensor for different etching depth 

carried out using a finite-difference time-domain (FDTD) simulator [35]. FDTD Solutions 

is a 3D Maxwell solver, capable of analyzing the interaction of UV, visible, and IR 

radiation with complicated structures employing wavelength scale features.  

For shallow etching (up to 250 nm) the sensor sustains two resonances whereas for deep 

etching (depth greater than 250 nm) the 1st resonance fades out while the 2nd resonance is 

sustained. As the etching depth increases the effective index of the Si3N4 waveguide layer 

reduces and so the resonance wavelength shifts to lower wavelength. The full width half 

maximum (FWHM) of the resonance peaks also change with etching depth.  

 

A doubly resonant [145] RWG sensor with an etching depth of 190 nm is studied further 

with a view to exploiting the distinctive electric field of the two resonances for separating 

bulk and surface sensitivity. Figure 5.2-2 shows the distinctive E-field distribution of the 

two resonance modes when illuminated by a mono-polarized (E-field parallel to the 

grating lines) broadband planewave light source. The resonances are found at wavelengths 

of 619 nm and 736 nm which are distinctive by their spectral shape (FWHM) (Figure 

5.2-1 inset) and electric field distribution (Figure 5.2-2). The 1st resonance (at 619 nm) 

acts as a bulk sensor because of its higher E-field penetration depth into the bulk solution 

whereas the 2nd resonance (at 736 nm) serves mostly as a surface sensor. 
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Figure 5.2-2 E-field distribution of PhC unit cell with an etching depth of 190 nm 

resonating at wavelengths (λ) of 619 nm and 736 nm. 

5.3 Fabrication of dual resonance RWG 
The RWG is patterned by electron beam lithography and then the pattern is transferred 

into the Si3N4 layer by a nano-fabrication technique [137] where Chrome is used as the 

hard mask. Please see Chapter 3 for detail of the fabrication procedure.  

5.4 Decoupling bulk and surface contribution 
 

To validate the dual-mode operation in biosensing, we differentiate the thickness of the 

attached thin layer on sensor surface, with superimposed bulk refractive index variation 

as a perturbation [146]. The shift in the resonance wavelength occurs because of refractive 

index (RI) changes of the bulk liquid medium and the formation of thin layer of 

biomolecules on the sensor surface as schematically shown in Figure 5.4-1.  
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Figure 5.4-1 Schematic of the PhC biosensor where Λ = period of the grating, hetch = 

etching depth, hwav = Si3N4 waveguide layer thickness. The buffer solution on top contains 

the bioanalytes. (The antibody-antigen complexes shown in the schematic are not at the 

same scale as the grating 

 

The functional dependence of the measured wavelength shift (∆λ) of each resonance as 

the result of both the change in added layer thickness (Δd) and bulk index (Δnb) is 

expressed as: 

 

(Δ𝜆1
Δ𝜆2

) =  (

𝜕𝜆1
∂d

𝜕𝜆1
∂𝑛𝑏

𝜕𝜆2
∂d

𝜕𝜆2
∂𝑛𝑏

) × (Δd
Δn

)    (5.1) 

 

The subscripts 1 and 2 in Eq. 5.1 denote the 1st and 2nd resonance respectively. The 

respective differential values of the matrix in Eq. 5.1 can be obtained by linearly changing 

the added layer thickness and RI of bulk solution. This can be done either from the FDTD 

simulations shown in Figure 5.4-2a and Figure 5.4-2b or from experimental 

measurements. Based on these differential values and the shift of each resonance peak 

found from the experiment, the added layer thickness and the bulk index change can be 

calculated from a single experiment using Eq. 5.1.  
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Figure 5.4-2 Map of the transmission spectrum of the PhC sensor for (a) different added 

layer thickness, d and (b) RI of bulk medium, n. 

 

The transmission spectrum of the sensor with DI water on top (Figure 5.4-3) shows two 

resonances at the wavelength of 618.6 nm and 739.4 nm. The experimentally found 1st 

RWV matches with the model, but the 2nd RWV is few nm longer than that of the 

simulated (Figure 5.2-1) value. The FWHM of the 1st resonance (Figure 5.4-3) is also 

broader than that calculated (Figure 5.2-1) unlike the 2nd resonance. This can be associated 

with the sidewall roughness of the grating lines and the spatial position of E-field of each 

resonance. 

 

5.4.1 Controlled experiment 

A 16 nm thin layer of silicon dioxide (SiO2) of RI 1.45 comparable to the RI of 

biomolecules is coated on the sensor surface. The transmission spectrum of the thin layer 

coated sensor is measured again with different bulk solution to imitate the scenario of a 

bulk index perturbation during biomolecular attachment. The bulk solution on top of the 

sensor is changed from DI water (RI=1.332) to isopropyl-alcohol (RI=1.3776). The 

change in both bulk index and surface layer together yield a total RWV shift of 10.4 nm 

and 1.9 nm for the 1st and 2nd resonance respectively.  
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Figure 5.4-3 Resonance wavelengths shift when the bulk solution is changed from DI water 

to IPA along with a thin added layer (16 nm) on the sensor surface. Inset shows the SEM 

image of the sensor grating. 

 

Sensors based on single resonance cannot distinguish between the individual 

contributions from surface and bulk. But, the two resonance approach provides separate 

values of additional layer (∆d) and index change (∆nb) by monitoring the RWV shift of 

both resonances. The respective differential values (listed below) of the matrix in Eq. 5.1 

have been obtained from a separate experiment on the fabricated sensor where the RI of 

the bulk solution and the added layer thickness are linearly changed individually (RI : 

1.33 1.38 and Δd : 0  16 nm) and  the change in resonance wavelengths are measured. 

 

 

 

Here, the sensitivity of the 1st resonance to the surrounding bulk index, (∂λ1/∂nb) is 10 

times higher than that of the 2nd resonance (∂λ2/∂nb). This is due to the distinctive nature 
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of the E-field distribution of the 1st resonance which has higher penetration depth into the 

bulk solution compared to the 2nd resonance. 

Using the measured resonance shift of Δλ1=10.4 nm and Δλ2=1.9 nm (Figure 5.4-3), Eq. 

5.1 gives the added layer thickness and bulk RI change as: 

 

    (5.2) 

The dual resonance approach thus could follow the change in both bulk and surface 

properties taking into consideration the amount of shift in the 1st and 2nd resonances and 

their interdependency. The proposed method calculates the added layer thickness as 17.5 

nm and bulk RI change as 0.0467 which are very near to the engineered perturbation 

values of 16 nm and 0.0457. 

 

5.4.2 Comparison with the polarization based approach 

In order to compare the dual resonance scheme with the polarization based approach 

presented in [71], the bulk (surrounding index) sensitivity for TM  and TE polarization 

are measured. This is done for the 2nd resonance because this sharp resonance with its 

particular E-field distribution is typically used for RWG based biosensing.  

 

Table 5.4-1 Sensitivity comparison of two different approaches to bulk index 

Dual resonance approach Polarization based approach 

1st resonance 205.7 nm/RIU TM resonance  54.7 nm/ RIU 

2nd resonance 21.9 nm/ RIU TE resonance  21.9 nm/ RIU 

1st : 2nd = 9.4 TM : TE = 2.5 

 

As shown in table 1, the dual resonance approach gives sensitivity ratio of 9.4 whereas 

the polarization based approach can offer 2.5. The higher contrast in the bulk sensitivity 

for the dual resonance approach helps decouple the attributes of the biolayer and its 
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surroundings leading to increased detection accuracy and reduced probability of false 

readings in bioassay experiments. 

 

5.5 Summary  
In summary, the number of resonance modes of a multi-order, multi-mode RWG is tuned 

by changing the thickness of the waveguide layer. The proposed dual resonance RWG 

sensor sustains two resonance modes with their E-field distribution being distinctive in a 

way that one acts as a bulk sensor whereas the other behaves primarily as a surface sensor. 

Taking benefit of the different behavior of the two co-existing resonances, a new approach 

to separating bulk and surface properties is proposed and validated. It leads to a self-

referenced biosensor robust against environmental background noise.  Furthermore, 

multiple resonances in combination with different polarizations with resulting diverse E-

field distributions of interest could lead to a better understanding of the biomolecular 

interaction. This multi-parametric approach to biosensing will assist in revealing 

additional information in proteomics and clinical diagnostic applications instead of just 

quantifying the analytes. 
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6.1 Introduction   
The resonant nano-ribbon cavity which is a form of 1-D Photonic crystal (PhC) cavity 

[22, 23, 57, 58], has been demonstrated as a significant alternative to the 2D slab based 

PhC cavity [25, 26]. 1-D PhC cavity can achieve Q as high as those found in the slab 

based geometries but with much smaller footprint [22] which is beneficial for small 

analyte detection. It has already found its application not only in bio-sensing [24, 59], but 

also in opto-mechanics [60], optical trapping [61] and opto-fluidics [62] etc. Furthermore, 

it has a naturally convenient geometry for integration with an optical waveguide.  

In this chapter, a waveguide embedded resonant nano-cavity is proposed to be integrated 

on a SixNy waveguide on glass substrate. The design of the cavity and the methodology 

of calculating the Quality (Q) factor of the cavity are detailed in Section 6.2. Sections 

6.2.2 - 6.2.4 present the effect of different cavity parameters (e.g., Bragg mirror strength, 

cavity length etc.) on the Q-factor of the cavity. Grating coupler is used as an in/out 

component and Section 6.3 presents the design and optimization scheme of coupling 

efficiency of the single layer uncladded SixNy grating coupler. The fabrication of the nano-

ribbon cavity along with the grating couplers was attempted by using nano-imprint 

lithography technique in VTT, Finland and the pattern transfer technology presented in 

Chapter 3, in Tyndall National Institute, Ireland. The results of the nano-imprinting and 

pattern transferring of different components at different stages are presented in Section 

6.4.1and 6.4.2 respectively. 

 

6.2 Design of the nano-ribbon cavity 
The proposed nano-ribbon cavity has PhC component (Figure 6.2-1a) embedded into a 

nanowire (~300 nm in width) waveguide which is elongated couple of millimeter (mm) 

and expanded to a wider waveguide (~20  µm in width) to make easier coupling of 

incoming and outgoing light using grating couplers. Similar grating couplers (Figure 

6.2-1c) tuned to the PhC cavity resonance wavelength, are placed at both sides of the long 

waveguide (Figure 6.2-1b) to facilitate the in and out-coupling of light.  
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Figure 6.2-1 Schematic of nano-ribbon PhC cavity with in and out-coupling grating at two 

sides (a) 1-D PhC cavity with Bragg mirrors at both ends, (b) PhC cavity integrated with 

tapered waveguide and coupling grating, and (c) grating coupler with tapered waveguide. 

 

 

The cavity section at the center is sandwiched between two Bragg mirrors. The Bragg 

mirrors confine light in the waveguide direction (X-axis) whereas the total internal 

reflection in the SixNy waveguide restrains light to escape in the other two directions (Y 

& Z axes) (see Figure 6.2-2).  

The light is coupled into the SixNy waveguide by grating coupler and travels as a 

fundamental waveguide mode. For the wavelength allowed by the PhC, the mode is then 

transforms into PhC bloch mode while passing the PhC Bragg mirror. When the forward 

propagating PhC Bloch mode passes the Bragg mirror section and enters into the cavity 

section, the transverse (Y-Z plane) Bloch mode is to be transformed into the cavity 

waveguide mode to sustain the resonance. Then the cavity mode is reflected back and 

forth by the Bragg mirror and builds up in the cavity as a resonant mode. While being 
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reflected by the mirror, additional Bloch modes are excited at the abrupt interface in 

between the Bragg mirror and the cavity section because of the transverse modal 

mismatch of the Bloch mode and the cavity waveguide mode, and inevitably some light 

leaks out in the cladding dropping down the Q-factor. 

Two tapered lines of air holes acting as partial mirrors, are placed face to face in the cavity 

section to reduce the abrupt changes in between the effective refractive index of the cavity 

waveguide mode and the PhC Bloch mode [147]. So, adiabatic transition between these 

two modes is obtained minimizing the scattering loss and so, high Q cavity is achieved.  

 

 

 

Figure 6.2-2 Schematic of the simulation setup of the nano-ribbon cavity with Bragg 

mirror at two sides and linearly tapered line of air holes placed face to face in the cavity. 

In simulations, a waveguide mode is injected from left end and a monitor is placed at the 

right side to measure the transmissivity. Three point monitors are included at the cavity 

section to measure the decay rate of the resonant mode for calculating the Q-factor. 

 

The nano-ribbon width ‘w’ and waveguide thickness ‘h’ are fixed as 300 nm and 400 nm 

respectively to ensure single mode operation of the waveguide in water/buffer solution 

background (for biosensing)  at the wavelength of 850 nm as shown in Figure 6.2-3. The 

photonic crystal Bragg mirrors are realized by means an array of circular holes of number 

‘N’ in a line at both sides of the cavity (Figure 6.2-2). The Bragg mirror strength increases 

with the number of air holes included in the mirror. The period (spacing between two 

consecutive holes) ‘p’ and the hole diameter ‘d’ in the Bragg mirror are fixed to 260 nm 
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and 220 nm respectively in order to center the resonance around 850 nm. The tapered 

holes (linearly decreasing in diameter along the line) are symmetrically located at the 

center with respect to the nanocavity and each taper is constituted by ‘Nt’ number of 

circular air holes of decreasing diameter. The effective cavity length increases with the 

number of tapered air holes, Nt. The largest hole is of diameter (dmax) of 220 nm and the 

smallest one (dmin) is 120 nm as shown in Figure 6.2-2. The separation length (Lc) of the 

two smallest air holes at the center of the cavity (Figure 6.2-2) is initially set to 100 nm 

and later Lc is varied to maximize the Q-value. However, the ribbon is considered to be 

sitting on glass substrate and surrounded by water because the designed nano-ribbon 

cavity sensor is intended to be used for bio-molecule diagnosis. 

 

Figure 6.2-3 Transverse E-field distribution (fundamental mode) of the nano-ribbon 

waveguide sitting of glass (AF32) substrate. The height (h) and width (w) of the SixNy 

waveguide are 400 nm and 300 nm respectively. The waveguide is considered to be 

submerged in water for biosensing application. 

 

The numerical analysis of these structures was performed by a three-dimensional Finite 

Difference Time Domain (FDTD) simulator, Lumerical FDTD Inc. [12].  The 

computational domain is bounded by perfectly matched layers (PMLs) all around the 

nano-ribbon. The fundamental waveguide mode (Figure 6.2-3) is injected by a modal 

source from one end of the waveguide and the transmitted light is collected by a monitor 

at the other end as shown in Figure 6.2-2.  
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6.2.1 Calculation of the Quality factor (Q) 

The cavity Quality factor can be defined as 

𝑄 = 
𝜔𝑟

𝛥𝜔
     (6.1) 

where 𝜔𝑟 is the resonant frequency (𝜔𝑟 =2π𝑓𝑟) and 𝛥𝜔 is the full width half maximum 

(FWHM) of the resonance intensity spectrum.  

From the simulation point of view, for a high Q cavity, the electromagnetic fields do not 

completely decay within the simulation time (Tsim) that could be reasonably simulated by 

FDTD.  The Tsim is normally set considering the complexity (memory required for 

meshing the geometry) of the simulating geometry and computational power of the PC or 

cluster (RAM and no. of processing cores) available. For the PhC cavity structure the 

simulation time was set to 30 pico seconds. As the FWHM of the resonance peak in the 

spectrum is limited by the time of simulation, Tsim, and the FWHM is inversely 

proportional to Tsim, in this case, we can not directly calculate Q from the frequency 

spectrum using Eq. 6.1. So, for very high Q cavities the simulation should be done for 

very long time (>> 30 ps) which is not reasonable for taking long time simulating a single 

cavity even with clustered computers. Instead, the quality factor should be determined by 

the slope of the envelope of the decaying signal using the formula [32] : 

 

𝑄 = 
−2𝜋𝑓𝑟 log10(𝑒)

2𝑚
     (6.2) 

 

where 𝑓𝑟 is the resonant frequency of the mode, and m is the slope of the electromagnetic 

fields’ decay.  

 

But, when multiple resonant modes are sustained in the cavity, they would interfere with 

each other in the time domain. The interference of multiple modes made it hard to estimate 

the decay rate accurately. So, each resonance peak in the frequency domain was isolated 

using a Gaussian filter, and then the inverse Fourier transform was used to calculate the 

time decay separately for each peak. The slope of the time decay was then used to 

calculate the Q factor using Eqn. (6.2). In addition, few point monitors were added in the 
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simulation at different locations inside the cavity to avoid the chance of having a monitor 

placed at a node in the mode profile of a cavity mode capturing a weak signal. 

 

6.2.2 Effect of Bragg mirror strength on Q-factor 

To know the effect of Bragg mirror reflectance on the Q-factor and transmittance of the 

resonant wavelength, the mirror strength is increased by varying the number of air holes 

in each side (N) from 7 to 30. In this case, the tapered air hole number (Nt) is set to 3 to 

decrease the time of the simulation.  

Figure 6.2-4 shows the transmission spectra of the nano-ribbon cavity with varying 

number of air holes in the Bragg mirror. Except the resonance there is a bandgap of ~90 

nm extending from 815 nm to 905 nm of wavelength as shown in Figure 6.2-4. The 

FWHM of the resonance decreases (Figure 6.2-4) and consequently Q-factor increases 

(Figure 6.2-5) with increase in N, but the transmissivity at the resonance wavelength drops 

down significantly at the same time. So, there is a tradeoff in between the Q-factor and 

the transmissivity of the nano-ribbon. 

 

Figure 6.2-4 Transmission spectra of the resonant nano-ribbon waveguide for different 

number (N) of air holes in the Bragg mirror. At resonance the transmissivity decreases 

with the increase in air hole number.  
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Figure 6.2-5 shows that the Q-factor increases almost linearly with the increase in number 

of air holes in the Bragg mirror. There is a kink in the Q-factor curve at around N = 20 

which tells that after achieving a certain strength of the mirror the impact of mirror 

strength on Q-factor decreases. On the other hand, the transmissivity of the resonant 

wavelength decreases sharply with increase in mirror strength upto the kinking (N = 20) 

and then decreases at a slow rate. Further improvement of the transmissivity can be 

envisaged by considering the Bragg mirror tapered at both ends. 

 

Figure 6.2-5 Q-factor and transmissivity vs number of air holes (N) in Bragg mirror. Q-

factor increases but the transmissivity decreases with increase in Bragg mirror strength. 

 

6.2.3 Effect of cavity length on the Q-factor 

The total cavity length for the resonant mode is the summation of the length of separation 

in between the two Bragg mirrors and the penetration depth of the resonant mode inside 

the mirror at both sides. So, the cavity length can simply be increased by increasing the 

number of tapered air holes (Nt) in the cavity. To have a reasonable transmissivity the 

number of air holes in the Bragg mirror (N) is set to 17 in this case. As shown in Figure 

6.2-6, the resonance gets sharper and Q-factor increases when the Nt is varied from 3 to 

9. While the increased cavity length increases the Q-factor, the mode volume of the 

resonance is also increased at the same time which is not desired for bio-sensing 

application with smaller analyte solutions.  
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Figure 6.2-6 Resonance spectra of the nano-ribbon cavity for different number of air holes 

in the tapered mirror (Nt) inside the cavity. The Q-factor increases with cavity length (∝ 

Nt). 

 

6.2.4 Effect of Lc on Q-factor 

Figure 6.2-7 plots the simulation results of the Q-factor value when the separation in 

between the two smallest air holes (Lc) at the center of the cavity (Figure 6.2-2) is varied 

in the range from 100 nm to 230 nm while keeping N = 17 and Nt = 7. As we can infer 

from this data is that the maximum evaluated Q-factor was equal to 6000 for a cavity 

length Lc = 150 nm, N = 17 and Nt = 7. The Q-factor can further be improved by increasing 

N and Nt but then the transmissivity and the mode volume would be traded-off. It is worth 

mentioning that while Lc was varied, the resonant wavelength experienced a slight red-

shift but falls within the range (840-850 nm) of our interest. 
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Figure 6.2-7 Quality factor as a function of the central separation length Lc for the nano-

ribbon cavity characterized by the period = 260 nm, hole diameter = 220 nm (max) ~ 130 

nm (min). 

 

Trading off the effect of Bragg mirror strength, cavity length and central air hole 

separation (Lc) on the Q-factor and transmissivity, the reasonable parameters of the PhC 

nano-ribbon cavity selected for the bio-sensor were N = 17, Nt = 7, and Lc = 150 nm. The 

transmission spectrum showed a Q of ~ 6000  for the resonance peak at 854 nm 

wavelength in Figure 6.2-8. 
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Figure 6.2-8 Transmission spectrum of the designed PhC nano-ribbon cavity with N = 17, 

Nt = 7 and Lc = 150 nm. 

Figure 6.2-9a&b shows the refractive index and resonant E-field distribution of the cavity 

(λres = 854 nm) respectively and Figure 6.2-9c shows the value of the E-field along the 

dotted line shown in Figure 6.2-9b. The E-field decreases in a Gaussian pattern and the 

cavity length is around ~8µm as shown in Figure 6.2-9c. 
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Figure 6.2-9 (a) Refractive index distribution of the tapered nano-ribbon cavity, (b) E-field 

distribution obtained from FDTD simulation, and (c) E-field value along the dashed line in 

(b). 

 

6.2.5 Bulk and surface sensitivity of the designed nano-ribbon cavity 

Bulk sensitivity refers to the sensitivity of the nano-ribbon sensor to the change in 

refractive index (RI) of the bulk media surrounding the cavity region. The FDTD 

simulation result in Figure 6.2-10a shows that if the surrounding media of the sensor is 

changed from a Buffer solution (RI = 1.33) to isopropanol (IPA with RI = 1.378), the 

resonant mode interact with the change in RI and correspondingly, the resonance 

wavelength red-shifts by 8 nm (from 854 nm to 862 nm) which determines the bulk 

sensitivity of the sensor as 175 nm/RIU. Whereas, surface sensitivity corresponds to the 

shift in the resonance wavelength because of a thin layer of biomolecular (RI~1.45) 

attachment on the surface of the sensor waveguide and at the sidewall of the air holes. 

The simulation result in Figure 6.2-10b shows that for an attachment of 20 nm (~7nm of 
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Antibody + 13 nm  of Antigen) thin bio-molecular layer of RI=1.45 on the sensor surface 

shifts the resonance wavelength from 854 nm to 858.6 nm i.e. 0.23 nm shift per nanometer 

of biomolecule attachment. 

 

Figure 6.2-10 Shift in resonance wavelength (a) when the background changes from buffer 

solution (RI=1.33) to isopropanol (RI=1.378). Resonant shift of about 8nm corresponds to 

bulk sensitivity of 175 nm/RIU, (b) when 20 nm thin layer of bio-molecule (RI=1.45) is 

attached on the surface. 

 

6.3 Design of the Grating coupler  
It is always challenging to couple light into submicron sized photonic circuit from the 

comparatively larger (few orders of magnitude) single mode fiber (SMF). At the 

wavelength of 850 nm, the small size of single mode silicon nitride (SixNy) waveguide 

compared with the diameter of a single mode fiber makes coupling inefficient. The SixNy 

waveguide is extremely small, with a core cross sectional area of approximately less than 

0.12 μm², which correspond to core height and width around 0.4 μm and 0.3 μm 

respectively. On the other hand, a single mode optical fiber at the wavelength of 850 nm 

has a core with a cross sectional area of around 80 μm² (with a radius of 3-5 μm), which 

is ~650 times larger.  

Though there are several solutions of this problem, normally they are usually of two types: 

horizontal edge coupling using tapered waveguide [148] and vertical coupling using 

grating coupler (GC) [149, 150]. There are both advantage and disadvantages for both of 

these approaches.  
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The GC devices take advantage of the Bragg diffraction phenomenon to couple the light 

from a fiber to the submicron photonic waveguide [151]. GCs enable efficient coupling 

from optical fibers to photonic waveguide without the need of using lenses or precise 

inverted tapers. They also avoid expensive methods such as end-polishing and routing the 

waveguide upto the edge of the chip, and also allows vertical in/out from any place of the 

chip with smaller footprint. So, 1D grating coupler is preferable in our case for its 

comparatively smaller footprint (~ 20 µm × 30µm), vertical coupling, and simplicity in 

characterization. Though the GC device structure is simple but it requires a well 

developed consistent fabrication facilities for providing precise and reproducible period 

and etching depth dimensions as the GC is very sensitivity to those parameters. Back 

reflection from GC to fiber is also needed to be taken care in a polarization sensitive GC 

characterization setup.  

Figure 6.3-1 shows the schematic of the coupling scheme. These kinds of structures have 

the advantage of coupling light from standard, non-lensed single mode fibers. 

 

 

 

Figure 6.3-1 Schematic of the coupling scheme from fiber to the waveguide based on 

grating princlple. 
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Figure 6.3-2 FDTD simulation setup for the grating coupler design. 

 

The simulations and parameters optimization are done by Finite Difference Time Domain 

(FDTD) simulator, Lumerical FDTD Inc. [12]. The simulation setup is shown in Figure 

6.3-2 where the simulation region is surrounded by perfectly matched layer (PML) and 

the Gaussian beam of TE polarized (E-field parallel to the grating line) light is incident 

upon the grating at an oblique angle. The grating coupler is made from a SixNy grating on 

top of Glass substrate. Power monitors are placed in simulation for measuring the guided 

wave and the diffracted light transmitting through the substrate (Figure 6.3-2). 

 

Figure 6.3-3 Schematic of the SixNy grating coupler on glass wafer where Λ denotes the 

period, hwaveguide is the SixNy waveguide thickness, and hetch is the etching depth of the 

grating. 

 

The schematic of the grating coupler as shown in Figure 6.3-3 points out the parameters 

which are varied to maximize the efficiency of the coupler at the desired wavelength. 

Particle Swarm Optimization (PSO) [39, 92, 152], a population based stochastic 

optimization technique, inspired by the social behaviour of flocks of birds or schools of 
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fish, is used to optimize the efficiency of the grating coupler. The optimized parameters 

are listed in Table 6.3-1. 

 

Table 6.3-1 Optimized parameters for the SixNy grating coupler on glass substrate. 

 

 

The coupling efficiency of the optimized grating coupler vs wavelength for both TE (E-

field parallel to the grating line) and TM (E-field perpendicular to the grating line) is 

plotted in Figure 6.3-4 which shows the maximum coupling efficiency of 36.9%  for TE 

polarized light at the wavelength of 846 nm with 1dB bandwidth of 20 nm easily 

overlapping with the resonance wavelength of the designed nano-ribbon cavity (Figure 

6.2-8). For TM polarized light the maximum coupling efficiency is 23% at the wavelength 

of 785 nm with 1dB bandwidth of 22 nm.  
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Figure 6.3-4 Optimized grating coupler’s (Table 6.3-1) coupling efficiency vs wavelength 

for both TE and TM polarized light. 

6.4 Fabrication of Nano-ribbon cavity and grating 

couplers 
The photonic crystal nano-ribbon cavity fabrication was done using nano-imprinting 

technique jointly with VTT (Finland). The whole nano-ribbon was designed as an 8 mm 

long and 30µm wide (at the beginning) waveguide which was tapered into a width of only 

300 nm at the center. Both ends of the waveguide had grating couplers and in the middle 

of the waveguide it had the PhC cavity as indicated in Figure 6.4-1.  There was a line of 

air holes of different diameters in the middle of the nano-ribbon including the tapered line 

of air holes (placed front to front at the center) acting as a partial mirror for the incoming 

light and formed an optical cavity. The fabrication was done following the process steps 

described in Chapter 3. 
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Figure 6.4-1 Schematic of the nano-ribbon cavity with in and out grating coupler. 

 

 

6.4.1 Investigation of the pattern transfer during the nano-imprint 

steps 

6.4.1.1 PhC cavity air holes 

The middle part of the nano-ribbon waveguide contains very small air holes (~ 60 nm in 

radius) which are challenging to fabricate by the nano-imprint. In addition, the diameter 

of the holes was varied from 120 nm to 220 nm to form a line of tapered holes. Figure 

6.4-2 presents SEM pictures of holes in the waveguide. Numbers above the waveguide 

refer to air-hole identifier (ID). Figure 6.4-2a is from master stamp, Figure 6.4-2b is from 

Ormostamp copy and Figure 6.4-2c is from resist imprinted with Ormostamp copy 

(Section 3.4 and  Figure 3.4.1 for the nano-imprint process steps). As can be seen in Figure 

6.4-2a the hole depth of the smallest holes (ID-42) was shallower than that of the bigger 

ones (ID-17 or less). Only holes bigger than ~200nm (ID upto 29) had reached the etching 

depth. Besides, the side walls were slanted and rough. Some side walls of widest holes 

were etched through in sideways (ID 17, 18, 21 in Figure 6.4-2a).  

The intermediate stamp (Figure 6.4-2b) was a mirror image from the master (Figure 

6.4-2a). Features which could be seen in the master should be also visible inversely in the 

Ormostamp copy. But, the intermediate stamp (Ormostamp copy) taken from master 

contains less pattern details (Pillar missing at the center) than the master stamp, most 

probably, because of the shallower etching depth at the center of the master. The pattern 

details were copied well from the intermediate master to the resist layer (Figure 6.4-2c).  
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Figure 6.4-2 SEM images of nano-ribbon cavity on a) master stamp, b) intermediate stamp 

and c) patterned resist. 

 

 

The realized diameter of the holes in the master (done by EBL) as shown in Figure 6.4-3 

was smaller than targeted. The realized diameter was only 100 nm in the bottom of the 

hole though the targeted diameter was ~220 nm. This is due to the conical shape of holes 

as can be seen in Figure 6.4-2b and Figure 6.4-3b. Apparently, during the EBL process, 

the e-beam resist of the smallest holes were not fully exposed and the etchant could not 

reach the Si during etching. Besides, the roughness of the etched side-walls were also too 

high.  

 

 

Figure 6.4-3 SEM image of the holes in the nano-ribbon cavity from master stamp: (a) top 

view and (b) tilted side view. The targeted diameter was ~220 nm. 
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6.4.1.2 Grating coupler 

Both ends of the nano-ribbon waveguide contained similar in and out coupling gratings. 

Figure 6.4-4 shows SEM images of the grating on the resist layer. The upper image was 

the top view of the grating and the lower was of the FIB milled cross section. Both images 

were adjusted to maintain the same magnification and aligned with each other. As can be 

seen from the cross-section that the side walls were slanted. Slanted side walls originated 

from the master as can also be seen later in Figure 6.4-5. The width of the groove was 

~210 nm at the bottom and ~350 nm on top.   

 

Figure 6.4-4 SEM images from the coupling grating. Upper image is taken from the top 

and lower one is the FIB milled cross section. 

Slanted side walls in the resist layer were problematic and so, investigated further.  Figure 

6.4-5 presents a comparison of the master and the Ormostamp copy (intermediate stamp). 

Both images are adjusted to have the same magnification. Images were cross sections of 

the coupling grating. The origin of the slanted shape was in the master stamp as can be 

seen from Figure 6.4-5.  
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Figure 6.4-5 SEM pictures of the FIB milled cross sections of the master (below) and 

Ormostamp copy of master (top). 

 

6.4.2 Pattern transfer from nano-imprinted resist to SixNy 

The nano-imprinted wafers were then processed. The wafers had patterns imprinted in the 

resist layer on top of Cr and SixNy layer on glass substrate. First, the Cr was etched for 3 

min (see in Chapter 3) and then the pattern was transferred from the Cr to the SixNy layer 

using another ICP etching recipe as previously shown in Section 3.6. The wafers were 

then diced into individual chips and inspected in the SEM. 

 

Figure 6.4-6 SEM image of part of a fully processed photonic crystal nano-ribbon cavity 

fabricated by nano-imprint technology. 
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The photonic crystal air holes in the nano-ribbon cavities came out after pattern transfer, 

though there were some missing air holes at the center of the cavity. There was also a 

mismatch between the dimensions of the designed and the fabricated air holes. Also, the 

edge roughness was pretty high. These features originate mainly from the nano-imprint 

Si master itself as shown in Section 6.4.1.1.  

 

Figure 6.4-7 SEM image of a portion of the grating coupler after pattern transfer. 

 

Similarly, in Figure 6.4-7, a portion of a fully processed grating coupler showed groove 

width of ~310nm, period of ~570 nm. There was a mismatch between the designed feature 

size and the values got from the SEM inspection as shown in  

Table 7.1. It was hard to define clearly how big additional effect came from the imprinting 

and the etching steps, since the side walls were so slanted that they did not define the 

etching area precisely. 

Table 7.1 Contrast between the designed and the fabricated grating coupler using nano-imprint. 

Grating coupler Design SEM 

Period  590 nm 570 nm on average 

FF 35.7% 42.7% on average 
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6.5 Summary 
The composition of the 1D PhC nano-ribbon cavity was studied and tapered mirror was 

included in the cavity to increase the Q-factor. The effect of the Bragg mirror reflectance, 

cavity length and central smallest air hole separation on the Q-factor was examined. The 

trade-off among the Q-factor, transmissivity and mode volume determines the parameters 

of the nano-ribbon cavity. Bragg mirror tapered at both ends may also be considered for 

further improvement of both Q-factor and transmissivity. The grating coupler’s 

parameters were optimized using PO optimization algorithm.  

The designed device was fabricated by nano-imprint lithography in wafer-scale.  Different 

sized components (from mm to 100 nm) on the same wafer made the nano-imprinting 

quite challenging to optimize the imprinting process to get the precise dimensions in 

accordance with the design. However, the SEM data was used to model the fabricated 

grating coupler in the simulator. It was found that the discrepancy in the period, filling 

fraction and the etching depth of the designed and nano-imprinted GC deviated the 

coupling efficiency quite a lot that it fell beyond the designed cavity resonance 

wavelength. Moreover, the nano-ribbon cavity holes did not come out properly in the first 

run of the nano-imprinting to sustain any resonance. Sidewall roughness specifically for 

nano-structure of size < 200 nm, is also an issue to improve by optimizing the patterning 

and etching recipe. Figuring out the specific sources of deviation in the nano-imprinting 

processes was an important achievement for the future wafer-scale nano-imprinting 

process development. 
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he purpose of this thesis was to investigate a low cost, easy to characterize, 

compact and high throughput (multiplexed) optical biosensor compatible with 

wafer scale batch production. The developed sensor should decouple the bulk and surface 

sensitivity, necessary for detecting small amount of analyte in the presence of thermal or 

other perturbations. The sensor had to operate in the visible and near infrared (~850 nm) 

wavelengths and so, was developed preferably with Silicon nitride (SixNy) material on 

glass substrate which facilitated back illumination allowing the front side to be used with 

micro-fluidics. To lower down the cost of the sensor, wafer scale nano-imprint fabrication 

technology was also tried. To fulfill these requirements two different types of optical 

sensing technology: resonant waveguide grating (RWG) and photonic crystal (PhC) nano-

ribbon cavity were investigated. 

7.1 Summary and Conclusions 
The physical basis of operation of RWG sensor was investigated by a customized Finite 

difference time domain (FDTD) model interfaced with MATLAB. Different physical 

parameters of the RWG like period, filling fraction, etching depth, and waveguide 

thickness were studied to understand the relationship between these physical design 

parameters and sensor sensitivities. A simple step by step design procedure was presented 

for designing RWG at specific wavelength fulfilling the lineshape and linewidth 

requirements. The sensitivity of the RWG sensor was divided into two types: bulk and 

surface sensitivities. Surface sensitivity is important for bio-molecular detection because 

it defines the extent of resonance wavelength shift and so the detection limit for the bio-

molecular binding events. Both analytical and numerical studies revealed that the surface 

sensitivity was mostly dependent on the overlap integral of the resonant mode electric 

field at the detection region (~20 nm thin region on surface where bio-molecular binding 

happens). The RWG parameters that affect the overlap integral by effectively changing 

the E-field distribution are specifically the etching depth, polarization of the light source, 

and filling fraction. The designed and optimized RWG sensor based on Silicon nitride 

T 
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(SixNy) waveguide material showed a bulk sensitivity of ~180 nm/RIU and surface 

sensitivity of 0.1 nm shift per nm of bio-molecular attachment. 

 

A wafer scale nano-fabrication technique was presented to fabricate the RWG sensors on 

glass substrate using either Electron beam lithography (EBL) or nano-imprint lithography 

(NIL). EBL was used mostly for the RWG development phase (proof of concept) whereas 

NIL was targeted for low cost wafer scale batch production. Low optical loss SixNy 

waveguide (0.09 cm-1) material was developed by PECVD technique. It was found that 

increasing NH3 precursor gas concentration and switching the PECVD plasma mode from 

mixed (high+low) frequency to single (low) frequency improved the surface roughness of 

the developed material and concomitantly reduced the optical waveguide loss of the 

material. Chromium (Cr) has been being used for making external hard mask in 

semiconductor processing industry to photo-pattern micro-structures, but had not been 

used that much as local hard mask embedded in the nano-fabrication process for making 

nano-structures. In the proposed nano-fabrication process a thin layer of Cr was used as a 

local hard mask which not only resolved the charging effect during EBL, but also 

facilitated making high aspect ratio nano-structure. An aspect ratio of 10 was achieved for 

~60nm narrow grating lines which is the highest aspect ratio presented so far in the 

literature for nano-structure of that small dimension.  

 

The RWG sensors were optically characterized by using custom bench top fiber based 

reflectance measurement and free space coupling based transmittance measurement setup. 

The bulk sensitivity of the sensor was found 183 nm/RIU experimentally. Bio-assay 

experiments were done for both adsorption based and standard EDC coupling based 

attachment mechanism. Biomolecules e.g., Immunoglobulin-G (IgG) C1q and C3 

proteins of different concentration (>0.5μg/ml) were successfully detected in both buffer 

and serum with selectivity with other proteins.  

 

Waveguide embedded 1D PhC nano-ribbon cavity was also studied as part of this work. 

Multi-parametric FDTD analyses were done to understand the composition and 

operational principle of the PhC cavity and more important the relationship between the 
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physical design parameters and cavity Q-factor to improve the sensor sensitivity. A 

tapered partial mirror was included in the cavity section to improve the mismatch between 

the PhC bloch mode and waveguide cavity mode which improved the Q-factor. By 

trading-off the Q-factor, transmittance and mode volume a waveguide embedded PhC 

cavity was designed which had a reasonable Q-factor (~6000), mode volume and 

transmittance (10-15%). A grating coupler was also designed and included as in and out 

coupling components. The PhC cavity was fabricated at the wafer scale jointly with VTT 

(Finland) by using the nano-imprint technology. It was challenging to maintain the 

different dimensions precisely (from 60 nm in radius air holes to 8 mm long tapered 

waveguide) of different components in the same wafer run. In the first run of the process, 

the period and filling fraction of the grating coupler and PhC cavity came out differently 

than the designed values and so the spectral response of these two components were 

different. Moreover, some air holes in the cavity were missing which inhibits the 

fabricated sensor to work properly. However, figuring out the specific sources of 

deviation in the NIL process steps, resolving the residual layer thickness variation in NIL 

across the 4 inch diameter wafer, further direction to optimize the NIL process steps to 

get the desired dimensions would surely help others for the future wafer-scale nano-

imprinting process development on glass substrates. In multi dimensional NIL technique, 

it is important to have the Silicon (Si) master stamp done accurately by EBL otherwise 

the error will carry on in all steps of the NIL processes as all other stamps are copied from 

that Si master stamp. Nevertheless, sidewall roughness is also a problem specifically for 

nano-structure of size < 200 nm, which should be resolved by optimizing the NIL 

patterning and pattern-transferring etching recipe. 

 

A dual resonance approach was presented for separating the bulk and the surface 

sensitivity. Distinguishing the sensor responses coming from the bulk and the surface is 

very important for avoiding false reading in time of detecting very low concentration 

analytes in an environment where thermal or other perturbations are likely to happen. 

Commercially available biosensors use expensive and bulky temperature controlling unit 

and additional reference channels to avoid the noise coming from the bulk solution. In 

this work, the design procedure of tuning the number of resonance modes of a multi-order, 
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multi-mode RWG was presented by changing the thickness of the RWG waveguide layer. 

A dual resonant RWG was designed in such a way that the two resonant modes had 

distinct electric field distribution so that one could act mostly as a bulk sensor and the 

other would more likely behave as a surface sensor. Exploiting the different nature of 

these two co-existing resonances, a new approach to decouple the bulk and surface 

properties was proposed to avoid the need of bulky temperature controlling unit and 

additional references. The proposed approach was validated by demonstrating the 

separation of bulk and surface contribution in a controlled experiment. Though a 

polarization based separation technique was proposed in SPR technology, the sensitivity 

ratio of bulk and surface was only 2.5 which was very low to act effectively whereas the 

presented dual resonance technique showed a sensitivity ratio of 10, 4 times better than 

the polarization technique. In addition, the combination of multi-resonances with the 

polarization variation would reveal the new features of bio-molecular binding kinetics. 

7.2 Future work and directions 
In this thesis, single layer RWG sensor was studied thoroughly, but multi-layer RWG 

sensor can open the scope of further manipulation of resonant mode E-field to increase 

the sensitivity and efficiency of dual resonance approach. Inclusion of metal/nanoparticle 

on the RWG surface for subwavelength plasmonic confinement of electromagnetic field 

in the detection region seems also promising to study.  

Multi-mode, multi-order resonant RWG approach with polarization variation can be 

studied further to make it a very useful tool for better understanding of bio-molecular 

interaction in proteomics by revealing additional information about binding kinetics 

instead of just quantifying the analyte concentration. 

7.2.1 Smartphone based Bio-detection 

Incorporation of biosensing into smartphone platforms will be a potentially powerful 

development which would help to facilitate the goal of low-cost home-based tests to 

diagnose a medical condition. The system would automatically communicate results to a 

cloud-based monitoring system that would alert the physician when needed.  
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Label-free RWG based optical bio-sensing with its high sensitivity, low cost and high 

throughput can be a good candidate for integrating with the smartphone. Design, 

fabrication and characterization have already been shown in this thesis work. Now, the 

integration the developed sensor with the smartphone based read-out system and a 

compact liquid delivery system are needed to be addressed. 

Here, I present the early prototype of smartphone based prospective portable bio-sensing 

platform. A commercially available 3D printed low-cost spectrometer add-on (Public lab 

store) is adapted to the camera of the smartphone as the wavelength readout system. The 

developed and already characterized RWG sensor is to be integrated into the smartphone 

spectrometer for optical reading-out of the resonance spectrum. Small changes in the 

refractive index of a fluidic media atop the sensor can be monitored in real time using the 

computation power of the smartphone. 

 

 

Figure 7.2-1 Initial prototype of smartphone based optical bio-detection platform. (a) 3D 

printed add-on is attached to the smartphone camera to make a spectrometer, the 

spectrum of fluorescent tube is captured using this spectrometer but the resolution was not 

great (~5 nm), and (b) The commercially available (Public lab store) add-on device is 

composed of narrow slit, 3D printed  plastic case and diffraction grating. 

 

Smartphone integrated low-cost portable biosensor systems will enable diagnostic 

technology that can be translated to resource-poor regions of the world for pathogen 

detection, disease diagnosis, and monitoring of nutritional status. Such a portable system, 
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deployed widely, would be capable of rapidly monitoring for the presence of 

environmental contaminants over large areas, or tracking the development of a medical 

condition throughout a large population. 
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