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Abstract

The electroencephalogram (EEG) is a medical technology that is used in the monitoring

of the brain and in the diagnosis of many neurological illnesses. Although coarse in its

precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably

unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or

domestic environments. Consequently, the EEG is the current tool-of-choice with which

to continuously monitor the brain where temporal resolution, ease-of-use and mobility are

important.

Traditionally, EEG data are examined by a trained clinician who identifies neurological

events of interest. However, recent advances in signal processing and machine learning

techniques have allowed the automated detection of neurological events for many medical

applications. In doing so, the burden of work on the clinician has been significantly re-

duced, improving the response time to illness, and allowing the relevant medical treatment

to be administered within minutes rather than hours.

However, as typical EEG signals are of the order of microvolts (µV ), contamination by

signals arising from sources other than the brain is frequent. These extra-cerebral sources,

known as artefacts, can significantly distort the EEG signal, making its interpretation diffi-

cult, and can dramatically disimprove automatic neurological event detection classification

performance.

This thesis therefore, contributes to the further improvement of automated neurological

event detection systems, by identifying some of the major obstacles in deploying these

EEG systems in ambulatory and clinical environments so that the EEG technologies can

emerge from the laboratory towards real-world settings, where they can have a real-impact

on the lives of patients. In this context, the thesis tackles three major problems in EEG

monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii)

the high numbers of false detections in state-of-the-art, automated, epileptiform activity

detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure

detection systems. To accomplish this, the thesis employs a wide range of statistical,

signal processing and machine learning techniques drawn from mathematics, engineering

and computer science.

The first body of work outlined in this thesis proposes a system to automatically detect

head-movement artefacts in ambulatory EEG and utilises supervised machine learning
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classifiers to do so. The resulting head-movement artefact detection system is the first

of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG.

Subsequently, additional physiological signals, in the form of gyroscopes, are used to detect

head-movements and in doing so, bring additional information to the head-movement

artefact detection task. A framework for combining EEG and gyroscope signals is then

developed, offering improved head-movement artefact detection.

The artefact detection methods developed for ambulatory EEG are subsequently adapted

for use in an automated epileptiform activity detection system. Information from support

vector machines classifiers used to detect epileptiform activity is fused with information

from artefact-specific detection classifiers in order to significantly reduce the number of

false detections in the epileptiform activity detection system. By this means, epilepti-

form activity detection which compares favourably with other state-of-the-art systems is

achieved.

Finally, the problem of false detections in automated neonatal seizure detection is ap-

proached in an alternative manner; blind source separation techniques, complimented with

information from additional physiological signals are used to remove respiration artefact

from the EEG. In utilising these methods, some encouraging advances have been made in

detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the

performance of the underlying diagnostic technology is improved, bringing its deployment

in the real-world, clinical domain one step closer.
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Chapter 1

Introduction

1.1 Introduction

Electroencephalography (EEG) is a medical technology that is used in the monitoring of

the brain and diagnosis of many neurological illnesses. By measuring voltage on or just

below the scalp, EEG is the technology of choice in epilepsy and neonatal seizure detection

as well as in other diagnostics such as sleep analysis. Similarly, in evoked/ event-related

potentials the EEG is used to evaluate brain function, often in patients with cognitive

diseases (Sanei and Chambers, 2007). In addition, many brain-computer interface (BCI)

applications utilize EEG as a direct communication pathway between the brain and an

external device, most commonly for assisting, augmenting, or repairing human cognitive

or sensory-motor functions (Dornhege et al., 2007).

To utilize the EEG for any of the aforementioned applications requires interpretation and

processing of vast quantities of information. Traditionally, EEG data is examined by a

trained clinician who identifies neurological events of interest. However, recent advances

in signal processing and machine learning techniques have allowed the automated detec-

tion of neurological events for many medical applications. By automating the detection

of neurologically relevant events, the burden of work on the clinician can be significantly

reduced, improving the response time to the illness, and allowing suitable medical treat-

ment to be administered within minutes rather than hours (Thomas, 2011). In the case of

BCI, automated neurological event detection has made possible this emerging engineering

field, with new technologies and applications being created on an ongoing basis (Wolpaw
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and Wolpaw, 2012).

However, as typical EEG signals are of the order of microvolts (µV ), contamination by

non-cerebral signals is frequent. These artefacts can significantly distort the EEG signal,

making its interpretation difficult, and can dramatically disimprove automatic neurologi-

cal event detection classification performance. In particular, contamination of EEG signals

by artefacts arising from head movements have been a serious obstacle in the deployment

of automatic neurological event detection systems in ambulatory EEG, i.e. environments

where the patient or user has unrestricted movement. Similarly, analysis of epileptic

and neonatal seizure detection systems developed by the Biomedical Signal Processing

Group at University College Cork (UCC), have identified movement, ocular and respira-

tory artefacts as problematic, leading to a large number of false detections, and effectively

preventing these automatic neurological event detection systems from being deployed in

a clinical setting. This thesis, therefore, investigates and develops a number of promising

artefact detection and removal algorithms for use in these automatic neurological event

detection systems.

1.2 Aim and scope of this thesis

A significant portion of the artefact detection and removal techniques outlined in the

literature address EEG recorded in environments where the user is instructed to limit

behaviours that may cause artefacts. Alternatively, many papers validate the performance

of their artefact processing algorithms on simulated or selective datasets. In order to

effectively implement a real-world, automated neurological event-detection system, the

algorithm must be capable of dealing with the entire range of EEG signals that may arise

in noisy, medical environments. These systems must provide methods that comfortably

deal with the widespread occurrence of EEG artefacts and be robust in the classification

of the neurological event for which it is designed.

There are many papers published outlining methods of treating EEG artefacts (Barlow,

1984; Anderer et al., 1999; van de Velde et al., 1999; Delorme et al., 2001; James and

Gibson, 2003; Gasser et al., 2005; Shoker et al., 2005; Winkler et al., 2011). An over-

whelming majority of these papers focus on “cleaning” the EEG for visible inspection,

often for one particular artefact type. However, fewer papers focus on those artefacts

which are most problematic for specific event detection applications in a medical setting.
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While many techniques are useful for visibly removing artefact by “cleaning” the EEG,

comparatively few record how these artefacts affect the event detection systems in ques-

tion. In many cases, this leads to artefact removal techniques which negatively impact on

the performance of the event detections system by mistakenly removing valuable neural

EEG information.

This thesis aims to explore a number of methods of improving two automatic neurological

event detection systems under development at the Biomedical Signal Processing Group

at U.C.C. The first of these is an epileptiform activity and epileptic seizure detection

system for use in an ambulatory setting. This research was undertaken as part of the

development of the REACT (Real-time EEG Analysis for Event DeteCTion) ambulatory

real-time EEG system and is based on data from routine EEG recorded at Cork University

Hospital (CUH). The second event detection system investigated is an automated neonatal

seizure detection system for real-time ward monitoring of at-risk babies in the neonatal

intensive care nit (NICU). This research was carried out with the Neonatal Brain Research

Group in developing the ANSeR (Algorithm for Neonatal Seizure Recognition) system

and implemented with data collected at NICUs at Cork University Hospital and University

College London Hospitals (UCLH).

1.3 Outline of thesis

The thesis is divided into the following chapters:

Chapter 2 introduces the different types of EEG artefacts; their causes, characteristics

and morphologies. A comprehensive literature review of existing artefact detection and

removal techniques is then presented. Additional literature reviews of EEG diagnostic

systems in the form of automated epileptiform activity and epileptic seizure detection as

well as automated neonatal seizure detection are also included. This chapter goes on to

discuss existing methods of dealing with artefacts in these automated neurological event

detection systems. Finally, this chapter introduces the datasets used to develop artefact

detection and removal techniques in the thesis.

Chapter 3 aims to characterise the artefacts that arise from head-movements in an am-

bulatory environment. An artefact detection system is then designed to detect artefacts

arising from head movements. A robust system is produced whereby artefacts arising from

head-movements are accurately detected in the EEG.
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Chapter 4 investigates the feasibility of using additional physical signals to detect EEG

artefacts arising from head movements. Gyroscope signals from the Emotiv EPOC headset

are used as a means of quantifying head-movement, and subsequently utilised to determine

whether or not EEG artefacts have been produced in the EEG.

Chapter 5 explores the ways in which the EEG and gyroscope signals can be combined

in order to improve the overall performance of head-movement artefact detection. A

comprehensive multimodal, data fusion analysis of these signals at the feature and classifier

levels is carried out.

Chapter 6 investigates artefact detection in the context of an automated neurological

event detection system. Automated artefact detection is incorporated into an automated

epileptiform activity detection system by performing classifier fusion of epileptiform and

artefact detection classifiers. In doing so, false detections of epileptiform events are signif-

icantly reduced, resulting in state-of-the-art epileptiform activity detection when all (or

almost all) epileptiform events must be detected.

Chapter 7 explores the issue of artefact removal from EEG. Many current technologies

advocate the use of artefact removal techniques, either by detecting artefact and then

rejecting the contaminated sections of EEG or by using some form of blind source sepa-

ration technique to decompose the EEG into estimated source signals and remove those

sources deemed artefactual. In order to investigate artefact removal in the context of au-

tomated neurological event detection systems, this chapter focuses on respiratory artefact

in neonatal EEG. In the neonatal seizure detection system designed by the neonatal brain

research group at UCC, respiratory artefact was found to be responsible for over 50% of

false positive detections. Work in this chapter, therefore investigates the removal of respi-

ratory artefact with blind source separation algorithms aided by additional physiological

signals.

Chapter 8 summarises the main findings of this thesis, and places the findings in the

context of current artefact detection and removal techniques. It goes on to outline the

implications for EEG in general as well as automatic medical EEG diagnostic systems in

particular. This chapter then outlines questions and issues resulting from this thesis and

some future research directions are discussed.
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Chapter 2

EEG Artefacts

2.1 Introduction

This chapter introduces the concept of EEG artefacts and gives an overview of the pub-

lished literature that outlines their various characteristics and morphologies. A literature

review of the signal processing and machine learning methods used in detecting and remov-

ing EEG artefacts is then presented. An overview of the published literature in automated

epilepsy and neonatal seizure detection systems is subsequently outlined with particular

emphasis on the role played by artefact processing in these environments. Finally, a de-

tailed account of the data used in this thesis is presented.

2.2 The electroencephalogram

The electroencephalogram (EEG) can be broadly described as the recording of averaged

electrical activity at different positions on the head. More specifically, EEG measures

ionic current flows during synaptic excitation of the dendrites of large groups of pyramidal

neurons in the cerebral cortex (Lopes da Silva, 1991). In scalp EEG, signals are measured

between pairs of electrodes placed in a symmetrical array on the scalp (Figure 2.1). The

most common standard placement guide for electrodes is the 10-20 system (Jasper, 1958),

where each electrode site is identified by a letter and a number. The letters refer to the

Frontal, Central, Parietal, Temporal and Occipital lobes of the brain. The numbers refer

to the hemisphere locations; even numbers refer to the right hemisphere and odd numbers
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Figure 2.1: EEG electrodes placed according to the 10-20 system.

to the left hemisphere. ‘Z’ refers to an electrode placed on the mid-line. The number

of EEG electrodes can vary with usage, usually ranging from 9 electrodes for neonatal

monitoring to as many as hundreds of electrodes in epilepsy, evoked potential and brain

computer interface applications. The amplitude of the EEG signal strongly depends on

the level of synchronisation of the underlying neurons and is attenuated by thick layers

of tissue (fluid, bone and skin). Typical EEG amplitudes are of the order of microvolts

(µV ). Examples of adult and neonatal EEG are displayed in Figure 2.2. Although adult

and neonate EEG may appear similar to the untrained observer, they are considerably

different in composition (Volpe, 2008), with the neonatal EEG exhibiting more complex

behaviour than that of adult EEG. However, neurological event detection systems designed

with adult EEG have been shown to work effectively with neonatal EEG (Gotman et al.,

1997) and vice versa (Faul et al., 2009).

2.3 What are EEG artefacts?

An EEG artefact is any electrical potential appearing on the EEG trace that arises from

a source other than the brain (Sanei and Chambers, 2007). Artefacts are prevalent in

EEG recordings due to the low potential difference of EEG signals (∼ µV ), which can

easily be swamped by electrical noise from non-cerebral sources. However, the definition

of what constitutes an EEG artefact can vary slightly with application. Most notably,

in neurological event detection systems, some authors extend artefact status to signals

emanating from cerebral sources other than those under investigation, e.g. Mitra et al.
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Figure 2.2: Examples of normal background EEG for an adult patient (a) and a neonatal
patient (b). (a) Normal background adult EEG recorded using a Viasys Nicolet EEG
machine in the Department of Neurology at Cork University Hospital. The displayed EEG
is sampled at a frequency of 250 Hz. (b) Normal background neonatal EEG recorded using
a NicOne EEG machine in the neonatal intensive care unit at Cork University Hospital.
The EEG is sampled frequency of 256 Hz.

9



(2009) deem bi-frontal delta activity to be artefact in their neonatal seizure detection

system. Conversely, other authors do not include certain non-cerebral, electrical signals

in the artefact class, e.g. in sleep stage classification, electrocular potentials can be used

to signify REM sleep and are thus deemed non-artefact. In this thesis, however, the

most common definition of artefact will be employed; namely, an EEG segment will be

deemed artefact if it arises from a source external to the brain. These artefacts can be

broadly divided into two sub-categories: physiological and non-physiological. Physiological

artefacts arise from non-cerebral, electrical signals within the body. Non-physiological

artefacts originate from electrical sources external to the body.

2.3.1 Physiological artefacts

Ocular artefacts

Artefacts produced by vertical and lateral eye movements are extremely common in the

EEG. The eyeball acts as an electrical dipole with a positive pole located at the cornea

and a negative pole positioned at the retina (Picton et al., 2000). When the eyeball rotates

about its axis, it generates a large-amplitude alternate current field, which is detectable

by any electrodes near the eye. The electrodes that detect the ocular phenomenon most

prominently are the ones that are closest to the eyeballs, namely the frontal electrodes:

FP1, FP2, F7, and F8.

Vertical eye movements are typically observed with blinks. A blink causes the positive pole

(at the cornea) to move closer to frontopolar (FP1-FP2) electrodes, producing symmetric

downward deflections. During downward eye movement the positive pole (at the cornea)

moves away from frontopolar electrodes, producing an upward deflection best recorded in

channels FP1 and FP2.

Lateral eye movements mostly affect lateral frontal electrodes F7 and F8. During a left

lateral eye movement, the positive pole moves toward F7 and away from F8. Electrodes

FP1 and FP2 remain largely unchanged. Examples of eye blink and lateral eye movement

artefacts are displayed in Figure 2.3.
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Figure 2.3: EEG sample showing a number of instances of eye blinks and lateral eye move-
ments. The EEG was recorded using a Viasys Nicolet EEG machine in the Department
of Neurology at Cork University Hospital. The displayed EEG is sampled at a frequency
of 250 Hz.

Muscle artefacts

Myogenic potentials due to the firing of muscles located on or close to the scalp are a major

cause of artefact in EEG. Frontalis and temporalis muscles, activated with clenching of

the jaw or raising of the eyebrows, are common causes. Muscle or electromyogram (EMG)

artefacts are predominantly high frequency signals whose amplitudes can vary depending

on the muscle in questions as well as the strength of muscle firing (Goncharova et al.,

2003). An example of EMG artefact arising from head movement is displayed in Figure

2.4.

Cardiac artefacts

Cardiac artefacts arise from the electromagnetic field produced by the heart and can take

two forms: electrocardiogram (ECG) artefacts and pulse artefacts. ECG artefacts are

caused by the electromagnetic field of the heart, whose potential varies over the surface
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Figure 2.4: EEG sample showing artefacts arising from head movements.The EEG was
recorded using a Viasys Nicolet EEG machine in the Department of Neurology at Cork
University Hospital. The displayed EEG is sampled at a frequency of 250 Hz.

of the scalp. ECG artefacts often show up in the EEG as single, regularly spaced sharp

waves, that correspond with the QRS complex of the ECG channel, and typically range

in size from three hundred times smaller than the EEG to sizes comparable to the EEG

signal (Devuyst et al., 2008). An example of ECG artefact appearing on a loose electrode

is displayed in Figure 2.5. Pulse or ballistocardiogram artefacts occur when an EEG

electrode is placed directly over a pulsating artery, becoming prominent if the electrode

is loosely applied. The pulsation can cause slow waves that may simulate EEG activity,

such as that displayed in Figure 2.6. Like ECG artefacts, there exists a direct relationship

between the timing of ECG and the pulse waves appearing on the EEG; the QRS complex

slightly precedes the pulse waves.

Respiration artefacts

Respiration artefacts occur due to movement of an electrode with inhalation or exhalation.

This can manifest itself in one of two ways: the first of these is a respiration artefact taking

the form of slow, rhythmic EEG activity, synchronous with the body movements associated

12
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Figure 2.5: Loose electrode on channel T4-C4, resulting in high frequency noise and pulse artefact. The ECG trace (red) shows the QRS
complex preceding the ECG by 200-300 ms.
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Figure 2.6: Pulse artefact on neonatal EEG recording; visible on channels C4-Cz and Cz-C3 (red) manifesting as a slow wave. The ECG
trace (black) shows the QRS complex preceding the pulse artefact by 200-300 ms.
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with breathing and mechanically affecting the impedance of (usually) one electrode. An

example of slow-wave respiration artefact is displayed in Figure 2.7, where electrode C4

has recorded respiration artefact that consequently appears on channels F4-C4 and T4-

C4, and to a lesser extent on channels C4-P4 and C4-Cz. A second form of respiration

artefact, which is especially common in neonatal EEG, can be slow or sharp waves (such as

that displayed in Figure 2.8) that occur synchronously with inhalation or exhalation and

involve those electrodes on which the patient is lying. This form of respiration artefact

can often mimic neonatal seizure.

Electrodermal artefacts

Electrodermal or sweat artefacts can originate from changes in the electrolyte concentra-

tion of the EEG electrodes due to sweat secreted from eccrine sweat glands on the scalp.

The artefacts occur when sodium chloride and lactic acid from sweat react with the metals

of the electrodes. Sweat artefacts take the form of long, slow baseline sways, often in the

frequency range of 0.25 - 0.5 Hz. An example of electrodermal artefact is displayed in

Figure 2.9, where slow baseline drifts can be observed on channels F4-C4, F3-C3, and

C3-T3.

Glossokinetic artefacts

The tongue, like the eyeball, acts as an electric dipole, with the tip negative with respect to

the base. As the tip of the tongue moves relative to the base, this reverses the electric field,

and can cause a deflection in the EEG (Vanhatalo et al., 2003). Similar to the production

of ocular artefacts, the glossokinetic dipole produces a broad potential field that drops

from frontal to occipital regions. The amplitude of glossokinetic artefacts tends to be

significantly smaller than ocular artefacts however, with the drop in potential away from

frontal electrodes being less steep for glossokinetic than ocular artefacts. These artefacts

can be introduced by talking, in particular with the use of the letter ‘l’. Chewing and

sucking can also produce glossokinetic artefacts, often accompanied by EMG artefacts.
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Figure 2.7: Respiration artefact, manifesting as slow waves, on neonatal EEG recording; electrode C4 records the artefact which is then
visible on channels F4-C4 and T4-C4, and to a lesser extent on channels C4-P4 and C4-Cz.
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Figure 2.8: Respiration artefact on neonatal EEG recording; visible on channels F4-C4,
C4-O2, T4-C4 and C4-Cz, manifesting as slow and sharp waves.

2.3.2 Non-physiological artefacts

Mains voltage

A 50 or 60 Hz artefact may appear on the EEG line due the mains voltage. This arte-

fact can be transferred directly via power lines if the EEG is not adequately grounded.

Alternatively, if the impedance of one of the active electrodes becomes large with respect

to the ground electrode, the ground electrode can act as an active electrode, introducing

mains voltage artefact into the EEG (Tatum et al., 2011). Mains voltage artefact may

also appear on the EEG via the use of fluorescent lights or other electrical equipment in

the close vicinity of the EEG machine.

Electrode pop and electrode movement

Another common electrode artefact is electrode pop, which occurs with momentary loss

of contact between the electrode and the scalp. This causes an abrupt impedance change,

morphologically appearing as single or multiple sharp waveforms. These sharp waveforms

are typically high amplitude vertical transients which are usually confined to a single

electrode. Electrode movement occurs when the electrode moves with respect to the

scalp. These movements can produce high-amplitude deflections in the EEG of the order
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Figure 2.9: Electrodermal artefact on neonatal EEG recording, most recognisable by the slow, baseline drifts on channels F4-C4, F3-C3,
and C3-T3.
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of milliVolts. Unlike, electrode pop, electrode movements deflections are slower, usually

in the range of 1 - 10 Hz.

Loose electrode

An electrode that is not making satisfactory contact with the scalp, can lead to an

impedance change on the electrode manifesting as a slower, more prolonged EEG spike

than that seen during electrode pop.

Machine artefacts

Various medical devices in the ICU can cause artefacts in the EEG. In particular, the use of

automatic electric infusion pumps introduces infusion motor artefact (IMA). Morphologi-

cally, IMA appears as very brief spiky transients, sometimes followed by a slow component

of the same polarity. Artefacts arising from the use of a gravity-fed intravenous infusion

may also manifest itself in the EEG signal (Egol and Guntupalli, 1983). This artefact,

which is thought to be due to electrostatic charges on the infusion drops, appears as spike-

transient potentials at fixed intervals that coincide with drops of the infusion. Ventilator

equipment may also introduce artefacts into the EEG (Tatum et al., 2011). This artefact

type is often related to the respiration signal, but may vary in morphology and frequency,

based on the machine in question, the parameters of the machine and the individual. Fi-

nally, artefacts due to movement of other people in the vicinity of the EEG recording have

been known to introduce electrostatic artefacts into the EEG, often resembling interictal

epileptiform discharges (Tatum et al., 2011).

If EEG is recorded inside an fMRI machine, a gradient artefact arises due to the magnetic

fields of the fMRI machine. These artefacts can be of the order of 50 times the amplitude

of background EEG and are the focus of a growing research field (Grouiller et al., 2007).

2.4 Artefact avoidance and minimisation

In many EEG recordings, participants or patients are instructed to remain still and avoid

where possible, excessive eye movements, blinks and head-movements. From a data loss

and computational perspective, artefact avoidance is the most ideal method of treating
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EEG artefacts, as the presence of artefacts in the data is minimised (Fatourechi et al.,

2007). However, there are several drawbacks to employing this approach. Since many

physiological signals (such as heart beats) are involuntary, some artefacts will always

be present in EEG signals. Furthermore, even when instructed to limit head and eye

movements, patients often have difficulty in doing so as it is not always easy to control

these impulses, especially in longer recordings. This issue becomes even more pronounced

in the case of EEG monitoring of neonates or children. As many event detection systems

are recorded in the ICU, avoiding contamination by extra-physiological artefacts due to

medical equipment and health care professionals is simply impossible. In an ambulatory

setting, where it is intended that patients go about their daily lives as normal, artefact

avoidance is similarly infeasible. This thesis, therefore, aims to employ artefact detection

and removal techniques for those artefacts that remain in the EEG, particularly when

artefact avoidance is impossible or unsuccessful. These techniques are drawn primarily

from biomedical signal processing and machine learning.

2.5 Biomedical signal processing and machine learning

In this thesis, signal processing techniques are utilised in order to reduce the effect of

artefacts on the EEG, both for the clinician and also for automated neurological event

detection algorithms. Broadly speaking, artefact processing can be divided into two ap-

proaches: artefact detection and artefact removal. Artefact detection is concerned with

mimicking a human EEG observer in indicating which sections of the EEG signal are

contaminated with artefact; this process is automated with machine learning algorithms.

Artefact removal aims to take advantage of differences in the properties of artefact and

cerebral EEG to “clean” the EEG.

2.5.1 Machine learning

Learning from data is used in situations where there is no available analytical solution, but

where there is data that can be used to construct an empirical solution. Machine learning

then concerns itself with the automation of this process, i.e. “A computer program is

said to learn from experience E with respect to some class of tasks T and performance

measure P , if its performance at tasks in T , as measured by P , improves with experience

E” (Mitchell, 1997). In doing so, the performance should generalise such that the system
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Figure 2.10: A basic representation of learning from data.

will perform well on unseen data instances. The learning process is illustrated in Figure

2.10, where training examples (x1, y1), (x2, y2), ..., (xN , yN ) are used to select a suitable

hypothesis g(x) from a hypothesis set H via a learning algorithm A. The selection of the

hypothesis g(x) is chosen based on minimising an appropriate error measure E. In this

thesis, the branch of machine learning known as supervised learning is used. In supervised

learning, the training data set comes with explicit labels indicating the correct output for

those data points. That is to say, the data set has been annotated so that a machine

learning classifier knows when a training data point (features extracted from an epoch)

belongs to a predefined class. The learning algorithm then utilises this information to

select a (hopefully) optimal decision boundary such that additional, unlabelled test data

points will be classified successfully.

Once artefactual sections of EEG have been identified with a machine learning algorithm

there are a number of options available. Artefact EEG could be highlighted to the clinician

as an automated artefact annotator, to aid in their decision making. Alternatively, sections

of artefact EEG could be automatically rejected before the clinician examines the data, or

before the data is sent to an automated neurological event detection system. This approach

is particularly common in evoked or event-related potentials applications and is known as

conventional trial rejection (CTR) (Luck, 2005). Finally, the artefact detector could be

utilised in conjunction with another classifier designed to detect some neurological event

of interest such as epileptic seizure or imagined left/right arm movement as used in BCI

applications.
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In artefact detection and rejection, sections of EEG containing artefact are either high-

lighted (detection) or entirely discarded (rejection). Owing to the nature of the EEG

recording process, in practice these artefact-ridden sections of EEG will comprise both

cerebral EEG and artefact signals resulting in a loss of data. As EEG electrodes measure

the electrical activity on the scalp, each electrode measures the superposition of activ-

ity from several underlying sources. As discussed, often these electrical sources originate

external to the brain (artefacts), and therefore are of no interest in the context of EEG

measurements. Artefact removal thus aims to reverse this process, by removing only that

portion of the signal attributed to artefact, while leaving the cerebral EEG largely intact.

Artefact removal techniques can be broadly split into two categories: (i) filtering and re-

gression and (ii) blind source separation (more recently referred to under the umbrella-term

linear instantaneous mixture models).

Although technically speaking, all artefact removal methods are filtering of the EEG (in

the time, frequency or spatial domains), filtering here will refer to those time-frequency

methods based upon the Fourier transform. In these methods, it is assumed that the

frequency of artefact differs substantially from the cerebral EEG. The relevant artefactual

frequency ranges are then assumed to be fixed (linear filtering), or are determined from

additional physiological signals (adaptive filtering and regression).

2.5.2 Blind source separation

Blind source separation (BSS) is a family of statistical models corresponding to coordinate

transformation in data space. On multivariate data, such as EEG, information from

several variables (i.e. channels) can be used to construct more insightful new variables

by applying a coordinate transformation to the data (Comon and Jutten, 2010). In the

context of artefact removal, this can translate to the separation of the contribution of

cortical signals and artefact. The EEG measurement signals X can thus be modelled as a

linear transformation of latent variables Y corresponding to the actual underlying cortical

signals as well as electrical signals arising from non-cerebral sources, such as heart, eyes

or muscle tissue. This linear transformation of the N -channel EEG is therefore modelled

by an unknown, full-rank, mixing matrix, A, such that:

X = AY, (2.1)
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where A ∈ R
N×N . In the presence of samples arising from X, the goal of BSS is therefore

to estimate an inverse of A that allows the accurate recovery of the latent variables Y. In

other words, find the transformation A−1 to coordinates corresponding to the underlying

cortical signals as well as artefact sources.

To find a suitable de-mixing matrix A−1 requires further assumptions on the statistical

properties of the latent variables Y as well as assumptions on A−1. Differing assumptions

allows different coordinate transformations and gives rise to a plethora of available BSS

algorithms, among which independent component analysis (ICA), principal component

analysis (PCA) and canonical correlation analysis (CCA) are perhaps the most commonly

used. Due to the prominence of ICA-based methods in the literature, the following para-

graphs provide a brief introduction to independent component analysis; for simplicity, in

each case it is assumed that the number of sources M is equal to the number of channels

N . While in many EEG recording instances M may not in fact be equal to N James

and Hesse (2005) shows that this assumptions performs sufficiently for most scenarios and

where M > N , a pre-processing dimensionality reduction step can be performed (typically

with PCA).

Independent component analysis

Independent component analysis (ICA) is a computational method for separating a mul-

tivariate signal into additive subcomponents that supposes the mutual statistical inde-

pendence of the non-Gaussian source signals. ICA can be split into two main steps: (i)

whitening of the EEG observations so that signals are normalised and uncorrelated and

(ii) an orthogonal transformation of the whitened signal so as to maximise independence

between the signals.

The first step in ICA is that of whitening, i.e. multiplication of the EEG signals X by a

whitening matrix W such that:

Z = XW, (2.2)

and,

W = cov(X)−1/2. (2.3)

Whitening ensures that the covariance matrix of Z is the identity, and therefore that the

signals are uncorrelated and normalized.
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The second step in ICA then is an orthogonal transformation (i.e. a transformation that

leaves the covariance unchanged) of Z so as to maximise the independence between signals:

Y = RZ, (2.4)

where RRT = I. Maximising the independence of sources corresponds to minimising the

mutual information,

MI =

M
∑

j=1

H(ŷj)−H(Ŷ), (2.5)

between estimated sources, where H(.) is the entropy, Ŷ are the estimated sources and

ŷj are the columns of Ŷ. Finding the optimal rotation matrix R∗ to give the maximally

independent source estimates Ŷ becomes an optimisation problem such that:

R∗ = argmin
RRT=I

MI (ŷ1, ..., ŷM ) (2.6)

= argmin
RRT=I

M
∑

j=1

H(ŷj)−H(Ŷ), (2.7)

Since Ŷ is obtained from the observed EEG signals X by the linear transformation R:

R∗ = argmin
RRT=I

M
∑

j=1

H(ŷj)−H(X)− log detR, (2.8)

and since the entropy of X does not depend on R and detR = 1 (as it is a rotation):

R∗ = argmin
RRT=I

M
∑

j=1

H(ŷj). (2.9)

Of all distributions with a given variance, the Gaussian distribution is the one with the

highest entropy. Negentropy J measures the difference in entropy between a given distri-

bution and the Gaussian distribution with the same variance. Thus, it follows from the

definition of negentropy that:

R∗ = argmin
RRT=I

M
∑

j=1

(

H
(

N (µ(ŷj), cov(ŷj))
)

− J(ŷj)
)

. (2.10)

24



As the entropy of a Gaussian distribution is invariant under the rotation R,

R∗ = argmin
RRT=I

M
∑

j=1

−J(ŷj). (2.11)

In summary, minimising the mutual information is equivalent to maximizing the distance

to a Gaussian distribution of the individual sources, as measured by the negentropy. This

optimisation can then be achieved by gradient descent (Bell and Sejnowski, 1995). In addi-

tion to the approach outlined above, there are many alternative methods of implementing

ICA based upon either direct minimisation of the mutual information or by maximisation

of the non-Gaussianity of the sources: e.g. by approximate diagonalisation of the fourth-

order cumulant tensor (kurtosis) (Cardoso and Souloumiac, 1993), or by deflation-type

fixed-point algorithms (Hyvärinen and Oja, 1997).

2.6 Manual and semi-automatic artefact removal

The blind signal processing techniques mentioned in Section 2.5 were initially used to

allow the clinician or researcher to manually remove artefacts from contaminated sections

of EEG. These methods offer the possibility of removing artefacts while retaining the

underlying cerebral portion of sections of EEG contaminated by artefact, thus reducing

the potential for discarding clinically relevant EEG as takes place in CTR or linear filtering.

In epilepsy research in particular, a large body of literature has been published outlining

semi-automatic methods of cleaning the EEG using blind source separation BSS tech-

niques. In these methods, the multi-variate EEG signal is transformed into estimated

source signals and a trained electroencephalographer can then identify and remove those

components corresponding to non-cerebral sources. The remaining non-artefact sources

can then be recombined to give a “cleaned” EEG signal. Following the introduction of ap-

plying independent component analysis to EEG data (Makeig et al., 1996; Vigário, 1997)

an array of methods using ICA to remove artefacts from the EEG have been published.

Delorme et al. (2001) introduced an artefact removal technique using ICA and higher

order components. Nam et al. (2002) have used ICA to remove artefactual sources from

ictal scalp EEG. While the bulk of blind source separation techniques applied to the EEG

artefact removal problem have focused on ICA, a number of other blind source separation

techniques have been investigated. Jung et al. (2000) compared the effectiveness of PCA

and ICA in removing ocular artefacts from EEG and found that ICA was superior.
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While utilising blind signal separation techniques represented a step forward in dealing

with EEG artefacts, (in the sense that it is no longer necessary to completely discard any

section of EEG containing artefact or lose significant EEG information via attenuation by

filtering), the requirement of manually identifying and removing artefact sources is time-

consuming and difficult. Consequently, attempts have been made to simplify this task for

the researcher or clinician by providing information as to which sources likely correspond

to artefact, or even to performing automated artefact removal in clear-cut cases. These

methods are referred to here as semi-automated artefact removal techniques as they vastly

reduce the complexity of the artefact removal task, albeit with some necessary input by

the clinician/researcher. Iriarte et al. (2003) and Urrestarazu et al. (2004) implemented

semi-automatic methods of removing EMG and ocular artefacts from ictal, scalp EEG

with ICA. Qualitative results showed improvement in epileptic seizure clarity, as graded

by a clinician. Liu et al. (2004) introduced a blind source separation technique for semi-

automatic artefact removal for intra-cranial EEG on epileptic patients. A similar method

was proposed by Campos Viola et al. (2009) to reduce ocular and ECG artefacts from

EEG for event-related potentials applications.

Semi-automatic artefact removal techniques are not limited to ICA. Ille et al. (2002)

outlined a semi-automatic method of using principal component analysis and spatial filters

to remove ocular artefact in patients undergoing epileptic seizure. De Clercq et al. (2006)

used canonical correlation analysis to create a semi-automatic method of removing muscle

artefact from EEG; in that experiment, CCA outperformed linear filtering and a manual

ICA method, in cleaning sections of EEG in patients with refractory partial epilepsy.

De Clercq et al. (2006) proposed that the low autocorrelation of muscle artefact sources

compared to ictal sources makes CCA attractive for its removal from ictal EEG. This

method was repeated by Vergult et al. (2007) on a larger data set with similar qualitative

results. Similarly, Crespo-Garcia et al. (2008) showed the usefulness of semi-automatic

ICA and second order statistical (SOS) algorithms in removing muscle artefact for sleep

research.

As these methods require a clinician/ researcher to help differentiate between cerebral

and artefact sources of the decomposed EEG, they are unsuitable for use in automated

neurological event detection algorithms. They do however highlight the fact that if artefact

sources can be accurately identified, they offer much potential for automated neurological

event detection systems. A review of methods that offer full automation are outlined in

Section 2.7.2.
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2.7 Automated EEG artefact detection and removal: A re-

view

Artefact detection and removal techniques date back to the introduction of computerised

EEG analysis in the 1970’s. A wide range of techniques have been suggested in the

literature, primarily in the areas of epilepsy, evoked and event-related potentials, brain-

computer interface and sleep research. The earliest methods involved simple amplitude

thresholding and linear filtering. More recently, advanced signal processing and machine

learning algorithms have been applied with reasonable success. As mentioned in Section

2.5, these techniques can be broadly subdivided as follows: (i) automated artefact detection

and rejection and (ii) automated artefact removal. The following section provides an

overview of published attempts at automatically detecting and removing artefacts in the

EEG.

2.7.1 Artefact detection

Thresholding methods

Many early artefact detection techniques advocated the rejection of any EEG section where

the EEG amplitude exceeded a pre-defined threshold. These thresholding methods were

often applied directly to the EEG signal; for example Barlow (1986) used thresholding

of the EEG amplitude to remove data contaminated with electrode pop artefact. Row-

land (1968) incorporated a similar thresholding method by using additional physiological

signals (EOG and EMG), and rejected any EEG sections if the corresponding EOG or

EMG signal exceeded a pre-determined threshold. Gevins et al. (1977) used thresholding

of the EEG in different frequency bands to reduce ocular artefacts. A similar method was

employed by Pfurtscheller et al. (1996) and McFarland et al. (1997) to reduce EMG arte-

fact contamination in the EEG for BCI applications. An obvious disadvantage to these

thresholding methods is that they do not allow the rejection of contaminated trials when

EOG or EMG amplitude is small (Rowland, 1968; Croft and Barry, 2000). In evoked and

event-related potentials research, Junghöfer et al. (2000) offered an alternative to simply

neglecting channels that were contaminated by artefact by replacing rejected sections of

one EEG channel with an aggregated EEG representation taken from nearby channels.

Similarly, Mourad et al. (2007) proposed an alternative to rejecting high amplitude EEG

signals, whereby a smoothing matrix was calculated to replace any high amplitude EEG.
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However, these methods were introduced for high-density electrode placements and are

insufficient if artefacts appear simultaneously on multiple channels and are unsuitable for

recordings where electrode numbers are limited (such as in many clinical set-ups and in

all neonatal EEG recordings).

Machine learning for artefact detection

Epoch-based artefact rejection systems segment the EEG into short windows and reject

these epochs if artefact is detected within them; this CTR approach is especially pop-

ular in event-related potentials research. Fujioka et al. (2011) compared this method

to independent channel rejection (He et al., 2007) and artefact blocking (Mourad et al.,

2007), and found that rejecting epochs is suboptimal if the signal-to-noise ratio is low. In

sleep research, Brunner et al. (1996) proposed a simple threshold-based classifier to detect

EMG artefacts by comparing spectral EEG features to the same features extracted from

background EEG. Similarly, Durka et al. (2003) used a simple classifier-based method

of removing ocular and mains voltage artefacts in polysomnographic recordings. In this

system, a number of features were identified as correlating with artefact, and a threshold

was used to separate between classes. While statistical thresholding may be a reason-

able first approach to artefact detection, especially for rejecting sections of highly con-

taminated EEG, single features do not provide sufficient information for distinguishing

between artefact and non-artefact in most cases. This fact is taken into account by Durka

and Blinowska (1996), who proposed a neural network classifier to identify EEG contain-

ing ocular artefacts. Results for classification of raw EEG performed below chance for

test data; however, by pre-processing the EEG using wavelet analysis, 71 % of artefact

epochs were correctly classified (true positives) and 82 % of normal EEG was correctly

classified (true negatives). This method is promising in terms of its ability to accurately

detect EEG artefacts; however, it has been demonstrated to detect ocular artefacts alone,

in the absence of any other neurological event to be detected.

2.7.2 Artefact removal

Automated artefact removal techniques can be broadly split into two categories: (i) filter-

ing and regression and (ii) blind source separation.
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Filtering and regression

Accepted methods of removing non-physiological artefacts tend to be straightforward, with

mains and machine artefact often removed by simple, linear filtering at the required fre-

quency cut-off, and electrode pop and electrode movement, removed by rejecting sections

of EEG where an amplitude threshold is exceeded. Due to the variability in the mor-

phology between and within physiological artefact types, the majority of artefact removal

techniques are tailored to removing physiological artefacts.

Linear filtering is useful for removing artefacts located within specific frequency bands that

do not overlap with those of the neurological phenomena of interest and that do not vary

with time (Barlow, 1984; Ives and Schomer, 1988). Accepted methods of removing non-

physiological artefacts thus tend to be straightforward, with mains and machine artefact

often removed by simple, linear filtering at the required frequency cut-off. Linear filtering

was commonly used in early clinical studies to remove artefacts in EEG signals (Gotman

et al., 1973). Traditionally, low-pass filters have been used to remove EMG artefacts and

high-pass filters have been used to remove EOG and sweat artefacts as well as EEG baseline

drift. The primary advantage of linear filtering is its simplicity. A secondary benefit is that

additional physiological information in the form of EOG or EMG signals are not necessary

to remove the artefacts. However, linear filtering fails when the neurological phenomenon

of interest and artefact lie in similar frequency bands (de Beer et al., 1995). A look at

the frequency ranges of neurological phenomena used in neonatal (0-32 Hz) and epileptic

(0-64 Hz) EEG shows that for ocular (0-16 Hz) , muscle (10-100 Hz), cardiac (1-3 Hz) and

respiration (0-12 Hz) artefacts this is usually the case (Volpe, 2008; Rowan and Tolunsky,

2003; Cacioppo et al., 2007). As a result, a simple filtering approach to remove EMG or

EOG artefacts may lead to the loss of valuable neurological information in the process.

A further drawback of using linear filtering to remove EMG artefact has been detailed

by several authors who have described how low-pass filtering of EEG containing muscle

artefacts may cause the filtered signal to closely resemble epileptic activity (Klass, 1995).

Furthermore, linear filtering alone offers no solution to situations where the frequency

range of the artefact changes over time, or where filtering is required only when artefact

is present.

Multimodal regression and adaptive filtering using a linear combination of the artefact-

contaminated EEG signal and an artefact reference signal are common methods for use

in removing ocular and cardiac artefacts. If a reference signal for an artefact is available
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(and the morphology of that reference signal is similar to that of the EEG artefact), it can

be removed from the EEG, either by subtraction after scaling it by an appropriate factor

(regression in the time domain) or by adapting the filter parameters based on the addi-

tional physiological signal (adaptive filtering and regression in the frequency domain). In

this manner, ocular artefacts were removed from the EEG using regression with the EOG

signal in either the time domain (Gratton et al., 1983) or the frequency domain (Whitton

et al., 1978). A comparison between several EOG minimization methods based on regres-

sion analysis in time and/or frequency domain can be found in Jervis et al. (1988) and

Brunia et al. (1989). Croft and Barry (2000) offer a more up-to-date comparison of ocular

artefact removal techniques. Since then, Schlögl et al. (2007) produced a widely-cited,

fully automated ocular removal system using regression with the EOG signal. However,

in the absence of dedicated EOG channels, this approach is clearly not feasible.

Linear regression becomes more challenging for EMG artefacts, since they have no sin-

gle suitable reference channel (Barlow, 1986) and applying regression using signals from

multiple muscle groups requires multiple reference channels (Jung et al., 1998). Removal

of cardiac artefacts poses a different problem, in that the artefacts often appear morpho-

logically different to the recorded ECG signal. To deal with this, Strobach et al. (1994)

suggested using the ECG reference signal as a trigger to an artificial ECG artefact refer-

ence model signal to remove ECG artefact from the EEG using linear regression. When

an ECG spike was detected, an ECG artefact signal was generated from a reference model,

scaled to the detected ECG signal and was then subtracted from the EEG signal. Sahul

et al. (1995) presented an adaptive noise canceller for ECG artefact suppression in sleep

EEG, reporting slowly changing filter weights over the night.

An inherent drawback of all artefact removal techniques is the potential loss of EEG data.

Berg and Scherg (1994) showed that as the EOG signal contains contamination by EEG,

EOG subtraction can thus result in a considerable distortion of relevant brain signals.

Despite this, regression and adaptive filtering remain common artefact removal techniques

in many applications (Sahul et al., 1995; He et al., 2004; Romero et al., 2009; Molla

et al., 2012). A further drawback stems from the fact that most linear regression and

adaptive filtering techniques require the use of additional physiological reference signals

to remove artefacts. In the absence of these signals, or where those signals themselves

become corrupted with artefact, regression and adaptive filtering techniques break down.

A potential solution to this problem was proposed by Jiang et al. (2007) who used the

wavelet transform in addition to adaptive thresholding to remove ECG artefacts from
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EEG, without use of an ECG signal.

Blind source separation

In Section 2.6, a number of manual and semi-automatic methods of EEG artefact removal

using blind source separation were discussed. However, if an artefact removal stage is to be

incorporated with an automatic neurological event detection system, the artefact removal

stage must too be automated. Several fully automated BSS artefact removal techniques

have been presented in the literature, and offer potential for pre-processing the EEG in

automated neurological event detection systems.

One approach to automating artefact removal using BSS has been to take advantage of

additional physiological signals that measure the artefact in question. In this manner, Jung

et al. (2000) combined ICA and linear regression with the EOG signal to remove ocular

artefacts. Similarly, Klados et al. (2011) introduced REG-ICA which used regression of

the EOG signal and the independent components in order to remove ocular artefacts. Park

et al. (2003) used ICA to automatically remove ocular artefacts by removing components

that were highly correlated to the EOG reference signals. Joyce et al. (2004) proposed a

similar technique to remove ocular artefacts using ICA, the EOG signal and some frequency

spectrum thresholding. James and Gibson (2003) proposed temporally constrained ICA

as a technique that incorporates the reference signal into the ICA algorithm to remove

ocular and ECG artefacts from the EEG. Similarly, Devuyst et al. (2008) used a modified

version of ICA to implement an automatic ensemble average subtraction of the ECG signal

from independent components to remove ECG artefacts. De Vos et al. (2011) proposed

a combination of filtering and correlation with the relevant polygraphy signal to remove

cardiac and respiration artefacts from neonatal EEG.

A disadvantage of many automated ICA artefact removal techniques is the need for ad-

ditional physiological signals. In many settings the availability of such signals is not

possible. Delsanto et al. (2003) and Mognon et al. (2011) implemented automatic recogni-

tion of ocular artefacts extracted by ICA using a combination of spectral features, spatial

topography, and time-domain signal morphology, without use of the EOG reference sig-

nals. Nazarpour et al. (2008) used a priori information regarding the spatial distribution

of the ocular artefact to aid in its identification, also without use of the EOG reference sig-

nals. Similarly, Zhou and Gotman (2009) proposed an automated ICA method to remove

ocular artefacts without the EOG signal, based on a dipole model of the eye. Faul et al.
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(2005b) introduced an ICA-based method where artefacts were indirectly removed when

ICs were ranked based on features which were known to describe neonatal seizure. Zhou

and Gotman (2004) used a combination of ICA and wavelet transform to automatically

remove muscle artefacts without the use of additional physiological signals.

In the above methods, heuristics and thresholds were used to identify artefactual indepen-

dent components; however, machine learning techniques outperform simple thresholding

when the feature in question does not clearly separate between classes (i.e. artefact and

non-artefact ICs). That is to say, machine learning algorithms perform separation based

on several features at once, where greater separability may exist. For typical EEG arte-

facts a single feature is not enough to provide sufficiently accurate separation between

normal, seizure and artefact EEG. Shoker et al. (2005) proposed a fusion of blind source

separation and support vector machines to remove ocular artefacts from the EEG. Halder

et al. (2007) proposed a similar method for a BCI application. LeVan et al. (2006) com-

bined blind source separation in the form of ICA with a Bayesian classifier to effectively

detect artefacts in ictal EEG. Shao et al. (2009) paired ICA with a number of different

classifiers to remove ocular and ECG artefacts. More recently, Nolan et al. (2010) and

Winkler et al. (2011) introduced methods of automatically removing EEG artefacts for

an event-related potential and BCI applications, using ICA and statistical thresholding of

features which are known to describe artefact. These methods hold considerable poten-

tial for artefact processing in automated EEG diagnostic systems; however, they rely on

accurately annotated ICA-decomposed data, something which is often unavailable.

Principal component analysis (PCA) is another statistical technique that has been used for

blind source separation of the EEG into uncorrelated estimated source components. Lins

et al. (1993) and Lagerlund et al. (1997) showed that using PCA, ocular artefact compo-

nents can be identified and removed, especially if their amplitude is high. More recently,

Schachinger et al. (2007) used PCA to decompose the signal into sub-bands and applied an

adaptive filter to reduce high-amplitude artefacts. However, PCA suffers from a number

of restrictions in removing EEG artefacts. Lamothe and Stroink (1991) showed that there

does not exist a one-to-one correspondence between principal components and individual

cerebral sources, making it generally inappropriate to ascribe physiological significance

directly to the individual components. Furthermore, Lagerlund et al. (1997) showed that

PCA cannot completely separate eye-movement artefacts from the EEG signal when they

have comparable amplitudes. Note that PCA refers here to its direct use in blind source

separation; PCA is also often used for dimensionality reduction, transforming data into
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a lower dimension representation based upon the directions of maximal variance in the

data. Within the scope of EEG processing, PCA is often used as a preprocessing step

to ICA (to select only those components with the most variance for ICA). Alternatively,

PCA is often used as a feature reduction technique before machine learning classification

(to select those features with the most variance).

Several other artefact removal techniques have been applied to EEG data with varying

success. Gao et al. (2010) showed that canonical correlation analysis is more suitable than

ICA at removing EMG artefact from the EEG and implemented an automated artefact

removal system on simulated data to do so. More recently Zhang et al. (2012) demon-

strated the use of CCA and the EOG channel to automatically remove eye blink artefacts

from the EEG.

The artefact detection and removal techniques outlined here illustrate the wide range of

approaches that have been applied in an attempt to mitigate the effects of artefact. How-

ever, for the most part these approaches have not been demonstrated for their ability to

deal with artefacts in automated EEG diagnostic systems. Indeed in many of the outlined

methods, shortcomings in the nature of the data and the manner in which the algorithm is

evaluated, mean that the reported results may be significantly over-optimistic in predicting

how the artefact processing methods would perform as part of an automated neurological

event detection system. This issue will be discussed in more detail in Section 2.9. Before

this is done, the following sections will introduce the background of the two neurological

event detection tasks that are investigated in this thesis: automated epileptiform activity

detection and automated neonatal seizure detection. A brief overview of the published

literature on artefact processing methods in these paradigms is then provided.

2.8 EEG artefacts in automated EEG diagnostic systems

In this thesis, the role of artefact detection and removal is evaluated in the context of two

automated medical EEG diagnostic systems: epileptiform activity detection and neonatal

seizure detection. While the two classification tasks are similar in nature, there are a

number of significant differences between them; most notably, epileptiform activity detec-

tion requires the detection of very short, often infrequent neurological events where it is

imperative to detect all possible occurrences, whereas neonatal seizure detection requires

the detection of longer seizure activity, with the emphasis on very low numbers of false
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detections. Consequently, different artefact processing approaches may be better suited to

each neurological event detection system. The following paragraphs outline the problem

that these systems aim to solve, as well as providing a literature review of the published

solutions to date. In both cases, the role of automated artefact processing is also reviewed.

2.8.1 Epileptiform activity and epileptic seizure detection

Epilepsy

Epilepsy is one of the most common neurological disorders in humans, affecting almost

50 million people worldwide (Sanei and Chambers, 2007). It is defined as an underlying

tendency of the brain to produce sudden bursts of abnormal electrical activity that disrupt

other brain functions. Well-known causes of epilepsy may include: genetic disorders, trau-

matic brain injury, metabolic disturbances, alcohol or drug abuse, brain tumour, stroke,

infection, and cortical malformations (Jokeit and Schacher, 2004).

The electroencephalogram is the primary tool used in the diagnosis of the disease. Diag-

nosis is based on the presence of epileptic seizure activity (Figure 6.1)shows an example

of general idiopathic seizure in an adult patient), which can last from several seconds to

an hour, and also based on the presence of shorter duration interictal, epileptiform ac-

tivity (Figure 6.2), which is an indicator of susceptibility to epileptic seizure (Chatrian

et al., 1964). An epileptic seizure is a disturbance characterized by changes in neuronal

electrochemical activity that results in abnormal synchronous discharges in a large cell pop-

ulation, giving rise to clinical symptoms and signs. Patients experience varied symptoms

during seizures depending on the location and extent of the affected brain area. Symptoms

may include involuntary clonic movements, an altered state of awareness, convulsions, or

impairment of consciousness, unusual or repetitive behaviours, or odd sensations. Seizures

can be classified in several ways based upon the site and extent of the brain that is af-

fected, clinical symptoms, EEG pattern, and etiology (Holmes, 1997). Partial seizures

are limited in extent; generalized seizures typically affect the entire brain and impair con-

sciousness. Epileptiform activity by contrast are shorter duration (usually less than a

second) abnormal waveforms with no clinical signs (Binnie and Stefan, 1999).

Following a referral from a neurophysiologist, the initial test for epilepsy is known as a

routine EEG, which lasts 20-40 minutes and looks for signs of abnormal waveforms in the

recording (including some or all of the following features: slow waves, spikes and sharp
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Figure 2.11: EEG showing an example of a generalised idiopathic epileptic seizure recorded from an adult patient at CUH. The data was
recorded using a Viasys Nicolet EEG machine with a sampling frequency of 256 Hz.
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Figure 2.12: EEG sample showing two instances of epileptiform activity recorded from an adolescent patient at CUH. The data was
recorded using a Viasys Nicolet EEG machine with a sampling frequency of 256 Hz.
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waves, spike-wave complexes, and polyspikes). If, at the end of the test, no such activity

has been recorded and epilepsy is still suspected, the patient may be asked to return to the

hospital for a longer, continuous EEG (usually lasting 24-72 hours); this recording may

be ambulatory and there is considerable evidence to suggest that it is clinically desirable

for it to be so (Seneviratne et al., 2013). The recorded signal is then visually inspected

by a neurophysiologist for abnormalities.

Automated epileptic seizure and epileptiform activity detection

Due to the costly, time-consuming nature of the continuous EEG, it has been proposed that

an EEG system, with the capability to automatically detect epileptic seizure activity as

well as the shorter duration epileptiform activity, would be useful for clinical and domestic

monitoring of patients (Waterhouse, 2003; Gotman and Gloor, 1976; Indiradevi et al.,

2008). Such a system would help the clinician pinpoint the exact location of abnormalities

in the recording, thus vastly reducing post-recording analysis time.

Automated epileptiform detection systems can be traced back to the half-wave decomposi-

tion method proposed by Gotman and Gloor (1976). Comprehensive reviews of epileptic

seizure and epileptiform detection (sometimes referred to as spike detection in the litera-

ture) algorithms have been compiled by Wilson and Emerson (2002), Casson et al. (2009),

Halford (2009) and Song (2011). Highlights include: the wavelet decomposition method

proposed by Indiradevi et al. (2008), the neural network seizure detection system out-

lined by Bao et al. (2008) and the ICA preprocessed method introduced by De Lucia

et al. (2008). Recent work by Kelleher et al. (2010) proposed an SVM-based classifier as

effective for epileptiform activity and epileptic seizure detection.

2.8.2 EEG artefacts in epileptiform activity detection systems

Artefacts are widespread in most EEG recordings, and result from the wide array of causes

outlined in Section 2.3. In addition to routine causes of EEG artefacts, many epileptic

seizures are often accompanied by involuntary clinical symptoms that introduce a signifi-

cant amount of artefact (Gotman et al., 1999). These artefacts can interfere with seizure

interpretation, especially if they are present at the time of the seizure onset. Artefacts

are a significant obstacle in the under-performance of many automated epilepsy diagnosis

algorithms (Wilson and Emerson, 2002). A number of papers in the literature propose
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methods for removing artefacts in epileptic EEG. A number of manual and semi-automated

artefact removal techniques have been described in the literature (Section 2.6). Iriarte

et al. (2003), Urrestarazu et al. (2004) and Liu et al. (2004) successfully used ICA-based

semi-automatic methods of removing artefacts from EEG recordings of patients undergo-

ing epileptic seizure without introducing obvious distortion to the seizure morphology. Ille

et al. (2002) used PCA to a similar effect. De Clercq et al. (2006) and Vergult et al. (2007)

proposed semi-automated CCA methods to remove EEG muscle artefact for patients with

refractory partial epilepsy.

A number of papers published on automated epileptic seizure and epileptiform activity

detection include automated artefact detection and removal. In their half-wave decom-

position method of interictal epileptiform activity detection, Gotman and Gloor (1976)

introduced some rule-based thresholding techniques to reject sections of EEG contami-

nated with EMG and ocular artefacts. The techniques outlined in the paper were tailored

to the epileptiform detection system to reject specific cases of false positive detection of

spike and sharp wave activity. These methods were later updated for epileptic seizure

detection (Saab and Gotman, 2005). Kuhlmann et al. (2009) employed these methods

with slight modifications in their paper on seizure detection using seizure probability es-

timation. In their rule-based epileptiform detection system, Dingle et al. (1993) included

threshold-based rules tailored to exclude sections of artefactual EEG. A similar rule-based

methodology was employed by Ramabhadran et al. (1999) in their automated epilepto-

genic focus localisation system. This approach of dealing only with those artefacts that

are responsible for false detections is particularly suited to reducing the number of false

detections in epileptiform activity detection as it is important to continue to maintain

correct detections of epileptiform events; however, the rule-based approaches listed do not

take advantage of some of the most powerful aspects of machine learning. An alternative

approach to tackling problematic artefacts in epileptiform activity detection systems is to

use blind source separation at the pre-processing stage. In this manner, Hesse and James

(2007) and De Lucia et al. (2008) used ICA to automatically detect epileptiform activity

in epileptic patients. By applying this approach, a number of EEG artefacts were implic-

itly excluded, i.e. epileptiform detection was performed on ictal independent components.

However, these systems were either demonstrated for very short EEG segments (Hesse

and James, 2007) or performed significantly below state-of-the-art (De Lucia et al., 2008).
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2.8.3 Neonatal seizure detection

Neonatal seizure

The EEG can be used to monitor sick newborn patients who are admitted to the neonatal

intensive care unit (NICU) and are at risk of developing neonatal seizures (Murray et al.,

2008). These neonatal seizures are clinically defined as paroxysmal alterations in neurolog-

ical function, i.e. an alteration in behavioural, motor and/or autonomic function (Volpe,

1989). Hypoxic ischemic encephalopathy (HIE) is the most common neonatal seizure eti-

ology (i.e. cause); induced by impaired gas exchange that results in inadequate oxygen

supply to the brain (hypoxia) and neuronal damage (ischemia) (Volpe, 2008; Pin et al.,

2009). Other common etiologies are central nervous system infection, cerebral infarctions

and metabolic abnormalities (Evans and Levene, 1998; Ronen et al., 1999).

Where visible on the EEG, these seizures manifest as repetitive patterns with minimum du-

ration defined as 10 seconds (Clancy, 2006). A major confounding factor in the detection

of neonatal seizures is the fact that seizures may not be clinically observable, especially if

the patient is prescribed with an anti-epileptic drug (Clancy et al., 1988; Bye et al., 1997).

The EEG is therefore considered the gold standard in neonatal seizure diagnosis. However,

the diagnosis of electrographic seizure is non-trivial. The appearance of the discharge can

transform in frequency, amplitude and morphology over time (Mizrahi and Clancy, 2000).

Electrographic seizures are predominantly unifocal but multifocal seizures may also occur

in different brain regions and fire simultaneously and asynchronously. Both unifocal and

multifocal seizure discharges can spread from one location via abrupt change or by gradual

widening.

Automated neonatal seizure detection

Strong parallels exist between automated neonatal seizure detection and automated epilep-

tic seizure detection. These research areas can be traced back to the automated method

of recognising inter-ictal epileptic activity in EEG by Gotman and Gloor (1976). Au-

tomated neonatal seizure detection first appeared in the literature with an approach by

Liu et al. (1992) to quantify the periodicity of the EEG during seizure via autocorrelation

analysis. Gotman et al. (1997) introduced a threshold-based neonatal seizure detection

system, where the majority of features were extracted from the frequency domain. Roess-

gen et al. (1998) introduced a model-based approach to seizure detection. Celka and
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Colditz (2002) proposed a seizure detector based on complexity analysis of the EEG. A

number of systems have been developed using wavelet analysis and classification to detect

neonatal seizure (Nagasubramanian et al., 1997; Zarjam et al., 2003; Hassanpour et al.,

2004a,b). Faul et al. proposed several techniques for automated neonatal seizure detec-

tion, including an ICA pre-processing stage (Faul et al., 2005b), complexity features (Faul

et al., 2005a) and a neural network classification stage (Faul, 2007). A number of classifier-

based methods for neonatal seizure detection have shown promising results. Karayiannis

et al. (2006) proposed a rule-based architecture incorporating a neural network classifier,

Aarabi et al. (2007) proposed a multi-class neural network with 6 non-seizure and 2 seizure

states. Greene et al. (2008) investigated the performance of a number of 2-class classifier

architectures. More recently, Thomas et al. (2010) and Temko et al. (2011b) proposed a

neonatal seizure detection system based on Gaussian mixture models and support vector

machines respectively.

Several multimodal seizure detection systems have been outlined in the literature. A

video-based method to quantify motor activity during clinical seizures was proposed by

Karayiannis et al. (2001). Data fusion methods combining seizure information from EEG

and ECG were developed by Greene et al. (2007) and Malarvili and Mesbah (2008).

At present, the relatively poor performance of automated seizure detectors has prevented

their advance into widespread clinical use. In reviewing what features have prevented this

transition from research literature to clinical implementation, Thomas (2011) has pointed

out that neonatal seizure is composed of a large set of diverse patterns emanating from

background activity, seizure events and artefacts. Additionally, EEG characteristics are

often considerably different between patients, and are not stationary, i.e. they evolve over

time, particularly in the immediate weeks after birth. However, Thomas (2011) found

that the largest contributor to false detections was that of artefact, accounting for 43 %

of false positive detections of neonatal seizure. In particular loose electrode or electrode

detachment were problematic, leading to significant 50 Hz line noise and subsequent mo-

tion artefact as the electrode was free to move. Respiration and movement artefacts were

also highly prominent and problematic. In a detailed clinical study of the SVM classi-

fier performance on a neonatal cohort collected at University College London Hospitals,

Mathieson (2012) found that contamination of the neonatal EEG by non-cerebral elec-

trical artefacts is the single largest cause of misclassification in the automated systems

developed by Faul (2007), Thomas (2011) and Temko et al. (2011b). Similarly, in the

evaluation of their neonatal seizure detection algorithm Gotman et al. (1997) found that
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artefacts were responsible for the largest fraction of false detections.

2.8.4 EEG artefacts in neonatal seizure detection

Many automated neonatal seizure detection algorithms employ artefact detection and re-

moval techniques. There are clear parallels between these artefact processing techniques

and those designed for automated epileptic seizure and epileptiform activity detection sys-

tems. Witte et al. (1987) implemented a regression method for ECG and EOG artefacts

in neonatal EEG. Gotman et al. (1997) incorporated the rule-based thresholding method

from Gotman and Gloor (1976) into a neonatal seizure detection system. More advanced

rule-based artefact rejection schemes were subsequently implemented by Glover et al.

(2002) and Mitra et al. (2009). Aarabi et al. (2007) used an array of artefact techniques to

remove individual artefact types. Template matching was used to remove ocular and ECG

artefacts; thresholding in the time domain was used to remove electrode movement and

pop, and thresholding in the frequency domain was used to remove EMG artefact. How-

ever, the effect that each of these artefact processing rules produced on the epileptiform

detection systems was not quantified. Faul et al. (2005b), used ICA to indirectly remove

artefacts by performing feature ranking and keeping only those ICs that most resembled

neonatal seizure.

Multimodal artefact rejection was used by Boashash et al. (1999) by combining threshold-

ing methods from the EEG, EOG, ECG and video. Karayiannis et al. (2006) and Mitra

et al. (2009) used similar approaches by including a post-processing stage where seizure

decisions were rejected if the corresponding section of EEG was highly correlated to any

of the ECG, EMG or respiration signals. De Vos et al. (2011) proposed an automated ICA

method to remove ECG, pulse and respiration artefacts. In this multimodal technique,

the independent components were compared to filtered polygraphy signals and removed

if the correlation exceeded a pre-defined threshold. These ICA-based multimodal correla-

tion methods proved effective in the system of De Vos et al. (2011); however, the reliance

on the presence of a respiration trace is problematic, as they are not available in many

NICUs.
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2.9 Datasets and metrics

The primary goal of the work detailed in this thesis is to advance the development of

artefact processing in automated EEG diagnostic systems. In doing so, it is hoped that

the performance of these neurological event detection system will improve. To accomplish

this, data is necessary. Moreover, it is imperative that the data is representative of the

data that will be encountered in real-world scenarios.

While the published literature in artefact detection and removal have undoubtedly pro-

vided a wealth of information and ideas regarding the processing of artefacts in EEG,

there are a number of methodological shortcomings that are visible across many of the

papers. Most notably, biases and assumptions regarding the datasets upon which the al-

gorithms are developed and evaluated are often ignored or downplayed. Bias can enter the

datasets from a number of directions. Firstly, is the data representative of that which will

be encountered in the real-world? The majority of papers published in the literature that

deal with artefacts in EEG, do so on simulated, pruned, or otherwise unrepresentative

EEG data. Similarly, many papers evaluate the performance of algorithms on data whose

duration is of the order of seconds, rather than minutes, hours or even days. Further-

more, there is often no discussion as to whether the included data was randomly chosen

or selected as it showed favourable performance with the artefact processing technique in

question. This thesis is founded upon the belief that in order to deal effectively with the

very real problem of EEG artefacts, real data, representative of that encountered in noisy

recording environments, should be used to train, and more importantly test the signal

processing and machine learning techniques used to identify and/or remove the unwanted

artefacts. Where this is impossible, the limitations of the conclusions and generalisability

of the algorithm should be clearly stated.

The work outlined in this thesis follows three broad threads: (i) detecting head-movement

artefacts so that automated neurological event detection systems in ambulatory EEG can

be developed, (ii) processing of ocular and movement artefacts in an automated epilep-

tiform activity detection system to reduce false detections and (iii) removing respiration

artefacts in order to improve a state-of-the-art neonatal seizure detection algorithm. Sep-

arate, specific datasets are used for each of these tasks; in each case, considerable effort

was made to ensure that these datasets would be as representative as possible of those

encountered in real-world, clinical and ambulatory environments.
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The first data set is a non-clinical, ambulatory EEG data set collected at UCC in 2009

using the Emotiv EPOC headset, and outlined in Section 2.9.1. The second dataset used

in this thesis, outlined in Section 2.9.2, is a clinical dataset collected from epileptic patients

in the neurophysiology department of Cork University Hospital (CUH). The final dataset

consists of clinical data collected from neonates at the neonatal intensive care units at

Cork University Hospital and University College London Hospitals, and is described in

Section 2.9.3.

2.9.1 Head-movement artefacts in adult EEG

Prior to the work carried out in the thesis, there existed no attempt in the literature

to deal with head-movement artefacts in particular or indeed artefacts in an ambulatory

environment in general. In order to investigate and experiment with potential methods

for EEG artefact detection and removal, a non-clinical dataset was collected using the

Emotiv EPOC headset (Emotiv EPOC headset). The 14-channel Emotiv EPOC is a com-

mercially available EEG headset recently released for the development of BCI technologies.

The headset records EEG from 14 channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8,

FC6, F4, F8, AF4), sampled at 128 Hz, with a referential montage employed; the refer-

ence electrodes (P3 and P4) are taken from behind the ears. Figure 2.13 compares EEG

recorded using the EPOC and that recorded using a Viasys Nicolet EEG machine; it can

be seen that the EPOC provides EEG of comparable quality to clinical EEG machines. A

key factor in the choice of the Emotiv EPOC headset was the inclusion of gyroscopes in

the device. Gyroscopes are devices that measure angular rotation, and consequently offer

a means of accurately detecting head movements. Figure 2.14 shows an section of head

movement with one EEG channel (blue) and two gyroscope signals (black and red) dis-

played. As gyroscopes or accelerometers are not included on any commercially available,

clinical EEG machines, and ethics approval for their deployment in a clinical environment

may prove difficult, the Emotiv EPOC offered a suitable, inexpensive alternative. Gyro-

scope signals from the 2-axis gyroscope located at the rear of the headset were sampled

at 128 Hz. For both EEG and gyroscope signals, the amplitude resolution was 0.51µV

per bit. The head-movement artefact dataset was created with the purpose of accurately

capturing the types of head-movement artefacts that will be likely to be encountered in a

real-world ambulatory setting. Accordingly, two alternatives were available for recording

the data: (i) record the data naturally by allowing the participant to go about their daily

life as normal and examine the data afterwards to annotate for head-movement artefact
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Figure 2.13: Comparison of EEG recorded using Emotiv EPOC and Viasys Nicolet One
EEG machines. Approximately 5 seconds of normal background EEG are displayed for
each system. (a) Normal background EEG recorded using Viasys Nicolet EEG machine at
a sampling frequency of 250 Hz. (b) Normal background EEG recorded using the Emotiv
EPOC EEG device at a sampling frequency of 128 Hz.
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Figure 2.14: EEG channel F8 (blue) and gyroscope x-direction (black) and y-direction
(red) signals for artefacts caused by nodding and shaking head.

or (ii) create a head-movement artefact protocol that described typical head-movements

and instruct participants to carry out the movements at defined times. Both options were

initially evaluated in terms of accuracy and difficulty and it was found that the primary

obstacle in using the data, was that of annotation, i.e. how are artefact and normal EEG

determined. With data collection method (i), it was extremely time consuming to examine

the EEG and annotate for artefacts after the fact. Importantly, there was no discernible

distinction between the types of artefact created in data collection (ii) as to those col-

lected naturally in (i). Thus, a head-movement artefact generation protocol was used in

the creation of an artefact database so as to aid in the annotation of the data.

An artefact generation protocol was drawn up which instructed the participants to perform

repetitions of each of the following movements: shake head, nod, roll head, clench jaw,

raise and lower eyebrows. Between repetitions participants were asked to remain still in

order to generate reference EEG. Particular focus was placed on movement artefacts that

have been observed to occur more regularly in an ambulatory EEG system. This artefact

generation protocol is described in more detail in Table 2.1. The pace and direction of

head movements were varied where appropriate in order to avoid excessively repetitive,

periodic artefacts that may be unlikely to occur in a natural ambulatory environment.

In total, this data comprises over 30 minutes of head movement data, collected from 7

male healthy adults (23- 50 years, mean age 30). Informed consent was obtained from all

participants, none of whom had a history of neurological or psychiatric disorders and none

were on chronic medication.

The EEG artefact data was annotated as artefact where visually noticeable deflection in
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the EEG was observed at the times that participants performed movements. Annotation

was independently confirmed by a specialist clinical physiologist in neurophysiology.

2.9.2 Ocular and movement artefacts in epileptiform EEG

The first clinical dataset used in this study consists of multi-channel EEG recordings

obtained from 8 patients (9-32 years; mean age 16), each suffering from idiopathic gener-

alised epilepsy. The data was acquired using a NicoletOne clinical EEG machine at the

Department of Neurophysiology, Cork University Hospital from patients undergoing rou-

tine EEG tests. Each patient displayed several instances of either interictal epileptiform

activity, epileptic seizure activity, or both. The data was sampled at 250 Hz using the

10-20 system of electrode placement and analysed using a 16-channel bipolar montage.

This research work has been approved by the Clinical Research Ethics Committee of the

Cork Teaching Hospitals (CREC).

A total of 42 abnormal events (consisting of single focal sharp-wave and spike and slow-

wave activity) were annotated on a per-channel basis by a trained neurophysiologist. A

detailed account of the data is illustrated in Table 2.2. Examples of ocular and movement

artefact were also obtained from the data set. The ocular artefact data consists of 35

expert-annotated events with a total duration of 38.9 seconds, recorded at the 4 frontal

EEG channels (FP2-F4, FP2-F8, FP1-F3 and FP1-F7). The movement artefact data

comprises 14 expert-annotated events of total duration 79.5 seconds, taken from all 16

EEG channels.

Table 2.1: Artefact Generation Protocol.

Head-movements Description Duration

Shake head Shake head from side to side, varying pace and direction 30 seconds
Remain still Remain seated, avoiding head movements and eye blinks and movements 20 seconds
Nod head Nod head up and down, changing pace as doing so 30 seconds
Remain still Remain seated, avoiding head movements and eye blinks and movements 20 seconds
Roll head Roll head in both directions, changing pace as doing so 30 seconds
Remain still Remain seated, avoiding head movements and eye blinks and movements 20 seconds
Clench jaw Prolonged as well intermittent clenches (mimicking chewing) 30 seconds
Remain still Remain seated, avoiding head movements and eye blinks and movements 20 seconds
Raise and lower Changing pace and amplitude throughout 30 seconds
eyebrows

Remain still Remain seated, avoiding head movements and eye blinks and movements 20 seconds
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Table 2.2: Data characteristics for each patient record used in the development of the
epileptiform activity detection system.

Patient Record
Length (s)

No. Abnor-
mal Events

Total Event Du-
ration (s)

Mean Event Du-
ration (s)

1 953 2 0.8 0.4
2 1168 1 0.4 0.4
3 2736 5 3.6 0.72
4 3122 2 0.7 0.35
5 1219 13 18.2 1.4
6 1213 4 4.8 1.2
7 1221 14 29.8 2.129
8 1200 1 3.9 3.9

Mean 1604 - - 1.312
Total 12832 42 62.2 -

2.9.3 Neonatal EEG

The neonatal EEG used in this thesis is clinical data recorded in NICUs at Cork University

Maternity Hospital (CUMH) and University College Hospitals London. The dataset can

be split into two main cohorts; EEG data used to develop the automated neonatal seizure

detection algorithm (carried out by Faul (2007), Greene (2007), Thomas (2011) and Temko

et al. (2011b)) and EEG data used to develop and evaluate the artefact removal algorithms.

Development of the automated seizure detection system

Data recorded at CUMH was used to develop, train and initially test the automated

neonatal seizure detection algorithm that is utilised in this thesis. EEG was recorded

from 55 babies with hypoxic ischemic encephalopathy (HIE) between 2003 and 2006; up

to 72 hours of data was recorded per patient. Within the group, 17 patients underwent

seizure, with all seizures that occurred over the initial 72 hour period after birth captured.

These patients were full-term neonates ranging in gestational age from 39 to 42 weeks. A

NicOne video EEG machine was used to record multichannel EEG at 256 Hz using the

10-20 system of electrode placement modified for neonates. In this study, 8 bipolar EEG

channels were used (F4-C4, F3-C3, T4-C4, C4-CZ, CZ-C3, C3-T3, C4-O2 and C3-O1).

The dataset contained over 267 hours of EEG from which a total of 705 seizure events with

a mean duration of 3.89 minutes were annotated by a neonatal electroencephalographer.

Per-channel annotations were necessary for classifier training; per-channel labels were

obtained for 2 minutes of seizure data from each patient. Additionally, 2 minutes of

artefact free non-seizure data was annotated for each patient. Using this data, the seizure

detection system in its present form was developed and evaluated by Temko et al. (2011b)
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Table 2.3: Data characteristics for each neonatal patient used in the development of the
neonatal artefact removal algorithms.

Patient Record
length
(hours)

No. of
seizures

Total seizure du-
ration (s)

Mean seizure du-
ration (s)

1 24 20 1510 75.5
2 48 46 2963 64.41
3 24 18 1435 79.72
4 24 40 3571 89.28

Mean 30 31 - 77.23
Total 120 124 9407 -

and Thomas et al. (2011).

Data used in artefact removal techniques

Data collected at UCLH was used to develop and test methods of artefact removal at

the pre-processing stage of the seizure detection algorithm described in the previous para-

graphs. This data consisted of four neonatal patients; details of seizure occurrences are

displayed in Table 2.3.

Each patient suffered from seizure within 72 hours of birth, and the EEG recordings of each

patient contained considerable respiratory artefact. Respiration traces and ECG signals

were recorded for patients 1 and 2. Patients 3 and 4 did not have a respiration trace

available; ECG signals were however, recorded for these patients. As the performance of

the seizure detection algorithm was the ultimate measure of the algorithms performance,

annotations were not required for the respiration artefact.

2.9.4 Performance assessment

A number of metrics are used in this thesis to effectively measure and compare the perfor-

mance of artefact processing algorithms. Evaluating the performance of supervised learn-

ing algorithms is reasonably straightforward, i.e. the detection algorithms are evaluated

by comparing the classification output of each epoch of test data with the correspond-

ing annotations. Additional metrics can then be constructed that aim to capture the

intricacies of the classification task at hand, be it artefact detection (Chapters 3, 4 and

5), epileptiform activity detection (Chapter 6) or neonatal seizure detection (Chapter 7).

These metrics are briefly outlined in this section, with additional details included in the
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relevant chapters.

Detection metrics

Epoch-based metrics are used to evaluate classifier performance across a range of oper-

ating points. Each of the classification tasks described in this thesis, are formulated as

binary decision problems and as such can be represented in a structure known as a contin-

gency table. To illustrate this, consider the binary classification of EEG into two classes:

artefact and non-artefact. This contingency table has four categories: true positives (TP)

are epochs correctly labelled as artefact; false positives (FP) refer to epochs incorrectly

labelled as artefact; true negatives (TN ) correspond to correctly labelled non-artefact

epochs and false negatives (FN ) refer to epochs incorrectly labelled as non-artefact. The

accuracy of each class is then evaluated using Sensitivity and Specificity. Sensitivity is

defined in equation 2.12 as:

Sensitivity =
TP

TP + FN
. (2.12)

Specificity is defined in equation 2.13 as:

Specificity =
TN

TN + FP
. (2.13)

Receiver Operator Characteristic (ROC) curves show how sensitivity varies with speci-

ficity; with the area under the ROC curve shown to be an effective way of comparing

the performance of two different classifier systems (Fawcett, 2006). The performance of

the artefact detection systems outlined in Chapters 3, 4 and 5 are compared using ROC

curves, and the area under the ROC curve. In this thesis, areas under the ROC curve are

calculated using trapezoidal integration.

In the neurological event detection systems described in this thesis (epileptiform detection

and neonatal seizure detection) it is important to evaluate the classification performance

in the region of the ROC curve most relevant to the classification task. That is, by

incorporating domain-specific information about the neurological event as well how the

neurological event detection system will be utilised, allows more effective evaluation of

system performance. For the epileptiform detection systems outlined in Section 2.8.1,

it is important to detect all (or almost all) epileptiform events, even if this means large

numbers of false detections; as epileptiform events are rare and often short, missing an
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epileptiform epoch can mean missing the epileptiform event in its entirety. Missing entire

epileptiform events is unacceptable in the context that the system will be used, namely

screening long EEG recordings for indicators of susceptibility to epilepsy. That is, missing

an event means the event will never be seen by the clinician reviewing the EEG, whereas

false detections (within reason) can simply be discarded upon inspection. With this in

mind, it is clear that the area of the ROC curve where sensitivity is high is primarily

of interest. An additional metric, ROCsens95, is thus used to measure the classification

performance of each epileptiform activity detection classifier. ROCsens95 represents the

area under the ROC curve above a sensitivity of 95 %, where a ROCsens95 of 100 %

refers to perfect discrimination in this region of the ROC curve. In Figure 2.15 it can be

seen that a random discrimination is highlighted by the dotted red line, and is equivalent

to a ROCsens95 of 2.5 %. As was the case for the ROC areas reported in this thesis, the

ROCsens95 area was calculated using trapezoidal numerical integration.
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Figure 2.15: Illustration of ROCsens95 and ROCspec90. The ROC curve is plotted in blue.
The horizontal, dashed line represents the lower bound of the ROCsens95 area used in
the epileptiform activity detection algorithm. The vertical green line represents the lower
bound of the ROCspec90 area, used in evaluating the neonatal seizure detection algorithm.
The dotted red line represents random discrimination in the classification task.

In the neonatal seizure detection systems described in Section 2.8.3, the necessity to detect

all seizure epochs can be relaxed so as to facilitate a reduction in false detections. False

detections may have clinical decisions (e.g. prescription of anti-epileptic drug) resting

heavily upon them and so must be kept to an absolute minimum. Additionally, as seizures

typically last longer than a single epoch, if one epoch in a seizure is missed, the seizure can

still be detected by the classifier. The neonatal seizure detection system will thus operate

in regions of the ROC curve where specificities are high; an additional metric, ROCspec90,
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is thus used. ROCspec90 is defined as the area under the ROC curve, above the specificity

of 90%, as illustrated in Figure 2.15.

In addition to the epoch-based metrics outlined above, there are a number of event-based

metrics used in evaluating the neurological event detection classifiers in this thesis. Good

Detection Rate (GDR), is the percentage of neurological events (epileptiform activity or

neonatal seizure) within which at least one epoch is correctly classified as representing the

neurological activity in question, and defined in equation 2.14 as:

GDR =
TPevents

TPevents + FN events
. (2.14)

False Detections per hour (FD/h), another event-based metric, is used to assess the false

detections of the classifier; FD/h is defined as the number of predicted seizure events in

1 hour that have no overlap with actual reference seizures (Temko et al., 2011c). A final

epoch-based metric, False detection rate (FDR) is also used in this thesis for evaluating

the performance of the epileptiform activity detection algorithm in Chapter 6. However,

as the reasons for using this metric are closely linked to the details of the classifier details,

a more thorough description of FDR is discussed in Chapter 6.

Artefact removal metrics

Artefact removal algorithms have two primary, and often overlapping goals; to remove

artefacts from the EEG while leaving the cerebral portion of the EEG intact, so as to (i)

improve the performance of a neurological event detection algorithm and/or (ii) “clean”

the EEG for ease of interpretation by a clinician. Accurately evaluating the performance of

artefact removal algorithms presents a less straightforward challenge than that of evaluat-

ing detection algorithms. That is to say, quantifying the extent of artefacts removed, and

the corresponding degree of preserving the cerebral portion of the EEG, is difficult with-

out prior knowledge as to what a “cleaned” EEG signal should look like. Conversely, the

performance of artefact removal algorithms that use simulated EEG can be easily quan-

tified, as the original, clean EEG is artificially mixed with corrupting artefacts. Thus,

metrics that quantify the likeness of the original, clean EEG with the artefact-processed,

“cleaned” EEG can be used. These metrics include the correlation, mean-square error

and signal-to-noise ratio amongst others. It is presumed that this is a primary reason

that many artefact removal publications are evaluated on simulated data. However, while

these metrics are numerically precise, this precision does not necessarily pertain directly
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to real-world artefact removal. The data recording method, the data selection process,

and whether the background and artefact EEG was real or modelled (as in many publi-

cations) all introduce considerable biases into the experiment. The method in which the

background and artefact EEG are mixed also introduce significant biases into the experi-

ment, most notably when evaluating the performance of blind signal separation techniques

which in turn are predicated upon assumptions about the nature of mixing of the under-

lying sources. These arguments coupled with those outlined in Section 2.9.1 explain why

simulated artefact data was not used in this thesis.

To guide the choice of evaluation metric, it is perhaps worth re-stating that the primary

research goal in this thesis is to develop artefact processing techniques that improve the

performance of state-of-the-art automated EEG medical diagnostic systems. The principal

measure of artefact removal performance is thus whether or not the underlying neurological

event detection system improves or not. Therefore, it is this measure (and the classification

metrics associated with it) that is used to evaluate the performance of respiration artefact

removal for neonatal EEG (Chapter 7).

2.10 Summary

This chapter outlined in detail the pervasive issue of artefact contamination in EEG record-

ings. These artefacts interfere with visual inspection of the EEG and often significantly

hinder the performance of automated neurological event detection systems. The sheer

volume of papers published that propose methods aimed at alleviating this problem gives

an indication of the necessity for automated systems to detect and remove these artefacts.

A comprehensive review of the merits and failings of these algorithms, however, showed

that it is also clear that despite the efforts made, current state-of-the-art in automated

artefact detection and removal is not sufficient.

With EEG considered the gold standard for many applications where spatio-temporal in-

formation regarding the functioning of the brain is required, it is apparent that automated

neurological event detection systems are desirable. Two such areas in the medical domain

are the fields of epilepsy and neonatal seizure diagnosis. This chapter reviewed current

methods for automated neurological event detection systems in epilepsy and neonatal

seizure diagnosis; it is evident from this literature review that these systems have yet

to attain the requisite performance necessary for widespread clinical deployment. EEG
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artefacts have been widely reported as a leading obstacle in the achievement of this goal.

Accordingly, this chapter outlined a framework for the biomedical signal processing and

machine learning methods that are used in this work to further artefact detection and

removal processing. The following chapters will detail novel methods that were developed

in this thesis to detect and remove these problematic artefacts. This work will follow three

broad threads: (i) detection of head-movement artefacts in ambulatory EEG, (ii) artefact

detection and fusion in a clinical, epileptiform activity detection system and (iii) artefact

removal in a state-of-the-art, neonatal seizure detection system.
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Chapter 3

Detecting artefacts arising from

head-movements

3.1 Introduction

When the head moves during an EEG recording, a wide range of electrical signals arising

from sources external to the brain may contaminate the EEG signal. Contamination

typically takes the form of some combination of EMG, ocular, electrode pop and electrode

movement artefacts, and obscures the EEG trace, making it difficult to interpret the

signal by the researcher or clinician, especially for inexperienced readers. In automated

neurological event detection systems such as epilepsy detection or brain computer interface

applications, artefacts introduced by head-movements frequently lead to misclassification

by the pattern recognition system. This problem becomes more pronounced in ambulatory

environments where the movements of the patient or user are unrestricted and where

head-movements are more frequent. To date, ambulatory EEG has received little or no

attention in the literature, except to point out the problem of artefact and the usefulness

of ambulatory monitoring (Waterhouse, 2003). In this chapter, the feasibility of accurately

detecting these head-movement artefacts using statistical pattern recognition techniques

is investigated.

A journal paper (O’Regan et al., 2013a) and a peer-reviewed international conference

publication (O’Regan et al., 2010a) have arisen from the work carried out in this chapter.
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3.2 The problem of head-movement artefacts in ambulatory

EEG

Artefacts arising from head-movements often prove troublesome both for EEG interpreta-

tion by a clinician, and also in the deployment of automatic neurological event detection

systems, such as epileptic seizure detection or brain-state classification. By obscuring the

EEG during epileptic seizures, artefacts can interfere with the clinicians’ interpretation of

the recorded seizures, often making it difficult to identify and localise the ictal onset and

offset (Delorme and Makeig, 2004). In automatic seizure detection, the presence of arte-

facts may lead to falsely interpreting a section of artefact EEG as seizure. In many clinical

EEG trials, contamination by artefacts is minimized by controlling the test situation to

limit movement. In an ambulatory setting this is unrealistic as by definition ambulatory

refers to an environment where the patient can walk and move about. Similarly, in cases

such as diagnosing epilepsy, restricting movements may even be undesirable as it may ex-

clude the presentation of events that occur during everyday life and that trigger epileptic

seizure in the patient.

3.2.1 Generalised head-movement artefact detection: is it possible?

Head movements can introduce a wide range of non-cerebral electrical activity into the

EEG. Typically these movements result in contamination in the form of some combination

of muscle (EMG), electrode pop, electrode movement and ocular artefacts. As discussed

in Chapter 2, these component artefact signals display a wide range of characteristics.

Muscle artefacts are predominantly high frequency signals, and can range from low to

high amplitude (van de Velde et al., 1999; Goncharova et al., 2003). Electrode pop is

typically accompanied by fast, high amplitude spikes (Barlow, 1986). Electrode movement

most commonly results in slow-wave baseline drifts, but can sometimes result in apparent

oscillation in the EEG. Ocular artefacts, introduced due to relative movement between

the eye and the electrode, usually result in high amplitude deflections in the EEG (Berg

and Scherg, 1991; Croft and Barry, 2000; Gasser et al., 1992).

While these component artefact signals exhibit diverse temporal, frequency and structural

characteristics, they are significantly different from those of normal EEG activity. It is

thus proposed that the component artefact signals (EMG, electrode pop, movement and

ocular artefacts) be grouped together in distinguishing them from normal EEG activity. To
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Figure 3.1: Real-time EEG Analysis for Event Detection (REACT) prototype device.

the author’s knowledge, the work presented here is the first to treat ambulatory EEG for

artefacts arising from head movement as a single class in an automatic artefact detection

algorithm and as such is a novel approach to the artefact detection problem.

3.2.2 Ambulatory REACT system

Ambulatory REACT (Real-time EEG Analysis for Event DeteCTion) is a small form

factor system developed by the Efficient Embedded Digital Signal Processing (EEDSP)

group at U.C.C. that performs real-time EEG monitoring using a DSP microprocessor.

This point-of-care technology is designed for unobtrusive ward and domestic detection of

neurological events in adults, whereby the patients wear the device and go about their

daily lives as usual (Temko et al., 2010; McEvoy et al., 2010). The system is built around

the concept of intelligence-at-the-sensor; whereby the costly requirement of continuously

transmitting raw bio-signal data is removed, and only data of relevance (such as seizure

alarms) are transmitted. A picture of the REACT prototype is shown in Figure 3.1.

REACT is based on a Support Vector Machine (SVM) classifier, and uses information from
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Figure 3.2: Real-time EEG Analysis for Event Detection. This architecture shows three
potential methods of incorporating artefact detection into the system. (a) indicates rejec-
tion of epochs classified as artefact. (b) indicates classifier fusion of seizure and artefact
information. (c) represents artefact annotation, performed separately from the seizure
classification task.
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a rich set of features to classify EEG epochs as either seizure or non-seizure. The system

has been shown to achieve state-of-the-art performance on datasets of adult EEG (Faul

et al., 2009; Temko et al., 2010, 2011b); thereby rapidly assisting neurophysiologists in

identifying areas of interest in EEG recordings.

The work outlined in this chapter presents the first stages in the development of an arte-

fact detection system to be implemented with ambulatory REACT. Discussions with clin-

icians at Cork University Hospital as well as reports in the literature have identified head

movement artefacts as causing difficulty both in terms of false positive seizure classifica-

tion and also in obscuring the recorded EEG for subsequent medical examination Barlow

(1984, 1986). As outlined in Chapter 2, identifying sections of EEG that are contami-

nated by artefact would be useful for various applications. Including artefact detection in

ambulatory REACT could take a number of guises; Figure 3.2 illustrates how three such

methods could be incorporated into REACT. Artefact detection could take the form of

detecting epochs that contain head-movement artefact and rejecting these epochs so that

the seizure detection classifier is presented with non-artefactual EEG alone. Alternatively,

information from the seizure detection and artefact detection classifiers could be combined

at the post-processing stage. Finally, artefact detection could be included as an annotation

tool for the clinician whereby he/she uses information from the artefact detection classifier

when examining the EEG recording.

3.2.3 Artefact detection using supervised machine learning

Artefact detection using supervised machine learning will take the following general frame-

work. Raw EEG signals will be preprocessed so as to remove 50 Hz mains frequency arte-

fact and low-amplitude DC-component of the signal. These steps will be accomplished

with finite impulse response (FIR) filters. Each channel of the EEG signal is then seg-

mented into overlapping windows or epochs; a set of relevant features is subsequently

extracted from each of these epochs. These features and the labels (i.e. annotations) asso-

ciated with them are used to train a machine learning classifier to obtain a discriminating

boundary between the two classes (artefact and normal EEG) that is optimal in some

sense (Abu-Mostafa et al., 2012). That is to say, the machine learning algorithm defines

a cost function to represent the separability of the classes and performs an optimisation

of the cost function using the training data. The following sections provide details on how

this framework was applied to the artefact detection task using a set of 69 EEG features,
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and linear discriminant and support vector machines classification models.

3.3 EEG features

Features are quantitative descriptors of the EEG, whose purpose is to show significant

changes in value between classes; in this application, to show changes in value during

the presence of artefacts arising from head-movement as compared to background EEG

activity. These features are chosen to take advantage of differences in the underlying

characteristics of background and artefact EEG.

In order to calculate features, the EEG signal is segmented into windows/epochs whose

duration is capable of capturing the characteristics of the event to be detected. Head-

movement artefacts are comprised of underlying artefacts of differing lengths; in the gener-

alised head-movement detection task, it not clear what window length is most appropriate.

Therefore, in this chapter a number of different window lengths are investigated and the

corresponding, overall system performance is subsequently evaluated. The segmentation

process included overlap of 90% was used so as to increase the amount of data available

and has been demonstrated in the literature to be appropriate ).

While EEG events can have different shapes, morphologies and timings, there are large

similarities and common characteristics between EEG events representing vastly different

neurological phenomena (or in the case of artefact, non-neurological events). Consequently,

there is significant cross-fertilisation of features between various automated EEG appli-

cations and even between different time-series, machine learning applications in general

(perhaps most notably, from speech processing to EEG). Feature sets used in EEG ap-

plications, ranging from seizure detection to imagined arm movement (as used in BCI)

and from sleep cycle classification to Parkinson’s detection, tend to be broadly similar or

at least contain significant overlap. This is not to say that the events themselves are the

same or in some cases even similar, simply that similar features (or groups of features)

can be used to differentiate between a broad range of dissimilar events. Taking this into

account then, the feature set used in the artefact detection task is drawn primarily from

two sources; the REACT and ANSeR neurological event detection systems and several

EMG and ocular artefact detection papers in the literature (van de Velde et al., 1999;

Gasser et al., 2005).

The full set of 69 features extracted from the EEG is listed in Table 3.1 with detailed
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Table 3.1: List of EEG features for head-movement artefact detection.
Time Domain Features

• Line length/ Curve Length (L)
• RMS Amplitude
• Slope
• Activity (1st Hjorth Parameter)
• Mobility (2nd Hjorth Parameter)
• Complexity (3rd Hjorth Parameter)
• Kurtosis
• Skewness
• Nonlinear Energy (N)
• Zero Crossings (Zc)
• Minima and Maxima
• Autoregressive Modelling Error (AR models 1-9)
• Variance of first derivative
• Variance of second derivative
• Zero Crossings of first derivative
• Zero Crossings of second derivative

Frequency Domain Features

• Peak Frequency
• Spectral Edge Frequency(80, 90 and 95)
• Intensity Weighted Mean Frequency (IWMF)
• Intensity Weighted Bandwidth (IWBW)
• Total Power
• Power Bands: 0-2 Hz, 1-3 Hz, 2-4 Hz, 3-5 Hz, 4-6 Hz,
5-7 Hz, 6-8 Hz, 7-9 Hz, 8-10 Hz, 9-11 Hz, 10-12 Hz, 3-15 Hz,
15-30 Hz, 59-61 Hz, 51-64 Hz, 20-30 Hz, 25-64 Hz
• Normalised Power Bands: 0-2 Hz, 1-3 Hz, 2-4 Hz, 3-5 Hz, 4-6 Hz,
5-7 Hz, 6-8 Hz, 7-9 Hz, 8-10 Hz, 9-11 Hz, 10-12 Hz, 3-15
Hz, 15-30 Hz, 59-61 Hz, 51-64 Hz, 20-30 Hz, 25-64 Hz

Entropy-based Features

• SVD Entropy
• Shannon Entropy
• Fisher Entropy
• Spectral Entropy

explanation in Sections 3.3.1, 3.3.2 and 3.3.3. Many features describe the morphology of

the EEG in the time domain, with notable differences existing between the two classes. The

majority of features are extracted from the frequency domain, where significant differences

exist between background EEG and artefact. A further set of features that quantify the

underlying structure of the EEG signal using entropy-based measures from information

theory are also investigated.

3.3.1 Time domain features

When a clinician or researcher examines an EEG recording, it is time domain features that

are observed. These time domain features typically encompass the shape and morphology
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of the signal and can include poorly-defined descriptions of the waveform (such as spikiness,

uniformity or degree of asymmetry). For automated artefact detection, these qualitative

characteristics must be translated into a quantifiable numerical measure. A number of

features are extracted from the time domain EEG signal to capture the characteristics

that a human EEG reader would use to identify artefact. These features are complimented

by additional time domain features (such as time domain models of the EEG signal) that

may not be apparent to the human observer, but nevertheless provide useful separation

between normal EEG and artefacts. These features are derived from a statistical analysis

of the EEG signal within an epoch (or from the first and second derivatives of the EEG

signal within an epoch).

Line length/ Curve length

Line length (L) is used as a measure of signal complexity, initially proposed by Esteller

et al. (2001) as an indicator of seizure onset. It is similar to the waveform fractal dimension

although it has been shown to be more computationally efficient. Line length (sometimes

referred to as curve length) is defined for an epoch xj as:

L(xj) =

ns
∑

i=0

|xj(i+ 1)− xj(i)|. (3.1)

Thus, line length is the running sum of distances between consecutive points within the

sliding window of size ns. The discriminating potential of a feature can be visualised by

means of a probability density function (pdf), which plots the relative likelihood that the

feature will take on a given value. Thus, a feature is discriminative in non-overlapping

areas of the pdfs. Figure 3.3 displays probability density functions for the line length of

background EEG (blue) and head-movement artefact EEG (green), where it can be seen

that the head-movement artefact has a much broader distribution than that of background

EEG. This is to be expected as the head-movement artefact is comprised of a number of

contributory artefact sources (namely, muscle, ocular, electrode pop and electrode move-

ment artefacts). At lower line lengths the contribution of muscle and ocular artefacts is

seen, whereas high amplitude electrode pop explains the broad tail of the distribution at

higher line lengths. In this thesis, probability density functions were generated using a

random sample of 5000 data points per class.
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Figure 3.3: Probability density function for line length (L) of background EEG (blue) and
head-movement artefact (green).

Root mean square amplitude

The root mean square (RMS) amplitude, or quadratic mean, is a statistical measure of

the magnitude of a time varying quantity. The RMS amplitude expresses the mean of the

absolute amplitude of an epoch xj and is defined as:

RMS(xj) =

√

√

√

√

1

ns

ns
∑

i=1

x2j (i). (3.2)

As artefact EEG is often high-energy, high-amplitude signals, the RMS amplitude aims

to capture this trait. This is highlighted in the pdfs in Figure 3.4, where the artefact

EEG is distributed farther to the right than that of the background EEG. Once more, as

the artefact class comprises a number of different signal types the feature values are more

broadly distributed than that of the background EEG.

Slope

The slope of the EEG signal describes its steepness and is calculated by the first derivative

dxj(i) of the signal, where dxj(i) = xj(i) − xj(i − 1). The mean slope of each epoch is

given by the cumulative sum over consecutive sample points:

δEEG =
1

N − 1

N
∑

i=2

dxj(i). (3.3)
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Figure 3.4: Probability density function for RMS amplitude of background EEG (blue)
and head-movement artefact (green).

Variance and Hjorth parameters

In probability theory and statistics the variance of a signal σ2
j is a measure of how far the

numbers in a probability distribution lie from the mean of that distribution. Variance is

often referred to as the second central moment and in EEG signal processing is sometimes

denoted as activity or the 1st Hjorth Parameter (Hjorth, 1970). Variance or activity is

thus given by:

Activity(xj) = σ2
j =

1

ns

ns
∑

i=1

(xj(i)− µj(xj))
2, (3.4)

where µj(xj) is the sample mean of an epoch xj and defined as:

µj = µ(xj) =
1

ns

ns
∑

i=1

xj(i). (3.5)

Owing to the fact that artefacts arise from a number of different source signals, it is

anticipated that the variance of artefactual sections of EEG should on average be greater

than the variance of normal EEG. This is illustrated in Figure 3.5, where it can be seen

that the variance of artefact EEG is more broadly distributed than that of the EEG, with

a thick tail depicting more epochs with higher variances. The square root of the variance

σ2
j is referred to as the standard deviation σj . Hjorth (1970) also introduced two further

EEG features, mobility and complexity, based on the standard deviation of the first and

second derivatives of the EEG signal, respectively. The Hjorth mobility of an epoch is

defined as:

Mobility(xj) = σ∆j/σj , (3.6)
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Figure 3.5: Probability density function for activity or variance of background EEG (blue)
and head-movement artefact (green).
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Figure 3.6: Probability density function for the mobility of background EEG (blue) and
head-movement artefact (green).

where σ∆j is the standard deviation of the first derivative of an epoch. The pdfs for the

mobility of each class are displayed in Figure 3.6. As with the other features, the artefact

EEG distribution has a long tail, with a single broad peak.

The complexity of an epoch is defined as:

Complexity(xj) =
σ∆2j/σ∆j

σ∆j/σj
, (3.7)

where σ∆2j is the standard deviation of the second derivative of the epoch.
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Figure 3.7: Probability density function for the variance of the 1st derivative of background
EEG (blue) and head-movement artefact (green).
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Figure 3.8: Probability density function for the variance of the 2nd derivative of background
EEG (blue) and head-movement artefact (green).

Variance of first and second derivatives

The variance of the first (σ∆j) and second (σ∆2j) derivatives were used by Thomas et al.

(2010) for neonatal seizure detection. They are included here as features in the artefact

classification task. Probability density functions for the variance of the 1st and 2nd deriva-

tives are displayed in Figures 3.7 and 3.8. As for the variance, the artefact EEG is more

broadly distributed than that of the background EEG, with long tails at higher values.
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Skewness

In probability theory and statistics, skewness is a measure of the asymmetry of the prob-

ability distribution of a real-valued random variable. A negative skew indicates that the

tail on the left side of the probability density function (pdf) is longer than that of the right

side, with the bulk of the values lying to the right of the mean. Conversely, a positive

skew indicates that the tail on the right side is longer than that of the left and the bulk

of the values lie to the left of the mean. Zero skewness indicates that the values are rela-

tively evenly distributed either side of the mean, typically (but not necessarily) implying

a symmetric distribution. Skewness is often referred to as the third central moment and

is defined as:

Skewness(xj) =
1
ns

∑ns

i=1(xj(i)− µj)
3

( 1
ns

∑ns

i=1(xj(i)− µj)2)3/2
. (3.8)

A probability density function is not displayed here for skewness as the feature did not

exhibit significant discrimination on its own.

Kurtosis

Kurtosis, often referred to as the fourth central moment, is a measure of the “peakedness”

of a probability density function and is defined as follows:

Kurtosis(xj) =
1
ns

∑ns

i=1(xj(i)− µj)
4

( 1
ns

∑ns

i=1(xj(i)− µj)2)2
. (3.9)

A high kurtosis distribution has a sharp peak and long, fat tails, while a low kurtosis

distribution has a more rounded peak and short, thin tails. Unlike many of the other dis-

played features, the pdfs of normal and artefact EEG overlap significantly for this feature,

as seen in Figure 3.9. However, as will be discussed in Section 3.4 if the marginal class

distributions are overlapping this does not necessarily imply that the feature cannot pro-

vide useful discrimination when combined with additional features in a higher dimensional

space.
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Figure 3.9: Probability density function for the kurtosis of background EEG (blue) and
head-movement artefact (green).

Nonlinear energy (NLE)

Non-linear energy (NLE) is a function of the amplitude of a signal, and the change of that

amplitude and is defined as:

NLE(xj) =
1

ns − 2

ns−1
∑

i=2

xj(i)
2 − xj(i− 1)xj(i+ 1). (3.10)

NLE was introduced by D’Alessandro et al. (2003) as a feature in an epileptic seizure

prediction algorithm. Greene et al. (2008), Thomas et al. (2010) and Temko et al.

(2011b) have found NLE to be useful in neonatal seizure detection also. The pdfs of NLE

are displayed in Figure 3.10 where it can be seen that the artefact EEG is more uniformly

distributed than the background EEG, where low NLE values are most common.

Number of zero crossings (Zc) and its derivatives

The number of zero crossings (Zc) is the number of times within an epoch that the EEG

signal crosses the x-axis. The number of zero crossings of the 1st derivative of the EEG

corresponds to the number of local maxima and minima of the EEG. The number of zero

crossings of 2nd derivative corresponds to the number of times that the 2nd derivative of

the EEG signal crosses the x-axis within an epoch. In Figures 3.11 and 3.12, it can be

seen that the pdfs of normal and artefact EEG for the number of zero crossings of the 1st

and 2nd derivatives overlap considerably. However, as will be seen in Sections 3.4 and 3.5,
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Figure 3.10: Probability density function for the non-linear energy of background EEG
(blue) and head-movement artefact (green).
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Figure 3.11: Probability density function for the number of zero crossings of the 1st

derivative of background EEG (blue) and head-movement artefact (green).

when combined with other features, these features do improve classification performance

in the artefact detection task.

Number of inactive samples

The number of inactive samples within an epoch xj is defined as the number of samples for

which there is very little change in the EEG amplitude. This was calculated by applying

a threshold of 0.01 to the absolute value of the derivative of the EEG signal.
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Figure 3.12: Probability density function for the number of zero crossings of the 2nd

derivative of background EEG (blue) and head-movement artefact (green).

Autoregressive modelling error

An autoregressive (AR) model can be used for prediction in a correlated time series. A

variable x̂(k) in a correlated time series can be predicted from previous observations in

the series by:

x̂j(k) =

np
∑

i=1

φj(i)x̂j(k − i) + ǫk, (3.11)

where φj(i) are the np parameters of the AR model and ǫk is a zero mean, white noise term

accounting for the error in each prediction step. The φj(i) parameters of the AR model

are estimated over the first half of the epoch xj . The AR model is fit to the data over the

first half of the epoch using the Yule-Walker method (Kay, 1988) and the model is used to

perform one step ahead prediction on the second half of the epoch. The percentage error

is then given by:

ARfit(xj) = 100

(

1−

∑ns

k=ns
2
+1 |xj(k)− x̂j(k)|

∑ns

k=ns
2
+1 |xj(k)− xj |

)

, (3.12)

where:

xj =
1

ns/2

ns
∑

k=ns
2
+1

xj(k). (3.13)

A total of 9 features are generated using this approach, corresponding to models of orders

1 to 9. Figure 3.13 illustrates pdfs for the autoregressive model fit for 1st order AR model.
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Figure 3.13: Probability density function for the autoregressive model fit (1st order) of
background EEG (blue) and head-movement artefact (green).

3.3.2 Frequency domain features

When a clinician or researcher examines an EEG trace, they explicitly (via a fast Fourier

transform (FFT) computed in the visualisation software) or implicitly (by observing the

periodicity of events in the EEG signal), utilise information from the frequency domain.

Consequently, features from the EEG’s frequency domain are used to quantify changes

in the spectrum of the EEG during the presence of artefact. The power spectral density

(PSD) of an epoch is obtained using a 128 point FFT. The FFT gives an output of ns

complex coefficients, which are converted to real values by taking the absolute value of

the coefficients. The spectrum of an EEG epoch xj can be expressed in vector form as

frequency coefficients aj = [aj(0), aj(1), ..., aj(i), ..., aj(
ns

2 )] where aj(i) is the amplitude

of a sinusoid of frequency i fsns
.

The following frequency domain features are then derived from the PSD of each epoch:

Peak frequency

Peak frequency is defined as the frequency corresponding to the largest amplitude in the

power spectral density (PSD). It is the dominant frequency component in the EEG signal

for that epoch and should characterise to some degree the underlying source signal.

fpeak(xj) = ipeak
ns

fs
, where ipeak = argmax aj(i). (3.14)

70



1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency (Hz)

O
cc

u
rr

e
n

ce

 

 

Reference EEG

Artefact

Figure 3.14: Probability density function for the SEF80 of background EEG (blue) and
head-movement artefact (green).

Spectral edge frequency(80, 90 and 95)

Spectral edge frequency (SEF) is defined as the frequency under which a certain percentage

of the power in the PSD lies. In this work, three SEF features are used, corresponding

to 80%, 90% and 95% of the power in the PSD. Accordingly, higher SEFs should be

influenced by head-movement artefact arising from EMG sources. This is illustrated in

Figure 3.14 where the pdf of the artefact EEG is located slightly toward higher frequency

values than that of the normal EEG.

Intensity weighted mean frequency (IWMF)

The intensity weighted mean frequency fm is the average frequency from the frequency

spectrum, and defined as:

fm =

N
2
−1
∑

i=0
pi i df

N
2
−1
∑

i=0
pi

, (3.15)

where i is the frequency bin number, pi is the estimated spectral power in the bin and

df = fs/N , with fs being the sampling frequency and N the total number of frequency

bins. The IWMF corresponds to the expected frequency value in an EEG epoch xj .
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Figure 3.15: Probability density function for the total power in the 0 to 12 Hz range of
background EEG (blue) and head-movement artefact (green).

Intensity weighted bandwidth (IWBW)

The intensity weighted bandwidth bw is defined as:

bw =

√

√

√

√

√

√

√

√

√

N
2
−1
∑

i=0
pi(fm − i df)2

N
2
−1
∑

i=0
pi

. (3.16)

Total power

The total power refers to the sum of power in all bins of the PSD between 0 and 12 Hz:

Ptotal(xj) =

12ns/fs
∑

i=0

pj(i), (3.17)

where pj(i) is the power in bin i of epoch xj . This feature was taken from epilepsy

(D’Alessandro et al., 2003; Saab and Gotman, 2005; Faul et al., 2009) and neonatal seizure

detection (Greene et al., 2008; Temko et al., 2009; Thomas et al., 2010) papers and refers

to the total power in the frequency of typically normal EEG. As shown in Figure 3.15 the

power in artefact EEG tends be distributed more uniformly than that of the background

EEG which has a peak at 0.75 Hz.

72



Power bands and normalised power bands

Powers in specific EEG sub-bands are widely used features for EEG analysis in epilepsy

research (Shoeb et al., 2004), BCI (Pfurtscheller et al., 1997) and neonatal seizure detec-

tion (Thomas, 2011). In this study, power in frequency bands of 2 Hz width are extracted

from the PSD calculation; i.e. power in 0-2 Hz, 1-3 Hz, 2-4 Hz, 3-5 Hz, 4-6 Hz, 5-7 Hz, 6-8

Hz, 7-9 Hz, 8-10 Hz, 9-11 Hz, 10-12 Hz. The power in additional frequency bands are also

utilised as features, owing to their usefulness in other papers on muscle artefact detection;

these bands are 3-15 Hz, 15-30 Hz, 59-61 Hz, 51-64 Hz, 20-30 Hz, 25-64 Hz.

In addition to the power in each sub-band, the normalised powers in these sub-bands

were also used as features. The normalised power in a sub-band reflects the proportion

of overall signal power existing in a given sub-band, and are calculated by dividing the

power in a sub-band by the total power in the signal for that epoch.

3.3.3 Entropy-based features

In information theory, entropy is a measure of the uncertainty in a random variable. Shan-

non (1949) introduced the concept of entropy in the context of digital communication but

it has since proved an effective tool in the prediction and characterization of other sig-

nals. Consequently, entropy as introduced by Shannon (1949) as well as other information

measures are utilised here as features to characterise EEG of differing types.

Shannon entropy

Shannon entropy is a measure in information theory for estimating the uncertainty of an

outcome (Shannon, 1949). It is the average unpredictability in a random variable, which

is equivalent to its information content. To calculate Shannon entropy, the signal must

first be represented as a discrete distribution. This is performed here by approximating

the probability mass function by a 16-bin histogram. The Shannon entropy of the jth

epoch is thus defined as:

HSh(xj) = −
16
∑

i=1

pi(xj) log pi(xj), (3.18)
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Figure 3.16: Probability density function for the Shannon entropy of background EEG
(blue) and head-movement artefact (green).

where pi(xj) is the magnitude of each bin. If the entropy of xj is zero, the observer

is certain of the future value of xj . Higher values of entropy then indicate increased

uncertainty. In Figure 3.16 it can be seen that the artefact EEG exhibits higher entropies

(i.e. more disorder) than that of the normal background EEG.

Spectral entropy

Where the Shannon entropy is used to quantify the order in the EEG signal, spectral

entropy is a measure of the order in the frequency spectrum of the EEG:

HSpec(xj) = −
1

log N

N
∑

i=1

zi log zi, (3.19)

where i is a frequency index and zi is a normalised power spectral density S(ωi):

zi =
S(ωi)

∑N
j=1 S(ωj)

. (3.20)

SVD entropy

Singular Value Decomposition (SVD) is a measure of the complexity of a signal, often

used to obtain information about quasi-periodic signals in noise. The SVD algorithm

decomposes a matrix such that:

A = USVT (3.21)
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where A is the input matrix, where U and V have orthogonal columns such that UTU = I

and VTV = I, with I being the identity matrix and S is a diagonal vector of singular

values. The singular values in S refer to the most significant underlying components in

the signal. The number of singular values varies with the complexity of the signal, with an

increase in signal complexity leading to a larger number of singular values. The number of

significant singular values ζ1...ζdE can be obtained using Rissanen’s Minimum Description

Length algorithm (Roberts et al., 1999).

The SVD entropy calculates the entropy in the singular spectrum (Roberts et al., 1999).

By performing SVD for an epoch as described in Equation 3.21, the singular values ζ1...ζdE

can be found. The SVD entropy is thus:

HSV D = −

dE
∑

i=1

ζ̂i log2 ζ̂i, (3.22)

where dE is the singular dimension given by Rissanen’s Minimum description length, and

where ζ̂i is the normalised singular values such that

ζ̂i =
ζi

∑

j ζj
. (3.23)

SVD entropies should be lower for quasi-periodic signals such as EEG baseline oscillations

due to movement.

Fisher entropy

The Fisher information is calculated from the singular values of the EEG to describe the

shape of the singular spectrum.

IFisher(xj) =

dE−1
∑

i=1

(ζ̂i+1 − ζ̂i)
2

ζ̂i
. (3.24)

3.4 Feature reduction and linear discriminant classification

The features outlined in Section 3.3 describe varying levels of separation between back-

ground and artefact EEG classes. A statistical pattern recognition classifier then attempts

to use these features to find some optimal separating hyperplane such that features ex-
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tracted from normal EEG lie on one side of the hyperplane and features extracted from

artefact EEG lie on the other. Linear discriminant classifiers have a very low compu-

tational requirement and generally provide reasonable results, making them suitable for

proof-of-concept experiments. Additionally, the low computational burden makes LDCs

ideal for online classification; in particular LDCs have been widely used in BCI applica-

tions (Allison et al., 2007; Lotte et al., 2007). Therefore, the premise that a generalised

head-movement artefact class can be used to detect artefacts introduced into the EEG by

head-movements, is tested with linear discriminant classification.

The majority of papers in the literature extract features from one second windows of EEG.

However, this has rarely been supported with compelling evidence as to why this window

length was chosen. As head-movement artefacts occur with differing lengths, it is not

clear what window length best captures the signal characteristics. In order to investigate

what window length would be most appropriate for classifying head-movement artefact,

this classification task was performed for window lengths of 0.25, 0.5, 0.75, 1, 1.5, 2, 3,

and 4 seconds.

3.4.1 Feature reduction using mutual information evaluation function

For most machine learning classifiers, a large feature set may be detrimental to the per-

formance of the classifier, in particular when the number of data points is limited. This

“curse of dimensionality”, which implies that complexity of the classification task increases

exponentially with the dimension of the data, means that in practice it may be beneficial

to limit the number of features to only those which are most discriminative for the classi-

fication task (Abu-Mostafa et al., 2012). There exists a wide range of methods available

to reduce the size of the feature set, broadly categorised as filter techniques, wrapper

methods and embedded techniques (Saeys et al., 2007). Generally speaking, filter tech-

niques are independent of the classifier, whereas wrapper and embedded methods require

a classifier to be chosen before feature reduction is performed. Filter techniques assess the

relevance of features by examining intrinsic properties of the data, usually by calculating

some feature relevance score (such as correlation or mutual information) that characterises

the information between the feature and the class labels. Low-scoring features are then

removed, and the remaining features are presented to the chosen classification algorithm.

Filter techniques are those independent of the chosen classifier, and offer a general picture

as to what features might be useful for the classification task, irrespective of classification
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algorithm. As the feature selection was performed at the proof-of-concept stage where a

final classification algorithm is yet to be chosen, a filter technique was employed.

A multi-variate filter technique, mutual information evaluation function (MIEF), was cho-

sen (Al-Ani and Deriche, 2002). Mutual Information is used here as a measure of usefulness

of individual features in distinguishing between normal EEG and head movement artefact.

MIEF chooses the feature with highest mutual information between the feature and the

class labels. Additional features were subsequently ranked by information gain based on

how much additional information they provided to the classification problem. MIEF is

therefore more useful than simply using mutual information alone to rank features as it

takes redundancy between features into account, obtaining the best group performance of

features. Additionally, it is better than using simple correlation to rank features, as the

correlation takes only linear connections between series into account, and classification

algorithms often exploit non-linear similarities in the data. The idea of selecting EEG

features based on Mutual Information (MI) using the Mutual Information Evaluation

Function (MIEF) proposed by Deriche and Al-Ani (2001) has previously been demon-

strated for seizure detection systems by Faul (2007). The MI I(X;Y ) between random

variables X and Y measures the amount of information in X that can be predicted when

Y is known. If X and Y are continuous, then:

I(X;Y ) = H(X)−H(X|Y ) =

∫

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)
dxdy, (3.25)

where H(X) is the entropy of X and H(X|Y ) is the conditional entropy of X given Y .

Converting to discrete data, by dividing the XY plane into boxes of size ∆x∆y, gives MI

as:

I(X;Y ) =
∑

rx

∑

ry

PXY (rx, ry) log
PXY (rx, ry)

PX(rx)PY (ry)
, (3.26)

where rx and ry are the discrete levels of X and Y respectively.

The MIEF algorithm proposed by Al-Ani and Deriche (2002) selects features based on

their MI with the output I(C; fi), their MI with the previously selected features I(fi; fj)

and the joint MI of the test feature and the previously selected features with the output

I(C; {fi, fj}). The MIEF algorithm can thus be described as follows:

1. For each feature fi ∈ L, choose the feature that has the maximal I(C; fi).

(a) Set K ← {fi}.

77



(b) Set g(K)← I(C; fi).

2. For each feature fi ∈ L, fi /∈ K, compute:

m(fi) = g(K) + λI(C; fi), (3.27)

and choose the feature that maximises m(fi).

(a) Set K ← K ∪ {fi}.

(b) Set g(K) = m(fi).

3. If |K| < |L|, go to step 2.

4. g(L) = g(K)

3.4.2 MIEF results

A feature set of the 12 best-performing features was chosen using MIEF for each window

length. A subset of 12 features is chosen as it corresponds to the levelling-off of information

gain for many of the window lengths investigated. That is to say, adding more features

did not substantially increase the mutual information between the feature set and the

class labels. 12 of the best performing features, for window length of one second are

listed in Table 3.3a, where I(c, f) is the Mutual information between the feature and the

class labels, and the change in m(f) is a measure of the information gained by adding

an additional feature. Similarly, the 12 best performing features for window length = 1.5

seconds are displayed in Table 3.3b.

The mutual information calculations performed as part of the MIEF algorithm illustrate

that the feature set appears to be a good fit with the target classes. Additionally, several

features which did not show high mutual information between it and the target class,

did contain information that other features did not hold, and thus added to the classifier

performance. This is particularly prescient in dealing with a generalised movement artefact

class; as features which exhibit good correlation with component signals may perform

poorly for the head movement class as a whole. The feature may therefore contribute

significant information in terms of describing one of the component artefact signals, while

testing poorly for describing the head movement. This is illustrated in the data by the

power in the frequency bands 59- 61 Hz and 51- 64 Hz, which had poor correlation between

feature and the target class (0.0024196, and 0.001474 for window length = 0.75) but ranked
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high (18 and 20) in the MIEF algorithm as there was some information gain associated

with their inclusion.

There was no obviously bad feature, that consistently ranked low, or indeed ranked low

in terms of both mutual information and information gain.

There was variation in the feature set chosen for each window length. This is understand-

able given the fact that the features may each capture signal characteristics that are most

evident over different signal time lengths. Additionally, in many cases there may have

been very little difference in the information gain value assigned to several features at

a given time. If one feature was chosen over another, the second feature would likely be

relegated down the table of chosen features in the next pass of the MIEF algorithm. Thus,

if MIEF is performed for a different window length, where the information gain results

at a given split is slightly altered, the MIEF results could alter significantly. However,

despite that caveat, the following features performed well for most window lengths: au-

toregressive fit (several models), SVD entropy, Shannon entropy, zero crossings and line

length. This is highlighted in Tables 3.3a and 3.3b. From this, it can be deduced that

this feature set is robust to differences in window length, and that these features tend to

provided different sources of information for the classification task. The results from the

MIEF algorithm show that while there was a difference between the features chosen, the

mutual information between individual features and the target was high (>0.05) for many

features. This can be explained in part by the fact that while a lot of the features perform

well in terms of the mutual information between it and the target class, many did not

necessarily add significant information gain. Thus if one feature is ranked highly, similar

features tend to be ranked toward the bottom of the MIEF table. Note however, that this

is not the case for the autoregressive model features; AR models of different orders can

produce significantly different results.

3.4.3 Linear discriminant classification

A linear discriminant (LD) is a function that takes an input vector xj and assigns it to

one of k classes, wc = w1, ..., wk; the function or decision surface, g(x) is a hyperplane.

Linear discriminant classification then is a statistical pattern recognition method that

finds a linear combination of features that characterises or separates two or more classes

of events. As discussed in Section 2.5, the decision surface is found by training the linear

discriminant classifier (LDC) on labelled (i.e. annotated) data. In this work, only 2-
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Table 3.2: Top performing EEG features for the artefact detection task as ranked by MIEF
for window lengths of (a) 1 second and (b) 1.5 seconds

Feature I(c,f) m(f)

Line length 0.17015 -
Shannon Entropy 0.13372 0.26378
SVD Entropy 0.067516 0.3313
Autoregressive fit 1 0.090545 0.42184
Autoregressive fit 2 0.070618 0.49246
Activity 0.0664411 0.55887
Autoregressive fit 4 0.06312 0.62199
Autoregressive fit 5 0.06239 0.68438
Zero Crossings 0.062222 0.7466
Autoregressive fit 7 0.062065 0.80867
Autoregressive fit 9 0.06124 0.86991
Autoregressive fit 3 0.059916 0.92983

(a) MIEF for window length 1 second

Feature I(c,f) m(f)

SVD Entropy 0.2489 -
Shannon Entropy 0.0534 0.30192
Zero crossings of first derivative 0.11608 0.41797
Autoregressive fit 1 0.1372 0.5079
Autoregressive fit 2 0.14133 0.57217
Autoregressive fit 3 0.13823 0.62502
Spectral Edge Frequency 95 0.045549 0.67056
Autoregressive fit 5 0.14131 0.77475
Autoregressive fit 8 0.13217 0.84829
Zero Crossings 0.041488 0.88978
Line length 0.036975 0.92675
Autoregressive fit 4 0.14514 0.96465

(b) MIEF for window length 1.5 seconds

class classification is considered, with classes corresponding to head-movement artefact

and background EEG. The following paragraphs provide some theoretical background of

linear discriminant classification derived in a Bayesian framework, i.e. using a generative

approach.

LDC theoretical background

Bayesian decision theory is a fundamental statistical approach to the linear discriminant

method of pattern classification. This approach is based on quantifying the trade-offs

between classification decisions using probability and the costs that accompany such deci-

sions. Bayesian decision theory makes the assumption that the decision problem is posed

in probabilistic terms, and that all of the relevant probability values are known (Duda

et al., 1995). As such, deciding which class c that a test point xj belongs to is based on

which class has the highest posterior probability P (wc|xj), that is:

g(xj) = P (wc|xj), c = 1, 2. (3.28)

Bayes’ theorem states that the posterior probability of a feature vector xj belonging to

class wc is related to the prior probabilities of both classes and the conditional probability

of the vector xj given the classes:

P (wc|xj) =
p(xj |wi)P (wc)

∑2
c=1 p(xj |wc)P (wc)

. (3.29)
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Since
∑2

c=1 p(xj |wc)P (wc) is the same for both classes, the denominator can be omitted.

As the decision boundary is not unique, the decision is unchanged by multiplying by a

constant or shifted by a constant. That is, if g(x) is replaced by f(g(x)), where f(.) is

a monotonically increasing function, the result is also unchanged. Thus, the discriminant

function is:

g(x) = ln p(xj |wc) + ln P (wc). (3.30)

Since the likelihood p(xj |wc) is assumed Gaussian it can be represented by:

p(xj |wc) ∼ N (µc|Σc) =
1

(2π)d/2|
∑

c |
1/2

e−
1

2
(x−µc)TΣ−1

c (x−µc), (3.31)

where µc and Σc are respectively, the two-dimensional mean vector and 2-by-2 dimension

between-class covariance matrix, given by:

Σc =
∑

(xj − µc)(xj − µc)
T , (3.32)

and |Σc| is the determinant of the covariance matrix. Thus:

g(xj) = ln P (wc) + ln

(

1

(2π)d/2|
∑

c |
1/2

e−
1

2
(x−µc)TΣ−1

c (x−µc)

)

(3.33)

= ln P (wc)−
1

2
ln(2π)−

1

2
ln(|Σc|)−

1

2
(x− µc)

TΣ−1
c (x− µc). (3.34)

As linear discriminant classifiers assume that the covariances are equal (Σc = Σ), and

discarding all terms that are not dependent on wc, then:

g(xj) = ln P (wc)−
1

2
µT
c Σ

−1µc + µT
c Σ

−1xj (3.35)

= wTxj + w0. (3.36)

The discriminant function g(x) is thus a linear combination of the components of xj , where

xj is the weight vector and w0 is the bias or threshold weight.

A two-category linear classifier (e.g. artefact vs. normal EEG) implements the following

decision rule:

g(x)







> 0 Decide w1

< 0 Decide w2

(3.37)

The equation g(x) = 0 defines the decision surface that separates points assigned to
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w1 from those assigned to w2. This separating hyperplane is then obtained by seeking

the projection that maximises the distance between the means of the two classes, while

minimising the inter-class variance.

As there are no parameters to change in the LD classifier, the performance of the LDC is

measured by the sensitivity and specificity values (Section 2.9.4). An additional metric,

accuracy, is also used here, to incorporate both sensitivity and specificity in one value; the

accuracy is defined as the mean of the sensitivity and specificity values.

LDC model selection

In order to test the premise that a generalised head-movement artefact class could be used

to detect artefacts introduced into the EEG by head-movements, a linear discriminant

classification algorithm was used. LD classifiers were trained and tested on the head-

movement artefact data set described in Section 2.9.1 using 5-fold cross-validation (Kohavi,

1995). Thus, LDCs were trained using four fifths of the data from all participants and

tested on the remaining fifth of data points. This process was then repeated five times,

ensuring that the classification results were not overly optimistic or pessimistic due to a

biased train/test split. This 5-fold cross validation was performed for each of the following

window lengths: 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4 seconds. For each window length, the 12

highest-ranking features from the MIEF algorithm were chosen. This training and testing

process was repeated 20 times per window length (to account for potential biases in the

randomly selected data), and the resulting mean sensitivity and specificity values were

reported.

3.4.4 LDC performance

Specificity and sensitivity results from the LDC are shown in Figure 3.17, indicating that

the feature set is useful in separating between normal EEG and artefacts induced by head

movement. Accuracy is the mean value of sensitivity and specificity and is included here as

a single-figure indication of classification performance. Classification performance was best

for those window lengths in the middle of the examined range, i.e., for window lengths of

0.5, 0.75, 1, and 1.5 seconds, where classifier accuracies were highest. For window lengths

greater and shorter than this, a drop in classification performance was seen. In particular,

sensitivity was highest for window lengths of 1.5 seconds, and specificity was highest for
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Figure 3.17: Sensitivity, specificity and accuracy for 12-feature, participant dependent LD
classifiers. Results are displayed for window lengths of 0.25, 0.5, 0.75, 1, 1.5, 2, 3 and 4
seconds.

window lengths of 1 second. This may be due to longer window lengths, containing both

normal and artefact data and shorter window lengths resulting in epochs which are too

short to accurately reflect the characteristics of the signal.

Results from the mutual information calculations and LDC classifier indicate that the

investigated feature set provides a good separation between artefact and background EEG

classes for participant-dependent data. This confirms the validity of using a generalised

head movement artefact class when detecting non-cerebral activity in the EEG induced

by head movements. This finding is built upon in the next section, where more powerful

classification techniques are used to perform participant-independent classification of head-

movement artefacts.

3.5 Support vector machines

Linear discriminant classifiers perform best for Gaussian distributions. However, as is clear

from the probability density functions displayed in Section 3.3, this is rarely the case for the

features used in the artefact detection task. This provides a strong argument for use of a

non-linear classifier in distinguishing between normal EEG and that contaminated by head

movements. Support vector machines (SVM) is one such family of classifiers that tend

to produce excellent classification performance for two-class problems; Gaussian kernel

SVM classifiers have proven highly-effective in a number of other event detection systems

in EEG (Temko et al., 2011b; Kelleher et al., 2010). SVMs benefit from the additional
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advantage of being somewhat indifferent to “curse of dimensionality”, thus allowing full

advantage to be taken of the complete set of EEG features, rather than performing explicit

feature reduction before the classification (Cristianini and Shawe-Taylor, 2000).

3.5.1 SVM theoretical background

The fundamental concept of the support vector machine is to transform a set of feature

vectors xj ∈ R
d into a higher dimensional space and to find the optimal hyperplane in

the space that can maximize the margin between classes. By transforming the data into

a higher dimensional space, complex classification problems can be converted into more

simple problems that can use linear discriminant functions. As the SVM is based only on

those training patterns that are near the decision surface, classification calculation times

are quite small, allowing for ease of implementation in a real-time system. Furthermore,

as support vectors are a subset of the training data and contain all the information needed

to define the classifier, SVMs are highly insensitive to the dimensionality of the feature

space. This makes the SVM ideal for a system with a large number of features extracted

from the EEG signal. The following paragraphs provide a brief description of support

vector machines, in the context of two-class supervised learning.

Let a training feature vector xj ∈ R
N with associated labels yj ∈ {1,−1} belong to linearly

separable classes, where the decision surface used to classify a pattern is the hyperplane

H0. The problem of classifying a test vector xk as belonging to one of two classes can be

written as:

f(xk) = w · xk + b, (3.38)

where w ∈ R
N . H0 is the region of vectors x which verify the equation f(x) = 0. If H1 and

H−1 are two hyperplanes parallel to H0, defined by f(x) = 1 and f(x) = −1, respectively,

then the distance separating these two hyperplanes is:

d =
2

|| w ||
. (3.39)

The distance d, denoted the margin, is maximised so as to obtain a classifier boundary

that is not overfit to the training data xj . To be correctly classified, the training vectors

84



should lie outside the margin or on the margin boundary and must satisfy:

w · xj + b ≥ +1, for yj = +1, (3.40)

w · xj + b ≤ −1, for yj = −1. (3.41)

This can be written more concisely as:

yj(w · xj + b) ≥ 1 ∀j. (3.42)

The problem of finding the SVM classifying function H0 can be stated as:

minimise
1

2
|| w ||2, subject to yj(w · xj + b) ≥ 1 ∀j. (3.43)

As real-world biomedical data are often not linearly separable, with considerable overlap

between classes, the decision boundary can be softened by introducing a slack positive

variable ξj for each training vector. The conditions that the training vectors must satisfy,

defined in Equations 3.40 and 3.41 can now be modified to include ξj such that:

w · xj + b ≥ +1− ξj , for yj = +1, (3.44)

w · xj + b ≤ −1 + ξj , for yj = −1. (3.45)

The introduction of ξj is problematic in that the constraints in 3.44 and 3.45 will be met

for all j if ξj is suitably large. To avoid trivial solutions, a regularisation constant C is

introduced into the objective function which now becomes:

minimise
1

2
|| w ||2 + C

N
∑

j=1

ξj , subject to yj(w · xj + b) ≥ 1 ∀j. (3.46)

The regularisation parameter C thus controls the degree of penalisation introduced by

ξj , such that increasing C permits fewer training errors at the expense of reduced gen-

eralisation. The convex optimisation problem outlined by Equation 3.46 is solved with

Lagrangian multipliers αj . Only training patterns lying on the margin surface or within

the margin have non-zero αj ; these are the support vectors. The classification process

thus consists of assigning one of the two classes to a given input vector xk of dimension

N , such that:

f(xk) =
M
∑

k=1

αkykxk · xj + b, (3.47)

where M is the number of support vectors and M < N .
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In the case of classification problems that are non-linearly separable, the data is mapped

to a higher dimensional feature space where the data are linearly separable, such that the

classification function becomes:

f(xk) =
M
∑

k=1

αkykφ(xk) · φ(xj) + b, (3.48)

where the dot product φ(xk) · φ(xj) can be replaced by a kernel function K, such that:

K(xj ,xk) = φ(xk) · φ(xj). (3.49)

In this thesis, a Gaussian radial basis function (RBF) kernel is used, defined by:

K(xj ,xk) = e−
1

2σ2
|xk−xj |

2

. (3.50)

In practice, it is not necessary to know the mapping function φ explicitly, thanks to a

mathematical property known as the kernel trick (Schölkopf, 2001). In this context, only

the kernel K(xj ,xk) must be known, and can be interpreted as a non-linear similarity

measure between the two data points. The SVM classifier is thus:

y(xk) = sgn

( M
∑

l=1

αlylK(xk,xl) + b

)

, (3.51)

where M is the number of support vectors.

The output scores of the SVM can be converted to a probabilistic estimation of class by

means of a sigmoid function:

P (Art|x) ≈ PA,B(f) =
1

1 + exp(Af +B)
, (3.52)

where P (Art|x) is the probability that an epoch contains artefact activity, f = f(x) is the

distance to the separating hyperplane (i.e. the output of the SVM classifier), and A and

B are the parameters of the sigmoid function estimated on the training dataset (Platt,

1999). This probability output P (Art|x) is compared to a threshold value θ, resulting in a

binary decision; 1 indicating artefact activity and 0 indicating normal, background EEG.

Thus, by specifying the threshold θ, the classifier can be made to operate in a chosen

region of the ROC curve (Section 2.9.4).
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3.5.2 SVM model selection

The head-movement artefact classification task was implemented with Gaussian RBF-

kernel SVMs and repeated for each of the window lengths investigated with LDCs. An

outline of the entire SVM classification architecture is displayed in Figure 3.18. In the

classification task outlined here, SVMs were trained and tested on participant independent

data sets; i.e. the SVM classifier used to detect artefacts in a participant’s EEG recording

was not trained on any data from that participant.

Leave-one-out cross-validation (LOO-CV) is used to evaluate the participant independent

SVM classifier performance. In this manner, all but one of the participants’ data is used

for training and the remaining participants’ data is used for testing. This procedure is

repeated until each participant has been a test subject and the mean result is reported.

The leave-one-out method is known to be an almost unbiased estimation of the true

generalization error; i.e., the performance reported with the leave-one-out method is the

most similar to the performance this system would show on an unseen test dataset of

infinite length once it is trained on all available data (Vapnik, 2006). As deploying such

an EEG system outside of academia would likely mean performing artefact detection on

an unseen participant, the process of training the SVMs on different participants than

those on which it will be tested (and repeating for each participant), the performance that

would likely be encountered in a real-world deployment is approximated. trained in this

thesis best account for variations between participants, The SVMs implemented in this

work are based on the LIBSVM library (Chang and Lin, 2011).

In practice, the regularisation parameter C and the kernel variance term σ2 must be

specified for an RBF-kernel SVM. In this thesis, these parameters are chosen by performing

5-fold cross validation on the training data (Kohavi, 1995); the data is randomly split into

five equal parts, four-fifths of the data is used for training the model, and the remaining

fifth is used to evaluate the performance. This process is repeated five times and the best

parameter set is chosen.

3.5.3 SVM performance

ROC areas for the participant independent SVMs are displayed in Figure 3.19. Boxplots

summarise the ROC areas across participants here for the eight window lengths investi-

gated. Boxplots display differences between populations without making any assumptions
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Figure 3.18: Head-movement artefact detection system based on support vector machines
classifier. Classification is performed on each EEG channel separately.

about the underlying statistical distribution, i.e. they are non-parametric. The spacings

between the different parts of the box indicate the degree of spread and skewness in the

data, and identify outliers. Boxplots summarise the data with five numbers: the small-

est observation (sample minimum), largest observation (sample maximum), lower quartile

(Q1), median (Q2), upper quartile (Q3). Sample minima and maxima are indicated by the

horizontal black lines at the end of the whiskers. Lower and upper quartiles are indicated

by the horizontal blue sides of the boxes. Sample median is indicated by the horizontal

red lines.

Classification results for the generalised head-movement artefact validated the feasibility

of using of a generalised head-movement class in detecting artefacts using participant

independent data sets. ROC area was highest for a window length of 0.75 seconds at

83 %; average ROC area was 80.2 % across window lengths (σ = 2.7%). However, the

differences between ROC areas across window lengths was small when considering the

variation in ROC areas between participants.

3.6 Summary

In this chapter, artefact detection for ambulatory EEG was introduced. A statistical ma-

chine learning approach was taken to the problem of identifying EEG sections that are

contaminated by electrical activity arising from non-cerebral sources. Thus, a compre-

hensive feature set (comprising time domain, frequency domain and information theoretic
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Figure 3.19: ROC areas of participant independent SVM classifiers for a range of window
lengths.

features) was compiled and investigated for its ability to provide separation between nor-

mal EEG and EEG that has been contaminated by artefact following head-movement.

Inspection of the features’ probability density functions and mutual information with the

class labels indicated their usefulness in the generalised head-movement artefact detection

task. This concept of generalised head-movement artefact detection was then validated

using a reduced feature set and a linear discriminant classifier; classification accuracies of

between 65 % and 70% were recorded for each of the window lengths investigated with

a window length of 1.5 seconds showing the best performance. With the feasibility of

detecting head-movement artefacts with a single classifier confirmed, classification using

a support vector machines classifier was performed utilising the full feature set. Mean

ROC areas of between 75 % and 83 % were observed, this time on the more difficult task

of participant independent artefact detection. A window length of 0.75 seconds resulted

in the highest mean ROC area of 83 % ; however, given the variation in classification

performance across participants, a definitively best window length was not chosen. The

SVM classifier trained and tested in this chapter is thus suitable for artefact annotation of

EEG recorded in an ambulatory environment, and to the author’s knowledge is the first

of its kind. Additionally, this artefact detector could be incorporated into an automated

neurological event detection system at either the pre-processing (via artefact rejection) or

post-processing stage (via classifier fusion).
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Chapter 4

Detecting head-movement

artefacts with gyroscopes

4.1 Introduction

It was shown in Chapter 3 that as head movements often result in EEG artefacts (and cer-

tain head-movements may be more likely than others to result in artefact), it follows that

information regarding movements of the head could lead to insights into the subsequent

production of artefact in the EEG. Gyroscopes, devices that measure angular rotation,

offer a means of accurately detecting head movements. Recent advances in the miniaturi-

sation of gyroscopes have resulted in their inclusion in the commercially available Emotiv

EPOC EEG headset (Emotiv EPOC headset). This chapter investigates the use of the

gyroscopes built into the Emotiv EPOC headset in providing information on head move-

ment and subsequently using this information to detect resultant contamination of the

EEG signals. A journal paper (O’Regan et al., 2013a) and an international peer-reviewed

conference paper (O’Regan et al., 2010b) have arisen from the work carried out in this

chapter.

4.2 Gyroscopes

The advent of miniaturized sensing technology has paved the way for inconspicuous body-

worn sensors that allow the collection and storage of data measuring the different aspects
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of human movement. Accordingly, a vast body of literature has grown in conjunction with

this, outlining ways in which advanced signal processing and statistical pattern recognition

techniques can be applied to signals generated by inertial sensors such as gyroscopes and

accelerometers in order to provide information on various forms of body movements and

physical activities. Gyroscopes have been effectively deployed to capture motion for a wide

range of biomedical applications, e.g. Bourke and Lyons (2008) used bi-axial gyroscopes

for fall-detection. Several papers have outlined the use of gyroscopes in conjunction with

accelerometers for fall detection in the elderly (Greene et al., 2010), gait analysis during

walking and running (McGrath et al., 2012) and gait assessment of patients with Parkin-

son’s disease (Salarian et al., 2004).

The Emotiv EPOC headset is equipped with two microelectromechanical systems (MEMS)

gyroscopes located on the printed circuit board at the back of the device. These gyro-

scopes were initially included in the EPOC for attitudinal control in BCI applications.

However, this set-up offers an inexpensive method of utilising inertial sensors to gain in-

sight into head-movements and consequently into the head-movement artefact detection

task. Internally, the MEMS gyroscopes use lithographically constructed vibrating wheels.

When movement occurs, a wheel is driven to rotate a fraction of a full turn about its

axis. The tilt of the wheel is then measured to produce a signal related to the rate of

rotation (Bernstein, 2003). The gyroscopes in the Emotiv EPOC provide measurements

of angular velocity within two planes. In this work, movement within these two planes

are referred to as x -direction and y-direction movement; x -direction movement refers to

lateral rotation around the neck axis and y-direction movement indicates vertical rotation

around the axis joining the ears. These axes are illustrated in Figure 4.1.

Visual inspection of the EEG and gyroscope signals outlined in Figure 4.2 shows clear

correlation between each of the two gyroscope signals and the EEG trace at times of head-

movements. However, as x -direction and y-direction gyroscope signals each detect move-

ment about one axis only, each signal is appropriate for the detection of certain types of

movements. Thus, the y-direction gyroscope signal adequately highlights periods of EEG

artefacts caused by nodding the head, but is considerably less successful in detecting the

EEG artefacts brought about by shaking the head. Conversely, the x -direction gyroscope

signal barely registers the nodding of the head, but comprehensively flags shaking of the

head in a manner that is clearly correlated to sections of head-movement artefact. To

combine information from both gyroscopes into a single, composite gyroscope signal, ab-

solute angular velocity α(n) is created by taking the square-root of the sum of the squared
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y-direction

Figure 4.1: Emotiv EPOC headset: Gyroscope axes.

x - and y- direction gyroscope signals:

α(n) =

√

gyrox(n)
2 + gyroy(n)

2. (4.1)

This value quantifies the angular velocity that takes place in either direction, giving a

measure of overall head-movement and indicating whether or not head-movement has

occurred. As there may be an unknown delay between the head-movement as detected by

the gyroscope, and the appearance of the resultant artefact on the EEG trace, two different

moving average (MA) filters are applied to α(n) to produce two additional derivative

gyroscope signals. The length of the MA filters was determined based on observation. A

10-point MA filter was applied to the absolute angular velocity signal α(n) as described

in Equation 4.2.

MA10 =
1

10

9
∑

k=0

α(n− k). (4.2)

Similarly, in Equation 4.3 a 50-point MA filter was applied to α(n):

MA50 =
1

50

49
∑

k=0

α(n− k). (4.3)

An example of the five gyroscope signals are displayed in Figure 4.3, for thirty seconds

of data, showing nodding and shaking of the head in addition to sections of background

EEG activity where no head-movement is present. Similarly, Figures 4.4 and 4.5 show

EEG and gyroscope signals for artefacts arising from raising and lowering of the eyebrows
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Figure 4.2: EEG channel F8 (blue) and gyroscope x-direction (black) and y-direction (red)
signals for artefacts caused by raising nodding and shaking head.
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and shaking of the head, in addition to sections of background EEG activity.
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4.3 Gyroscope features

As discussed in Chapter 3, in statistical pattern recognition, features are quantitative

descriptors of a signal whose purpose is to show significant changes in value between classes.

In this experiment, periods where head-movements lead to EEG artefact are known as they

were carefully annotated when the data was recorded (Section 2.9.1). The classification

goal is thus to find a discriminant function that separates between features extracted from

the gyroscope signals so that those features corresponding to times when head-movement

artefact is produced lie on one side of the function, and features extracted from gyroscope

signals at times when the head remains still lie to other side of the function. In Figures

4.3, 4.4 and 4.5 there are clear visual correlations between artefact in the EEG and fast,

high-amplitude deflections in the gyroscope signal. To quantitatively capture this, the five

gyroscope signals (x, y, α, MA10 and MA50) were segmented into overlapping epochs and

a number of time domain features as well as one feature from the frequency domain (total

power) were extracted from each gyroscope signal for each epoch. Gyroscope features

were chosen to reflect the fact that when head-movement occurs, the gyroscope signal

undergoes relatively large deflections that oscillate with changing direction. In particular,

it was observed that larger and more abrupt head-movements were inclined to produce

artefacts in the EEG. Unlike the EEG signal however, the gyroscope signals exhibited a

much more limited frequency range with less complex morphologies observed; consequently

only one frequency-based feature was inclued. These features were extracted from each

of the five gyroscope channels, providing a total of 80 gyroscope features extracted for

each epoch. To the author’s knowledge, the work carried out in this chapter is the first

to utilise gyroscopes to detect the presence of head-movement artefact in EEG. It was

not clear what window length was most appropriate for this classification task; a range of

window lengths were thus investigated, with segmentation performed for window lengths

of 0.25, 0.5, 0.75, 1, 1.5, 2, 3, and 4 seconds.
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(a) Zero crossings of the 1st derivative of y-direction gyroscope signal.
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(b) Zero crossings of the 1st derivative of x -direction gyroscope signal.
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(c) Zero crossings of the 2nd derivative of MA-10 applied to the absolute angular
velocity gyroscope signal α(n).
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(d) Line length of x-direction gyroscope signal.

Figure 4.6: Probability density functions of a selection of gyroscope features corresponding
to sections of EEG where head-movement artefact was registered and gyroscope features
corresponding to background EEG. The pdfs displayed describe features extracted for
window lengths of 1 second.
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(a) Line length of y-direction gyroscope signal.
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(b) Line length of the absolute angular velocity gyroscope signal α(n).
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(c) Complexity of the y-direction gyroscope signal.
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(d) Variance of the 1st derivative of y-direction gyroscope signal.

Figure 4.7: Probability density functions of a selection of gyroscope features corresponding
to sections of EEG where head-movement artefact was registered and gyroscope features
corresponding to background EEG. The pdfs displayed describe features extracted for
window lengths of 1 second.

98



Table 4.1: List of gyroscope features for head-movement artefact detection.

Time Domain Features

• Variance
• Zero Crossings
• Nonlinear Energy (NLE)
• Line Length/ Curve Length
• No. of inactive samples
• Activity (1st Hjorth Parameter)
• Mobility (2nd Hjorth Parameter)
• Complexity (3rd Hjorth Parameter)
• RMS Amplitude
• Kurtosis
• Skewness
• Zero Crossings of first derivative
• Zero Crossings of second derivative
• Variance of first derivative
• Variance of second derivative

Frequency Domain Features

• Total Power

The complete list of gyroscope features is displayed in Table 4.1 and described in the fol-

lowing paragraphs. The discriminating potential of individual gyroscope features can be

visualised by comparing the probability density density functions (pdf) of features from

two classes (gyroscope signals corresponding to artefact EEG and gyroscope signals cor-

responding to normal EEG). Probability density functions for several gyroscope features

are illustrated in Figures 4.6 and 4.6. The following paragraphs provide an interpretation

of these pdfs and are included here as an illustration of the reasoning behind the choice

of certain features.

No. of zero crossings of the gyroscope signal and its derivatives

The number of zero crossings (Zc) is the number of times within an epoch that the gyro-

scope signal crosses the x-axis. The number of zero crossings of the 1st derivative of the

gyroscope corresponds to the number of local maxima and minima of the gyroscope signal.

The number of zero crossings of 2nd derivative corresponds to the number of times that

the 2nd derivative of the EEG signal crosses the x-axis within an epoch. During periods

when the participant remains still, the gyroscope signal is centred about the x-axis with

small deviations representing minute movements of the headset and consequently crosses

the x-axis frequently. Due to the large deflections in the gyroscope signals when head-

movement occurs, the number of zero crossings of the gyroscope and its derivatives should

be smaller in sections of head-movement.
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Probability density functions for zero crossings of the 1st derivative are displayed in Fig-

ure 4.6a. The reference EEG and artefact signals are bimodal; the reference EEG has a

clear, dominant peak centred at approximately 90 crossings per epoch. The peaks of the

distribution corresponding to artefact are more equally sized, with a wide range of values

observed. These trends can be interpreted by considering that this feature measures the

rate of change of the gyroscope signal in a given direction. When little head movement

is observed (corresponding generally to normal EEG), the gyroscope signal will be low-

amplitude, deviating slightly but frequently with each minor movement of the headset.

Consequently, in a given epoch, there should be a relatively large number of zero cross-

ings. During head-movement the situation is quite different. When the head undergoes

large changes in direction, a high amplitude gyroscope signal results. The derivative of

this signal is then positive when the signal is increasing and negative when the signal is

decreasing. Due to the rate of change of these high amplitude signals, the derivative of the

y-direction gyroscope will thus have fewer zero crossings for these movements, a fact that

is captured in the larger peak of the distribution. However, it should be noted that the

y-direction gyroscope signal can only record head movements about the axis joining the

ears; any movements about the axis defined by the neck will be undetected and appear

as if no head-movement has occurred. Accordingly, the second peak of the distribution

corresponds to sections of head-movement which takes place about an axis that is unob-

served by the y-direction gyroscope signal (e.g. shaking the head). With some notable

differences, the pdf of zero crossings of the 1st derivative of the x -direction gyroscope sig-

nal follows a broadly similar pattern of discrimination between classes as that observed

for the y-direction movement and is illustrated in Figure 4.6b. Once again, features cor-

responding to background EEG tend to exhibit higher numbers of zero crossings than

features corresponding to artefactual EEG. However, the distribution is multimodal for

the gyroscope features corresponding to artefact EEG, with individual peaks describing

different types of head-movements, with different characteristic angular velocities.

Figure 4.6c displays probability density functions for zero crossings of the 2nd derivative of

α(n) with a 10-point moving average filter applied. Like Figure 4.6a, the distributions are

bimodal; the dominant peak of the signal corresponding to normal EEG located separately

to a well-defined peak of the signal corresponding to artefact EEG. Interpretation of the

discriminative peaks is analogous to that of Figures 4.6a and 4.6b, with acceleration of

the gyroscope signal replacing rate of change of the gyroscope signal.

Nonlinear Energy (NLE)
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Non-linear energy, given by Equation 3.10 was included as an EEG feature in Section 3.3.

Gyroscope signals during periods of head-movement typically contain more energy than

periods without movement, and consequently should exhibit higher NLE.

Line Length/ Curve Length

Line length, given by Equation 3.1 describes the running sum of distances between consecu-

tive points within a sliding window, and gives a measure of signal complexity. Accordingly,

gyroscope signals corresponding to movements, where there are big amplitude jumps be-

tween samples, are expected to have considerably higher line length than gyroscope signals

corresponding to no head-movements.

Line length of the x -direction, y-direction and absolute angular velocity gyroscope signals

are displayed in Figures 4.6d, 4.7a and 4.7b, respectively. While there is considerable over-

lap between distributions, in general, gyroscope features corresponding to normal EEG

tend to be predominantly of values between 100 and 200. In comparison to this, the

gyroscope features corresponding to EEG artefact is more broadly distributed. That is,

gyroscope signals while no head-movements take place is quite predictable in terms of line

length. However, during head-movements line length tends to be quite varied.

Maximum value of autocorrelation

The maximum value of the autocorrelation Rss(xj) of a gyroscope signal was used by

Tunçel et al. (2009) to classify human leg movements. The autocorrelation is defined as:

Rss(xj) =
1

Ns −∆

Ns−∆−1
∑

i=0

(sj(i)− µj) (sj(i−∆)− µj) , (4.4)

where ∆ = 0, 1, ..., Ns − 1. Repetitive movements such as those produced during shaking

of the head have higher maximum autocorrelation values than irregular movements or

periods of rest.

No. of inactive samples

The number of inactive samples within an epoch xj is defined as the number of samples

for which there is very little change in the gyroscope amplitude. This was calculated by

applying a threshold of 0.01 to the absolute value of the derivative of the gyroscope sig-
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nal. Gyroscope sections without head-movements should therefore have higher numbers

of inactive samples.

Hjorth parameters

The Hjorth parameters (activity/variance, mobility and complexity) given by Equations

3.4, 3.6 and 3.7 are commonly used in EEG signal processing. These features are utilised

here for gyroscope signals. Owing to the fact that a large range of head-movements are

examined in this experiment, it is anticipated that the variance of gyroscope signals corre-

sponding to artefactual sections of EEG should on average be greater than the variance of

those corresponding to normal EEG. The probability density function of the complexity

of the y-direction gyroscope signal is displayed in Figure 4.7c. Clear discrimination can

be observed between the distributions; gyroscope epochs corresponding to artefact EEG

exhibiting less complexity (due to more regular gyroscope signals) than those of gyroscope

epochs corresponding to normal EEG. As was observed for other features, the range of

values is not confined to those within the dominant peak but manifests as a wide spread

of values. This phenomenon is likely explained by movements that are not measurable

about the y-direction axis.

Root mean square amplitude

The root mean square (RMS) amplitude, or quadratic mean, is a statistical measure of the

magnitude of a time varying quantity and given by Equation 3.2. As gyroscope signals

corresponding to artefact EEG are often high-energy, high-amplitude signals, the RMS

amplitude aims to capture this trait.

Skewness

Skewness is a measure of the asymmetry of the probability distribution of a real-valued

random variable. Skewness has been used to classify human leg movements with gyro-

scopes in Tunçel et al. (2009) and is given in Equation 3.8. Owing to the variety of

different head-movements, the distribution of gyroscope signals corresponding to sections

of EEG where artefacts are produced are hypothesized to have higher skew than those

corresponding to the condition of no movement.

Kurtosis
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Kurtosis, often referred to as the fourth central moment, is a measure of the “peakedness”

of a probability density function and is defined in Equation 3.9.

Variance of first and second derivatives

The variance of the first (σ∆j) and second (σ∆2j) derivatives were used by Thomas et al.

(2010) for EEG seizure detection. They are included here as gyroscope features in the

artefact classification task as they were found to provide reasonable separation between

gyroscope signals during rest and signals during movements.

Variance of the 1st derivative of the y-direction gyroscope signal is displayed in Figure

4.7d. The variance of the gyroscope features corresponding to artefactual EEG is gen-

erally lower than that of features corresponding to normal EEG. In essence, this feature

is another example of a trend visible in many of the illustrated features; namely, head-

movement tends to bring a degree of order to the gyroscope signal.

Total Power

The total power refers to the sum of power in all bins of the power spectral density (PSD)

between 0 and 12 Hz and is given by Equation 3.17. This feature is common in gyro-

scope classifiers and refers to the total power in the frequency range of typically occurring

gyroscope signals. Periods of movement usually exhibit higher total power than inactive

sections.

To summarise, clear discrimination between pdfs from gyroscope signals corresponding

to normal and artefactual EEG are visible in varying degrees in Figures 4.6 and 4.7.

Caution should be exercised however in concluding that a feature with strongly overlapping

pdfs indicates the uselessness of that feature. As explained in Chapter 3, this is not the

case; multiple features that are independently non-discriminative may provide adequate

separation between classes when combined.

4.4 Feature reduction and linear discriminant classification

As shown in Chapter 3, the simplicity of linear discriminant classifiers provide a good

starting point from which to begin an investigation into an uncharted classification task.

Therefore, as an initial experiment to investigate the feasibility of using gyroscope features
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to detect head-movement artefact in the EEG, a number of linear discriminant classifiers

(LDC) were trained and tested on a subset of the features outlined in Section 4.3. As

discussed in Section 3.4.1, with such a large feature set, it is likely that the information

captured by some features may duplicate the information contained within other features

and it may be beneficial to reduce the number of features by selecting a smaller feature

subset and so avoid the “curse of dimensionality” (Abu-Mostafa et al., 2012). As was

the case for the EEG linear discriminant classifier in Chapter 3, a multivariate filter

technique, mutual information evaluation function (MIEF), performed the dual role of

estimating the usefulness of the individual features and of reducing the feature set for the

linear discriminant classifiers.

4.4.1 Mutual information evaluation function

The issue of feature ranking is discussed in some detail in Section 3.4.1, where it was shown

that the mutual information evaluation function outlined by Al-Ani and Deriche (2002)

was a suitable means of ranking features in terms of predicted utility for a classification

task. Consequently, MIEF was employed to rank the gyroscope features in terms of

usefulness for the head-movement classification task. MIEF performed feature ranking by

calculating the mutual information between a gyroscope feature and the EEG class labels,

the mutual information between the gyroscope feature and the previously selected features,

and the joint mutual information between the gyroscope feature and previously selected

features and the EEG class labels. In this manner, MIEF calculates the information

gain brought to the classification task by each additional gyroscope feature. MIEF was
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Figure 4.8: Information gain as function of the number of features used, as ranked by the
mutual information evaluation function for a window length of 1 second.
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performed for window lengths of 0.25, 0.5, 0.75, 1, 1.5, 2, 3, and 4 seconds. The best-

performing features are displayed in Table 4.2, where it can be seen that certain features

performed consistently well across window lengths. The best performing features were

those associated with gyroscope y-direction movement and the two, filtered α(n) signals,

MA-10 and MA-50. That is to say, features derived from up-down head movement and

absolute head-movement were most useful in indicating if head-movement artefacts were

produced in the EEG recording. In particular, features that captured the amplitude

(line length) or rate of oscillation (zero crossings of the 1st and 2nd derivatives) of the

gyroscope signals were ranked highly. Across features, there was significant overlap in

information, indicating that the primary advantages of using gyroscopic features occurs

with the addition of the first few features and information gain tapers off thereafter. This

is seen in Figure 4.8, where the information gain flattens with the addtion of the sixth

feature. Note also, in Figure 4.8 that due to the fact that the cost function of MIEF is not

monotonically decreasing, the addition of a feature may result in increased information

gain; thus, the spike in information gain with the addition of the fourth feature.

Table 4.2: Best-performing features using MIEF for window lengths 0.25 to 4 seconds.

0.25 0.5 0.75 1 1.5 2 3 4 Feature 20 y-direction gyro, line length (L)
20 20 20 61 20 61 68 77 Feature 28 y-direction gyro, Zero Crossings of the 1st derivative
32 61 61 68 77 68 61 68 Feature 36 absolute acceleration, line length (L)
77 68 68 20 28 20 76 76 Feature 61 MA-10, Zero Crossings of the 2nd derivative
28 28 28 28 68 30 77 61 Feature 68 MA-50, line length (L)
36 22 22 77 36 28 20 30 Feature 77 MA-50, Zero Crossings of the 2nd derivative

4.4.2 Linear discriminant classification

Linear discriminant classifiers find a linear combination of features that characterise or

separate the two classes presented in the head-movement artefact detection classification

task. A detailed account of the underlying theory associated with linear discriminant

analysis is outlined in Section 3.4.3. The system architecture for the gyroscope linear

discriminant classifier is illustrated in Figure 4.9.

LDC model selection

In this experiment, participant-dependent linear discriminant classifiers were trained using

5-fold cross validation; training was performed on a random four fifths of the data, and
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Figure 4.9: System architecture for gyroscope linear discriminant analysis head-movement
artefact detector.

tested on the remaining fifth of data points and this process was repeated five times. This

was performed for each of the investigated window lengths: 0.25, 0.5, 0.75, 1, 1.5, 2, 3,

4 seconds. For each window length, a feature set of the best-performing features were

identified using MIEF as displayed in Table 4.2. Feature subsets of the top 3, 4, and 5

highest-ranking features from the MIEF algorithm were chosen for the classification task.

LDC performance

The performance of the classifiers was evaluated by sensitivity, specificity and accuracy

metrics; the reported results are the mean of the five-fold CV process. The LD classification

results from the 3-, 4-, and 5-feature LD classifiers are displayed in the form of sensitivity,

specificity and accuracy in Figures 4.10a, 4.10b and 4.10c, respectively.

Sensitivity values of the 4- and 5-feature linear discriminant classifiers were considerably

higher than those of the 3-feature classifiers (Figure 4.10a). Conversely, specificities of the

3-feature LDC outperformed its 4- and 5-feature counterparts (Figure 4.10b). The addition

of features allows the accurate detection of more artefact epochs, at the cost of reduced

specificity. Figure 4.10c displays the accuracy of the classifiers, indicating that despite the

reduction in specificity brought on by the addition of the fourth and fifth features, it is

outweighed by the corresponding improvement in sensitivities. Overall, results from the

LD classifiers indicate that using the gyroscope features to separate between normal EEG

and artefacts induced by head movement is possible and warrants further investigation.

4.5 Support vector machines

Ideally, classification of gyroscope signals to identify periods of artefact contamination in

the EEG would permit participant independent head-movement artefact detection. This
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Figure 4.10: LDC results for each of the examined window lengths.
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would allow an artefact detection system to be applied to an unseen participant, where

the classifier has no prior knowledge of the user’s EEG or movement characteristics as

measured by the gyroscopes, and without the necessity of a calibration stage. The LDCs

described in 4.4.2 were participant dependent, and although they verified the feasibil-

ity of using gyroscopes to detect EEG artefacts produced by head-movements, improved

classification performance is sought for a practical artefact detection system. This is

especially true considering that due to the high intra-person variability in EEG charac-

teristics, participant independent systems typically perform considerably worse than their

participant-specific equivalent. To achieve participant independent performance, support

vector machine classifiers using the full feature set were investigated for this classification

task. The justification for applying such an approach is centred on the fact that support

vector machines classification have been shown to outperform linear discriminant classi-

fiers for a range of classification tasks as demonstrated by Meyer et al. (2003); Lotte et al.

(2007) and further demonstrated for the EEG artefact detection task in Chapter 3.

Pre-

processing
Feature

Extraction
SVM

Post-

processing

4th order 50 Hz

Chebyshev notch filter

4th order 1Hz

Butterworth HP filter

Sigmoid

Function

(a)

(a)

(b)

(b) Threshold

x- and y-

gyroscope

signals

Artefact

vs.

non-artefact

Calculate derivative

gyroscope signals

Figure 4.11: System architecture for gyroscope support vector machine head-movement
artefact detector.

4.5.1 Gyroscope SVM

Support vector machines are a well-established pattern recognition technique for super-

vised learning, particularly suited to two-class classification problems (Cristianini and

Shawe-Taylor, 2000). SVMs have been utilised for a wide range of classification tasks

in the biomedical signal processing field in general and within the domain of automated

EEG event detection in particular. A brief theoretical introduction to support vector

machines is outlined in Section 3.5. In performing artefact detection using gyroscope sig-
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Figure 4.12: Boxplots of SVM ROC areas for each of the examined window lengths for
the participant independent experiment.

nals, Gaussian RBF kernel SVMs were used to perform the classification task. The SVM

classification system is illustrated in Figure 4.11. The SVM classifiers were trained and

tested using LOO-CV as described in Section 3.5. Participant independent classification

was investigated for the aforementioned range of epoch lengths.

Boxplots of ROC areas across participants for the participant independent experiment

for each window length investigated are displayed in Figure 4.12. Median ROC areas

were typically between 80% and 85%, although there was considerable variability across

participants. Despite this variability, the SVM classifiers guarantee ROC areas between

60 % and 90% for detecting artefacts using gyroscope signals in an unseen participant.

4.5.2 Comparison of EEG and gyroscope SVM performance

The feasibility of using gyroscope signals to predict if artefacts are produced in the EEG

was confirmed with the use of SVM classifiers. Let us now consider the question: how

does the gyroscope SVM compare to the EEG classifier from Chapter 3, in determining

whether artefacts arising from head-movements have corrupted the EEG?

The performance of the EEG and gyroscope classifiers are compared in Figures 4.13a and

4.13b which show boxplots of mean ROC area across participants for window lengths of

0.5 (the best-performing gyroscope classifier) and 0.75 seconds (the best-performing EEG

classifier), respectively. Performance of EEG and gyroscope classifiers were similar for both

window lengths. For the 0.5 second window, the EEG classifiers had a higher median ROC

area in addition to lower variability across participants. For the 0.75 second window, the
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(a) 0.5 seconds was the top-performing window length for the gyroscope classification task.
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(b) 0.75 seconds was the top-performing window length for the EEG classification task.

Figure 4.13: Boxplot of mean ROC areas for a window lengths of 0.5 and 0.75 seconds for
the participant independent experiments. EEG and gyroscope results are shown.
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median ROC area was higher for the gyroscope classifier, although the difference was

slight.

4.6 Summary

In this chapter the feasibility of using features extracted from gyroscopes to detect head-

movement artefacts in the EEG was investigated. Results from the mutual information

calculations and linear discriminant classifiers indicated that the gyroscope feature set

was useful in discriminating between resultant EEG artefact and non-artefact classes.

LDC classification accuracies of between 65 % and 68 % for the 4- and 5- feature LDCs

validated the use of gyroscope features to detect non-cerebral, movement-induced activity

in the EEG. The classification results for the support vector machine classifiers showed

good separation between gyroscope signals during normal EEG and those during head-

movement artefact, providing a strong argument for including gyroscopes in an EEG

artefact detection system. Indeed, the gyroscope classifiers performed at similar levels to

the EEG classifiers (mean ROC areas between 80 % and 84 %) and even outperformed them

for some window lengths. Once more, however, a single best window length was not chosen,

due to the variability in mean ROC areas across participants for each window length

investigated. The primary findings of this chapter can thus be summarised as follows:

the production of artefact in the EEG can be predicted using only features extracted

from the gyroscope signal and a suitably trained SVM classifier, and the accuracy of

this prediction approaches that of an SVM classifier trained on EEG features. In the

next chapter, information from both EEG and gyroscope signals will be combined to

investigate if these different modalities offer complimentary information regarding the

detection of head-movement artefacts in the EEG, and whether these physiological signals

can be combined to improve artefact detection.
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Chapter 5

Multimodal detection of EEG

head-movement artefacts

5.1 Introduction

In the previous chapter, it was shown that statistical pattern recognition classifiers im-

plemented with features extracted from gyroscope signals were effective in determining if

head-movement artefacts were produced in the EEG. This poses the question: is compli-

mentary information carried by the different modalities, and if so, how can this fact be

exploited to improve the classification performance of the head-movement artefact detec-

tion task? In this chapter, a comprehensive data fusion analysis is conducted to investigate

whether these different modalities carry complementary information, and if so, whether

they can be combined to provide a more accurate detection of head-movement artefacts.

To this end, several methods of combining these physiological and physical signals at the

feature, decision and fusion levels are examined for their effectiveness in detecting EEG

artefacts arising from head-movements.

Two journal papers (O’Regan et al., 2013a; O’Regan and Marnane, 2013) have arisen from

the work outlined in this chapter.
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5.2 Multimodal fusion

Fusion of information from EEG and gyroscope signals can be performed at the feature

level or at the classifier level. Feature fusion (sometimes referred to as early integration)

can take various forms, although typically the most straightforward feature fusion method

is utilised and features from different modalities are concatenated on a per-epoch basis.

Fusion at the classifier level (sometimes referred to as late integration) employs separate

classifiers for each signal and combines the results thereafter. Classifier fusion is a well-

researched method of combining information from different modalities, with a large range

of options available to combine the outputs from a set of classifiers into a final binary

decision (Kittler et al., 1998; Kuncheva, 2004; Mandic et al., 2005). There are many

examples in the literature where classification using a combination of EEG and additional

physiological signals outperform the individual, base classifiers in the experiment (Peng

et al., 2007; Kapoor et al., 2008; Qian et al., 2009; Polikar et al., 2010). However, the results

reported in the literature for combining EEG and additional physiological signals conflict

in their recommendations for early or late integration of signals. Accordingly, they do

not clearly indicate whether early or late integration will offer better performance for the

multimodal head-movement artefact classification task. In the seizure detection domain,

Greene et al. (2007) investigated the combination of EEG and ECG signals in improving

the performance of neonatal seizure detection and found feature fusion to outperform

classifier fusion. Malarvili and Mesbah (2008) found the opposite with fusion of EEG and

ECG signals at the classifier level offering better detection of seizure in neonatal EEG.

Bermudez et al. (2007) performed a similar analysis for detecting temporal lobe epilepsy in

adults but found that classifier fusion offered better classification performance than feature

fusion. The work in this chapter therefore investigates what method of multi-modal data

fusion is most effective in combining EEG and gyroscope signals for the detection of head-

movement artefacts.

In Chapters 3 and 4 it was discovered that choice of window length was largely unimportant

for EEG and gyroscope classifier performance. With this in mind, coupled with the fact

that the convention in the literature has been to utilise window lengths of one second, the

multimodal fusion experiment outlined in this chapter was carried out for window lengths

of one second.
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5.3 Feature fusion

Perhaps the most straightforward method of fusing information from different modalities

is that of feature fusion. In this process, features extracted from the individual signals are

combined before being applied to a classifier. While there are several methods of perform-

ing this combination, the most common is to simply concatenate features extracted from

the different modalities. In support vector machines classification, the SVM is charac-

terised by the normal to the maximum-margin hyperplane, where its components specify

the weights (i.e. importance) of the features, such that higher absolute values have a

larger impact on the decision function. Thus SVMs assign weights to each feature all on

its own. In this context, unweighted feature concatenation is an appropriate feature fu-

sion technique to combine the EEG and gyroscope signals for the head-movement artefact

classification task. Thus, for a given epoch of an EEG channel, a feature set of 69 features

is extracted from the EEG, and a further 80 features are obtained from the corresponding

epoch of the gyroscope signals. A feature set of 149 features is then associated with each

epoch of each EEG channel. By this means, gyroscope information is incorporated into

per-channel EEG classification.

The EEG and gyroscope features were used to train a radial basis function SVM to separate

between sections of EEG that contained head-movement artefact and sections that were

artefact-free. The training and testing process was the same as those outlined for the

individual EEG and gyroscope classifiers in Chapters 3 and 4 and the reader is referred

there for more details. Once more, to achieve participant independent artefact detection,

LOO-CV was used. An illustration of the feature fusion architecture is outlined in Figure

5.1.
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Feature Vector

Concatenate

Features

Figure 5.1: Overview of the feature fusion classifier combination architecture. Feature
fusion as illustrated in the diagram is repeated for each EEG channel.
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5.3.1 Feature fusion performance

Figure 5.2 displays the boxplots of the ROC areas across participants for the EEG, gy-

roscope and feature fusion classifiers. Both mean and median ROC areas of the feature

fusion classifier are higher than those of the EEG and gyroscope classifiers. This indicates

that the EEG and gyroscope features contain complementary information in discriminat-

ing between head-movement artefact and background EEG. Another trend that is visible

in Figure 5.2 is that the variability of ROC areas across participants is smaller for the

feature fusion classifier than those of the individual EEG and gyroscope SVMs. This in-

dicates that complementary information from the EEG and gyroscope signals offers more

robust classification performance across participants than using either of the individual

EEG or gyroscope classifiers in isolation.
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Figure 5.2: Boxplot of ROC areas for feature fusion classifier with an epoch length of one
second. Boxplots of the EEG and gyroscope classifiers are also displayed. Mean ROC
areas are shown by the blue line.

5.4 Score fusion

In the score fusion method of classifier combination, EEG and gyroscope classifiers are

trained separately and combined afterwards. Fusion takes the form of combining the

gyroscope classifier output probabilities with the output probabilities from each EEG

channel to allow per-channel artefact detection (Figure 5.3). In this thesis, score fusion

methods using non-trainable, fixed combining rules are investigated. These fixed rule

combiners are available for combination as soon as the base classifiers are trained and
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Figure 5.3: Overview of the score fusion classifier combination architecture. The process
illustrated in the diagram is repeated for each EEG channel.

make use of the fact that the outputs of the EEG and gyroscope classifiers have a clear

interpretation, namely, they are the class posterior probabilities. The combined classifier

Q(x) is then:

Q(x) = F [C(x)] (5.1)

where Q(x) = Qj(x); j = 1, ..., c for j base classifiers C, and F is a fixed-rule combination

function. Several common, fixed-rule combination functions are investigated in this work:

mean, product, maximum and minimum rules. Kittler et al. (1998) and Tax et al. (2000)

showed that there are advantages and disadvantages to score fusion carried out with each

of these rules. This study examines how these characteristics unfold in the context of EEG

head-movement artefact detection.

5.4.1 Mean/Sum rule

The mean rule is simply the average of the individual, base classifier posterior probabilities:

Q(x) =
1

L

L
∑

j

Cj(x) (5.2)

for j classifiers. In combining the EEG and gyroscope classifiers, we thus get:

PArtefact(x) =
PEEG(x) + PGyro(x)

2
(5.3)

where PEEG(x) is the per-channel probability of head-movement artefact existing on a

given EEG channel, and PGyro(x) is the probability of head-movement artefact existing

on the same EEG channel, as estimated by the gyroscope classifier. In some papers, the

scaling factor L is omitted, and the combination output Q(x) becomes the sum of the

posterior probabilities (Kittler et al., 1998; Kittler and Alkoot, 2001).
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5.4.2 Product rule

Combined classifier posterior probabilities are created via the product rule by multiplying

the output probabilities from each of the individual classifiers, such that:

Q(x) =
∏

j

Cj(x) (5.4)

The product rule has been shown to produce good results if the individual classifiers are

independent, e.g. if the classifiers have been created for different feature spaces that are

entirely unrelated. The product rule assumes that the confidence estimates are reliable

and noise-free; this is assumed to be the case for the EEG and gyroscope SVM classifiers

due to the use of LOO-CV in training and testing. It fails if these confidence estimates

are very small or zero. The product rule for combining the EEG and gyroscope classifiers

is thus given by:

PArtefact(x) = PEEG(x)× PGyro(x) (5.5)

5.4.3 Maximum rule

The maximum rule selects the classifier that is most confident of the classification decision,

i.e. the combined classifier posterior probability Q(x) is that of the individual classifier

with the highest output probability.

Q(x) = max
j
{Cj(x)} (5.6)

While this rule may be perceived as the most intuitive (choosing the most expert opinion

for a given decision), it is subject to a number of potential pitfalls. Most notably, the

maximum rule can fail if one of the classifiers is overtrained; the overtrained classifier is

then overconfident of its decision, dominating the outcome, without improving the classi-

fication performance. The use of SVMs with parameters and model selection performed

with LOO-CV for both EEG and gyroscope classifiers should mitigate this possibility.

The maximum rule also underperforms if there are simple component classifiers that are

insensitive to nuances in the classification task that more complicated classifiers are able

to detect. The insensitive classifiers then tend to dominate the maximum rule, reducing

performance. The maximum rule for combining the EEG and gyro classifiers is:

PArtefact(x) = max[PEEG(x),PGyro(x)] (5.7)
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5.4.4 Minimum rule

The minimum rule selects the outcome of the classifier that has the least objection against

a certain class. It is a conservative combination rule, with the posterior probability Q(x)

that of the individual classifiers with the lowest output probability:

Q(x) = min
j
{Cj(x)} (5.8)

This is displayed for combining the EEG and gyroscope classifiers in Equation 5.9:

PArtefact(x) = min[PEEG(x),PGyro(x)] (5.9)

In the minimum rule, it is the least confident classifier that dictates the combined posterior

probability; a measure which takes precautions against overtraining in one (or more) of the

individual classifiers. However, for this very reason, the minimum rule can be undermined

by one uncertain, or poorly discriminative component classifier. As was seen in Chapters

3 and 4, both EEG and gyroscope SVM classifiers were useful in discriminating between

artefact and non-artefact in the EEG signal.

5.4.5 Score fusion performance

Figure 5.4 illustrates that combining the individual EEG and gyroscope classifiers using

any of the fixed-rule score fusion combinations results in improved performance in the head-

movement artefact detection task. For each of the score fusion combination rules, the mean

ROC area is higher than those of either the EEG or gyroscope classifiers alone. Similarly,

the median ROC areas for each of the score fusion classifiers is higher than that of the EEG

classifier and equal to or greater than that of the gyroscope classifier. As was the case for

the feature fusion classifier, each of the score fusion combination rules, provides a lower

variability in ROC areas that adds a level of robustness to the head-movement classification

task. Amongst the score fusion combination rules, the mean/sum rule provides the greatest

improvement in classifier performance. This is further highlighted in Figure 5.5, which

displays the mean ROC plots for each of the investigated score fusion combination rules

as well as those of the EEG and gyroscope classifiers, where the sum rule can be seen to

dominate (i.e. lie above and to the right of) each of the other classifiers. It is also evident

that the performance of the other combination rules match that of the sum rule over

defined sections of the ROC plot. For example, in applications where head-movements
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Figure 5.4: Boxplot of ROC areas for score fusion classifiers with an epoch length of one
second. Boxplots of the EEG and gyroscope classifiers are also displayed. Median ROC
areas are shown within the boxplots by the red lines. Mean ROC areas are shown by the
blue line.

must be detected with a high degree of accuracy (i.e. high specificity), deploying the

product or minimum rule in place of the sum rule will suffice. Similarly, for applications

where detecting as many artefacts as possible is of concern (i.e. high sensitivity), utilising

the maximum rule will provide the same performance as that of the sum rule. However,

as there exists little or no difference in computational complexity between the rules, if

score-level fusion of classifiers is to be employed then the sum rule should be used. This

result is consistent with findings from other classifier combination tasks. Kittler et al.

(1998) found that for an identity verification task, that amongst score fusion combination

rules, the sum rule is most resilient to estimation errors.Tax et al. (2000) showed that

in a two-class problem in which the posterior probabilities are well estimated and with

completely independent feature spaces, the product rule performs best. However, when

these assumptions are violated, the sum rule outperforms the product rule. In the head-

movement artefact classification task, it may be unreasonable to assume that the EEG and

gyroscope signals are independent. Although the feature spaces are derived from different

physiological signals, the class labels for both modalities are dependent upon the EEG

signal.

5.5 Decision fusion

As was the case for the score fusion methods, the EEG and gyroscope classifiers were

trained and tested separately and combined on a per-channel basis afterwards. Decision
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Figure 5.5: Mean ROC plots for score fusion classifier combinations. Mean ROC plots for
EEG and gyroscope classifiers are also displayed.

level classifier fusion is accomplished by combining the binary output decisions Di(x)

from the individual classifiers (after the threshold has been applied to the classifier output

probabilities), where the binary decisions are represented by Equations 5.10 and 5.11.

The decision fusion classification architecture is illustrated in Figure 5.6. In the decision

fusion methods investigated in this thesis, the same threshold was applied to the EEG

classifier and to the gyroscope classifier, such that θEEG = θGyro . While an optimal set

thresholds [θEEG , θGyro ], the thresholds were varied together so as to reduce the number

of parameters in the system. Two decision fusion methods are investigated: logical OR

and logical AND.

DEEG(x) =







0 EEG classifier decides normal EEG

1 EEG classifier decides artefact
(5.10)

DGyro(x) =







0 Gyroscope classifier decides normal EEG

1 Gyroscope classifier decides artefact
(5.11)
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Figure 5.6: Overview of the decision fusion classifier combination architecture. The deci-
sion fusion process highlighted in the diagram is repeated for each channel of EEG.

5.5.1 Logical AND method

This classifier fusion method is performed using the logical AND operation, with 1 indi-

cating the presence of artefact. The combined classifier output D(x) is then:

D(x) = DEEG(x) AND DGyro(x) (5.12)

If 1 exists in both classifier decisions, then the result of the combination of the two decision

vectors will also be a 1, indicating that artefact is present in the epoch in question. Thus, if

an artefact is to be detected using the logical AND method, both classifiers must detect the

presence of the artefact individually. In this light, the logical AND classifier combination

can be thought of as producing classification decisions with high specificities.

5.5.2 Logical OR method

This decision fusion technique examines the combination of EEG and gyroscope classifier

binary output decisions using the logical OR operator. The combined classifier output

D(x) is:

D(x) = DEEG(x) OR DGyro(x) (5.13)

If the binary decision vector from either EEG or gyroscope classifier detects artefact, the

result of the logical OR classifier combination will report artefact. Consequently, the

logical OR decision fusion rule should produce classifier decisions with high sensitivities.
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Figure 5.7: Boxplot of ROC areas for decision fusion classifiers with an epoch length of
one second. Boxplots of the EEG and gyroscope classifiers are also displayed. Mean ROC
areas are shown by the blue lines.

5.5.3 Decision fusion performance

Boxplots of the ROC areas across participants for the decision fusion classifiers are pre-

sented in Figure 5.7. Both logical OR and logical AND fusion methods outperform the

EEG classifier as measured by mean and median ROC areas. Mean ROC plots for the

logical OR decision fusion method and the logical AND combination are displayed in Fig-

ure 5.8. As expected, the logical OR combination rule is highly sensitive to the detection

of artefacts; if either EEG or gyroscope classifier detects a head-movement artefact, the

logical OR output will flag that EEG epoch as artefact. The logical OR combination rule

thus outperforms the logical AND classifier and the individual EEG and gyroscope classi-

fiers for specificities below 0.65. However, this increased sensitivity comes at a significant

reduction in performance for high specificities, where the logical OR rule falls below those

of the individual EEG and gyroscope classifiers. In contrast to this, the logical AND com-

bination rule is highly conservative and only marks a section of EEG as artefact if both

EEG and gyroscope classifiers agree, and consequently performs best if high specificities

are required. In this regard, the logical OR and the logical AND are analogous to the

score fusion maximum and minimum rules, respectively.
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Figure 5.8: Mean ROC plots for decision fusion classifier combinations. Mean ROC plots
for EEG and gyroscope classifiers are also displayed.

5.6 Comparison of fusion methods: early integration vs.

late integration

The feature fusion and top-performing score and decision fusion classifiers are compared

in Figure 5.9. As the decision-level fusion offered similar classification performance to

the minimum and maximum score fusion combination rules, it is unsurprising that the

sum rule outperforms the best decision fusion classifier. The mean and median ROC

areas of the feature fusion and sum rule score fusion are approximately equal. However,

the variability in ROC areas of the sum rule is larger than that of the feature fusion.

Accordingly, for the head-movement classification task where EEG and gyroscope features

are available, combination of these signals at the feature level is advised. However, for

classifiers other than support vector machines, score fusion may be more appropriate.

SVMs do not suffer from the “curse of dimensionality” to the same extent as many other

classifier models; hence, combining the different modalities at the feature level is unlikely to

lead to excessive overfitting. For classifiers that are highly susceptible to overfitting, such

as neural networks, feature fusion may do just this. It is proposed that this may indeed

be the case in the systems outlined by Malarvili and Mesbah (2008) and Bermudez et al.

(2007), where neural networks were deployed and classifier fusion was advocated in place

of feature fusion.

123



In practice there may be inherent advantages or disadvantages to fusing data from different

modalities by means of feature or score fusion techniques. There exists a number of

scenarios whereby use of the score fusion sum rule makes more sense. Score fusion offers

the advantage that the artefact detection system will continue to operate if the gyroscope

signal becomes unavailable. In the experience of the Biomedical Signal Processing Group

at U.C.C. in collecting clinical data, it is often the case that additional physiological signals

are not recorded or partially recorded, particularly during longer recordings. In such an

eventuality, the classifier combination stage outlined in this paper can be switched off, and

the EEG artefact detection classifier can continue alone. Were the gyroscope to become

unavailable in the feature fusion case, the system would not be able to operate, as the

gyroscope features would now lie in an unexpected region of the feature space, leading to

likely adverse classification performance. Of course this feature requires the recognition by

the clinician/researcher that the gyroscope signal is unavailable or corrupted. This step

would be automated if the maximum score fusion or the logical OR decision fusion rules

were adopted, albeit at a loss in classification accuracy compared to feature fusion or score

fusion, sum rule. Furthermore, in adapting the score fusion method, additional modalities

can be easily incorporated into the classification task without re-training of the classifiers.

Thus, if additional physical signals such as accelerometer data or electromyogram signals

were to be made available, score fusion combination could easily accommodate these. For

marginally better classifier performance, feature fusion would require the classifier to be

entirely re-trained incorporating features from the added physiological signals.
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Figure 5.9: Boxplot of ROC areas for the best performing feature, score and decision
fusion classifiers. Boxplots of the EEG and gyroscope classifiers are also displayed. Mean
ROC areas are shown by the blue line.
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5.7 Summary

In light of examining a range of multimodal classifiers incorporating both EEG and gyro-

scope signals, it was found that the fusion of signals at both feature and classifier levels

improved detection of head-movement artefact in ambulatory EEG when compared to

using either EEG or gyroscopes alone. This result was observed for feature fusion as well

as for each of the score-level and decision-level fixed-rule combinations that were investi-

gated. Amongst these methods, it was found that feature fusion and the score-level, sum

rule offered the best classification performance by increasing the ROC areas and reducing

inter-participant variability. Improvements in mean ROC area for a window length of one

second was 8 % for the feature fusion and score fusion sum-rule combination methods when

compared to the EEG classifier alone. These results confirm the complimentary nature of

information carried by these different modalities. Thus, in order to most effectively detect

head-movement artefacts in EEG, a classifier that combines EEG and gyroscope features

at either the feature or score level is recommended.
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Chapter 6

Robust epileptiform activity

detection

6.1 Introduction

Automatic detection of epileptiform activity (spikes, sharp waves and spike-wave com-

plexes) in the electroencephalogram (EEG) to speed up and disambiguate EEG analysis

in the diagnosis of epilepsy has been a highly desired research goal for over 40 years.

However, a major obstacle in the deployment of automated epileptiform activity detection

systems stems from contamination of the EEG by electrical activity arising from non-

cerebral sources. In automatic epileptiform activity and epileptic seizure detection, these

artefacts can be misinterpreted as epileptiform activity, leading to an unacceptably large

number of false positive detections. In the previous chapters, several artefact detection

algorithms were investigated for their ability to detect the presence of head-movement

artefact in ambulatory EEG. In this chapter, information from artefact detection classi-

fiers similar to those in the previous chapter, is combined with neurological event detection

classifiers to improve the performance of the neurological event detection system. Accord-

ingly, a novel artefact processing system is outlined, whereby the detection of ocular and

movement artefacts is performed in parallel to epileptiform activity detection. Fusion of

these support vector machines classifiers is investigated with results showing a consider-

able reduction in the number of false detections whilst continuing to accurately detect

epileptic seizure and short-duration, interictal epileptiform events. Two journal submis-

sions (O’Regan et al., 2013b; Kelleher et al., 2013) and an international peer-reviewed
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conference publication (Kelleher et al., 2011) have arisen from the work outlined in this

chapter.

6.2 Automated epilepsy detection

Due to the sub-clinical nature of many epileptic seizures, the electroencephalogram (EEG)

is the primary tool used in the diagnosis of epilepsy. Diagnosis is made based on the

presence of epileptic seizure activity (Figure ??), which can last from several seconds to

an hour, and also based on the presence of shorter duration interictal, epileptiform activity

(Figure ??), which is an indicator of susceptibility to epileptic seizure (Chatrian et al.,

1964).

Following a referral from a neurologist, the initial test for epilepsy is known as a routine

EEG, which lasts 20 - 40 minutes and looks for signs of abnormal waveforms in the

recording. These abnormal waveforms comprise some or all of the following features: slow

waves, spikes and sharp waves, spike-wave complexes, and polyspikes. If, at the end of the

test, no such activity has been recorded and epilepsy is still suspected, the patient may

be asked to return to the hospital for a longer, continuous EEG recording (usually lasting

24 - 72 hours). The recorded signal is then visually inspected by a neurophysiologist for

abnormalities. Due to the costly, time-consuming nature of continuous EEG monitoring, it

has been proposed that an ambulatory EEG system, with the capability to automatically

detect epileptic seizure activity as well as the shorter duration epileptiform activity, would

be quite useful for clinical and domestic monitoring of patients (Waterhouse, 2003; Gotman

and Gloor, 1976; Indiradevi et al., 2008). Such a system would help the clinician pinpoint

the exact location of abnormalities in the recording, thus vastly reducing post-recording

analysis time.

6.3 Ocular and movement artefacts

Contamination of the EEG by electrical activity arising from non-cerebral sources is a

major obstacle in the achievement of the dual criteria of automatically detecting almost

all epileptiform events while maintaining a low false detection rate. In particular, head-

movement and ocular artefacts (Figures 6.4 and 6.5) can obscure, and in the case of ocular

artefacts, mimic the short duration epileptiform activity. In automatic epileptiform activ-
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Figure 6.1: EEG showing an example of a generalised idiopathic epileptic seizure recorded from an adult patient at CUH. The data was
recorded using a Viasys Nicolet EEG machine with a sampling frequency of 256 Hz.
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Figure 6.2: EEG sample showing two instances of epileptiform activity recorded from an adolescent patient at CUH. The data was
recorded using a Viasys Nicolet EEG machine with a sampling frequency of 256 Hz.
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ity and epileptic seizure detection systems, these artefacts are frequently misinterpreted as

epileptiform activity, leading to an unacceptably large number of false positive detections

(Figure 6.3).

Ocular artefacts are the most prevalent artefact found in many EEG recordings and are a

major contributing factor to the inaccurate classification of epileptiform activity (Kelleher

et al., 2010). The amplitude of ocular artefacts can be several times larger than brain

scalp potentials, thus seriously interfering with the EEG recording. As the eyeball moves,

the potential difference that exists between the cornea and retina changes, producing the

electrooculogram (EOG) signal that frequently appears on the EEG as ocular artefact.

This ocular artefact signal propagates across the scalp, rapidly diminishing with distance

travelled from the eyes and is therefore most acute on the frontal electrodes (Lins et al.,

1993; Picton et al., 2000). A number of examples of eye blinks and lateral eye movements

are displayed in Figure 6.5.

As discussed in Chapter 2, in many clinical EEG trials, contamination by artefacts is

minimized by controlling the test situation to limit movement. In an ambulatory set-

ting restricting movement is both unrealistic, and in cases such as diagnosing epilepsy,

may even be undesirable. However, these head movements can introduce a wide range

of non-cerebral electrical activity into the EEG; typically, contamination is in the form

of some combination of muscle (EMG), electrode pop and electrode movement artefacts

(Figure 6.4). As seen in the previous chapters, muscle or EMG artefacts are predom-

inantly high frequency signals whose amplitudes can vary depending on the muscle in

questions as well as the strength of muscle firing (Goncharova et al., 2003). Electrode

pop, which occurs with momentary loss of contact between the electrode and the scalp

causes an abrupt impedance change, morphologically appearing as single or multiple sharp

waveforms. These sharp waveforms are typically high amplitude vertical transients which

are usually confined to a single electrode. Electrode movement occurs when the electrode

moves with respect to the scalp. These movements can produce high-amplitude deflections

in the EEG of the order of millivolts. Unlike electrode pop, EEG deflections caused by

electrode movements are slower, often in the range of 1 - 10 Hz (van de Velde et al., 1999);

these slower movements can then mimic epileptic seizure.
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Figure 6.3: Breakdown of false detections by underlying cause in epileptiform activity
detection classifier.

6.4 Reducing false positives without removing valuable EEG

information

In the automated epileptiform activity detection system created by Kelleher et al. (2010),

and indeed in the majority of systems reviewed in Section 2.8.1, it is envisaged that the

EEG clinician will only review events detected by the algorithm; any false positives will be

inspected and subsequently excluded by the clinician. Therefore, if the detection system

fails to find an epileptiform event, then that section of EEG will not be presented to the

clinician who will of course miss it. From a clinical perspective, this is unacceptable; the

consensus amongst the clinicians involved in EEG data collection for this thesis is that they

would be extremely reluctant to accept a tool that discards potentially useful epileptiform

information. While a few undetected events may be tolerable, it is inappropriate to miss

greater than ∼ 10% of events, as clinicians will be reluctant to discard so much (important)

information. This highlights one of the key sticking points in implementing statistical

pattern recognition and machine learning algorithms in a medical environment. Given,

the short duration of the epileptiform events in question, a GDR of 0.9 with FD/h in

the low hundreds, could be considered impressive by machine learning standards, yet, is

notably sub-standard for the desired medical application. However, this obstacle cannot

be simply circumvented by increasing the GDR to 1 as this will lead to substantially

more false detections. Consequently, if the system is frequently flagging non-epileptiform
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Figure 6.4: EEG sample from Patient 2 showing artefacts arising from head movements.
The data was collected in the Department of Neurology at CUH using a Viasys Nicolet
EEG machine using a sampling frequency of 256 Hz.

EEG as being epileptiform activity or epileptic seizure (i.e. a high false detection rate)

then the clinician may turn off the automated EEG system and resume annotating the

recording manually. It is therefore necessary that an automated epileptiform detection

system detects all (or almost all) epileptiform events while keeping the number of false

detections at a minimum.

By increasing the number of false positive detections, artefacts are major barrier to the

deployment of automated epileptiform detection systems. The measures taken by several

groups to reduce these false positives are described in Section 2.8.1. In summary, artefact

rejection in automated epileptic seizure and epileptiform detection systems to date have

focused primarily on rule-based thresholding methods. As SVMs and the fusion methods

outlined in Chapters 3 and 5 have been shown to be highly successful for artefact detection,

it is proposed that performing artefact detection using support vector machines classifiers

on sections of EEG that contain suspected epileptiform activity may be an effective, al-

ternative method of dealing with artefacts in automated epileptiform detection system.

In this chapter a novel, artefact detection architecture is proposed, whereby only EEG

that has been flagged as potentially containing epileptiform activity or epileptic seizure
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Figure 6.5: EEG sample from Patient 1 showing a number of instances of eye blinks and
lateral eye movements. It is evident that the artefacts are most pronounced on frontal
electrodes. The data was collected in the Department of Neurology at CUH using a Viasys
Nicolet EEG machine using a sampling frequency of 256 Hz.

are subjected to an additional classification stage in order to reduce false detections due

to artefacts.

6.5 Epileptiform detection classifier

The data used for this study consists of multi-channel EEG recordings obtained from 8

patients, each suffering from idiopathic generalised epilepsy and is outlined in detail in

Section 2.9.2.

6.5.1 Detection system

The epileptiform activity and epileptic seizure detection system used in this study is

a modification of the system used in the detection of neonatal seizures and has been

described in detail by Kelleher et al. (2010, 2011); Temko et al. (2011b). An outline of
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Figure 6.6: Overview of the epileptiform activity detection classifier.

the original (baseline) epileptic seizure and epileptiform activity classification system is

illustrated in Figure 6.6. An outline of the classification architectures are displayed in

Figure 6.7. The following paragraphs explain each of their stages in more detail.

6.5.2 Preprocessing

A fourth order Chebyshev notch filter was applied to the raw EEG data in order to remove

the 50 Hz mains component from the EEG. An additional fourth order, Butterworth

highpass filter with cut-off at 1 Hz was applied to remove the DC-component. The EEG

was segmented into overlapping windows/epochs of 1 second. In order to maximise the

amount of data available, overlap between windows of 90% was chosen (Kelleher et al.,

2010).

6.5.3 EEG feature generation

A set of 55 features was extracted from the pre-processed EEG signal; the complete list

of the features examined are displayed in Table 6.1. Feature selection was performed by

Temko et al. (2011a) and showed that this feature set provides separation between neona-

tal seizure activity and normal EEG, and also between adult epileptic seizure activity

and normal EEG (Faul, 2007; Faul et al., 2009). In Chapter 3 this feature set, supple-

mented with additional artefact specific features, was demonstrated to effectively separate

between normal EEG and artefacts generated by head-movements (O’Regan et al., 2010a,

2013a). It could be argued that the results presented in Chapter 3 were over-optimistic

in that background EEG and high-energy artefact signals may be easier to separate than
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Figure 6.7: Overview of the classifier combination architectures. In block (a), filtering,
segmentation and feature extraction is performed on the EEG. In block (b), features are
independently presented to three different SVM models. In block (c) the outputs from the
SVMs are combined. Note that the threshold (shaded) is applied in block (b) for decision
fusion, but in block (c) for score fusion.
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artefact and some neurological event such as epileptiform spikes. However, by examining

the distributions of the features listed in Table 6.1 it can be seen that there is in fact

considerable discrimination between epileptiform activity and artefact EEG. To illustrate

this fact, probability density functions showing distributions of epileptiform, movement

and ocular artefact EEG are displayed for a number of features in Figures 6.8, 6.9 and

6.10.

Probability density functions of line length (Equation 3.1) for epileptiform and ocular and

movement artefacts are displayed in Figure 6.8. Here it can be seen that ocular artefacts

are distributed largely at lower values compared to epileptiform or movement artefact

EEG. Similarly, the ocular artefact EEG has a considerably narrower distribution than

either epileptiform or movement artefact EEG, indicating that ocular artefacts tend to

exhibit more homogeneous morphologies than either epileptiform or movement artefacts.

Perhaps this is unsurprising, considering that ocular artefacts are usually easy to visually

identify by their distinct shape, whereas both epileptiform and movement artefact can

present in a wide variety of shapes and sizes. In the case of epileptiform this can in-

clude slow, sharp and slow and sharp wave complexes. Movement artefacts can comprise

electrode pop, baseline drifts, and EMG artefact.
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Figure 6.8: Probability density functions of line length for epileptiform EEG (blue) and
ocular (green) and movement artefact (red).

Probability density functions of the Power in the 1-3 Hz frequency band for epileptiform

and ocular and movement artefacts are displayed in Figure 6.9. As was the case for line

length, the movement artefact EEG is almost uniformly distributed, again explainable by

the fact that movement artefacts comprise EEG signals with large baseline shifts (high

Power in this frequency band) as well as high-frequency EMG artefact (low Power in this
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frequency range). The epileptiform EEG is broadly distributed with a peak for Powers of

around 2.5 µW , indicating that in this frequency range, epochs with high Power are likely

to be attributable to epileptiform activity. The Power of ocular artefact in this frequency

range is lower than either epileptiform or movement artefact EEG.
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Figure 6.9: Probability density functions of the Power in the 1-3 Hz frequency band for
epileptiform EEG (blue) and ocular (green) and movement artefact (red).

Figure 6.10 displays pdfs for the number of zero crossings for each of epileptiform EEG

and movement and ocular artefact EEG. For this feature ocular artefacts typically have

lower values; this is expected as both vertical and lateral movements generally result in a

reasonably large baseline jump returning to the original amplitude after several hundred

milliseconds (see Figure 6.5) and do not result in much oscillation about the origin. Move-

ment artefact is more broadly distributed than ocular artefacts; the majority of movement

artefacts result in relatively few zero crossings, explainable by the large baseline jumps of

many movement artefacts. However, movement can also result in small amplitude EMG

artefact, taking the form of high frequency oscillations that do not deviate much from the

baseline axis; these artefacts then make up the high numbers of zero crossings in the dis-

tribution. The distribution of epileptiform activity is more uniform than both ocular and

movement artefacts; in effect then, lower numbers of zero crossings are likely to indicate

artefact, whereas larger numbers are likely to be epileptiform.

6.5.4 Classifiers

There are three SVM classifiers implemented in this experiment: the baseline classifier

that flags epileptiform events (epileptiform activity vs. non-epileptiform activity), and two
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Table 6.1: List of features for epileptiform activity detection.

Time Domain Features

• Line length/ Curve length(L)
• RMS Amplitude
• Activity (1st Hjorth Parameter)
• Mobility (2nd Hjorth Parameter)
• Complexity (3rd Hjorth Parameter)
• Kurtosis
• Skewness
• Nonlinear Energy (NLE)
• Zero Crossings (Zc)
• No. of inactive samples
• Autoregressive Model Error (AR models 1-9)
• Variance of first derivative
• Variance of second derivative
• Zero Crossings of first derivative
• Zero Crossings of second derivative

Frequency Domain Features

• Dominant Spectral Peak Frequency
• Wavelet Coefficients
• Total Spectral Power
• Spectral Edge Frequency(80, 90 and 95)
• Power Bands: 0-2 Hz, 1-3 Hz, 2-4 Hz, 3-5 Hz,
4-6 Hz, 5-7 Hz, 6-8 Hz, 7-9 Hz,
8-10 Hz, 9-11 Hz, 10-12 Hz
• Normalised Power Bands: 0-2 Hz, 1-3 Hz, 2-4 Hz,
3-5 Hz, 4-6 Hz, 5-7 Hz, 6-8 Hz,
7-9 Hz, 8-10 Hz, 9-11 Hz, 10-12 Hz

Information Theory-based Features

• SVD Entropy
• Shannon Entropy
• Fisher Information
• Spectral Entropy
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Figure 6.10: Probability density functions of the number of zero crossings for epileptiform
EEG (blue) and ocular (green) and movement artefact (red).

artefact classifiers to differentiate between correctly identified epileptiform events and false

positive events due to artefact (epileptiform activity vs. ocular artefact and epileptiform

vs. movement artefact). In each classifier, the same pre-processing stage and feature

set are used. A Gaussian kernel SVM is trained using 5,000 training examples from

each class. Each classifier outputs the probabilities that the epoch in question contains

epileptiform activity. In each of the three classifiers, the ratio of epileptiform to the other

class (non-epileptiform, movement artefact or ocular artefact) was kept consistent. This

makes possible the combination of classifier output probabilities as discussed in Section

6.6.1 (Kuncheva, 2004). An overview of the classification systems is displayed in Figure

6.7.

Epileptiform activity vs. non-epileptiform activity

In the baseline classifier, a Gaussian kernel SVM classifier was trained to separate between

epileptiform activity (comprising epileptic seizure and short-duration, interictal, epilepti-

form activity) and non-epileptiform activity (comprising normal EEG and artefact) as

outlined by Kelleher et al. (2010).

Epileptiform activity vs. movement artefact

This artefact classifier was designed to separate between epileptiform activity (compris-

ing epileptic seizure and short-duration, interictal, epileptiform activity) and movement
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artefacts.

Epileptiform activity vs. ocular artefact

This classifier was designed to separate between epileptiform activity (comprising epileptic

seizure and short-duration, interictal, epileptiform activity) and ocular artefacts. The

classifier is only applied to the four frontal EEG channels (FP2-F4, FP2-F8, FP1-F3 and

FP1-F7), where ocular artefact is most pronounced.

6.5.5 Threshold choice

A binary output decision is obtained from each of the SVMs by applying a threshold to

the classifier output probabilities; where a probability above or equal to the threshold

is classified as epileptiform, and any probability below the threshold is considered to be

non-epileptiform. As the system described here is designed to detect epileptic seizure as

well as the shorter duration, interictal epileptiform activity, a suitable threshold θ must

be chosen to ensure that all (or almost all) events are detected. However, the same leave-

one-out cross-validation estimate for both threshold selection and performance evaluation

cannot be used as this would introduce a (possibly quite strong) selection bias. A nested

leave-one-out cross-validation procedure is therefore used instead. Leave-one-out cross-

validation is used for performance evaluation in the “outer loop” of the procedure, in each

iteration of which threshold selection is performed individually for each classifier based

on a separate leave-one-out cross-validation procedure. Within each of these iterations,

the threshold chosen was that maximum threshold for which all epileptiform events were

correctly identified.

6.5.6 Metrics

As discussed in Section 2.9.4, ROC area and ROCsens95 area are used to assess the per-

formance of the epileptiform detection systems outlined in this chapter. In addition to

these epoch-based metrics, an event-based metric is also used. Traditionally, False Detec-

tions per hour (FD/h), an event-based metric, is used in conjunction with GDR. However,

when artefact detection classifiers are fused with the baseline epileptiform classifier, the

use of FD/h can lead to misrepresentative results. This occurs when a false detection, as
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identified by the baseline detector is broken up into several independent events of shorter

duration when the artefact detector is applied. This is illustrated in the right half of Figure

6.11, where the baseline classifier misinterprets a section of artefact EEG as epileptiform

activity. When the epileptiform vs. ocular artefact detection classifier is combined with

the baseline classifier, some of this output decision is corrected. However, this leads to an

increase in FD/h as there are now two false positive events detected instead of one. For

this reason, FDR is used to quantify the false detections in each classifier architecture.

Consequently, False Detection Rate (FDR), another epoch-based metric, is used in con-

junction with GDR in assessing the performance of different classifier architectures in this

study. False detection rate is the percentage of non-epileptiform epochs (comprising nor-

mal EEG and artefact) which are falsely classified as representing epileptiform activity,

and defined in Equation 6.1 as:

FDR = 1− Specificity (6.1)

As discussed in Section 6.5.5, the threshold θ is chosen via nested LOO-CV. This results

in two FDR measures: the FDR achieved on the “inner loop” of the nested LOO-CV,

FDRtr and the FDR on the evaluation (test) data, FDRte.

6.6 Classifier fusion architectures

The objective of the classifier combinations outlined in this chapter is to reduce the number

of false positive detections by the epileptiform activity detection classifier while continuing

to correctly detect all (or almost all) epileptiform events. In contrast to the classifier fusion

methods outlined in Chapter 5, classifier outputs are combined only on those epochs that

are flagged by the baseline epileptiform classifier as containing epileptiform activity. Thus,

any epochs that have been flagged by the baseline epileptiform classifier (epileptiform vs.

non-epileptiform) are combined with the corresponding epoch and channel of the artefact

classifier (epileptiform vs. ocular, epileptiform vs. movement, or both). As discussed in

Chapter 5, classifier combination methods can be sub-divided into two broad categories:

combination of the classifier output probabilities (score fusion) and combination of the

classifier output decisions (decision fusion). In this chapter, the best-performing score

and decision fusion methods from Chapter 5 are investigated for the epileptiform activity

detection task.
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Figure 6.11: Illustration of classifier output decisions. (a) displays a thirty second section
of EEG taken from channel FP2-F8. (b) shows the baseline epileptiform classifier binary
decision for the EEG (blue) and annotations (red). (c) displays shows the output deci-
sion for the baseline and ocular classifiers deployed together (blue) and the epileptiform
annotations (red).

6.6.1 Score fusion

As outlined in Chapter 5, score fusion combines classifier output scores; in this case, the

posterior probabilities from SVM after the sigmoid function has been applied. In the score-

level classifier fusion performed in this experiment, any epochs that have been flagged by

the baseline epileptiform classifier (epileptiform vs. non-epileptiform) are combined with

the corresponding epoch and channel of the artefact classifier. This is equivalent to taking

the mean of the probability outputs from each SVM for those epochs that are flagged as

epileptiform by the baseline classifier. Taking the mean of the classifier output probabilities

has been shown to be the most resilient to estimation errors and as such is usually the

best-performing fixed-rule, score level classifier fusion method (Kittler et al., 1998). In

Chapter 5, it was demonstrated that this was indeed the case in combining EEG and

gyroscope signals in detecting head-movement artefacts. This method is described for

a single artefact classifier in Algorithm 1 and for dual artefact classifiers in Algorithm 2,

where PE is the output score from the baseline epileptiform vs. non-epileptiform classifier,

PE−MOV is the output score from the epileptiform vs. movement classifier and PE−OC is

the output score from the epileptiform vs. ocular classifier.
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The behaviour of this fusion method is best explained by means of an example. If the

baseline epileptiform classifier finds that an epoch has a strong probability of containing

epileptiform activity, and the epileptiform vs. artefact classifier, similarly agrees that

the epoch likely contains epileptiform activity, the final probability output will reflect

this. Conversely, in the case of a false positive epileptiform event where the baseline

epileptiform classifier flags the epoch as containing epileptiform activity (as the probability

output P (E|x) is greater than the set threshold θ), the epileptiform vs. artefact classifier

should predict that there is a low chance that the epoch contains epileptiform activity,

thus reducing the final probability output.

Algorithm 1: Score fusion algorithm for applying one artefact detector in combina-
tion with the baseline epileptiform classifier. In this example, the movement artefact
detector is applied.

if PE > θ then
if PE + PE−MOV > 2θ then

Class → Epileptiform;
else

Class → Non-Epileptiform;
end

else
Class → Non-Epileptiform;

end

Algorithm 2: Score fusion algorithm when both movement and ocular artefact
detection classifiers are combined with the baseline epileptiform classifier.

if PE > θ then
if PE + PE−OC + PE−MOV > 3θ then

Class → Epileptiform;
else

Class → Non-Epileptiform;
end

else
Class → Non-Epileptiform;

end

6.6.2 Decision fusion

Classifier fusion at the decision level is performed on the binary classifier output decisions,

once a threshold has been applied to the classifier posterior probabilities. All epochs from
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the main epileptiform classifier that are flagged as epileptiform in origin are combined

with the corresponding epochs from the artefact classifier. The decision fusion is per-

formed using the logical AND operation (if 1 exists in the output decision of the baseline

epileptiform classifier and in the output decision of the artefact detection classifier, then

the result of the combination of the two decision vectors will also be a 1). This process

is illustrated for a single artefact classifier in Algorithm 3 and for dual artefact classifiers

in Algorithm 4, where PE is the binary decision output from the baseline epileptiform vs.

non-epileptiform classifier, PE−MOV is the binary output decision from the epileptiform

vs. movement classifier and PE−OC is the binary output decision from the epileptiform

vs. ocular classifier.

In both the score and decision fusion methods, once the classifiers have been combined, the

sum of decisions across channels is taken and a single decision for the presence or otherwise

of an epileptiform event in the current epoch is obtained, i.e. if an event is detected in one

or more channels then the current epoch is labelled as containing epileptiform activity.

Algorithm 3: Decision fusion algorithm for applying one artefact detector in com-

bination with the baseline epileptiform classifier. In this example, the movement

artefact detector is applied.

if PE > θ AND PE−MOV > θ then

Class → Epileptiform;

else

Class → Non-Epileptiform;

end

Algorithm 4: Decision fusion algorithm when both movement and ocular artefact

detection classifiers are combined with the baseline epileptiform classifier.

if PE > θ AND PE−OC > θ AND PE−MOV > θ then

Class → Epileptiform;

else

Class → Non-Epileptiform;

end

144



Epileptiform SF:Ocular SF:Movement SF:Movement + Ocular
0

20

40

60

A
b

so
lu

te
 R

O
C

9
5

 A
re

a
 (

%
)

Epileptiform SF:Ocular SF:Movement SF:Movement + Ocular
0

10

20

30

R
e

la
tiv

e
 I
m

p
ro

ve
m

e
n

t
R

O
C

 9
5

 A
re

a
 (

%
)

Figure 6.12: Mean ROC 95 areas (red) and the relative improvement in mean ROCsens95

area (blue) for the baseline epileptiform classifier and each score fusion (SF) classifier
combination. Random discrimination gives a ROC 95 area of 2.5%.

6.7 Comparison of fusion methods

6.7.1 Epoch-based metrics

As outlined in Section 2.9.4, ROCsens95 area gives an indication of the classifier perfor-

mance over a range of threshold values, thus allowing the user to specify an operating

point at which the system performs as desired. Figure 6.12, displays the ROCsens95 areas

and relative improvements in ROCsens95 areas for each of the score fusion classifier archi-

tectures. The ROCsens95 shows a relative improvement of 3.1 % when the epileptiform vs.

ocular artefact classifier is combined with the baseline epileptiform detector. When the

epileptiform vs. movement artefact classifier is applied, there is a relative improvement

of 18.87 %. The greatest relative improvement (23.66 %) is seen when both the ocular

and movement artefact detection classifiers are combined simultaneously with the base-

line epileptiform classifier. The greater relative improvement of classifier performance by

applying the movement artefact detector can be largely attributed to the fact that move-

ment artefacts accounted for ∼ 40% of original false detections compared to ∼ 20% false

detections due to ocular artefacts as well as the fact that the ocular artefact detector was

applied to frontal EEG channels only.
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Figure 6.13: Boxplots of FDR for the baseline epileptiform classifier and each of the score
fusion (SF) classifier architectures. The corresponding mean GDRs are plotted in bold
above.

6.7.2 Event-based metrics

As discussed in Section 2.9.4, it is necessary in practice to specify a single threshold θ at

which the classification decision will be made. Figure 6.13 shows boxplots of the FDRte

for the baseline epileptiform classifier and each of the score fusion classifier architectures.

It is evident from the graph that a substantial improvement in FDRte is seen when each

of the artefact detection classifiers is applied. The median FDRte drops by 69.28 % when

the ocular artefact detection classifier is combined with the baseline epileptiform classifier.

When the movement artefact detection classifier is used, median FDRte drops by 82.76

%. The greatest improvement in performance is seen when both ocular and movement

classifiers are applied simultaneously, resulting in the median FDRte falling by 83.27 %.

These reductions in FDRte are achieved while mean GDR remains largely constant. A

further notable trend in the results is that the variability of FDRte values narrow consid-

erably when the artefact classifiers are applied. This indicates that the introduction of

artefact-specific processing on sections of suspected epileptiform activity adds an element

of robustness to the classification task, with the epileptiform activity and epileptic seizure

detection system performing similarly for all patients. This has considerable benefits in a

clinical setting as it ensures that patients recordings will produce similar numbers of false

positive detections, allowing the clinician to take this into account.
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Figure 6.14 displays the FDRte results for the movement and ocular artefact classifiers

applied simultaneously in combination with the baseline epileptiform classifier for both

score and decision fusion classifier architectures. There is a clear disparity between the

two fusion methods which can be explained by the fact that the score fusion method of

combining classifiers offers more flexibility in threshold choice. As the same θ value is

applied to each classifier, in the decision fusion architecture the classification performance

is likely to be hindered by its worst performing constituent classifier.

DF:Movement + Ocular SF:Movement + Ocular
0

0.1

0.2

F
D

R

0

1

G
D

R

GDR = 0.9375

Figure 6.14: Score (SF) and decision (DF) fusion boxplots of FDR for movement and
ocular artefact detection classifiers applied simultaneously in combination with the baseline
epileptiform classifier.

The validity of the threshold selection process is highlighted in Figure 6.15, which shows

FDRtr and FDRte for both artefact classifiers applied in combination with the baseline

epileptiform classifier using the score fusion method. It is expected that the training results

should be better than the testing results and this is reflected by the fact that there is a

drop in the GDR for the testing results. Additionally, the variability of the FDRtr values

is substantially smaller than that of the FDRte values. Figure 6.15 also includes the test

results for the “oracle” system. The “oracle” is defined here as the performance that would

be achieved if perfect knowledge of the test data was available when the threshold θ was

chosen and defines a lower bound on the FDR. In other words, with the a classifier tested

on unseen data, the “oracle” defines the performance obtained by the optimally chosen

threshold and is in effect the best performing point on the ROC curve. It is evident that

FDRte approaches the “oracle” FDR performance, albeit at a drop in GDR.
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Figure 6.15: Boxplots of FDR for train, test and oracle thresholds. The corresponding
mean GDRs are plotted in bold above.

6.8 Summary

Using both epoch and event-based metrics, it is clear that the use of artefact-specific

SVM classifiers in EEG sections of suspected epileptiform activity improves the perfor-

mance of the automated epileptiform detection system. The FDR metric verifies that a

considerable reduction in the number of false detections is achieved whilst continuing to

accurately detect epileptic seizure and short-duration, interictal epileptiform events; me-

dian false detection rate drops by 83.27 % at a constant good detection rate of 0.9375.

This result underlines the performance gain achieved by including artefact-specific clas-

sifiers and fusing them at the post-processing stage. The most profound improvement is

found by incorporating head-movement and ocular artefact detection classifiers together

and combining them with the baseline epileptic seizure and epileptiform activity detec-

tion classifier. The performance gains in using each of the artefact classifiers were seen

across patients. This feature is particularly welcomed as it adds a level of robustness to

the epileptiform detection algorithm that is necessary in a real-world setting. In light of

these results, the use of score level classifier fusion is recommended as it offers superior

performance to that of the decision level classifier fusion, reducing median false detection

rate from 0.3 to 0.05.
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Chapter 7

Artefact removal for automated

neonatal seizure detection

7.1 Introduction

Artefacts are a major obstacle in the deployment of automated neonatal seizure detection

algorithms in the NICU, as they lead to large numbers of false positive detections. In

babies with suspected seizure, persistent false alarms may prompt the on-duty nursing

staff to abandon the seizure detection algorithm. More critically, false detections are

unacceptable as they may lead to patients being incorrectly treated for seizure (by cooling

or with anti-seizure medication). Amongst the array of artefact types, respiratory artefacts

in particular have proven problematic for automated neonatal seizure detection algorithms

as they are often morphologically similar to seizure. Indeed, the problem of this similarity

is not limited to automated systems; respiration artefact has been widely acknowledged as

being troublesome for human experts with years of experience. In the previous chapter,

emphasis was placed on the use of supervised machine learning algorithms to identify

artefacts; in this chapter, artefact processing follows the well-established research area of

artefact removal using blind source separation methods to “clean” the EEG signal that

has been contaminated by these non-cerebral artefacts.

From a utilitarian perspective, artefact removal is only of interest if it improves the per-

formance of the seizure detection classifier. Therefore, in this chapter, several respiratory

artefact removal methods will be evaluated in the context of neonatal seizure detection.
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These methods will combine automated blind source separation of the EEG with additional

physiological signals in a pre-processing stage in the automated neonatal seizure detection

algorithm. In doing so, effective means of removing respiratory artefact in neonatal EEG

are developed, leading to improvement in the neonatal seizure detection algorithm.

One journal publication (O’Regan et al., 2013c) is in preparation based upon the work

carried out in this chapter.

7.2 Neonatal seizure detection

7.2.1 Neonatal seizure

As discussed in Chapter 2, the most prominent feature of neurological dysfunction in the

neonatal period is the occurrence of seizures. These seizures are clinically defined as parox-

ysmal alterations in neurological function, i.e. an alteration in behavioural, motor and/or

autonomic function and are powerful predictors of long-term cognitive and developmental

impairment (Volpe, 1989). The EEG is considered the gold standard in neonatal seizure

diagnosis with seizures manifesting as repetitive patterns with minimum duration of 10

seconds (Clancy, 2006).

However, the diagnosis of electrographic seizure is non-trivial; the appearance of the dis-

charge can transform in frequency, amplitude and morphology over time (Mizrahi and

Clancy, 2000). Electrographic seizures are predominantly unifocal but multifocal seizures

may also occur in different brain regions and fire simultaneously and asynchronously. Both

unifocal and multifocal seizure discharges can spread from one location via abrupt change

or by gradual widening. Examples of seizure are illustrated in Figures 7.1 and 7.2. Figure

7.1 displays a generalized neonatal seizure with seizure activity present on all channels

and is most prominent on channels C4-O2, C3-O1 and C3-T3 (red). Figure 7.2 displays a

localised neonatal seizure with slow baseline oscillations visible on channels F3-C3, C3-01,

Cz-C3 and C3-T3 (red).

7.2.2 Automated neonatal seizure detection

Few staff members of the neonatal intensive care unit receive sufficient training to interpret

EEG traces. Automated neonatal seizure detectors have thus been proposed to play an
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Figure 7.1: Example of neonatal EEG showing a generalised neonatal seizure. Seizure is
present on all channels but is most prominent on channels C4-O2, C3-O1 and C3-T3 (red).

assistive role in communicating the occurrence of seizure to on-duty nursing staff. The

ANSeR seizure detection system developed over the past decade at U.C.C. is outlined in

Figure 7.3. The preprocessing, feature extraction and classification sections are performed

on a per-channel basis, similar to the epileptiform activity detection system outlined in

Chapter 6. The spikiness of SVM output probabilities is then smoothed with a moving

average filter and a threshold is applied to obtain a binary output decision for each EEG

channel. If a seizure is detected on any channel, the ANSeR system flags the seizure and

uses a collar operation (collar width of 40 seconds) to identify surrounding epochs as also

containing seizure (Temko et al., 2011b).

7.3 Respiratory artefact and false detections

Despite state-of-the-art performance of the SDA described in Section 7.2.2, the seizure

detection system is nevertheless prone to false detections. In seeking to explain the un-

derlying causes of these false detections, Thomas (2011) has pointed out that neonatal

seizure is composed of a large set of diverse patterns emanating from background activ-

ity, seizure events and artefacts. Additionally, EEG characteristics are often considerably

different between patients, and are not stationary, evolving over time, particularly in the

immediate weeks after birth. Perhaps the most critical finding with respect to artefact
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Figure 7.2: Example of neonatal EEG showing a localised neonatal seizure. Seizure is
visible on channels F3-C3, C3-01, Cz-C3 and C3-T3 (red).

by Thomas (2011) was that artefacts accounted for 43% of false positive detections. In

a subsequent clinical evaluation of the SDA, Mathieson (2012) confirmed that contami-

nation of the neonatal EEG by non-cerebral electrical activity is the single largest cause

of misclassification in the ANSeR system developed by Faul (2007), Thomas (2011) and

Temko et al. (2011b).
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Figure 7.3: Illustration of the ANSeR neonatal seizure detection algorithm developed over
the last ten years by the Neonatal Brain Research Group at U.C.C.

In the investigation by Mathieson (2012), it was clear that certain artefact types were

more problematic than others in the context of SDA performance. Most detrimental to

the SDA performance was contamination by respiratory artefacts (Table 7.1), i.e. artefacts

arising from the breathing of the neonate under observation. As discussed in Chapter 2,

respiration artefacts occur due to movement of an electrode with inhalation or exhalation.
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SDA Threshold FD\h FDs due to Percentage FDs due to
respiratory artefact respiratory artefact

0.4 0.63 278 34.7 %
0.5 0.41 249 47.8 %
0.6 0.27 221 64.61 %

Table 7.1: Breakdown of false detections by the ANSeR seizure detection algorithm due
to respiratory artefact as reported in Mathieson (2012).

This can manifest itself in one of two ways: slow waves or slow and sharp waves. Slow waves

are respiration artefacts taking the form of slow, rhythmic EEG activity, synchronous with

the body movements associated with breathing and mechanically affecting the impedance

of (usually) one electrode. A second form of respiration artefact, which is especially

common in neonatal EEG, can be slow or sharp waves that occur synchronously with

inhalation or exhalation and involve those electrodes upon which the patient is lying.

This form of respiration artefact can often mimic neonatal seizure, and is understood

to play the largest role in the false detections observed by the SDA in the presence of

respiratory artefacts. Examples of respiration artefact are illustrated in Figures 7.4 and

7.3. The likeness of these respiration artefacts to seizure can be seen with comparison

to the seizure examples illustrated in Figures 7.1 and 7.2, where the similarity of their

morphologies can be observed.

7.4 Automated artefact removal

As described in Chapters 2, artefact removal techniques can be broadly split into two cat-

egories: (i) filtering and regression and (ii) blind source separation. Generally speaking,

removal of non-physiological artefacts is often straightforward as these artefacts typically

occupy well-defined frequency and amplitude ranges. Thus, widely-accepted methods of

removing non-physiological artefacts are linear filtering and simple amplitude threshold-

ing. In the ANSeR system outlined in Section 7.2.2, linear filters are included in the

pre-processing stage to remove DC and mains frequency noise from the EEG. However,

for physiological artefacts such as respiratory artefact, more advanced signal processing

techniques are required; most commonly blind source separation techniques are used.

As discussed in Chapter 2, blind source separation uses information from multivariate

EEG to construct more insightful new variables by applying a coordinate transforma-

tion to the data. In this new reference frame, the artefact components are identified and
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Figure 7.4: Example of respiration artefact in EEG recorded from neonatal patients at CUMH using a NicOne EEG machine using a
sampling frequency of 250 Hz. Respiration artefact, manifesting as slow waves, on neonatal EEG recording; electrode C4 records the
artefact which is then visible on channels F4-C4 and T4-C4, and to a lesser extent on channels C4-P4 and C4-Cz.
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Figure 7.5: Example of respiration artefact in EEG recorded from neonatal patients at CUMH using a NicOne EEG machine using a
sampling frequency of 250 Hz. Respiration artefact on neonatal EEG recording; visible on channels F4-C4, C4-O2, T4-C4 and C4-Cz,
manifesting as slow and sharp waves.
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removed before performing an inverse coordinate transformation back to the original ref-

erence, where the multivariate EEG has now been “cleaned”. In the context of neonatal

seizure detection, if detection of components containing artefact is too sensitive, too many

sources may be omitted, resulting in data loss and possibly missed seizures. Conversely, if

artefact identification is not sensitive enough, artefacts will remain in the EEG, resulting

in continued false positive seizure detections. To date, there exists one method in the lit-

erature that proposes to effectively remove respiratory artefact from EEG in the context

of automated neonatal seizure detection (De Vos et al., 2011). In De Vos et al. (2011),

the authors outline an automated respiratory artefact removal algorithm utilising second

order blind identification (SOBI) and a respiratory trace. In this chapter, the algorithm

outlined by De Vos et al. (2011) is recreated and evaluated in the context of the ANSeR

seizure detection system developed at U.C.C. This algorithm is then further developed to

function without a respiratory trace.

7.5 Data

The dataset used in this chapter is outlined in detail in Section 2.9.3. To summarise, the

ANSeR system was developed utilising data from 55 babies recorded at Cork University

Hospital. The artefact removal algorithms outlined in this chapter are evaluated on neona-

tal data collected at University College London Hospitals; the data is taken from neonatal

patients whose recordings show seizure as well as respiration artefact. The availability of

data from neonatal patients who underwent seizure, whose EEG was contaminated by res-

piration artefact and where a respiration trace was recorded was limited to two patients.

In this chapter, the De Vos algorithm is implemented with the ANSeR system with 36

hours of data recorded at University College London Hospitals from two neonatal patients

(referred to here as Patients 1 and 2).

The second algorithm evaluated using the ANSeR system is a method developed in this

chapter that adapts the De Vos algorithm for use with a respiration signal derived from

the ECG signal. By relaxing the need for a respiration trace, two more babies can be

recruited. Thus, this algorithm is evaluated on the aforementioned two patients as well as

an additional two babies (Patients 3 and 4) that suffered from seizure, and whose EEG

was contaminated by respiration artefact. These recordings were not accompanied by a

respiration trace, but did contain ECG signals.
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7.6 De Vos method: correlating SOBI with respiratory trace

In the respiratory artefact removal method outlined by De Vos et al. (2011), the EEG is

first decomposed into its prominent underlying sources using an appropriate blind source

separation method. It is then necessary to automatically identify which (if any) of these

sources correspond to respiratory artefact. To accomplish this, each source is compared

to a simultaneously recorded polygraphy signal, i.e. the respiration trace in the form of a

movement sensor on the abdomen of the neonate. An illustration of the De Vos algorithm

is outlined in Figure 7.6, with further details of the algorithm described in the following

paragraphs.

7.6.1 Second order blind identification

As respiration artefacts tend to be oscillatory in nature and consequently have high auto-

correlation, independent component analysis may be a suboptimal method of performing

blind source separation. Second order blind identification (SOBI) introduced by Be-

louchrani et al. (1997) is an alternative BSS algorithm that is appropriate for separating

sources that are individually correlated in time, but mutually uncorrelated. SOBI is based

on a joint diagonalisation of correlation matrices, and considers the relationship between

component values at different time lags and decorrelates these values as much as possi-

ble; thus, SOBI uses correlations across time in performing the signal separation. Conse-

quently, this means that SOBI can isolate highly temporally correlated sources, something

that most ICA algorithms cannot do (Joyce et al., 2004). For this reason, SOBI is pro-

posed by De Vos et al. (2011) as a suitable means of performing source separation in the

presence of oscillatory, respiration artefacts.

As discussed in Section 2.5, the recorded EEG signals X, can be modelled as a linear

transformation of latent variables Y comprising underlying cortical signals as well as

electrical signals arising from non-cerebral sources, such that the transformation of the

N -channel EEG is modelled by an unknown, full-rank, mixing matrix, A:

X = AY, (7.1)

where A ∈ R
N×N . More commonly for time-series data such as EEG signals, the data is

represented as:

x(t) = Ay(t) + n(t), (7.2)
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where n(t) is additive noise and is modelled by a stationary, temporally and spatially

white zero-mean process with variance σ2 and where x(t) denotes the signals and y(t)

denoting the latent variables are sources. It is assumed that the n sources y(t) are mutually

uncorrelated and that m × n complex matrix A is of full rank but otherwise unknown.

The autocovariance of the sources is thus:

Ry(τ) := E
(

(ŷ(t+ τ)−E(y(t))) (y(t)−E(y(t)))H
)

, (7.3)

for all τ and where superscript H denotes the complex conjugate transpose of the matrix.

By centering the processes, it can be assumed that x(t) and hence y(t) have zero mean.

The autocovariances then have the following structure:

Rx(τ) = E
(

x(t+ τ)x(t)H
)

=







ARy(0)A
H + σ2I τ = 0

ARy(τ)A
H τ 6= 0

(7.4)

The goal of blind source separation is then to estimate an inverse of A that allows the

accurate recovery of the sources y(t), without use of any a priori information on A and

thus using only information from the signals x(t). In other words, find the transformation

A−1 to coordinates corresponding to the underlying cortical signals as well as artefact

sources. As this transformation is simply an estimate of the actual de-mixing matrix A−1,

it will be referred to here as Â−1.

Clearly, A (and hence y(t)) can be determined by Equation 7.2 only up to permutation

and scaling of columns. Since existing variances of x(t) and hence y(t) are assumed,

the scaling indeterminacy can be eliminated by the convention Ry(0) = I. In order to

guarantee the identifiability of A (except for permutation) from the above model, it is

necessary to additionally assume that there exists a delay τ such that Ry(τ) has pairwise

different eigenvalues (Belouchrani et al., 1997). Then using the spectral theorem (Halmos,

1963) it can be seen from Equation 7.4 that A is determined uniquely by x(t) except for

permutation.

To recover A, the no-noise EEG term x̂(t) := Ay(t) is first whitened, using an invertible

matrix W such that Wx̂(t) has unit covariance. The whitening matrix W is estimated

by diagonalising the sample covariance matrix Rx̂(0). In addition to only diagonalizing a

single autocovariance matrix, SOBI takes a whole set of autocovariance matrices of x(t)

with varying time lags τ and jointly diagonalizes the whole set. That is to say, SOBI finds

Â−1 by minimizing the sum squared cross-correlations between one component at time t
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and another component at time t+ τ , across multiple time delays (τs) and across all pairs

of components. The SOBI algorithm as detailed by Belouchrani et al. (1997) is thus:

1. Estimate the sample covariance R̂(0) from T samples. Denote the largest n eigen-

values of R̂(0) as λ1, ..., λn and their corresponding eigenvectors, h1, ...,hn.

2. Obtain the whitened signals Z = ŴX, where the whitening matrix Ŵ, is such that:

Ŵ = [(λ1− σ̂2)−
1

2h1, ..., (λn− σ̂2)−
1

2hn]
H , where superscript H is the complex con-

jugate transpose, and σ̂2 is an estimate of the variance of the noise obtained by

taking the average of the m− n smallest eigenvalues of R̂(0).

3. Form sample estimates R̂y(τj) by computing the sample covariance matrices of the

whitened signals Z, for a fixed set of time lags τ ∈ {τj |j = 1, ...,K}.

4. The unitary matrix Û is obtained as a joint diagonaliser of the set of sample esti-

mates {R̂y(τj)|j = 1, ...,K}.

5. The mixing matrix A is then estimated as Â = ŴΥÛ, where the superscript Υ

denotes the Moore-Penrose pseudo-inverse (Penrose, 1955). The estimated source

signals are then Ŷ = ÛHŴX.

In this manner, the blind source separation of temporally correlated sources is possible,

based on the “joint diagonalisation” of an arbitrary set of covariance matrices. As men-

tioned by De Vos et al. (2011), the SOBI method offers a number of attractive features:

namely that it allows (in contrast to higher order cumulant techniques such as fast ICA

and ICA infomax) the separation of Gaussian sources and that due to the use of several

covariance matrices, the algorithm is robust to indeterminacies.

7.6.2 Removing respiratory artefact components

In the respiratory artefact removal method outlined by De Vos et al. (2011), SOBI is used

to obtain source components of the EEG signal, and (theoretically) separate EEG sources

from respiratory artefact sources. The sources corresponding to respiratory artefact must
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Figure 7.6: Neonatal seizure detection system with respiratory artefact removal using
respiration signal included in the pre-processing stage, as outlined by De Vos et al. (2011).

then be identified; to accomplish this, each source is compared with the simultaneously

recorded polygraphy signal. However, this comparison is confounded by the fact that,

like ECG artefacts, respiratory artefacts can be remarkably different in morphology to

those of the signal in the polygraphy measurement (Strobach et al., 1994). To overcome

this problem, De Vos et al. (2011) propose an intermediary step whereby both EEG and

polygraphy sources are transformed in order to enhance the similarity between them.

This transformation is realised by means of a low-pass filter with frequency cut-off at

9 Hz. Identification of artefactual sources is subsequently accomplished by evaluating the

correlation between the filtered EEG sources and the filtered respiration signal; if the

correlation is higher than 0.4, the source is deemed artefact and is removed. Once the

artefact components are correctly identified, the EEG can be reconstructed without the

artefactual source(s), providing an artefact-free EEG. In this thesis, a final additional step

is carried out before the (theoretically) cleaned EEG signals are presented to the neonatal

seizure detection classifier. As the seizure detection classifier outlined in Section 7.2.2

includes features that depend on the energy of the EEG signal, and removing sources

equates to removing energy from the EEG, this may lead to unexpected consequences

when the signal is presented to the classifier. Consequently, an energy-scaling step is

implemented on the “cleaned” EEG signal before feature extraction takes place. This

energy scaling is accomplished by normalising the recombined EEG signal to the energy

of the EEG signal before artefact removal was performed.
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7.6.3 Algorithm performance

The De Vos method was applied to EEG recordings of two neonatal patients that were

acutely affected by respiratory artefact. Comparison of the performance of the seizure

detection algorithm with and without respiratory artefact removal are displayed in Figures

7.7a (ROC areas) and 7.7b (ROCspec90 areas). Figure 7.7a shows that the ROC area of the

seizure detection classifier are increased when the respiratory artefact removal algorithm

is applied in the pre-processing stage. However, for neonatal seizure detection, the area

of the ROC curve with high specificities is of most interest, i.e. it is acceptable to miss

some seizure epochs to accommodate reduced false detections. Figure 7.7b shows that

in the area of the ROC curve with specificities above 90 %; the results for Patients 1

and 2 are contradictory. For Patient 1, the ROC90 almost doubles with the addition of

the respiratory artefact removal, showing a relative improvement of 13.25 %. However,

for Patient 2, whose ROCspec90 without respiratory artefact removal was more than four

times that of Patient 1, disimproves slightly with the addition of the respiratory artefact

removal dropping from 0.07 to 0.066. These trends are repeated in Figures 7.9a and 7.9b,

which show the false detections per hour (FD/h) against good detection rate (GDR). For

Patient 1, applying the respiratory artefact removal stage results in a drop in the number

of false detections for an equivalent GDR; in most regions, the false detections are halved

compared to the baseline neonatal system. Importantly, this trend is strongest for low

and medium numbers of false detections, i.e. the areas at which the seizure detector will

realistically be used. For Patient 2, FD/h increase with the application of respiratory

artefact removal.

While ROC, ROCspec90 and FD/h vs. GDR plots are important for evaluating the expected

performance of a machine learning system, each diagram shows the classification with one

parameter (the threshold) as yet unspecified. In practice it is necessary to select this

parameter prior to utilising the ANSeR neonatal seizure detection tool. Admittedly, in

a practical implementation of a seizure detection system in the NICU, there exists the

possibility of allowing the nursing staff to change this threshold value based on their

interpretation of false detections (i.e. if there are too many false detections, the threshold

can be increased). However, the ideal scenario would allow a threshold choice that offered

sufficient performance for all patients, requiring no calibration by the nursing staff. To

examine this possibility, the false detections per hour are plotted against threshold θ

for Patients 1 and 2 in Figures 7.9a and 7.9b. Interestingly, for false detection rates

below 1, the respiratory artefact removal preprocessing stage introduces no reduction in
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Figure 7.7: ROC and ROCspec90 areas corresponding to the original neonatal seizure detec-
tion performance for two neonatal patients. The blue bars show ROC and ROCspec90 areas
without explicit artefact removal techniques. The red bars display ROC and ROCspec90

areas after removing respiratory artefact utilising SOBI and the respiratory trace as per
De Vos et al. (2011).

performance for Patient 2, while still offering a drop in FD/h for Patient 1. Thus, while

introducing the artefact removal stage reduces the GDR of Patient 2 for a given FD/h,

by fixing the threshold θ, FD/h does increase; rather, the adverse effect of the artefact

removal algorithm for Patient 2 can be interpreted as a drop in GDR. This may be a

reasonable sacrifice for improved robustness to false detections for patient independent

seizure monitoring.
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Figure 7.8: False detections per hour (FD/h) versus good detection rate (GDR) for Pa-
tients 1 and 2, for original neonatal seizure detection system (blue) and the neonatal
system with respiratory artefacts removed using SOBI and the respiratory trace (red).

7.7 Respiratory artefact removal without a respiratory trace

In many neonatal intensive care units, respiratory traces are often unavailable. In NICUs

where respiration is recorded, recordings are often intermittent or noisy; an issue that

is strongly linked to the fact that they can cause considerable discomfort to the baby.

Consequently, the ability to remove respiration artefact from the EEG without the use

of a respiration trace is required if the problem of respiration artefact is to be solved for

widespread neonatal monitoring. If blind source separation is to be utilised, a means of

automatically identifying sources that arise due to respiration is necessary. Statistical

thresholding of source components to separate between seizure and respiration artefact

would be one such solution. However, initial experiments indicated that a suitable feature
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Figure 7.9: False detections per hour (FD/h) versus threshold for Patients 1 and 2, for
original neonatal seizure detection system (blue) and the neonatal system with respiratory
artefacts removed using SOBI and the respiratory trace (red).

could not be found. More advanced classification methods based on multiple features is

another alternative, but is curtailed by the need to procure and annotate source compo-

nents representing seizure and respiration artefact. The solution proposed here is based

on a natural physiological process known as respiratory sinus arrhythmia, whereby the

heart rate is modulated by breathing. By taking advantage of this effect, the respiration

signal can be derived from the ECG.

7.7.1 Electrocardiogram-derived respiration signal

The normal respiratory cycle is accompanied by changes in autonomic tone which mod-

ulate heart rate. This phenomenon, known as respiratory sinus arrhythmia (RSA), is a
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Figure 7.10: Illustration of the naming convention for ECG signal with the R-R interval
displayed.

naturally occurring variation in heart-rate that occurs during a breathing cycle (Hirsch

and Bishop, 1981). In this process, inhalation temporarily suppresses vagal activity, caus-

ing an immediate increase in heart rate. Exhalation then decreases heart-rate and causes

vagal activity to resume. Thus, by observing beat-to-beat variations in the heart-rate, the

respiratory signal can be compiled (Moody et al., 1985). The R-R interval (illustrated

in Figure 7.7) is the fundamental rhythmic measure of ECG interpretation, representing

the length of a ventricular cardiac cycle; it is measured between two successive R waves,

and is typically used to indicate ventricular rate. The R-R interval is related to heart-

rate (HR) in beats per minute (BPM) as HR = 60/RR, where RR is in seconds. The

variation in heart-rate then can be calculated as the derivative of the R-R interval. This

method of obtaining an electrocardiogram-derived respiration (EDR) signal is perhaps

the most straightforward to implement; yet as outlined by Boyle et al. (2009), it offers

similar levels of performance to more complex techniques based on characteristics of beat

morphology such as area under the QRS complex (Moody et al., 1985), amplitude of the

R-wave (Khaled and Farges, 1992) and amplitude of the R- and S- waves (Mason and

Tarassenko, 2001).

Segment into 

2-minute 

epochs

Peak

detection

Calculate 

2nd derivative

Upsample

to EEG FS

ECG

signal
EDR

signal

Figure 7.11: Algorithm for obtaining electrocardiogram-derived respiration signal as out-
lined by Boyle et al. (2009).

The electrocardiogram-derived respiration (EDR) algorithm used here thus requires two

main steps: detection of the QRS complexes and calculation of the variation in the R-
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R intervals between these QRS complexes. QRS detection is a well-established research

area with popular algorithms based upon the derivative of the ECG signal (Pan and

Tompkins, 1985), wavelets (Afonso et al., 1999), neural networks (Barro et al., 1998)

amongst others. In this work, the wavelet-based QRS detection algorithm by Afonso et al.

(1999) was utilised using the Biosig toolbox in Matlab (Vidaurre et al., 2011). QRS de-

tection is thus performed by decomposing the ECG into non-overlapping frequency bands

and extracting a set of features based on the power within these ranges; beat classifi-

cation is then performed using a set of thresholding routines and heuristics. Before the

electrocardiogram-derived respiration (EDR) algorithm is implemented, the ECG signal

is segmented into non-overlapping windows of 2 minutes duration. The EDR algorithm is

then carried out on each window as follows:

1. Perform automated QRS peak detection on the ECG signal, as outlined in Afonso

et al. (1999).

2. Obtain the variation of the R-R intervals, i.e. the second derivative of the peak

positions.

3. Upsample the EDR signal to that of the EEG signal (250 Hz), so that correlation

can be performed between the EDR and the each of the source components.

Figure 7.12 displays a section of respiration trace and its equivalent EDR signal for Patient

1. Note that the same number of peaks are shown for both respiration and EDR signals,

with a slight phase change.

7.7.2 Respiratory artefact removal with the EDR signal

The electrocardiogram derived respiratory signal offers a potential solution to the problem

of automatically identifying source components associated with respiratory artefact. As

a surrogate respiration signal, it is proposed here to substitute the EDR signal for the

respiration trace in the De Vos method outlined in Section 7.6. The neonatal seizure

detection algorithm with the EDR signal would thus look like that outlined in Figure

7.13. To account for the phase shift between respiration and EDR signals and consequently

fall in correlation between the EDR and respiration artefact on the EEG, the correlation

threshold θ was reduced from 0.4 to 0.2. This single parameter was chosen heuristically
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Figure 7.12: Respiratory trace and equivalent EDR signal for 10 seconds of data for Patient
1.

(on a patient from a separate dataset); a thorough parameter search may yield an optimal

choice.

The seizure detection performance of the respiratory artefact removal using the EDR

signal is compared to that of the baseline seizure detection system as well as that of

artefact removal using a respiratory trace in Figures 7.14a and 7.14b. For both ROC

area and ROCspec90 for both patients, performance of the artefact removal with the EDR

signal approaches that of the artefact removal with the respiratory trace. Consequently,

ROC area and ROCspec90 area are improved for Patient 1 when compared to the baseline

neonatal seizure detection system without respiration artefact removal. For Patient 2,

the ROC area with and without respiratory artefact removal are equivalent. As was the

case for the artefact removal using the respiration trace, ROCspec90 area decreases when

artefact removal using the EDR signal is implemented on Patient 2.
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Figure 7.13: Neonatal seizure detection system with respiratory artefact removal using
EDR signal included in the pre-processing stage.

The ROC performance of the respiration artefact removal algorithm using the EDR trace

is evaluated for two additional patients (Patients 3 and 4) in Figures 7.15a (ROC area)

and 7.15b (ROCspec90 area). In these patients, no respiration trace was recorded. It is

evident in the barcharts, that the seizure detection performance as evaluated by ROC

area improves with the addition of respiration artefact removal using SOBI and the EDR

signal. In Figure 7.15b, the ROCspec90 area before and after artefact removal using the

EDR signal is illustrated. For Patient 3, a relative improvement of 6 % is observed with the

artefact removal stage. However, Patient 4 does not register any significant improvement

in seizure detection performance in this area of the ROC curve with respiratory artefact

removal.

False detections are examined in Figures 7.16a, 7.16b, 7.16c and 7.16d. Performance of

Patients 1 and 2 is similar to those using the De Vos algorithm, albeit with a reduced

improvement here for Patient 1 and a reduced disimprovement seen here for Patient 2.

Patient 3 improves with addition of respiration artefact removal using the EDR signal,

with FD/h falling or remaining constant for all GDR values below 0.7. The same trend

is evident for Patient 4, with the most notable improvement seen for FD/h below 0.5. In

conclusion, the EDR method is a suitable respiration artefact removal method for use in

the ANSeR system where a respiration trace is unavailable.
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Figure 7.14: ROC and ROCspec90 areas showing original neonatal seizure detection system
(blue), and the system with respiratory artefact removed using the respiratory trace (red)
and EDR signal (black).

7.7.3 Artefacts on additional physiological signals

The respiration trace and ECG signal used to identify respiration artefact on the EEG are

also prone to artefacts themselves. Consequently, artefact detection methods which rely

on additional physiological signals are susceptible to reduced performance by the presence

of artefacts on these auxiliary physiological signals. If there are significant amounts of

artefacts on the additional physiological signals, the artefact removal algorithm may com-

promise the neurological event detection system and negatively affect the classification

performance. In this experiment, this was found to be case for sections of the recordings.
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Figure 7.15: ROC and ROCspec90 areas showing original neonatal seizure detection system
(blue), and the system with respiratory artefact removed using the electrocardiogram
derived respiratory (EDR) signal (black). ROC and ROCspec90 areas are reported for four
neonatal patients that underwent seizure and whose EEG was contaminated by periods of
significant respiratory artefact.
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Figure 7.17 displays an example of artefact on the respiratory signal. In this work, steps

were taken to ensure that artefact removal was only performed if artefacts did not appear

on the additional physiological signals. For both the De Vos and EDR methods, artefact

removal was utilised only if the respiration trace did not contain extended periods of low

amplitude signals (as per the number of inactive samples described in Chapter 3) or ex-

tended periods of high amplitude artefact (as measured by samples more than 2 standard

deviations above the mean).

7.8 Summary

In this chapter, two methods to remove respiratory artefact from neonatal EEG using

blind source separation were investigated. The De Vos method of incorporating additional

physiological signals in the form a respiratory trace was successful at removing respiratory

artefact from the EEG signal, and subsequently improving the performance of the ANSeR

neonatal seizure detection system. A novel approach to respiratory artefact removal was

also introduced which made use of a respiration signal derived from the ECG. In doing

so, the need for a respiratory trace is circumvented, allowing respiratory artefact removal

in EEG recordings where respiration is not monitored. As the majority of NICUs do not

monitor respiration, the algorithm developed in this chapter represents the only available

method of respiratory artefact removal for many neonatal monitoring units. The improve-

ment in performance was most pronounced for patients whose EEG contained considerable

numbers of false detections due to artefact. For patients with already (comparably) low

numbers of false detections, the seizure detection performance was unaffected or in the

case of one patient, slightly worsened.
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(b) Patient 2.
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(c) Patient 3.
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(d) Patient 4.

Figure 7.16: False detections per hour (FD/h) versus good detection rate (GDR) show-
ing original neonatal seizure detection system (blue), and the system with respiratory
artefact removed using the electrocardiogram derived respiratory (EDR) signal (black).
Results are reported for four neonatal patients that underwent seizure and whose EEG
was contaminated by periods of significant respiratory artefact.
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Figure 7.17: Example of motion artefact on the respiratory trace (red) of a neonatal recording at University College London Hospitals.
The respiratory trace is relatively artefact-free in the left half of the image; motion artefact causes high amplitude deviations in the right
half of the image in both the respiratory trace (red) and EEG signal (blue).
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Chapter 8

Conclusions and future work

8.1 Conclusions

The primary aim of this thesis has been to use biomedical signal processing and machine

learning techniques to mitigate the deleterious effects of EEG artefacts in real-world en-

vironments. Specifically, these techniques have been deployed to detect and remove EEG

artefacts so as to allow the operation of automated neurological event detection systems

in these real-word settings; in ambulatory domains, in neurology departments and in in-

tensive care units. The approach taken with this research has been to focus on those

artefacts that are most problematic, i.e. those artefacts that prevent an EEG technology

from deployment. In this regard, head-movement artefact proved to be the most trouble-

some source of contamination in ambulatory environments. Similarly, detailed analysis of

the state-of-the-art epileptiform activity detection and neonatal seizure detection systems

showed that movement and ocular artefact caused the most false detections in routine

epilepsy monitoring, and respiration artefact led to the most false alarms by the ANSeR

seizure detection system. Accordingly, attempts to alleviate the difficulties introduced by

these artefacts makes up the contributions of this thesis.

The work in this thesis has approached the problem of artefacts primarily from two di-

rections: (i) utilising supervised machine learning methods to accurately detect artefacts

and incorporating this procedure into the decision making of the automated neurological

event detection system and (ii) utilising blind source separation techniques allied with

information from additional physiological signals to remove the contribution of artefact.
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In Chapter 2, a detailed review of the existing literature on artefact processing revealed

a number of shortcomings in their treatment in ambulatory EEG. Notably, ambulatory

artefact detection techniques were either non-existent or were evaluated using simulated

artefact data. In automated neurological event detection systems, the existing literature

fell short in a number of ways: the effect that artefact processing methods had on the

EEG diagnostic system was not quantified, and the methods were either outdated (simple

amplitude thresholding) or implemented with systems that have long-since ceased being

state-of-the-art. In neonatal seizure detection, the respiration artefact removal techniques

relied upon the use of a respiration trace, an entity uncommon in many NICUs. Chapter

2 went on to detail the EEG data used in this thesis; to the author’s knowledge this is the

most comprehensive collection of representative EEG data in the literature with which to

evaluate artefact processing techniques.

Chapter 3 outlined the problem of contamination by head-movement artefact in ambula-

tory EEG. A statistical machine learning approach was taken to the problem of identify-

ing EEG sections that are contaminated by electrical activity arising from non-cerebral

sources. Inspection of a comprehensive feature set (comprising time domain, frequency

domain and information theoretic features) indicated their usefulness in the generalised

head-movement artefact detection task. The approach for head-movement artefact detec-

tion developed here was the first work to deal with artefacts in an ambulatory environment

and in doing so, to class all movement related artefacts together. This concept of gen-

eralised head-movement artefact detection was initially validated using a reduced feature

set and a linear discriminant classifier; classification accuracies of between 65 % and 70%

were recorded for each of the window lengths investigated with a window length of 1.5

seconds showing the best performance. With the feasibility of detecting head-movement

artefacts with a single classifier confirmed, classification using a support vector machines

classifier was performed utilising the full feature set. Mean ROC areas of between 75 %

and 83 % were observed, this time on the more difficult task of participant independent

artefact detection. A window length of 0.75 seconds resulted in the highest mean ROC

area of 83 % ; however, as for the linear discriminant classifier, given the variation in SVM

classification performance across participants, a definitively best window length was not

chosen. The SVM classifier trained and tested in Chapter 3 is suitable for artefact an-

notation of EEG recorded in an ambulatory environment, and to the author’s knowledge

is the first of its kind. Additionally, this artefact detector could be incorporated into an

automated neurological event detection system at either the pre-processing (via artefact

rejection) or post-processing stage (via classifier fusion).
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The work in Chapters 4 and 5 took advantage of the miniaturisation of gyroscopes, and

used this additional physical signal to detect artefacts in the EEG; this work was the

first to use gyroscopes for this purpose. Results from the mutual information calculations

and linear discriminant classifiers indicated that the gyroscope feature set was useful in

discriminating between resultant EEG artefact and non-artefact classes. LDC classifica-

tion accuracies of between 65 % and 68 % for the 4- and 5- feature LDCs validated the

use of gyroscope features to detect non-cerebral, movement-induced activity in the EEG.

As was observed for the EEG classifier, utilising an SVM classifier on a comprehensive

feature set for the gyroscope classification task lead to good separation between gyro-

scope signals during normal EEG and those during head-movement artefact, providing a

strong argument for including gyroscopes in an EEG artefact detection system. Indeed,

the gyroscope classifiers performed at similar levels to the EEG classifiers (mean ROC

areas between 80 % and 84 %) and even outperformed them for some window lengths.

Once more, however, a single best window length was not chosen, due to the variability

in mean ROC areas across participants for each window length investigated. Chapter 5,

investigated methods of combining the EEG and gyroscope signals in the detection of arte-

facts arising from head movements. In doing so, the performance of the artefact detection

system was improved and a framework was developed whereby additional physiological

signals can be incorporated into the artefact detection task. It was found that the fusion

of signals at both feature and classifier levels improved detection of head-movement arte-

fact in ambulatory EEG when compared to using either EEG or gyroscopes alone. This

result was observed for feature fusion as well as for each of the score-level and decision-

level fixed-rule combinations that were investigated. Amongst these methods, it was found

that feature fusion and the score-level, sum rule offered the best classification performance

by increasing the ROC areas and reducing inter-participant variability. Improvements in

mean ROC area for a window length of one second was 8 % for the feature fusion and

score fusion sum-rule combination methods when compared to the EEG classifier alone.

These results confirm the complimentary nature of information carried by these different

modalities. Thus, in order to most effectively detect head-movement artefacts in EEG, a

classifier that combines EEG and gyroscope features at either the feature or score level is

recommended.

Chapter 6 focused on improving the classification performance of a state-of-the-art epilep-

tiform activity detection algorithm. To achieve this, SVM classifiers that discriminate

between epileptiform activity and the artefact types that lead to the most false detections

(namely, ocular and movement artefacts) were employed in a post-processing classifier
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fusion stage. Using both epoch and event-based metrics, it was clear that the use of

artefact-specific SVM classifiers in EEG sections of suspected epileptiform activity im-

proved the performance of the automated epileptiform detection system. The FDR metric

verified that a considerable reduction in the number of false detections was achieved whilst

continuing to accurately detect epileptic seizure and short-duration, interictal epileptiform

events; median false detection rate fell by 83.27 % at a constant good detection rate of

0.9375. The most profound improvement was found by incorporating head-movement and

ocular artefact detection classifiers together and combining them with the baseline epilep-

tic seizure and epileptiform activity detection classifier. A further benefit of utilising the

artefact SVMs was that the classification performance gains were seen across patients,

adding a level of robustness to the epileptiform detection algorithm that is necessary in a

real-world setting. In light of these results then, the use of score level classifier fusion for

epileptiform activity detection is recommended as it offers superior performance to that

of the decision level classifier fusion, reducing median false detection rate from 0.3 to 0.05.

Chapter 7 outlined efforts to deal with false detections due to respiration artefact in the

state-of-the-art ANSeR neonatal seizure detection system developed at U.C.C. To achieve

this, blind source separation techniques using SOBI and correlation of the source signals

with the respiration trace, of the form used in De Vos et al. (2011), were implemented.

To circumvent the issue of lack of widespread availability of respiration signal in NICUs,

a novel respiration algorithm was developed utilising an electrocardiogram-derived respi-

ration signal. This artefact removal algorithm improved classifier performance in patients

where respiration artefacts lead to significant false alarms. The improvement in perfor-

mance was most pronounced for patients whose EEG contained considerable numbers of

false detections due to artefact.

8.2 Future research directions

Research is always incomplete; there will always be more to do. Why then stop here?

As stated above, the aim at the outset of this work was to further advance EEG artefact

processing to a point where substantial progress was made in bringing automated EEG

medical technologies to bear on real-world applications. In this respect, artefact processing

in three broad areas were advanced. In the first body of work, namely artefact detection

in ambulatory EEG, it is felt that the bulk of improvements from utilising multimodal, su-

pervised machine learning have been gleaned from the available data. Additional advances
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will be increasingly incremental, and in reality will require the collection of new datasets.

This is discussed in more detail in Sections 8.2.1 and 8.2.2. In the second body of work,

i.e. artefact classifier fusion in the context of epileptiform activity detection, significant

improvements in performance have been realised. Further improvements are expected, but

as explained in Section 8.2.3 this will likely require additional well-annotated data or in-

vestigating fundamentally alternative approaches. Finally, in the third body of work, that

of respiratory artefact removal in a neonatal seizure detection system, the improvements

made, appear sufficient in bringing classifier performance on those patients who previ-

ously performed poorly to a level, where false detections are acceptably small. Details of

suggested future work are outlined in Section 8.2.4.

At the same time, the research outlined in this thesis raises further questions. The following

paragraphs outline some areas that may offer interesting directions for future work.

8.2.1 EEG head-movement artefact detection

In all classification tasks there remains the possibility, albeit unlikely, of discovering one

“super-feature”; a feature which provides almost perfect discrimination between the class

labels in question. Perhaps more realistically, there exists ample scope for the discov-

ery of features in both the EEG and gyroscope signals that would provide incremental

improvement in classification performance. Recently, Temko et al. (2011a) verified the ap-

plicability of automated speech recognition (ASR) features in neonatal seizure detection.

An investigation of the usefulness of these features in the artefact detection task would be

interesting. For the gyroscope signals, the activity detection literature offers potential for

seeking additional, discriminative gyroscope features.

8.2.2 Multimodal head-movement artefact detection

The score fusion methods investigated in Chapter 5 used fixed combining rules. However,

there are several reasons why the outputs of the individual EEG and gyroscope classifiers

may not be optimally scaled with respect to each other (Duin, 2002). There exist a number

of potential methods by which the EEG and gyroscope classifiers may be combined to

provide further improvement in the head-movement artefact detection task by accounting

for this fact. These methods involve a further evaluation data set which is used to vary

several parameters in the classifier combination process. Future work would include the
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expansion of the artefact database used in this experiment, so that weighted and trainable

classifier combination can be investigated. Finally, the head-movement artefact detection

systems outlined in Chapter 5 are intended for use in ambulatory EEG for medical and BCI

applications. The manner in which artefact detection is incorporated into those systems

should also be explored. To this end, future work could include the collection of data

comprising labelled artefact and medical/ BCI events, and should explore ways in which

head-movement artefact detection can improve the medical/ BCI classification task. This

was attempted to a degree in the work carried out in Chapter 6; however, ambulatory EEG

and gyroscope data collected and annotated from epileptic patients would offer the most

realistic view of how artefact processing can be incorporated into continuous ambulatory

EEG monitoring of patients with suspected epilepsy.

The fusion methods outlined in Chapter 5 introduced the concept of combining EEG and

gyroscope signals to improve the detection of head-movement artefacts in EEG. There

exist a number of additional physiological signals which are promising in the detection of

other EEG artefacts. EOG, EMG and respiration signals could all be incorporated into

the artefact detection system by means of score fusion of individual classifiers as outlined

in this thesis.

In an ambulatory EEG system, minimizing the computational burden of feature extraction

and classification is likely to be a key, practical issue. This becomes even more critical

when we consider that artefact detection and removal is likely to be a secondary function

in any automated EEG neurological event detection system. It follows, that in a case

where computational load is limited, artefact detection will surely be amongst the first

components to be scaled back. Exploration of the effect of reducing computational burden

could take place at the feature level (by means of recursive feature elimination (RFE)) or

at the classifier level via support vector reduction.

8.2.3 Artefact processing in automated epileptiform activity detection

systems

The work outlined in Chapter 6 aims to combat the detrimental effect of ocular and

movement artefacts in the epileptiform activity detection task. The proposed method of

classifier fusion of epileptiform and artefact SVMs proved extremely effective at reducing

the number of false positive detections while maintaining a high good detection rate.

However, the underlying source of false detections are not limited to ocular and movement
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artefacts. Other artefact types (such as sweat, ECG and respiration) can also be blamed

for false positive detections of epileptiform activity. Expanding the dataset to include

labelled examples of additional artefact types would allow the training of an array of

artefact-specific classifiers and could further reduce the number of false detections in the

epileptiform activity detection task. Such a system would then conceivably possess a

range of classifiers to discriminate between epileptiform activity and each of a number of

artefact types. In doing so, it is proposed that the number of false detections can then

be reduced to levels which would allow an automated epileptiform detection system to

be deployed in a clinical environment. Alternatively, the approach taken in Chapters 3,

4 and 5, where artefacts are detected for all epochs, not just those epochs containing

the suspected neurological event in question, could be investigated here, and all artefacts

could be included in one artefact class. Similarly, a comparison of artefact processing at

the post-processing stage with artefact rejection at the pre-processing stage (as discussed

in Chapter 3 would be a useful addition to the EEG artefact literature.

The score fusion method outlined in Chapter 6 is a fixed-rule, classifier combination

method. Trainable classifier combination, whereby the posterior probabilities from the

base classifiers are used as input features to a general classifier used for combining, have

been shown to outperform fixed-rule combination for many applications. The use of these

trainable combining classifiers typically requires larger datasets than the equivalent fixed-

rule combiner. The expansion of the epileptiform database and the subsequent investiga-

tion of trainable classifier combinations provides another interesting direction for future

work. It is hypothesised that employing a trainable combining classifier would lead to a

further reduction in false positive detections and could be included with the aforemen-

tioned range of artefact-specific classifiers.

Finally, the definition of artefacts assumed in this thesis is that of any electrical activity

appearing on the EEG that arises from extra-cerebral sources. However, an alternative

definition of artefact, as “any electrical signal appearing on the EEG which interferes

with the classification task in question”, may pose some interesting questions. By re-

framing the artefact definition in this manner, cerebral activity such as alpha and delta

waves fall under the umbrella term of EEG artefact. As alpha and delta brain activity

have been documented as causes of false positive detections in the epileptiform activity

detection task (Gotman and Gloor, 1976), classifiers that are tailored to discriminate

between epileptiform activity and alpha/delta activity could be included in the artefact

processing system and potentially lead to further reductions in false detection rate.
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An alternative approach to performing classifier fusion of multiple discriminative classifiers

at the post-processing stage would be to use multi-class generative classifiers such as

Gaussian mixture models (GMM). This family of classifier models are widely used in

speech processing for multi-class classification. Within speech processing, GMMs have

proven particularly useful in removing various forms of non-speech sounds, i.e. they are

effective for dealing with speech processing artefacts.

8.2.4 Respiratory artefact removal in automated neonatal seizure detec-

tion systems

The work carried out in Chapter 7 represents the initial progress achieved in removing

respiration artefact from neonatal EEG using an EDR signal. There exists a number of

ways in which the developed system could be optimised. Firstly, the correlation threshold

coefficient was chosen heuristically by examining a short portion of data from a patient

external to the test data set. By enlarging the data set, nested cross validation could be

used to select an optimal correlation threshold.

The EDR algorithm chosen was that which appeared straightforward to implement and

which offered a clean signal. There is however, considerable scope for iterative improve-

ment by utilising more advanced EDR methods such as kernel PCA. Similarly, more

sophisticated algorithms for beat-to-beat detection of the ECG signal may offer improve-

ment in the quality of the EDR signal and subsequent improved in respiration artefact

removal. Similarly, incorporation of artefact processing techniques on the ECG signal

would also be beneficial to the performance of the respiration artefact removal.

8.3 Final remarks

This thesis is the culmination of years of research with the Biomedical Signal Processing

Group at UCC and multidisciplinary collaborations with medical staff at CUH and UCLH,

with whom the author has been grateful to work. Similarly, the work builds upon years

of research on automated EEG diagnostic systems for medical applications at UCC. Put

simply, without these multidisciplinary collaborations and without the knowledge and

expertise that has preceded this research, this thesis would not have been possible. In this

context, it is hoped that this work brings the research one step closer to deployment in
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real clinical environments and thus improve the standard of care for those with suspected

neurological illness. Additionally, it is hoped that the research outlined in this thesis

will provide a useful platform for further advancement in the processing of artefacts in

medical EEG diagnostic systems, for epilepsy and neonatal seizure detection as well as in

other medical applications such as sleep analysis and Parkinson’s detection. Finally, by

effectively dealing with artefacts, the use of EEG technologies in ambulatory environments

will allow the exponential growth for EEG monitoring in non-clinical environments that

may bring hitherto unrecognised benefits to the population. It is hoped that the work

detailed in this thesis will go some way in making this a reality.
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of a BSS algorithm for artifacts rejection in epileptic seizure detection. In Proceedings

of the 26th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC), San Fransisco, California, U.S.A., volume 1, pages 91–94,

2004.

F. Lopes da Silva. Neural mechanisms underlying brain waves: from neural membranes

to networks. Electroencephalography and Clinical Neurophysiology, 79(2):81–93, 1991.

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B. Arnaldi, et al. A review of classification

algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering,

4, 2007.

S.J. Luck. An introduction to the event-related potential technique. MIT Press, 2005.

S. Makeig, A.J. Bell, T.P. Jung, and T.J. Sejnowski. Advances in Neural Information Pro-

cessing Systems, chapter Independent component analysis of electroencephalographic

data, pages 145–151. Morgan Kaufmann Publishers, 1996.

M.B. Malarvili and M. Mesbah. Combining newborn EEG and HRV information for

automatic seizure detection. In Proceedings of the IEEE Engineering in Medicine and

Biology Conference (EMBC), Vancouver, Canada, pages 4756–4759, 2008.

D.P. Mandic, D. Obradovic, A. Kuh, T. Adali, U. Trutschell, M. Golz, P. De Wilde,

J. Barria, A. Constantinides, and J. Chambers. Data fusion for modern engineering

applications: An overview. Springer, 2005.

C. L. Mason and L. Tarassenko. Quantitative assessment of respiratory derivation al-

gorithms. In Proceedings of the IEEE Engineering in Medicine and Biology Society

(EMBC), Istanbul, Turkey, volume 2, pages 1998–2001, 2001.

208



S. Mathieson. Electrophysiological characteristics of neurological dysfunction in newborns.

Neonatal Unit, University College London Hospital, 2012.

R.P. McEvoy, S. Faul, and W.P. Marnane. Ambulatory REACT: Real-time seizure detec-

tion with a DSP microprocessor. In Proceedings of IEEE Engineering in Medicine and

Biology Society (EMBC), Buenos Aires, Argentina, pages 2443–2446, 2010.

D.J. McFarland, A.T. Lefkowicz, and J.R. Wolpaw. Design and operation of an EEG-based

brain-computer interface with digital signal processing technology. Behavior Research

Methods, 29(3):337–345, 1997.

D. McGrath, B.R. Greene, K.J. ODonovan, and B. Caulfield. Gyroscope-based assessment

of temporal gait parameters during treadmill walking and running. Sports Engineering,

pages 1–7, 2012.

D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test. Neurocom-

puting, 55(1):169–186, 2003.

T.M Mitchell. Machine learning, 1997.

J. Mitra, J.R. Glover, P.Y. Ktonas, A.T. Kumar, A. Mukherjee, N.B. Karayiannis, J.D.

Frost Jr, R.A. Hrachovy, and E.M. Mizrahi. A multi-stage system for the automated

detection of epileptic seizures in neonatal EEG. Journal of Clinical Neurophysiology, 26

(4):218, 2009.

E.M. Mizrahi and R.R. Clancy. Neonatal seizures: Early-onset seizure syndromes and

their consequences for development. Mental Retardation and Developmental Disabilities

Research Reviews, 6(4):229–241, 2000.

A. Mognon, J. Jovicich, L. Bruzzone, and M. Buiatti. ADJUST: An automatic EEG arti-

fact detector based on the joint use of spatial and temporal features. Psychophysiology,

48(2):229–240, 2011.

M.K.I. Molla, M.R. Islam, T. Tanaka, and T.M. Rutkowski. Artifact suppression from

EEG signals using data adaptive time domain filtering. Neurocomputing, 97:297–308,

2012.

G. Moody, R. Mark, A. Zoccola, and S. Mantero. Derivation of respiratory signals from

multi-lead ECGs. Computers in Cardiology, 12:113–116, 1985.

N. Mourad, J.P. Reilly, H. De Bruin, G. Hasey, and D. MacCrimmon. A simple and

fast algorithm for automatic suppression of high-amplitude artifacts in EEG data. In

209



Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, Honolulu, U.S.A., volume 1, pages I–393, 2007.

D.M. Murray, G.B. Boylan, I. Ali, C.A. Ryan, B.P. Murphy, and S. Connolly. Defining

the gap between electrographic seizure burden, clinical expression and staff recognition

of neonatal seizures. Archives of Disease in Childhood-Fetal and Neonatal Edition, 93

(3):F187–F191, 2008.

S. Nagasubramanian, B. Onaral, and R. Clancy. On-line neonatal seizure detection based

on multi-scale analysis of EEG using wavelets as a tool. In Proceedings of the 19th

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), Chicago, Illinois, U.S.A., volume 3, pages 1289–1292, 1997.

H. Nam, T.G. Yim, S.K. Han, J.B. Oh, and S.K. Lee. Independent component analysis

of ictal EEG in medial temporal lobe epilepsy. Epilepsia, 43(2)(2):160–164, 2002.

K. Nazarpour, H. R. Mohseni, C. Hesse, J. A. Chambers, and S. Sanei. A novel semiblind

signal extraction approach for the removal of eye-blink artifact from EEGs. EURASIP

Journal on Advances in Signal Processing, 2008(1):98, 2008.

H. Nolan, R. Whelan, and R.B. Reilly. FASTER: fully automated statistical thresholding

for EEG artifact rejection. Journal of Neuroscience Methods, 192(1)(1):152–162, 2010.

S. O’Regan and L. Marnane. Multimodal detection of head-movement artefacts in EEG.

Journal of Neuoscience Methods, 218(1):110–120, 2013.

S. O’Regan, S. Faul, and W. Marnane. Automatic detection of EEG artefacts arising from

head movements. In Proceedings of the IEEE Engineering in Medicine and Biology

Conference (EMBC), Buenos Aires, Argentina, pages 6353– 6356, 2010a.

S. O’Regan, S. Faul, and W. Marnane. Automatic detection of EEG artefacts arising from

head movements using gyroscopes. In Proceedings of the 3rd International Symposium

on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Rome,

Italy, pages 1– 5, 2010b.

S. O’Regan, S. Faul, and W. Marnane. Automatic detection of EEG artefacts arising from

head movements using EEG and gyroscope signals. Medical Engineering & Physics, 35

(7):867–874, 2013a. 10.1016/j.medengphy.2012.08.017.

S. O’Regan, D. Kelleher, A. Temko, B. McNamara, D. Costello, and W.P. Marnane.

Robust epileptiform activity detection in the presence of ocular and movement artefacts.

In Review, 2013b.

210



S. O’Regan, G. Lightbody, A. Temko, S. Mathieson, G. Boylan, and W.P. Marnane.

Respiration artefact removal in automated neonatal seizure detection using blind source

separation and an electrocardiogram derived respiratory signal. In Preparation, 2013c.

J. Pan and W. J. Tompkins. A real-time QRS detection algorithm. IEEE Transactions

on Biomedical Engineering, 3(1):230–236, 1985.

S. Park, H. Lee, and S. Choi. ICA+ OPCA for artifact-robust classification of EEG data.

In Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, pages

585–594, 2003.

Y.T. Peng, C.Y. Lin, M.T. Sun, and C.A. Landis. Multimodality sensor system for long-

term sleep quality monitoring. IEEE Transactions on Biomedical Circuits and Systems,

1(3):217–227, 2007.

R. Penrose. A generalized inverse for matrices. In Proceedings of Cambridge Philosophical

Soceity, volume 51, pages 406–413, 1955.

G. Pfurtscheller, J. Kalcher, C. Neuper, D. Flotzinger, and M. Pregenzer. On-line EEG

classification during externally-paced hand movements using a neural network-based

classifier. Electroencephalography and Clinical Neurophysiology, 99(5):416–425, 1996.

G Pfurtscheller, Ch Neuper, D Flotzinger, and M Pregenzer. EEG-based discrimination

between imagination of right and left hand movement. Electroencephalography and

Clinical Neurophysiology, 103(6):642–651, 1997.

T.W. Picton, P. van Roon, M.L. Armilio, P. Berg, N. Ille, and M. Scherg. The correction

of ocular artifacts: a topographic perspective. Clinical Neurophysiology, 111(1):53–65,

2000.

T.W. Pin, B. Eldridge, and M.P. Galea. A review of developmental outcomes of term

infants with post-asphyxia neonatal encephalopathy. European Journal of Paediatric

Neurology, 13(3):224–234, 2009.

J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods. Advances in Large Margin Classifiers, 10(3):61–74, 1999.

R. Polikar, C. Tilley, B. Hillis, and C.M. Clark. Multimodal EEG, MRI and PET

data fusion for alzheimers disease diagnosis. In Proceedings of the IEEE Engineer-

ing in Medicine and Biology Conference (EMBC), Buenos Aires, Argentina, volume 20,

page 20, 2010.

211



M. Qian, M. Aguilar, K.N. Zachery, C. Privitera, S. Klein, T. Carney, and L.W. Nolte.

Decision-level fusion of EEG and pupil features for single-trial visual detection analysis.

IEEE Transactions on Biomedical Engineering, 56(7):1929–1937, 2009.

B. Ramabhadran, J.D. Frost Jr, J.R. Glover, and P.Y. Ktonas. An automated system

for epileptogenic focus localization in the electroencephalogram. Journal of Clinical

Neurophysiology, 16(1):59, 1999.

S.J. Roberts, W. Penny, and I. Rezek. Temporal and spatial complexity measures for elec-

troencephalogram based brain-computer interfacing. Medical and Biological Engineering

and Computing, 37(1):93–98, 1999.

M. Roessgen, A.M. Zoubir, and B. Boashash. Seizure detection of newborn EEG using a

model-based approach. IEEE Transactions on Biomedical Engineering, 45(6):673–685,

1998.
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