

|                             | ,                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title                       | Generation of tosyl azide in continuous flow using an azide resin, and telescoping with diazo transfer and rhodium acetatecatalyzed O-H insertion.                                                                                                                                                                               |
| Authors                     | O'Mahony, Rosella M.;Lynch, Denis;O'Callaghan, Katie S.;Collins,<br>Stuart G.;Maguire, Anita R.                                                                                                                                                                                                                                  |
| Publication date            | 2021-11-30                                                                                                                                                                                                                                                                                                                       |
| Original Citation           | O'Mahony, R., Lynch, D., O'Callaghan, K., Collins, S. and Maguire, A., (2021) 'Generation of Tosyl Azide in Continuous Flow Using an Azide Resin, and Telescoping with Diazo Transfer and Rhodium Acetate-Catalyzed O-H Insertion', Organic Process Research & Development, 25 (12), pp.2772-2785. doi: 10.1021/acs.oprd.1c00377 |
| Type of publication         | Article (peer-reviewed)                                                                                                                                                                                                                                                                                                          |
| Link to publisher's version | https://pubs.acs.org/doi/10.1021/acs.oprd.1c00377 - 10.1021/<br>acs.oprd.1c00377                                                                                                                                                                                                                                                 |
| Rights                      | © 2021 The Authors. Published by American Chemical Society - https://creativecommons.org/licenses/by/4.0/                                                                                                                                                                                                                        |
| Download date               | 2024-04-20 11:02:35                                                                                                                                                                                                                                                                                                              |
| Item downloaded from        | https://hdl.handle.net/10468/12425                                                                                                                                                                                                                                                                                               |



## **Supporting Information**

# Generation of Tosyl Azide in Continuous Flow using an Azide Resin, and Telescoping with Diazo Transfer and Rhodium Acetate-Catalyzed O-H Insertion

Rosella M. O'Mahony<sup>†</sup>, Denis Lynch<sup>†</sup>, Katie S. O'Callaghan<sup>†</sup>, Stuart G. Collins<sup>†\*</sup>, and Anita R. Maguire<sup>‡</sup>

#### Table of Contents

| Details of Continuous Flow Platforms & Set up            | S2  |
|----------------------------------------------------------|-----|
| Supplementary Figures                                    | S3  |
| Copies of <sup>1</sup> H and <sup>13</sup> C NMR Spectra | S4  |
| References                                               | S12 |

<sup>†</sup> School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 YN60, Ireland ‡ School of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 YN60, Ireland

<sup>\*</sup>Email: a.maguire@ucc.ie; \*Email: stuart.collins@ucc.ie

#### **Details of Continuous Flow Platforms & Set up**

Continuous processes were performed using a Vapourtec R-Series flow system consisting of four piston (HPLC) pumps. Solid phase reagents/reaction components were employed using Omnifit glass column reactors (100 mm × 10 mm internal diameter, one fixed end piece and one adjustable end piece). For processes where the product stream was collected only while at steady-state, this was determined by the proprietary software (Flow Commander) installed on the flow chemistry system.

Table S1. General specifications for Vapourtec R-Series system



| General specifications for continuous-flow system |                           |  |
|---------------------------------------------------|---------------------------|--|
| Material of tubing                                | PFA                       |  |
| Internal diameter of tubing                       | 1 mm                      |  |
| External diameter of tubing                       | 1.59 mm                   |  |
| Working flow rates                                | 0.05 mL/min – 9.99 mL/min |  |
| Tubular reactor working volume                    | 10 mL                     |  |
| Temperature range                                 | −70 °C to 250 °C          |  |

## **Supplementary Figures**



**Figure S1.** System configuration for telescoped generation of tosyl azide, diazo transfer and O–H insertion (see Scheme 10).



**Figure S2.** Nitrogen bubbles released in reactor coil during rhodium acetate-catalyzed O–H insertion reaction of  $\alpha$ -diazo aryl acetate **9** in flow (see Scheme 8).

## Copies of <sup>1</sup>H and <sup>13</sup>C NMR Spectra

NMR spectra of the following compounds were in agreement with those previously reported:





**Figure S3.** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum of  $\alpha$ -diazo ester **9**.



**Figure S4.**  $^{13}C\{^{1}H\}$  NMR (CDCl<sub>3</sub>, 100.6 MHz) spectrum of  $\alpha$ -diazo ester **9**.





**Figure S5.** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum of α-diazo ester **20**.



**Figure S6.**  $^{13}C\{^{1}H\}$  NMR (CDCl<sub>3</sub>,100.6 MHz) spectrum of  $\alpha$ -diazo ester **20**.



**Figure S7.** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum of α-diazo ester **22**.



**Figure S8.**  $^{13}C\{^{1}H\}$  NMR (CDCl<sub>3</sub>, 100.6 MHz) spectrum of  $\alpha$ -diazo ester 22.

#### Methyl 2-(4-bromophenyl)-2-diazoacetate (24)<sup>3</sup>



**Figure S9.**  $^{1}$ H NMR (CDCl<sub>3</sub>, 300 MHz) spectrum of  $\alpha$ -diazo ester **24**.



Figure S10.  $^{13}$ C $\{^{1}$ H $\}$  NMR (CDCl<sub>3</sub>,75.5 MHz) spectrum of  $\alpha$ -diazo ester 24.



Figure S11.  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $\alpha$ -diazo ester 26.



**Figure S12.**  $^{13}$ C NMR (100.6 MHz, CDCl<sub>3</sub>) spectrum of  $\alpha$ -diazo ester **26**.



**Figure S13.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of crude α-hydroxy ester **10** (from telescoped process, see Scheme 10).



**Figure S14.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $\alpha$ -hydroxyl ester **10** (from telescoped process, see Scheme 10).



telescoped process, see Scheme 10).

#### References

- (1) Tayama, E.; Saito, S. Copper-Catalyzed Regiospecific and 1,2-Regioselective Cyclopropanation of (1Z)-1-Amino- and (1Z)-1-Oxy-1,3-butadienyl Derivatives *Synlett*, **2015**, *26*, 1880–1884.
- (2) Bartrum, H. E.; Blakemore, D. C.; Moody, C. J.; Hayes, C. J. Rapid Access to α-Alkoxy and α-Amino Acid Derivatives through Safe Continuous-Flow Generation of Diazoesters. *Chem. Eur. J.*, **2011**, *17*, 9586–9589.
- (3) Tayama, E.; Saito, S. Regioselective synthesis of secondary 1,3-dienamides by successive eliminations *Tetrahedron* **2016**, *72*, 599–604.
- (4) Kitamura, M.; Tashiro, N.; Okauchi, T. 2-Azido-1,3-dimethylimidazolinium Chloride: An Efficient Diazo Transfer Reagent for 1,3-Dicarbonyl Compounds *Synlett*, **2009**, 2943–2944.
- (5) Lloyd-Jones, G. C.; Wall, P. D.; Slaughter, J. L.; Parker, A. J.; Laffan, D. P. Enantioselective homoallyl-cyclopropanation of dibenzylideneacetone by modified allylindium halide reagents—rapid access to enantioenriched 1-styryl-norcarene. *Tetrahedron* **2006**, *62*, 11402–11412.