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Abstract 

Electron microscopy (EM) has advanced in an exponential way since the first 

transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ 

things is an essential part of human nature (talk of ‘seeing is believing’) and apart 

from scanning tunnel microscopes which give information about the surface, EM is 

the only imaging technology capable of really visualising atomic structures in depth 

down to single atoms. With the development of nanotechnology the demand to 

image and analyse small things has become even greater and electron microscopes 

have found their way from highly delicate and sophisticated research grade 

instruments to key-turn and even bench-top instruments for everyday use in every 

materials research lab on the planet. The semiconductor industry is as dependent on 

the use of EM as life sciences and pharmaceutical industry. With this generalisation 

of use for imaging, the need to deploy advanced uses of EM has become more and 

more apparent. The combination of several coinciding beams (electron, ion and even 

light) to create DualBeam or TripleBeam instruments for instance enhances the 

usefulness from pure imaging to manipulating on the nanoscale. And when it comes 

to the analytic power of EM with the many ways the highly energetic electrons and 

ions interact with the matter in the specimen there is a plethora of niches which 

evolved during the last two decades, specialising in every kind of analysis that can 

be thought of and combined with EM. In the course of this study the emphasis was 

placed on the application of these advanced analytical EM techniques in the context 

of multiscale and multimodal microscopy – multiscale meaning across length scales 

from micrometres or larger to nanometres, multimodal meaning numerous 

techniques applied to the same sample volume in a correlative manner. 
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In order to demonstrate the breadth and potential of the multiscale and multimodal 

concept an integration of it was attempted in two areas: I) Biocompatible materials 

using polycrystalline stainless steel and II) Semiconductors using thin multiferroic 

films.  

I) The motivation to use stainless steel (316L medical grade) comes from the 

potential modulation of endothelial cell growth which can have a big impact on the 

improvement of cardio-vascular stents – which are mainly made of 316L – through 

nano-texturing of the stent surface by focused ion beam (FIB) lithography. 

Patterning with FIB has never been reported before in connection with stents and cell 

growth and in order to gain a better understanding of the beam-substrate interaction 

during patterning a correlative microscopy approach was used to illuminate the 

patterning process from many possible angles. Electron backscattering diffraction 

(EBSD) was used to analyse the crystallographic structure, FIB was used for the 

patterning and simultaneously visualising the crystal structure as part of the 

monitoring process, scanning electron microscopy (SEM) and atomic force 

microscopy (AFM) were employed to analyse the topography and the final step 

being 3D visualisation through serial FIB/SEM sectioning. 

II) The motivation for the use of thin multiferroic films stems from the ever-growing 

demand for increased data storage at lesser and lesser energy consumption. The 

Aurivillius phase material used in this study has a high potential in this area. Yet it is 

necessary to show clearly that the film is really multiferroic and no second phase 

inclusions are present even at very low concentrations – ~0.1vol% could already be 

problematic. Thus, in this study a technique was developed to analyse ultra-low 

density inclusions in thin multiferroic films down to concentrations of 0.01%. The 
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goal achieved was a complete structural and compositional analysis of the films 

which required identification of second phase inclusions (through elemental analysis 

EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in 

the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit 

of 99.5% to the influence of the inclusions on the magnetic behaviour of the main 

phase (statistical analysis).  
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1. Material Systems Introduction 

 

As indicated in the abstract the thesis attempts to demonstrate the breadth and 

potential of the multiscale and multimodal concept by its application in two areas: I) 

Biocompatible materials using polycrystalline stainless steel and II) Semiconductors 

using thin multiferroic films. This chapter will hence start with a general 

introduction into the materials used: 1.1 stents, their building materials and the 

advantage of stainless steel and 1.2 an overview of multiferroic materials, especially 

Aurivillius phase materials. 
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1.1. Stents overview: design, desired properties, materials 

 

A stent is generally a metal mesh tube inserted into a natural passage/conduit in the 

body to prevent or counteract a disease-induced, localized flow constriction or to 

temporarily hold such a natural conduit open to allow access for surgery [1]. The 

mesh structure allows the stent to bend and follow the blood or hollow vessels to the 

point it is required. The surface of stents is geometrically complex because of its 

mesh structure (Fig. 1.1). In a first approximation one can assume the surface that is 

in strongest contact with the body material to be flat – like an unrolled straw. To 

simplify the conditions flat substrates are used in this study. 

The key characteristics of stents are strength to withstand the peristaltic movements 

of blood vessels, flexibility and minimal size to reach the tiniest body tubes. 

Austenitic type 316L stainless steel can supply these desired properties, is commonly 

used for manufacturing medical implants [2] and so it is also commonly used as stent 

material. Though in recent years there also have been studies on other alloys, 

containing Co, Cr and Pt [3-6] for higher strength and Mg as base metal for 

biodegradable stents [7]. 

 

Figure 1.1: Various views on complex stent surfaces 
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There are various ways to improve the stent design in order to make it more 

effective. One way is coating the surface with organic and inorganic materials. This 

is not trivial with the complex geometry of the stainless steel mesh. Nevertheless this 

route is extensively studied given its benefit of incorporating drugs into the polymer 

based surface coating which can be eluted over time into the surrounding vessel 

material. However, there are several reasons including concerns about increased 

risks of late stent thrombosis when using drug-eluting stents [8, 9], why the 

development focus is likely to return to bare metal or polymer-free stent technologies 

[3].  

While from the invention of stents it was aimed for a surface as smooth and polished 

as possible in order to minimize abrasion and inflammation of the body tubes it 

becomes ever more apparent that a somewhat roughened/textured surface might be a 

better fit for the task.  

The influence of textured material surfaces on the behaviour of cells has been 

studied for many years by now [10-16]. On one hand, theoretical studies show that 

cells prefer to grow on rough surfaces in general as it imitates best naturally 

occurring surfaces [17]. On the other hand, in order to have a better control over and 

to minimise the complexity of the experimental conditions the natural urge to study 

regular patterns lead scientists from rough to micro- to nano-patterned surfaces. 

Especially in tissue engineering where the tissues involved require certain 

mechanical and structural properties for proper functioning, the trend from micro- to 

nano-structured surfaces serving as artificially-created support systems has become 
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evident within the last decade [18-24]. Also for drug delivery the control over 

biointerfacial interactions is often the key to biomedical applications [14].  

In particular endothelial, smooth muscle and fibroblast cells play an important role in 

the healing process and maintenance of cardiovascular systems and thus are likely to 

be in contact with biomedical implants such as stents and grafts. During a surgical 

procedure involving the introduction of a stent, vascular tissues in the arteries may 

be damaged. Healing of vascular tissues is promoted by the formation of an 

endothelial cells lining on the stent substrate [25], while the presence of smooth 

muscle cells and fibroblasts may cause re-stenosis. Micro- and nano-textures on 

substrates may provide control of cell functions. Such structures could promote 

better vascular cell adhesion, decrease the need for systemic administration of drugs 

and reduce the requirement for secondary surgery after stent implantation.  

Only one study reported the protein adsorption on FIB patterned glass surfaces [26]. 

To date, no cellular studies have been reported on FIB structured surfaces. 

Moreover, this and other aforementioned techniques have not been employed for 

patterning the key vascular stent material 316L stainless steel for vascular cell 

functions. Studies do not exist that determine the endothelial cell (EC) response on 

316L steel with nano-pit features. Endothelial cell studies on unpatterned 316L 

stainless steel substrates have shown that the grain size and grain boundaries have an 

impact on their adhesion and morphology [27]. Chemically etched substrates with 16 

µm grain size etched have demonstrated cell densities significantly higher than with 

grain sizes of 31, 47 and 66 µm. The authors attribute this increased cell density to 

greater boundary area and associated higher surface free energy [27]. Cell 

proliferation was also subject to another study discussing different materials. There 
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the grain sizes varied from 320 nm to 22 µm. Again cell proliferation was inversely 

proportional on the grain size [28]. 

 

Austenitic type 316L stainless steel is commonly used for manufacturing medical 

implants [29] and was hence selected as the substrate of choice for this study. 

Austenitic stainless steels have face-centered cubic (fcc) crystal structure, in which 

the unit cell is a cube with atoms located at the corners and middle of each side (Fig. 

1.2a). The presence of higher concentration of Ni in austenitic stainless steels 

stabilises the fcc crystal structure, because Ni is a fcc crystal itself. This enhances the 

ductility, i.e. it can sustain large plastic deformation without fracture compared to 

other stainless steels (martensitic and ferritic phases).  

 

 

 

Figure 1.2: a) Schematic face-centered cubic crystal structure and b) FIB image of 

polycrystalline 316L used in this study 
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Most metallic materials are composed of many small single crystalline planes called 

grains. These materials are referred as polycrystalline materials (e.g. steel), in which 

individual grains have identical arrangement of atoms but the orientation of the atom 

arrangement or crystal structure is different from each adjoining grain (see Fig. 1.2b 

for visualisation). The interfaces between these grains are grain boundaries, the 

surface that separates the individual grains [30].  

The austenitic stainless steel function can be affected by two microstructure features: 

grain (or crystal) size and shape. The general grain size suggested for 316L is 100 

µm or less [29]. This is because smaller grains have more grain boundaries, which 

provide resistance to plastic deformation as they responsible for slip deformation by 

dislocations.  

Depending on the process conditions such as annealing and cold-working, the shape 

of austenitic stainless steel grains vary. Annealing is a heat treatment process where 

a material is modified, resulting in changes in its properties for example strength and 

hardness. It is a method that generates conditions via heating to above the 

recrystallization temperature, maintaining an appropriate temperature, and 

subsequently cooling. This method is applied to reduce internal tensions, material 

softening, enhance ductility, improve the structure by creating it uniform and enrich 

cold-working properties. Austenite grains of the stainless steels under an annealed 

condition exhibit an equiaxial granular shape (i.e. the grains having axes of equal 

length).   

Cold-working produces plastic deformation in the steels and generates a strain 

hardening effect, which improves both yield strength and tensile strength of steel 

considerably. However, in cold-worked steel, depending on the amount of cold 
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work, the grains are elongated (i.e. longer in the rolling direction). During large 

plastic deformation, textured grain structures are produced and preferentially align 

the grains in specific crystallographic orientations. Hence, cold-worked steel with 

textured structures demonstrates anisotropic mechanical properties. When employing 

a cold-worked steel for implant fabrication, microstructure analysis is suggested as 

implants can be better prepared if the loading direction is concurrent to the high 

strength direction in the steel [29]. Hence, it is clear that the microscopic and 

crystalline structure can play a strong role on the nano-structuring of the stainless 

steel surface.  
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1.2. Introduction to multiferroics 

 

With the continued rapid expanse of computer usage there comes an increasing need 

for data storage technologies with higher densities, non-volatility and lower power 

consumption.[31]  Single-phase, room temperature multiferroic materials are of 

considerable interest for such applications[32-38]. However, materials that are 

magnetoelectric at room temperature are very unusual[39].  The perovskite 

ferroelectric BiFeO3 exhibits antiferromagnetic ordering at ambient temperature[40]. 

Although its electric polarisation has been used to control ferromagnetism[41], its 

ferroelectric polarisation cannot be switched by a magnetic field.  There has, 

therefore, been an intense search for room temperature magnetoelectric multiferroics 

within which the coupling of ferroelectric and ferromagnetic polarisations might be 

demonstrated.  

The ferroelectric Aurivillius layer-structures[42], described by general formula 

Bi2O2(Am-1BmO3m+1), are naturally 2-dimensionally nanostructured with large c-axis 

parameters. The number of ABO3 perovskite units (m) per half-cell can be changed 

within the range 2 to 9, depending on composition, and a wide variety of B-site 

cations with +3 to +5 oxidation states accommodated[43-46].  The system offers the 

potential for including substantial amounts of magnetic cations within a strongly 

ferroelectric system, and is therefore an exciting candidate for potential use in 

multiferroic, magnetoelectric logic devices.   
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Figure 1.3. The relationship between multiferroic and magnetoelectric materials. 
(Redrawn from [47]). 

 

Ferroelectric materials form a subset of the polar electrically polarizable materials 

for which the electrical dipole moments within their structure can be switched 

between at least two stable states (e.g. up and down) by an external electric field.  

Ferromagnets form a subset of the magnetically polarizable materials.  Materials 

which demonstrate both ferroelectric and ferromagnetic properties within the same 

phase are known as multiferroic materials (Fig. 1.3).  Magnetoelectric coupling 

refers to the induction of magnetization by an electric field, or vice versa, and may 

arise through direct coupling between magnetic and electric polarisations in a single 

material.  

Aurivillius[42] bismuth-based compounds, sometimes referred to as the layered 

perovskites and described by the general formula Bi2O2(Am-1BmO3m+1), represent an 

important class of ferroelectric compounds. The materials are members of an 

homologous series of Bi-layered oxides, where the structure is a naturally-layered 

nano-composite.  The 2-dimensional nano-structures have large c-axis lattice 
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parameters, in the nanometer range, and consist of fluorite-structured (Bi2O2)2+ 

layers of thickness f (typically ~0.4nm) lying in the (001) plane alternating with 

mABO3 perovskite units in a sandwich type arrangement.  The average thickness of 

the perovskite-type block, h, depends on the number of octahedral perovskite units 

(m) in the block: h = pm where p is the average thickness of the perovskite-like units 

(also typically ~0.4 nm).[48] (Note that this is only an approximation, as octahedral 

tilting, and choice of A & B cations will change the average height of each 

perovskite unit.[49-51]) The value of m can be integer or fractional.[52] Fractional 

values of m usually occur with “mixtures” between a pure Aurivillius phase 

compound and a perovskite end member and are formed by recurrent intergrowth of 

the perovskite blocks of two Aurivillius end-members, eg. BaBi8Ti7O27 (m = 3.5) is 

formed from (Bi4Ti3O12)0.75-(BaTiO3)0.25.[53, 54] The values of f and h are related to 

the c cell parameter by f + h = c/2.  

The layered-structured Aurivillius phase materials are a particularly attractive class 

of oxides as their structure allows the design and synthesis of new materials in thin 

film form with interesting electrical and magnetic properties.  Between the bismuth 

oxide layers, the number of octahedral layers can be increased and a homologous 

series of compounds with the general formula Bim+1Fem-3Ti3O3m+3 (m = 4 to 9) has 

been realised by inserting bismuth ferrite units, BiFeO3, into 3-layered bismuth 

titanate, Bi4Ti3O12.  
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2. Methods and Techniques 

 

This chapter aims at giving an overview of the techniques (2.1) and methods used: 2.2 

patterning methods and the advantage of using a focused ion beam, 2.3 correlative 

microscopy including 3D, 2.4 a short introduction into EDX used for 2.5 the statistical 

approach to EDX analysis in analytical electron microscopy and 2.6 details of the 

microstructural analysis of the multiferroic Aurivillius phase thin films and observed 

inclusions. 
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2.1. Techniques 
 

FIB patterning The FIB system used in the current study is the FEI Helios NanoLab 600i, 

which is a dual beam FIB for localized milling and deposition, transmitting a beam of Ga+ 

ions combined with a high resolution SEM. In the work on stainless steel patterning, the 

working current was tuned between 0.28 nA (for 120 nm pits) up to 0.92 nA (180 nm) 

depending on size of the nano-texture. The available pit sizes and the large range of 

obtainable working currents could make the FIB technique an ideal device for nanomachining 

in the range from 10 nm to a few micrometres. Nano-structured features (pits/holes) ordered 

in rectangular arrays were patterned on 316L steel surfaces.  

Samples for serial sectioning of stainless steel were prepared in the FEI Helios NanoLab 600i 

using protective carbon and Pt layers [1]. The electron beam induced (EBID) carbon 

deposition supplied necessary contrast difference between the protective Pt and the stainless 

steel surface, hence enabling accurate determination of the concave’s shape and depth 

EBSD technique was used to analyse the crystallographic structured surfaces of the polished 

stainless steel. EBSD imaging was performed in a Hitachi SEM SU-70 equipped with an 

Oxford Instruments EBSD attachment AztecHKL at 10kV under 70° tilt angle and step size 

2µm. Initial top-down SEM imaging was used to analyse the topography of nano-textured 

surfaces of the polished stainless steel.  

An AFM (MFP 3DTM, Asylum Research) in AC mode was used for topography mapping of 

the surfaces.  Olympus AC160TS silicon cantilevers (Al reflex coated, ~300 kHz resonant 

frequency) were used for imaging. Optimal results were achieved with a medium scan rate of 

1 Hz and 256 x 256 pixels image resolution.  
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Topography Mapping: HR-SEM images and EDX analysis spectra were obtained using a FEI 

Quanta 630 High Resolution Scanning Electron Microscope with attached Oxford X-Max 20 

detector and Inca analysis software.  A commercial atomic force microscope (MFP-3DTM, 

Asylum Research) in AC mode, equipped with Olympus AC160TS silicon cantilevers (Al 

reflex coated, ∼300 kHz resonant frequency), was used for topography mapping of the films.  

Cross-sections of the films were prepared for micro-structural analysis using a FEI DualBeam 

Helios NanoLab 600i Focussed Ion Beam (FIB) (final thinning at 93 pA 30 kV, final polish 2 

kV 28 pA).  Micro-structural analysis was performed on the B6TFMO films using HR-TEM 

(Jeol 2100 transmission electron microscope; 200 kV; double tilt holder) in conjunction with 

selected area electron diffraction (SAED).  Note that normally ∼10% error should be 

accounted for when calculating d-spacings from SAED due to electron optics of the 

instrumentation.  Elemental mapping using EDX (Oxford X-Max 80 detector and Inca 

analysis software) over larger sample areas (3.99 µm2 to 1 mm2, medium spot size, x-ray 

generation area 10-30 nm in diameter, 200 nm thickness) was performed using the HR-SEM 

and STEM mode at the FEI Helios Nanolab.  

Surface EDX mappings and cross section sample preparation required a thin Au coating (< 20 

nm) to reduce the high surface charging of the B6TFMO films.  After the Au sputter coating 

a 60 nm layer of amorphous carbon and 300 nm Pt layer were deposited within the DualBeam 

FIB by electron beam induced deposition and 2 µm thick Pt layer with ion beam induced 

deposition. These three layers have been grown for protection before the milling process. A 

30 µm long lamella was prepared and thinned down to 40-60 nm for the TEM analysis. The 

thinning at 30 kV was finished by polishing at 5 kV and 2 kV to reduce the ion-beam induced 

damage to a less than 2 nm thin layer on both sides [2].   
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TEM analysis was done in a JEOL JEM-2100 operating at 200 kV in bright field condition 

for imaging and selected area electron diffraction (SAED) mode to record diffraction pattern 

of single grains. Crystal Studio was used to determine the crystal structure by comparing the 

simulated electron diffraction pattern with the recorded. 

EDX measurements were recorded in the FEI Helios NanoLab 600i operating at 20 kV and 

1.4 nA with an attached Oxford X-Max 80 detector. The spectra were analysed with the Inca 

software.   

 

2.2. Correlative Microscopy including 3D imaging 

 

The principal concept of correlative microscopy calls for analysis of one and the same 

volume of interest by two or more imaging techniques.  Subsequently, the signals recorded by 

different imaging modes are merged together to obtain unique information that is difficult to 

acquire with a single imaging regime. Correlative light and electron microscopy has been the 

most widely used technique until now featuring two imaging modes in one instrument. Other 

emerging correlative microscopy techniques include AFM-TEM, SNOM-TEM, AFM-

nanoSIMS, TEM-atom-probe microscopy which use dedicated platforms to localize one and 

the same volume of interest for analysis.  

Historically correlative microscopy is commonly referred to as correlative light and electron 

microscopy (CLEM), a technique used mainly for biological materials. The oldest reference 

to CLEM dates back to the 1960s.[3, 4] In those beginnings the correlation was far from a 

simple process with hours spent to find the same region again in the light or electron 

microscope as the techniques were not yet incorporated in one system. Thus, it took nearly 
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three decades until correlative microscopy gathered momentum in the 1990s. Though 

samples still have to be transferred between light and electron microscopes CLEM has been 

established as standard method with dedicated workshops and improvements in hard- and 

software only within the last ten years.[5, 6]  

Although many different microscopy techniques are incorporated by now, like fluorescence 

microscopy, (laser scanning) confocal microscopy, cryo-TEM and advanced techniques like 

3D structured illumination microscopy and spinning disk laser scanning microscopy, the 

limitation of the term ‘correlative microscopy’ to biomedical research is still dominant with 

many review papers within the last few years written on this topic. [7-10] Even the results 

chapter of this thesis will start out in this area with the surface patterning of stainless steel for 

potential application in cardiovascular stents, yet concentrating the correlative microscopy 

clearly on the inorganic materials side. 

An advanced characterisation protocol for analysis of the structures aiming at comprehensive 

evaluation (Fig 2.1) of the 3D shape of the patterned arrays as function of SS crystal structure 

using a combination of Electron Backscatter Diffraction (EBSD), FIB, Scanning Electron 

Microscopy (SEM), Atomic Force Microscopy (AFM), serial FIB-SEM sectioning and 

transmission electron microscopy (TEM) in bright field, dark field and selected area electron 

diffraction mode is attempted in the Results (3.1.3).  
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Figure 2.1. Complementary analysis techniques on the exact same sample location 

In particular, EBSD is an SEM based non-destructive microstructural technique that uses 

Kikuchi patterns to measure individual grain orientations, local texture, point-to-point 

orientation correlations and phase identification and distributions on the surfaces of bulk 

polycrystals. It is performed using the electron beam of an SEM as beam source. The SEM 

gives the possibility of generating maps of the crystal orientations for polycrystalline 

material. EBSD patterns are generated on a phosphor screen by backscatter diffraction of a 

stationary beam of high energy electrons from the typically 70° tilted sample surface. 

Because of the high tilt angle this technique is very surface sensitive and gives information of 

the top 10-50 nm down into the substrate [11]. A disadvantage of this technique could be 

seen in the long time that it takes to collect a large map at high resolution which takes several 

hours.  

AFM is also a non-destructive surface sensitive technique (with the information coming only 

from the top few atomic layers up to a few nm) that can be operated in three basic modes, 
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contact, tapping and non-contact-mode. The vast range of cantilevers, different attachments, 

modifications and extensions opens up another realm of information due to the multitude of 

signals that can be collected from the AFM: topography, phase, magnetic properties, surface 

potential to name just a few. As with EBSD the main disadvantage of this method could be 

seen in the long time taken for high resolution mapping, taking in some cases hours to 

stabilise the cantilever alone.  

SEM is the third non-destructive technique mentioned above. Conductive samples like 

stainless steel do not need any preparation to be imaged at high resolution within minutes. 

And with the advent of environmental SEMs and beam deceleration even non-conductive 

samples can easily be imaged without further preparation, otherwise a conductive coating 

needs to be applied to ground the sample properly to be able to conduct the incoming 

electrons away.  

FIB is at the edge between destructive and non-destructive. If a modification of the top 10-50 

nm through the ion bombardment does not alter the main characteristics of the sample it 

could still be considered as non-destructive. Usually though the surface amorphisation and 

incorporation of Ga+ ions are regarded as destructive which is the main disadvantage of this 

method. Otherwise FIB offers advantages over SEM of a higher secondary electron yield that 

leads to even faster imaging and contrast enhancement in polycrystalline material because of 

the above mentioned channelling effects. 

Serial FIB-SEM sectioning, also known as slice-and-view, then is truly destructive. As the 

name implies the sample is destroyed by taking slice after slice off a cross section and 

imaging with the SEM after each slice. This is a long process stretching over several hours, 

yet the information gained is compared to the aforementioned techniques three dimensional 

rather than 2D. With software programs like ImageJ or Amira it is possible to reconstruct a 
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full 3D model of the examined volume. This can be further enhanced by EBSD and elemental 

analysis though the analysis time goes up even higher by adding these techniques. Another 

disadvantage is the extensive sample preparation for serial FIB-SEM, which starts by 

protecting the sample surface with layers of electron beam deposited Pt or similar and usually 

cutting a trench around the sample volume to be analysed to enhance secondary electron yield 

and make 3D reconstruction simpler (by defining the volume at the start). 

TEM is the other destructive method described here, though technically it is only destructive 

for bulk materials that need extensive sample preparation to make a thin foil that is electron 

transparent. TEM is on the other hand very versatile giving access to much information about 

the material structure down to single atom resolution[12, 13]. The basic modes of operation 

are bright field (BF), dark field (BF) and (selected area) electron diffraction ((SA)ED). A 

further very common feature is the scanning TEM (STEM) which again opens another 

universe of analytic techniques. While in BF imaging matter appears dark and vacuum 

brighter, DF is complementary where the direct beam is blocked and only one or more 

diffracted beams allowed to pass the objective aperture to form the image. DF is very useful 

in combination with SAED in which the reflections for (poly)crystalline materials are shown 

(amorphous materials will show rings instead of defined reflection dots). Then one reflection 

is chosen using the objective aperture to obtain an image of the crystal region that the 

reflection belongs to. The pattern created by SAED are useful to gain insight into the 

crystalline structure of the material in question in the first place. The recorded pattern can be 

compared with simulated pattern created by software like Crystallographica, Crystal Studio 

or Crystal Maker to determine the material composition and the orientation of the sample 

towards the electron beam during the ED imaging. 

As described above many techniques reveal overlapping information that can be used for a 

better cross correlation of the recorded data. The additional complementary information 
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gained by each individual method is promising to give a full view of the surface structure in 

3D. 

 

2.3. Surface patterning with a focus on Focused Ion Beam and 
medical grade stainless steel 

 

As the name implies nano-texturing involves the creation of patterns or features with 

nanometre precision. In the context of this thesis the focus is laid on patterning methods that 

are most useful to create a flexible platform for future cell studies on stainless steel. Recent 

advances in micro- and nanotechnology have allowed the patterning of surfaces with the 

desired textures for cell scaffolding [14-17]. The choice of the texturing method depends 

largely on the nature of the substrate that needs to be modified and on the dimensions of the 

features expected. Indeed, photolithography was particularly successful for the patterning of 

features of microscopic dimensions on elastomers such as polydimethylsiloxane (PDMS) [18-

21] and on polymers such as polystyrene (PS) [22-25]. E-beam lithography is used for many 

years for the patterning of sub-micron features on silicon substrates [26, 27] and on 

Poly(methyl methacrylate) (PMMA) [28]. Features of 350 nm were patterned on PDMS and 

PMMA substrates by nano-imprint lithography [29]. Metal substrates such as Ti, were also 

textured using micro-machining for feature dimensions in the microscopic range [30, 31]. 

Cell adhesion, migration, elongation, proliferation and gene expression on textured substrate 

can be greatly altered depending on the shape and the dimension of the features [28]. 

The different techniques are compared in Tab. 2.1. In indirect photolithography methods, 

patterns are formed over a large area using a mask [32]. Such lithography processes are time-

consuming with many steps, and inherently inappropriate for prototype designs and 
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processes. Electrodeposition is a simple, fast and cost-effective method of reproducing nano-

structures on many materials using templates made of polymers and metals. However, this 

method is applicable only for electrically conductive substrates. Imprint lithography is a high 

resolution direct technique for nano-patterning of large surfaces, but it requires moulds and is 

restricted to polymeric materials [33], but this could then be used as etch masks or filled with 

metal electrodeposition. E-beam lithography and lithography based on scanning tunnel 

microscopy (STM), atomic force microscopy (AFM) or dip pen are high-resolution mask-less 

procedures, but with a very low throughput and unsuitable for wide surface nano-patterning 

[34]. Interference lithography can be utilized to create or transfer array patterns on various 

metallic and polymeric surfaces, but only patterned features can be reproduced. 

Microtexturing of surfaces has also been reported by pulsed laser patterning [35, 36]. The 

feature sizes are however limited to the micron range.  

Patterning by FIB milling is direct and offers several advantages for flexible prototyping 

practically any sufficiently conductive substrate material that is able to withstand high 

vacuum conditions of the microscope chamber, there is high flexibility in the obtainable 

shapes and geometries by modulating the ion beam current and the patterning conditions, 

reduced complexity of the pattering process e.g. it is a single-step process with a possibility 

of real-time monitoring of the milling progression. Thus for any particular type of substrate, 

various depths as well as lateral dimensions including the optimal feature size can be 

obtained with high degree of flexibility at minimum number of processing steps. 

Table 2.1: Advantages and drawbacks of indirect and direct nano-structuring techniques 

Mask/ 

molds 

require 

Technique Advantages Drawbacks 
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Yes Photolithography Well controlled features 

High throughput 

Requires photoresist, spin 

coaters and organic 

solvents Low aspect ratio 

Limited to set of materials 

Electrodeposition Precise geometries and 

patterns 

Large surface area 

 

Require templates for 

creating of nano-structures 

Limited to electrically 

conducting substrates 

Imprint 

lithography 

 

High resolution 

High aspect ratio 

Large surface 

Requires molds 

Applied to polymers only 

No E-beam  

 

 

 

High resolution 

Precise geometry and 

patterns 

 

No direct writing on 

substrate – etching 

required 

Multi-step process 

Low throughput 

Requires vacuum 

Time consuming 

Small surface coverage 

Expensive 

Interference 

lithography 

No complex optical 

systems  

Limited to patterned array 

features only 

Multi-step process 
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STM / AFM / Dip 

pen 

Very high resolution 

 

Low aspect ratio 

Very low throughput 

Very small surface area 

Nanoindentation High aspect ratio 

Control over features 

depth 

Less expensive than 

FIB or e-beam writer 

Wide and shallow features 

Slow process 

Laser patterning Any material 

High throughput with 

high power laser 

Wide and shallow features 

Micron resolution 

FIB milling 

 

 

 

High resolution 

High aspect ratio 

High etch rate 

Any material 

Time consuming 

Process requires vacuum 

Very expensive 

Low throughput 

 

Except FIB, none of the texturing techniques mentioned above were suitable to achieve 

features in the nanoscopic range on a hard substrate as 316L stainless steel. Nanoimprint 

lithography (NIL) and e-beam lithography (EBL) are able to pattern sub-micron features, 

which with NIL were achieved on soft substrates such as polymers and elastomers only, and 

with EBL is a very time consuming and expensive multi-step process. The preeminent 

advantage of FIB is its flexibility. In this research work, FIB milling was used to create nano-

structures onto stainless steel because it is a direct writing process with simple steps, high 
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resolution and aspect ratios. The goal of the study was to identify optimal FIB patterning 

conditions for achieving reasonably high throughput (patterned rate of about 0.03 mm2 per 

hour) and nano-size accuracy in dimensions and shapes of the features.  

 

As the name implies FIB systems employ a finely focused ion beam (usually gallium ions 

(Ga+)). Depending on the current used it can be operated for milling (at high beam currents) 

or imaging (low beam currents). Material is sputtered when the high-energy ions hit the 

sample surface. Primary Ga+ atoms are also implanted into the sample surface. This is limited 

to 10-50 nm depending on the sample material. Fig. 2.2 illustrates the interaction of the 

primary Ga+ ion beam with the sample surface. Secondary electrons are also generated during 

the interaction which can be used to form images. This is especially helpful when the top 

surface layer can be sacrificed as the yield of secondary electrons is much higher than from 

incident electron beams and a 5 nm resolution can be attained. [37, 38]  

Programs exist to simulate and model the interaction of ions with matter, called Stopping and 

Range of Ions in Matter (SRIM).[39, 40] These are widespread in the ion implantation 

research community due to their universality based on binary collision approximation (a 

Monte Carlo simulation method). Given the ion type and energy and the type of target, it can 

produce 3-dimensional distribution maps of ions in matter and its parameters like penetration 

depth, sputtering rate and concentration of vacancies to name just a few. For the case of 

interaction with polycrystalline stainless steel however its usefulness is severely limited as it 

does not take channelling effects and crystal structure into account.  

Channelling effects happen in crystalline materials where the incoming ions can follow 

certain crystallographic directions easier than others. The atomic distances in low index 

oriented crystals are larger, hence the ions can travel deeper into the material before losing 
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their momentum. This leads to reduced sputtering along low index facets. As will be shown 

in the results section this is not a negligible effect with the polycrystalline stainless steel. 

  

Figure 2.2: a) DualBeam FIB schematics. b) beam sample interactions: A – incident Ga+ 

ions, B – sputtered substrate atoms, C – scattered Ga+ ions, D – re-deposited Ga+ ions and 

substrate atoms, E – in substrate trapped Ga+ ions, and F – secondary electrons. Also depicted 

are the interaction volume for characteristic X-rays (EDX signal) in the sample (light blue) 

and the surface near volume from which the secondary electrons are emitted (light red which 

forms also part of the interaction volume of course). 

FIB originated in the semiconductor industry and has become an important tool for a wide 

array of applications, ranging from circuit editing, reverse engineering, sample preparation 

for transmission electron microscopy (TEM), microstructural analysis and prototype 

nanomaching to name just a few [41]. Many modern FIB instruments supplement the FIB 

column with an additional SEM column so that it becomes a versatile dual-beam platform as 

depicted in Fig 2.2. In nano-patterning, FIB has been used to create nano-structures on Si 
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[42], silicon nitride [43, 44] and glass substrates [45] and to fabricate platinum nano-

structures on peptide based soft surfaces [46].  

 

2.4. EDX analysis  

 

As EDX analysis plays such a vital role in this study it is explained in this subchapter 

separately including some raw data. EDX is an established technique used to characterise the 

elemental composition of samples in the EM. Opposite to X-ray machines used in medical 

and material imaging that use the broad Bremsstrahlung for high intensity beams, EDX 

exploits the fact that the X-rays that are generated when an orbiting electron is displaced by 

an electron of the microscope beam are at characteristic energies for each element. [47] 

The Oxford Instruments EDX system used in this study makes use of a silicon drift detector 

(SDD) which has an energy resolution of 130-170 eV in the region 6-11 keV that was used to 

identify Fe, Mn and Bi. Fig 2.3 shows a typical sum spectrum for a 72h surface scan 

normalised in counts per second (cps). The process time was set to a medium level 4 which 

produced a dead time in the range of 30% as is typical for SDDs for the e-beam current of 1.4 

nA that was found optimal between signal height and spatial resolution. In this condition the 

lifetime of the spectrum was about 200,000 s with a total count of 5 × 109 counts over 72 

hours.  



40 
 

 

Figure 2.3. Typical sum spectrum of sample B6TFMO for a 72h surface scan normalised in 

counts per second (cps). 

For the subtraction method described in detail in 3.2.2 the element characteristic lines shown 

in Fig 2.4 have been used that showed as little overlap as reasonable. After application of the 

subtraction method described in 3.2.2 spot spectra of Fe rich and Fe + Mn rich could be 

compared in Fig 2.5.  

 

Figure 2.4. Characteristic lines for the elements used in the subtraction method, Mn Kα1 at 

5.90 keV, Fe Kα1 at 6.40 keV and Bi Lα1 at 10.84 keV. 
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Figure 2.5. Spot spectra of a) normal Aurivillius phase B6TFMO, b) Fe rich area and c) Fe 

and Mn rich area 

Two points are to be considered when comparing these spot spectra: I) The large interaction 

volume in which characteristic X-rays are generated (for the 20 kV normally used the volume 

equals a pear shaped sphere with approx. 2 µm diameter in in this material) would render 

these spectra quite useless for localisation of nm sized inclusions. II) The low thickness of the 

thin B6TFMO layer of 200 nm increases the spatial resolution again. However, as the 

subtraction method makes use of spatial differential anti-correlation between Fe, Mn and Bi, 

local spot spectra have not been used in the statistical approach described in the following 

chapter. 

 

2.5. Statistical approach to EDX analysis of trace inclusions 

 

“Absence of Evidence is not Evidence of Absence” is a truism which confounds many 

analytical assertions. The confident statement of certainty: “There was nothing there” leads to 

the obvious retort: “How do you know?”. In many analyses, especially those using 

microscopes (optical or electron), it is only possible to look at restricted volumes, and the 

smaller the inclusion, or defect, or the lower the level of the impurity being sought, the 

smaller the volume that can reasonably be examined.  The absence of any evidence for 

second phases, defects or impurities in these volumes can lead to the erroneous conclusion 

(perhaps driven by wishful thinking) that there are none in the sample as a whole, when in 

fact all that can be asserted with certainty was that there was nothing in the volumes 

examined at the limit of resolution for the technique used. And yet all is not lost, because if 

the detection thresholds of a particular method are well understood, the volumes examined 
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are known and one makes some justifiable assumptions about the size distributions of second 

phase particles being sought, then one can apply statistical methods to determine the 

confidence level that surrounds such a statement.  In other words, one can convert the 

assertion of “certainty-of-absence” to one which gives a level of probability that the density 

of the sought-for impurity or second phase inclusion is below a certain critical level.  

Conversely, it is possible to apply such methods to the design of experiments which will yield 

any required level of confidence.  For example, it is possible to say that if one requires a 

confidence of 99.5 % that the density of a certain impurity or defect of known composition 

and/or size is below a certain critical level in a specimen, then given the sensitivities of the 

analytical methodologies being used, the statistical analysis can be used to determine how 

large a total volume needs to be examined. 

If one considers different examples of materials analysis, there are different cases according 

to whether one is searching for impurity elements in a simple, single element material like 

silicon, trying to detect inclusions which are widely different in composition/structure from 

the parent matrix or looking for second phases that are similar in composition and/or structure 

to the parent.  If the material is a pure element like silicon, for instance, claims with respect to 

a given level of purity can be verified relatively easily by using a host of different techniques 

such as SIMS (secondary ion mass spectrometry), ICP-MS (inductively coupled plasma mass 

spectrometry), EPMA (electron probe micro analysis) or Auger Spectroscopy and the level of 

impurities can be determined down to the level of ppb [48-52]. On the other hand, there are 

scanning methods which can locate inclusions and structural defects [53, 54], but, as 

commonly used, these are generally limited to detecting a minimum amount of 1-2 weight% 

of a particular inclusion type [55].  Atom probe tomography (APT) [56] and scanning 

transmission electron microscopy (STEM) coupled with energy dispersive X-ray 

spectroscopy (EDS/EDX) [57] and/or electron energy loss spectroscopy (EELS) [58, 59] 
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provide techniques which can resolve single atoms spatially and elementally, but are limited 

to very small sample volumes (areas of a few nm2 within a single atomic layer such as 

graphene film for example). Hence they cannot deal with a statistical distribution of small 

numbers of such entities dispersed over tens of µm3. There is a significant probability that the 

examination of a small volume of material at the high detail needed to see such very small 

inclusions may easily miss them, simply because they are not present in the particular volume 

of material examined.  In such a case it is prejudicial to say that such defects or inclusions are 

not present in the sample - one can only put a probability upon them for their density being 

below a certain critical level. 

On the other hand, an aggressive search for new materials is in progress and the development 

of single-phase multiferroic (simultaneously ferromagnetic and ferroelectric) oxides is a good 

example of this. These materials are of considerable interest for future memory and sensing 

applications [60-66]. Here, the assertion that a new material is a single-phase, room-

temperature multiferroic may be confounded by the presence of second-phase ferromagnetic 

inclusions that may have formed during the sample preparation.  This is the single most 

critical factor in the analysis of such materials because the magnetic properties of the sample 

overall are highly susceptible to the presence of such inclusions.  The difficulty in excluding 

second phase inclusions as being responsible for any observed ferromagnetism of a given 

sample is that some of the elements used to form the main phase could easily be responsible 

for formation of a ferromagnetic second phase. The differences between main and second 

phases could be in stoichiometry and/or crystal structure and both factors may have influence 

on the magnetic behaviour.  

This thesis demonstrates an original methodology for the detection, localization and 

quantification of second phase inclusions in thin Aurivillius type films.  Even when the 
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compositional differences between inclusion and main phase are rather subtle, this 

methodology provides a viable approach to not only identifying the inclusions but also to 

their localization and further in-depth structural investigation. 

The goal was to develop a dedicated statistical model applied to the design of the analytical 

(EDX) measurements and demonstrate its application to the analysis of 

Bi6Ti2.8Fe1.52Mn0.68O18 (B6TFMO) thin films. A detailed account of the sample preparation, 

transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX) that 

was necessary to put a high, defined confidence level (> 99.5 %) to the statement of ‘new 

single phase multiferroic material’ is presented in the Results (3.2).  

 

2.6. Microstructural Analysis of Multiferroic Aurivillius Phase Thin 
Films and Observed Inclusions 

 

One of the samples studied during this thesis – a thin films of Aurivillius phase 

Bi6Ti2.8Fe1.52Mn0.68O18 – gives a distinct room temperature in-plane ferromagnetic signature 

(Ms = 0.74emu/g, Hc = 7mT).  The microstructural analysis needed to conclude that the 

ferromagnetism does not originate from second phase inclusions is described in this chapter. 

Chemical solution deposition processes were used to make BiFeO3 and BiMnxFeyO3 doped 

Bi4Ti3O12 Aurivillius thin films on sapphire substrates.  Two sols were formulated, with the 

intention of producing materials with m=6 (6 perovskite units per half cell).  These possessed 

Ti:Fe:Mn ratios of 1:1:0 and 1:0.7:0.3 respectively.  Considerable (17.5 mol %) excesses of 

Bi were used in both cases to suppress pyrochlore formation[67].  X-ray diffraction (XRD) 

demonstrated that both sols produced Aurivillius phase type thin films, with the film lattice 

parameters being a = 5.468, b = 5.472 and c = 57.554 Å for the first sol, evidently producing 
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an m=6 film - Bi7Ti3Fe3O21 (B7TFO).  The second gave a = 5.497, b = 5.415 and c = 49.280 

Å, clear evidence for an m=5 film, from an average sol composition of 

Bi6Ti2.5Fe1.75Mn0.75O18 (B6TFMO).  (Note that as a considerable excess of Bi is included in 

the sol, the minor changes in excess given by producing an m=5, rather than an m=6 film are 

not significant.) All diffraction lines could be indexed either to the relevant Aurivillius phase 

patterns, substrate peaks or CuKβ lines from the strongest main phase peaks. The thin films 

are predominantly c-axis oriented with a Lotgering factors[68], f, of 0.977 for B7TFO and 

0.997 for B6TFMO.  The 5-layered structure for B6TFMO was confirmed by High 

Resolution Transmission Electron Microscopy (HR-TEM) and electron diffraction. There are 

no detectable lines from spinel (or indeed any other) minor phases visible in the XRD 

patterns of the films - the strongest (311) spinel reflections would be expected at 2θ=35.4°.  

However, the noise level in any XRD scan places a limit on the detectability on such minor 

phases and the method is intrinsically unable to detect trace levels (typically 1-3 vol %) of 

strongly magnetic secondary phases which may affect the overall magnetization of the 

sample.[69]  Clearly, detailed microstructural assessment is required for any sample of this 

type to exclude this as a possibility, and ideally to place a confidence level on that exclusion. 

HR-SEM (high resolution scanning electron microscopy) images reveal the characteristic 

plate-like grain morphologies expected from Aurivillius phase materials.  Multiple HR-SEM 

energy dispersive x-ray (EDX) surface scans (areas ranging from 900µm2 to 1mm2) showed 

an average film composition of Bi6Ti2.8Fe1.52Mn0.68O18, which is slightly deficient in Fe and 

Mn relative to the sol. Neither a 2 hour HR-SEM-EDX area scan of a 26µm x22.6µm area 

(120µm3 volume), nor a STEM (scanning transmission electron microscopy) EDX 

examination of a 30 µm long cross-section of thin film (1.2 µm3 volume) produced any 

evidence of Fe-rich regions that might indicate possible evidence of low-level minor phases.  
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However, a 72 hour long HR-SEM-EDX data collection over a 1600µm2 area, followed by 

subtraction of the Bi Lα from the Fe Kα and Mn Kα signals produced maps which showed 

areas of excess Fe and Mn for the B7TFO and B6TFMO films (Figs 2.6(a),(b),(c)).  These 

maps showed extremely small amounts (∼0.01 vol %) of FeOx oxide inclusions in B7TFO 

and slightly larger amounts (∼0.1 vol%) of a FexMnyOz phase in the B6TFMO with Mn:Fe 

ratio of 1.13:1 and a size of ∼350nm.  HR-STEM-EDX examination of the FexMnyOz 

inclusions demonstrated a composition of Mn0.53Fe0.47O.  HR-TEM/SAED (selected area 

electron diffraction) (Fig 2.6(e)) indicates a cubic structure with a lattice parameter of 4.4Å, 

that closely corresponds to that of a rock-salt-structure[70].  Magnetite (Fe3O4) and Jacobsite 

(MnFe2O4) structures can be excluded since the measured Mn:Fe ratio of 1.13:1 does not fit 

the compositions of these phases. Additionally, the space group Fd-3m (227) for Magnetite 

and Jacobsite does not fit the electron diffraction pattern obtained for the inclusions.  The 

bixbyite phase (Mn2-2xFe2xO3 where x = 0.4-0.6) can also be discounted as the Ia-3 (206) 

spacegroup also demonstrates a different electron diffraction pattern from that obtained.  

Neither the angles of the reflections nor the lattice parameters of Fd-3m (227) / Ia-3 (206) fit 

in any direction to the electron diffraction pattern of the inclusions. A composition closely 

related to that of the inclusions, Mn0.56Fe0.44O (Mangano Wüstite), has a cubic lattice with the 

space group Fm-3m (225)[70, 71]. It should be noted that this rock-salt composition is non-

ferromagnetic, and antiferromagnetic at low temperatures with a Neel point of ∼150K[71]. 

The electron diffraction pattern captured for the Mn0.53Fe0.47O inclusions fits simulations of 

this space group along the (110) direction perfectly[72] assuming micro/nano-twinning[73, 

74] causes reflections at half positions. This assumption is strengthened by the observations 

in TEM dark field mode (Fig 2.7). In this technique the unscattered or zero order beam is 

excluded. Only electrons diffracted on crystal planes contribute to the formed image. Fig 2.7 

shows clearly that different diffraction spots in the summary SAED (Fig 2.7(a)) stem from 
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different micro/nano-crystals. In particular three regions nearly parallel to the substrate 

surface are discernable in different distances. Viewed from the substrate the bottom part is 

most visible in Fig 2.7(a), the top part in Fig 2.7(e) and the interface inbetween in Fig 2.7(f). 

A second random twinning in horizontal direction is also observable within the inclusion 

which is illuminated by the complimentary highlighting of different crystals in Figs 2.7(d) 

and (g). 

 

Figure 2.6.  Compositional maps produced by extended period (72 hour) data collections 

from a 1600µm2 sample area, followed by subtraction of the Bi Lα from the Fe Kα and Mn 

Kα signals.  These show a) regions of excess Fe in B7TFO b) regions of excess Fe in 

B6TFMO and c) regions of excess Mn in B6TFMO. Note the one-to-one correspondence 

between the small, bright (numbered) regions showing Fe in b) and Mn excesses in c). Note 

also the larger pale areas in b) corresponding to areas where the Fe content slightly exceeds 
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the surrounding grains.  d) Cross-sectional HR-TEM image and e) diffraction pattern taken 

from a single Mn0.53Fe0.47O inclusion.  f) Cross-sectional HR-TEM image and g) diffraction 

pattern taken from a single higher-Fe content Aurivillius grain within B6TFMO. 

 

Figure 2.7.  Dark field TEM analysis of a single Mn0.53Fe0.47O inclusion. These show a) 

SAED pattern b) – i) dark field images taken from the spots indicated in a), crystal direction 

indicated in each image. The sapphire substrate is on the left side of the images. 

Also visible in these surface HR-SEM-EDX maps were larger areas, similar in shape to the 

Aurivillius grains, where the Fe content slightly exceeded the surrounding grains.  Detailed 

cross-sectional HR-TEM/SAED and HR-STEM-EDX examination of these grains (Fig 
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2.6(f),(g) and Fig 3.19) showed that they were m=5 Aurivillius-structured grains possessing a 

higher Fe content than the average of the film composition determined by surface area HR-

SEM-EDX.  A compositional survey by cross-section HR-STEM-EDX of 55 individual 

Aurivillius grains within the B6TFMO sample, followed by normalisation of the Ti:Fe:Mn 

ratios to give 5 octahedral B-site cations, showed a strong relationship between the Fe and Ti 

contents in these grains, with the Mn content being less strongly dependent on the Ti B-site 

composition (Fig. 2.8(a)).  The range of grain compositions (ranging from Ti:Fe:Mn = 

3.38:1.14:0.48 to 2.18:2.16:0.66) spans both the average compositions determined from the 

sol and the area EDX scan noted above.  This graph helps to explain why a sol which was set-

up to deliver an m=6 structure could produce an m=5 structure without large amounts of 

second phase appearing in the film.  Mn is well-known for taking variable valency from 3-4 

in perovskite oxide materials[75], and permitting non-stoichiometry to exist.  As the Fe3+ 

replaces Ti4+, it is suggested that Mn3+ is progressively oxidised to Mn4+, to maintain charge 

balance.  In this case, the proportion converted to the higher valence state is easily calculated 

and is plotted in Fig 2.8(b).  It is interesting to note that, while the Fe and Ti B-site 

compositions are strongly inter-dependent, the Mn composition within these grains does not 

vary systematically with either, averaging around 0.63, and the maximum Fe content of the 

B-site, at 1.77, occurs when all of the Mn3+ is converted to Mn4+.  It is believed that this has 

important consequences for the magnetic properties of the grains, as will be discussed below. 
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Figure 2.8.  a) Plotting the normalised B-site composition of Fe and Mn vs that for Ti, as 

determined by cross-section HR-STEM-EDX from 55 Aurivillius grains within the B6TFMO 

sample.  b) Plotting the total B-site Mn composition and B-site Mn4+ composition, calculated 

to maintain charge balance, vs the B-site Fe composition. 

B6TFMO samples demonstrate in-plane ferromagnetic hysteresis between 2 to 300 K. A 

thorough microstructural phase analysis performed on the B6TFMO thin films showed no 

traces of ferromagnetic inclusions and a statistical analysis based on the volumes inspected 

placed a confidence of 99.5% that the observed ferromagnetism was not coming from 

unobserved ferromagnetic grains of spinel. Direct evidence for magnetic-field-induced 

ferroelectric domain switching at the nanoscale in a single phase magnetoelectric has been 

presented. The body of evidence reported here suggests that the higher Fe/Mn content grains 

with a composition of around Bi6Ti2.6Fe1.77Mn0.63O18 are single phase room temperature 

magnetoelectric multiferroics. An explanation for the effect has been given based upon the 

Goodenough-Kanamori rule for super-exchange and the Mn largely being present as Mn4+. 

These materials could find application to a wide range of new or improved devices and 

potentially meet future industry requirements in high density memory applications. Clearly, 

further work is now required which will include the direct measurement of the compositions 
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of the multi-ferroically switchable grains and x-ray photoelectron spectroscopy to determine 

Mn oxidation states (which failed so far), as well as the development of synthetic techniques 

to develop thin films in which all grains possess a composition around 

Bi6Ti2.6Fe1.77Mn0.63O18, for which it is expected that higher remanent magnetizations will be 

achieved. Also the growth on other substrates that give better alignment of the thin films 

gives room for further studies, as well as studying the long-term stability of the films 

themselves as there are hints of sensitivity to prolonged exposure to light.  
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3. Results and Discussion 

 

This chapter will follow the multiscale and multimodal concept as outlined in the 

introduction starting with 3.1 the patterning of stainless steel including 3D 

correlative microscopy followed by 3.2 the statistical inclusion analysis in 

multiferroic thin films including extensive microstructural analysis of the 

multiferroic films and their inclusions. 
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3.1. FIB patterning and correlative microscopy analysis of 
stainless steel surfaces 

 

3.1.1. FIB tests: challenges with anisotropic milling 

 

From the literature survey, promising cell responses to nano-structured features were 

identified including nano-pit features [1, 2]. However, to date no endothelial cell 

(EC) studies have been reported on nano-pit structures. Based on this, two pit 

designs were patterned on three electropolished 316L stainless steel samples on areas 

of 400 µm × 400 µm using FIB: design A, pits of 120 nm diameter with a pitch of 

240 nm and intended depth of 50-100 nm, and design B, pits of 180 nm diameter 

with pitch of 360 nm at the same depth[3, 4].  

 

Figure 3.1. SEM images of preliminary FIB tests to determine the feasibility of the 

prototyping approach; a) 10 x 10 µm area pattern by FIB in preliminary tests with 

nominal 120 nm wide pits at 240 nm pitch; b) detail of another area exhibiting the 
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same pattern. Clearly visible the differences in appearance of the patterned surface 

depending on the polycrystallinity of stainless steel. 

Before attempting prototyping on large 400 x 400 µm areas used for the biological 

tests optimisation tests on relatively small test patterns have been performed, one 

such area is shown in Fig. 3.1a.  From the known polycrystalline nature of the 316L 

stent material one can assume that when subjected to ion milling or imaging it will 

show pronounced channelling contrast.  It is well known for about a century for W, 

Ag or Cu which are all fcc metals that they etch and sputter faster in preferred 

directions [5-8], as well as Si [9, 10]. Similarly polycrystalline fcc austenitic 

stainless steel will show milling rates that are varying by the different orientation of 

grains towards the incoming beam.   

Fig. 3.1 illustrates how much this anisotropic milling affects the desired outcome of 

uniform concaves. Shown in here are examples from the pre-tests on 10µm x 10µm 

areas with 120 nm diameter holes at 240 nm pitch. The structures that appear with 

the brightest contrast showed deeper and sharper edges than the structures that 

appear darker in contrast. This will be discussed in more detail in the following 

section describing the correlative microscopy approach. A later section will focus on 

the study on the patterned substrates used for actual cell adhesion tests and the 

preliminary FIB tests. 
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3.1.2. Prototyping: Samples prepared for cell adhesion tests  

 

After the initial tests for the feasibility of the patterning was finished successfully on 

the batch of samples with small scale pattern, the ‘real’ prototyping on the 400 x 400 

µm patterned areas had been started. As consensus between statistical needs for 

ideally a high number of samples on one hand and the slow process of patterning 

with the FIB on the other hand, 5 samples with each 1 area of 120 nm pits / 240 nm 

pitch and 1 area 180 nm pits / 360 nm pitch were manufactured.  

The two pit designs, A and B were created on electropolished stainless steel samples 

by FIB and are presented in Fig. 3.2. Three things can be observed. First, the square 

areas that have been milled by the FIB are very different from the electropolished 

areas. Second, the triangular areas in the centre have higher contrast than the areas at 

the edges. Finally, within and outside these triangular areas, the different colour 

tones observed are due to the polycrystallinity of the stainless steel as described in 

detail in the previous section.   

The triangular appearance is very intriguing here. The Ga+ ion source has a 

cylindrical symmetry and the beam optics have quadrupoles and octopoles only. 

From discussions with the manufacturer and within the EM community it is believed 

that the origin of the triangular shape is correlated with beam misalignment – most 

likely a cut through the overlap of the two squares created by the octopoles. 
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Figure 3.2. Overview of SEM images of (a) design A and (b) design B showing: (1) 

differences in milled (inside the square area) and electropolished surfaces (outside 

the square area), (2) triangular areas (triangles drawn to guide the eye) covering 

more than half of the 400 µm × 400 µm square are much better defined than the 

areas at the corners in the squares and (3) different colours tones illustrates the 

polycrystallinity of the stainless steel 

 

All these variations in pit dimensions reported in stainless steel samples can be due 

to the: atomic arrangement or random orientation of crystallographic structures and 

non-uniformity in grain size, though the shape of the incident beam at the point of 

impact on the sample surface will have the greatest effect of all the factors, followed 

by the crystallographic orientation of the grain at the surface.  

Endothelial cell studies will remain a subject to further examinations as initial results 

showed no major improvement over the unpatterned stainless steel samples. On the 
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positive side though the cells strived also on the patterned surfaces and did not 

perish.  

FIB has compelling advantages for flexible prototyping compared to other traditional 

techniques, however the milling rates and the corresponding shape and size of the 

formed structures is largely affected by the grain size of the polycrystalline 316L 

stainless steel and stability of the ion beam quality over large areas. Moreover this 

method is practically limited to 120 nm resolution for the desired pit depth and 

uniform scan size of 200 µm x 200 µm. Nevertheless formed structures show large 

variation of pit depths and shapes and as such surfaces might serve as a resourceful 

platform for screening large variations of cell/pattern stainless steel interactions. 

However, the FIB nano-pits design A and B created on polycrystalline stainless steel 

surfaces demonstrated low EC adhesion and proliferation relative to unpolished and 

electropolished specimens. There was no significant difference in EC adhesion and 

proliferation between unpolished-electropolished samples and design A and B pits. 

Further morphological examination of EC response on nano-structured steel surfaces 

would verify the mechanism for low EC adhesion and proliferation on these 

surfaces. Nano-patterning the stainless steel surfaces by FIB is time-consuming and 

expensive, especially when patterning large areas. The precision and reproducibility 

of this technique is greatly affected by the polycrystallinity of stainless steel and a 

stable beam quality over large sample areas.  
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3.1.3. Towards better understanding of ion beam-substrate interactions: 3D 
correlative microscopy of FIB patterned stainless steel.  

 

The principal concept of correlative microscopy calls for analysis of one and the 

same volume of interest by two or more imaging techniques.  In this chapter the use 

of back-scattered electron diffraction (EBSD), AFM and 3D SEM/FIB serial 

sectioning, applied in a correlative microscopy approach is demonstrated, to gain 

comprehensive understanding of the beam-substrate interaction during FIB 

formation of nano-pits in stainless-steel. Using developed markers on the stainless 

steel surface (see Fig 3.3 and 3.4) one and the same volume of the surface was 

investigated by EBSD first and then patterned by FIB and analysed by SEM, AFM 

and serial sectioning. Hence direct correlation of the crystal structure of the stainless-

steel to the 3D shape and size of the formed nano-pits is presented.  

 

Figure 3.3. Theoretical design of the marker pattern. 
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Figure 3.4. Actual resulting pattern overlaid over the region where EBSD analysis 

was performed. The marks from the EBSD analysis are still visible at the bottom of 

the image as dark dots in a 2µm x 2µm steps array. The red and orange coloured 

fields in a) represent the most promising areas for correlative microscopy study 

showing strong contrasting features in the SEM images (see Annex for detailed 

data).  

 

Fig. 3.5 illustrates the detailed analysis flow of the correlative approach.  



70 
 

 

Figure 3.5: Analysis flow in the correlative microscopy approach; a) the 

crystallographic grain orientations are measured by EBSD before patterning; b) 

surface patterning using FIB, also gaining FIB SE images as part of the monitoring 

process; c) extensive analysis of the textured steel surface with SEM, AFM and 

finally destructive serial FIB-SEM sectioning. 

EBSD mapping was accomplished before the area was patterned in order to 

determine a correlation between crystal grain orientation on one hand and shape, size 

and depth of the FIB milled concaves on the other hand. Fig. 3.6 shows the random 

size and orientation of the crystal grains and illustrates the correlative microscopy 

approach of three techniques combined in the exact same sample location, EBSD, 

FIB and SEM. In general the intensity of the emitted SE depends on the different 

inclination of the sample surface towards the incoming beam and crystal orientation 

[11]. Thus, the grey levels in the SEM image are directly linked to the surface 

topography, e.g. the shape of the pits and side-wall profile and the crystal orientation 

of the surface material. In this way the EBSD data can be correlated to the grey 

levels in the SEM images. The FIB reveals not surprisingly the same contrast in the 

SE image as the one taken afterwards in the SEM. The correlation between SE yield 

and crystal orientation is independent of the type of the beam; hence the same 

contrast is achieved. The additional information of the SEM SE image lies in the 

much higher resolution. The FIB which was run as a monitoring tool only during the 
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patterning process produced one pixel every 360 nm in X and Y direction. The SEM 

on the other hand was used afterwards as an analysis tool with an image resolution of 

4096 x 3775 pixels which calculates at roughly 3 nm image resolution. Using a low 

current of 86 pA ensured that the real resolution is not far from this theoretical limit.  

 

Figure 3.6. Correlative microscopy on the exact same sample location: a) Inverse 

pole figure (IPF) as measured by EBSD before surface texturing with (110) and 

(321) crystal orientation labelled and legend underneath; b) FIB SE image obtained 

during patterning as part of monitoring; c) SE image taken after the patterning – the 

red circle indicates the region used for AFM and serial sectioning (see figures 8 - 10 

for details); d) graphical visualisation of (110) orientation; e) graphical visualisation 

of (321) orientation. 

Two different grains were chosen for additional correlation with AFM and the serial 

FIB-SEM sectioning based on the crystallographic orientation, a low index grain 

with (110) orientation and a high index grain with (321) orientation. From as early as 
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the 1920s it is known that the sputter yield is dependent on the crystal orientation 

[5]. It is also known that the SE yield is dependent on the crystal orientation [11]. 

Based on this fact the chosen grains should display a very different behaviour when 

exposed to the ion beam during sputtering and also to the electron beam in the SEM 

study.  

 

Figure 3.7. Representative AFM scans of the marked region from Fig. 3.6; a) 

overview scan over the whole 12 µm x 12 µm region; b) detailed 2 µm x 2 µm scan 

of the area around the crystal grain boundary; c) line profile along one row of 5 holes 

determining depth and diameter of the holes in the (110) oriented grain; d) same line 

profile determining the depth and diameter of the holes in the (321) oriented grain. 

Studying the marked region from Fig. 3.6 across the grain boundary using the AFM 

(see Fig. 3.7) it appears that there is a difference in hole depth and diameter 
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depending on crystallographic orientation of the patterned surface. A detailed 

statistical study was completed as part of Feroze Nazneen’s PhD work and is 

presented in her thesis[12], as well as in[13]. Even the shape of the rim is evidently 

not circular but rather rhombohedral. Because of the high aspect ratio of the pits the 

standard tip could not reach down and probe the full depth of the pits, therefore the 

pit depth must be confirmed by the serial sectioning.  

It is well known that for a crystalline target such as metal substrates the orientation 

of the crystal axes with respect to the target surface is relevant. When the direction of 

the ion-beam is parallel to a low index crystal axis, the ions can channel deeper in 

the material[14].  Hence surface sputtering is diminished in this case. Unfortunately 

until now direct correlation of the ion beam-substrate interactions to the 3D shape of 

the formed nano-scale pits and crystal orientation of the metal grains has not been 

presented.  

However, when seeing the rhombohedral shape of the pits one can think of the 

directional dependence in which atoms are ejected when sputtering at threshold 

energy [6]. In this study however the energy used to create the patterned surfaces in 

the FIB were way beyond the threshold energy, which for Cr, Ni and Fe as main 

elements in 316L lies in the range of 60 - 90 eV. The directional dependence 

decreases with higher sputter energies and has no influence on the direction of the 

sputtered atoms at the 30 keV used here. It is also obvious when looking in detail at 

the (111) oriented grain at the bottom of the AFM overview scan that shows the 

same rhombohedral shaped pits as the whole area around this region instead of the 

expected triangular shape[6]. As can be seen below in the detailed AFM and SEM 

studies on the 400 µm x 400 µm patterns used for the cell adhesion studies the shape 
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of the holes is solely determined by the ion beam quality (focus, stigmation) at the 

place of impact on the sample surface.  

In the SEM surface study as depicted in Fig. 3.8a) it appears as if the holes in both 

grains seem equal in diameter with only the higher SE yield obvious for the higher 

index grain. In order to clarify this impression the region was imaged again after 

depositing a carbon layer as shown in Fig. 3.8b). Because secondary electrons are 

emitted from an area very close to the surface of the sample this amorphous carbon 

layer masks the crystal orientation of the sample surface and the image is more 

related to topographical features. Indeed, the difference in diameter of the holes 

becomes pronounced and it is visible that the higher index grain has apparently much 

larger holes than the lower index grain.  

 

Figure 3.8: Detailed SEM images of patterned area marked by the red circle in 

previous picture; a) freshly patterned surface displays high SE yield for the high 

index grain and low yield for the low index grain, though the holes seem equal in 

diameter; b) detail of a) after carbon deposition, the ‘true’ diameter shines through as 

crystal orientations are hidden behind the amorphous carbon layer. 
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Serial sectioning of again the same region was performed composing 250 images of 

8 rows by 5 holes, with one image taken every 12 nm. This detailed analysis verifies 

the difference not only in the diameter but even more pronounced in the depth. 

Though Fig. 3.9a) presents a 3D reconstruction of all the 250 slices, more details can 

be observed when looking at the individual slices of Fig. 3.9b-l). The diameter of the 

pits in the low index (110) oriented grain are 150 ± 10 nm while the diameter in the 

(321) oriented grains is only slightly bigger with 170 ± 10 nm as measure at the 

centre of the row (Fig. 3.9g) and 3.10). The depth however is much more influenced 

by the differences of sputter yield depending on the crystal orientation and hence the 

(110) grain shows only 55 ± 5 nm depth in contrast to the 200 ± 20 nm depth of the 

(321) grain, nearly a factor of 4 between them (see Fig. 3.10).  
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Figure 3.9. Serial sectioning as final destructive step of the correlative microscopy; 

a) 3D reconstruction of all the 250 slices; b-l) image series illustrating one row of 6 

holes taken every 36 nm (every 3rd image). The darker left region is the low index 

grain (110) oriented, the brighter right hand side is the higher index (321) oriented 

grain.  

 

 

Figure 3.10. Detail from the serial section (slice g at the centre of the row). The 

darker left region is the low index grain (110) oriented, the brighter right hand side is 

the higher index (321) oriented grain. Obvious is the difference in depth by more 

than a factor of 3 between the two patterned grains. 
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Figure 3.11. a) 3D reconstruction of serial sectioning over 5 rows. One row in detail, 

3D reconstruction with b) normal contrast and c) inverted contrast. Normal contrast 

enhances visibility of the crystal grains. Inverted contrast shows the bottom of the 

pits in better detail. 

Looking at the 3D construction of one row in more detail (Fig. 3.11) it is clearly 

evident that the rhombohedral shape of the pits is independent of the crystal 

orientation as both orientations exhibit the same shape. 

Finally, TEM studies were performed at the same grain boundary between (110) and 

(321) oriented crystals. The results shown in Fig 3.12 and 3.13 confirm the findings 

of the serial sectioning with FIB/SEM (Fig 3.10) exactly showing the same 

differences in depth and surface modification. Interestingly, the FIB modified top 

layers are not amorphous but crystalline, all oriented the same way as could best be 

observed by dark field TEM imaging (not shown here).  
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Figure 3.12. TEM bright field micrograph of high index (321) oriented cross section 

illustrating high depth of pits but shallow FIB altered surface. The inset shows the 

SAED pattern confirming the high index orientation. 
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Figure 3.13. TEM bright field micrograph of low index (110) oriented cross section 

showing low depth of pits but deep FIB altered surface. The inset showing the SAED 

pattern confirming the (110) orientation. 
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3.2. Statistical analysis of inclusions in multiferroic Aurivillius 
thin films 

 

3.2.1. Statistical Analysis  

 

This analysis requires a number of concepts from statistics, which will be introduced 

now. It starts by analysing the statistical significance of a single measurement of a 

given sample volume and at a fixed resolution, and then proceeds to evaluate a series 

of measurements at varying volumes and resolutions. Finally it is shown how to 

conclude with a high, pre-set statistical confidence level  (e.g. 99.5 %) that a physical 

effect (which in the case at hand is the magnetic remanence of the sample) is not 

caused by undetected inclusions or defects 

 

3.2.1.1. Single Measurement  

 

 

Figure 3.14. Schematic illustration of a scan of a volume 𝑉 (small yellow box). 

What conclusions can be drawn, if no inclusions (red balls) are detected during the 

scan?  
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In general, it is impossible to prove with certainty that no inclusions exist in a given 

sample, unless the whole sample is scanned for inclusions. In order to nevertheless 

obtain statistically significant results, the method of statistical inference through the 

refutation of a null hypothesis can be used. In the case at hand it is assumed that the 

level of concentration of a particular impurity exceeds a certain level, and then 

shown that this assumption does not hold with a certain statistical level of 

confidence.  More specifically, it is first assumed that a particular type of second (or 

impurity) phase inclusion is present in the sample at a known (volume) density 𝜌 and 

it is further assumed that the individual inclusions do not interact with each other and 

are therefore independently distributed. The number of inclusions found in a scan of 

a small volume 𝑉 is measured, as shown schematically in Fig. 3.14. This can be 

described as a counting process as in the spatial Poisson process. The spatial Poisson 

process is still used today as a reference model describing a ‘normal’ case, a 

situation without interaction. It finds application in a variety of fields, e.g. cell 

patterns, metal particles, plant distribution patterns, concrete, blood particles, 

galaxies, etc. all related to counting processes[15] and can also be applied here. 

Hence, the probability 𝑃(𝑁,𝜌) of finding precisely 𝑁 inclusions is given by the 

Poisson distribution 

𝑃(𝑁,𝜌) =
(𝜌𝜌)𝑁

𝑁!
𝑒−𝜌𝜌.                         (1) 

In particular, the probability that no inclusions are present in a scanned volume 

𝑉(Fig. 3.14) is given by  

𝑃(0,𝜌) = 𝑒−𝜌𝜌.                            (2) 
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If now a desired confidence level 𝛾 (in this case 𝛾 = 99.5 %) is fixed and the value 

𝜌𝑢𝑁 implicitly defined for a given number of inclusions N and volume V via 

� 𝑃(𝑚,𝜌𝑢𝑁) = 1 − 𝛾
𝑁

𝑚=0

                           (3) 

then it follows from (1) that for any value of the impurity density 𝜌 bigger than 𝜌𝑢𝑁, 

the probability of finding N or less inclusions within a volume 𝑉 is below 1 − 𝛾 =

0.5 % . In the special case that no inclusions were found equation (3) can be solved 

explicitly and yields 

𝜌𝑢0 =
−𝑙𝑙(1 − 𝛾)

𝑉
≈

5.3
𝑉

,                       (4)  

If a performed scan of the volume 𝑉 yields N or less inclusions, it can therefore be 

concluded that   

 𝜌 < 𝜌𝑢𝑁                (5) 

with a confidence of 𝛾 = 99.5 %. Subject to this confidence level, the 𝜌𝑢𝑁 defined in 

equation (5) establishes an upper bound for the unknown inclusion density 𝜌.  

 

3.2.1.2. The grain size distribution function 

 

So far it has been assumed that there exists only one type of inclusion. In reality, 

inclusions can vary in grain size and composition. For simplicity, the case where the 

chemical composition of the inclusion is fixed (for example, 𝐹𝐹3𝑂4 as worst case 

scenario in this case – with having the highest remanent magnetisation of the 
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compounds to be build from the elements of the main phase, see also inset in Fig. 

3.22) and all inclusions are spherical is looked at first. However, no prior 

assumptions with regards to the inclusion grain size are made. Thus, a grain size 

distribution function 𝑝𝐺(𝑑) can be introduced, such that for small 𝛥𝛥 the quantity 

𝑝𝐺(𝑑)𝛥𝛥 is the density of inclusions with diameters in the range [𝑑,𝑑 + 𝛥𝛥]. Now 

the upper bound (5) for the case of a size dependent distribution function can be 

generalised as follows: it is assumed that a scan of a certain volume 𝑉 established 

that there are N inclusions present which are larger than a minimal detectable size 

𝑑𝑚. Then it can be concluded that  

� 𝑑𝑑𝑝𝐺(𝑞) < 𝜌𝑢𝑁
𝑑0

𝑑𝑚

                        (6) 

with confidence level 𝛾 = 99.5 %.   

 

3.2.1.3. Series of measurements 

 

So far only one volume scan has been considered. In practice, any analysis will 

employ a number (𝐾) of scans with different volume sizes 𝑉𝑘 possessing different 

minimal detectable grain sizes 𝑑𝑘 where the index 𝑘 = 1, … , K enumerates the 

individual scans starting at large 𝑑𝑘 (i.e. 𝑑𝑘 > 𝑑𝑘+1 ) that yielded 𝑁𝑘 or less 

inclusions. Furthermore it is assumed that there is a physical upper bound 𝑑0 > 𝑑1 

on the grain size. For a given grain size distribution function 𝑝𝐺(𝑑) the density of 

inclusions bigger than 𝑑𝑘 can be defined via 
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𝜌𝑘 =  � 𝑝𝐺(𝑞)𝑑𝑑

𝑑0

𝑑𝑘

                  (7) 

Then the probability of finding 𝑁𝑘 or less inclusions in one particular scan k is given 

by 

𝑃𝑘(𝑁𝑘) = � 𝑃(𝑚,𝜌𝑘)               (8)
𝑁𝑘

𝑚=0

 

The probability of finding no more than 𝑁𝑘 inclusions in a sequence of scans from 

𝑘 = 1, … ,𝐾 is given by the product of the individual probabilities  

𝑃 = 𝑃1(𝑁1)𝑃2(𝑁2)⋯𝑃𝐾(𝑁𝐾)            (9). 

Now can be assumed that all individual scans establish that no inclusion was 

detected larger than the respective minimal grain size, 𝑑𝑘. This is the case for the 

application at hand and therefore will now be discussed in more detail. The 

probability for this zero outcome is given by 

𝑃(0) = 𝑃1(0)𝑃2(0)⋯𝑃𝐾(0)          (10). 

The volume fraction 𝜑𝑘 of inclusions between sizes 𝑑𝑘 and 𝑑𝑘−1 can be calculated 

from the grain size distribution 𝑝𝐺(𝑑) assuming spherical inclusions 

𝜑𝑘 = ∫𝑑𝑘
𝑑𝑘−1𝑑𝑑𝑝𝐺(𝑞)

4
3
𝜋(
𝑞
2

)3 ≤ �∫𝑑𝑘
𝑑𝑘−1𝑑𝑑𝑝𝐺(𝑞)�

𝜋
6
𝑑𝑘−13          (11). 

In this step the worst case scenario has been employed that the weight of the grain 

size distribution function is located at the large inclusion sizes (assuming that the 

remanent magnetisation of pure 𝐹𝐹3𝑂4 grains is decreased for smaller grains and 

vanishes for < 5𝑛𝑛)[16, 17]. It therefore follows that there is an upper limit 𝜑𝑘,𝑢 on 
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the volume fraction 𝜑𝑘 of inclusions with diameter in the interval [𝑑𝑘,𝑑𝑘−1] given 

by 

𝜑𝑘 < 𝜑𝑘,𝑢 =
−𝑑𝑘−13

∑ 𝑉𝑗𝑘
𝑗=𝐾

𝜋
6
𝑙𝑙(1 − 𝛾) ≈ 2.8

𝑑𝑘−13

∑ 𝑉𝑗𝑘
𝑗=𝐾

,               (12) 

which again holds with a confidence level of 𝛾 = 99.5 %. 

 

3.2.1.4. Effect of inclusions on remanent magnetisation  

 

In the previous paragraph an upper limit of the volume fraction of inclusions in thin 

films was established. However, the aim is to establish an upper bound on the 

contribution of such inclusions on a measurable quantity. For multiferroic materials, 

the relevant quantity is the remanent magnetisation, which will be discussed now. 

Given the bound on the volume fraction, the maximal contribution to the remanence 

from inclusions with diameters in the interval [𝑑𝑘,𝑑𝑘−1] can be defined as  

𝑀𝑟,𝑘,𝑢 = 𝜑𝑘,𝑢𝑀𝑟,𝐹(𝑑𝑘−1)                (13) 

Here 𝑀𝑟,𝐹(𝑑) is the remanent magnetisation of pure 𝐹𝐹3𝑂4 grains of diameter 𝑑. For 

simplicity it is assumed that 𝑀𝑟,𝐹(𝑑) vanishes for < 5𝑛𝑛. Furthermore it is set that 

𝑀𝑟,𝐹(𝑑) = 10𝑒𝑒𝑒 ∕ 𝑔 for 5𝑛𝑛 < 𝑑 < 20𝑛𝑛 and 𝑀𝑟,𝐹(𝑑) = 20𝑒𝑒𝑒 ∕ 𝑔 for 

𝑑 > 20𝑛𝑛 which are conservative estimates.  

Finally an upper bound for the total contribution from inclusions to the remanent 

magnetisation can be established as  
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𝑀𝑟,𝑢 = 𝑚𝑚𝑚
𝑊1,…,𝑊𝐾

{ ∑
𝐾

𝑘=1
𝑊𝑘𝑀𝑟,𝑘,𝑢}        (14) 

with a confidence level 𝛾. Here, the weighted means 0 ≤ 𝑊1, … ,𝑊K ≤ 1 fulfill the 

normalisation constraint  

∑
𝐾

𝑘=1
𝑊𝑘 = 1                   (15) 

giving all the weight to the interval with the highest calculated impact on the 

remanent magnetisation. Therefore it can be concluded that the contribution to the 

magnetization remanence from inclusions 𝑀𝑟 has an upper bound  

𝑀𝑟,𝑢 = 𝑚𝑚𝑚
𝑘=1…𝐾

�𝑀𝑟,𝑘,𝑢�               (16) 

with confidence 𝛾 = 99.5 %. 

 

3.2.2. Microstructural Analysis 

 

Guided by the statistical analysis detailed above, analysis measurements were 

designed taking into account the sizes of the volumes scanned and the minimum size 

resolution of the EDX. Monte Carlo simulations [18, 19] of the electron beam matter 

interactions estimated a cone shaped interaction volume within the 200 nm film 

thickness with a base width of less than 200 nm and the EDX signal coming from a 

cylinder with roughly 15 nm diameter (interaction volume ~35000 nm3).  The 

interaction volume is only dependent on the e-beam energy (20 kV), spot size (11.5 

nm) and material (assuming that the main phase is the main contributor to calculated 
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interactions) which all stay constant across all measurements. Taking all these 

factors into account a number of EDX maps were taken from the surface varying the 

surface area between 36 µm2 and 1,000,000 µm2 (1 mm2). As the mapping was done 

at a set resolution of 1024 × 886 pixels (max scanning resolution) the size of one 

pixel for each surface area can be determined. Hence the smallest detectable size of 

inclusion across all scanned areas is equal to 1 single pixel except for the smallest 

area where it is within 2×2 pixels.  

A set of 6 samples was made that went through microstructural analysis. All samples 

are Aurivillius type thin oxide films and their composition is summarised in Tab. 

3.1.  

Table 3.1. Summary of 6 samples that underwent microstructural analysis. 

Sample Nominal composition  Acronym  

1 TbBi5Ti3Fe2O18 TbBi5TFO 

2 Tb0.5Bi5.5Ti3Fe2O18 Tb5Bi55TFO 

3 Tb0.05Bi5.95Ti3Fe2O18 Tb5B595TFO 

4 Bi5Ti3Fe0.7Co0.3O15 BTF7C3O[20] 

5 Bi7Ti3Fe3O21 B7TFO 

6 Bi6Ti2.8Fe1.52Mn0.68O18 B6TFMO 

 

As described above, spinel-phase magnetite (Fe3O4) [16, 17] is the worst case 

scenario for second phase inclusions in the type of samples that were analysed, but 

many other oxides exist that could be built from the elements of the main phase, and 

thus could occur as second phase inclusions. Some of these are also ferromagnetic. 
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Hence it is necessary to scan for concentrations of all the magnetic elements that are 

present. The difficulty with these elements, however, is that they are also present in 

the main phase, and the ions in the main phase will produce the majority of the X-ray 

signal detected for a given element. Fig. 3.15 shows a typical result from a scanned 

area of 1600 µm2 in B6TFMO (sample 6). At first, the elemental maps were colour 

coded, added up into an RGB image and superimposed onto the SEM image, all 

done within the Oxford INCA software. Although an average recording of 5 × 109 

counts over 72 hours improved the signal-to-noise-ratio by a factor of 71 compared 

to a standard scan with an average of 1 × 106 total counts, and eliminated all the 

noise that was inhibiting the visibility of possible inclusions in the maps achieved 

from shorter scans, the RGB colour coded images did not reveal inclusions instantly. 

The subtraction of the normalised Bi EDX signal from the normalised EDX signals 

coming from the Fe and Mn allows us to detect subtle variations in the latter from 

the average value. The resulting maps are shown in Fig. 3.15d) Fe Kα map minus Bi 

Lα map and e) Mn Kα map minus Bi Lα map respectively which revealed small 

bright spots with higher Fe and Mn content and larger (∼1 µm) pale areas with 

higher Fe content. The subtraction of the spectral imaging data was done under the 

assumption that the average Fe and Mn content in the main phase stays constant over 

the whole sample and all that is sought to find are small changes from that average. 

In other words Fe and Mn are correlated to Bi in the main phase and the simple but 

effective subtraction method reveals the areas Fe and Mn rich that are anticorrelated 

to Bi which are then scrutinised under microstructural analysis. Also interesting to 

note is the stability of the conditions during the 72 h scan. Because of the imperfect 

vacuum in the SEM chamber there is an approx. 100-200 nm layer of carbon 

deposited over 72 h and this carbon is regularly patterned. Each of the carbon dots 
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represents exactly one pixel in the EDX measurement that was exposed approx. 1100 

times.  

 

Figure 3.15.  Example of EDX signal subtraction in case of B6TFMO sample: a) Fe 

Kα intensity map, b) Mn Kα intensity map, c) Bi Lα intensity map. The results of 

subtraction of main phase bound Fe and Mn are shown in d) and e) respectively. 

This method of subtracting the images to eliminate the signal from the Fe in the 

major phase was applied to all 6 samples. Except for the B6TFMO, all other 

analysed samples showed potentially ferromagnetic inclusions of FexAyOz (see Fig. 

3.16) where A is substituted by Tb for the three samples containing Tb (samples 1-

3), by Co for BTF7C3O (sample 4) and without A for B7TFO (sample 5).  
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Figure 3.16. a) - e) EDX surface maps for samples 1-5 respectively. Main phase 

bound Fe subtracted as per Fig 3.15. The small bright spots visible are potentially 

ferromagnetic FexAyOz inclusions. f) exemplary inclusion-count-rate histogram of c) 

subdivided into 90 partitions, where the x-axis is the number of counts in a partition 

and the y-axis represents the number of partitions containing that number of counts. 

The theoretical poisson distribution is depicted for comparison. 

 

It is also noted that the inclusions are independently distributed. This assumption has 

been tested by subdividing the images into partitions and counting the number of 

inclusions in each partition. The resulting count histograms, as represented by the 

typical example in Fig. 3.16f), show the expected Poisson distribution. It therefore 

follows that the spatial distribution of the inclusions is random and without 

detectable correlations, and justifies the basic assumption in the statistical analysis. 
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Figure 3.17. A comparison between Fe map (left) and Mn map (right) for the 

B6TFMO after subtraction of the Bi signal reveals the absence of the ‘large pale 

areas’ in the Mn map. 

The B6TFMO (sample 6) is interesting insofar as small bright spots (100-500 nm in 

diameter) with higher Fe and Mn content and larger paler areas (∼1µm in diameter) 

with higher Fe content have been found (Fig. 3.15, 3.17). Notably when comparing 

the Fe and Mn maps, the ‘large pale areas’ appear only in the Fe map (see Fig. 3.17). 

In order to investigate the microstructure and localization of some of these inclusions 

across the film thickness, and to correlate this to the magnetic response observed, a 

site-specific sample preparation was performed using a focused ion beam (FIB) (Fig. 

3.18). At first the locations of a ‘small bright spot’ (labelled in yellow) and a ‘large 

pale area’ (labelled in blue) were marked with a pillar of e-beam deposited carbon 

(Fig. 3.19a). After the cross section lamella was successfully lifted out, attached to a 

copper half-grid and was polished to about 300 nm thickness the pillars were 

confirmed to be 250 nm in diameter and hence the location of the two areas was 

determined to this accuracy. 
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Figure 3.18. Site specific TEM cross section sample preparation on the B6TFMO. a) 

One ‘small bright spot’ and one ‘large pale area‘ were chosen, b) marked with 

carbon pillars, c) protected with platinum. d) Lamella prepared, e) lifted out, before 

attached to TEM half grid and f) analysed with STEM. 

With the two types of areas isolated, a STEM-EDX scan was performed as shown in 

figure 3.19b) and c). This measurement confirmed the absence of Mn excess in the 

‘large pale areas’. TEM imaging, in conjunction with selected area electron 

diffraction (SAED) and spot EDX measurements confirm this type of inclusion 

rather to be grains of the main Aurivillius phase with a 40 % increased Fe content 

which has been associated previously to be the most probable cause of the magnetic 

behaviour of the sample [21]. 
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Figure 3.19. Elemental mapping of a cross section of B6TFMO prepared from the 

area shown in a). b) Fe is coded is green colour; c) Mn is coded in green colour.  

TEM imaging, in conjunction with SAED and spot EDX[21] measurements confirm 

the ‘small bright spots’ as mangano-wüstite (Mn0.56Fe0.44O). This is reported to be 

non-ferromagnetic, antiferromagnetic below 150 K [22] and hence not to be 

responsible for the magnetic behaviour of the sample. In conclusion, the inclusions 

found in the B6TFMO are not ferromagnetic. Hence their impact on the main phase 

magnetism is zero supported by statistical analysis which is elaborated in the 

Discussion (3.2.3). 
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Figure 3.20. Representative TEM images of B6TFMO from the 30µm long lamella. 

The single crystalline grains are tightly packed without any appearing inclusions of 

different phases. The scale bar is 20 nm. f) Here a BTF7C3O sample is depicted for 

comparison to illustrate the presence of inclusions (bright grain at the middle right 

hand side of the image, scale bar 100 nm). [20] 

The link to the smallest volume in the statistical analysis for the B6TFMO sample 

consists of additional (168) bright field TEM images that were taken along a 30 µm 

long lamella from a randomly chosen location for the structural analysis. There have 

been no inclusions observed in a volume of 0.32 µm3.  Every image shows smooth 

single crystalline Aurivillius phase material with grains touching each other 

smoothly and tightly (Fig. 3.20). In former studies at similar samples (BTF7C3O 

[20]) following such a “random” sampling approach, the microstructure and 

composition of inclusions could be identifed and imaged in detail, similar to the type 

of second phase material being sought here. Hence for the sample under study in this 
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report it can be confirmed with 99.5% confidence level that there are none. The 

resolution at the chosen magnification in the TEM was such that inclusions down to 

2 nm would be identified, if present. 

 

3.2.3. Discussion 

 

The main question asked regarding the multiferroic oxide thin films is: ‘Are there 

any ferromagnetic inclusions?’. This is the single most critical factor in the analysis 

of new single phase multiferroic materials because the magnetic response is 

particularly sensitive to the amount of such inclusions. To answer this question a 

comprehensive framework was developed based on linking the experimental EDX 

data from SEM and TEM scans with the numerical statistical analysis described 

above. The analytical framework that was developed is schematically described in a 

flow chart (Fig. 3.21).  The first step is in finding the optimum experimental 

analytical technique that can obtain spatially resolved maps of elemental 

compositions. EDX analysis is an obvious choice as it has the spatial resolution 

necessary to localize the impurities, and reasonably-good detection limits to most 

elements (Z ≥ 10). Moreover, EDX analysis on SEM in the case of flat substrates 

does not require any extensive and elaborate sample preparation. The data 

acquisition (productivity of detection) has increasingly been improved by the 

introduction of large area Si drift detectors (SSD), increasing the solid angle of 

detection and automation procedures.  In the next step, the obtained results 

experimental analysis can be treated as: YES/NO in regard to second phase detected. 

Once the choice is made the statistics need to be developed in order to supply the 
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parameters that provide the input for the design of the experiment. The major steps 

in the development of the statistical analysis are demonstrated in detail in the section 

Statistical Analysis (3.2.2); starting analyses of the statistical significance of a single 

measurement of a given sample volume and at a fixed resolution, and then proceeded 

to evaluate series of measurements at varying volumes and resolutions. This finally 

gives the possibility to conclude, in this case with a statistical confidence level of 

99.5 %, that a physical effect (e.g. the magnetic remanence of the sample) is not 

caused by undetected inclusions (NO choice feeds into the statistical analysis to 

calculate the upper limit of impact). 
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Figure 3.21. The whole process flow of the new generic methodology for 

localization, identification and grain size distribution of inclusions in thin films with 

high confidence level. 

In the case of inclusions being observed (YES outcome), the nature (structural, 

compositional properties) of these has to be determined in order to answer the next 

question in the flow chart: ‘Do the observed inclusions have an effect on the 

magnetic remanence of the main phase?’ If they do, the percentage of impact needs 

to be calculated. For example, the presence of second phase magnetic inclusions at a 
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volume fraction of 3.95% accounted for all of the observed magnetization in the 

BTF7C3O thin films reported previously.[20] Though any trace of ferromagnetic 

inclusions within asserted multiferroic materials might raise concerns, the 

multiferroic property of a new material can still be established with a given 

confidence level, if the calculated impact of the inclusions seen is minor.  

Table 3.2. Performed Volume Scans for sample B6TFMO. 

Method k Volume Vk  

[µm3] 

smallest diameter dk [nm] φk Mr,k  

[memu/g] 

Surface EDX 1 200000 1000 (d0  = 3µm) 0.003 0.67 

Surface EDX 2 18000 450  0.003 0.68 

Surface EDX 3 6000 120  0.003 0.51 

Surface EDX 4 450 80 0.001 0.16 

Surface EDX 5 120 60 0.001 0.18 

Surface EDX 6 28 40 0.002 0.34 

Surface EDX 7 7.2 20 0.002 0.47 

TEM 8 0.32 2 0.007 0.69 

 

In the case of no inclusions being observed (NO case) the contribution of inclusions 

to the remanence can be estimated statistically. As a worked example a number of 
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measurements (labelled k = 1,…,8) at varying detection limits (dk = 1 µm,… 2 nm) 

and scanning volumes (Vk = 200000 µm3,… ,0.32 µm3) have been performed on the 

B6TFMO sample (see Tab 3.2). It is not possible to scan the whole sample at the 

smallest resolution, and therefore the possibility for ferromagnetic inclusions cannot 

be excluded with certainty. However, the approach described in section Statistical 

Analysis (3.2.2) can be used to provide an upper bound for their contribution to the 

remanence of the sample with a confidence level of 99.5%. The worst case scenario 

in the worked example of B6TFMO would be undetected Fe3O4 inclusions and 

therefore the upper bound for this case can be calculated. It is assumed that the 

remanent magnetization is directly proportional to the volume fraction of the 

inclusions.  A direct correlation between the volume fraction of magnetic impurity 

inclusions and the observed magnetisation was previously demonstrated for the 

BTF7C3O sample [20]. It is also assumed that the magnetic inclusions do not 

interact with the Aurivillius phase matrix. This was justified by the lack of exchange-

bias interactions at 2K (± 5 T) between the 4-layered BTF7C3O sample (Aurivillius 

phase is antiferromagnetic at 2K) and the ferrimagnetic CoFe2-xTixO4 impurity 

inclusions (present at 3.95 vol. %) [23].  The effects of long-range magnetic 

interactions between unseen magnetic particles (<2nm) were also excluded, since 

there was no evidence of a super-paramagnetic blocking temperature for B6TFMO 

[21].  
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Figure 3.22. The blue bars indicate the maximal contribution 𝑀𝑟,𝑘,𝑢 to the remanent 

magnetization from possible unobserved inclusions with diameters in the interval 

[𝑑𝑘,𝑑𝑘−1] as obtained from equation (13). The measured remanence of 22 memu/g 

for the B6TFMO sample is shown by the dashed red line. The inset shows the 

remanent magnetization 𝑀𝑟,𝐹 of 𝐹𝐹3𝑂4 as function of grain size. Here the blue line 

shows literature data from reference[16] and reference[17]. Because there are only a 

few literature values, a conveniently chosen (piecewise constant) green line was 

chosen which conservatively overestimates the remanent magnetization for all grain 

sizes 𝑑.  

To simplify the calculation it is assumed that the remanent magnetization of Fe3O4 

inclusions as a function of the grain size (Mr,k,u) is given by the green line in the inset 

of Fig. 3.22, which is chosen to be consistently above the literature values. The 



101 
 

values Mr,k,u  which are the upper limits for the remanence contribution for each 

resolution interval [dk,dk-1] are then calculated according to formula (5). The result is 

shown in the main panel of Fig. 3.22. It is observed that all values Mr,k,u  are well 

below the experimentally measured remanent magnetisation of the sample (red 

dashed line of Fig. 3.22). Therefore a value of Mr,u = 0.69 memu/g  is found for the 

upper limit of the remanence by unobserved Fe3O4 inclusions with a confidence level 

99.5%.  This Mr,u is only 3% of the measured magnetic remanence.  This compares 

with a value of 13% as reported in [21], for which the Mr,u was calculated using a 

more restricted dataset as noted above. Following section Statistical Analysis (3.2.2) 

this implies that the measured remanence is not due to undetected Fe3O4 inclusions. 

This bound does not critically depend on the inclusions being spherical, for the errors 

made in the case of cubic, cylindric or ellipsoidal are minimal as the method of 

detection works with volume fractions independent of the shape of the inclusions.  

In conclusion it can be said that a comprehensive and reliable method was developed 

to detect, localize, isolate and analyse nm- and µm-inclusions in multiferroic thin 

films and their impact on the properties of the main phase was calculated. More 

importantly this newly developed analytical methodology fills the gap between µm 

inclusions and atomic scale inclusions. It can be said with confidence that this 

method can be applied to materials where a functional property (electrical, optical 

etc.), might be confounded by a second phase with dimensons in the nm and µm 

range provided that the statistical design of the measurement is adapted to the 

particular problem and material system in question. Due to the fast pace of 

development in the hard- and software for elemental detection when using the 

electron beam as a probe, further development of the presented methodology can be 

sought by introducing necessary automation [24],[25].  
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3. Summary and Outlook 

 

To summarise and recap, in the course of this study the emphasis was placed on 

the application of advanced analytical EM techniques in the context of 

multiscale and multimodal microscopy – multiscale meaning across length 

scales from micrometres or larger to nanometres, multimodal meaning numerous 

techniques applied to the same sample volume in a correlative manner. 

In order to demonstrate the breadth and potential of the multiscale and 

multimodal concept an integration of it was attempted in two areas: I) 

Biocompatible materials using polycrystalline stainless steel and II) 

Semiconductors using thin multiferroic films.  

 

I) In this study a FIB patterning protocol for nano-structuring features 

(concaves) ordered in rectangular arrays on pre-polished 316L stainless steel 

surfaces was presented together with an investigation based on correlative 

microscopy approach of the size, shape and depth of the developed arrays in 

relation to the crystal orientation of the underlying SS domains. The correlative 

microscopy protocol is based on cross-correlation of top-view Scanning Electron 

Microscopy, Electron Backscattering Diffraction, Atomic Force Microscopy, 

cross-sectional (serial) sectioning and Transmission Electron 

Microscopy/Electron Diffraction. Various FIB tests were performed, aiming at 

improved productivity by preserving nano-size accuracy of the patterned 
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process. The optimal FIB patterning conditions for achieving reasonably high 

throughput (patterned rate of about 0.03 mm2 per hour) and nano-size accuracy 

in dimensions and shapes of the features, were discussed as well. 

FIB has compelling advantages for flexible prototyping compared to other 

traditional techniques, however the milling rates and the corresponding shape 

and size of the formed structures is largely affected by the grain size of the 

polycrystalline 316L stainless steel and stability of the ion beam quality over 

large areas. Moreover this method is practically limited to 120 nm resolution for 

the desired pit depth and uniform scan size of 200 µm x 200 µm at a high 

throughput. Nevertheless formed structures show large variation of pit depths 

and shapes and as such surfaces might serve as a resourceful platform for 

screening large variations of cell/pattern stainless steel interactions. However, 

the FIB nano-pits design A and B created on polycrystalline stainless steel 

surfaces demonstrated low EC adhesion and proliferation relative to unpolished 

and electropolished specimens in initial tests. There was no significant 

difference in EC adhesion and proliferation between unpolished-electropolished 

samples and design A and B pits. Nano-patterning of the stainless steel surfaces 

by FIB is time-consuming and expensive, especially when patterning large areas. 

The precision and reproducibility of this technique is greatly affected by the 

polycrystallinity of stainless steel and a stable beam quality over large sample 

areas.  

Further morphological examination of EC response on nano-structured steel 

surfaces are needed to verify the mechanism for low EC adhesion and 

proliferation on these surfaces. Further optimisation of the patterning of 
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stainless steel by FIB is also needed in order to increase the chance of this 

method being viable for mass production, especially given the wavy surfaces of 

real stents, not just stainless steel substrates, a lot of work remains there. 

Also for further studies remain AFM scans with very high aspect ratio tips which 

could reveal the depth profile of the patterned surface non-destructively, an 

undoubtful advantage over the destructive serial FIB/SEM and TEM techniques. 

It also should be far quicker with the AFM instruments being advanced at fast 

speed. The correlation of grey scales in the FIB and SEM images to the false 

coloured EBSD maps is unfortunately not possible due to the undulating (and 

hence ambigious) intensity over the crystal orientation. Yet a better correlation 

of this crystalline dependence of the SE yield could be achieved by ordering the 

data with that focus in mind. The drawback of hitherto published work is that 

single crystalline samples had been prepared in only one or two crystal 

orientation and the SE yield measured as function of the calculated crystal 

orientaion from the angle of the tilted sample. 

II) For the statistical and microstructural analysis of inclusions in multiferroic 

thin films it can be said in conclusion that a comprehensive and reliable method 

was developed to detect, localize, isolate and analyse nm- and µm-inclusions in 

multiferroic thin films and their impact on the properties of the main phase was 

calculated. More importantly this newly developed analytical methodology fills 

the gap between µm inclusions and atomic scale inclusions. It can be said with 

confidence that this method can be applied to materials where a functional 

property (electrical, optical etc.), might be confounded by a second phase with 

dimensons in the nm and µm range provided that the statistical design of the 
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measurement is adapted to the particular problem and material system in 

question.  

A thorough microstructural phase analysis performed on the B6TFMO thin films 

showed no traces of ferromagnetic inclusions and a statistical analysis based on 

the volumes inspected placed a confidence of 99.5% that the observed 

ferromagnetism was not coming from unobserved ferromagnetic grains of 

spinel. The body of evidence reported here suggests that the higher Fe/Mn 

content grains with a composition of around Bi6Ti2.6Fe1.77Mn0.63O18 are single 

phase room temperature magnetoelectric multiferroics. An explanation for the 

effect has been given based upon the Goodenough-Kanamori rule for super-

exchange and the Mn largely being present as Mn4+. These materials could find 

application to a wide range of new or improved devices and potentially meet 

future industry requirements in high density memory applications.  

Clearly, further work is now required which will include the direct measurement 

of the compositions of the multi-ferroically switchable grains and x-ray 

photoelectron spectroscopy to determine Mn oxidation states, as well as the 

development of synthetic techniques to develop thin films in which all grains 

possess a composition around Bi6Ti2.6Fe1.77Mn0.63O18, for which it is expected 

that higher remanent magnetizations will be achieved. Also the growth on other 

substrates that give better alignment of the thin films gives room for further 

studies, as well as studying the long-term stability of the films themselves as 

there are hints of sensitivity to prolonged exposure to light. 

This multiscale concept described in this thesis could also be expanded in 

further studies into the realm of atomic scale by an investigation of potential 
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oxidation at boundaries or of the presence of atomically thin inter-granular 

phases in these complex oxides.  

This adaptation of the statistical analysis would be very interesting to see for 

another material/analysis technique, for instance the occurance of sponteanus 

glass breakage due to µm-sized inclusions in sheets of tempered glass.  
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Appendix 
 

 

The Appendix contains  

A. detailed data for further correlative microscopy studies on the patterned 

stainless steel,  

B. further data of a microstructural analysis on BTFMO films on sapphire that 

was particles rich in mixed phases and 

C. publications that came out of other work carried out within the PhD training, 

TEM investigations regarding the structure-activity-relationship between 

metallic nanoparticles as catalyst and reaction efficiencies in Suzuki-

Miyaura-Reactions. 

C.1. Stability, Oxidation and Shape Retention of PVP-Capped Pd 

Nanocrystals  

C.2. The Origin of Shape Sensitivity in Palladium‐Catalyzed Suzuki–

Miyaura Cross Coupling Reactions  

C.3. Enhanced Catalytic Activity of High-Index Faceted Palladium 

Nanoparticles in Suzuki–Miyaura Coupling Due to Efficient Leaching 

Mechanism  
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A. detailed data for further correlative microscopy studies on the patterned stainless 

steel 

 

 

Inverse pole figure (IPF, Z-map) from the EBSD analysis in the region that was 

patterned with a grid of markers afterwards. 
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a) Theoretical design of the marker pattern.  

 

b) Actual resulting pattern overlaid over the region where EBSD analysis was 

performed. The marks from the EBSD analysis are still visible at the bottom of the 

image as dark dots in a 2µm x 2µm steps array. The red and orange coloured fields 

in a) represent the most promising areas for correlative microscopy study showing 

strong contrasting features in the SEM images numbered in the order of preference 

as detailed on the following pages. 
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Region 1 was studied and is shown in the main body of the thesis. 
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Region 2 
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Region 3 
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Region 4 
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Region 5 
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Region 6 
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Region 7 
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Region 8 
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Region 9 
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Region 10 
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Region 11 
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B. The synthesis of the BTFMO films on sapphire caused the appearance of a mixed 

phases as is shown in the following pages. 
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Notes and observations from the analysis shown in the previous pages: 

 

• Aurivilius phase unit cell is mostly 3.8 nm long suggesting 4 perovskite 

layers per half unit cell with some areas showing 5 layers at 4.2 nm length  

– Atomic ratio Bi:Ti:Fe:Mn is approx. 20:13:5:2 

• There is an amorphous substance underneath many Aurivilius crystals, also 

forming a meniscus at the sides of all crystals; this substance is very Bi rich 

and probably excess sol gel 

• 72 hour EDX map across 2250 um2 revealed different Fe and Mn rich areas  

– Bigger square shaped areas with Bi:Ti:Fe:Mn atomic ratio 1:1:3:2  

– Smaller dots with Bi:Ti:Fe:Mn atomic ratio 1:0.2:5:10 

– (atomic ratios rounded) 

• To determine the crystal structure of the Fe/Mn areas further analysis is 

required 

 

 



1 
 

This document is the unedited Author’s version of a Submitted Work that was subsequently 

accepted for publication in The Journal of Physical Chemistry, copyright © American Chemical 

Society after peer review. To access the final edited and published work see J. Phys. Chem. C, 2014, 

118 (12), pp 6522–6530 

 

 

Stability, Oxidation and Shape Evolution of PVP-Capped Pd Nanocrystals 

Gillian Collins†,‡, Michael Schmidt†,‡, Gerard P. McGlacken†, Colm O’Dwyer†,§  

and Justin D. Holmes†,‡,* 

†Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland. 

‡Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College, Dublin, Ireland 

§Materials and Surface Science Institute, University of Limerick, Limerick, Ireland. 

 

*To whom correspondence should be addressed:  Tel: +353 (0)21 4903608; Fax: +353 (0)21 

4274097; E-mail: j.holmes@ucc.ie 

 

Abstract 

A critical aspect in the practical application and enhanced catalytic performance of shape 

controlled nanocrystals is their stability and morphology retention under ambient conditions.  

Changes to the morphology of shape-controlled Pd nanocrystals capped by PVP are assessed 

by TEM and surface oxidation was evaluated by X-ray photoelectron spectroscopy (XPS), 

over 12 months. Surface oxidation of PVP-capped Pd nanocrystals resulted in loss of edge 

and corner sites and transition to spherical morphologies.  The shape stability of the 

nanocrystals was found to follow the trend cubic < cuboctahedra < octahedral ~ concave 

cubes.  For low index planes, {111} surfaces are more resistant to oxidation compared to 

{100} facets, correlating with the surface free energy of the nanocrystals.  Cubic and 

http://pubs.acs.org/doi/abs/10.1021/jp500716z
http://pubs.acs.org/doi/abs/10.1021/jp500716z
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cuboctahedral nanocrystals transitioned to spherical particles while octahedral nanocrystals 

retained their morphology. The presence of high energy {110} facets were observed in the 

cubic nanocrystals which undergo surface reconstruction.  The presence of surface defects 

such as stacking faults were also found to influence the rate of the structural changes.  

Concave cubic nanocrystals, which possess high index facets and surface energies were 

consistently found to display excellent morphology retention.  The concave cubic 

nanocrystals displayed superior shape stability and reduced oxidation compared to cubic and 

cuboctahedral nanocrystals.  XPS analysis further determined that PVP capping ligands on 

different Pd surface facets strongly influences the morphological consistency.  The stability 

of the concave cubes can be attributed to stronger chemisorption of PVP capping ligands to 

the high index plane making them less susceptible to oxidation. 

 

Keywords: Palladium, shape controlled nanocrystals, oxidation, stability, surface facet.  

 

Introduction 

Extensive developments in the controlled synthesis of noble metal nanocrystals (NCs), with 

specific morphologies, have allowed numerous shape-dependent properties to be 

determined.1-3  Altering the morphology of a NC exposes surface facets which display 

different atomic arrangements, leading to applications in selective catalysis; several 

hydrogenation4,5 and oxidation6,7 reactions demonstrate facet dependent reactivity.  

Nanocrystal shape can also influence the optical properties of plasmonic nanostructures 

leading to enhanced sensing and biomedical applications.8,9  While early research efforts 

focused on synthesizing NCs enclosed by low index surface facets, such as {111} and {100} 

surfaces, there has been enormous recent progress in the growth of NCs enclosed by high 

index faces, achieved by manipulating growth kinetics.10,11  High-index facets are denoted by 
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a set of Miller indices {hkl} with at least one index being greater than one.  The 

morphologies of such structures are often characterized by sharp corners giving rise to unique 

optical properties and improved surface enhanced Raman scattering.11  High index surfaces 

have a high density of low co-ordinated atoms located at step, edge and kink sites, thus have 

potential for enhanced catalysis.12  Improved catalytic and electrocatalytic performance of 

NCs terminated by high index facets has been demonstrated.13-16 

 

Pd is an important noble metal central to heterogeneous catalysis for chemical synthesis17,  

fuel cells18 and hydrogen storage.19  Recent developments in understanding the growth 

conditions and mechanisms that influence NC morphology has facilitated exceptional control 

over the solution synthesis of Pd NCs enclosed by well-defined facets.  Shape control 

synthesis of Pd NCs has been reported using selective capping ligands20-22, seeded 

growth14,23-26, heteroexpitaxial growth27-29 and electrochemical methods16,30.  The use of 

shape controlled Pd NCs has been shown or has been shown in enhanced performance in 

catalysis14,27 and cancer therapy.6 

 

Many practical applications of NCs, such as catalysis, require a metal to be deposited on a 

support material.  The stability of shape-defined Pd NCs on support materials over time has 

not been thoroughly evaluated and is of key importance in exploiting the structure dependent 

properties of NCs.  Loss of NC shape and changes in chemical state, due to surface oxidation, 

can have an impact on catalytic reactivity, molecular adsorption and optical properties. 

 

Here, we report the stability and shape evolution of faceted Pd NCs supported on activated 

carbon.  Activated carbon is one of the most commonly used support materials due to its high 

surface area, inertness and low cost.  In this article, the stability of shape-controlled Pd 
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nanostructures including cubic, octahedral and cuboctahedral NCs are assessed by TEM and 

XPS.  In addition to low index NCs, the stability of concave cubes enclosed by high index 

surface facets is also investigated.  The concave cubes displayed excellent stability after 

immobilization and superior oxidation resistance compared to cubic and cuboctahedral NCs.  

Structural features present in the as-synthesized NCs, such as surface faceting and defects, 

influence the stability of the NCs.  XPS was utilized to probe the changes to the NC oxidation 

state and to understand the origin of the stability observed for high index surface facets.  In 

this study, the chemisorption of PVP on the surface of Pd NCs enclosed by different surface 

facets was found to be important for NC stability and retention of their morphology. 

 

Experimental 

Pd NCs of different surface facets were prepared by the methods described by Xia and co-

workers.26  A variety of NC shapes and sizes were investigated including 10 nm and 20 nm 

Pd cubic, 28 nm cuboctahedra and octahedral NCs with an edge length of 21 nm.  High index 

facet concave cubes were prepared from 10 nm cubic seeds, measuring ~20 nm across in 

length and 35 nm from corner-corner.14  For the stability studies six batched of the each NC 

were prepared.  Pd NCs were immobilized on activated carbon by stirring at room 

temperature overnight and collected by filtration.  Immobilization of the NCs on carbon was 

evident from the color change of the solution which changed from dark brown to near-

colorless.  The morphological stabilities of the carbon supported NCs was carried out by 

preparing the samples on TEM grids.  Samples for analysis were prepared in triplicate and 

were left in ambient conditions (air, ~20 ºC). 

 

 

Materials Characterization 
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Microscopy. Scanning electron microscopy (SEM) images were obtained using a FEI 

DualBeam Helios NanoLab 600i high resolution SEM.  Transmission electron microscopy 

(TEM) analysis was performed using a JEOL 2100 transmission electron microscope, 

operating at a voltage of 200 kV.  Scanning transmission electron microscopy (STEM) was 

carried out on a FEI Titan TEM at an operating voltage of 300 kV. 

 

X-Ray Photoelectron Spectroscopy (XPS).  XPS spectra were collected on a KRATOS-AXIS-

165 using a monochromatic Al Kα line (1486.6 eV) as the X-ray source.  All spectra were 

collected at a take-off angle (ϴ) of 90° to the surface normal.  Spectra were referenced to the 

C 1s at a binding energy 284.8 eV and a Shirley background was applied.  The C1s spectra 

were fitted to Gaussian (70 %) Lorentzian (30 %) profiles.  The high resolution Pd 3d scans 

were fitted with asymmetric Gaussian-Lorentzian profiles.  The relative ratio of the Pd 3d 

doublet was fixed during the fitting, while the full width at half maximum (fwhm) and peak 

position were allowed to vary within a reasonable range to obtain the best fit. 

 

Results and Discussion 

1. Structural Stability of Pd Nanocrystals 

The as-synthesized cubic Pd cubes, shown in figure 1 (a) are largely characterized by six 

{100} surface facets.  The cubic morphology is unaffected by the immobilization procedure 

onto activated carbon as shown by the STEM image in figure 1(b).  Exposure of the 

immobilized cubes for 7 days revealed little change in the morphology of the NCs, while 

analysis of the same NCs after 3 months revealed that the morphology of the 10 nm cubes 

altered.  The change in shape changes was also observed to vary within a same sample, with 

some NCs becoming truncated whilst others displayed more pronounced changes, such as 

becoming spherical (Supporting Information Figure S1).  After 6 months, the cubic NCs were 
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almost entirely spherical in shape, as shown in figure 1(c).  High resolution TEM analysis of 

the NCs after 6 months revealed that many of the particles were defect-free single crystalline, 

while others contained stacking defects such as those shown figure 1(d).  In contrast, the 20 

nm diameter NCs showed a greater retention of their morphology over time, with a mixture 

of slight and heavily truncated cubes observed as shown by comparison of the NCs 1 week 

and 6 months after deposition (figure 1 (e)-(f)).  Cubic NCs stored under inert conditions (N2 

filled gloved box) after immobilization also exhibited rounded corners, consistent with 

surface atom diffusion, but no transformation from a cubic to a spherical morphology was 

observed indicating that interaction with O2 influences NC stability.  PVP-protected cubic 

NCs used in this study exhibited considerably greater stability compare to ethylene glycol 

protected NCs.  Xiong et. al.31 reported that dried 50 nm diameter Pd cubes capped with 

ethylene glycol formed a nanocrystalline PdO shell, readily observed by TEM after ~8 days 

of ambient exposure.   Additionally, they reported an inverse relationship between NC size 

and stability with smaller (8 nm) cubes displaying superior stability (up to 90 days), 

compared to 50 nm cubes.  This increased stability with decreasing size was not observed for 

the PVP-capped NCs used in this study, which clearly revealed that 10 nm cubes were less 

stable and lost their cubic morphology compared to the 20 nm cubes.  Furthermore, TEM 

analysis on the aged cubes (after becoming spherical) did not show the presence of a 

crystalline oxide shell, suggesting a low degree of oxide formation due to a better surface 

passivation by bulkier PVP compared to ethylene glycol.  The presence of the surrounding 

carbon matrix and polymeric capping ligands on the nanocrystals in this study, obstruct direct 

imaging of ultra-thin oxide layers by TEM. 
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Figure 1.  (a) TEM images of as-synthesized 10 nm PVP-capped cubic Pd NCs.  (b) STEM 

image of 10 nm cubes deposited on activated carbon.  (c) TEM image of 10 nm cubes 6 

months after deposition onto carbon. (d) TEM image of cubic NC, aged for 12 months.  (e) 

20 nm cubic Pd NCs 1 week and (f) 6 months after deposition on activated carbon. The red 

arrows highlight NCs with well-maintained cubic morphologies and the blue arrows highlight 

NCs evolved to truncated NCs.  Figure (f) inset shows typical 20 nm cubic Pd NC 12 month 

after ambient exposure (scale bar is 5 nm).  

 

The changes in the morphology of the Pd NCs from cubic to spherical are driven by energy 

minimization to the most thermodynamically favourable shape.  To understand the factors 
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contributing to the shape changes observed in the cubic NCs, high resolution TEM was used 

to analyze the particles at different stages of ageing.  Figure 2(a) shows a TEM image of a 

freshly prepared cubic NC projected in the [011] direction.  A significant feature shown in 

figure 2(a) is the presence of a {110} facet, which is not often observed on nanostructures 

due to its lower stability compared to {111} and {100} facets.  The schematic shown in 

figure 2 illustrates the true structure of the cubic NCs showing the truncated corners with 

{111} and {110} facets in addition to the {100} cubic faces.32  As shown in figure 2(a), these 

surfaces are relatively rough at the atomic scale and show missing-row reconstruction, 

characteristic of noble metal {110} surfaces.33  In some regions, rows of atoms are missing 

along the [1-10] direction and give rise to a saw-tooth configuration, as identified by black 

arrows in figure 2(a).  The image is magnified in the inset of figure 2(a) for clarity.  Similar 

surface reconstruction has previously been observed on Au nanorods.34  The presence of 

adatoms, shown by the white arrows in figure 2(a) is also observed.  The driving force for 

this reconstruction is the formation of lower energy {111} micro facets on the (110) surface 

giving an overall lower surface energy after reconstruction, as illustrated by the inset 

schematic, in figure 2(a).  No reconstruction was observed on the {100} facets and surface 

defects mainly consisted of single atom height terraces (Supporting Information Figure S2).  

A higher density of step sites was generally observed at the corners as shown in figure 2(b).  

Here, the presence of a higher index {220} and {310} facets can be seen where the {100} and 

{111} facets meet.  This observation is in excellent agreement with DFT calculations 

showing high index stepped surfaces being preferential to sharp corners at the boundaries 

between the (100) and (111) facets.35  Additionally, as previously described, surface 

reconstruction of the {110} facets is again seen in figure 2(b).  As the NCs age, loss of the 

stepped surfaces, which are more prevalent at the corners is observed, causing rounding of 

the corners (figure 2(c)).  The facets continue to reduce in size, eventually becoming 
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spherical (figure 2(d)).  Such transformations are predicted by DFT calculations due to O2 

adsorption and surface oxide formation.35  The presence of the {110} facet on the cubic NCs 

are influential to the stability of the NCs due to the greater reactivity and lower stability 

associated with the surface.  Nanostructures with high surface defect densities are less stable 

and more susceptible to oxidation, thereby affecting the rate of structural changes.36,37  

Surface defects can also influence the co-ordination of capping ligands38 and a more 

defective surface may disrupt the packing or lower the coverage of the PVP capping layer, 

facilitating easier oxidation of the Pd NCs. 

 

An additional structural feature of the cubic NCs which contributes to their variable shape 

evolution is the presence of stacking faults, as shown in figure 2(c).  Stacking faults were 

found to be present in some of the resulting spherical nanoparticles as shown in figure 2(f).  

The exact origin of the defects is unclear and was not investigated in detail in this study. The 

as-synthesized NCs are single crystalline with a low defect density, although stacking defects 

can be observed as shown in figure 2(c). Defect formation has been shown to occur as a stress 

relieve mechanism.39 

 

The 20 nm cubic NCs display similar defect features to the 10 nm cubic NCs (figure 1(f) 

inset).  The larger size of the particles may hinder complete transformation to spherical 

morphology as the effects of surface stress and interface stress, are more pronounced for 

smaller particles.40 
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Figure 2.  (a)-(b) HRTEM image of freshly synthesized cubic NC along the [110] direction.  

(c) Freshly prepared 20 nm cubic NC showing stacking faults.  (d)-(e) 10 nm cubic NCs aged 

for 3 months and (f) cubic NC aged for 6 months showing stacking fault along the particle. 

 

Pd NCs with a cuboctahedral morphology are characterized by 6 square {100} and 6 

triangular {111} facets, shown in figure 3(a).  Similar to the cubic NCs, aging of 

cuboctahedral NCs results in a morphology change to the thermodynamically lowest energy 

spherical shape, as illustrated in figure 3(b).  TEM also reveals that many of the NCs do not 

experience a uniform evolution of morphology.  Figure 3(c) shows an aged octahedral NC 

with defined facets on one side of the NC and rounding on the opposite side of the NC, which 

was typical of many particles.  The origin of the uneven rounding of surface facets is also 
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attributed to the presence of surface defects as previous described for the cubic NCs.  After 

12 months many of the cuboctahedral NCs also became spherical (Supporting Information 

Figure S3). 

 

In comparison to cubic and cuboctahedral NCs, the octahedral NCs exhibited little change to 

their morphology over the same time period.  Ideal octahedra are characterized by eight 

{111} surface facets, however many of the octahedra prepared by this seeded method 

employed were slightly truncated, exposing vertices capped with {100} facets, as shown in 

the STEM image in figure 3(d).  These NCs displayed excellent morphology retention as can 

be seen in figure 3(e), 6 months after deposition onto activated carbon.  Even after 12 months 

the octahedral NCs displayed negligible changes to their morphology and the particles 

retained well-defined facets, see figure 3(f).  The overall stability trend of the polyhedra was 

found to be cubic < cuboctahedra < octahedral, which correlates with the surface free energy 

of face centred cubic metals, γ{111} < γ{100} < γ{110}.
41
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Figure 3.  (a) STEM image of as-synthesized cuboctahedral NCs.  (b)-(c) TEM image of 

cuboctahedral NCs 6 months after immobilization onto carbon.  (d) STEM image of as-

synthesized octahedral NCs.  (e) Octahedral NCs 6 months and (f) 12 months after 

immobilization onto carbon.  Scale bars in figures (a), (c), (d) and (f) are 10 nm. 

 

High index surface facets are characterized by a high density of surface atoms with low 

coordination numbers.  These open structures possess higher surface energies compared to 

closed pack surfaces, typically γ{111} < γ{100} < γ{hkl} for fcc Pd.  Figure 4(a) shows a TEM 

image of as-synthesized concave Pd NCs.  TEM analysis of the concave cubes 6 months after 

deposition on the carbon support revealed they exhibited excellent retention of morphology 

as shown in figure 4(b).  In contrast to the cubic NCs, which loose the stepped facets on 

aging, HRTEM analysis of the concave cubes aged for 6 months (figure 4(c)) showed the 

preservation of the high index faces, with most of the exposed facets belonging to the {730} 

family planes, consistent with the as-synthesized NCs.14  The NCs still retained their concave 

shape 12 month after deposition onto activated carbon (Supporting Information, Figure S4). 
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Figure 4.  TEM image of (a) as synthesized concave NCs, (b) 6 months after deposited onto 

activated carbon.  (d) HRTEM image of concave NC with incident beam along the [100] 

direction.  The schematic illustrates the step configuration of the surface facet. 

 

2. Oxidation and Interaction of PVP with Pd Nanocrystals 

To further understand the stability of the shape-controlled NCs, XPS analysis was conducted 

to study the oxidation trends of the NCs as they aged and to probe the interaction of the PVP 

capping ligands with Pd.  Figures 5(a)-(c) show the evolution of the Pd 3d core level spectra 

of the cubic Pd NCs over 24 h, 1 month and 6 months, respectively, after immobilization on 

activated carbon.  The Pd 3d spectra of the cubic NCs after 24 h showed the presence of 

mainly metallic Pd(0) at a binding energy of 335.4 eV, in good agreement with bulk Pd 

(335.2 eV).42  The slightly higher binding energy is typical of nanoparticles due to size and 

electronic effects.43,44   Notably, assignment of Pd oxidation states in the 3d core level varies 

somewhat in literature.  In situ XPS measurements of Pd(111) facets determined that peaks 

shifted to binding energies greater than +1.5 eV can be assigned to bulk oxide phases, while 
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smaller shifts are attributed to surface oxide and sub-surface oxide species.42,45  Similar 

observations have been made for Pd(100) surfaces.46,47  Stable surface oxides can form on 

(111) and (100) surfaces but not on (110) facets.35,42  Furthermore, the structure of surface 

oxide species has been shown to be quite different from that of bulk PdO.48  The second 

shoulder peak in figure 5(a), located at a binding energy of 337.1 eV can be assigned to bulk 

PdO, which is in excellent agreement with the 1.7 eV difference reported for PdO and 

Pd(0).47,49  Exposure of 20 nm cubic NCs to ambient conditions for 1 month resulted in a 

similar Pd 3d spectra, but with increased line broadening of the peaks and a shift of 0.15 eV 

to higher binding energies, consistent with previous studies.47,50  The first shoulder peak 

shown in figure 5(b) occurs at a binding energy of 336.5 eV, typical of PdO reported for 

nanoparticles.50  The second shoulder peak centred at a binding energy of 337.6 eV, can 

typically be assigned to the presence of highly oxidized Pd species such as PdO2 (reported in 

the range between 337.2 – 338.2 eV).51-53  As the cubic NCs age over 6 months the PdOx 

peak intensity increased, which can be seen from comparison of the Pd 3d spectra in figure 

5(a)-(c).  Figure 5(d) displays the Pd 3d spectra of concave cubes 4 weeks after 

immobilization onto activated carbon, showing the presence of predominately metallic Pd(0) 

at 335.2 eV and a surface PdO associated peak at 336.4 eV.  Comparison of figures 5(c) and 

(e) clearly show that the concave cubes are considerably less oxidized than the cubic NCs 

after exposure to ambient conditions for 6 months, consistent with their shape retention.  The 

total oxide signal for the concave cubes after 6 months was similar to that observed for {111} 

enclosed octahedral NCs, as shown in figures 5(e) and (f). 

 

The nature of the surface facets present in the NCs is important for understanding the 

oxidation behaviour of faceted NCs.  O2 adsorption on Pd is spontaneous but absorption 

energies are facet dependent; Pd atoms on (110) surfaces have higher adsorption energies 
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(1.56 eV/ O atom) compared to stepped or closed packed (111) or (100) surfaces.35  The ease 

of O2 dissociation on Pd follows the trend {110} > {100} > {111}, which is the origin of the 

superior reactivity for oxidation-type reactions observed for Pd{110} catalysts.6,54  Therefore, 

the {110} facets only observed on the cubic NCs are more reactive and susceptible to 

oxidation compared to the {111) and {100} facets, consistent with XPS observations. 

 

 

 

Figure 5.  Background subtracted Pd 3d photoelectron emission spectra of carbon-supported 

Pd cubes after (a) 24 h, (b) 1 month (c) 6 months.  Concave Pd cubes (d) 1 month, (e) 6 

months and (f) octahedral NCs 6 months after ambient exposure. 

 

The intriguing observation of this study is the excellent stability and oxidation resistance of 

concave NCs with high index facets, when the open structure of such facets is typically 

associated with high reactivity.  Analysis of oxide phases on high index Pd surfaces is lacking 

in the literature.  However, atomically smooth {100} and {111} surfaces have been suggested 

to allow oxygen diffusion into the lattice, thereby destroying the surface structure and NC 
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shape.13,55  For low index surfaces, Pd(111) is more densely packed (1.53 × 1015 atoms cm-2) 

compared to the Pd(100) surface (1.32 × 1015 atoms cm-2) and Pd(110) surfaces (9.4 × 1014
  

atoms cm-2).  Consequently, oxide formation is the least favourable on Pd(111) as the higher 

surface atom density requires more lattice expansion to accommodate the formation of 

PdOx.56 Different factors may influence oxidation of high index surface.  In contrast to low 

index planes, on high index faces, O2 atoms preferentially adsorb at step sites rather than 

diffuse into the lattice, helping to preserve the surface structure.13  The step structure of the 

high index facets may also better accommodate lattice strain induced by oxide formation, 

making them less susceptible to structural changes.   

 

An important aspect in the stability of colloidal NCs is the presence of capping ligands at the 

particle surface.  Passivating ligands can significantly alter surface free energy thereby 

influencing the stability and oxidation resistance of surface facets.57  XPS analysis was used 

to investigate the interaction of PVP capping ligands with the Pd surface.  Figure 6 shows the 

N 1s spectra of the different polyhedra.  The cubic NCs displayed a single peak at a binding 

energy of 339.8 eV, characteristic of the pyrrolidone N group.58  The N 1s binding energy is 

similar to that of the free PVP, indicating that the N atoms are not involved in the 

coordination with the Pd surface on cubic NCs, as illustrated in figure 6(b).  In contrast to the 

cubic NCs, all other Pd polyhedra displayed the presence of a peak at 401.6 eV, in addition to 

the peak at 399.8 eV.  Shifts to a higher binding energy are associated with decreased 

electron density of the N group, indicating charge transfer from the PVP to the Pd, implying 

that the pyrrolidone N group is involved in the coordination with the surface, as illustrated in 

figure 6(c).  Xian et al.58 showed the chemisorption of PVP to spherical Pd nanoparticles can 

also break the N-C bond in the N-C=O group, with following hydrolysis gave 

CH2−CH2−NH2
+−(CH2)3−COO−, as illustrated in figure 6(d).  Their report is in excellent 
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agreement with the N 1s binding energy of 401.2 eV, observed here, which is generally 

assigned to protonated amine species.59  The peak contribution of charged N species is larger 

for the concave cubes compared to the low index polyhedral, suggesting greater 

chemisorption of the pyrrolidone N group on the high index surface facets.  The atomically 

stepped surface is characterized by low-coordinated number atoms which may facilitate a 

stronger interaction with the N groups.  Bond cleavage is also considerably more favorable 

on stepped surfaces compared to atomically smooth surfaces which can lead to co-ordination 

of PVP as illustrated in figure 6(d).60 

 

 

 

Figure 6.  (a) N 1s spectra of Pd NCs immobilized on activated carbon.  Schematic 

illustrating (b) the interaction of PVP through carbonyl O.  (c) Co-ordination of PVP through 

both O and N groups.  (d) Co-ordination of PVP with cleavage of the C-N bond. 
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The C 1s spectrum of the cubic Pd NCs, shown in figure 7(a) contains 3 components at 

binding energies of 284.8 eV (C-C, C=C), 286 eV (C-N, C-O) and 287.6 eV (C=O)61, 

however adventitious hydrocarbon will also contribute to the C-C and C-O peak intensities.  

The C 1s spectrum of the concave cubes contains an additional peak not observed for the 

cubic NCs at a binding energy of 288.9 eV, typically assigned to the O-C=O group.  The 

presence of the carboxylate group, in addition of the C=O group, indicates that a portion of 

the chemisorbed PVP molecules undergo cleavage of the C-N bond and subsequent 

hydrolysis, consistent with the N 1s spectrum.  The synthesis of cubic NCs in this study uses 

Br- ions as selective capping agents to promote the formation of NCs enclosed by {100} 

facets.  Analysis of the Br 3d core level spectrum of the cubic NCs show that the Br- species 

remain on the surface after immobilization onto activated carbon (Supporting Information 

Figure S5).  The Pd(111) and high index facets were not observed to be capped with Br ions, 

which may facilitate stronger interactions with the PVP ligands compared to {100} facets. 

Furthermore, while Br ions have been shown to be chemisorbed to the surface, they can be 

displaced by ethylene glycol at 100 °C.62  Removal of PVP from noble metal surfaces 

generally requires more forcing conditions.63  

 

Several studies have shown that charge transfer and the co-ordination mode of PVP 

molecules with noble metal nanoparticles to be size dependent.64-66  The XPS data in this 

study also indicates that the interaction mode of PVP capping ligands is also dependent on 

the nature of the surface facet for Pd NCs.  This finding is important for both shape selective 

NC synthesis with high energy faceted surfaces, suggesting that the structure and electronic 

interaction of the ligand is important in preserving the long term stability and structure of 

high energy surfaces. 
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Figure 7.  C 1s spectra of unsupported (deposited on glass substrate) (a) cubic Pd NCs and 

(b) concave cubic Pd NCs. 

 

Conclusions 

The stability, oxidation and shape evolution of well-defined Pd NCs supported on activated 

carbon was assessed over 12 months.  For low index surfaces, the octahedral NCs with {111} 

facets had greater stability compared to {100} facets, due to the lower surface free energy.  

The presence of the relatively reactive and high energy {110} facet on the cubic NCs 

increases the oxidation susceptibility of the NCs making them the least stable shape studied.  

Surface defects influence the shape evolution of NCs resulting in non-uniform changes in 

their structure.  Concave Pd NCs characterized by high index surface facets displayed 

superior stability to cubic and cuboctahedral NCs.  XPS analysis identified stronger 

interaction between the N groups of the PVP capping ligands on the high index faces 

compared to the low index {100} facets.  Controlling the interaction between the PVP 

capping ligands and the metal surface has been central in the synthesis of colloidal NCs.  In 

particular understanding the selective chemisorption of capping ligands onto certain crystal 

facets has been key to controlling the growth of NCs with specific morphologies.  The work 
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here highlights that these interactions also play a critical role in the long-term stability of 

NCs.  Optimizing these interactions can facilitate the synthesis of NCs enclosed by well-

defined surface facets with improved stability and oxidation resistance.   

Structural evolution of nanoparticles is complex with several influencing factors.  The 

stability trends observed in this study may not be general and nanoparticles prepared by 

alterative synthesis methods, with different capping ligands and support materials may 

display different stability trends. However, evaluating the stability of shape controlled 

nanocrystals is critical as morphological transformations due to surface defects or surface 

oxidation can influence the potential applications of shape-controlled such as catalysis.  The 

excellent stability of PVP capped concaves cubes is promising as nanocrystals with high 

index facets have been shown to display enhanced reactivity in several catalytic applications. 
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Figure S1. TEM mage of 10 nm cubic Pd NC 3 months after deposition onto activated 

carbon. 
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Figure S2. 10 nm cubic Pd NC showing smooth {100} surface.   
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Figure S3. Cuboctahedral NCs 12 months after ambient exposure. 
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Figure S4. TEM image of concave NCs 12 months after deposition onto activated carbon 
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Figure S5.  Br 3d core level spectrum of cubic Pd NCs after deposition onto activated 

carbon. 
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The Origin of Shape-Sensitivity in Pd Catalyzed Suzuki-Miyaura Cross 
Coupling Reactions 
Gillian Collins, Michael Schmidt, Colm O’Dwyer, Justin D. Holmes*, Gerard P. McGlacken* 

Transition metal catalyzed aryl-aryl bond formation is one of the 
most important reactions in organic synthesis.[1] The Suzuki-
Miyaura reaction is highly utilised due to its synthetic versatility[2] 
and its discovery was acknowledged by the Nobel Prize in 
Chemistry in 2010.[3] The use of heterogeneous catalysis in Suzuki-
Miyaura coupling is particularly appealing as it allows for ligand-
free methodologies and facilitates easy purification and metal 
recovery.[4] The exquisite control of size and shape dispersion now 
possible in solution-based colloidal synthesis has attracted much 
interest in studying the structure sensitivity of reactions catalyzed by 
noble metal nanocrystals (NCs). Understanding the structure 
sensitivity of a catalyst can help optimize the design of 
heterogeneous catalysts, and several important organic[5] and 
electrocatalytic[6] reactions have been shown to depend on NC shape. 

The origin of shape-sensitivity in Suzuki-Miyaura coupling is 
controversial and is further challenged by the debate concerning the 
heterogeneous or homogeneous nature of the reaction mechanism. 
El-Sayed et al.[7] demonstrated that tetrahedral Pt NCs catalyzed the 
cross coupling of phenylboronic acid and iodobenzene, while the 
use of spherical Pt nanoparticles gave no conversion. They 
attributed the difference in reactivity to the sharp edges of the 
tetrahedral particles; Pd NCs with high index surface facets have 
displayed enhanced reactivity compared to low index facets.[8] 
However, NCs with high index surfaces are more susceptible to 
leaching and the higher activity may simply reflect greater 
dissolution of active molecular Pd.[9] Several studies demonstrate 
that NC catalyzed Suzuki coupling reactions proceed via a 
homogenous mechanism, where the particle serves as a source of 
soluble Pd that is leached from the surface.[10] Conversely, strong 
evidence for surface mediated catalytic processes are also reported, 

such as spatially controlled coupling reactions using a Pd-coated 
AFM probe[11] and in-situ X-ray absorption studies[12], which 
identify edge and corner atoms as the active sites. Recently, Pd 
supported carbon nanotubes were found to be resistant to leaching 
under Suzuki-Miyaura conditions but changes to the nanoparticle 
surface structure and chemistry were observed.[13] The existence of 
multiple reactions pathways in Suzuki-Miyaura coupling, implies 
that the role of leached Pd must also be evaluated to fully 
understand the effect of NC shape on catalytic reactivity. 

In this report we demonstrate that the shape of the Pd catalyst 
influences the reactivity in Suzuki-Miyaura coupling reactions when 
using catalysts enclosed by defined surface facets. Superior catalytic 
reactivity is observed for Pd NCs enclosed by {100} surface facets 
compared to {111} facets. We further probe the origin of the 
enhanced reactivity associated with a cubic morphology, and find 
that the structure-sensitivity is related to the leaching susceptibility 
of the NCs. Molecular oxygen plays a key role in facilitating the 
leaching mechanism. The interaction of O2 with Pd is itself facet 
dependent, which in turn gives rise to more efficient leaching from 
{100} facets, compared to {111} facets under the reaction 
conditions.  

Cubic Pd NCs displaying {100} surface facets, octahedral NCs 
enclosed by {111} facets and cuboctahedral NCs with  6 {100} and 
8 {111} surface facets were prepared as illustrated in Scheme 1.[6] 
The NCs were comparable in diameter ~ 20 nm and supported on 
activated carbon (see Supporting Information Figure. S1-S3). The 
catalytic properties of the polyhedra were compared in the Suzuki-
Miyaura coupling of 4-bromoanisole (1) and phenylboronic acid (2) 
in ethanol-H2O (3:1), with K2CO3 as the base at room temperature, 
as depicted in Scheme 1.  
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Figure 1 illustrates the catalyzed reaction profile of 4-

bromoanisole (1) with phenylboronic acid (2), showing that all of 
the nanoparticle polyhedra were active in generating the coupled 
product 4-methoxybiphenyl (3). A marked enhancement in the 
catalytic reactivity was observed for the cubic NCs. In the first 300 
min, conversion with the cubic Pd NCs reached 76%, while no 
conversion was observed for octahedral NCs over the same time 
period. The final yield of the coupled product (3) obtained with 
cubic NCs was 94%, compared to 58% for octahedral NCs. 
Cuboctahedral NCs displayed an initial reaction profile similar to 
the cubic NCs, but a decrease in reactivity was observed after ~250 
min, giving a final yield of 78%. Previous reports suggest that 
reactivity is associated with edge and corner sites, either through 
surface reaction[14] or by leaching of these low-coordinated 
atoms.[15] Cubic NCs possess the least amount of surface and edge 
atoms compared to cuboctahedra and octahedral NCs (Supporting 
Information Table S1). After normalization to either the number of 
surface atoms or edge atoms, the reactivity trend in our system 
follows cube > cuboctahedra > octahedral NCs, suggesting that the 
shape dependent reactivity is directly associated with the presence 
of the Pd{100} surface facet. To further investigate the facet effect 
on the coupling of 1 and 2, we used 10 nm cubic NCs, which 
possess 0.4% edge and corner atoms, compared to just 0.16% for 20 
nm cubes. The TEM inset in Figure 1b shows the excellent 
reproducibility and length control of the cubic NCs synthesized in 
this study. When the concentration of Pd was adjusted, such that the 
total number of surface Pd atoms was equivalent, the reaction 
profiles for both the 10 nm and 20 nm cubes were almost identical, 
as shown in Figure 1b. This observation suggests that the reactivity 
is not solely associated with the density of edge and corner site 
densities, but advocates a shape-dependent reactivity and a surface 
facet effect. Coupling of 4-iodoanisole showed the same reactivity 
trend with respect to the NC shape i.e. cubic > cuboctahedra > 
octahedra (Supporting Information, Figure S4).  

 

Figure 1.  a) Structure sensitivity of Suzuki-Miyaura coupling of 1 and 
2 over cubic, cuboctahedral and octahedral Pd NCs. b) Reaction 
profile of 20 nm and 10 nm cubic NCs where the total surface Pd 
atoms were equivalent. c) TEM image of 10 nm and d) 20 nm cubic 
Pd NCs. Scale bar = 20 nm. 

TEM analysis of the catalysts after the reaction revealed that the 
average size of the NCs was maintained but a clear loss of the well-
defined facets was observed with all polyhedra, as seen by 
comparison of Figure 2 (a)-(c) before the reaction, with Figure 2 (d)-
(f) after reaction (also see Supporting Information Figure S5-S7). 
Reference samples stirred in EtOH:H2O solvent showed no 
variations in morphology. Changes to NC morphology can indicate 
leaching, which was further assessed by inductively coupled plasma 
mass spectroscopy (ICP-MS). Pd was detected in the filtrate of all 
polyhedra after the reaction, as summarized in Table 1.  

Pd concentrations in the reaction filtrate were higher for cubic 
NCs (1.08 ppm) compared to octahedral NCs (0.66 ppm), 
suggesting that the origin of the structure dependent reactivity may 
be due to preferential leaching from the (100) surface. The presence 
of O2 in the reaction has also been shown to result in greater Pd 
leaching compared to reactions in inert atmosphere.[16] ICP analysis 
(Table 1) shows that the presence of O2 promotes Pd leaching and is 
influenced by the NC shape. In the presence of O2, leached Pd 
concentrations correlate directly with catalytic activity, increasing 
from octahedral < cuboctahedra < cubic NCs. In control 
experiments without dissolved O2 (deoxygenated with Ar), the 
amount of Pd in the filtrates was lower and similar for all polyhedra 
(~80 ppb), implying Pd leaching is shape-sensitive at least under 
aerobic conditions. Additional ICP analysis of the NCs was 
undertaken to identify the primary species responsible for leaching 
and also to determine if a specific reagent gave rise to preferential 
leaching on a particular surface facet. 
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Figure 2. Pd NCs in the form of (a) cubic (b) cuboctahedral, (c) 
octahedral before reaction and (d) cubic, (e) cuboctahedral (f) 
octahedral, after reaction. Scale bar = 10 nm. 

 
Much debate concerns the nature of the species responsible for 

leaching Pd. Oxidative addition of the aryl halide is often reported to 
be the primary mechanism for leaching,[17] while other studies 
demonstrate the boronic acid and base to be responsible.[10a, 18] 
Under our reaction system, the use of ICP analysis identified the 
base and boronic acid as the primary leaching reagents, however the 
aryl bromide also contributed to a lesser degree. Significantly, the 
base and boronic acid induced greater leaching from the cubic NCs 
compared to octahedral NCs, suggesting the {100} surface is more 
susceptible to leaching than {111} surfaces. 

Table 1. ICP-MS analysis of reaction filtrates. 

Sample[a] [Pd]/ ppb Sample  [Pd]/ ppb 

CubicAir 1008  Cubes: - 
Cuboctahedra 663  K2CO3 + PhB(OH)2 658 
Octahedra 324  MeOPhBr 69 
CubicAr 96[b] Octahedra: - 
CuboctahedraAr 79[b] K2CO3 + PhB(OH)2 106  
OctahedraAr 81[b] MeOPhBr 51 
[a] Samples normalized to 5wt % HCl. Average of 3 samples.  [b] 
Catalyst degassed under vacuum before addition to reaction solution 
previously deoxygenated with Ar.  

 ICP analysis identified O2 as a promoter of leaching and this 
observation led us to explore the impact of O2 on the catalytic 
activity and to determine if the leached Pd contributed to the 
catalytic activity in the reaction. The influence of adsorbed O2 and 
the role of dissolved O2 during the reaction were investigated by 
comparing the reactivity of the NCs immobilized (Imb) and reacted 
(Rx) under air or Ar; the reaction profiles are compared in Figure 3b. 
The reaction profiles showed that the AirImb-AirRx catalysts 
exhibited the fastest reaction time, giving a 96% conversion after 28 
h. The AirImb-ArRx catalysts displayed similar initial profiles but the 
reaction become progressively slower as it progressed, resulting in a 
final yield of 62%. This finding confirms that dissolved O2 promotes 
catalytic activity, which in turn contributes to greater leaching as 
determined by ICP. The ArImb-AirRx catalytic system displayed an 

induction period nearly 4 times longer than that of AirImb-AirRx, with 
the yield decreasing to 50%, indicating that the presence of 
chemisorbed O2, as well as dissolved O2 is beneficial for catalytic 
activity. Finally and quite remarkably, the ArImb-ArRx catalytic 
system did not show any conversion after 28 h. Leaching 
concentrations also correlated with reactivity, with the filtrates 
under the AirImb-AirRx having the highest Pd concentrations, while 

low amounts of Pd were detected in the filtered solutions of the 
ArImb-ArRx samples (Supporting Information, Table S2). Reaction 
profiles using 4-iodoanisole also displayed the same reactivity trend 
(Supporting Information, Figure S8). 
 
Figure 3. a) Reaction profile of cubic Pd NCs immobilized and 
reacted under aerboic and inert conditions. b)  XPS analysis of cubic 
NCs before and after reaction. 
 
The beneficial effect of O2 has been reported for Suzuki-Miyaura 
coupling using in situ generated Pd nanoparticles although it’s role 
in the mechanism was not identified.[19] XPS analysis was used to 
probe changes in the surface chemistry of the catalysts. Figure 3b 
displays the Pd 3d core level spectra of cubic NCs before and after 
the reaction, showing the presence of a doublet at a binding energy 
(BE) of 335.4 eV (340.6 eV), which can be assigned to metallic 
Pd(0).[20] An additional shoulder peak at a BE of 336.4 eV was also 
present in the spectra for all polyhedrons. The presence of surface 
oxide species is typically reported at a BE ~1 eV higher than Pd(0), 
while bulk oxides are observed at BE >1.5 eV, thus the peak at 
336.4 eV is assigned to the presence of surface Pd-O species.[21] 
NCs immobilized under Ar also displayed a contribution of Pd-O in 
the Pd 3d spectrum, as the NC synthesis is performed in air, where 
the presence of O2 is important for oxidative etching and shape 
control of the particles.[22] The Pd 3d spectra of cubic NCs after the 
reaction in air displayed a decrease in the peak intensity associated 
with surface Pd-O (blue peak). NCs immobilized and reacted under 
Ar, showed negligible changes to the Pd 3d spectra (Supporting 
Information, Figure S9), confirming that O2 plays a key role in the 
removal of surface species, as illustrated in Figure 4. O2 adsorption 
on Pd surfaces is a spontaneous process but is influenced by the 
crystal orientation of the surface. Molecular adsorption and 
activation of O2 is preferential on Pd{100} surface facets compared 
to {111} facets due a lower activation energy.[23] The presence of 
chemisorbed O2 may facilitate the adsorption of phenyl borates 
which are subsequently more readily removed from the surface.[24] 
This scenario is also consistent with ICP analysis indicating boronic 
acid as a primary species responsible for Pd leaching. 
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Figure 4.  Schematic illustrating O2 promoted leaching on Pd NCs. 
 
In summary, we find that the shape sensitivity in Suzuki-

Miyaura coupling originates from a homogenous reaction pathway. 
Leaching from the NCs is not solely attributed to the loss of low co-
ordination edge and corner atoms, but to the nature of the surface 
facets. The catalytically active Pd species are generated by leaching 
of the surface oxide and this leaching mechanism is shape-sensitive. 
Preferential adsorption of O2 on Pd {100} compared to Pd {111} 
surfaces induces greater Pd leaching and consequently enhanced 
reactivity when using cubic NCs compared to octahedral NCs. 
These insights will help in the rational design of catalysts and 
reaction conditions for cross-couplings and other important 
transformations. 
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The Origin of Shape-Sensitivity in Pd Catalyzed Suzuki-Miyura Cross 
Coupling  
 Gillian Collins, Michael Schmidt, Colm O’Dwyer, Justin D. Holmes* and Gerard P. McGlacken* 

Supporting Information 

Nanocrystal Synthesis and Immobilization 

Shape controlled nanocrystals used in this study were prepared according to literature several 

procedures.[1] Synthesis of Pd nanocubes: 105 mg of PVP (Mw ~ 55,000), 60 mg of ascorbic acid and 300 

mg of KBr were dissolved in 8 ml of water. The mixture was heated for 10 min at 80 °C, under stirring 

followed by addition of 57 mg Na2PdCl4 in 3 ml of water. The solution was heated to 80 °C and aged for 

3 h after which the product was collected by centrifugation, washed with water and briefly sonicated. This 

purification procedure was repeated 3 times. Finally, the nanocubes were re-dispersed in 11 ml of water. 

Synthesis of 20 nm cubes followed the same procedure with the addition of 600 mg of KBr. Octahedra 

and cuboctahedra were prepared from cubic Pd seeds. 105 mg of PVP, 100 µl of formaldehyde and 0.3 ml 

of seed solution were added to 8 ml of water and heated to 60 °C. Varying amounts of Na2PdCl4 

dissolved in 3 ml of water were added to obtain cuboctahedra (8.7 mg) or octahedral (29 mg). The 

reaction was kept at 60 °C for 3 h and the products were collected and purified by the procedure 

previously described.  The nanocrystals were immobilized on carbon by stirring the solution in the 

presence of activated carbon at room temperature, which has been previously dried in a vacuum oven at 

120 °C. The product was collected by filtration and dried under vacuum. Similar Pd loadings, as 

determined by ICP, were used in the reaction. The average Pd loading was 3.6 wt%, with not more the 0.2 

wt% difference between each catalyst sample. 

 

Suzuki-Miyaura Cross Coupling Reactions  

In a typical experiment 0.268 g of phenylboronic acid (2.2 mmol). 0.468 g of 4-methoxyiodobenzene or 

0.25 ml of 4-methoxybromobenezene (2 mmol), 0.553 g (4 mmol) of K2CO3 were added to 30 ml of 
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ethanol/water (3:1).  The reactions were initiated by addition of the catalyst (0.5 mol %).  Reactions were 

conducted at room temperature and sampled at regular intervals for GC analysis. Samples were analyzed 

using an Agilent 7890A GC system, equip with a flame ionisation detector (FID). Products were 

identified against authenticated standards and quantified by calibration to obtain response factors (RF) 

against the known internal standard (dodecane).  

 

Materials Characterization: 

 

Electron Microscopy.  

Scanning electron microscopy (SEM) images were obtained using a FEI DualBeam Helios NanoLab 600i 

high resolution SEM.  Transmission electron microscopy (TEM) analysis was performed using a Jeol 

2100 transmission electron microscope at an operating voltage of 200 kV. 

X-ray Photoelectron Spectroscopy.  

XPS data was acquired using a KRATOS AXIS 165 monochromatized (Al Kα = 1486.6 eV) x-ray 

photoelectron spectrometer.  Spectral fitting was carried out on using CASA software. All spectra were 

referenced to the C 1s spectrum at a binding energy (BE) of 284.6 eV.  The photoemission data was 

processed using a Shirley background correction.  The high resolution Pd 3d core level spectra were fit to 

asymmetric Gaussian-Lorentzian profiles.  The Pd(0) peak was fixed at a binding energy of 335.4 eV 

with a FWHM of 0.9.  

 

Table S1. Statistics of surface atoms and surface sites on cubic, cuboctahedral and octahedral Pd NCs. 

Nanocrystal Ntot
[a] Nsurf

[b] Ne+c
[c] % surf % e+c yield[d] 

% 
TOFtot

[e] 
TOFsurf

 

[f] 
cubes 515151 30002 596 5.82 0.16 94 6.2 106 

octahedra 316394 23718 918 7.5 0.29 58 3.8 52 

cuboctahedra  702219 42012 1404 6.0 0.2 79 5.3 88 
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Calculations for cubic and octahedral nanocrystals are based on equations derived by Hartog and van 

Hardeveld assuming a perfect face centred cubic lattice.[2]  Calculations for the cuboctahedra nanocrystals 

were based on the work of Benfield for a cuboctahedron consisting of 6 square and 8 triangular faces.[3]  

[a] m is the number of atoms lying on an equivalent edge including the corner atoms.  [b] Ntot is the total 

number of atoms in each nanocrystal (cubic: Ntot = 4m3 - 6m2 + 3m; octahedral, Ntot = 1/3m(2m2 + 1) and 

cuboctahedral Ntot = 1/3(2m – 1)(5m2 – 5m + 3).  [c] Nsurf is the number of surface atoms (cubic Nsurf = 

12m2 – 24m +14; octahedral Nsurf = 4m2 – 8m + 6 and cuboctahedral Nsurf = 10m2 – 20m +12).  Ne+c is the 

number of edge and corner atoms. Cubic: Ne+c = 12(m – 2) + 8; octahedral Ne+c = 12(m – 2) + 6; 

cuboctahedral Ne+c = 24(m – 2) + 12.  [d] Percentage yield after 30 h (determined by GC).  [e] TOFtot is the 

turnover frequency calculated from molar equivalents of Pd (0.5 mol%).  [f] TOFsurf  are the turnover 

frequencies normalized to the total number of surface atoms on each polyhedron. 

 

Fig. S1 TEM of (a) as-synthesized unsupported Pd cubic NCs. 
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Fig. S2. TEM of (a) as-synthesized unsupported Pd cuboctahedra NCs. 

 

 

Fig. S3. TEM of (a) as-synthesized unsupported Pd octahedral NCs 
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Figure S4. Reaction profile of Suzuki coupling of 4-iodoanisole and phenyl boronic acid catalysed by 

cubic, cuboctahedral and octahedral Pd NCs. 

 

 

Figure S5. Cubic Pd NCs after Suzuki coupling reaction. 
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Figure S6. Cuboctahedral Pd NCs after Suzuki coupling reaction. 

 

Figure S7. Octahedral Pd NCs after Suzuki coupling reaction. 
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Figure S8.  Reaction profile of 4-iodoanisole and phenylboronic acid using cubic Pd NCs. 

 

Table S2. ICP analysis of reaction filtrates using cubic Pd NCs immobilized and reacted under air or Ar.  

Reaction [Pd]/ ppm 

AirImb-AirRx 1.22 

AirImb-ArRx 0.63 

ArImb-AirRx 0.61 

ArImb-ArRx 0.12 
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Figure S9. Pd 3d core level spectra of Pd NCs immobilized under Ar (a) before reaction and (b) after 

reaction under Ar.   
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Abstract 

The structure-property relationship of palladium (Pd) catalysts in Suzuki-Miyaura cross 

coupling reactions was investigated using Pd nanocrystals of uniform size and shape.  

Superior catalytic reactivity was observed for Pd nanoparticles with high index {730} surface 

facets compared to low index {100} facets.  While the nanocrystal morphologies were 
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maintained during the reaction, the presence of leached Pd clusters, identified by high 

resolution transmission electron microscopy (TEM), indicate a leaching mechanism.  The 

nature of the surface facets on the nanoparticles were observed to influence the rate of Pd 

leaching during the Suzuki coupling reaction.  The enhanced reactivity observed for the high 

index facet catalysts stems from the greater number of leachable atoms of low abstraction 

energy available on high index planes. 

 

Key words: Palladium nanocrystals, shape control nanoparticles, Suzuki coupling, leaching.  

 

Introduction 

Noble metal nanocrystals (NCs) with high index surface facets have attracted much interest 

due to their potential for enhanced catalytic performance.1  High index facets are denoted by 

a set of Miller indices {hkl}, where one index is greater than one.  Unlike low index planes 

characterized by such as {111} and {100} facets, which are relatively smooth, the surface 

atomic structure of high index facets are characterized by a high density of step, terrace and 

kink sites.2  Such surfaces are well known to improve catalytic rates for many reactions.3  The 

physical origins of structure sensitivity are complex and generally ascribed to electronic and 

geometrical effects that influence adsorption energies and reaction pathways.4  

Chemisorption of reaction species can be preferential on step and kink sites due to their low 

co-ordination numbers (6-7) or allow more energetically favorable transition states compared 

to close-packed surfaces.5 

Pd is an important noble metal as a heterogeneous catalyst for chemical synthesis, automotive 

and fuel cell applications.6-7  Pd is the principle catalyst metal for carbon-carbon cross 

coupling reactions which are central to a variety of chemical processes for pharmaceutical 
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and fine chemicals industries.8  The versatile nature of these reactions has also lead to many 

other applications such as the surface modification of semiconductors9, the preparation of 

inorganic-organic nanocomposites10 and sensors.11  Coupling reactions conventionally use 

homogenous catalysts but heterogeneous nanoparticle-based catalysts are attractive as they 

offer convenient removal of the catalyst post reaction.  The possibility of recovery and 

recyclability of the catalyst also makes them more economically attractive, especially for 

expensive noble metals.  A variety of coupling reactions including Suzuki-Miyaura, Heck, 

Ullman, Stille and Sonogashira, all proceed under heterogeneous conditions.6, 12-15  Suzuki 

coupling reactions are one of the most widely utilized methods for the construction of carbon-

carbon bonds and are very effective under heterogeneous conditions.12  Suzuki coupling of 

aryl chlorides, even deactivated ones, can be achieved under heterogeneous conditions, which 

are desirable for industrial synthesis due to the low cost of chloride starting materials.14, 16-17 

A wide variety of heterogeneous catalysts have been studied for Suzuki coupling including 

dispersed nanoparticles,18-19 powder-supported nanoparticles20-22 and catalytic thin films.23 24  

Several studies have demonstrated considerably enhanced catalytic performance of Suzuki 

reactions when using NCs enclosed by high index surface facets.25-29  A variety of 

preparation methods have been reported for Pd NCs with high index surface facets such as 

seeded growth27, epitaxial growth26, 30 and electrochemically31-33 and solid state methods.34  

The origin of the enhanced reactivity observed is generally attributed the high density of low-

coordinate atoms present at the surface of the catalyst.2  Early reports of heterogeneously 

catalyzed Suzuki coupling suggest a surface driven reaction occurring at the edge and corner 

sites of nanoparticles35-36  and this hypothesis is supported by a number of studies providing 

evidence of a surface mediated process.37-39  If a reaction occurs preferentially at edge sites 

then enhanced reactivity reported for high index planes compared to low index planes would 

be reasonable due to the stepped nature of the high index facets.  A considerable number of 
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mechanistic studies have identified that leaching processes occur in many nanoparticle 

catalyzed reactions.40-42  Although debate still surrounds the leaching mechanism, dissolved 

Pd from the nanoparticle surface has been shown to play a central role in the catalytic cycle 

of Suzuki reactions. 43-44 

Herein, we investigate the structure-property relationship of catalysts in Suzuki cross 

coupling reactions using Pd catalysts of uniform size and shapes.  The catalytic reactivity of 

Pd nanoparticles with low index {100} facets and high index {730} facets are compared.  A 

considerably improved catalytic performance was observed from high index NCs.  Catalytic 

studies, high resolution electron microscopy and XPS analysis was used to elucidate the 

mechanism of the enhanced reactivity associated with the high index surface planes.  We 

identify that the superior activity observed for the high index faceted catalysts stems from the 

greater leaching of Pd atoms from the surface rather than a true surface-mediated process. 

 

Experimental 

Pd NC Synthesis: Cubic NCs with edge lengths of 10 and 20 nm were synthesized as 

previously described and used for the seeded growth of the concave NCs.27 The mean edge 

length was determined to be 10.6 nm (standard deviation, σ = 1.3) and 19.4 nm (σ =1.9) for 

the cubic NC and 35.1 nm (σ = 3.2) for the concave cubic NCs (Supporting Information 

Figure S1). These nanoparticles are capped with PVP and Br capping ligands. To avoid the 

influence of support materials on the catalytic activity of the NCs, unsupported nanoparticles 

were used.  

Materials Characterization: Scanning electron microscopy (SEM) images were obtained 

using a FEI DualBeam Helios NanoLab 600i high resolution SEM.  Transmission electron 

microscopy (TEM) analysis was performed using a Jeol 2100 electron microscope at an 
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operating voltage of 200 kV.  X-ray Photoelectron Spectroscopy (XPS) was acquired using a 

KRATOS AXIS 165 monochromatized X-ray photoelectron spectrometer equipped with an 

Al Kα (hv = 1486.6 eV) X-ray source.  Spectra were collected at a take-off angle of 90° and 

all spectra were reference to the C 1s peak at 284.6 eV. 

Catalytic studies: In a typical reaction, 0.268 g of phenylboronic acid (2.2 mmol). 0.468 g of 

4-methoxyiodobenzene or 0.25 ml of 4- methoxybromobenezene (2 mmol), 0.553 g (4 mmol) 

of K2CO3 were added to 30 ml of ethanol/water (3:1).  The reactions were initiated by 

addition of the catalyst.  Reactions were conducted at room temperature and sampled at 

regular intervals for GC analysis.  Samples were analyzed using an Agilent 7890A GC 

system, equipped with a flame ionization detector (FID).  Products were identified against 

authenticated standards and quantified by calibration to obtain response factors (RF) against 

the known internal standard (dodecane).  The turnover number (TON) and turn over 

frequency (TOF) were calculated based on the amount of biaryl product formed.  The TONsurf 

and TOFsurf are the TON and TOF normalized to the number of surface Pd atoms.  The 

number of surface atoms on cubic and concave cubic NCs was calculated based geometrical 

considerations assuming a face centred cubic (fcc) Pd lattice.  The total number of Pd atoms 

per NC was estimated by the volume of a cube or concave cube/volume of the unit cell (3√a) 

× number of atoms per unit cell (4), where a is the lattice constant for fcc Pd, taken to be 

0.389 nm.  The total number of surface atoms was estimated by: surface area of the 

cube/surface area of the 2 dimensional lattice × 2.  For concave cubes, this relationship was 

multiplied by 3/7 assuming the atomic density of the {730} surface facets is three-sevenths 

that of the {100} facets.  The volume of a concave cube was approximated by taking the 

volume of a cube minus the volume of the square pyramids occupying the 6 sides of a cube. 
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Results and Discussion 

Figures 1 (a) and (c) show TEM images of cubic NCs enclosed by 6 {100} surface facets, 

with closed packed atoms and a surface atom co-ordination number of 8.  Figure 1(b) shows a 

TEM image of concave cubic Pd NCs that measure 20 nm across and 35 nm from corner to 

corner.  Based on the projection of angle along the direction27, the faces can be indexed to the 

{730} surface facet, as shown in figure 1 (d).2    A {730} facet consists of a periodic series of 

two (210) facets and one (310) facet, as illustrated in the TEM in figure 1(e) and the 

schematic in figure 1(f).  The density of step surface atoms is ~5 × 1014 cm-2, which implies 

that about 40 % of surface atoms are located at step sites.  The catalytic performance of the 

low and high index surface planes was compared in the cross coupling of 4-

methoxyiodobenzene (1) acid and phenylboronic (2) in EtOH/H2O, as illustrated in scheme 1. 

c 
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Figure 1.  TEM image of as-synthesized (a) 20 nm cubic Pd NCs, (b) concave cubic Pd NCs.  

(c) Surface of cubic NCs, (d) concave cubes, (e) surface of concave cubic NCs and (f) 

schematic illustrating the {730} facet.  Scale bar figure (d) is 10 nm. 

 

Scheme 1.  Model Suzuki-Miyaura reaction used in this study. 

 

 

Figure 2 shows the reaction profiles for cubic (10 nm and 20 nm) and concave cubic NCs and 

reveals significant differences in the catalytic behavior with both size and shape effects 

observed in the catalytic activity.  The concave cubes and 10 nm cubic catalysts were found 

to be active for the coupling reaction while the 20 nm cubic NCs showed no reactivity, at a 

Pd concentration of 0.5 mol%.  The enhanced catalytic activity of the high index surface 

facets is apparent, with the yield of biphenyl product increasing from 54 % for cubic catalysts 

to 92 % for concave cubic catalyst, after 30 h.  This reactivity represents a 7-fold increase in 

the TON for the high index surfaces (TON = 7077) compared to low index planes (TON = 

1073), after normalization to the number of surface atoms for each NC.  Both the 10 nm and 

20 nm cubic catalysts were found to be inactive for the coupling of 4-methoxybromobenzene 

and phenylboronic acid, while concave cubes displayed similar reactivity as the aryl iodides 

+
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achieving an 89 % yield.  No induction period was observed for the concave cubes, whereas 

the reaction catalyzed by the cubic catalysts displayed a considerable lag time of 300 min. 

 

Figure 2.  Reaction profile of Suzuki coupling reactions using Pd NCs with high and low 

index facets.  

 

Figures 3 (a) and (b) show SEM images of the cubic and concave cubic catalysts collected 

after the reaction, respectively.  The catalysts showed negligible change to their morphology 

and the well-defined surface facets were intact, as shown by the inset TEM images.  While 

the NCs showed little change to their overall shape, a slight reduction in the mean edge 

length and a boarding in the size distribution was observed. The mean edge length for the 10 

nm cubic NCs decreased to 10.6 nm (σ=1.3) and 9.6 nm (σ =1.9), while the edge length for 

the concave cubic NCs decreased from 35.1 nm (σ  = 3.2) to 31.6 nm (σ  = 3.9), (Supporting 

Information Figure S1 and S2).  Negligible changes to the edge length of the 20 nm cubic 

NCs was observed; 19.5 nm (σ =1.9) before and 18.9 nm (σ =2.1) post reaction. Detailed 

TEM analysis revealed the presence of small nanoparticles about 1-2 nm in diameter, in the 

Pd residue collected after the reaction, as shown in figures 3 (c) and (d).  High resolution 
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imaging of these particles, shown in figures 3 (c) and (d) insets, indicates a d spacing of 0.23 

nm, which can be attributed to Pd(111) lattice fringes.23  Pd clusters are observed in the TEM 

grids of both low index and high index particles.  These particles were not present in the as-

synthesized solution of the catalyst NCs and so can attributed to leached Pd during the 

reaction.45  Notably, Pd clusters of 1-2 nm in diameter only comprise ~200-300 atoms, which 

accounts for about 0.4 % of the total atoms in a 10 nm cubic NC.  Significant changes to the 

NC morphology were not readily apparent at high catalyst concentrations (0.5 mol%), 

consistent with previous reports.27  When the Pd catalyst concentration is decreased to 0.1 

mol%, after reaction at room temperature, dissolution of the concave cubic structures was 

clearly observed as shown in figure 3 (d).  Figure 2 also demonstrates the lower activity of 

the 20 nm compared to 10 cubic NCs, which fail to catalyze the reaction at a Pd concentration 

of 0.5 mol%.  If the surface of the cubic NCs were solely the active sites, then the surface 

normalized TONs should be similar for both the 10 and 20 nm cubic NCs, which is not the 

case.  The lower activity of the 20 nm cubic NCs is attributed to the lower leaching 

susceptibility, which may be correlated to the greater stability of the 20 nm cubic NCs 

compared to the 10 nm NCs.46  The superior stability of the larger cubic NCs leads to less 

leaching and therefore reduced catalytic performance in the coupling reaction. 
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Figure 3.  SEM image of cubic Pd NCs and (b) concave cubic Pd NCs cubes after a Suzuki 

coupling reaction (0.5 mol%)  The insets in (a) and (b) show TEM images of the individual 

NCs.  Scale bars in insets are 2 nm.  (c) TEM image of cubic NCs and (d) concave NCs Pd 

0.1 mol% after the reaction showing dissolution and the presence of small diameter Pd 

nanoparticles.  The scale bar insets of (c) and (d) are 2 nm. 

 

The effect of catalyst concentration was assessed and figure 4 shows the reaction profiles of 

cubic and concave cubic NCs with a Pd concentration of 0.1, 0.5, 1 and 5 mol%.  The TONs 

and TOFs for the different catalyst concentrations are shown in table 1.  Cubic NCs (figure 4 

(a)) displayed an increased conversion rate with increasing Pd concentration.  No conversion 

was observed with a Pd concentration of 0.1 mol%.  Similarly, while the 20 nm cubic NCs 

(figure 4 (b)) gave no conversion at 0.5 mol%, yields of 32% and 48% could be achieved 

with 1 and 5 mol% Pd, respectively.  Interestingly, the concave cubic catalysts did not exhibit 

the same reactivity trend, with varying catalyst concentration.  As shown in figure 4(c), a Pd 

concentration of 1 mol% was faster than a higher catalyst concentration of 5 mol%.  Figure 
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4(d) shows a magnification of the first 180 min of the reaction, illustrating that initially the 5 

mol% displayed the fastest conversion, but the reaction slowed as it progressed.  This inverse 

relationship between the Pd concentration and rate has been associated with a homogenous 

mechanism.47  Deactivation of this so-called homeopathic Pd occurs as the solubilized Pd 

nucleates to form Pd clusters that continue to grow.48-49  Quenching of the catalytically active 

Pd species in solution becomes more efficient as the Pd concentration increases due to greater 

leaching.15  TEM analysis also provided evidence for this deactivation mechanism at higher 

Pd concentrations, which showed the presence of Pd aggregates compared to discreet 

nanoparticles observed at lower Pd concentrations (Supporting Information Figure S3).  It is 

worth noting that although leaching is identified as an important step in the catalytic activity 

of the NCs, it does not identify the nature of the catalytic species i.e. if the reaction is 

catalyzed by molecular Pd or the small diameter clusters observed by TEM.  The leached Pd 

species exist as solubilized Pd in equilibrium with the Pd clusters and it is not possible to 

distinguish if the catalytically active species is homogeneous or heterogeneous in nature. 
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Figure 4.  Reaction profile with varying Pd concentrations for (a) 10 nm cubic NCs, (b) 20 

nm cubic NCs and (c) and (d) concave cubic NCs. 

 

Table 1.  Effect of catalyst concentration for cubic and concave cubic NCs in Suzuki 

coupling. 

Catalyst 

mol% 

Yield 

% 

Time 

h 

TONtot TONsurf TOFsurf 

Cube (10 nm)      

0.1 0 30 0 0 0 

0.5 59 30 118 1073 38 

1 77 30 77 700 23 

5 89 30 17.8 161 5 

Cube (20 nm)      



13 
 

0.1 0 30 0 0 0 

0.5 0 30 0 0 0 

1 32 30 32 533 18 

5 48 30 9.6 160 5.3 

Concave cube      

0.1 72 9.5 720 28000 3032 

0.5 89 9.5 178 6846 721 

1 100 9.5 100 4000 133 

5 83 9.5 16.6 638 67 

*See Experimental section for calculation of TOFs. 

A significant difference in the catalytic behavior is the absence of an induction period for the 

high index NCs and a very long induction time for the cubic NCs.  Lag periods have been 

attributed to the time required to leach sufficient Pd into solution for catalytic turnover.  

Based on the TEM analysis indicating a homogeneous mechanism, the absence of an 

induction period for the concave cubic NCs suggests rapid leaching from the NC surfaces.  

To investigate if the induction time was associated with Pd leaching the reaction catalyzed by 

the cubic NCs was stopped after 60 min, by which time no biphenyl product was formed, the 

presence of Pd clusters was not observed by TEM analysis.  In comparison, when the reaction 

catalyzed by the concave cubic NCs was stopped after 60 min, when conversion is at 38%, 

the presence of the leached Pd clusters were observed by TEM (Supporting Information 

Figure S4).  While TEM cannot quantify the leached Pd, it qualitatively shows that the 

presence of leached Pd, in the form of molecular or clusters, play a central role in the 

catalytic activity. 
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To further investigate the reaction regents that contribute to leaching, the cubic NCs (0.5 mol 

%), which have a long induction period, were pre-stirred separately in solutions of the aryl 

iodide, boronic acid + K2CO3, K2CO3 and EtOH:H2O for 3 hours, after which time the 

remaining reagents were added.  The reaction profiles were monitored to determine if the 

conversion rates improved due to leaching.  Figure 5 compares the reaction profiles of the 

pre-stirred solutions and a control reaction where no pre-stir was conducted.  All of the pre-

stirred solutions except the EtOH:H2O solvent exhibited faster reactions, with the base and 

boronic acid having the most influence, increasing the yield to 90% from 59% without the 

pre-stir.  The faster conversion was observed for the pre-stir samples suggesting leaching of 

Pd occurs and that all the agents can promote leaching to some degree.  Much debate 

surrounds the leaching mechanism, with oxidative addition of the aryl halide being common 

for organic solvents41, while the base and boronic acid promote leaching under aqueous 

conditions.43 

 

Figure 5.  The influence of pre-stirring cubic catalysts in solutions of K2CO3, 4-

methoxyiodobenzene, K2CO3 + phenylboronic acid.  NCs pre-stirred in EtOH:H2O showed 

no difference to the control and is omitted for clarify. 
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The effect of the individual reagents on the morphology of the cubic catalysts, stirred 

separately in EtOH:H2O solutions of 4-methoxyiodobenzene, phenylboronic acid + K2CO3, 

K2CO3 and phenylboronic acid, was also assessed by TEM.  After 24 h, the nanoparticles 

were collected and analyzed by TEM as shown in figure 6.  Stirring the aryl halide left the 

cubic morphology excellently preserved (figure 6 (a)) and the presence of Pd clusters was not 

readily apparent.  A mixture of boronic and base also left the cubic shape intact but the 

presence of small diameter (1-2 nm) Pd nanoparticles were readily identified, similar to that 

observed in the post reaction mixture.  Finally, stirring the catalysts in the presence of the 

base alone caused no significant change in morphology and no Pd clusters were observed by 

TEM (Supporting Information figure S5).  Interestingly, the boronic acid alone has the most 

significant influence on the morphology of the NCs; the concave cubic NCs lost their defined 

edges becoming more spherical as shown in figure 6(c).  Many of the cubic NCs dissolved 

and the catalysts became spherical.  The diameter of these particles was larger (5-10 nm) than 

those observed when the NCs are stirred in boronic acid + K2CO3. Unlike the base or aryl 

halide, the boronic acid can act as both a reducing agent for the leached Pd and a capping 

ligand that facilitates the formation of Pd nanoparticles.50  Note that the overlayers 

surrounding the NCs in the TEM images arise from contamination during the reaction. 
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Figure 6.  TEM images of cubic NCs after stirring in (a) MeO-Ph-I, (b) phenylboronic acid 

and K2CO3 (c) concave NCs and (d) cubic NCs stirred in phenylboronic acid. 

 

Filtration tests are commonly used to assess the homogeneity of heterogeneity of the reaction 

mechanism, although it has been noted that redisposition of the leached Pd make them 

unreliable.51  Figure 7 (a) shows the reaction profile catalyzed by concave cubes when the 

reaction mixture was filtered through activated carbon and washed with EtOH:H2O, 90 min 

after the reaction was initiated.  Comparison with the non-filtrated reaction clearly show that 

formation of the biaryl product stops after filtration.  This loss of catalytic activity can be 

attributed to the removal of both the parent NC and the Pd clusters formed due to leaching.  

TEM analysis of the activated carbon confirmed the capture of Pd clusters in addition to the 

concave cubes by filtration as shown in figure 7 (b) and (c).  TEM analysis of the centrifuged 

filtrates did not contain Pd clusters which were present in the non-filtered samples.   
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Figure 7.  (a) Reaction profile of Suzuki coupling reactions catalyzed by concave Pd NCs 

showing the effect of filtration 90 min into the reaction. (b)-(c) TEM image of Pd clusters 

captured on activated carbon after reaction filtration. Scale bar = 2 nm.  

 

XPS analysis was used to determine if leaching gave rise to changes in the NC surface 

chemistry.  Figure 8 shows the Pd 3d core level of the cubic NCs before and after the 

reaction.  Before the reaction, the NCs primarily consisted of metallic Pd, as indicated by the 

Pd(0) peak at a binding energy of 335.0 eV.  The small shoulder peak located at a binding 

energy of 336.1 eV is typically assigned to surface PdO and a very small peak at 337.1 eV 

assigned to bulk PdOx.46  Figure 8 (b) shows the Pd spectrum after the reaction, with an 

increased intensity of the bulk PdOx peak.  The formation of oxide is consistent with the 

presence of Pd clusters, which undergo surface oxidation in the absence of stabilizing 

ligands.  The survey spectra shows the presence of the N 1s peak at 400 eV, indicating that 

the retention of the PVP capping layer (Supporting Information Figure S6).  A small 

reduction in the Pd:N ratio for the catalysts was observed after the reaction; Pd:N of 4 to 3.8 

for the 10 nm cubic NCs and Pd:N of 2.7 to 2.3 for the concave cubic NCs.  A more 
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significant decrease in the Pd:Br ratio was observed, decreasing by 25% for the cubic NCs 

and 51% for the concave cubic NCs. Supporting Information Table S1). 

 

Figure 8.  Pd 3d core level spectra of cubic NCs (a) before the reaction and (b) after the 

reaction.  Spectrum (b) was collected using Pd catalysts from several reactions. 

 

The data obtained from the present study correlate well with the catalytic leaching 

mechanism, although the contribution of a heterogeneous mechanism cannot be completely 

ruled out. While the parent NCs serve as reservoirs for more active Pd species it is not 

possible to differentiate between the catalytic activity of solubilized Pd complexes and the Pd 

clusters observed by TEM.  The significant difference in catalytic activity between the high 

and low index facet NCs suggests that leaching is the rate determining step in this study.  

Atom abstraction energies for a 3 nm spherical Pd nanoparticles were calculated to be 45 kcal 

mol-1.52  Atoms with lower co-ordination numbers, such as vertex and edge atoms, have 

lower abstraction energies compared to face atoms.  Computational modelling of nanoparticle 

catalyzed Suzuki coupling reactions are lacking, however density functional theory (DFT) 

javascript:popupOBO('GO:0003824','c1nr10089k')
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calculations based on homogenous catalysts determine the typical activation energies for 

oxidative addition of aryl iodides and transmetalation to be 20-25 kcal mol-1.53-54  The 

relatively high activation energies for Pd leaching support the consensus that leaching is the 

rate-determining step.  The surface atomic structure influences the stability and leaching 

susceptibility of Pd atoms and consequently catalytic activity.  There are formally no step 

sites on {100} surfaces, while 42% of the atoms on a {730} surface are step sites, therefore 

the concave cubes have a high number of leachable atoms with lower abstraction energy 

compared to the cubic NCs.  In the Suzuki reaction the higher surface step atom density of 

the concave cubic catalysts facilitates more efficient leaching leading to the superior catalytic 

performance.  The rapid leaching resulted in no measureable induction period for reactions 

involving concave cubic Pd NC catalysts.  In contrast, a long lag time was observed with 

cubic NCs reflecting the slower leaching from closed packed surfaces. 

Conclusions 

Pd NCs with high index surface facets display superior catalytic performance in Suzuki 

coupling reactions compared to low index faces.  The origin of enhanced catalytic activity 

associated with catalysts enclosed by high index surfaces was investigated.  Both cubic and 

concave cubic NCs show increasing TOFs with decreasing concentrations, often indicative of 

a leaching process.  TEM analysis identified the presence of small diameter Pd clusters in 

solution after the reaction, indicating a homogenous leaching mechanism.  These Pd clusters 

were only observed after the formation of biphenyl i.e. not observed during the induction 

period.  The high number of surface atoms located at step sites on the concave cubic NCs 

make it more energetically favorable to leach atoms from high index surface facets compared 

to closed packed surfaces on cubic NCs.   
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This works shows that understanding leaching processes is central to the design of 

heterogeneous catalysts for Suzuki coupling and similar reaction systems. The shape of 

catalyst NC can considerably influence the leaching properties and therefore catalytic activity 

of the NCs.  Furthermore, the study illustrates that the use of relatively large NCs (> 10 nm) 

serve as reservoirs for more active Pd species, which is consistent with previous reports.  It is 

important to highlight that while homogeneous Pd, generated through leaching is an 

important step in the catalytic cycle, it does not imply that the overall reaction mechanism is 

homogeneous.  The exact nature of the active species remains unclear as the leached 

solubilized Pd is in equilibrium with the small diameter Pd clusters.  If these clusters are 

active in the reaction then further elucidation of this equilibrium and use of smaller diameter 

Pd nanoparticles (< 3 nm) has the potential to further optimize activity in Suzuki coupling 

reactions.   

 

Acknowledgments 

We thank Enterprise Ireland (grant EI2011-0139) and Eli Lilly for supporting this research.  

We also acknowledge financial support from Science Foundation Ireland under award 

08/CE/I1432. 

 

Supporting Information Available 

TEM images of leached Pd nanoparticles in the reaction solution and the XPS survey spectra 

and quantification of concave and cubic catalysts after reaction can be found in the 

Supporting Information.  This information is available free of charge via the internet 

at http://pubs.acs.org/. 

https://email.ucc.ie/owa/redir.aspx?C=cLj0OY_-C0eGTKwevu6W7sDvggdODtEIrv69cb1nCPnPw3xGOvfm18mxSuHr_58lR4fSEtFIrqM.&URL=http%3a%2f%2fpubs.acs.org%2f


21 
 

 

References 

1. Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L., Science 2007, 316, 732-735. 
2. Quan, Z.; Wang, Y.; Fang, J., Acc. Chem. Res. 2013, 46, 191-202. 
3. Ford, L. P.; Nigg, H. L.; Blowers, P.; Masel, R. I., J. Catal. 1998, 179, 163-170. 
4. Liu, Z. P.; Hu, P., J. Am. Chem. Soc. 2003, 125, 1958-1967. 
5. Baker, T. A.; Xu, B.; Jensen, S. C.; Friend, C. M.; Kaxiras, E., Catal. Sci. Technol. 
2011, 1, 1166-1174. 
6. Yin, L.; Liebscher, J., Chem. Rev. 2007, 107, 133-173. 
7. Antolini, E., Energy Environ. Sci. 2009, 2, 915-931. 
8. Torborg, C.; Beller, M., Adv. Synth. Catal. 2009, 351, 3027-3043. 
9. Collins, G.; O'Dwyer, C.; Morris, M.; Holmes, J. D., Langmuir 2013, 29, 11950-
11958. 
10. Zhang, Q.; Russell, T. P.; Emrick, T., Chem. Mater. 2007, 19, 3712-3716. 
11. Xu, S.-Y.; Ruan, Y.-B.; Luo, X.-X.; Gao, Y.-F.; Zhao, J.-S.; Shen, J.-S.; Jiang, Y.-B., 
Chem. Commun. 2010, 46, 5864-5866. 
12. Lamblin, M.; Nassar-Hardy, L.; Hierso, J.-C.; Fouquet, E.; Felpin, F.-X., Adv. Synth. 
Catal. 2010, 352, 33-79. 
13. Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B., J. Am. 
Chem. Soc. 2002, 124, 14127-14136. 
14. Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H., Angew. Chem. Int. Ed. 2010, 49, 4054-
4058. 
15. Deraedt, C.; Astruc, D., Acc. Chem. Res. 2014, 47, 494-503. 
16. LeBlond, C. R.; Andrews, A. T.; Sun, Y. K.; Sowa, J. R., Org. Lett. 2001, 3, 1555-
1557. 
17. Han, W.; Liu, C.; Jin, Z., Adv. Synth. Catal. 2008, 350, 501-508. 
18. Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T., J. Am. Chem. Soc. 2002, 124, 7642-
7643. 
19. Lu, F.; Ruiz, J.; Astruc, D., Tetrahedron Lett. 2004, 45, 9443-9445. 
20. Collins, G.; Schmidt, M.; O'Dwyer, C.; Holmes, J. D.; McGlacken, G. P., Angew. 
Chem. Int. Ed. 2014, 53, 4142-4145. 
21. Crudden, C. M.; Sateesh, M.; Lewis, R., J. Am. Chem. Soc. 2005, 127, 10045-10050. 
22. Taladriz-Blanco, P.; Herves, P.; Perez-Juste, J., Top. Catal. 2013, 56, 1154-1170. 
23. Collins, G.; Blomker, M.; Osaik, M.; Holmes, J. D.; Bredol, M.; O'Dwyer, C., Chem. 
Mater. 2013, 25, 4312-4320. 
24. Hariprasad, E.; Radhakrishnan, T. P., ACS Catalysis 2012, 2, 1179-1186. 
25. Mohanty, A.; Garg, N.; Jin, R., Angew. Chem. Int. Ed. 2010, 49, 4962-4966. 
26. Wang, F.; Li, C.; Sun, L.-D.; Wu, H.; Ming, T.; Wang, J.; Yu, J. C.; Yan, C.-H., J. 
Am. Chem. Soc. 2011, 133, 1106-1111. 
27. Jin, M.; Zhang, H.; Xie, Z.; Xia, Y., Angew. Chem. Int. Ed. 

 2011, 50, 7850-7854. 
28. Hong, J. W.; Kim, M.; Kim, Y.; Han, S. W., Chem. Eur. J. 2012, 18, 16626-16630. 
29. Chen, Y.-H.; Hung, H.-H.; Huang, M. H., J. Am. Chem. Soc. 2009, 131, 9114-9121. 
30. Yu, Y.; Zhang, Q.; Liu, B.; Lee, J. Y., J. Am. Chem. Soc. 2010, 132, 18258-18265. 
31. Tian, N.; Zhou, Z.-Y.; Sun, S.-G., Chem. Comm. 2009,  1502-1504. 



22 
 

32. Chen, Y.-X.; Lavacchi, A.; Chen, S.-P.; di Benedetto, F.; Bevilacqua, M.; Bianchini, 
C.; Fornasiero, P.; Innocenti, M.; Marelli, M.; Oberhauser, W.; Sun, S.-G.; Vizza, F., Angew. 
Chem.-Int. Edit. 2012, 51, 8500-8504. 
33. Tian, N.; Zhou, Z.-Y.; Yu, N.-F.; Wang, L.-Y.; Sun, S.-G., J. Am. Chem. Soc. 2010, 
132, 7580-+. 
34. Diaz Valenzuela, C.; Carriedo, G. A.; Valenzuela, M. L.; Zuniga, L.; O'Dwyer, C., 
Sci. Rep. 2013, 3, 2642. 
35. Le Bars, J.; Specht, U.; Bradley, J. S.; Blackmond, D. G., Langmuir 1999, 15, 7621-
7625. 
36. Li, Y.; Hong, X. M.; Collard, D. M.; El-Sayed, M. A., Org. Lett. 2000, 2, 2385-2388. 
37. Davis, J. J.; Bagshaw, C. B.; Busuttil, K. L.; Hanyu, Y.; Coleman, K. S., J. Am. 
Chem. Soc. 2006, 128, 14135-14141. 
38. Davis, J. J.; Coleman, K. S.; Busuttil, K. L.; Bagshaw, C. B., J. Am. Chem. Soc. 2005, 
127, 13082-13083. 
39. Ellis, P. J.; Fairlamb, I. J. S.; Hackett, S. F. J.; Wilson, K.; Lee, A. F., Angew. Chem. 
Int. Ed. 2010, 49, 1820-1824. 
40. Pachon, L. D.; Rothenberg, G., Appl. Organometal. Chem. 2008, 22, 288-299. 
41. Niu, Z.; Peng, Q.; Zhuang, Z.; He, W.; Li, Y., Chem. Eur. J. 2012, 18, 9813-9817. 
42. Gaikwad, A. V.; Holuigue, A.; Thathagar, M. B.; ten Elshof, J. E.; Rothenberg, G., 
Chem. Eur. J. 2007, 13, 6908-6913. 
43. Fang, P.-P.; Jutand, A.; Tian, Z.-Q.; Amatore, C., Angew. Chem. Int. Ed. 2011, 50, 
12184-12188. 
44. Diallo, A. K.; Ornelas, C.; Salmon, L.; Aranzaes, J. R.; Astruc, D., Angew. Chem. Int. 
Ed. 2007, 46, 8644-8648. 
45. Thathagar, M. B.; ten Elshof, J. E.; Rothenberg, G., Angew. Chem. Int. Ed. 2006, 45, 
2886-2890. 
46. Collins, G.; Schmidt, M.; McGlacken, G. P.; O'Dwyer, C.; Holmes, J. D., J. Phys. 
Chem. C 2014, 118, 6522-6530. 
47. Adrio, L. A.; Nguyen, B. N.; Guilera, G.; Livingston, A. G.; Hii, K. K., Catal. Sci. 
Technol. 2012, 2, 316-323. 
48. de Vries, A. H. M.; Mulders, J.; Mommers, J. H. M.; Henderickx, H. J. W.; de Vries, 
J. G., Org. Lett. 2003, 5, 3285-3288. 
49. Gaikwad, A. V.; Rothenberg, G., Phys. Chem. Chem. Phys. 2006, 8, 3669-3675. 
50. Narayanan, R.; El-Sayed, M. A., J. Phys. Chem. B 2005, 109, 4357-4360. 
51. Widegren, J. A.; Finke, R. G., J. Mol. Catal. A 2003, 198, 317-341. 
52. Ramezani-Dakhel, H.; Mirau, P. A.; Naik, R. R.; Knecht, M. R.; Heinz, H., Phys. 
Chem. Chem. Phys. 2013, 15, 5488-5492. 
53. Xue, L.; Lin, Z., Chem. Soc. Rev. 2010, 39, 1692-1705. 
54. Braga, A. A. C.; Ujaque, G.; Maseras, F., Organometallics 2006, 25, 3647-3658. 

 

  



 

Supporting Information  

 

Enhanced Catalytic Activity of High Index Faceted Palladium Nanoparticles in Suzuki-

Miyaura Coupling due to Efficient Leaching Mechanism 

Gillian Collins*,†, , Michael Schmidt, Colm O’Dwyer† ,§, Gerard McGlacken*, †, and Justin Holmes†,  

†Chemistry Department, and Tyndall National Institute, University College Cork, Cork, Ireland. 

Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College, Dublin, Ireland 

§Materials and Surface Science Institute, University of Limerick, Limerick, Ireland. 

*To whom correspondence should be addressed:  Tel: +353 (0)21 4205143; Fax: +353 (0)21 

4274097; E-mail: g.collins@ucc.ie 

 



 

Figure S1. Size distribution histogram of 10 and 20 nm cubic NCs (a)-(b) before reaction and 

(c)-(d) after reaction. 

 
Figure S2: Size distribution histogram of concave cubic NCs (a) before and (b) after the 

reaction.  

 

 



 

Figure S3.  Formation of Pd clusters observed in reaction when using concave cubic 

nanocrystals at 5 mol %. 

 

Figure S4. Pd nanoparticles leached from concave cubic nanocrystals 60 min after the 

reaction.  Scale bar is 5 nm. 

 

2 nm 



 

Figure S5. Cubic Pd nanocrystals stirred in presence of K2CO3.  

 

 

Figure S6.  Survey spectra of concave cubes and concave cubic Pd nanocrystals after Suzuki 

coupling reaction.  

Table S1. Quantitative XPS analysis of (a) cubic and (b) concave cubic NCs before and after 

reaction.  
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(a) Cubic NCs before and after reaction  

Before Reaction  Post Reaction 

core 

level 

Position 

(eV) 

% 

Concentration 

 core level Position 

(eV) 

% 

Concentration 

O 1s 532.3 48.3 O 1s 532.3 44.4 

N 1s 399.7 4.0 N 1s 399.7 2.7 

Pd 3d 335.0 15.8 Pd 3d 335.0 10.4 

C 1s 284.8 31.4 C 1s 284.8 42.3 

Br 3d 68.8 0.4 Br 3d 68.8 0.2 

 

(b) Concave NCs before and after reaction  

Before reaction  Post Reaction  

core 

level 

Position 

(eV) 

% 

Concentration 

 
core level 

Position 

(eV) 

% 

Concentration 

O1s 531.4 39.6 O 1s 531.4 35.5 

N 1s 400.0 5.2 N 1s 400.0 4.2 

Pd 3d 335.0 14.1 Pd 3d 335.0 13.7 

C 1s 284.8 39.4 C 1s 284.8 45.8 

Br 3d 68.3 1.7 Br 3d 68.3 0.8 
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