
Title Constrainedness in stable matching

Authors Escamocher, Guillaume;O'Sullivan, Barry

Publication date 2018-12-17

Original Citation Escamocher, G. and O'Sullivan, B. (2018) 'Constrainedness
in stable matching', 2018 IEEE 30th International Conference
on Tools with Artificial Intelligence (ICTAI), Volos, Greece, 5-7
November, pp. 710-717. doi:10.1109/ICTAI.2018.00112

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/8576110 - 10.1109/
ICTAI.2018.00112

Rights © 2018, IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-05-13 05:29:32

Item downloaded
from

https://hdl.handle.net/10468/7526

https://hdl.handle.net/10468/7526

Constrainedness in Stable Matching
Guillaume Escamocher

Insight Centre for Data Analytics
University College Cork, Ireland

guillaume.escamocher@insight-centre.org

Barry O’Sullivan
Insight Centre for Data Analytics
University College Cork, Ireland

barry.osullivan@insight-centre.org

Abstract—In constraint satisfaction problems, constrainedness
provides a way to predict the number of solutions: for instances of
a same size, the number of constraints is inversely correlated with
the number of solutions. However, there is no obvious equivalent
metric for stable matching problems. We introduce the contrarian
score, a simple metric that is to matching problems what con-
strainedness is to constraint satisfaction problems. In addition to
comparing the contrarian score against other potential tightness
metrics, we test it for different instance sizes as well as extremely
distinct versions of the stable matching problem. In all cases, we
find that the correlation between contrarian score and number
of solutions is very strong.

I. INTRODUCTION

Constrainedness, or tightness, is the density of constraints in
a constraint satisfaction problem (CSP) instance. It is a simple
metric, computable in linear time with respect to the size of
an instance, yet can be used to reveal a lot of information
about the problem. Several metrics based on constrainedness
have been advanced to characterize the complexity of CSP
instances. Some rely on tightness directly [9], [10], while
others use an intermediate tool like backdoors [19] to provide
insight into instance hardness [7], [15].

Constrainedness is directly related to the number of solu-
tions. Adding a constraint to a CSP instance cannot increase
its number of solutions, while removing a constraint cannot
decrease that number. Therefore, constrainedness acts as a
predictor of the number of solutions for constraint problems: a
higher tightness means a lower expected number of solutions.

Stable matching is the problem of grouping some agents
according to their preferences, such that the agents have
no incentive to change the grouping. It has a plethora of
applications, the most frequently cited are the assignment of
students to universities, and of residents to hospitals [14].

Two-Dimensional Stable Matching (2DSM), commonly re-
ferred to as “stable marriage”, is the matching problem where
agents belong to one of two sets and have preferences over the
agents from the other set. A solution is a set of pairs where
each pair contains one agent from each agent set, each agent
belongs to exactly one pair, and no two agents from distinct
pairs would rather be together than stay with their assigned
partner. 2DSM was introduced in 1962 as the first example
of stable matching problem [8] and is still one of the most
studied matching problems, if not the most. Perhaps explaining

This publication has emanated from research conducted with the fi-
nancial support of Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289, co-funded under the European Regional Development Fund.

its popularity, it is an easy problem: every 2DSM instance has
at least one solution. Furthermore, 2DSM instances can be
solved in time quadratic in the size of the agent sets [8].

In this paper we introduce a tightness-like tool for the
stable matching problem. Our metric, the contrarian score,
is easy to compute and, as we will show, also correlates with
the number of solutions. To choose our tightness metric for
stable matching, we looked at the properties held by matching
instances with an extreme number of stable matchings, either
low or high. Matching instances with master preference lists
are often the ones with the fewest amount of solutions, whether
in 2DSM [13] or in some other stable matching problems [6].
For these instances all agents within the same agent set share
the same preference list.

On the other end of the spectrum, 2DSM instances with
a high number of solutions (exponential in the size of the
agent sets) have been found using Latin squares as preference
matrices [1]. A key constraint in the construction of these
instances requires each agent to rank every agent from the
other agent set the opposite way that they are ranked by that
other agent. So if for example agent a ranks agent b on second
position of its preference list, then b must rank a second-to-
last of its own preference list. This balances the preferences
around, to the contrary of master preference lists.

Both kinds of instances seem to indicate the same trend:
more balanced preferences yield more solutions. We present
three different interpretations of the notion of balance, and
associate a quantification metric to each one. First is the
split score, which counts how many times a given agent is
preferred over the other agents from its own agent set. Next
is the Latin score, which measures instances based on how
close their preference matrices are to Latin squares. Last is
the contrarian score, which increases when the rankings that
two given agents give each other are opposite. As we show in
the paper, the contrarian score is the one that has by far the
strongest correlation with the number of solutions.

After establishing that the contrarian score is a valid mea-
sure of constrainedness for 2DSM instances, we examine its
behavior on matching problems with three agent sets. Three-
sided matching can be used in a number of practical applica-
tions, examples of which include computer networking [3],
market strategy [17] and kidney exchange [2]. There are
multiple variants of three-sided matching problems; we look at
two of them in particular: Three-Dimensional Stable Matching
(3DSM) and 3DSM with strong stability (3DSMstrong).

3DSM is an extension of 2DSM to three agent sets, with
an equivalent definition of stability. The question of whether
every 3DSM instance admits a solution is still open, however
it is strongly conjectured that the answer is positive [5]. The
interest of testing our metric on this problem resides in the fact
that 3DSM instances have many more solutions than 2DSM
instances [6]. For example, Figures 8 and 9 will illustrate that
3DSM instances with 7 agents in each agent set have about a
thousand times as many solutions as their 2DSM counterparts
with 10 agents in each set.

3DSMstrong instances are identical to 3DSM ones, however
the definition of stability is much stronger, greatly decreas-
ing the number of solutions. The interest of this problem
resides instead in its difficulty. 3DSMstrong instances are
harder to solve than instances from the other problems that
we considered. While all 2DSM instances have at least one
solution, and while 3DSM instances seem to have a large
number of solutions, not all 3DSMstrong instances even have
a solution. In fact, the problem of determining whether a given
3DSMstrong instance admits a solution is NP-Complete [11].

II. GENERAL DEFINITIONS

We begin by defining the exact kind of matching instances
that we consider in this paper.

Definition 1: A two-dimensional stable matching instance,
or 2DSM instance, comprises:
• Two agent sets A = {a1, a2, . . . , an} and B =
{b1, b2, . . . , bn}, each containing n agents.

• For each agent a ∈ A, a strict preference order >a over
the agents from the set B. For each agent b ∈ B, a strict
preference order >b over the agents from the set A.

2DSM is often referred to as “stable marriage”. We will
also look at a three-sided extension of stable marriage, which
is defined in a similar way:

Definition 2: A three-dimensional stable matching instance,
or 3DSM instance, comprises:
• Three agent sets A = {a1, a2, . . . , an}, B =
{b1, b2, . . . , bn} and C = {c1, c2, . . . , cn}, each contain-
ing n agents.

• For each agent a ∈ A, a strict preference order >a over
the agents from the set B. For each agent b ∈ B, a strict
preference order >b over the agents from the set C. For
each agent c ∈ C, a strict preference order >c over the
agents from the set A.

The number of agents in each agent set is the size of
the instance. We show a size 4 instance of each problem
in Figures 1 and 2 respectively. In the figures, every agent
is followed by its ordered preference list, with the favorite
coming first. These instances will be used multiple times
troughout the paper to illustrate other definitions.

An instance can be viewed as the expression of agent
preferences. In this paper “dDSM instance” will refer to a d-
dimensional stable matching instance where d = 2 or d = 3.
Assigning each agent from A to exactly one agent from B
and (if d = 3) exactly one agent from C is matching them:

a1: b3 b2 b4 b1
a2: b4 b2 b3 b1
a3: b4 b2 b3 b1
a4: b3 b4 b1 b2

b1: a1 a4 a2 a3
b2: a3 a4 a1 a2
b3: a3 a4 a1 a2
b4: a3 a4 a2 a1

Fig. 1. A 2DSM instance with a split score of 11, a Latin score of 17 and a
contrarian score of 84.

a1: b3 b4 b2 b1
a2: b4 b3 b1 b2
a3: b2 b1 b3 b4
a4: b1 b2 b4 b3

b1: c4 c2 c3 c1
b2: c2 c4 c1 c3
b3: c1 c3 c2 c4
b4: c3 c1 c4 c2

c1: a4 a3 a2 a1
c2: a2 a1 a4 a3
c3: a3 a4 a1 a2
c4: a1 a2 a3 a4

Fig. 2. A contrarian 3DSM instance of size 4.

Definition 3: Let I be a dDSM instance of size n. A
matching for I is a set M of n d-tuples such that each d-
tuple of M contains one element from each of the d agent
sets of I , and each agent of I occurs exactly once in M .

Figures 1 and 2 present a matching example for each d.
Each agent there is assigned to the agent from its preference
list indicated by a square.

A matching achieves stability when no d agents wish to
deviate from the matching and form their own tuple together:

Definition 4: Let I be a dDSM instance, let M be a
matching for I and let t be a d-tuple not in M such that
t contains an agent from each agent set of I . We say t is a
blocking tuple for M if one of the following conditions is true:
• d = 2, t = 〈ai, bj〉, ai ranks bj ahead of the agent from

B it got assigned to in M , and bj ranks ai ahead of the
agent from A it got assigned to in M .

• d = 3, t = 〈ai, bj , ck〉, ai ranks bj ahead of the agent
from B it got assigned to in M , bj ranks ck ahead of the
agent from C it got assigned to in M and ck ranks ai
ahead of the agent from A it got assigned to in M .

Definition 5: Let I be a dDSM instance and let M be a
matching for I . We say that I is a solution for I if there is
no blocking tuple for M .

The matching from Figure 1 is not a solution because
〈a4, b3〉 is a blocking pair. Indeed, a4 prefers b3 over its
matching partner b1 and b3 prefers a4 over its matching partner
a1. On the other hand there is no blocking triple for the
matching from Figure 2, therefore that matching is a solution
for the instance depicted.

Solutions are also called “stable matchings” in the literature.
3DSM instances have in general many more solutions than
2DSM ones. The 3DSM instance from Figure 2 has 194
solutions, while the most solutions for a 2DSM instance of
the same size is 10 [4].

Stability in the Matching Problem can take several forms.
Using an alternative definition of stability, one can find a com-
pletely different set of solutions for the exact same instance. To

ensure that our proposed contrarian metric performs well on a
wide variety of problem variations, we will make experiments
on another version of stability, which is based on a relaxed
definition of blocking tuple for 3DSM:

Definition 6: Let I be a 3DSM instance, let M be a
matching for I and let t = 〈ai, bj , ck〉 be a triple not in M .
Let bM , cM and aM the agents respectively assigned to ai, bj
and ck in M . We say that t is a weakly blocking tuple for M
if one of the following conditions is true:
• bj >ai

bM , ck ≥bj cM and ai ≥ck aM .
• bj ≥ai

bM , ck >bj cM and ai ≥ck aM .
• bj ≥ai

bM , ck ≥bj cM and ai >ck aM .
In other words, a triple t is weakly blocking if one of its

agents prefers t over its matching triple, and the other two
are at least indifferent. We call 3DSMstrong the three-sided
matching problem which uses this stronger form of stability.
Works on 3DSMstrong sometimes call strongly blocking tuple
the object from Definition 4 and weak stability the resulting
notion of stability. In a similar manner as for weak stability,
a solution for a 3DSMstrong instance is a matching that does
not have any weakly blocking triple.

Note that while every solution to a 3DSMstrong instance
will also be a solution to that same instance under weak
stability, the reverse is not generally true. Only 33 of the
194 solutions to the 3DSM instance from Figure 2 remain
solutions for the same instance in the 3DSMstrong problem.
In particular, the matching from Figure 2 is a solution under
weak stability but not under strong stability. Indeed, consider
the triple t = 〈a1, b3, c1〉. Both a1 and b3 would rather be in
t than with their respective matching partners, however c1 is
assigned to a1 either way. This makes t weakly blocking for
the matching shown, but not strongly.

III. A TIGHTNESS METRIC FOR STABLE MATCHING

A. Methodology of the Experiments
For each experiment, we generate instances with a low

metric score, and then switch agents in the preference lists
to increase the score until we reach a local maximum.

For the initial instances, we generate instances with shared
(master) preference lists and switch two random agents in
one preference list in each of the d agent sets. Instances with
master preference lists often are the instances with the lowest
possible metric score, or close to it [6]. However, all such
instances of a given size are isomorphic, so we add an initial
random switch in each agent set to get random starting points.

At each step, there are dn2(n − 1)/2 possible switches:
n(n−1)/2 switches for each preference list, and dn preference
lists. We look at all of them and keep the one that increases
the metric score the most. If no single switch strictly increases
the metric score, we look at all possible pairs of two switches.
If several switches (or pairs of switches) increase the metric
score by the same amount, we pick a random one. When no
switch or pair of switches can increase the metric score any
further, we stop the run. Each experiment consists of 100 runs.

We present the results of each experiment through two plots.
In the first one each point represents a step s, with the average

number of solutions for the instances obtained at step s plotted
against their average metric score. The number of solutions is
computed using Cachet, an exact SAT model counter [16].

Depending on the initial instances, and which switches are
subsequently made, some runs take longer than others to reach
a local maximum. The first plot only contains steps that are
reached by at least a quarter of the runs (25).

The second plot compares the number of solutions against
the relevant metric score for every individual instance mea-
sured. This includes those from the end of very long runs that
were removed from the first plot, as well as 100 completely
random instances that are generated as a control experiment.

We want a metric which score describes the relaxation of
the constraints. So matching instances with a higher score
are expected to have more solutions in average, in the same
way that constraint instances with more relaxed constraints
generally have more solutions. Therefore the desired behavior
of the plots is to show a gradual increase, as monotonic as
possible, from instances with a low score and few solutions
to instances with a high score and many solutions.

B. Finding the Best Metric

We now empirically test different definitions of metric, in
order to find the one that approximates constrainedness the
closest. In a previous stable matching paper [6] we introduced
the notion of perfectly split instance. For each pair of agents
belonging to the same agent set of a perfectly split instance,
each agent of the pair is favored over the other by exactly
half (give or take one for odd sizes) of the agents that rank
them. The instances most dissimilar to perfectly split instances
are the ones with master preference lists. In these instances,
preferences are never split and always absolute.

The main experiment from that paper started from instances
with master preference lists and at each step randomly picked
two agents that were not equally favored, and switched them
in a preference list to decrease the difference. We found out
that the initial instances with master preference lists, the ones
that are the furthest away from perfectly split instances, are
among the most constrained matching instances, the ones with
the fewest solutions. Unfortunately instances at the other end,
the ones that are perfectly split or close to it, turned out to be
indistinguishable from random instances in terms of number
of solutions. To see if the idea can still be salvaged, we refine
the notion with the split score, a quantifier of the distance to
a perfectly split instance.

Definition 7: Let I be a dDSM instance of size n. Let p
and p′ be two agents from the same agent set in I where p
is preferred over p′ as least as often as p′ is preferred over
p. The split score of pair (p, p′) is the number of times p′ is
preferred over p. The split score of I is the sum of split scores
for all dn(n− 1)/2 pairs of agents within a same agent set.

The split score of a dDSM instance of size n can range from
0 (in every pair of agents from the same agent set, one of the
agents is always favored over the other) to dn(n−1)/2×bn/2c
(the preferences between any two agents from the same agent
set are as evenly split as possible).

Fig. 3. Correlation between split score and number of solutions for 2DSM
instances of size 8. Averages (top) and scatter plot (bottom).

We illustrate the notion on the 2DSM instance from Fig-
ure 1. The split score for the pair (b1, b2) is 1 because the
least preferred agent of the two, b1, if favored once over b2.
Similarly, the split score for the pair (a2, a4) is 0 because a2 is
never favored over a4 and the split score of the pair (b2, b3) is
2 because the preferences between these two agents are evenly
split. The sum of the twelve pairs’ split scores is 11, this is
the split score of the instance.

We present the results of our split score experiments in
Figure 3. As the figure shows, the split score is not a valid
measure of constrainedness for matching instances. Not only
is the correlation inexistent, but most instances generated have
a very low number of solutions (2 or less), even as the metric
score grows. We therefore need to look in another direction
to quantify tightness in stable matching.

We now consider the Latin score, which measures how close
the preference matrices are to Latin squares.

Definition 8: Let I be a dDSM instance. We note ColA,i

(respectively ColB,i and ColC,i if d = 3) the set of agents that
are the ith choice of at least one agent from A (respectively
B, C). These dn sets are the columns of I . The Latin score of
a column is the number of agents that it contains. The Latin
score of I is the sum of the dn column Latin scores.

The Latin score of a dDSM instance of size n can range
from dn (all agents in the same agent set have the same
preference list) to dn2 (the preference matrices are Latin
squares). As an example, we look again at the instance from
Figure 1. In this case, the column Latin scores range from
1 (for ColB,2 = {a4}) to 3 (for ColA,3 = {b4, b3, b1} and
ColB,4 = {a3, a2, a1}). The eight column Latin scores sum

Fig. 4. Correlation between Latin score and number of solutions for 2DSM
instances of size 8. Averages (top) and scatter plot (bottom).

to 17, which is the Latin score of the instance.
Instances with master prefrence lists have the lowest pos-

sible Latin score (dn). On the other hand, efforts to generate
matching instances with many solutions have focused on Latin
and pseudo-Latin constructions of the preference matrices.
Therefore, the Latin score seems like a good candidate to
represent constrainedness and predict the number of solutions
for matching instances. We present the results of our Latin
score experiments in Figure 4.

The part of the figure plotting the averages seems to indicate
a correlation, albeit quite weak. Furthermore, the number
of solutions grows significantly higher than when using the
split score. However, the scatter plot reveals that there is a
significant number of instances with a very high Latin score
and very few solutions. If high scoring matching instances
are to correspond to highly relaxed constraint instances, one
would not expect to encounter this behavior. So while the
Latin score is a clear improvement on the split score, it is not
accurate enough in its assessment of constrainedness.

We now introduce the main metric of the paper, the contrar-
ian score. We first define instances with a perfect contrarian
score, simply called contrarian instances.

Definition 9: Let I be a dDSM instance of size n. We say
that I is contrarian if for each agent p and each 1 ≤ i ≤ n,
one of the following conditions is true:

• d = 2 and the agent q whom p ranks ith ranks p in
(n+ 1− i)th position.

• d = 3 and the agent q who is ranked ith by the favorite
agent of p ranks p in (n+ 1− i)th position.

a1: b2 b3 b1 b4
a2: b3 b2 b4 b1
a3: b4 b1 b2 b3
a4: b1 b4 b3 b2

b1: a2 a1 a3 a4
b2: a4 a3 a2 a1
b3: a3 a4 a1 a2
b4: a1 a2 a4 a3

Fig. 5. A contrarian 2DSM instance of size 4.

Two contrarian instances are shown in Figures 5 (for 2DSM)
and 2 (for 3DSM). As an example, the agent a1 in the 2DSM
instance ranks b2 first so b2 ranks it last, ranks b3 second so b3
ranks it second to last, etc. Similarly in the 3DSM example,
the favorite of a1 ranks c1 first so c1 ranks a1 last, it ranks c3
second so c3 ranks a1 second to last, etc.

Contrarian instances have led to the crafting of 2DSM
instances with many solutions [1]1. They exhibit a number
of interesting properties. Their preference matrices are always
Latin squares, and a whole contrarian instance can be retrieved
from only one of its d preference matrices (modulo isomor-
phism when d = 3).

We now define the contrarian score, which is computed from
the differences with regard to a fully contrarian instance.

Definition 10: Let I be a dDSM instance. The contrarian
score of an agent p of I is

∑n
i=1 n− c(p, i), where c(p, i) is

defined in the following way:
• when d = 2: let q be the agent ranked ith by p and let j

be the ranking of p by q. Then c(p, i) = |n+ 1− i− j|.
• when d = 3: let q be the agent ranked ith by the favorite

agent of p and let j be the ranking of p by q. Then
c(p, i) = |n+ 1− i− j|.

The contrarian score of I is the sum of the contrarian scores
of all dn agents of I .

A fully contrarian instance will have a contrarian score of
dn3. It is not clear what the lowest possible score is, however
instances with master preference lists have a contrarian score
of d

∑n
i=1(

∑n
j=1(n−(|i−j|))) = 2d

(
n+1
3

)
. As usual, Figure 1

illustrates the metric. Agent a1 ranks b3 first so b3 should
rank a1 last, but b3 ranks a1 second to last instead, which is
a difference of 1. Similarly, a1 is correctly ranked third by
b2, is ranked fourth by b4 instead of second and is correctly
ranked first by b1. So the contrarian score of a1 is 4−1+4−
0 + 4 − 2 + 4 − 0 = 13. The preference scores of the other
agents can be computed in the same way to arive to a total
contrarian score of 84 for the whole instance.

Figure 6 shows the results of our contrarian score exper-
iments on instances of the same problem and size than the
split score and Latin score ones. Contrary to these metrics, the
contrarian score performs extremely well. The correlation with
the number of solutions is sharp, and the scatter plot confirms
that all instances obtained neatly fall in the desired range. No
single instance with very few solutions has a high contrarian
score. Likewise, no single instance with many solutions has a
low contrarian score. This shows that the contrarian score is
an excellent predictor of the number of solutions and a strong

1They are called Latin marriages in the source, but the restrictions imposed
are not limited to Latin square preference matrices.

Fig. 6. Correlation between contrarian score and number of solutions for
2DSM instances of size 8. Averages (top) and scatter plot (bottom).

candidate for representing constrainedness in matching, at least
for stable marriage instances of this size.

C. Different Sizes

Our contrarian score metric takes inspiration from the work
that has been done on the generation of 2DSM instances with
many solutions. Some methods that have been proposed in
that field of study depend a lot on the size n of the instances
considered. Early results were restricted to the case where n
is a power of 2 [12]. Later constructions based on contrarian
instances, the particular kind of instances our contrarian score
metric takes inspiration from, were only defined for even
instance sizes [1]. More recent approximations of fmax(n), the
maximum possible number of solutions for 2DSM instances
of size n, look at all instance sizes but still observe a behavior
that differs according to the parity of n. As Table 3 in [18]
indicates, fmax(n) seems to increase much less from n = 2k
to n = 2k + 1 than from n = 2k + 1 to n = 2k + 2.

For these reasons, it is important to verify that the behavior
exhibited by the contrarian score can be replicated for other
instance sizes. Our experiments thus far were on instances of
size 8, which is not only even but a power of 2. We now
repeat the same experiments for 2DSM instances of size 9
(represented in Figure 7) and 10 (represented in Figure 8).

For all three instance sizes we experimented on, the con-
trarian score yielded the same results: gradual increase in the
number of solutions when increasing the metric. This shows
the strong correlation between contrarian score and number of
solutions is not dependent on a particular instance size.

Fig. 7. Correlation between contrarian score and number of solutions for
2DSM instances of size 9. Averages (top) and scatter plot (bottom).

D. Different Problems

We have shown that the contrarian score performs well
for the 2DSM problem. An interesting question is whether
it can also be used for matching problems with radically
different properties. We now test our metric on two additional
matching problems that each differs from 2DSM in at least
one significant way.

We start by experimenting on 3DSM instances. These
instances have much more solutions than instances of com-
parable sizes from other matching problems. As before, we
test different instance sizes. Our experiments are represented
in Figure 9 for size 7 and in Figure 10 for size 8.

Surprisingly enough for a metric that was primarily de-
signed for two-sided matching, the contrarian score performs
as well for 3DSM as it does for 2DSM. The correlation plots
are as sharp as they were in the previous experiments, and
the scatter plots look even more concentrated in the desired
region. This shows that the contrarian score can be used for
another matching convention than 2DSM.

The other matching problem that we are studying is
3DSMstrong, which consists of the same instances as 3DSM
but with a stricter definition of stability. Contrary to 2DSM
instances, not all 3DSMstrong instances admit a solution. This
makes 3DSMstrong a harder problem to solve.

We present our results in Figure 11 for size 8 and in
Figure 12 for size 9. The correlation here seems a bit weaker
than the one we observed for the other problems. The number
of solutions does not increase substantially until instances
reach a fairly high metric score. However, the general trend is

Fig. 8. Correlation between contrarian score and number of solutions for
2DSM instances of size 10. Averages (top) and scatter plot (bottom).

Fig. 9. Correlation between contrarian score and number of solutions for
3DSM instances of size 7. Averages (top) and scatter plot (bottom).

Fig. 10. Correlation between contrarian score and number of solutions for
3DSM instances of size 8. Averages (top) and scatter plot (bottom).

still present: the number of solutions monotonically increases
with the contrarian score.

The experiments in this subsection show that while the
contrarian score may not perfectly capture constrainedness in
all matching variants, it can definitely be used in matching
problems that considerably differ from standard 2DSM.

IV. GENERATING INSTANCES WITH MANY SOLUTIONS

In this section we explore a possible application of con-
strainedness for stable matching. We use local search heuristics
based on a number of tightness metrics to find matching
instances with as many solutions as possible.

We test four metrics. The first is the number of solutions.
Since this metric is also the objective, we expect it to give the
best results. The other three are the ones that we compared in
the paper (split score, Latin score and contrarian score). Each
experiment consists of 100 runs. Each run starts from a random
instance and makes the switch that increases the most the
relevant metric. All metrics share the same pool of 100 initial
random instances. For each run, we only keep the instance
with the most solutions. The experiments are very similar to
the ones from the previous section, the main differences being
the composition of the initial instances and that we are only
interested in the instances with the highest scores.

We do not expect the contrarian score to seriously compete
in this domain with the tailor-made 2DSM generation methods
from [18], however there is a couple of reasons which make
the experiments worthwhile. First, the work done on this topic
focuses on 2DSM, and we know that the contrarian score is a
valid measure for various matching problems. Our results on

Fig. 11. Correlation between contrarian score and number of solutions for
3DSMstrong instances of size 8. Averages (top) and scatter plot (bottom).

Fig. 12. Correlation between contrarian score and number of solutions for
3DSMstrong instances of size 9. Averages (top) and scatter plot (bottom).

three-sided matching are in fact, to the best of our knowledge,
the first of their kind for these particular problems.

Second, state of the art results rely on specific preference
structures that can only provide a few instances for each size.

TABLE I
NUMBER OF SOLUTIONS OBTAINED USING DIFFERENT METRICS.

Metric Run Rank
Solutions

2DSM 3DSM 3DSMstrong

n = 7 n = 6 n = 7

Best 30 8973 353
Solutions Average 14 7743 89

Worst 4 6614 11
Best 10 3287 18

Split score Average 3 1803 6
Worst 1 927 1
Best 14 3687 33

Latin score Average 5 2878 15
Worst 3 2156 4
Best 22 8497 138

Contrarian score Average 15 5341 50
Worst 8 3855 16

TABLE II
COMPARISON OF RUNTIMES FOR DIFFERENT METRICS.

Metric 2DSM 3DSM 3DSMstrong

n = 7 n = 6 n = 7
Solutions 4h 11 mins 32d 2h 47 mins 1d 7h 23 mins
Split score <1 min 45 mins 2 mins
Latin score 1 min 50 mins 5 mins
Contrarian score 3 mins 2h 15 mins 46 mins

These instances are artificial and often similar to each other.
Breaking ties between equivalent switches at random, as we
do, ensures on the other hand that the final instances we can
obtain are numerous and extremely diverse.

In Table I, we present for each metric and each matching
problem studied the number of solutions of the instance from
the most succesful run, from the least succesful run, and the
average of the outcomes of all runs. In Table II we compare
the metrics by their runtimes, rounded down to the minute.
All experiments in this section were done on the same DELL
M600, with an Intel Xeon E5430 processor (2.66Ghz).

For all three matching problems considered, the contrarian
score outclasses the split and Latin score. For the 2DSM
problem the higher best run is obtained by increasing the
number of solutions, but in average increasing the contrarian
score leads to a better run. This allows us to formulate the
following observation: to find a 2DSM instance with many
solutions, it is better in average to increase the contrarian
score than the number of solutions, even though the number
of solutions is the objective in the first place. Furthermore,
increasing the contrarian score is 80 times faster.

For the 3DSM problem, increasing the contrarian score does
not lead to more solutions than increasing the number of
solutions. However, the difference between the two runtimes is
even larger. The contrarian score experiment found an instance
with only 5% less solutions than the best instance found by
increasing the number of solutions, with the former experiment
being 340 times faster.

The 3DSMstrong problem seems to be the one where the
contrarian score performance is the weakest, which mirrors
what we observed in the previous section. Note however that
the contrarian score does have the higher worst-case run.

To summarize, the experiments in this section show that
the contrarian score is a promising tool to generate matching
instances with many solutions, if only because it is much faster
to compute than standard local search methods.

V. CONCLUSION

We introduced the contrarian score, a metric for stable
matching that aims to determine how constrained an instance
is. We empirically showed that the contrarian score is highly
correlated with the number of solutions for matching instances.
Consequently, an higher contrarian score indicates more re-
laxed constraints, while a lower score is the sign of a more
constrained instance.

We compared the contrarian score against other potential
tightness metrics for stable matching, and found out that it
provides the strongest correlation. We also tested it for various
instance sizes and even fundamentally different matching
problems. Each time the contrarian score proved to be a valid
measure of constrainedness for the problem considered.

REFERENCES

[1] Arthur T. Benjamin, Cherlyn Converse, and Henry A. Krieger. How do
I marry thee? Let me count the ways! Discrete Applied Mathematics,
59(3):285–292, 1995.

[2] Péter Biró and Eric McDermid. Three-sided stable matchings with cyclic
preferences. Algorithmica, 58(1):5–18, 2010.

[3] Lin Cui and Weijia Jia. Cyclic stable matching for three-sided network-
ing services. Computer Networks, 57(1):351–363, 2013.

[4] Daniel Eilers. Irvine compiler corporation technical report. ICC TR1999-
2, 1999.

[5] Kimmo Eriksson, Jonas Sjöstrand, and Pontus Strimling. Three-
dimensional stable matching with cyclic preferences. Mathematical
Social Sciences, 52(1):77–87, 2006.

[6] Guillaume Escamocher and Barry O’Sullivan. Three-dimensional match-
ing instances are rich in stable matchings. CPAIOR 2018.

[7] Guillaume Escamocher, Mohamed Siala, and Barry O’Sullivan. From
backdoor key to backdoor completability: improving a known measure
of hardness for the satisfiable CSP. CPAIOR 2018.

[8] David Gale and Lloyd S Shapley. College admissions and the stability
of marriage. The American Mathematical Monthly, 69(1):9–15, 1962.

[9] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, and Toby Walsh. The
constrainedness of search. AAAI 1996.

[10] Carla P. Gomes, Cèsar Fernández, Bart Selman, and Christian
Bessière. Statistical regimes across constrainedness regions. Constraints,
10(4):317–337, 2005.

[11] Chien-Chung Huang. Circular stable matching and 3-way kidney
transplant. Algorithmica, 58(1):137–150, 2010.

[12] Robert W. Irving and Paul Leather. The complexity of counting stable
marriages. SIAM J. Comput., 15(3):655–667, 1986.

[13] Robert W. Irving, David Manlove, and Sandy Scott. The stable marriage
problem with master preference lists. Discrete Applied Mathematics,
156(15):2959–2977, 2008.

[14] David F. Manlove. Algorithmics of Matching Under Preferences,
volume 2 of Series on Theoretical Computer Science. 2013.

[15] Yongshao Ruan, Henry A. Kautz, and Eric Horvitz. The backdoor key:
A path to understanding problem hardness. AAAI 2004.

[16] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann
Pitassi. Combining component caching and clause learning for effective
model counting. SAT 2004.

[17] Harborne W. Stuart, Jr. The supplier—firm—buyer game and its m-sided
generalization. Mathematical Social Sciences, 34(1):21 – 27, 1997.

[18] Edward G. Thurber. Concerning the maximum number of stable
matchings in the stable marriage problem. Discrete Mathematics, 248(1-
3):195–219, 2002.

[19] Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical
case complexity. IJCAI 2003.

