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Abstract—Dynamic adaptive streaming over HTTP (DASH) is
widely adopted for video transport by major content providers.
However, the inherent high variability in both encoded video and
network rates represents a key challenge for designing efficient
adaptation algorithms. Accommodating such variability in the
adaptation logic design is essential for achieving a high user qual-
ity of Experience (QoE). In this paper, we present ARBITER+ as
a novel adaptation algorithm for DASH. ARBITER+ integrates
different components that are designed to ensure a high video
QoE while accommodating inherent system variabilities. These
components include a tunable adaptive target rate estimator,
hybrid throughput sampling, controlled switching, and short-
term actual video rate tracking. We extensively evaluate the
streaming performance using real video and cellular network
traces. We show that ARBITER+ components work in harmony
to balance temporal and visual QoE aspects. Additionally, we
show that ARBITER+ enjoys a noticeable QoE margin in
comparison to state-of-the-art adaptation approaches in various
operating conditions. Furthermore, we show that ARBITER+
also achieves the best application-level fairness when a group of
mobile video clients shares a cellular base station.

Index Terms—Adaptive video streaming, DASH, wireless net-
works, throughput sampling, throughput estimation, fairness,
Quality of Experience (QoE).

I. INTRODUCTION

Video is dominating the data traffic in both wired and
wireless networks. Specifically, mobile video is growing at
unprecedented rates and is expected to take over 75% of
mobile traffic by 20201. This increase is fueled by the per-
vasiveness of smart mobile devices and the popularity of
Dynamic Adaptive Streaming over HTTP (DASH) model.
DASH is widely adopted by major content provider due to
its ability to traverse firewalls and the abundance of required
infrastructure. Additionally, its inherent adaptation component
enables adjusting the video quality to the highly variable oper-
ating conditions to achieve the best user quality of experience
(QoE). Furthermore, this adaptation logic is implemented at
the client leading to a scalable distributed architecture.

In DASH systems, the video is split into multiple small du-
ration video segments. Each segment is encoded into different
representations with distinct features, such as resolution and
quality. The DASH streaming client implements an adaptation
algorithm that can change the segment quality in response to
the changes in the operating conditions. The state-of-the-art

1CISCO Visual Networking Index. http://goo.gl/jFB2L7. Last accessed Dec
8, 2016.

adaptive streaming algorithms can be generally classified as
buffer-based, rate-based, and hybrid strategies. Buffer-based
strategies, e.g., [1], select the video quality by mapping
the application buffer level. Rate-based algorithms, e.g. [2],
usually bound the selected rate to an estimate for the average
network throughput. Hybrid streaming algorithms, e.g., [3],
are more complex strategies that integrate application and
network conditions using advanced techniques, such as control
theory [4], optimization models [3], [5], [6], and probabilistic
strategies [6], [7].

The adaptation strategy has a significant impact on the per-
ceived user QoE. Ideally, users expect to watch a high-quality,
uninterrupted video stream. However, it is not uncommon
that users encounter different streaming issues, such as video
stalls and low video quality. In a recent study by Conviva2,
it is shown that streaming issues are perceived differently
by the users. While 60% of the users identified video stalls
as the most irritating factor while streaming, 23% identified
image quality as their main irritation. The former group may
be classified as stall-sensitive users while the latter can be
classified as quality-oriented users. This diversity in quality
perception motivates the development of tunable streaming
algorithms that can be adjusted to match the user QoE profile.

The design of adaptive streaming algorithms for mobile en-
vironments should overcome inherent system high variability
in both link conditions and traffic characteristics. The need
for such intelligent algorithms evolves with the increasing
reliance on portable devices for performing everyday activities,
including watching videos. Mobile environments feature a high
level of variability due to channel characteristics, mobility, and
the shared nature of wireless medium. Hence, users encounter
frequent and abrupt changes in the network throughput that can
significantly degrade the streaming quality. Additionally, the
variable bit rate nature of compressed video represents another
overlooked [8] challenge in the design of quality adaptation
algorithms. Hence, developing novel streaming algorithms that
accommodate the high variability in mobile systems evolves
as a crucial requirement to improve the QoE.

In this paper, we propose ARBITER+ as a novel QoE-driven
hybrid adaptation algorithm for DASH clients. ARBITER+
employs different design components to combat temporal and
visual QoE degradations. These components include

2Conviva QoE report. https://goo.gl/BD2lU2. Last accessed: 8 Dec 2016.
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Figure 1: Example Cellular Traces [10]

• A tunable representation rate bound estimator that
can compromise the tradeoff between frequent qual-
ity switches and stall events. This rate bound is esti-
mated based on both network and application states. The
network state is captured using a tunable exponential
smoothing while the application state is captured by the
buffer-level.

• A novel hybrid throughput sampling, in comparison to
the traditional segment-based sampling, to better capture
sudden changes in network conditions that are common
in mobile networks.

• Actual video rate tracking to reduce the impact of the
variable bitrate nature of the compressed video.

• Switching control (SC) that is designed to ensure gradual
quality improvement and flicker avoidance.

Using publicly available real video [9] and cellular traces
[10], we evaluate the performance of ARBITER+ components
illustrating their impact on various streaming objective metrics,
such as quality rate, switching frequency, switching level,
number of stalls, and stall duration. Additionally, we identify
the impact of these components on the user perceived QoE
using two models that are based on subjective evaluations.
We compare ARBITER+ performance to state-of-the-art al-
gorithms using both simulations and real experiments. We
show that ARBITER+ maintains a noticeable QoE margin
in comparison to other state-of-the-art adaptation strategies,
using trace-based cellular network throughput, without impact-
ing other key metrics, including device power consumption.
Furthermore, we compare the performance of these algorithms
when a group of video clients shares an LTE eNodeB. Our
evaluation illustrates that ARBITER+ not only attain the
highest QoE but it also achieves the best score for application-
level fairness [2].

The rest of this paper is organized as follows. ARBITER+
detailed design is presented in Section II followed by the
performance evaluation in Section III. We then present the
related work in Section IV before concluding in Section V.

II. ARBITER+ DESIGN

ARBITER+ is designed to improve the user QoE by striking
a balance between visual and temporal quality aspects in
highly variable mobile environments. Figure 1 plots the
measured network throughput versus time in 3G systems

Figure 2: ARBITER+ operation

Table I: ARBITER+ notation and parameters

rt target representation rate
µs the estimated network throughput
ω the estimator base weight
W the size of sampling window
bi the throughput sample i
ς sample duration timer
τ max sample duration
ρb buffer-based rate scaling factor

ρb (ρb) lower (upper) bound of the buffer-based factor
φ the buffer fullness ratio
β default buffer size
ra short-term average video rate
Wv the size of the video look ahead window
Si(q) the size of segment i at quality q
T Segment duration
ns maximum quality level switch

showing both frequent short-term gradual and sudden large
throughput variations. Accommodating these changes, while
ensuring a good QoE, is challenging. ARBITER+ design
includes two elements, namely a target rate estimator and a
quality selection policy. The estimated target rate represents
an upper bound on the selected representation quality rate,
which is determined by the quality policy. Both components
are designed to accommodate the inherent highly variable
nature of both network conditions and compressed video.
Additionally, their design integrates multiple components that
are designed to improve the user QoE.

Figure 2 illustrates the operation of ARBITER+. Addition-
ally, Table I summarizes the notation of ARBITER+ parame-
ters.
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A. Target Rate Estimation

The design of target rate estimation intelligently determines
a quality rate bound to stream high video quality and avoid
stalls by considering both application and network states. The
target rate estimation is a two-step process. First, an estimate
for the network throughput is determined based on historical
throughput samples. Second, this estimate is scaled by an
application-based scaling factor that may increase or decrease
the estimated network throughput. Hence, ARBITER+ target
rate estimation captures both network and application states
in the quality selection. The network state is captured by
a network throughput that is determined using a tunable
estimator based on an exponentially weighted smoothing. In
comparison to common moving average or harmonic mean
estimators [11], [2], [3], the exponential estimator involves a
memory factor as more recent samples are assigned higher
weights. Hence, the exponential estimator not only averages
out throughput variations but also improves the response
to gradual and sudden throughput changes. The application-
aware rate scaling enables ARBITER+ to balance visual and
temporal quality by adjusting the target rate based on the buffer
level. We exploit this level to scale up our target rate as the stall
risk decreases and provide a conservative target rate estimate
at low buffer levels.

In addition to the common practice of sampling the network
throughput at video segment boundaries, we propose hybrid
sampling that includes a mixture of periodic and common
segment-based sampling. We argue that hybrid sampling im-
proves the perception of network throughput especially when
it gradually or suddenly drops. Hence, the hybrid sampling im-
proves ARBITER+ temporal QoE by increasing its sensitivity
to deteriorating network conditions.

1) Network Throughput Estimation: ARBITER+ considers
an exponentially weighted estimator for the network through-
put, denoted as µs. Let ω denotes the base weight of the
exponential estimator, i.e., the weight assigned to the most re-
cent throughput sample. Each throughput samples is assigned
a weight ω(1−ω)i, where i ∈ {0, ..,W−1} and W is the size
of the sampling window. These weights are then normalized
to their geometric sum and the final weights are expressed as

wi =
ω(1− ω)i

1− (1− ω)W
, (1)

The throughput estimate, denoted as µs, is calculated as the
average weighted mean and can be expressed as

µs =

W−1∑
i=0

wibk−i, (2)

where bi represents the throughput sample i and k is the index
of the last recorded sample.

The base weight ω would be a fraction, i.e., ω ∈ (0, 1].
Note that ω = 1 implies that the throughput estimate is based
on the last throughput sample. Additionally, ω can be tuned to
control the behavior of the adaptation strategy. Large values of
ω would promptly react to changes in the network throughput
and would be more responsive to changes in the network con-
dition. Such responsiveness would improve stall performance,
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Figure 3: Segment-based sampling versus hybrid sampling

represented by the number of stalls and stall duration, but
it may also lead to frequent representation switches. Small
ω values would react to network throughput changes at a
slower pace leading to fewer quality representation switches
but possibly worse stall performance. Hence, ω can be tuned
to compromise the tradeoff between visual and temporal QoE.
Additionally, it can be set to match different QoE user profiles,
e.g., stall-sensitive vs. quality-oriented users.

a) Hybrid Throughput Sampling: It is common that
network throughput changes over time for different reasons,
such as network load changes, wireless channel characteristics,
and user mobility. These factors may lead to gradual or sudden
changes in the network throughput. To illustrate, as a user
moves from the cell center towards the cell edge in an LTE
system, the channel quality indicator (CQI) changes from the
highest to the lowest value, i.e., from 15 to 1. This change
is accompanied by a drop in the achievable throughput per
resource block group (allocatable resource unit) of such client
by 45-folds. Similarly, flash crowd [12] arrival could lead to a
noticeable drop in the user service rate. In the latter situation,
the base station scheduler redistributes its resources over a
large number of users leading to a sudden drop in the network
throughput of existing users.

We hypothesize that the common practice of relying on
segment-based throughput sampling does not accurately cap-
ture these changes, especially sudden throughput changes.
To illustrate, consider the scenario shown in Figure 3. In
this scenario, a sudden drop in the network throughput oc-
curs while the video client is downloading segment i. With
segment-based sampling, a new throughput sample bi is added
to the throughput sampling window when the client finishes
the segment download. bi is estimated as the downloaded
segment size divided by the segment i download time. Hence,
the recorded value represents an average for the network
throughput before and after the sudden condition change.
Consequently, the throughput estimator, using all segment-
based throughput samples, would fail to capture the sudden
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network throughput drop as the most recent low throughput
sample bi would be averaged out in a typical moving average
and may be considered an outlier in a harmonic rate estimator.
Hence, the video client may request a high video quality
leading to a series of, possibly long, stalls until the estimator
converges to the actual network rate.

We propose adopting a hybrid sampling approach that
involves a mixture of time-based and the common segment-
based sampling. In hybrid sampling, the application monitors
the amount of data delivered from the transport layer to
the application. Additionally, it maintains a timer, denoted
as ς , that periodically fires when the timer value exceeds a
specific period τ . A sample is recorded whenever a segment
is completely downloaded or when the timer expires. Every
throughput sample is estimated as the amount of delivered data
from the transport layer to the application layer divided by ς .
Note that the timer ς is reset when the segment download starts
as well as when a sample is recorded. In the scenario shown
in Figure 3, two throughput samples ( b′i, b

′′
i ) are triggered

by timer expiry and a third throughput sample b′′′i is triggered
when the download of segment i finishes. Both b′′i and b′′′i are
close to the actual current network throughput. Hence, hybrid
sampling would improve the tractability of the changes in
network conditions. Note that these samples would have higher
weights with the exponential averaging. Hence, the estimated
network throughput would be close to the actual network
throughput leading to selecting a proper segment quality that
would reduce the stall probability.

Hybrid sampling breaks the unnecessary dependence of
network condition monitoring on the segment duration. DASH
content providers tend to use large segment duration for
wireless systems with typical values ranging 4-10 seconds.
Ideally, a segment should be roughly downloaded every seg-
ment duration to avoid interruptions. In practice, the segment
download duration varies due to varying network conditions
and/or segment sizes. Hence, critical changes in network
conditions may be overlooked when segment-based sampling
is used. Hybrid sampling aims to avoid such situations through
taking more samples when the timer expires. These samples
improve the responsiveness to network condition degradations.
This improvement would enhance the user temporal QoE by
reducing the number of stalls and stall durations for a long-
term sudden drop of network throughput and the user visual
perception during gradual network throughput degradation by
performing smaller prompt quality switches.

2) Buffer-based Rate Scaling: ARBITER+ buffer scaling
balances the visual and temporal quality by adjusting the target
rate based on the application state, which is captured by the
buffer level. A low buffer level increases the stall risk while
near full buffer may pause the streaming process. Note that the
application stops requesting video segments when the buffer
is full and would only resume when it has sufficient buffering
space for the next segment. It is reported [13] that ON-OFF
behavior may significantly affect the accuracy of throughput
estimation when the client goes OFF. Additionally, high buffer
levels also indicate that the client requests a video quality
lower than what can be supported by the network. Hence, the
visual quality could have been improved by requesting a higher

video quality. Hence, ARBITER+ scales up the target rate at
high buffer levels to improve the visual quality and scale down
the rate to avoid stall risk at low buffer level.

The buffer-based rate scaling factor, denoted as ρb, is a
multi-objective adaptive element in ARBITER+. At low buffer
levels, a scaling factor acts as a safety factor that is less than
unity to help building up the buffer and reduces stall risks. At
high buffer-level, ARBITER+ selects a scaling factor that is
larger than one to improve the streaming quality and ensure
persistent download. This design is distinct from rate-based
strategies in the literature, in which the throughput estimate is
commonly scaled down as a safety factor to compensate for
estimation errors.

The buffer-based scaling factor, denoted as ρb, increases
linearly as the buffer level increases and is expressed as

ρb = ρb + (ρb − ρb)φ, (3)

where ρb and ρb respectively represent lower and upper bounds
for ρb and φ represents the buffer fullness ratio, estimated as
the ratio of buffer level to a default buffer size β. Note that
this buffer fullness is referenced to β instead of the buffer
size to ensure that ARBITER+ behavior is independent of the
buffer size. The values of ρb and ρb have a significant impact
on the user visual and temporal QoE. Choosing a small ρb
improves the stall sensitivity but would also lead to streaming
a low video quality. On the other hand, selecting a large ρ
may excessively scale up the target rate leading to streaming
high video quality that is more prone to stalls. The values of
both parameters are experimentally determined to compromise
the tradeoff between video quality and stall risk as shown in
Section III.

Finally, our target rate estimate, denoted as rt, is calculated
as

rt = µs ∗ ρb. (4)

This target rate represents an upper bound for the video
quality rate according to both application and network states.
The design of rt enables ARBITER+ to converge to the bene-
fits of both rate-based and buffer-based strategies. Network
rate estimation enables ARBITER+ to converge the actual
network rate and promptly adapt to the changes in network
condition. Additionally, the buffer scaling enables ARBITER+
to integrate the application state in a conservative manner
when there is a stall risk and otherwise to maximize quality.

B. Quality Selection Policy

ARBITER+ quality selection policy includes components
targeting reducing the stall risk due and performing smooth
representation switches. First, the actual video actual rate (AR)
tracking aims to reduce the impact of variable bit rate nature of
compressed video. Additionally, the controlled switching (CS)
component is designed to ensure smooth quality switching by
employing bounded quality increments and an adaptive quality
rate hysteresis. The hysteresis is introduced to ensure that
quality increments would be maintained to avoid the adverse
negative impact on the visual quality when the adaptation logic
reduces the video quality. Hence, ARBITER+ quality selection
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policy integrates design components that aim to improve both
user temporal and visual QoE.

AR aims to reduce the impact of the variable bit rate
nature of compressed video. Typically, encoding information
is obtained by the client through the media presentation
description (MPD) file that is communicated at the begin-
ning of every session. The variations in video bit-rate is
another contributor to the system variability [8], [14] and are
commonly overlooked by adaptation policies that base their
decisions on the advertised average representation rate in the
MPD file. These advertised rates represent long-term average
values estimated for the entire video. ARBITER+ considers
an actual short-term average rate, denoted as ra, estimated
for a window of future segments. Let Q denotes the number
of quality representations. The MPD file provides information
such as segment duration and the average encoding rate of
every representation, denoted as Rq , where q ∈ {1, ..., Q} and
a higher q indicates a better quality. The actual rate for each
candidate quality q is calculated as

ra(q) =

∑Wv

i=1 Sk+i(q)

Wv ∗ T
, (5)

where Wv represents the size of the look-ahead window for
future segments and Si(q) represents the size of segment i
at quality q. Practically, Si(q) can be identified directly from
a byte-range MPD file or using HTTP HEAD messages for
URL-based MPD files. Additionally, Wv should neither be
small or large value. A small Wv would be biased by near
future while a large Wv would converge to the long-term
average representation rate.

ARBITER+ initially selects the highest quality representa-
tion whose actual rate is upper bounded by rt and then apply
CS criterion that ensures progressive quality improvement
and stable switching. This progressive quality improvement
is achieved by limiting up-switch to ns quality levels in case
of high target rate. Stable switching intends to avoid quality
oscillation with close subsequent up and down switches. It
is well known that quality oscillation causes image flickering
that negatively impacts the user QoE [15].

Noting that visual impairments are more observable at low-
quality representations, ARBITER+ employs a monotonically
decreasing rate hysteresis as the target quality increases. With
CS, ARBITER+ does not perform an up switch from quality
(q − 1) to quality q unless the target rate rt is higher than
the actual rate ra(q) scaled by a quality dependent hysteresis
factor, denoted as h(q). This hysteresis diminishes for high-
quality representations among which quality switches may not
be observed by the user.

The choice of hysteresis margin affects the user perceived
QoE. A large hysteresis margin delays quality improvement
but would also increase the buffer level as lower quality
segments would be downloaded. Note that as the buffer builds
up, buffer scaling would boost the target rate and speed quality
improvement. Hence, we consider a maximum hysteresis mar-
gin of 5-10% a good design choice. Note that DASH encoding
guidelines suggest 1.5 as a typical ratio between subsequent
representation rates. Additionally, the decreasing rate for the
hysteresis should be selected such that the hysteresis margin

diminish as the observable quality rate does. An example
hysteresis function is expressed as

h(q) = max(1, 1.08− q ∗ 0.015). (6)

This formula represents a linearly decreasing hysteresis start-
ing at 5% hysteresis when switching from the first to second
qualities, i.e., from q = 1 to q = 2. This hysteresis decreases to
zero starting from sixth quality representation. Note that h(q)
design should change to match the expected user perception
on the used device. For example, quality variations on larger
devices could be observed even at higher qualities.

III. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ARBITER+
using ns-33 simulations and testbed experimentation. The
simulations enable us to perform extensive experimentation
in a controlled emulated wireless environment for both cel-
lular trace-driven and shared network simulation scenarios.
Additionally, the real experiments enable us to capture other
practical aspects such as battery consumption.

In our experiments, we focus on illustrating the impact of
different components of ARBITER+ on the streaming perfor-
mance. Additionally, we thoroughly compare the performance
of ARBITER+ with the state-of-the-art algorithms in different
scenarios. The evaluation setup is described in the following
section then our performance results are presented.

A. Evaluation Setup

In our evaluation, we use six five-minute clips from the
public iVID DASH dataset [9]4. The video encoding rates are
{235, 375, 560, 750, 1050, 1750, 2350, 3000, 3850, 4300},
which are based on typical values used by content providers.
Additionally, iVID dataset provides a range of genres and
segment durations. In our evaluation, we considered different
segment durations including 4 Sec and 10 Sec. These durations
are selected as representatives for typical segment values
used in cellular networks. Furthermore, we used videos with
different genres including animation, thrill, science fiction, and
TV shows.

In our trace-driven experiments, the link bandwidth is
shaped according to throughput traces for 3G (64 traces) [10].
These traces were collected while riding different modes of
transportation (car, metro, train, bus, ferry) in Oslo. Figure
plots the coefficient of variation (CoV) versus the mean rate
of the first 400 seconds of every trace5. Clearly, the figure
shows that the average rate of the traces varies between a
few hundred Kbps up to 3Mbps. Additionally, most of the
traces have a CoV between 0.3 and 0.9. There exists one
trace that has a steady high rate around 4.5Mbps with little
variation. There are also a couple of traces showing relatively
high variation in comparison to the remaining traces. Since
these traces do not include information about the link delay,
we tested different typical end-to-end link delays over 3G

3https://www.nsnam.org/
4https://www.ucc.ie/en/misl/research/current/ivid_dataset/
5400 Sec is selected to sufficiently cover both video duration and encoun-

tered stalls.
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Figure 4: Characterization of throughput trace

networks, from [16], including 40ms, 60ms, and 80ms. The
performance results show similar performance trends across
all tested delays. Hence, we only show results for 40ms link
delay.

We conduct our experiments in two different setups. First,
we performed trace-driven simulations and experiments in
which we consider a video client streaming from a remote
server over an emulated 3G link. We also considered another
simulation setup in which a group of mobile video clients is
sharing an LTE eNodeB.

1) Simulation Setup: In our simulations, the DASH client
and server are based on new application modules that we
developed for ns-3. The developed simulation DASH client
module parses MPD information and implements adaptation
logic and buffer operations. The DASH client communicates
with the dash server over a single TCP connection over which
HTTP messages are exchanged. The client sends HTTP GET
messages to request video segments and the DASH server
replies back by sending segment files, whose sizes are deter-
mined based on a real video dataset [9]. It is recommended that
the client buffers more than 6 seconds of media before playing
it out [17]. Hence, we consider initial buffering and rebuffering
durations equal 8 seconds and 4 seconds, respectively. Note
that this duration corresponds to a different number of seg-
ments depending on the segment duration. Additionally, the
segment download time during these buffering phases is much
shorter as low segment quality is usually requested. In all
compared algorithms, the lowest segment quality is requested
during the initial buffering. The client sends HTTP requests
immediately upon receiving the previous video segment unless
the buffer is full. In the case of a full buffer, the segment
request is delayed until the buffer can accommodate one more
segment or according to the adaptation algorithm scheduling
policy. In our simulation, we consider a fixed HTTP header
size of 100 bytes for both requests and responses.

In addition to ARBITER+, we implemented other adaptation
algorithms including ELASTIC [4], BBA2 [1], and MPC
[3]. ELASTIC is a hybrid algorithm whose design is based
on control theory and implements a harmonic estimator for
network throughput. Note that ELASTIC is designed to ensure
an application-level fairness in case of sharing a bottleneck.
BBA2 represents the class of algorithms that solely depend
on buffer-level in its adaptation decision. Note that BBA2
initially include a moving average estimator for the network

Figure 5: Experimental testbed setup

throughput to improve its startup performance but otherwise,
the adaptation decisions are mainly based on the buffer-level.
MPC is a hybrid algorithm whose decisions are based on
maximizing a QoE objective defined as a weighted sum of
quality, switching, and stall components. MPC is implemented
using Lindo solver6. It is worth noting that the design of both
MPC and ELASTIC include rate estimation using a harmonic
mean estimator. Our simulation results represent the average
of 384 evaluation scenarios - all combinations of 64 mobility
traces and 6 videos.

2) Experimental Setup: We implemented a simple testbed
that includes a mobile client (Nexus 6 with Android 7.1.1), a
wireless access point and an HTTP server (Ubuntu 16.04 LTS
PC with Intel i7 processor and 16GB of RAM), as depicted in
Figure 5. Our video traffic is based on the public iVID DASH
dataset [9]. The mobile client streams a video from the content
server (CS) through the wireless access point (WAP) with
wired link capacity between CS and WAP set according to 3G
bandwidth traces using tc tool7. We use ExoPlayer8, a Google
media library for video streaming on Android. We imple-
mented the ARBITER++, ELASTIC, and BBA-2 algorithms,
evaluating the device power consumption using one video for
64 traces, comparing also with ExoPlayer’s default adaptive
algorithm. Note that MPC is dropped in this experimental
study as its optimal solution can not be determined in real-
time. We replace it with the default adaptation algorithm that
is shipped with Exoplayer. We split our automated evaluation
into two rounds, containing 30 and 34 five-minute video
sessions. Before each round, we charge the mobile device to
100% battery capacity. We measure the battery level before
and after each video session to determine the power consumed
per session.

3) Performance Metrics: Our performance metrics per-
session include the average received quality rate (rav) in
Kbps, the number of freeze-free sessions (nff ), the number
of stalls (nf ), the total stall duration (tf ) in seconds, the
number of switches (nsw), the switching level (lsw). The
reported values represent the average of the performance
metrics across all clients in every experiment. We also report
the unfairness metric [2], denoted as F , for experiments testing
the performance of streaming algorithms when video clients
share an LTE eNodeB. This metric varies from 0 to 1 with

6http://www.lindo.com/
7http://lartc.org/manpages/tc.txt
8https://github.com/google/ExoPlayer
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Figure 6: Experiment 1: Average Performance metrics for
Fixed weight strategy (ρ = ρ = 85%). The metrics are
normalized to the case with ω = 50%, whose average metrics
are shown in figure.

smaller values indicating a friendly application-level attitude
of video clients.

We also considered two objective QoE models including
[15] and [18] that are denoted χ1 and χ2, respectively. Both
metrics are estimated as a weighted sum for both visual and
temporal QoE components by fitting the weights to subjective
results. The highest χ1 value is 100 and reduces as the level of
impairment increases. Visual impairments include persistence
on low-quality video and performing down quality switches
that are known to annoy users. On modeling visual impair-
ments, χ1 employs visual quality metric (VQM), which has
a high correlation to subjective QoE for single bit-rate video.
We calculated VQM values for different segments using VQM
software9. Temporal impairments captured by χ1 captures both
initial startup delay and stalls. χ2 aims to calculate the mean
opinion score ranging from 0 to 5. It captures the video quality
and quality switching using average and standard deviation
of downloaded segment rates normalized to the maximum
video representation rate (RQ). Similar to χ1, χ2 captures stall
penalty as a function of nf and tf .

B. ARBITER+ Performance

In this section, we illustrate the impact of ARBITER+
components on the streaming performance.

1) Experiment 1: The impact of the base weight: We
investigate the impact of the base weight on the performance
metrics by varying ω from 20% to 80%. In this experiment,
we disabled all other components of target rate estimation and
quality selection policy. Hence, we set the buffer scaling to
85% as a fixed estimation safety factor. The quality selection
policy is to request the best quality representation whose
advertised average rate is lower than the estimated target rate.

Figure 6 shows the impact of the base weight ω on the
average performance metrics of ARBITER+. Note that the
metrics are normalized to the result of ω = 50% to fit
different metrics in a single figure. The figure shows that the
impact of changing the base weight ω is mainly observed in
the switching and stall performance metrics with a minimal

9VQM software: https://goo.gl/RttfPr. Last accessed: Dec 21, 2016.

impact on observed on the average representation rate rav .
The average number of switches nsw increases by 2.5 folds
(from 11.7 to 29.1 switches) as the base weight ω changes
from 20% to 80%. Figure 7a also plots the CDF of individual
session switching behavior. Clearly, this figure assures nsw is
driven by a change in switching behavior as ω increases.

Additionally, Figure 6 shows that the average number of
stalls per session nf drops by 34% and the average total
stall duration per session tf is approximately halved as ω
changes from 20% to 80%. Clearly, a higher base weight
speeds the responsiveness to changes in the network bandwidth
at the cost of more frequent switches. Figure 7b and Figure
7c respectively plot the CDF of nf and tf showing a clear
performance gap as ω increases. To illustrate, 94% sessions
would have less than one stall with ω = 80% in comparison
to only 88% with ω = 20%. Additionally, Figure 7c shows that
94% session would have tf less than 20 sec with ω = 80%
in comparison to only 90% with ω = 20%.

Figure 6 also interestingly shows different trends for the
selected QoE metrics as ω increases. χ1 increases and reaches
a maximum at ω = 70% while χ2 shows a decreasing trend but
it also saturates at ω = 70%. This result assures the possible
difference in QoE perception of different users. Hence, we
considered the product of both χ1 and χ2 as our criteria for
selecting ARBITER+ base weight. The product suggests that
ω = 30% and ω = 40% would lead to the highest product.

2) Experiment 2: The impact of buffer scaling : Next,
we explore the impact of buffer scaling component on the
performance metrics for both ω = 30% and ω = 40%. We
tested different combinations of empty buffer scale ρb and
full buffer scale ρb. The selected values range from 75% to
85% for ρb and from 105% to 135% for ρb. Figure 8 plots
the average performance metrics for different combinations
of (ω, ρb, ρb) normalized to the case with tuple (30,85,85).
Additionally, Figure 9 plots the CDF of different metrics for
the same combinations of (ω, ρb, ρb). Clearly, both figures
shows that changing ρb and ρb has a noticeable impact on
all metrics. While changing the full-buffer and empty-buffer
scales has an insignificant impact on the average level of
switching, the number of switches changes by up to 15%
for the same base weight. We also notice that the number of
switches highly depends on the gap between ρb and ρb with
the number of switches increases with a larger gap. Changing
the buffer scales also leads to approximately 10% difference
in rav across the shown buffer scale combinations with both
ω = 30% and ω = 40%.

Stall performance metrics shows the highest sensitivity to
changes in both buffer scaling factors. To illustrate, Figure 8
shows that by increasing ρb from 105% to 135% with ω =
30 and ρb = 75%, both the average number of stalls and
average total stall duration increase by 56% while the number
of freeze free session drops by 12.3%. Figure 9b also shows
that the number of sessions encountering at most one stall
increases from 84% to 91% for the aforementioned parameter
combinations. Figures 8 and 9 also shows similar performance
degradation as the empty buffer scale ρb increases with ω =
30% and ρb = 135%.

Figure 8 also shows that buffer scaling can improve the
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(30,85,85), whose average metrics are shown in figure.

QoE in comparison to the no-scaling case. Both χ1 and χ2

increase by up to 6.2% and 7.7%, respectively, when compared
to fixed buffer scaling (30,85,85). While both metrics shows
that ρb = 75% leads to the highest QoE metric values, χ1

maintains minor increments in the QoE as ρb increases but
χ2 shows a higher sensitivity to stall performance degradation
as ρb increases as illustrated in Figure 9f. The configuration
(40,75,115) shows the highest value for the product of both
metrics χ1χ2. Hence, we consider this configuration as the
best values for ARBITER+ target rate estimation for 4-second
video segments. For longer video segments, the segment down-
load time of individual segments increases and hence, the base
weight ω should also be boosted. For a 10-second segment, we
found that ω = 70% provides the best performance with the
same buffer scaling factors; i.e., ρ = 115% and ρ = 75%. This
result confirms the importance of recent history propelling
using a larger base weight for long segment durations.

3) Experiment 3: The impact of AR, CS, and HS: Next, we
explore ARBITER+ components that are designed to improve
specific performance metrics. These components include ac-
tual video rate (AR), controlled switching (CS), and hybrid
sampling (HS). Figure 10 plots the average performance met-
rics, normalized to ARBITER(40,75,115), for different com-
binations ARBITER+ addons. Each individual addon achieves
its intended goal.

ARBITER+AR improved ARBITER+ stall performance by
reducing nf by 15% and tf by 13.5% while increasing nff

by 2.3%. This improvement is accompanied by only 2% drop
in rav and 8% increase in nsw. Hence, we consider AR is
a useful component for stall-sensitive video users. SC addon,
using h(q) in 6, improves both switching and stall performance
while maintaining the same average quality rate. CS reduces
ARBITER+ nsw by 1.5% and lsw by 3%. Additionally, the
integration of CS decreases nf by 4% and tf by 3.5%
and increases nff by 2.3%. By combining AR and CS,
ARBITER+AR+CS noticeably improves the stall performance
of ARBITER+AR by boosting nff by 4.9% and reducing nf
and tf by 19.5% and 15%, respectively.

We also investigate the impact of hybrid sampling on the
streaming performance. We set the timer τ to 12 sec. Note
that the actual segment size could be as large as 2.5 the
average segment size. Hence, the download time of such large
segment, with a perfect throughput estimate, can take up to
2.5 the segment duration. Hence, we set τ to three times
the segment duration. The introduction of hybrid sampling to
ARBITER+AR+SC further increases nff by 1.5% and reduces
both nf and tf by 22.5% and 15%, respectively. Hybrid
sampling improves throughput estimation in different ways.
When the throughput suddenly drops, the current segment
download may either finish while the user channel is still bad
or just after the throughput ramps up again. In the former
case, the throughput drop would be captured in two or more
time-based samples with low throughput. Hence, the target
rate estimator would calculate a low target rate leading to
reducing possible stalls or long stall durations. With segment-
based sampling, the throughput drop would be only captured
in the last sample. Hence, a high throughput estimate, driven
by previously recorded segments, may expose the client to
encounter stalls or longer stall duration while the network is
still in a bad condition. In the latter case, time-based sampling
would capture throughput variations in two or more samples
with the last one capturing the actual throughput increase.
Hence, the throughput estimate would be closer to the actual
current network throughput. With segment based sampling,
the most recent throughput sample would have a small value
that would trigger a low throughput estimate although the
throughput is already increasing.

4) Discussion: ARBITER+ integrates multiple components
that work in harmony to ensure a high user QoE. The tun-
able exponentially weighted throughput estimation can steer
the performance between stall sensitive and quality-oriented
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Figure 9: Experiment 2: CDF of Performance metrics
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streaming. The buffer-based scaling factor drives the target
rate between to avoid temporal and visual QoE issues while
ensuring persistent streaming for accurate rate estimation.
Additionally, the hybrid throughput sampling improves the
tractability of network rate changes through mixing syn-
chronous and asynchronous sampling. The actual rate tracking
is shown to be effective in reducing the impact of video rate
variability. The controlled switching also reduces the switching
frequency and stall probability. We tuned the performance of
ARBITER+ using two objective QoE metrics that are fitted to
subjective evaluation.

While tuning performance, the impact of different AR-
BITER+ components is perceived differently by both QoE
metrics. This difference confirms that QoE varies among
different users. We believe that χ2 is more sensitive to stalls
while χ1 is more sensitive to visual QoE. Our results also
show that we can achieve a high level of QoE by properly
tuned target rate estimation and using it as a rate bound.
ARBITER+ addons (AR, CS, and HS) have insignificant or
no impact on QoE but they have a noticeable impact on
individual QoE components. Hence, they can be enabled or

Table II: The parameters of streaming algorithms

BBA2 [1] B = 240 r = 2T r̄ = 0.6B
τh = 0.9B ∆B = 0.875T

ARBITER+ ω = 0.4 ρ = 0.75 ρ = 1.15
β = 60 W = 10 WV = 5
ns = 2 τ = 12

ELASTIC [4] W = 5 kp = 0.01 kI = 0.001
B = 30

MPC [3] λ = 1 µ = 4300 µs = 4300
WE = 5 h = 5 B = 60

r and r̄ represent lower and upper bounds for the adaptive buffer reserve

disabled to match user QoE profile. For example, AR and
HS noticeably improve stall performance through increasing
the representation switches. Hence, they would be effective
for a stall sensitive user. Similarly, ARBITER+SC would be
appreciated by users who are sensitive to frequent quality
switches.

C. Algorithm Performance Comparison

In this section, we compare the performance of AR-
BITER+AR+CS+HS to BBA2, ELASTIC, and MPC. In the
rest of this paper, we use ARBITER+ to denote the algorithm
with all its addons. Table II shows the default values of
the parameters of different algorithms. We have also tested
different buffer sizes for both BBA2 and ELASTIC. As a
notational mark, we use ALG-x to denote the adaptation logic-
buffer size. For example, BBA2-240 means BBA2 with a 240-
sec buffer. We noted that the buffer size significantly impacts
the performance of BBA2 and ELASTIC. With the default
buffer adopted by ARBITER+, its performance is insensitive
to the actual maximum buffer size.

Figure 11 plots the average performance metrics normalized
to corresponding ARBITER+ metric values. Each algorithm
shows a completely different behavior. MPC tends to request
high representation quality that is approximately 1.32x AR-
BITER+ average video rate. Additionally, MPC encounters
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Figure 11: Performance metrics for different algorithms nor-
malized to ARBITER+, whose metric values are shown as
labels.

3x stalls in comparison to ARBITER+ with 30% increase
in tf and 71.5% reduction in nff . While both MPC and
ARBITER+ achieve similar χ1, MPC poorly scores with χ2

metric realizing only 26% of ARBITER+ χ2 score.
With BBA2, we tested different buffer sizes including 60

sec, 90 sec, 120 sec and default 240 sec buffer. Changing the
buffer size implicitly buffer level adaptation regions including
the reservoir, the cushion, high-buffer zone. With small buffer
sizes (≤ 60 sec), BBA2 tends to download high video quality
but it encounters frequent longer stalls and frequent large
quality switches. Note that smaller buffer consequently have
a smaller cushion region over which buffer-level to quality
rate mapping takes place. On the other hand, large buffer
size extends both reservoir and cushion regions leading to
stabilizing switches and stalls but streams low video quality.
We found that 90-sec buffer shows a balanced performance
profile and scores high in both QoE metrics. In comparison to
ARBITER+, BBA2-90 shows a better stall performance as it
increases nff by 6% and reduced both nf and tf by 33% and
46%, respectively. However, this is accompanied by a drop of
3% in rav and a 40% increase in lsw. Both χ1 and χ2 metrics
show that ARBITER+ is more favorable by 10% and 30%,
respectively.

Similar to BBA2, we tested different buffer levels for
ELASTIC including the default 30-sec and 60-sec. We found
that ELASTIC achieves the highest QoE metric product for
its default buffer size (30 sec). ELASTIC-30 streams rav
that is only 78% ARBITER+ rate and performs only 76% of
ARBITER+ switches. We believe that the usage of the conser-
vative harmonic throughput estimator and its design to track a
buffer level are key factors that trigger ELASTIC to streaming
low video quality and performing fewer switches. However,
this design helps filling the buffer leading to a relatively good
stall performance even though it has the smallest buffer in the
compared algorithms. Overall, ARBITER+ scores higher for
both χ1 and χ2 by 17% and 40%, respectively.

In mobile environments, the user may care about additional
factors that are not captured by the video QoE metric. Power
consumption is one of these metrics that may be affected
by factors such as the buffer size and segment duration
[19]. The power budget of video applications includes three

Table III: Average power consumption of different strategies
per session measured as a percentage of the phone battery

Algorithm ARBITER+ ELASTIC BBA2 DEFAULT
Power % 1.17 1.04 1.19 1.27

key elements: the processing power, the display power, and
communication power. Table III shows the average power
consumption per session measured as a percentage of the
phone battery for different algorithms. These results show that
ELASTIC achieves the lowest power consumption followed
by ARBITER+, then BBA2 and DEFAULT. The reduced
power consumption of ELASTIC is interpreted by its reduced
communication power consumption as it downloads low video
quality segments, which are usually smaller. However, this
reduced power consumption is accompanied by a significant
drop QoE in comparison to ARBITER+. With only 1% dif-
ference in the average video session power usage of BBA2
and ARBITER+, they can be considered having similar power
consumption. However, ARBITER+ maintains a noticeable
performance gap in the overall user QoE. The DEFAULT Exo-
player performance consumes 8% more power per session than
ARBITER+. We also found that ARBITER+ achieves higher
scores for both χ1 and χ2 by 13% and 28%, respectively.
These results confirm that ARBITER+ achieves a superior
QoE performance and a balanced power usage.

D. Multi-client sharing a bottleneck

In this experiment, we investigate the performance of differ-
ent algorithms when multiple clients share an LTE eNodeB. In
this scenario, we consider six mobile clients sharing a 5 MHz
eNodeB whose transmission power is set to 47.78dBm [20].
Each client streams a different video from a remote server that
is connected to the cellular packet gateway using a 100Gb/s
link with 40ms RTT delay. Each client starts the streaming
with a one-second gap after the previous client.

The client mobility follows a Gauss Markov model [21]
with an average speed of 30Km/h. The mobility is bounded to
a box with a 400 m side with the eNodeB at the center. The
channel between the eNodeB and mobile clients uses Log-
Distance propagation loss model [20] and trace-based mobile
fading. The fading traces are generated using the MATLAB
script provided by LENA project. We repeated the simulation
30 times with different seed values that affect our random
elements including mobility and channel fading.

Figure 12 plots the performance metrics averaged over 180
sessions (6 clients x 30 runs). The performance in the sharing
scenario is consistent with the performance obtained in trace-
driven experiments. MPC streams the highest rav that is 1.23
the rav of both ARBITER+ and BBA2-90 while ELASTIC-
30 rav is only 0.74 that of ARBITER+. ELASTIC-30 triggers
the least number of quality switches followed by BBA-90,
ARBITER+, and MPC. However, ARBITER+ has the smallest
lsw followed by ELASTIC then MPC and BBA2 with a
noticeable gap.

MPC has only 37% freeze-free sessions followed by AR-
BITER+ and ELASTIC with approximately 90% freeze free
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sessions then BBA2-90 with 96% freeze free sessions. BBA2-
90 also encountered the least number of stalls nf and the
shortest total stall duration tf . This result illustrates the
effectiveness of buffer-based strategy in combating stalls.
ELASTIC-30 comes next to BBA2-90 for both nf and tf
followed by ARBITER+ and MPC comes last with a large
performance gap. ARBITER+ also scores the highest χ2 score
followed by ELASTIC-30, BBA2-90, and MPC with 74%,
70%, and 40% of ARBITER+ score. This result confirms that
ARBITER+ strikes a balance between temporal and visual
QoE dimensions leading to its superior QoE.

The video clients competition to shared resources is known
to cause fairness issue [13], [2]. Figure 12 shows that AR-
BITER+ achieves the lowest unfairness metric F [2] followed
by ELASTIC-30, BBA2-90, and MPC. This result ensures
that ARBITER+ does not only achieve the best QoE but it
constitutes application level fairness when the video clients
share network resources.

IV. RELATED WORK

State-of-the-art client-based adaptive streaming algorithms
can be generally classified as buffer-based, rate-based, and
hybrid strategies [22]. Buffer-based strategies, e.g., [1], [23],
mainly depends on the buffer level to select the representation
rate. Buffer-based strategies are known to have a long conver-
gence period until the selected quality matches the available
system bandwidth. Rate-based, e.g., [2], design depends on
estimating the available network bandwidth by observing the
delivery rate of the downloaded segments. The streaming client
typically requests the representation with the maximum rate
below the estimated bandwidth. Most of the existing solution
adopts moving average or harmonic mean estimators, which
do not capture the time relevance of different samples and
may not accurately capture the frequent variations in network
bandwidth. Recently, Sun et al. [24] presented a data-drive
throughput prediction model that improved the performance
of different streaming strategies after integrating the prediction
model as a rate estimator.

Several hybrid adaptation strategies integrate network and
application information in advanced models to improve the

streaming decision. In [4], De Cicco et al. propose ELAS-
TIC strategy that employs a proportional integral controller
combined with a harmonic network throughput estimator to
determine the next representation quality. In [3], Yin et al. pro-
pose model predictive control (MPC) optimization framework
that maximizes an ad-hoc QoE objective to identify the next
segment quality. In [7], Beben et al. model the media buffer
as a queuing system to calculate the stall probability (empty
system). The arrival process distribution is modeled using
segment fetch time statistics while the service distribution is
represented by a deterministic distribution. For practical im-
plementation, complex strategies, such as [3] and [7], rely on
discretizing the parameter space of their adaptation algorithm
to populate a database of solutions for different scenarios to
guide quality selection in real-time.

Li et al. [11] propose PANDA as a streaming heuristic that
selects the segment quality that ensures an accurate estimate
for the measured network throughput by using the network per-
sistently. It is worth noting that [4], [3], [2] employ harmonic
throughput estimator, which is a conservative estimator and
may under-estimate the network bandwidth in highly variable
conditions leading to a lower video quality. ARBITER+ design
combines the benefits of different adaptation approaches in
a lightweight algorithm. Its throughput estimation depends
on a tunable accurate averaging scheme that is combined
with buffer scaling to improve the responsiveness to varying
network conditions. Such responsiveness is a key factor for
achieving a high QoE.

In wireless and mobile systems, achieving a high streaming
QoE is challenging due to the variable nature of both encoded
video and channel conditions. In [25], Xie et al. propose
integrating physical layer information to improve the stream-
ing performance in cellular systems. However, this approach
is technology specific in comparison to using algorithms
that solely depends on application layer information. Traffic
shaping is also proposed at both server-side [26] and in the
network [27], [14] to improve the streaming performance in
wireless networks. The design of these solutions is orthogonal
to the design of the client-based adaptation strategy. However,
the interaction between different control loops of the streaming
ecosystem should improve the overall user QoE.

In DASH systems, quality spans two dimensions, namely:
temporal and visual aspects [28], [29], [15]. The former is
related to time-related events such as initial startup delay and
rebuffering frequency and duration while visual quality cap-
tures the received image quality and quality switching behav-
ior. Maximizing the received visual quality while minimizing
temporal quality degradation represent a challenging design
goal for adaptation strategies. Additionally, the underlying
randomness in the operating conditions, e.g., streaming over
highly variable conditions such as wireless systems [6], [7]
and/or sharing a link among a number of users [13], introduces
more challenges to the design. ARBITER+ decision engine
is designed with these challenges in mind. Additionally, it
integrates different components, such as AR, HS, and CS, that
target specific QoE aspect without affecting the overall user
QoE.

A few studies try to quantify the impact of video impair-
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ments on the user perceived QoE. In [30] Mok et al. propose
a model for quantifying the impact of rebuffering events on
user QoE. In [31], De Vriendt et al. propose a generic model
to capture the impact of quality switching on the QoE. In
[15], Liu et al. propose DASH-UE QoE model that quantifies
the impact of both temporal and visual impairments with
a high accuracy for videos up to 10 minutes. Considering
the interaction of different impairment types is a unique
feature in DASH-UE. Additionally, DASH-UE employs video
quality metric (VQM) [32] to accurately model the switching
impact on the visual QoE. ARBITER+ not only achieved the
highest QoE scores for both metrics but also shows the best
application-level fairness when a group of video users shares
an LTE eNodeB.

V. CONCLUSIONS

The inherent rate variability in both video demand and
network delivery represents a key challenge for supporting a
high user QoE. Video variable bitrate is a natural outcome
of compression techniques while network rate variability may
happen for several reasons, such as network load changes
in shared mediums, user mobility, and changes in wireless
channel conditions. Handling video rate variability is com-
monly overlooked in the design of adaptive bitrate algorithms.
Additionally, network rate variability is usually accommodated
by adopting conservative designs that reduce the overall user
QoE. ARBITER+ represents a novel adaptation strategy that
integrates several components that are designed to ensure high
user QoE while accommodating the variability of both network
delivery and video playout rates. We show using extensive
experiments the impact of ARBITER+’s design components
on the user QoE. We also show that ARBITER+ offers the
best user QoE in comparison to state-of-the-art algorithms.
Additionally, we show that ARBITER+ supports the best
application level fairness when a group of users shares a
wireless link.
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