
Title The ABC of software engineering research

Authors Stol, Klaas-Jan;Fitzgerald, Brian

Publication date 2018-07

Original Citation Stol, K.-J. and Fitzgerald, B. (2018) 'The ABC of Software
Engineering Research', ACM Transactions on Software
Engineering and Methodology, 27(3), 11 (51 pp). doi:
10.1145/3241743

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://dl.acm.org/citation.cfm?id=3241743 - 10.1145/3241743

Rights © 2018 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.

Download date 2024-04-28 10:22:30

Item downloaded
from

https://hdl.handle.net/10468/7037

https://hdl.handle.net/10468/7037

1

The ABC of Software Engineering Research

KLAAS-JAN STOL, University College Cork and Lero—the Irish Software Research Centre, Ireland
BRIAN FITZGERALD, University of Limerick and Lero—the Irish Software Research Centre, Ireland

A variety of research methods and techniques are available to SE researchers, and while several overviews exist, there is
neither consistency in the research methods covered nor in the terminology used. Furthermore, research is sometimes critically
reviewed for characteristics inherent to the methods. We adopt a taxonomy from the social sciences, termed here the ABC
framework for SE research, which offers a holistic view of eight archetypal research strategies. ABC refers to the research
goal which strives for generalizability over Actors (A), precise measurement of their Behavior (B), in a realistic Context (C).
The ABC framework uses two dimensions widely considered to be key in research design: the level of obtrusiveness of the
research, and generalizability of research findings. We discuss metaphors for each strategy and their inherent limitations
and potential strengths. We illustrate these research strategies in two key SE domains: global software engineering and
requirements engineering, and apply the framework on a sample of 75 articles. Finally, we discuss six ways in which the
framework can advance SE research.

CCS Concepts: • General and reference→ Surveys and overviews; General literature; Empirical studies;

Additional Key Words and Phrases: Research methodology, research strategy

ACM Reference Format:
Klaas-Jan Stol and Brian Fitzgerald. 2018. The ABC of Software Engineering Research. ACM Trans. Softw. Eng. Methodol. 1, 1,
Article 1 (January 2018), 51 pages.
https://doi.org/10.1145/3241743

1 INTRODUCTION
The proper place to study elephants
is the jungle, not the zoo.1

The proper place to study bacteria
is the laboratory, not the jungle.2

1Ephraim R. McLean, comment on a paper by Richard van Horn [135]
2Remark by Keng-Leng Siau at a conference.

This work was supported, in part, by Science Foundation Ireland grant 15/SIRG/3293 and 13/RC/2094 and co-funded under the European
Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero—the Irish Software Research Centre
(www.lero.ie).
Authors’ addresses: K. Stol, School of Computer Science & Information Technology, University College Cork, Ireland; B. Fitzgerald, Lero—the
Irish Software Research Centre, University of Limerick, Ireland.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1049-331X/2018/1-ART1
https://doi.org/10.1145/3241743

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3241743
https://doi.org/10.1145/3241743
Alan Partridge
This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication. Please cite as:

Klaas-Jan Stol and Brian Fitzgerald (in press) The ABC of Software Engineering Research. ACM Transactions on Software Engineering and Methodology. DOI: 10.1145/3241743�

1:2 • K. Stol and B. Fitzgerald

The choice of research strategy is not ‘good’ or ‘bad’ a priori, but is very much dependent on the setting and
goal of the research. A biologist may be interested in studying the behavior of elephants in groups, for example,
in which case a visit to the jungle is warranted, with a considerable lack of control of variables (and the elephant’s
behavior) as an inherent consequence. On the other hand, a researcher may be interested in studying parts of
an elephant, such as the structure of its skin, in which the continuous and immediate access that a zoo offers is
more appropriate. Besides ease of access, the zoo environment offers a potentially higher degree of control of
measurement of the variables that a researcher might be interested in. However, this comes at the inherent cost
of a less realistic context.

Research methodology has received considerable attention in the software engineering research community in
recent years [48, 84, 155, 190]. In a review published in 2002, Glass et al. concluded that SE research was “narrow
regarding research approach and method” [63], but this has since changed dramatically. Software engineering
researchers have adopted numerous research methods, approaches, and techniques from other fields, partly
driven by calls for more evidence-based practice and empirical research. Traditionally, empirical research in
software engineering has been characterized by a strong emphasis on quantitative and experimental research
[12, 102, 155, 206]. However, more recently, a broader range of approaches have been applied, including qualitative
approaches such as grounded theory studies [202], ethnographies [179], and Delphi studies [105].
A key issue in discussing research methods in software engineering is disagreement and confusion about

terminology. Two decades ago, Harrison et al. called for “a classification scheme of research methodologies” [68] to
improve the state of empirical research in software engineering. Thus far, a common taxonomy has been lacking,
despite numerous overviews of research methods in software engineering. Table 1 presents a small selection
of sources from the SE literature presenting overviews of research methods.3 These overviews provide a good

3Many more sources exist. We selected these because they are well known within the SE literature judging by their citation counts.

Table 1. A “mixed bag”: alternative research methods in software engineering according to a selection of sources

Glass et al. [63] Zannier et al. [230] Sjøberg et al. [190] Höfer & Tichy [75] Easterbrook et al. [48]

Action research Controlled experiment Controlled experiment Case study Experimentation
Conceptual analysis Quasi experiment Surveys Correlational study Case study
Concept implementation Case Study Case studies Ethnography Survey
Case study Exploratory case study Action research Ex post facto study Ethnography
Data analysis Experience report Experiment Action research
Discourse analysis Meta-analysis Meta analysis
Ethnography Example application Phenomenology
Field experiment Survey Survey
Field study Discussion
Grounded theory
Hermeneutics
Instrument development
Laboratory experiment
(human / software)
Literature review
Meta-analysis
Mathematical proof
Protocol analysis
Phenomenology
Simulation
Descriptive/expl. survey

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:3

introduction, but tend to list a “mixed bag” [132] of methods. Typically, such sources enumerate a set of methods,
without a holistic view that affords a systematic comparison. Furthermore, when considering the research process
as a series of steps, the ‘scope’ or ‘granularity’ of various methods and techniques varies widely, ranging from
data analysis techniques (e.g. discourse analysis and social network analysis), to a complete research process that
addresses data collection, sampling, and analysis (e.g. grounded theory [60]). Terminology can also be ambiguous:
terms such as “case study” and “experiment” are sometimes misinterpreted [48, 191]. This ambiguity and lack of
a systematic comparison makes it difficult, especially for novice researchers who have embarked on a doctoral
program, to understand the trade-offs of choosing one method over another.

Rather than discussing research methods, we “borrow” (following Sim et al. [187]) the term ‘research strategy’
[170]. A research strategy is a category of research methods that can be characterized by two dimensions: (a) the
level of obtrusiveness of the research in a given setting, and (b) the extent to which the findings are generalizable
to other settings. We discuss these dimensions in more detail in Sections 2 and 3.

All research strategies are inherently limited in one way or another. For example, case studies are often unfairly
criticized for their lack of generalizability. Likewise, readers may lament the lack of realism in a controlled
experiment conducted in a laboratory setting. Researchers have argued for more realism in software engineering
experiments [188], specifically with respect to participants, or actors (e.g. students v. professionals), tasks, or what
we could also describe as behavior (e.g. artificial problems v. real-life problems) and environments, or contexts (e.g.
pen and paper v. an industrial development environment). Others may find the lack of contextual information in
sample survey research unsatisfactory. These inherent limitations can never be overcome, no matter how hard
a researcher might try. McGrath observed that optimizing a study to achieve generalizability over actors (A),
precise measurement of their behavior (B), in a realistic context (C) is impossible, and is a “three-horned dilemma
[since] there is no way—in principle—to maximize all three (conflicting) desiderata of the research strategy domain”
[132]. Consequently, if an evaluation of a study is to be fair, it must be based on how well it achieves its potential
strengths, rather than on criteria that it can never fulfill.
Much software engineering research is concerned with the same three components (see Table 2):
• actors (A) which includes software professionals [103, 216], software systems [23], and their users;
• their behavior (B) [33, 218] (e.g. coordination among developers [107]; developer productivity [64] and
antecedents e.g. motivation [14]; systems’ performance and other quality attributes);

• and the context (C) of a specific system or organization [47, 156, 157].
In this article,4 we present the ABC framework (named after the three concerns mentioned above) which is

adapted from the taxonomy developed by McGrath and his colleagues in the social sciences [130–132, 134, 170],
and seek to provide guidance to help researchers select an appropriate research strategy that aligns with the
goals of their research. The ABC framework contributes to the discourse on research methodology in software
engineering by offering an alternative, holistic view that positions eight archetypal research strategies along the
two dimensions of obtrusiveness and generalizability mentioned above.
4This article is a revised and extended version of our paper “A Holistic Overview of Software Engineering Research Strategies” [199].

Table 2. Examples of Actors, Behavior and Context in software engineering research

Actors Managers, software engineers, users, software systems, software development artifacts incl. defects, tools, techniques,
prototypes

Behavior System behavior (e.g., reliability, performance and other quality attributes), software engineers’ behavior and antecedents
such as productivity, motivation, and intention

Context Industrial settings, organizations, software projects, development teams, software laboratory, classroom, meeting rooms

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 • K. Stol and B. Fitzgerald

Table 3. Comparison of knowledge-seeking vs. solution-seeking research in software engineering research

Knowledge-seeking research Solution-seeking research

Goal To generate or propose scientific claims, and to evaluate and
validate those claims. This may also include the development
of instruments or other artifacts with the specific purpose of
supporting or enabling these knowledge-seeking activities,
e.g., the construction of an instrument that facilitates data
gathering or analysis.

To design or develop new, or improve existing solutions
that can help to overcome or ameliorate challenges, bottle-
necks, and other problems in the development of software
systems and supporting processes.

Focus of
research

A phenomenon within software engineering, or a characteris-
tic thereof, that is not (or not sufficiently) well understood or
known.

A specific software engineering challenge, obstacle, or
problem, and the design or creation of a solution.

Outcome Empirical findings, descriptions, insights generated by simula-
tions, theoretical or conceptual frameworks, or hypotheses.

Artifacts, which include algorithms, tools, notations (incl.
languages), models, mechanisms and techniques.

Example Research question: How does Extreme Programming work?
Sharp et al. conducted an ethnographic study to capture how
developers employ XP development practices [180].

Research question: how to select a manageable subset of
the input data faster in order to automatically find perfor-
mance bottlenecks? Luo et al. proposed FOREPOST: an
adaptive, feedback-directed learning testing system that
helps to find performance bottlenecks [124]. (Note that the
evaluation of FOREPOST is a knowledge-seeking study.)

We distinguish between solution-seeking and knowledge-seeking studies [201] (see Table 3 for a summary).
Solution-seeking studies aim to solve practical problems for which solutions can be engineered. Wieringa has
called this type of research world problems [220] and later, practical problems [219]. In solution-seeking studies,
researchers design, create, or develop solutions for a software engineering challenge. The outcome of these
studies include algorithms, models, and tools.
Knowledge-seeking studies, on the other hand, aim to learn something about the world around us—and in

a software engineering context, that world includes software systems, artifacts resulting from the software
development process (e.g. defects), and users and developers along with their behavior, within a given context.
Knowledge-seeking studies can also be conducted to evaluate or validate solutions developed in solution-seeking
studies, or to compare different solutions for performance, for example. Knowledge-seeking studies are not
limited to empirical methods only; non-empirical (or theoretical) approaches such as computer simulation and
the development of conceptual models also address knowledge questions. In this article we focus on knowledge-
seeking studies exclusively. Furthermore, we focus on strategies to conduct primary research, and therefore
do not consider strategies to conduct secondary studies including systematic literature reviews, meta-analyses,
and meta-ethnographies. Secondary studies are typically conducted as “desk research” and aim to synthesize or
summarize research results presented in primary studies.
This article proceeds as follows. Sec. 2 discusses a number of problems related to terminology in SE research

methodology. This section also provides an overview of methodological guidance for SE researchers, and concludes
with a discussion of two key dimensions (obtrusiveness and generalizability) that are important in the selection of
a research strategy. In Sec. 3, we present the ABC framework which defines eight archetypal research strategies
for software engineering research. Sec. 4 demonstrates the applicability of the framework by illustrating how
the eight archetypal research strategies are employed in two key research areas within SE: global software
engineering (GSE) and requirements engineering (RE). Sec. 5 concludes the article by discussing implications for
SE research and how to further advance SE research.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:5

2 BACKGROUND AND RELATED WORK
This section starts with a brief discussion of terminology concerning research methods (Sec. 2.1). We then
summarize prior work which offers guidance in selecting research methods (Sec. 2.2). We conclude this section
by discussing the two previously mentioned dimensions which are central when choosing research strategies:
the level of obtrusiveness of a study, and the generalizability of a study’s findings (Sec. 2.3).

2.1 Terminology
Since Glass and colleagues noted the “narrow” range of research approaches [61, 63], the SE community has
seen an increased interest in the social and human aspects of software engineering, though the importance of
these aspects was already observed much earlier [35, 114, 179]. Traditionally, empirical research in software
engineering implied quantitative approaches and experimentation [11],[109, p. 98],[20, 32, 139, 154, 155, 175, 207].
However, there has been an increasing awareness that software engineering is multi-disciplinary [68], a “social
activity” [42], and “essentially a human activity” [175, 222], and that SE researchers must make observations in
the “real world” [139, p. 17]. Consequently, the SE field has now widely embraced these alternative approaches to
study human aspects. A landmark paper in this respect was Seaman’s 1999 article on qualitative methods for
software engineering [174], which was published in a special issue of IEEE Transactions on Software Engineering
on empirical software engineering [84]. Besides special issues in key journals in the field [43, 46], there are
dedicated events that focus on these topics, most notably the CHASE (Cooperative and Human Aspects of
Software Engineering) workshops [40].

While there is now a considerable body of knowledge on research methods and techniques as they pertain to a
software engineering context (see Table 1), the SE literature lacks a commonly adopted typology or taxonomy of
research strategies that systematically positions them in relation to each other. When discussing research design,
researchers often cite a number of dichotomies [56, 62, 81, 186, 222]:

• field v. laboratory research
• desk v. field research
• in vitro v. in vivo
• quantitative v. qualitative research
• fixed v. flexible research
• positivist v. interpretivist research

• positivist v. interpretivist research
• inductive v. deductive research
• exploratory v. confirmatory research
• rigor v. relevance
• internal v. external validity

These dichotomous distinctions are useful for researchers to understand some fundamental research design
decisions. For example, it is quite clear that field research differs from laboratory research in a variety of ways,
most notably the level of control that a researcher may exert on the research setting. While these distinctions
provide some hints as to a researcher’s intention, they do not fully convey the details of the research strategy
that the researcher may have in mind. Furthermore, these distinctions do not paint the complete picture, and
indeed some represent false dichotomies—that is, the dichotomy suggests two mutually exclusive “extremes,” as
if it were a trade-off, while in actual fact reality is more complicated.
Terminology is often misused when discussing research methods [143, 232]. We illustrate terminological

disagreements with a number of examples. Edmondson and McManus defined field studies as “systematic studies
that rely on the collection of original data—qualitative or quantitative—in real organizations” [50, p. 1155]. Common
methods used in field studies are the case study, interview study, or online questionnaires. However, even these
terms are problematic. In a review of methods for evaluation, Zelkowitz [231] observed that “many of the authors
used terms like ‘experiment,’ ‘case study,’ ‘simulation,’ ‘controlled,’ etc. in very different ways.”

The term ‘case study’ has been particularly problematic. Easterbrook et al. [48] pointed out that, “There is much
confusion in the SE literature over what constitutes a case study.” Indeed, as Easterbrook et al. and others [90] have

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 • K. Stol and B. Fitzgerald

observed, the term case study has been used as an empirical method to study a phenomenon (e.g., a case study of
open source software development [142]) or as a ‘worked example’ (e.g., a simulation of adaptive security in a
building [211]). Rosenblum and Weyuker [166] used the term “case study” for their study on a regression test
suite, but Lanubile considered this an experiment instead, drawing a clear distinction between a study of the
artificial and real world events [109, p. 105]:

“Although the authors use 31 real versions of the popular KornShell command processor, the test suite is
artificial and thus the study is a simulation of the real evolution. The artificiality of the study does not
fit with the definition of case study, which focuses on real events.”

VanHorn differentiated between case studies and field studies, with case studies focusing on a single organization
(or part thereof) and field studies considering “several or more” organizations [212]. In his description, both
methods lack experimental control. Furthermore, he acknowledged that field studies are similar to case studies.
Limiting a study’s characterization as a ‘case study’ or an ‘experiment’ does not clearly convey the goal of

the research. Case studies, for example, can be descriptive, exploratory or evaluative, and within each of those,
the level of control that a researcher (believes he or she) can exert varies. A descriptive case study typically
depends on “thick description” to capture information about a phenomenon within a given real-world context.
Some exploratory case studies only present qualitative findings (e.g., Herbsleb and Grinter’s study of distributed
development [73]), whereas others develop and quantitatively evaluate a set of hypotheses (e.g., the two case
studies of open source development by Mockus et al. [142]). The term ‘experiment’ has been used for several
types of research design [191], and Montesi and Lago found that the terms ‘experiment’ and ‘experimentation’
are often inappropriately used in software engineering research [143].
The term ‘survey’ is equally problematic; in most cases it refers to a sample survey, but the term has also

been used as a synonym for literature review (e.g., “A Survey of Controlled Experiments in Software Engineering”
[191]), or as an overview of existing solutions in a given domain (e.g., “A Survey on Software Architecture Analysis
Methods” [44]). Other terms have been misused as well; for example, many software engineering researchers
claim to have done a “Grounded Theory” study when in reality they may have merely used specific data analysis
techniques (e.g., open coding) [202]. Consequently, it is not always clear what is meant by research method,
data collection method, or technique. Table 1 presents a selection of mixed bags of methods in the SE literature
by different authors—several other overviews exist; the aim of this table is not to be exhaustive, but rather to
illustrate the point that different authors have presented quite varying overviews of methods. Some sources
provide more detailed classifications than others. For example, some sources use the term experimentation,
whereas others differentiate between controlled experiment and quasi experiment.

It is important that studies report clearly which research strategy has been employed in order to prevent
misunderstandings. One example of this arose around an experiment by Sobel and Clarkson [192]. This experiment
investigated the effects of teaching formal methods to undergraduate software engineering students. In a comment
on this study, Berry and Tichy argued that the experiment was invalid for several reasons, including weaknesses
in the experimental design and a lack of control [17]. In turn, Sobel and Clarkson issued a rebuttal claiming that
their experiment was not laboratory research, but rather field research and claimed that, as a consequence, Berry
and Tichy’s points of critique were moot [193].

Defining a common taxonomy of methods is very complicated for several reasons. One difficulty is that research
methods tend to be of different ‘granularity.’ A case study, for example, implies quite a specific scope of study
(which is what makes it a case study), and researchers typically define a unit of analysis [229]. However, the
actual data collection and analysis methods are not prescribed—while common data collection methods include
interviews, case studies could also rely on quantitative data only. An ethnographic study is more precisely
focused as being conducted within a very specific and natural context, and data collection is done in unobtrusive
ways—that is, the researcher does not manipulate or control the research setting, but merely aims to understand

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:7

it. On the other hand, the scope in Grounded Theory studies is not readily clear. GT studies can be conducted
within a specific organization (e.g. [1]) or across organizations (e.g. [74]), depending on the goal of the study.

A second complication is that hundreds of methods and techniques exist, and new methods are proposed as
researchers become dissatisfied with existing approaches or develop new techniques based on technological
advances. Grounded Theory, for example, was developed in the 1960s as a result of a dissatisfaction with how
contemporary research was conducted [59]. Newly developed theories also give rise to new methods. For example,
Personal Construct Theory (PCT) gave rise to an approach called the Repertory Grid Technique [51]. Social
Network Analysis (SNA) is another well-known data analysis technique that can be traced back to sociology,
anthropology, and role theory [205]. Today, SNA has been used to study software development activity and
developers [123], which is enabled by the rich availability of data and technology to analyze these networks.

2.2 Related Work
The selection and appropriate use of research methods and strategies is critically important to conduct sound
research. Numerous authors have provided guidance and analyses towards this goal—Table 4 lists a number of
well known sources. Similar to Table 1, the purpose of Table 4 is not to be exhaustive, but rather to list some of
the key sources that are available to SE researchers, and to indicate the range of variety in different methods that
have been used in SE research. Several of the sources in the table provide an analysis on the use of, or guidance for,
specific methods. For example, extensive guidance is available for conducting case studies [168, 169], experiments
[91, 223], and survey studies [158]. Other sources discuss the use and reflect on the role of approaches such as the
Repertory Grid Technique [51], Grounded Theory [202], and ethnographic studies in software engineering [179].

Seaman presented one of the first in-depth overviews of qualitative methods for software engineering research,
in particular focusing on data collection methods and analysis techniques such as interviews and the constant
comparison method found in Grounded Theory [174]. This article represented a major milestone in SE research,
given the hitherto strong focus on quantitative methods. Lethbridge et al. proposed a taxonomy of data collection
techniques which is specifically focused on field studies [117]. Their taxonomy is organized around the level of
human intervention; that is, how much involvement of the researcher or participants is needed to collect data.
Techniques vary from first degree techniques such as interviews, second degree such as instrumenting systems
and fly-on-the-wall, to third degree techniques such as document analysis.

A number of authors have presented typologies and taxonomies of research approaches in software engineering.
Shaw developed a bottom-up classification of research questions and research methods based on an analysis
of paper abstracts submitted to the 2002 International Conference on Software Engineering (ICSE) [183]. Her
classification addresses questions regarding generalizability or characterization of phenomena, methods for
analysis, and design and evaluation of an artifact or practice. Wieringa et al. [221] proposed a paper classification
based on an “engineering cycle,” which focuses specifically on Requirements Engineering and consists of activities
such as problem investigation, solution design, and solution validation. The paper classification distinguishes the
following types of research: evaluation research, proposal of solution, validation research, philosophical papers
(which include conceptual papers), opinion papers, and personal experience papers. Though the classification
was suggested specifically for the RE field, it has proven useful in many other areas within software engineering,
in particular for classifying studies in systematic reviews and mapping studies (e.g. [157]). Montesi and Lago
proposed a taxonomy of SE article types based on previous literature discussing research methodology, author
instructions provided by selected journals, and calls for papers of major SE conferences [143]. While these
classifications are useful, they does not assist in understanding the inherent strengths and limitations of the
various research strategies that a researcher may select to conduct research.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 • K. Stol and B. Fitzgerald

Table 4. Selection of methodological guidance relevant to software engineering research in the last two decades

Authors Year Focus Contribution

Zelkowitz and Wallace
[232]

1998 Technology validation Provides an overview of experimental techniques to validate of new
technologies.

Seaman [174] 1999 Qualitative methods Guidelines for qualitative data collection and analysis.

Wohlin et al. [223, 224] 2000,
2012

Experiments Book with a brief overview of empirical methods in SE with the remainder
focused on conducting experiments. Second edition published in 2012.

Juristo and Moreno [91] 2001 Experiments Book on experimentation in software engineering.

Pfleeger and Kitchenham
[97–101, 158]

2001-
2003

Surveys A six-part tutorial series on designing and conducting surveys in software
engineering.

Kitchenham et al. [102] 2002 Experimental studies Guidelines for conducting (experimental) empirical studies.

Shaw [182, 183] 2002 Software engineering
studies in ICSE 2002

Overview of types of research questions, research results, validation
techniques, and research strategies based on analysis of ICSE 2002 papers.

Lethbridge et al. [117] 2005 Data collection methods
for field research

A typology of data collection methods based on the degree of human
intervention. Distinction between first, second, and third degree methods.

Wieringa et al. [221] 2006 Requirements engineering
research

Framework for classifying RE research: evaluation, validation, opinion,
solution proposal, philosophical, personal experience.

Easterbrook et al. [48] 2008 Empirical software
engineering research

Overview of common methods. Selection of methods informed by type of
research question and epistemology. (Chapter in Shull et al. [185] below).

Shull et al. [185] 2008 Empirical software
engineering

Collection of chapters that discuss variety of research methods, including
focus groups, simulation, experiments and theory development.

Runeson et al. [168, 169] 2009,
2012

Case studies Guidance for designing, conducting and reporting case studies; the 2009
article was extended into a book published in 2012.

Edwards et al. [51] 2009 Repertory Grid Technique Review and discussion of the Repertory Grid Technique in SE.

Ivarsson and Gorschek
[79]

2011 Rigor and relevance Presents a model for evaluating rigor and relevance of technology evalu-
ations for industry.

Wohlin and Aurum [222] 2015 Empirical software
engineering research

A decision-making structure for selecting a research design, considering
issues such as research question, research logic, and research purpose.

Sharp et al. [179] 2016 Ethnographic studies Discusses the use and value of ethnographic studies in SE research.

Stol et al. [202] 2016 Grounded theory Discusses different variants of grounded theory, GT use in SE studies,
and guidelines for reporting GT.

Ralph [161] 2018 Developing process
theories and taxonomies

Guidance for developing process theories (as opposed to variance theo-
ries) in software engineering.

Wohlin and Aurum proposed a decision-making structure for selecting a research design [222]. Their framework
considers a number research design decisions including the research outcome, research logic (i.e. inductive vs.
deductive), and research purpose (i.e. explanatory, descriptive, exploratory, or evaluative).

Most authors discuss empirical research methods, which refers to research approaches to gather observations
and evidence from the real world. However, knowledge-seeking studies may also adopt non-empirical, or
theoretical, research strategies which can provide useful insights, such as formal theory development [161,
189, 200] and simulation [77]. While the various classifications discussed above each have a specific focus and
strengths, their discussion remains at the level of individual research methods and techniques. Furthermore, they

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:9

do not provide a holistic overview of research approaches that systematically positions and compares alternative
strategies in relation to one another. In the next subsection, we lay the foundation for such a holistic overview.

2.3 Dimensions of Research Strategies: Obtrusiveness and Generalizability
Two important dimensions of research strategy are the level of obtrusiveness and generalizability. These two
dimensions are the axes in the ABC framework in Sec. 3, and are described in turn here.

2.3.1 Obtrusiveness. The first dimension is concerned with how obtrusive the research is: to which extent
does a researcher “intrude” the research setting, or simply make observations in an unobtrusive way. Researchers
who wish to exert more control in a research study usually have to intrude in the research setting, for example
to manipulate some variables. Several authors have argued that the level of control that a researcher can exert
while conducting a study is a key concern [35, 54, 67, 154, 169, 232]. One concern often raised in the context
of qualitative methods such as ethnographic and case study research is a lack of control. Parnas lamented the
lack of experimental design in current empirical software development research and how observations from a
small number of ‘uncontrolled case studies’ do not contribute to scientific knowledge [154, p. 56]. In response
to Parnas, Curtis argued that “the more realistic the experimental environment, the more difficult it becomes to
control all the factors that create alternate explanations of the hypothesized results” [34]. This clearly suggests the
inherent tension between the experimental environment (Context) and precision of measurement (of Behavior).
Expectations as to what represents a “good case study” also vary. For example, some reviewers have lamented the
“[lack of] control usually required to do a good case study paper,” or that studies are “poorly controlled” [35, p. 1099].
However, in many cases, the purpose of an exploratory or descriptive case study is to understand the challenges
and practices in a real-world setting, rather than measuring any relationship between variables. Thus, the level
of control that a researcher has (or thinks to have) will depend on the goal of the research and will affect the
realism of the research context. Hannay and Jørgensen distinguished between the ‘structural’ and ‘situational’
artificiality in experiments: structural artificiality is “the methodological essence of control” to allow for controlling
of variables and drawing conclusions about treatment-outcome relationships [67]. Situational artificiality refers
to the elements of the experimental design, such as the subjects (e.g., the use of students) and tasks and settings
(e.g., toy systems). Selecting a research approach with high potential for control does not guarantee that this is
achieved in practice. For example, a controlled experiment offers considerable potential for a high level of control,
but this can be very difficult to achieve and such a study requires a careful design (e.g., [17, p. 569]).

2.3.2 Generalizability. A second key concern that authors have expressed is the level of generalizability of
research findings. This has been a recurring concern in software engineering research, in particular in the context
of case studies— captured succinctly by one referee: “Case study reports are [...] limited, because they report a single
case.” Indeed, exploratory case studies, and other types of field studies, are limited in that the researcher cannot
draw any statistically generalizing conclusions from such studies. However, such generalization of findings is
not the goal of such studies—instead, exploratory case studies and other types of field studies aim to develop an
understanding, rather than generalization of findings across different settings. Exploratory case studies can be
used to theorize and propose hypotheses about other, similar contexts. For example, Mockus et al. developed
hypotheses based on a case study of one open source project and tested these through a second case study [142].
Ethnography is another research method that has been adopted by software engineering researchers [164].

Van Maanen defines the aim of an ethnography as: “to discover and disclose the socially acquired and shared
understandings necessary to become a member of a specified social unit,” and the result to be a “cultural description”
[213, p. 103]. Thus, the scope of the setting is by definition limited. This inherent limitation of the method should
not be highlighted as a shortcoming when evaluating such a study.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 • K. Stol and B. Fitzgerald

3 THE ABC FRAMEWORK FOR RESEARCH STRATEGIES
This section presents a framework that provides a holistic overview of eight different research strategies. The
framework, which we have termed the ABC framework (Fig. 1), was originally devised by McGrath and his
colleagues for the social sciences [131, 133, 134, 170, 217]. We have interpreted, tailored, and operationalized
the framework for a software engineering research context. Specifically, we refined the terminology used in the
framework—for example, in the social sciences the term “actor” refers to a person, whereas in SE, actors may
represent professionals, applications and systems, or their users. To operationalize the framework, we identified
exemplar studies that adopted the archetypal research strategies in two SE research areas (global software
engineering and requirements engineering). To demonstrate a more general applicability of the framework, we
analyzed all articles published in Springer’s Empirical Software Engineering journal in 2017. Both analyses are
presented in Sec. 4.
The framework is underpinned by the two key dimensions of obtrusiveness and generalizability which were

described in Sec. 2.3. These axes frame an area within which eight archetypal research strategies can be positioned.
The first dimension (the x-axis in Fig. 1) is that of generalizability or universality: research strategies can result in
findings that are either specific to a particular context or system, or more generalizable. The second dimension (the
y-axis in Fig. 1) is the level of ‘obtrusiveness,’ and refers to the degree to which a research setting is manipulated
or instrumented to conduct research. A researcher may be unobtrusive by merely observing an activity or
interviewing informants without manipulating any aspect of the research setting—an industry case study using
document analysis and interviews to gather data is one example of this. On the other hand, a researcher may
‘intrude’ on the research setting by manipulating some variables, or divide participants into different treatment
groups in order to measure some effect; such operations change the circumstances of a study and its participants.
An article may report on one or more studies, each of which may employ a different research strategy; for

example, a case study followed by a sample study [197]. As discussed in Sec. 1, many SE studies are solution-
seeking studies, which result in an artifact such as a new algorithm, approach, or tool. Such solution-seeking
studies do not fall within the scope of the ABC framework. However, it is customary that such proposed artifacts
are evaluated or validated, and such evaluation studies can be classified using the ABC framework.
The remainder of this section presents each of the eight research strategies. For each strategy we discuss a

metaphor that, in our opinion, conveys the essence of that strategy and which may help in distinguishing the
eight strategies. For example, we adopted the “jungle” metaphor from this article’s opening quote to represent
field studies. Metaphors may help to understand the essence of concepts and terms, but metaphors have limits
and should not be taken literally—we do not suggest that field studies (i.e., jungle) pose any danger to researchers.
Instead, it suggests that a researcher enters a research setting that existed prior to, and independent of, the
researcher’s presence. In this setting, we see the researcher as an “explorer” who aims to study or observe a
subject in this natural setting without disturbing the actors inhabiting the setting. Because the eight research
strategies differ quite significantly in terms of their typical setting and procedures (e.g. a controlled experiment
in a contrived setting vs. an ethnography in a natural setting), the metaphors also vary quite significantly. The
different metaphors are not meant to be compared, though some are in related domains (e.g. jungle, nature
reserve, and greenhouse). Table 5 presents a summary of the research strategies and their associated metaphors,
purpose, methods and inherent limitations.

3.1 Field Studies
The term field study refers to any research conducted in a specific, real-world setting to study a specific software
engineering phenomenon. The field study strategy is located in Quadrant I (Fig. 1), representing natural settings.
Field studies are unobtrusive in that a researcher does not actively control or change any parameters or variables.
That is, there is no deliberate modification of the research setting. Field studies are used to develop a deep

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:11

Experimental
Simulations

Laboratory
Experiments

Judgment
Studies

Sample
Studies

Formal
Theory

Computer
Simulations

Field
Experiments

Field
Studies

Less
obtrusive
research

More
obtrusive
research

Increasingly more universal
contexts and systems

Increasingly more specific
contexts and systems

Quadrant II
Contrived
settings

Quadrant I
Natural
settings

Quadrant IV
Non-empirical

settings

Quadrant III
Neutral
settings

Maximum potential for
generalizability over Actors

Maximum potential for
realism of Context

Maximum potential for
precision of measurement

of actors’ Behavior

A

C

B

Fig. 1. The ABC framework: eight research strategies as categories of research methods for software engineering (Adapted
from Runkel and McGrath [170]). Quadrants I to IV represent different research settings.

understanding of phenomena in specific, concrete, and realistic settings—the specific setting may refer (among
others) to a particular system, organization, or team of individuals. For this reason, a field study offers maximum
potential for capturing a realistic context (indicated by the ‘C’ marker in Fig. 1), unlike, for example, a laboratory
experiment (see Sec. 3.4). However, this realism is gained at the price of a low precision of measurement of
behavior (point ‘B’ in Fig. 1) and a low generalizability of findings (point ‘A’).

It is important to note that the mere fact that data is collected in a “field setting” does not imply the study is a
field study. For example, a focus group conducted on a company’s premises does not automatically make it a field
study. Instead, the question is whether or not the field setting is essential to the study, or whether or not the
study captures any realistic context. A focus group study could be conducted in any appropriate space. The same
applies to studies that mine software repositories.

As mentioned, the metaphor we chose for field studies is the jungle from McLean’s opening quote (see Sec. 1). A
jungle is usually an undisturbed setting, and so wildlife can be observed in its natural habitat—but, the researcher

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 • K. Stol and B. Fitzgerald

is expected to not disturb the natural setting as this would lead to different behavior, which in turn reduces the
realism of the context. Field studies have become a common strategy within software engineering since the
mid-nineties, though some field studies were conducted in the eighties [35]. A common method in SE research
that falls within the field study strategy is the descriptive or exploratory case study (e.g. [73, 141, 198]).
One example of a field study in SE is an ethnographic study of XP (Extreme Programming) by Sharp et al.

[180]. This study did not aim to ‘control’ any variables, nor to change anything in the case study setting. Rather,
the authors stated that their, “motivation is to gain insight into the culture and community of an agile method.”

3.2 Field Experiments
A field experiment refers to an experimental study conducted in a natural setting with a high degree of realism
(similar to a field study), but in this strategy the researcher manipulates some properties or variables in the
research setting so as to observe an effect of some kind—this manipulation reduces the level of realism compared
to a field study. The realistic research setting exists independent of the researcher, which distinguishes it from a
the contrived research setting in a laboratory experiment. Common settings for field experiments in SE include a
specific software development organization or team, or a deployed production system.

The term “experimental” should be interpreted in a broad sense, rather than in a strictly scientific sense. In our
broader interpretation, Action Research [7] also falls within this strategy. In Action Research, a researcher aims to
intervene and improve a specific setting through a cycle of making changes, observing the resulting situation,
and making further changes. The researcher is “experimenting” by making adjustments and observing the effects
of those adjustments. Similarly, the goal in an in vivo controlled experiment is to manipulate certain independent
variables while measuring some dependent variables. While the level of obtrusiveness is higher than in a field
study as a researcher is actively making changes to the research setting, the natural study setting is realistic but
subject to confounding factors that limit the precision of measurement (hence, the field experiment is distant
from point ‘B’), and findings are limited in their transferability to other settings (hence a very long distance to
point ‘A’). For example, the improvements achieved using Action Research in a particular organization may not
easily transfer to other organizations as the researcher’s interventions are likely to be dependent on the specific
organizational context.
We suggest a nature reserve as a metaphor for a field experiment setting. In a nature reserve, flora and fauna

can still thrive as normal, but the reserve facilitates the conduct of research, for example by placing fences so as
to separate the wildlife into different treatment groups and evaluate the effects of those treatments. An example
of a field experiment in SE is a study by Anda et al. in which four companies were selected to implement the same
software system [13]. The systems were implemented by developers in real companies; for the developers, the
setting was natural, and existed before the researchers entered. The study’s goal was to investigate reproducibility
of software projects.

3.3 Experimental Simulations
The experimental simulation strategy is one of two strategies in Quadrant II—the quadrant that represents contrived
research settings. In an experimental simulation the behavior of actors (e.g. developers, users, or software systems)
that a researcher aims to observe and measure are natural, but the setting within which these occur has been
specifically created for the purposes of the study—that is, without the study, the setting would not exist. Thus,
the term simulation in this context refers to the artificially created setting that aims to recreate a concrete type of
setting in which the ‘experiment’ or observed behavior takes place. The level of obtrusiveness is higher than that
of a field experiment, because the simulation requires a contrived setting. As the setting is contrived, a researcher
is often required to make certain simplifying assumptions—it is often too costly to recreate a highly realistic
setting, though the degree of realism can vary considerably across different studies adopting this strategy. In any

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:13

case, the context of such a setting is less realistic than that of a field study (where realism is potentially maximized,
as indicated by point ‘C’ in Fig. 1) or a field experiment. On the other hand, the findings from experimental
simulations allow a researcher to more precisely measure actors’ behavior or systems’ properties than would be
the case in a field experiment—this strategy lies closer to point ‘B’ where such precision can be maximized.

We borrow Runkel and McGrath’s metaphor, who compared an experimental simulation to a greenhouse [170].
A greenhouse is built to simulate a certain setting, optimized for certain characteristics, for example, to grow
fruits that require much sunlight and high temperatures, which otherwise could not be grown in cold climates.
Compared to a nature reserve (i.e., field experiments), a greenhouse is a far more contrived setting and less
realistic, but it gives a researcher potentially more control over what happens inside. An alternative metaphor is
a flight simulator [170]. While the specific series of events cannot be fully controlled (it depends on user input),
the behavior of participants (e.g., pilots in training) can be carefully monitored and analyzed. The flight simulator
metaphor is a computer-based virtual environment—Travassos and Barros [210] adopted Tisseau’s term “in virtuo”
[208] for such experiments, to distinguish it from in vivo experiments (i.e., field experiments) discussed above.
One example of an experimental simulation is a study on design competitions in the context of crowdsourcing
software development [110]. The design competitions were artificially created specifically for the study—the
context was therefore contrived and not what one would find in a real crowdsourcing setting (as found, for
example, in a field study on crowdsourcing [198]).

3.4 Laboratory Experiments
The laboratory experiment is the second strategy in Quadrant II. It differs from field experiments which are
positioned in Quadrant I and thus study phenomena in their natural context, whereas laboratory experiments
are set in a contrived setting. A laboratory experiment is characterized by a high potential to neutralize any
confounding factors and extraneous conditions [170, p. 105]. Consequently, laboratory experiments allow a
researcher to exercise maximum precision of measurement of behavior on the studied object—this is indicated by
the ‘B’ marker in Fig. 1. Clearly, such a level of control would not be possible in a real-world software development
environment. However, as a result, the context in a laboratory experiment is very unrealistic—the research setting
is contrived and specifically designed for the study at hand. Indeed, this strategy is far removed from the ‘C’
marker in Fig. 1. Furthermore, laboratory experiments may involve a limited number of subjects (different system
setups or human participants—or, as McGrath observed, whomever can be “lured into the laboratory”), and
consequently the findings of a laboratory experiment are limited in their generalizability. Laboratory experiments
differ from experimental simulations in that the former offers a higher degree of precision of measurement. In
laboratory experiments, the researcher conducts “discrete” trials of relatively short time span. In experimental
simulations, in contrast, a researcher offers an environment where the more continuous flow of events depends
on the simulation environment and the actors’ behavior.

We do not imply the term laboratory experiment to mean a controlled or quasi experiment exclusively, but any
investigation to establish a quantitative “relationship between several variables or alternatives under examination”
[91, p. 10]. In this interpretation, benchmarking studies that compare a number of algorithms or techniques based
on a predefined set of criteria represent “experimentation” too, because the researcher actively sets up a contrived
environment to measure and analyze those algorithms and techniques. In SE research, a common approach is to
set up a dedicated computer to compare different algorithms or techniques.
A useful metaphor for laboratory experiment is a test tube, which Runkel and McGrath [170] used to set it

clearly apart from the greenhouse (experimental simulation, representing a more continuous flow of events) and
nature reserve (field experiment). This also aligns well with the term “in vitro” (i.e. in glass) used to characterize
laboratory studies. Alternatively, we could think of it as a cleanroom, in which there is a high degree of control
over what happens inside. It is worth noting that the term laboratory does not imply an actual laboratory, and

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 • K. Stol and B. Fitzgerald

that laboratory experiments can be conducted at software development organizations as well. Likewise, not
all experiments conducted with students are necessarily laboratory experiments—as per the description above,
this depends on the extent to which the experimental setting was contrived. After all, for students, a computer
laboratory can pass as a natural setting.

An example of a laboratory experiment is a study on pair programming [5]. For this study, 295 Java consultants
with varying levels of seniority were hired to participate. The task at hand was to make changes to two alternative
Java systems with different levels of complexity. It is clear that the study setting was contrived; the 295 participants
would not have undertaken these tasks without explicitly being requested (and paid). The change tasks themselves
were also carefully designed as part of the study.

3.5 Judgment Studies
A judgment study involves gathering empirical data from a group of participants who are asked to judge or rate
behaviors, to respond to a request, or ‘stimulus’ offered by a researcher, or to discuss a given topic of interest.
Judgment studies rely on systematic sampling rather than representative sampling and should involve experts,
appropriately informed to respond to a certain question or stimulus. The goal of a judgment study is to seek
generalizability over the responses, rather than generalizability to a population of actors. Using a judgment study a
researcher is actively involved to steer the direction and progress of the study. Judgment studies are positioned in
Quadrant III, which represents ‘neutral’ settings—that is, the setting plays no role in the study. In fact, a researcher
may actively aim to “mute” the setting so as to ensure that the setting bears no effect on responses. There is no
experimental setup or otherwise contrived setting, as is the case in laboratory experiments and experimental
simulations. Instead, the researcher aims to “cancel out” the setting from the research design. The researcher is
merely interested in the responses of the participants regarding a given question or stimulus, such as opinions
and expertise on a subject matter.
One method that fits well with this strategy is the Delphi method which was developed in the late 1940s

[36]. The method can be used to structure a group communication process to deal with complex problems [121,
p. 3]. A Delphi study comprises a panel of experts, and allows the researcher “to elicit their input through an
iterative, controlled feedback process” [78, p. 93]. Another method within this strategy is the ‘focus group,’ which
are “carefully planned discussions, designed to obtain personal perceptions of the group members on a defined area
of research interest” [104, p. 94]. In focus groups, participants are also systematically selected based on their
expertise and characteristics. A third and very common instance of judgment studies is the evaluation study
whereby participants are typically asked to judge, for example, the utility of an approach or technique.

We liken a judgment study to a courtroom, in which a panel of participants (the jury) are carefully and
systematically selected. In a courtroom, evidence is presented (a stimulus) and eventually the jury returns a
verdict. The setting itself (i.e. the courtroom) is only manipulated to the extent that it aims to be neutral and
not distracting the participants from the matter at hand (i.e. the case). An example of a judgment study is an
investigation of key characteristics for effective tailoring of agile methods [30]. The study was conducted with a
panel from both industry and academe that were systematically selected for their expertise.

3.6 Sample Studies
Also in Quadrant III is the sample study strategy, which aims to achieve generalizability over a certain population
of actors, whether these are software professionals, software systems, or artifacts of the development process.
The sample study is one of two strategies with the potential to maximize generalizability to a population—this is
indicated by the marker ‘A’ in Fig. 1. The sample study is one of the most common strategies in SE research (see
Tables 1 and 8). When the sample consists of human respondents, data is usually collected through questionnaires
that can be administered in hard copy or through websites. In SE research, the sample study is also used quite

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:15

frequently to study large sets of software development artifacts or projects, in particular open source software
projects, which are easy to access. In that case, data collection is usually performed bymining software repositories.
A sample study is unobtrusive, in the sense that the researcher does not manipulate any variables during data
collection. As a result, the level of precision may be affected—for example, a researcher has no control over
respondents to a questionnaire who misunderstand questions. Hence, the sample study strategy is removed
from point ‘B’ in Fig. 1. When collecting data from repositories, again, no variables are manipulated. At best, the
researcher can conduct correlational analysis, but no causal relationships can typically be inferred. Positioned
in Quadrant III, the research setting is neutral, and consequently, the sample study cannot capture a realistic
context (as suggested by the far distance to point ‘C’); the goal is to generalize, and this means the focus is not on
specific contextual details.
A metaphor for the sample study strategy is a referendum (though we admit this only suggests samples of

human participants, not development artifacts). In a referendum, usually a limited set of questions is presented to
a large group of people, who are invited to respond—typically, only a sample actually responds. An example of
a sample study is a survey by Storey et al. [203] who investigated communication channels used by software
developers. In particular, their study received a large number of responses (over 1,400), suggesting a representative
sample of the GitHub developer population, and thus a high degree of generalizability of the findings. An example
of a sample study of software repositories was conducted by Ray et al. [162], who investigated the correlation
between programming language and quality. One of their findings was that strong typing is correlated with
moderately higher quality code than weak typing. In their study, they could not actively manipulate any variables,
and so no causal relationships could be established.

Table 5. Research strategies, their metaphors, purpose, methods and inherent limitations

Study Type Metaphor and setting Purpose Typical methods & data Inherent limitations

Field Study Jungle: Natural setting that
exists before the researcher
enters it. Minimal intrusion
of the setting so as not to
disturb realism, only to fa-
cilitate data collection.

Facilitates study of phe-
nomena and actors and
their behavior in natural
contexts. Exploratory, to
understand ‘what’s going
on,’ ‘how things work,’ or to
generate hypotheses.

Case study, ethnography,
observational study;
qualitative data incl.
interviews, field notes,
archival documents, may
include quantitative
data.

• No statistical generalizability
• No control over events
• Low precision of measurement

Field
Experiment

Nature reserve: Natural, pre-
existing setting (in vivo),
but some level of intrusion
due to the deliberate manip-
ulation of aspects of the set-
ting; study affected by con-
founding factors.

To investigate, evaluate, or
compare techniques, prac-
tices, processes, or ap-
proaches within a real-
world and pre-existing set-
ting.

Evaluative case study,
quasi-experiment, Ac-
tion Research; studies
may use either quantita-
tive data or qualitative
data.

• No statistical generalizability
• Precision of measurement af-
fected by confounding contex-
tual factors

Experimental
Simulation

Greenhouse, Flight simula-
tor: Contrived setting (in
virtuo) created specifically
for a study to represent a
concrete type of setting. En-
vironment is created by the
researcher to study behav-
ior of actors.

To study behavior of par-
ticipants or systems in a
controlled setting that re-
sembles a real-world, con-
crete class of settings as
close as possible.

Simulation games,
management games, in-
strumented multi-player
games; quantitative or
qualitative data, depend-
ing on the simulation
instrument.

• Generalizability reduced as set-
ting is designed to mirror a spe-
cific type of setting

• Realism reduced due to artificial
setting

Continued on next page

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 • K. Stol and B. Fitzgerald

Continued from previous page

Study Type Metaphor and setting Purpose Typical methods & data Inherent limitations

Laboratory
Experiment

Cleanroom, Test tube: Con-
trived setting (in vitro) cre-
ated specifically for a study,
with high degree of control
of all measured variables.

To study with a high de-
gree of precision relation-
ships between variables, or
comparisons between tech-
niques; may allow estab-
lishment of causality be-
tween variables.

Randomized con-
trolled experiments
and quasi-experiments,
comparative evaluations
benchmark studies;
usually quantitative data
exclusively.

• Abstract or unrealistic context
due to highly artificial setting

• Typically scope of problem re-
duced to study the ‘essence,’ op-
timizing internal validity at cost
of external validity

Judgment
Study

Courtroom: Neutral setting;
may be actively designed to
nullify the context, so that
‘responses’ are in relation to
some stimulus (question or
instructions), independent
of setting.

To elicit information from
subjects for purposes of
evaluation or study of an
object. To seek generaliz-
ability of responses to stim-
uli, not generalizability to
a population.

Delphi studies, interview
studies, focus group,
evaluation studies; use
of qualitative and/or
quantitative data.

• Responses not related to any
specific or realistic context

• Less generalizability than sam-
ple studies due to lack of repre-
sentative sampling

• Less control and precision of
measurement than a lab. exp.

Sample
Studies

Referendum: Neutral setting.
Limited level of precision
of measurement; no vari-
ables are manipulated. The
researcher must deal with
whatever data is collected.

To study the distribution of
a particular characteristic
in a population (of people
or systems), or the correla-
tion between two or more
characteristics in a popula-
tion. Information is sought
of the subjects.

Software repository
mining, questionnaires,
interviews; analysis
includes correlational
methods e.g. regression.
Typically, quantita-
tive data (e.g. Likert
scales) but can include
qualitative data.

• Reductionist—depth of and
number of data points per
participant limited

• Data collection not ‘interactive’:
no option to clarify questions;
repository data comes as-is, no
opportunity to manipulate vari-
ables, only to correlate them

Formal
Theory

Jigsaw puzzle: Non-
empirical setting; typically
a research office or library.

To develop a conceptual-
ization, framework or the-
ory on a topic. Focus is
on formulating relations
among concepts, or expla-
nations that hold for a
wide range of contexts.

Conceptual reasoning,
concept development,
development of proposi-
tions and/or hypotheses;
framework development.

• Low on realism: does not con-
sider a specific context but
rather abstract concepts

• No manipulation of variables or
measurement (no empirical in-
formation is gathered)

Computer
Simulation

Forecasting system: Non-
empirical setting (in sil-
ico); no recording of obser-
vations in the real world.
There are no actors (people,
real-world systems) or real-
world behavior: everything
is specified in the simula-
tion.

To model a particular sys-
tem or phenomenon that
facilitates evaluation of a
large number or complex
scenarios that are captured
in the pre-programmed
model.

Development of software
programs that contain
symbolic representations
of all variables a re-
searcher considers im-
portant; usually these
variables are derived and
calibrated based on prior
empirical studies.

• No manipulation of variables or
precision of measurement (no
empirical data is gathered)

• Results will be as good as the ac-
curacy of the model represent-
ing the simulated system

• Low generalizability as it at-
tempts to model a specific class
of real-world systems

3.7 Formal Theory
Formal theory is one of two strategies in Quadrant IV, which have no empirical setting. Formal theory5 is a
strategy that aims at a high level of universality so that the resulting theory or framework can be applied under

5Not to be confused with formal methods that are used, for example, to develop formal program specifications.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:17

a wide array of circumstances, although most theories have boundaries outside of which they do not apply
[200]. This maximum potential for generalizability over a population of actors is indicated by the marker ‘A’ in
Fig. 1, which is shared with the sample study strategy. The result of this research strategy is not necessarily a
theory in the traditional sense of the word (i.e. a process or variance theory [161, 200]) but can also comprise
development of conceptual or research frameworks. Thus, in our use of the term “theory” we include any form
of conceptualization or frameworks that seek to have some degree of generalizability. Formal theory and its
role in software engineering research has received considerable attention in recent years, including a series
of workshops and special issues in journals [189, 201]. Formal theory is a desk research activity, and does not
involve any concrete or realistic context (hence, it is distant from point ‘C’), nor does it involve any empirical
measurement of behavior (it is positioned far from point ‘B’ also). However, the development of theories and
conceptual frameworks typically depends on prior empirical observations.
As a metaphor, we propose that developing formal theory is akin to solving a jigsaw puzzle. Solving a jigsaw

puzzle can be done as a solitary or team effort, happens in a non-empirical context (e.g., at a large table to fit all
the pieces), and the goal is to “fit” all pieces together. In particularly complex jigsaw puzzles, some pieces will
be ‘theorized’ as representing the sky or water (both are variations of blue) and as the puzzle proceeds, more
and more pieces fit together. Theorized pieces may have to be validated through empirical studies using other
research strategies. As well, the “boundary” of the puzzle may also have to be empirically established using
empirical strategies. One example of a study that we classify as formal theory development is the classification and
comparison study of architecture description languages (ADL) [136]. The three main elements of an architecture
description are components, connectors between them, and architecture configurations; these elements serve
as categories to organize the framework. The framework represents a conceptualization of ADLs based on the
literature thus far; as such, it provides an analytical tool to reason about ADLs, or, a theory for analysis [65].
The framework is constructed with an aim to be applicable to any ADL, hence, a high level of generalizability.
Another example of a formal theory is a general theory of software engineering (GTSE) developed by Wohlin
et al. [225]. The authors’ theory is developed based on empirical observations of industry practice, and aims to
explain how organizations can successfully develop software by balancing different types of intellectual capital.
Project managers can use the theory to inform their decision making processes.

3.8 Computer Simulations
The eighth research strategy is computer simulation, also positioned in Quadrant IV. The goal of a computer simu-
lation is to create a symbolic replica of a certain type of concrete system that can be executed by a computer [170,
p. 87]. In a computer simulation of a real-world phenomenon or setting, everything is represented symbolically
and created artificially. Where studies in natural settings (Quadrant I) can be costly or even impossible to conduct
as they may involve a higher level of engagement from participants, computer simulations (which take place in a
non-empirical setting) “are like virtual laboratories where hypotheses about observed problems can be tested,” before
they are implemented in real-world systems [144]. Consequently, while simulations model a specific system or
phenomenon, a simulation takes place in a non-empirical setting. That is, while variables can be modeled and
manipulated based on the rules that are defined within the computer simulation, the researcher does not make
any new empirical observations of behavior of outside actors in a real-world setting (whether these are human
participants or systems); hence, computer simulations are positioned far away from point ‘B’ in Fig. 1. Tisseau
used the term in silico to refer to “computerized calculations” [80, 208]. While prior empirical results can be used
to create and calibrate computer simulations, this strategy does not lead to empirical results itself.

As a metaphor, we liken a computer simulation to a forecasting system, such as those used in weather prediction,
which employ complex mathematical models of the atmosphere and oceans. Such systems are programmed to
do a very specific thing based on a set of pre-programmed rules. The lack of further input by external actors

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 • K. Stol and B. Fitzgerald

sets computer simulations apart from experimental simulations, which we compared to a flight simulator and
a greenhouse. An example of a computer simulation is a study that simulates adaptive security in buildings
[211]. Before actually implementing such a system in the real world (which would involve making many costly
changes to the physical building), the authors performed a simulation as proof of concept. By analyzing a number
of pre-programmed ‘threat scenarios,’ the researchers could evaluate the applicability and effectiveness of the
approach as well as evaluate the classes of security requirements that could be handled by such a system.

4 APPLICABILITY OF THE ABC FRAMEWORK TO SOFTWARE ENGINEERING RESEARCH
To illustrate the use of different research strategies in software engineering research, we present examples from
two different research areas: Global Software Engineering (GSE) and Requirements Engineering (RE). We selected
these topics because they are well-established and important research areas within the software engineering
literature, evidenced by their dedicated conferences (ICSGSE, RE). For both areas, we selected exemplar studies
that clearly illustrate the eight research strategies. We emphasize that we do not intend to cast any judgment on
the cited examples. However, for each example study we discuss some inherent limitations that are a consequence
of the selected research strategy—rather than due to poor research design decisions of the authors. In addition to
these two detailed examples, we also applied the framework to a sample of 75 articles in Springer’s Empirical
Software Engineering journal. Sec. 4.3 discusses details of the decision rules as well as a summary of the results.

4.1 Research Strategies in Global Software Engineering Research
GSE has been actively studied since the nineties, and research has focused primarily on the challenges associated
with distributed development, whether as a result of offshoring or outsourcing strategies.

4.1.1 Field Study. A key issue in GSE is that of coordination of distributed teams as geographical, temporal,
and socio-cultural distances give rise to a variety of challenges [2]. To investigate why coordination of distributed
teams is so difficult and how associated challenges manifest in a real-world context, Herbsleb and Grinter
conducted an in-depth case study at one division of an organization with teams in the UK and Germany [73]. The
study’s direct goal was neither to evaluate specific theoretical constructs affecting coordination (which were not
well understood at the time of the study), nor to improve coordination in the organization. Instead, the authors
aimed to develop a deep understanding of the intricacies of coordination of distributed teams in a real-world
setting. Hence, the field study strategy was highly appropriate.
The results of this study discussed the means of coordination (e.g., component specifications and software

processes) and their limitations, and barriers to informal communication (e.g., lack of unplanned contact such as
conversations at the water cooler). The study concludes with a number of lessons learned; for example, Herbsleb
and Grinter suggested bringing people from different locations together early on in a project. This type of insight
would be unlikely to emerge from, say, a laboratory experiment.

This study captured specific events rooted in a concrete, real-world and thus realistic context. While high in
realism, the study does not aim to generalize to a population of companies that conduct distributed development,
although some of the recommendations may be useful to other organizations. Furthermore, the study did not
measure any specific behavior nor did it establish any causal relationships. These are inherent limitations of field
studies. Instead, this study’s value lies in capturing a realistic setting, thus achieving its potential strength.

4.1.2 Field Experiment. Geographical distance has consequences for development activities of distributed
teams. To ensure a high level of software quality, organizations can implement so-called “validation” activities,
such as code inspections, peer review, and testing. In order to understand the impact of geographical distance on
software quality when conducting such activities in a distributed fashion, Ebert et al. conducted a field experiment
[49]. The authors investigated three factors that might impact the cost of rework: (1) the effect of co-location

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:19

on efficiency and effectiveness of defect detection; (2) the effect of coaching on software quality, and (3) the
effect of changes to the development process on teamwork, and continuous build on management of distributed
projects. To evaluate these hypotheses, Ebert et al. used project data that the company had carefully collected
over several years. To address the first two hypotheses, the data set was divided into different groups, based on
specific parameters (e.g. whether or not inspections were done by co-located or distributed teams). For the third
hypothesis, a number of changes were made to the development process, which were tracked in the project data.
The authors found that inspections conducted by co-located teams significantly improved both efficiency and
effectiveness of defect detection. Furthermore, the authors also found that providing coaching to teams (at a
cost of 1-2% of the project budget) led to a reduction of rework cost. Finally, the various changes made to the
development process in relation to teamwork and continuous build also reduced rework cost.
Ebert et al.’s study is an excellent example of a field experiment. Their study description addresses many

potential threats to validity to ensure that we can have confidence in the findings. Nevertheless, the study has
some inherent limitations. For example, one hypothesis was evaluated using a set of projects “within one culture
(i.e. Europe) and similar skill background that received a coaching effort of ca. 1..2% of total project budget” [49,
p. 302]. The precision of measurement of culture and background is limited—measuring latent constructs such
as culture is a non-trivial task [76]. Furthermore, the natural setting of the projects is likely to have had many
confounding factors that were not controlled for. The phrase “similar skill background” also suggests some
latitude. Notwithstanding these inherent limitations, the study’s strength lies in the rich set of data captured in a
natural setting, achieving a very high degree of realism.

4.1.3 Experimental Simulation. Despite technological innovations that allow developers to interact using
high-quality communication channels, there are still “formidable barriers” associated with distant collaborations
due to factors such as a lower level of trust [19]. Bos et al. hypothesized that co-located individuals interact
more amongst each other, forming an “in-group” (H1) [19]. Furthermore, they suggested that isolated individuals
would form a separate in-group due to being excluded from the co-located in-group (H2). Finally, they argued
that co-located individuals would outperform isolated members of the team (H3).
In order to evaluate these hypotheses, Bos and colleagues conducted an experimental simulation using an

online multi-player game [19]. Rather than real-world development activities (i.e., software development tasks),
the task at hand was to fill “orders” of colored shapes, e.g., Blue Square and Purple Circle. Each player could
produce one type of shape, so in order to complete an order players were required to ‘buy’ and ‘sell’ shapes—hence,
there was a need to build relationships, negotiate and collaborate. The use of shapes instead of real tasks allowed
for an easy understanding of the simulation, but greatly reduced the realism of the task. In this simulation, some
participants were co-located, whereas others were not—these were referred to as ‘telecommuters.’ The simulation
was further constrained by limited resources and time.

The researchers found strong evidence for hypothesis H1: co-located participants had a strong tendency
to collaborate with one another, rather than with those who were not co-located. Furthermore, the isolated
telecommuters formed an in-group of their own (supporting H2). As for hypothesis H3, there was no significant
difference in performance between co-located participants and the telecommuters.

This experimental simulation is clearly characterized by a contrived setting and unrealistic tasks. Furthermore,
given that the study was conducted with a relatively small group of participants, the study’s findings are not
readily generalizable. However, these are inherent limitations of the experimental simulation strategy. Instead,
the authors aimed to measure participants’ behavior with a high degree of precision. In a realistic setting (i.e. a
distributed software development organization), achieving this level of precision of participants’ behavior would
have been much more difficult, and also very expensive.

4.1.4 Laboratory Experiment. A system’s software architecture plays a pivotally important role in coordinating
distributed teams [72, 151]. Before a software system is implemented, its software architecture (SA) should be

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 • K. Stol and B. Fitzgerald

evaluated as it has a major impact on quality attributes such as performance and reliability. Most SA evaluation
methods (e.g., ATAM [93]) assume that the various stakeholders attending such reviews are co-located, which
can be difficult or costly to achieve for globally distributed teams. Alternatively, SA evaluations can be conducted
in a distributed setting supported by groupware tools. However, this raises the question as to whether the quality
of distributed evaluations is as good as those conducted face to face. To evaluate this, Babar et al. conducted a
controlled experiment [8]. Using 32 teams of three undergraduate students each, Babar and colleagues found that
the quality of the scenario profiles developed by the distributed teams using groupware tool support were, in fact,
of higher quality than those developed by co-located teams.

The setting of this study was clearly contrived: the authors set up an environment specifically for the purpose
of this study. Student (instead of professional) participants were specifically recruited for this experiment, and
the scope of the experiment was limited to only one activity of the architecture evaluation process (i.e., scenario
development). The experimental tasks and instruments were also simplified, thus reducing realism of the context.
Nevertheless, the study enabled the authors to achieve a high level of precision of measurement of the effectiveness
of distributed architectural evaluations, and these findings could motivate field experiments to gauge whether
such findings hold in a real-world setting.

Table 6. Examples of different research strategies used in global software engineering research

Strategy Authors Objective Study setting Study procedure Findings

Field Study Herbsleb
& Grinter
1999 [73]

To understand why
geographically dis-
tributed development
is difficult to coordi-
nate.

Natural: Two loca-
tions of a division of
Lucent Technologies

18 interviews, archival
sources, documents.

Coordination mechanisms;
barriers to informal commu-
nication; lessons learned for
multi-site development.

Field
Experiment

Ebert et
al. 2001
[49]

To investigate the im-
pact of co-location,
coaching, and team-
work and a continu-
ous development pro-
cess on software qual-
ity and cost.

Natural: Alcatel’s
Switching and Rout-
ing business unit.
Data collected over
a period of several
years.

Comparison of inspec-
tions in co-located and
distributed teams; projects
within one culture and sim-
ilar backgrounds with and
without coaching; ‘before’
and ‘after’ introducing
teamwork and continuous
development process

Co-locating peer reviews
improves defect detection;
coaching within the project
reduces cost of rework; team-
work and continuous build
in the development process
improves global project man-
agement.

Experimental
Simulation

Bos et al.
2004 [19]

To study the effect of
co-location, the pres-
ence of multiple sites
within a large com-
pany, collaboration
across multiple sites,
and the influence of
social networks in
these collaborations.

Contrived: online
multi-player game
(the Shape Factory
simulation environ-
ment). Participants
recruited through a
campus newspaper
ad.

13 simulation sessions with
5 rounds each; 10 play-
ers per session, 130 partici-
pants in total.

Co-located participants
collaborated more with each
other than with telecom-
muters. The telecommuters
also formed an in-group.
No significant difference
in performance between
co-located individuals and
telecommuters.

Laboratory
Experiment

Babar et
al. 2008
[8]

To study the impact
of groupware support
on the quality of soft-
ware architecture eval-
uation deliverables.

Contrived: experimen-
tal tasks part of as-
sessed course tasks.
Participants received
training on SA evalua-
tion, tools.

Controlled experiment,
AB/BA crossover design;
32 teams of 3 participants
(3rd/4th year undergrad
students of a SE course).

Quality of deliverables from
the distributed meeting
groups was significantly
better than the quality of
deliverables from the F2F
meeting groups.

Continued on next page

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:21

Continued from previous page

Strategy Authors Objective Study setting Study procedure Findings

Judgment
Study

Iacovou
&
Nakatsu
2008 [78]

To investigate risk
factors for offshore-
outsourcing software
development.

Neutral: systemati-
cally selected panel of
experts at a variety of
organizations based
on their experience.

Delphi study, 15 experts, 3
rounds: identification; rat-
ing; rating feedback and re-
vision. Interaction presum-
ably online.

25 risk factors that could
influence the success of an
offshore-outsourced project,
rated in importance by the
experts; the top 10 are dis-
cussed in detail.

Sample
Study

Ma et
al. 2008
[125]

To investigate 3
issues in software
development by
Chinese software
suppliers: language
barriers, channels of
communication, and
working overtime.

Neutral: questionnaire
sent out to companies
by email.

Random sample of 2,000
from a database of ap-
prox. 6,000 Chinese soft-
ware companies; 53 re-
sponses from 41 companies.

Language not a major obsta-
cle; email used for develop-
ment issues and face-to-face
meetings to discuss manage-
ment issues / requirements;
reasons for overtime are re-
quirement changes and un-
derestimation of effort.

Formal
Theory

Espinosa
& Carmel
2003 [52]

To develop a concep-
tual foundation for fu-
ture research on GSE.

Non-empirical: desk
research without
any direct empirical
observations

Theorizing and conceptual-
ization based on Coordina-
tion Theory and previous ex-
ploratory field research re-
ported elsewhere.

A model of coordination
costs due to time differences
in dispersed software teams.

Computer
Simulation

Setamanit
et al. 2007
[160, 177]

To evaluate the choice
of task allocation strat-
egy and its impact on
project duration.

Non-empirical: GSD
simulator with which
the researchers can
model several factors,
resulting in different
GSE strategies.

For each of 3 strategies: 5
replications for each design
point (7 factors, 27), result-
ing in 640 runs per strategy;
1,920 runs in total.

Increasing overlap of work
hours contributes to shorter
duration for module-based
and phase-based strategy,
and a longer project dura-
tion for FTS strategy.

4.1.5 Judgment Study. It should be clear by now that embarking on a GSE initiative is fraught with challenges.
In the mid-2000s, numerous organizations had experienced such challenges, while outsourcing was still increasing
in volume and importance [78]. This increased interest in outsourcing and offshoring can be explained by the
fact that managers are continuously seeking ways to make software development faster and cheaper. However,
at the same time managers may not be cognizant of the specific risks associated with GSE. Thus, Iacovou and
Nakatsu set out “to produce a set of project risks that specifically applies to offshore outsourcing” [78, p. 90]. In
particular, they adopted the judgment study strategy, implemented as a Delphi study “to solicit and analyze the
input of the expert panelists” [78, p. 93]. The panel members were systematically selected: 57 project management
professionals were invited to fill out a pre-study questionnaire to summarize their experience. After screening,
15 of them were invited to participate in the study. While the authors do not report on how they interacted
with the experts, we assume this was done through postal mail or email (i.e. a neutral setting)—in any case, the
authors focused on input from experts based on their experience, rather than specific software projects they were
involved in. Through an iterative process of three rounds, this study identified 25 risk factors, which were ranked
in importance according to the panel. The analysis indicated a statistically significant and high level of consensus
regarding the risk factors.

This study offers excellent insights to other managers considering GSE initiatives. However, the study does not
consider any specific context—the risk factors may or may not be applicable to a particular organization’s context.
This is an inherent limitation of the judgment study strategy. Furthermore, given the systematic selection of a
relatively limited number of participants instead of a large, representative sample of participants, these findings

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 • K. Stol and B. Fitzgerald

are not necessarily generalizable to the wider population of software development managers. On the other hand,
this strategy did offer the researchers more control during the study through interaction in multiple rounds and
interacting with the panel in a more intensive manner.

4.1.6 Sample Study. Whereas the judgment study discussed above investigated distributed development from
an outsourcing customer’s perspective, Ma et al. [125] took a complementary approach by investigating the
supplier’s perspective. In particular, as managers are adopting GSE initiatives to improve software development
(either through reducing cost or time to market), Ma et al. investigated how well projects outsourced to Chinese
suppliers actually performed in terms of language barriers, communication, and overtime work. To that end,
they adopted the sample study strategy, using a questionnaire for data collection. Two thousand companies were
invited, resulting in 53 responses eligible for analysis. Compared to judgment studies, the sample study strategy
aims to achieve a higher level of generalizability of findings by gathering data from a large and representative
sample. However, the number and complexity of questions that can be asked through a sample study is typically
more limited than in judgment studies. When the number or complexity of questions becomes too high, the
response rate may drop considerably. Overall, the authors found that language was not a major obstacle; email
(asynchronous communication) was primarily used for development issues, whereas synchronous, face-to-face
meetings were used to address management issues and product requirements. Key reasons for overtime work
were changing requirements and suppliers’ initial underestimation of the work.

This sample study achieved some level of generalizability, though in this case the specific sample was limited,
considering that 2,000 companies were initially invited. However, this is always a challenge in conducting such
sample studies. To indicate the representation of this sample: the respondent companies’ size was distributed with
67% considered small (less than 50 employees), 26% medium (50-300), and the remaining 7% classified as large
(over 300) and very large (over 1,000). Other limitations were more inherent to the selected strategy. The authors
were, for example, not able to interact in-depth with the respondents to clarify responses or to ask follow-up
questions (thus, precision of responses might have been low). In this study, the authors conducted a follow-up
interview study with a number of respondents, but this is not part of the sample strategy and represents a separate
research activity; also, this is only possible if respondents identify themselves. Another inherent limitation is that
this study was not able to capture any specific context—thus, these findings must be interpreted with care as
contextual factors may affect the performance of outsourced projects.

4.1.7 Formal Theory. Temporal distance is one of the distances in globally distributed teams, referring to the
fact that teams work in different time zones. Time zone differences reduce the ‘overlap’ of working hours of
distributed teams, and thus the potential to communicate through video link or teleconferencing. Asynchronous
communication (e.g. email) is also affected as responses may be delayed several hours. This in turn introduces a
number of challenges for project coordination. To investigate the implications of temporal distance for distributed
teams, Espinosa and Carmel presented a theoretical discussion from different perspectives [52], leading to a model
that affords a unified view of coordination challenges in time-separated contexts, which provides a conceptual
foundation. As the authors suggested, this foundation provides the basis for simulation research, experimental
research and field research. Indeed, at the time of writing, this article has been cited over 160 times, suggesting
that other researchers have used this foundation for their studies.
Formal theory development studies such as these are important as they advance the field by offering a new

conceptual lens to design future empirical studies. Such studies lack contextual realism, however, as they do
not rely on any observations or data gathered in real organizations. Furthermore, given that such studies are
conducted in a non-empirical setting, there is no observed behavior, either from participants or from software
systems. On the other hand, the newly proposed conceptual framework abstracts reality, aiming at a high degree
of generalizability.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:23

4.1.8 Computer Simulation. Beside drawbacks, temporal distance also offers benefits, such as Follow-the-Sun
(FTS) development. As one team finishes the workday, the next team can continue to work on the same task.
Some project managers estimated that by adopting FTS, the time-to-market can be reduced by 20% to 35% [24, p.
33]. Besides FTS, there are two other strategies to configure task allocation in a distributed development project:
phase-based and module-based development [24, p. 130]. Following the module-based strategy, each development
site develops a software module from start to finish. In a phase-based configuration, a development site performs
a particular phase of the software development life cycle. For example, site A may perform design, followed by
implementation at site B. This raises the question: which task allocation strategy is most optimal?
To investigate, Setamanit et al. conducted a computer simulation to evaluate these task allocation strategies

[176, 177]. The researchers first investigated the ‘ideal’ circumstances, without any communication and cultural
barriers. This was modeled by excluding all factors affecting productivity and defect injection rate from the
simulation. In this case, using a FTS strategy, the development cycle time was 70% shorter than single-site
development. The module-based approach took slightly longer than the FTS strategy, and the phase-based
strategy was very similar to a single-site development scenario. However, the results differed significantly when
taking into account the various GSE-specific factors. In this case, the FTS strategy took 37% longer than a single-
site development scenario, while the module-based strategy resulted in the shortest development cycle time. The
development cycle time resulting from the phase-based strategy was similar to that following a FTS strategy.
Using the computer simulation strategy, the authors were able to evaluate a number of different scenarios.

Evaluating these scenarios in a real-world setting would most likely have proven infeasible or too costly. Instead,
the researchers could perform this work at their desk. However, one inherent limitation of this approach is that
no real-world behavior can be observed, given that a computer simulation is conducted in a non-empirical setting.
The simulation is simply a model, but may not accurately represent reality.

4.2 Research Strategies in Requirements Engineering Research
In this section we illustrate the different research strategies with a second research area: Requirements Engineering
(RE). RE has long been one of the core areas within software engineering research, with a first special issue in
IEEE Transactions on Software Engineering in 1977 [167].

4.2.1 Field Study. RE has been cited as a critical activity for any software project. The rise of GSE initiatives
has led to new challenges for RE, some of which were highlighted in Sec. 4.1. To investigate these new challenges,
Damian and Zowghi conducted a field study at one large multi-site organization [37]. One of the authors spent
several months on-site at the case organization to develop an in-depth understanding of the specific context.
Data were collected through document study, observation, and interviews. The authors report on specifics of
the context, including the organizational structure and collaboration technologies. The study reports four key
problems in distributed development, and eight specific challenges for RE. These challenges are described in
detail and illustrated with examples from the specific context of the case study organization—thus achieving
a high degree of realism. The authors conclude that improving communication would significantly reduce the
impact of global collaboration on requirements management.
Being on-site at an organization for an extensive period of time greatly helps to achieve a high degree of

realism and to capture many details of the organizational context. This is simply not possible when conducting,
for example, a sample study of organizations. On the other hand, the rich contextual findings are not necessarily
generalizable to other contexts, although some of the challenges identified were also confirmed in other studies.
Furthermore, the authors gathered data through observations and interviews, but the lack of precision of
measurement of the multiple variables present in a natural setting prevent any inference of causal relationships.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 • K. Stol and B. Fitzgerald

4.2.2 Field Experiment. Requirement defects are problems with a software product that make it unfit for its
surroundings or for its users. Preventing such defects can greatly benefit the quality and satisfaction of end-users.
Lauesen and Vinter conducted a study to “find cost-effective ways to avoid requirement defects in the products”
[111]. The authors adopted the field experiment strategy, by means of Action Research [111, p. 38]. The authors
first studied one project to establish a baseline in order to understand how requirement defects occurred. To
improve the RE process, Lauesen and Vinter studied 44 techniques from which ten were deemed worthy of further
consideration. Due to various constraints outside the researchers’ control, only one project adopted two of the
ten techniques. After the project was finished, the researchers studied the defect reports and the final product, but
no improvements could be observed due to the fact that the contexts of the projects were too different, although
the authors did observe some other effects that suggested improvements.

Interestingly, the authors reported that: “we hadn’t imagined how difficult it was to compare two very different
projects” [111]. This is a significant characteristic of field experiments; the researchers simply could not precisely
measure differences due to the natural research setting, and faced constraints outside their control. Another
inherent limitation that became clear was the generalizability of findings. Each software project is different,
which makes comparison problematic, even within the same organization.

4.2.3 Experimental Simulation. Identifying the requirements for a new software system is very important
in order to ensure that the system will be accepted by its future users. However, this has proven very difficult,
which also explains the prominence of the RE field in the software engineering domain. Before designing new
systems that will operate in complex environments to help users in their decision-making process, it is important
to establish how the system will be used. Unfortunately, in highly dynamic and complex environments it is not
possible to simply ask users to describe their decision-making process [116]. Therefore, Lerch et al. set out “to
discover how and why end-users make decisions” [116, p. 346] (emphasis in original) through an experimental
simulation. The specific goal was to assess computer support needs in the US Postal Service. As the authors
asserted, an experimental simulation facilitates the assessment of system features without building these systems
and without the need to interfere with production environments.

The authors implemented a simulation which used real-world data that was collected prior to the experimental
simulation. During the simulation, several types of data were recorded in order to compare the behavior of
novices and experts. Data were recorded through keystroke loggers and verbal protocols. The simulation tool
offered a considerable level of precision to measure behavior, as Lerch et al. describe [116, p. 350]:

“we were able to observe the behavior of supervisors with different levels of experience under identical
environmental conditions. [...] In addition, by controlling the environmental conditions, it was possible to
collect data (...) to compare the performance of experts and novices.”

This experimental simulation took place in a contrived setting facilitating a relatively high degree of precision to
measure a number of variables that capture the different types of behavior of participants. Designing such a study
requires, however, considerable effort: in this case the authors went to great lengths to implement a simulation
that “mimicked the real world” [116, p. 350]. Prior to implementation, the authors had spent considerable time
interviewing and observing staff at the mail facilities.

4.2.4 Laboratory Experiment. Once requirement specifications are written, different approaches can be used to
validate these. One of the goals in validating requirement specifications is to detect any faults, which is important
for the quality of the resulting software and user satisfaction (as discussed in Sec. 4.2.2). Porter et al. conducted
a multi-trial experiment to compare alternative fault detection methods [159]. The experiment was conducted
twice, in both cases with 24 graduate students who took a formal methods course.

One of the study’s key findings is that scenario-based methods led to a higher fault detection rate than ad hoc
and checklist methods. While the study achieved a high degree of precision of measuring the various variables,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:25

the study lacked generalizability and realism—but, these are two inherent limitations of the laboratory experiment
strategy. The authors declared several threats to validity: the subjects (i.e. students) were not representative of
software professionals due to their limited experience and motivation to participate in the study; the specification
documents may not have been representative of professional documents; and, the inspection process may not
have been representative of industry practice.

4.2.5 Judgment Study. Many organizations adopt off-the-shelf Enterprise Resource Planning (ERP) packages,
which have to be tailored not only to their own organizational setting but also to that of their customers. Such
inter-organizational ERP projects have their own set of requirements, and identifying and implementing them
can be a challenging endeavor [39]. Daneva proposed a set of 12 RE practices to support such operations [38]. To
evaluate them, Daneva and Ahituv [39] adopted the judgment study strategy, conducting a focus group of 10
systematically selected practicing ERP consultants. This study validated all 12 practices.

This judgment study depended on the expertise of ERP consultantswhowere presented a very specific “stimulus,”
namely the 12 proposed RE practices for inter-organizational ERP projects. Conducting such an evaluation with
a sample study would have been an alternative strategy (aiming at a higher degree of generalizability through a
larger, representative sample of experts), but this would have reduced the degree of interaction needed to explain
and qualify the 12 practices, potentially leading to misinterpretations. This clarifies the benefit of a judgment
study over a sample study in this case. Interestingly, Daneva and Ahituv acknowledged the lack of a realistic
context and suggest adopting a field study strategy as their next step: “Our immediate step will be to run a case
study in two organizations to develop an understanding of the context” [39].

4.2.6 Sample Study. RE is an active research area, and it is important to regularly collect data about the state
of practice so that researchers understand the challenges that professionals face, and what solutions could benefit
them. Neill and Laplante identified a lack of contemporary data about actual requirements elicitation in practice
[146]. Without such data, researchers may wrongly assume how software professionals operate. Therefore, Neill
and Laplante adopted the sample study strategy by conducting an industry survey to assess the state of practice of
RE [146]. Data were collected through an online questionnaire with 22 questions. From the 1,519 invited persons,
194 completed the survey. Respondents worked in a wide variety of different companies including multinational
companies, operating in various domains such as telecommunications, aerospace, and manufacturing. The range
of positions in their respective organizations was as diverse, from system designer to executive. The findings
indicated that over 50% of respondents used scenarios or use-cases in the requirements elicitation phase, whereas
30% indicated to be using object-oriented analysis [146].
This sample study provided data on RE practices from a wide range of software organizations, and thus this

study scores high on generalizability. However, no variables were manipulated to investigate any effects, nor
was the survey able to capture any specific context. Thus, while we learn little about which RE practices are
appropriate for ERP projects (cf. Daneva and Ahituv’s judgment study [39]), or the various challenges that
distributed development introduce in a specific organization (cf. Damian and Zowghi’s field study), we learn
about some trends manifested in a wide array of organizations.

4.2.7 Formal Theory. In recent years, researchers have also addressed the role of creativity in RE. To better
understand this role, Nguyen and Shanks developed a theoretical framework [147]. The framework development
draws on the wider creativity research literature and the literature on creativity in the RE field. The resulting
framework consists of five elements: product, process, domain, people, and context. Using Gregor’s taxonomy
[65], the authors labeled their framework a “theory for analyzing” [147, p. 661], and in this case, to analyze RE
creativity research. The authors identified two main implications for further research and practice. First, they
called for empirical studies on how to integrate the framework elements into RE methods to support creativity.
Second, they recommended that organizations establish an environment to encourage creative people.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 • K. Stol and B. Fitzgerald

Table 7. Examples of different research strategies used in requirements engineering research

Strategy Authors Objective Study setting Study procedure Findings

Field Study Damian
&
Zowghi
[37]

To investigate
the impact of
distributed stake-
holders on RE
activities in GSD.

Natural: first author
spent 7 months on-site
at an organization.

Document study, obser-
vation, interviews

Four major problems and 8 spe-
cific challenges related to require-
ment engineering activities in dis-
tributed development.

Field
Experiment

Lauesen
& Vinter
[111]

To identify a cost-
effective way to
avoid requirement
defects.

Natural: company staff
and researcher collab-
orated on-site, using
real products to evalu-
ate new approaches.

Action research, data
include defect reports,
time spent, usability is-
sues, timeliness of the
project, product sales.

Several conclusions, incl.: scenar-
ios and early usability testing are
beneficial techniques; classifying
defects according to the source of
the defect was not helpful.

Experimental
Simulation

Lerch et
al. [116]

To identify the
computer support
needs of automa-
tion staff in a large
organization.

Contrived: Simulation
environment with ex-
perimental stimuli that
were previously col-
lected.

3 distinct groups of 3
people each to gauge
how level of expertise
and circumstances af-
fects behavior. Partici-
pants received training.

Insights into different informa-
tion needs and search strategies
and decision making strategies de-
pending on users’ expertise. In-
sights on performance with feed-
back / feedforward.

Laboratory
Experiment

Porter et
al. [159]

To investigate the
hypothesis that
scenario-based in-
spections are more
effective than ad
hoc inspections.

Contrived: classroom
laboratory exercise
with graduate students
doing a course in
formal methods.

Measurement of effect
of detection methods
(ad hoc, checklist, sce-
nario) on 4 dependent
variables incl. fault de-
tection rate.

4 key findings, incl.: scenario-
based method leads to higher fault
detection rate than other methods;
scenario reviewers were more ef-
fective at detecting faults the sce-
narios were designed to uncover.

Judgment
Study

Daneva
& Ahituv
[39]

To evaluate a set of
12 practices based
on feedback by
ERP practitioners.

Neutral: dedicated
meeting room with
seating around a table.

10 consultants from 7
ERP services firms, se-
lected based on their in-
terest and expertise.

All 12 practices were observed by
several of the panel experts.

Sample
Study

Neill &
Laplante
[146]

To investigate the
state of practice of
requirements engi-
neering in indus-
try.

Neutral: web-based
questionnaire.

22 questions; partici-
pants drawn from a
Penn State School of
Graduate Professional
Studies database; 194 re-
sponses from a popula-
tion of 1,519.

Findings include organization and
participant characteristics (vari-
ous domains; participants held
variety of positions); software
development life cycle model (ag-
ile, waterfall, etc.); RE techniques.

Formal
Theory

Nguyen
& Shanks
[147]

To develop an un-
derstanding of the
role of creativity in
RE.

Non-empirical: no
empirical observations,
but derivation of a
conceptual framework
from literature.

General creativity liter-
ature, requirements en-
gineering creativity lit-
erature.

A theoretical framework that of-
fers RE researchers a basis to in-
corporate creativity in RE meth-
ods and techniques.

Computer
Simulation

Höst et al.
[77]

To investigate bot-
tlenecks and over-
load in RE pro-
cesses.

Non-empirical: a dis-
crete event simulator
was implemented in
SDL.

Four simulation scenar-
ios with different param-
eter values to model dif-
ferent circumstances.

Twoways were identified to avoid
congestion: (1) increase number of
staff or productivity, (2) decrease
the rate of new requirements e.g.
through prioritization.

This study did not result in any empirical observations, but through a careful derivation of a framework based
on extant research on creativity, the authors developed a theory for analyzing the role of creativity in RE—this in

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:27

turn can be used as a foundation for future empirical studies to investigate how each of the framework’s five
elements manifests, for example. Published in 2009, this study has been cited well over 100 times, suggesting a
considerable number of authors have extended this strand of research.

4.2.8 Computer Simulation. Much research in the RE field has focused on eliciting requirements for bespoke
software projects, with far less attention paid to so-called market-driven software development [77], whereby
commerical off-the-shelf (COTS) software packages are regularly released—for example ERP packages mentioned
earlier. Software organizations that make such COTS components are also looking to improve their development
processes, but there are many ways to optimize such processes to overcome bottlenecks.

Höst et al. [77] point out that evaluating process improvements could be done through field experiments, for
example, but that this would require considerable effort. Instead, Höst et al. adopted the computer simulation
strategy to investigate situations that lead to bottlenecks. Using a series of simulations, the authors were able
to evaluate how different changes to the processes led to an improved process (i.e., removal of bottlenecks). In
particular, the computer simulation was implemented as a discrete event simulation model. The authors evaluated
four scenarios, each with a different configuration of parameters. The authors concluded that “congestion” in
the process can be avoided, either by increasing the number of staff or productivity, or, by limiting the rate of
new requirements through, for example, requirements prioritization. However, it is important to note that while
such computer simulations may suggest how changes to the process might work in theory, empirical studies are
needed to actually evaluate such interventions in practice, for example through field experiments. This lack of a
realistic setting is an inherent limitation of computer simulations.

4.3 Analysis of a Sample of Studies
Our analysis above is based on a convenience sample; we selected studies that exemplify the eight research
strategies. In order to demonstrate a wider applicability of the framework, we analyzed all articles published in
2017 in Springer’s Empirical Software Engineering journal. (Table 10 in Appendix A presents the results.) Our
analysis shows that all studies can be mapped to the ABC framework. Table 8 presents the count of each research
strategy; several articles present multiple studies, which is why the total count (n = 85) is higher than the number
of articles (n = 75). The table shows that Sample Studies (n = 38) and Laboratory Experiments (n = 30) are most
widely used. Field Studies were reported in 10 articles, and only a few articles reported Experimental Simulations
and Judgment Studies. We found no instances of Field Experiments, Formal Theories, or Computer Simulations
in this particular sample.

Table 8. Distribution of research strategies of the analyzed sample

Strategy Count

Field Study 10
Field Experiment 0
Experimental Simulation 4
Laboratory Experiment 30
Judgment Study 3
Sample Study 38
Formal Theory 0
Computer Simulation 0

The ABC framework in Fig. 1 organizes the eight archetypal research strategies along two dimensions:
obtrusiveness and generalizability. Below we offer a set of questions to position a study in a specific area of the
circumplex.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 • K. Stol and B. Fitzgerald

To map a study to the circumplex, the first two questions to ask are:
• Does this study focus on a particular instance of a phenomenon, or does it aim to generalize?
• What is the level of obtrusiveness of the researcher in the research setting?

Furthermore, the eight strategies are placed in four ‘quadrants’ with boundaries at a 45 degree angle (not bounded
by the two dimensions mentioned above) that characterize the research setting. That is, has the research been
conducted in a:

• naturally occurring setting that existed before the researcher entered (Quadrant I);
• contrived setting that the researcher set up specifically for the study (Quadrant II);
• neutral setting: one that is not related to the research findings, or one that the researcher has actively set
up to be neutral, so as not to affect the research findings (Quadrant III);

• non-empirical or theoretical setting; that is, the research has been conducted without making any empirical
observations (Quadrant IV).

The research strategy adopted can be identified without too much effort in most studies. However, in some cases
it requires careful reading. We give three examples below.

• Rojas et al. [165] sought to evaluate the effectiveness of whole test suite generation. They conducted
an empirical study on 100 Java classes, and compared three different coverage criteria (line coverage,
branch coverage, and weak mutation testing). This is an example of a Laboratory Experiment, because the
researchers were clearly interested in a precise comparison of three different approaches. The research
setting was specifically created for the study’s purpose (hence, a contrived setting). While the researchers
used a ‘sample’ of 100 Java classes (which some might associate with a Sample Study), the goal was not
to seek maximum generalizability to a population, but rather to precisely measure the behavior of three
different approaches as measured in effectiveness.

• Vitharana [215] investigated the impact of defect propagation at the project level during early lifecycle
phases. The article sets up a set of hypotheses which are tested using a large data set consisting of inspections
conducted over a period of four and a half years at one company. To evaluate the hypotheses, a data set
from one company is used; while this might suggest it is a study of a particular organization (i.e. a Field
Study), the goal of this study is to establish general relationships—hence, we classify this as a Sample Study.
The fact that the data set originated in one company is of secondary importance. In practice, using data
from a range of organizations is very challenging because companies may not collect the same type of
information.

• Spinellis [194] presents an analysis of the history of Unix. The analysis is based on the complete development
history of the operating system, which might suggest a Sample Study. However, the study focuses on one
particular software program; rather than seeking generalizable findings, this study aims to understand one
specific context of software development, namely the Unix operating system. We classify this as a Field
Study, despite the fact that the research was conducted as desk research, not “in the field.” One obvious
reason for this is that this is an archival study, because development took place several decades ago.

5 DISCUSSION AND CONCLUSION

5.1 Metaphors and Research Settings in Software Engineering
For each research strategy, we presented a metaphor representing that strategy within its research setting (see
Sec. 3 and Table 5), some of which were proposed by others [135, 170]. Metaphors are widely used in the software
engineering literature [181] and practice [106]; indeed, the term “software engineering” itself can be considered a
metaphor [21]. Metaphors are powerful pedagogical devices that can help to convey the essence of a term or
entity. However, they are usually limited in the extent to which they can fully capture the similarity with the

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:29

real-world entity they represent. Here, we briefly discuss these metaphors and the key benefits and drawbacks of
each research strategy (see Table 9).
Quadrant I Natural Settings: Field studies take place in natural settings, which we liken to a jungle, as it

allows a researcher to investigate a real and concrete instance of a phenomenon. Findings are grounded in
realistic or concrete settings that exist independent of the study. However, in order to retain the undisturbed
setting, the researcher cannot manipulate any variables or properties, as this would disturb the naturalness
of the setting. Field experiments are very similar in that they take place in a natural setting, but a researcher
manipulates some variables or to administer different treatments to different projects or participants. However,
this manipulation reduces the realism of context somewhat. We propose the nature reserve metaphor—like a
jungle, it represents a natural setting, yet it allows a researcher to intrude on the setting by making changes
to the “living circumstances” of some inhabitants. In software engineering projects, researchers are limited in
natural settings by the willingness of participants or projects and their managers to participate in a study that
intrudes on their work environment. It can also be very costly and complex to set up field experiments.
Quadrant II Contrived Settings: In the experimental simulation strategy, the researcher’s intrusion in the

research setting increases a bit more, and we borrow the greenhouse metaphor [170]. In a greenhouse, a researcher
has a controlled environment that simulates a particular type of concrete setting, yet the researcher aims to elicit
a somewhat realistic flow of events (e.g. the growth of a plant) rather than discrete trials (e.g. a reaction of two
chemicals) more typical of laboratory experiments. Actors may behave in natural ways, although they will be
aware of the contrived setting. Using an alternative metaphor of a flight simulator : there are no real consequences
to crashing a plane in a simulator. The laboratory experiment strategy is characterized by an even higher level
of intrusion by the researcher; rather than observing “natural” behavior in a contrived setting as found in an
experimental simulation, in a laboratory experiment there is a very careful measurement of variables through a
number of “runs” or trials, whereby the sequence of events is fully controlled. We borrow the test tube metaphor
(ibid.).

Quadrant III Neutral Settings: Both judgment studies and sample studies are conducted in neutral settings.
In a judgment study, the researcher is interested in capturing responses from a panel of participants based on
some potentially complex stimulus. To facilitate this, the researcher may actively “neutralize” the setting, very
similar to a courtroom so that judges and jury members are not distracted by the environment. In a sample study,
on the other hand, the setting also bears no effect on the responses, but interactions between the researcher
and the actors (either humans, systems, or other design artifacts) are much simpler. Hence, we liken the sample
survey to a referendum.
Quadrant IV Non-Empirical Settings: Finally, the formal theory and computer simulation strategies are non-

empirical strategies. Neither offers an opportunity to observe real-world behavior or interactions. We compare
the development of formal theory to solving a jigsaw puzzle in that the researcher carefully constructs a model
that helps to predict or explain a phenomenon, based on a thorough understanding of existing literature, but
also through “creative insight” [170]. A computer simulation, on the other hand, is a symbolic representation of
a concrete class of system that can be configured in a range of ways, allowing researchers to “run” a series of
scenarios. In that sense, we argue that a computer simulation is very similar to forecasting systems, such as used
for weather prediction and stock markets.

5.2 The A, B, and C of Software Engineering Research
The ABC framework positions eight archetypal research strategies that SE researchers can use, in particular for
what we have termed knowledge-seeking studies (see Sec. 1). The framework is based on earlier work in the
social sciences [131, 133, 134, 170, 217] which we have adapted and operationalized for a software engineering

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 • K. Stol and B. Fitzgerald

Table 9. Software engineering research strategies, metaphors, and evaluation considerations

Strategy Metaphor Essence Evaluation considerations

Field Study Jungle Facilitates the study of real-world actors (people, systems) and
their behaviors in a natural setting that is not manipulated by
the researcher. High potential to capture realistic settings and
a high degree of detail of a particular system and context.

Not suitable to investigate statistical
relationships, or to otherwise
manipulate variables, nor for findings
that hold for larger populations.

Field
Experiment

Nature
reserve

Facilitates the study of effects of a modification of properties
of a studied entity or phenomenon that occurs in a natural
setting, i.e. pre-exist independent of the researcher. Potentially
very costly to set up due to complexity of natural settings.

Limited level of precision of
measurement; results not generalizable,
but strongly linked to the specific setting
due to confounding variables that are
very difficult to isolate.

Experimental
Simulation

Greenhouse,
Flight
simulator

A contrived setting that simulates a specific class of
real-world systems that to some extent resembles reality.
Temporal flow of events depends on the simulation
environment and actors’ behavior, which allows for observing
more natural behavior than a laboratory experiment.

Reduced level of realism compared to
field experiments due to the contrived
setting: behavior of actors may reflect
that in natural settings, but
consequences for actors lack realism
which may affect their behavior.

Laboratory
Experiment

Cleanroom,
Test tube

A controlled setting where behavior of actors (humans or
systems) is carefully measured through a number of discrete
trials to establish effects or conduct comparative analyses.
Maximum potential to capture precise measurement of
variables (high internal validity) due to potential to isolate of
confounding factors.

Studied relationships and variables are
more abstract due to the contrived and
‘sterile’ nature of the research setting.
The setting is more artificial than for
experimental simulations.

Judgment
Study

Courtroom Facilitates study of responses or behavior of actors that bears
no relation to the research setting, which is neutral or actively
“neutralized.” Allows for more complex questions and
interactions between researcher and respondents.

No concrete or natural setting which
prohibits capturing direct observations
of phenomena.

Sample
Study

Referendum Facilitates data collection from a representative sample of a
population (human or non-human, such as systems or design
artifacts). Maximum potential to generalize findings to a
wider population; rather unobtrusive research strategy.
Researcher must work with whatever data is collected.

Limited precision of measurement:
questions asked of, or about, the sample
tend to be ‘simple’; limited opportunity
for ‘complex’ interaction between the
researcher and subjects. Research setting
offers no realistic context.

Formal
Theory

Jigsaw
puzzle

The careful and justified construction of a theoretical model
that represents one view of a phenomenon, which helps to
analyze or explain the real world. Model generic behavior for
a range of classes of populations (humans or non-human
artifacts), which serves to make predictions or explanations
about the real world.

Theoretical models do not generate new
empirical observations, though may
inform future empirical studies.

Computer
Simulation

Forecasting
system

Represents a symbolic replica of a concrete real-world system
where all configurations and variables are pre-programmed.
Useful to run a large number of complex scenarios to explore
a solution space, which might not be feasible to do manually.

All simulation rules are
pre-programmed: no new empirical (i.e.,
real world, as opposed to simulated)
behavior is observed. Due to concrete
implementation, limited generalizability.

context. The ABC framework introduces a new approach to consider SE research studies which can be used in at
least six ways:

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:31

• Research Tutorial. The ABC framework offers a holistic overview to novice researchers who may be
overwhelmed by the numerous research methods and techniques on offer. While several books and articles
in the SE literature provide overviews (see Table 4), these do not provide a holistic framework that can
position the various methods available to the SE research community. Based on two dimensions that are
widely considered to be key in choosing a research design, the framework can help understand the purpose,
potential strengths and essential weaknesses of the eight archetypal research strategies.

• Research Program Design. The ABC framework can also be used, by both novice and experienced
researchers, to design research programs. Doctoral students who conduct a series of studies for their
dissertation might wish to select a different research strategy for each. For example, studies could adopt a
strategy from different quadrants, thereby designing studies to take place in different research settings. By
so doing, the researcher can investigate a topic through triangulation of strategies, thereby overcoming
inherent limitations inherent in one strategy by adopting an alternative strategy. In this way, for example,
more complete research coverage of an existing research topic could be achieved by selecting research
strategies that had not been previously applied. Appendix B presents two example scenarios to demonstrate
how novice researchers could design a program of studies that use different research strategies.

• Literature Classification. The ABC framework draws clear distinctions between different research
strategies, each with clearly defined limitations. Given the different types of evidence that each research
strategy can produce, the framework offers, in our opinion, a good structure to classify extant literature in, for
example, systematic literature reviews. Also, because the ABC framework is grounded in two key dimensions
that are important in research design, the framework offers a reference point for terminology that may
help researchers to describe their studies. In Sec. 2 we gave two examples [17, 192] where the authors’
initial characterization (and terminology) of their study led to misunderstandings and misinterpretations.

• Research Reporting and Evaluation. Besides merely classifying extant literature, the strengths and
weaknesses of published studies can also be better evaluated and assessed, not only in the peer review
process but also after studies are published. Even today, there is a continued concern with, for example, the
lack of generalizability of exploratory case studies (a typical method in the field study strategy, and very
common in SE research). The ABC framework clearly defines the maximum potential strengths of studies
(indicated by the markers A, B, and C in Fig. 1) as well as some inherent limitations (see Table 5), which
may provide guidance to reviewers.

• Research Diversity. The eight research strategies defined in the ABC framework each have their unique
strengths and limitations, yet not all research strategies are widely known or used. While diversity of
research methods used in the SE field has increased since Glass’s observation of narrowness of research
approach in SE, mentioned in the introduction [63], we believe an increased cognizance of how the
various research strategies differ will encourage researchers to more consciously adopt diverse strategies.
Additionally, we note that the framework also positions two non-empirical research strategies—formal
theory and computer simulation—each of which offer specific strengths, and offer opportunities for SE
researchers to study phenomena from a different perspective. Again, this contributes to potentially more
thorough investigation of research topics.

• Study Integration and Synthesis. Several authors have lamented the lack of integration of individual
primary studies in software engineering (see, for example, Cruzes and Dybå [31]). While the primary
studies can result in useful findings, there is a need to study topics from more than one angle. On the basis
of our two worked examples (see Sec. 4), which identified exemplar studies for each research strategy in
two important SE areas, we have demonstrated how closely related research questions can be addressed
with diverse strategies. Together, these findings can converge in such a way that we can develop theories
within the SE domain.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:32 • K. Stol and B. Fitzgerald

The eight research strategies each have their limitations as discussed throughout this paper and illustrated in
the two examples discussed in Sec. 4. These limitations are inherent, in that they cannot be ameliorated by any
tactics that a researcher might deploy. For example, the fact that the research setting in a laboratory experiment
is highly contrived and unrealistic is an inherent limitation. It cannot be “fixed,” and nor should a researcher
apologize for this fact. Likewise, a sample study should not be criticized on grounds of lack of realistic context—it
is an inherent limitation of sample studies.
An important consequence of the observations with respect to the strengths and weaknesses of different

research strategies is that the SE research community needs better guidelines to more fairly evaluate the quality
of research studies, which should be evaluated according to how well their potential strengths have been achieved
and the degree to which incidental or operational limitations have been identified and ameliorated. An incidental
or operational limitation is one that might have been prevented by a researcher. For example, a sample study
with a very small number of respondents (say, 10, which under any circumstances is a very small number) could
be evaluated less favorably given that its potential strength, achieving a high degree of generalizability to a large
population, has not been achieved. When evaluating a field study, reviewers should not lament the apparent “lack
of control or generalizability” in the study, because those are its inherent weaknesses. Rather, such studies with a
high degree of realism should be assessed on the extent to which potential strengths have been realized, and the
extent to which incidental limitations have been addressed. Likewise, it would be unfair to criticize a laboratory
experiment because of its lack of realism. Rather it should be assessed according to the extent that it has realized
its potential strengths, such as the degree of control of variables (construct validity, internal validity). This is not
to say that calls for more realism, such as by Sjøberg et al. [188] can be ignored, but rather both researchers and
referees should acknowledge the inherent limitations of the adopted research strategy.

5.3 Limitations of the ABC Framework
Given the socio-technical nature of the software engineering field we argue that the framework, though rooted
in the social sciences, is also useful to SE research. We have demonstrated the fit of the ABC framework on
two worked examples in Sec. 4. In addition, we analyzed a sample of 75 articles published in 2017 in Empirical
Software Engineering (see Appendix A); we classified all knowledge-seeking studies using the ABC framework.
Notwithstanding the fit of the ABC framework, some limitations of the framework should be borne in mind.
First, the ABC framework does not provide guidance for specific methods—Table 4 provides an overview

of selected resources for specific methods, and so this article complements this existing guidance. Instead, the
ABC framework provides a holistic overview of different research strategies, each with specific characteristics,
positioned along two key dimensions (see Sec. 2.3) that facilitates a systematic comparison. As a researcher
selects a specific method (such as a controlled experiment, or ethnography, for example), the researcher still
needs to consider a variety of research design considerations that are specific to those methods. This is true also
during operationalization of a study: for example, a sample study can involve human respondents or using a
sample of software process artifacts (typically gathered through repository mining). A researcher must consider
the specific challenges associated with each of these data collection methods (i.e. challenges associated with
repository mining [92] or with conducting sample studies with human respondents [97]).
Second, the ABC framework presents what we call archetypal research strategies, which is to say that other

researchers may design studies that do not fall cleanly within one of the octants of the framework. There
are certain research methods that represent a compromise between different strategies. For example, Jansen
discusses the “qualitative survey” and contrasts it with what he refers to as the “statistical survey” [82]. The
latter is equivalent to what we refer to as sample study. Jansen defines the goal of a qualitative survey to study
diversity of a topic within a population (ibid.). While the term “survey” might suggest the qualitative survey
falls within the sample study strategy, the ABC framework makes clear that its position may vary depending

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:33

on the goal. A qualitative survey may be classified as a judgment study, in particular when a researcher wishes
to explore diversity of opinions or responses based on a given stimulus (akin to a Policy Delphi study [105]).
Alternatively, as Jansen points out, a qualitative survey could be part of a Grounded Theory study [82]. Rather
than mapping methods to the various archetypal research strategies, we believe it is more fruitful to represent
the ABC framework as a device that represents polarity, within which methods can vary among the three distinct
goals of generalization, precision of measurement of behavior, and of capturing a realistic context. As such, it
helps a researcher to carefully consider the trade-offs that are represented by the framework.

Third, the ABC framework is an alternative view to software engineering research, not necessarily the best view.
Previous classifications such as by Shaw [182] and Wieringa et al. [221] may be a better fit for positioning studies
within a given research program, in particular for solution-seeking studies. As we pointed out, establishing
a general taxonomy is very challenging. Rather than presenting the ABC framework as a final solution to
classify research methods, we prefer to position it as a device to reason about, and to design research studies.
Researchers can consider the goal of their study, which can be to seek generalizability over a population of actors
(developers, applications, defects, etc.), to investigate relationships and behaviors through precise measurement
and manipulation of variables, or to capture a high degree of realism by studying specific contexts (e.g. a specific
organization or system).
Finally, as outlined in Sec. 1, the ABC framework applies to primary studies only, and specifically those

that we have labeled knowledge-seeking. While we suggest that primary studies can identified as knowledge-
seeking or solution-seeking studies, there are numerous articles that cannot be classified as either, in particular
methodological papers (e.g. [92, 161]), which includes this article. Therefore, the ABC framework is not useful to
for analyzing or understanding such methodological papers.

5.4 Conclusion
The software engineering research community has made considerable progress in terms of the quality of studies
that seek knowledge and understanding. Over the last several decades, the community has reflected on the
way it conducts research, and the methods to do that research. There are numerous guidelines for employing
specific methods, and the variety of research methods has increased without doubt. Nevertheless, there is still
some confusion about terminology, and the various overviews of research methods are a“mixed bag” in that the
various methods identified have not been carefully positioned in relation to one another. A holistic view of the
landscape of research strategies to generate new knowledge and understanding has been missing so far in the SE
research community. In this article, we adopt a framework from the social sciences which we have labeled the
ABC framework—as such it contributes to the literature on research methodology for software engineering. The
ABC framework represents a holistic overview of eight archetypal research strategies which is oriented around
two key dimensions: the level of obtrusiveness of a study, and the generalizability of the findings. The framework
also clarifies the inherent weaknesses and potential strengths of the research strategies, which facilitates a better
understanding of the trade-offs between threats to internal and external validity, for example.
In this article we have tailored and operationalized the ABC framework for a software engineering context,

and illustrated how the eight archetypal research strategies manifest in two key software engineering areas (GSE,
RE). In addition, we have analyzed a sample of all articles published in 2017 in Empirical Software Engineering:
An International Journal, which demonstrates that the framework is generally suitable to reason about research
strategies of knowledge-seeking studies in SE. Finally, we discussed a number of ways in which future SE research
can benefit from the ABC framework.

ACKNOWLEDGMENTS
We thank the three anonymous reviewers for their detailed feedback, which has led to a better article.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:34 • K. Stol and B. Fitzgerald

A SAMPLE ANALYSIS OF RESEARCH STRATEGIES
In order to demonstrate a general applicability of the framework, we conducted an analysis of all articles published
in 2017 in Springer’s Empirical Software Engineering: An International Journal. We selected this journal because
it emphasizes empirical research, which is more likely to be “knowledge-seeking” than solution-seeking. The
analysis included 75 articles; we excluded secondary studies (mapping studies, systematic reviews, and case
surveys), editorials, methodological papers, and errata.

Table 10 presents the detailed results of our analysis. For each study, we list the authors, title, and predominant
research strategy, followed by a brief description of the study. Several articles present solution-seeking studies—
that is, such articles present a new technique, model, or tool to solve a practical problem. We describe their
research strategy as solution-seeking; all articles that present new solutions also include a knowledge-seeking
study to evaluate or validate the solutions. In almost all cases, the evaluation was performed using a Laboratory
experiment strategy (we report this as solution-seeking + Laboratory Experiment). We note that many such
experimental studies are not controlled experiments—instead, solutions are compared to other, existing solutions
in order to demonstrate an improvement. Such comparisons aim to collect precise measurements in a contrived
setting (so as to maximize the precision of those measurements), which is why we categorize them as laboratory
experiments.

Table 10.
Analysis of research strategies in a sample of articles in Empirical Software Engineering: An International Journal

Authors Title Predominant Strategy and Description

Springer Empirical Software Engineering Volume 22, Number 1, February 2017

Luo et al. [124] FOREPOST: finding performance
problems automatically with
feedback-directed learning soft-
ware testing

Solution-
seeking +
Laboratory
Experiment

Proposes FOREPOST, a solution for automatically finding per-
formance bottlenecks in applications using black-box software
testing. Evaluated in a laboratory experiment.

Vitharana [215] Defect propagation at the project-
level: results and a post-hoc analysis
on inspection efficiency

Sample Study Investigates the impact of defect propagation at the project
level during early lifecycle phases. Hypotheses are set upwhich
are tested using a large data set consisting of inspections con-
ducted over a period of 4.5 years at one company.

Niknafs and
Berry [148]

The impact of domain knowledge
on the effectiveness of requirements
engineering activities

Laboratory
Experiment

Investigates the impact of domain knowledge on requirements
engineering activities. Hypotheses are set up and evaluated
through two controlled experiments with students.

Bao et al. [10] Extracting and analyzing time-
series HCI data from screen-
captured task videos

Experimental
Simulation,
Solution-
seeking +
Laboratory
Experiment

Exp. Sim.: Seeks to better understand challenges in manu-
ally transcribing screen-captured videos into time-series HCI
data; 3 participants instructed to manually transcribe a 20-
min. screen-captured task video. Solution: proposes scvRipper,
a computer-vision based scraping technique to automatically
extract time-series HCI data. lab. exp.: evaluation of scvRipper’s
runtime performance and effectiveness.

Li et al. [119] Zen-ReqOptimizer: a search-based
approach for requirements assign-
ment optimization

Solution-
seeking +
Laboratory
Experiment

Proposes a fitness function to optimize assignment for review-
ing and clarifying requirements to different types of stakehold-
ers. Evaluated in a laboratory setting to compare the perfor-
mance of 4 other algorithms.

continued on next page

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:35

continued from previous page

Authors Title Predominant Strategy and Description

Charpentier et al.
[25]

Raters’ reliability in clone bench-
marks construction

Laboratory
Experiment

Investigates the reliability of rater judgments about context-
dependent code clones. Evaluated through a laboratory
experiment.

Niu et al. [149] Learning to rank code examples for
code search engines

Solution-
seeking +
Laboratory
Experiment

Proposes a code example search approach to automatically
train a ranking schema that calculates relevance of code exam-
ples. Evaluated in a laboratory experiment, demonstrating that
the proposed approach outperforms existing ranking schemas.

Ó Cinnéide et al.
[28]

An experimental search-based ap-
proach to cohesion metric evalua-
tion

Solution-
seeking +
Laboratory
Experiment

Proposes a technique to “animate” metrics and observe their
behavior; through an experimental evaluation on a set of 10
Java applications with a total of 330KLOC.

Chen and Jiang
[26]

Characterizing logging practices in
Java-based open source software
projects – a replication study in
Apache Software Foundation

Sample Study Replication study to investigate whether or not findings of
an earlier study on logging practices in open source systems
apply to Apache Software Foundation projects.

Ye et al. [228] The structure and dynamics of
knowledge network in domain-
specific Q&A sites: a case study of
stack overflow

Field Study Investigates knowledge diffusion processes in StackOverflow.
The ‘field’ or natural setting is online, because StackOverflow
is a Q&A website. Findings are specific to this particular site,
but can be used as a foundation to study other, similar sites.

Park et al. [153] An empirical study of supplemen-
tary patches in open source projects

Sample Study Seeks to understand the characteristics of “multi-fix” bugs and
investigate how to predict locations of supplementary patches
based on the location of initial patches. Studies a sample of
bugs from selected OSS projects, and findings are presented as
generalized statements.

Hassan et al. [69] An empirical study of emergency
updates for top android mobile apps

Sample Study Investigates emergency updates for Android apps, using a
sample of 1,000 emergency updates for over 10,000 apps.

Jiang et al. [85] Why and how developers fork what
from whom in GitHub

Sample Study Investigates why and how developers fork what from whom,
using a sample of over 236,000 developers and over 1.8m forks.

Jiang et al. [86] Do Programmers do Change Impact
Analysis in Debugging?

Experimental
Simulation,
Sample Study

Investigates whether, and how, programmers do change impact
analysis. Exp. Sim.: recording of 9 hired professional program-
mers in an environment set up by the researchers; the partici-
pants were given bug reports and asked to fix them within an
hour. Sam. Sur.: online survey with 35 responses.

Springer Empirical Software Engineering Volume 22, Number 2, April 2017

Kessentini et al.
[94]

Search-based detection of model
level changes

Solution-
seeking +
Laboratory
Experiment

Proposes an approach to detect model changes as a sequence of
refactorings. Experimentally evaluated in a contrived setting
on models of 8 projects.

Thongtanunam
et al. [204]

Review participation in modern
code review: An empirical study
of the Android, Qt, and OpenStack
projects

Sample Study Studies factors that influence review participation, using a
data set of over 196,000 reviews from 3 OSS projects. The study
develops a number of models with generalizable statements,
and does not focus specifically on the contexts of the 3 projects.

continued on next page

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:36 • K. Stol and B. Fitzgerald

continued from previous page

Authors Title Predominant Strategy and Description

Lokan and
Mendes [122]

Investigating the use ofmovingwin-
dows to improve software effort pre-
diction: a replicated study

Sample Study Data from a sample of 398 projects were used; these projects
came from three different organizations, but this is incidental
rather than intentional—the focus here is not to capture the
context of these three organizations.

Duarte [45] Productivity paradoxes revisited Sample Study Investigates the relationship between quality maturity levels
and labor productivity, using a sample data set of 687 firms.

Rojas et al. [165] A detailed investigation of the effec-
tiveness of whole test suite genera-
tion

Laboratory
Experiment

Compares different approaches (one goal at a time, whole,
archive) to generate test cases, using an experimental study
on a random set of 100 Java classes.

Mkaouer et al.
[140]

A robust multi-objective approach
to balance severity and importance
of refactoring opportunities

Solution-
seeking +
Laboratory
Experiment

Proposes a multi-objective approach to find the best trade-off
between quality improvements, severity, and importance of
fixing code smells. The approach is experimentally compared
to other approaches.

Kifetew et al. [95] Generating valid grammar-based
test inputs by means of genetic pro-
gramming and annotated grammars

Solution-
seeking +
Laboratory
Experiment

Proposes grammar annotations to generate test data; evaluated
through a laboratory experiment which showed that the pro-
posed approach has comparable results to learned probabilities
in terms of coverage and fault detection, and achieves a higher
level of valid input data.

Springer Empirical Software Engineering Volume 22, Number 3, June 2017

Ståhl et al. [195] Achieving traceability in large scale
continuous integration and delivery
deployment, usage and validation of
the Eiffel framework

Solution-
seeking +
Judgment
Study + Field
Study

Investigates how to address traceability in large-scale software
development in a CI/CD context. Proposes a framework (“Eif-
fel”) which was validated through a judgment study and field
study.

Falessi et al. [53] Estimating the number of remain-
ing links in traceability recovery

Solution-
seeking +
Laboratory
Experiment

Proposes an approach to estimate the number of “positive” can-
didate links that provide traceability. The approach is experi-
mentally evaluated on a data set; performance of multivariate
estimation models is compared to univariate models.

Zogaan et al.
[233]

Automated training-set creation for
software architecture traceability
problem

Solution-
seeking +
Laboratory
Experiment

Proposes 3 automated techniques to create training sets, which
are experimentally evaluated.

Sharif et al. [178] Eye movements in software trace-
ability link recovery

Experimental
Simulation,
Judgment
Study

Compares the gaze-link method to IR methods. Exp. Sim.: One
set of participants is asked to perform a number of bug local-
ization tasks Judgment Study: A set of participants is asked to
rank the results based on utility.

Guo et al. [66] Tackling the term-mismatch prob-
lem in automated trace retrieval

Solution-
seeking +
Laboratory
Experiment

Proposes 3 techniques for augmenting queries to generate
more accurate trace links. Evaluated through a set of experi-
ments

Behnamghader
[15]

A large-scale study of architectural
evolution in open-source software
systems

Sample Study Presents an analysis of architectural changes of over 900 ver-
sions of 23 OSS systems, using ARCADE, which is an ap-
proach that the authors published before. (ARCADE enables
this knowledge-seeking study).

continued on next page

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:37

continued from previous page

Authors Title Predominant Strategy and Description

Wu et al. [226] Analysis of license inconsistency
in large collections of open source
projects

Sample Study Presents an analysis of license inconsistencies on a sample of
over 10,500 OSS projects.

Choetkiertikul
[27]

Predicting the delay of issues with
due dates in software projects

Solution-
seeking +
Sample Study

Presents an approach for project managers to predict whether
issues are at risk of delay. Evaluated using a sample of over
108,000 issues from 8 projects.

Coelho et al. [29] Exception handling bug hazards in
Android: Results from a mining
study and an exploratory survey

Sample Study
(2 ×)

Presents an analysis of exception handling bug hazards faced
by app developers. Study 1 is a sample study of over 6,000 Java
exception stack traces from over 600 OSS apps. Study 2 is a
sample study of over 70 developers.

Munaiah et al.
[145]

Do bugs foreshadow vulnerabili-
ties? An in-depth study of the
chromium project

Sample Study Investigates the relationship between bugs and vulnerabilities
using a sample of over 374,000 bugs and over 700 post-release
vulnerabilities within the Chromium project.

Sawant and
Bacchelli [173]

fine-GRAPE: fine-grained APi us-
age extractor – an approach and
dataset to investigate API usage

Sample Study Investigates usage of 5 APIs by a sample of over 20,000 client
projects. The study is facilitated by a purposely developed
approach called fine-GRAPE.

Spinellis [194] A repository of Unix history and
evolution

Field Study Presents an analysis of the history and evolution of Unix. The
focus of the study is a single system, which is analyzed through
archival data gathered through a repository.

Caneill et al. [22] The Debsources Dataset: two
decades of free and open source
software

Field Study Presents a case study of Debian, which investigates its evo-
lution its rate of change, use and popularity of programming
languages, and the use and evolution of licenses within Debian.

Jbara and
Feitelson [83]

How programmers read regular
code: a controlled experiment using
eye tracking

Laboratory
Experiment

Seeks to verify and quantify the effect of “regular” code pat-
terns on code comprehension, using a controlled experiment
with 18 students and 2 faculty members.

Macleod et al.
[126]

Documenting and sharing software
knowledge using screencasts

Sample Study Investigates knowledge sharing through screencasts, by study-
ing a total sample of 27 YouTube videos representing over 8
hours of footage. In addition, interviews with 10 screencast
creators were conducted. The study focuses on finding general-
izable answers though the authors acknowledge the limitations
of the limited sample.

Beller et al. [16] The last line effect explained Sample Study Investigates the “last line effect,” the phenomenon that the
last line in a ‘micro-clone’ is more likely to contain an error,
through an analysis of a sample of 219 OSS projects, which is
complemented with a set of interviews with developers.

Vendome et al.
[214]

License usage and changes: a large-
scale study on gitHub

2 × Sample
Study

Investigates when and why developers adopt or change soft-
ware licenses, through a quantitative analysis of a sample of
over 16,000 Java projects hosted on GitHub. In addition, a quali-
tative analysis was conducted of a sample of over 1,100 projects
was conducted.

Springer Empirical Software Engineering Volume 22, Number 4, 2017

continued on next page

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:38 • K. Stol and B. Fitzgerald

continued from previous page

Authors Title Predominant Strategy and Description

Shi et al. [184] Metric-based software reliability
prediction approach and its appli-
cation

Solution-
seeking +
Laboratory
Experiment +
Judgment
Study

Proposes a software reliability prediction approach based on
metrics. Lab. exp.: Experimentally evaluated the effort neces-
sary for the approach. Jud. Stud.: a panel of four experts was
invited to review the methods and results of the study.

Wu et al. [226] Assessing the quality of industrial
avionics software: an extensive em-
pirical evaluation

Field Study Presents a case study of an industrial real-time avionics operat-
ing system. The analysis focuses on the variation in quality due
to testing and associated characteristics in a concrete RTOS.

Li et al. [118] Which log level should develop-
ers choose for a new logging state-
ment?

Sample Study Investigates log levels through a sample study of over 16,000
logging statements, originating in 4 OSS projects.

Stavropoulou et
al. [196]

Case study on which relations to
use for clustering-based software ar-
chitecture recovery

Sample Study Investigates whether a large software system’s architecture
can be accurately recovered while minimizing the data sources
to do so. Presents the results of an analysis of a small sample
of systems to answer a series of research questions.

Assunção et al.
[6]

Multi-objective reverse engineering
of variability-safe feature models
based on code dependencies of sys-
tem variants

Solution-
seeking +
Sample Study

Proposes an approach for reverse-engineering feature models
from feature sets and a dependency graph. The approach is
evaluated on a small sample of systems.

Gharehyazie et al.
[57]

Tracing distributed collaborative
development in apache software
foundation projects

2 × Sample
Study

Presents an algorithm for tracing group collaborations in OSS,
which was then used to study associations of teams.

Li et al. [119] Towards just-in-time suggestions
for log changes

Sample Study The study identified all log statements in 4 OSS projects, and
identified 20 different reasons for log changes. The goal here
was to learn characteristics about the population, not about
the specific OSS projects.

Herbold et al.
[71]

Global vs. local models for cross-
project defect prediction

Laboratory
Experiment

Presents a replication study of cross-project defect prediction,
which evaluates the performance of local models, followed by
a comparison of a global model.

Menzies et al.
[137]

Are delayed issues harder to re-
solve? Revisiting cost-to-fix of de-
fects throughout the lifecycle

Sample Study Investigates the “delayed issue” effect, which states that the
longer an issue lingers, the more effort required to resolve it,
through a study involving a sample of 171 projects.

Martinez et al.
[129]

Automatic repair of real bugs in
java: a large-scale experiment on
the Defects4j dataset

Laboratory
Experiment

Investigates the effectiveness of automatic test-suite based
repair on Defects4J, which is a large data set of real-world
Java bugs. Using state-of-the-art repair methods, it was demon-
strated that patches could be generated for 47 out of 224 bugs.

Mahmoud and
Bradshaw [127]

Semantic topic models for source
code analysis

Solution-
seeking +
Laboratory
Experiment

Proposes an approach for topic modeling that is designed for
source code, which is experimentally evaluated.

Sakhnini et al.
[172]

Group versus individual use of
power-only EPMcreate as a creativ-
ity enhancement technique for re-
quirements elicitation

Laboratory
Experiment

Presents an experiment to evaluate how the size of a group
that uses the Power-Only EPMcreate (POEPMcreate) creativity
technique affects the effectiveness of both the group and each
group member, in terms of generating requirement ideas.

continued on next page

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:39

continued from previous page

Authors Title Predominant Strategy and Description

Joblin et al. [87] Evolutionary trends of developer co-
ordination: a network approach

Sample Study Investigates the evolution of developer coordination in open
source projects, through an analysis of a sample of 18 large
OSS projects, with findings that aim to generalize.

Lin et al. [120] Studying the urgent updates of pop-
ular games on the Steam platform

Sample Study Investigates urgent updates of the 50 most popular games on
the Steam platform, in particular, how often developers release
urgent updates, and why.

Riaz et al. [163] Identifying the implied: Findings
from three differentiated replica-
tions on the use of security require-
ments templates

Laboratory
Experiment

Presents 3 replications of a controlled experiment to evaluate
the use of automatically-suggested templates in identifying
implicit security requirements versus a manual approach.

Lenberg et al.
[115]

An initial analysis of software en-
gineers’ attitudes towards organiza-
tional change

Sample Study Creates, verifies, and validates a model that predicts software
engineers’ attitudes towards organizational change, using sam-
ple data collected through a questionnaire, with 56 responses.

Johanson and
Hasselbring [88]

Effectiveness and efficiency of a
domain-specific language for high-
performance marine ecosystem sim-
ulation: a controlled experiment

Experimental
Simulation

The scientist participants’ workflow is “imitated”; the context
is fairly realistic, using a concrete system (the Sprat Ecosystem
DSL).

Le et al. [112] Will this localization tool be effec-
tive for this bug? Mitigating the
impact of unreliability of informa-
tion retrieval based bug localization
tools

Solution-
seeking +
Laboratory
Experiment

Presents an oracle that can predict whether a ranked list pro-
duced by an information retrieval-based bug localization tool
is likely to be effective or not. Evaluated on a data set of over
3,000 bug reports.

Springer Empirical Software Engineering Volume 22, Number 5, December 2017

Méndez
Fernández et al.
[55]

Naming the pain in requirements
engineering

Sample Study Presents results of a sample survey (part of the NaPiRE initia-
tive) with data from 228 companies on problems in require-
ments engineering.

Bano et al. [9] User satisfaction and system
success: an empirical exploration
of user involvement in software
development

Field Study Presents a longitudinal case study of a software development
project to explore user satisfaction in relation to user involve-
ment and system success.

Lehtinen et al.
[113]

Recurring opinions or productive
improvements—what agile teams
actually discuss in retrospectives

Field Study Presents a longitudinal case study based on data collected from
37 team-level retrospective meetings, within the context of a
software development company of 800 employees.

Dieste et al. [41] Empirical evaluation of the effects
of experience on code quality and
programmer productivity: an ex-
ploratory study

Laboratory
Experiment

Investigates the effects of experience on code quality and pro-
grammer productivity. Presents results of 10 quasi-experiments
conducted in academic and industry settings (in all cases the
experiments were conducted in contrived settings).

Jongeling et al.
[89]

On negative results when using sen-
timent analysis tools for software
engineering research

Laboratory
Experiment

Investigates to what extent results from SE studies using sen-
timent analysis depend on the choice of sentiment analysis
tool. Through experimental comparison, finds that tools do
not compare with manual labeling, nor do different tools agree
with each other.

Gil and Lalouche
[58]

On the correlation between size and
metric validity

Sample Study Presents an analysis of a set of 26 metrics and a data set of
over 53,000 Java source code files that demonstrates that the
validity of metrics depends on their correlation with size.

continued on next page

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:40 • K. Stol and B. Fitzgerald

continued from previous page

Authors Title Predominant Strategy and Description

Sabané et al.
[171]

Fragile base-class problem, prob-
lem?

2 × Sample
Study

Sample Study 1 presents an analysis of over 112,000 “micro-
architectures” (called Fragile Base-Class Problem, FBCP); Sam-
ple Study 2 presents an analysis of 41 responses.

Menzies et al.
[138]

Negative results for software effort
estimation

Laboratory
Experiment

Experimental study that investigates whether new software
development effort estimation techniques generate better esti-
mates than older methods.

King et al. [96] To log, or not to log: using heuristics
to identify mandatory log events –
a controlled experiment

Laboratory
Experiment

Presents a controlled experiment with over 100 students to
evaluate the use of a heuristics-driven method for identifying
mandatory log events.

Springer Empirical Software Engineering Volume 22, Number 6, December 2017

Palomares et al.
[152]

Requirements reuse and require-
ment patterns: a state of the practice
survey

Sample Study Presents a survey to investigate the state of practice of reuse
of requirements; results include an analysis of 71 responses
from requirements engineers.

Tosun et al. [209] An industry experiment on the ef-
fects of test-driven development on
external quality and productivity

Laboratory
Experiment

The setting is contrived—developers had an opportunity to
sign up to participate; the research setting exists solely for the
purpose of this experiment.

Malhotra and
Khanna [128]

An empirical study for software
change prediction using imbalanced
data

Laboratory
Experiment

Develops a set of change predictionmodels, and experimentally
evaluates these on imbalanced software data sets.

Heikkilä et al.
[70]

Managing the requirements flow
from strategy to release in large-
scale agile development: a case
study at Ericsson

Field Study Investigates the “flow” of requirements from strategy to system
release in a large-scale agile context in Ericsson.

Alégroth and
Feldt [3]

On the long-term use of visual GUI
testing (VGT) in industrial practice:
a case study

Field Study Presents a study that evaluates the use of visual GUI testing at
Spotify, which address questions regarding adoption of VGT,
its benefits, and challenges.

Labunets et al.
[108]

Model comprehension for security
risk assessment: an empirical com-
parison of tabular vs. graphical rep-
resentations

Laboratory
Experiment

Presents results of a series of experiments to evaluate the effec-
tiveness of tabular and graphical representations for extracting
information about security risks.

Antinyan et al.
[4]

Evaluating code complexity trig-
gers, use of complexity measures
and the influence of code complex-
ity on maintenance time

Sample Study Presents a sample survey that investigates code characteristics
and how they contribute to complexity, based on a set of 100
responses.

Noei et al. [150] A study of the relation of mo-
bile device attributes with the user-
perceived quality of Android apps

Sample Study Investigates the relationship between device attributes and
app attributes on the one hand, and the user-perceived quality
of apps on the other. The study is based on an analysis of over
150,000 reviews, 30 devices, and 280 apps.

Bezemer et al.
[18]

An empirical study of unspecified
dependencies in make-based build
systems

Field Study Presents an analysis of 4 OSS systems to identify unspecified
dependencies in make-based build systems.

Xia et al. [227] What do developers search for on
the web?

Sample Study Investigates what developers search for on the web, through
a set of queries from 60 developers and a survey among 235
software engineers.

continued on next page

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:41

continued from previous page

Authors Title Predominant Strategy and Description

Munaiah et al.
[145]

Curating GitHub for engineered
software projects

Laboratory
Experiment

Presents a framework and reference implementation of a tool
(“reaper”) that enables researchers to identify GitHub reposito-
ries used for software development (instead of other purposes).
The tool is experimentally evaluated using a set of GitHub
projects. The focus is on the evaluation of the tool, rather than
to establish knowledge about the sample of projects.

B GUIDELINES FOR USING THE ABC FRAMEWORK TO DESIGN A RESEARCH PROGRAM
One of the ways to use the ABC framework is to design a research program. The ABC framework suggests that
any research strategy ultimately comes down to a trade-off between generalizability of findings to a population
of actors (A), precision of measurement of behavior (B), and realism of context (C). Each research strategy has
certain inherent limitations, and potential strengths that it can achieve. By combining studies with different
research strategies, weaknesses inherent in one study may be ameliorated by another study with a different
strategy.
While norms and customs vary across the world in terms of the requirements for a PhD dissertation, it is

custom in several countries in Europe (including Sweden, Finland, and the Netherlands) to conduct a series of
studies, which will be written up either as a monograph or a set of published papers. Our examples here assume
that a student will undertake three studies (though obviously this number may vary depending on norms in
their particular institution). By way of guidance, we develop two hypothetical scenarios, drawing on the studies
presented in Sec. 4.1 on Global Software Engineering. In each of these scenarios, we imagine how a PhD student
could design a research program by conducting a series of studies using different research strategies. Fig. 2 shows
these in schematic form. We discuss each scenario in more detail below.

B.1 Scenario I: Exploring and Understanding
The research program of Scenario I consists of the studies listed in Table 11. All three studies focus on challenges
of distributed development; the field study 1○ documents the various challenges involved in integration of
software components. The Judgment Study 5○ explores the risk factors for offshore-outsourcing that managers
face. The Sample Study 6○, finally, explores three key issues in software development faced by an offshore
software supplier. In this scenario, the topic of study is quite new and relatively unexplored. This has parallels
with what Edmondson and McManus [50] label as the nascent research stage for a particular topic. Thus, research
is about exploring and understanding the topic better. Through a Field Study a high level of realism of context
can be achieved; and through the Sample Study a high degree of generalizability of findings can be achieved. The
Judgment Study is a compromise between achieving a high level of precision and generalizability of findings, not
quite achieving a maximum potential of either.

B.2 Scenario II: Measuring and Testing
In the second scenario, the research program consists of the three studies listed in Table 12. These studies are
positioned in three of the four quadrants of the ABC framework (see Fig. 2). Each of these studies investigates the
impact of certain aspects of distributed development (e.g., co-location vs. distributed work; task allocation) on the
three key concerns that underpin the “software crisis,” namely software quality, cost, and project duration. Because
each study has a different strategy, each can potentially leverage inherent strengths to overcome particular
weaknesses. For example, the field experiment 2○ benefits from a realistic setting, but this negatively affects
the precision of measurement. The laboratory experiment 4○, on the other hand, can achieve a high precision

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:42 • K. Stol and B. Fitzgerald

5

1

A
C

6

B
4

8
A

C

2

B

Field Study
(Herbsleb & Grinter ‘99)

Judgment Study
(Iacovou & Nakatsu ‘08)

Sample Study
(Ma et al. ‘08)

Computer Simulation
(Setamanit et al. ‘07)

Field Experiment
(Ebert et al. ’01)

Laboratory Experiment
(Babar et al. ‘08)

Scenario II: Measuring and TestingScenario I: Exploring and Understanding

Fig. 2. Two hypothetical scenarios for designing a research program. Numbers refer to the studies in Table 6, e.g. 1○ refers to
the first study, which is a Field Study by Herbsleb and Grinter. The labels A, B, and C indicate, respectively, the maximum
potential for generalizability of findings, maximum potential for precision of measurement of behavior, and maximum
potential to capture a realistic context.

Table 11. Research program of Scenario I

Study Research goal Strategy Setting Strengths Weaknesses

1○
Herbsleb
& Grinter
[73]

To develop an understanding
of the difficulties of
distributed software
development.

Field Study Natural
setting

Highly realistic context fa-
cilitating a deep under-
standing of the GSE phe-
nomenon from one com-
pany’s perspective.

No statistically generalizable find-
ings. Low level of precision of
measurement of behavior: no
causal relationships can be estab-
lished.

5○
Iacovou &
Nakatsu
[78]

To investigate risk factors for
offshore-outsourcing
software development.

Judgment
Study

Neutral
setting

Allowed for a relatively
high level of control to pre-
cisely capture the various
risk factors from a panel of
experts.

Results lack the realism found in
a specific concrete setting. Partici-
pants not a representative sample
(rather, a systematic sample).

6○ Ma et
al. [125]

Investigation of key issues in
software development by
Chinese software suppliers:
language barriers, channels
of communication, and
working overtime.

Sample
Study

Neutral
setting

Sample allowing generaliz-
ability of findings to a large
population.

The role of context is minimized,
because all questions in the survey
must be answerable by all respon-
dents, each of which has a unique
context.

of measurement, but suffers from a low level of realism. The third study 8○, finally, can overcome the cost of
setting up laboratory experiments and field experiments, by running a large number of scenarios with a computer
simulation. However, the computer simulation also suffers from a lack of realism, and in fact, this strategy
only results in theoretical findings, not empirical findings. Together, however, these three studies can form a

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:43

research program for a PhD dissertation focused on investigating how global software engineering can address
the traditional concerns of the software crisis.

The focus of Scenario II is much more on measuring and testing, whereas Scenario I was more about exploring
and understanding the topic. In Scenario II, there is more structure for the topic in that constructs have emerged
that should be the focus of measurement and testing. This corresponds with the intermediate stage of a research
topic as defined by Edmondson and McManus [50].
The studies in Scenario II vary in research setting, however, while some realism has been captured with

the Field Experiment, and a high level of precision of measurement could be achieved through the Laboratory
Experiment, none of the three studies achieve generalizability of findings.
We could also define a third scenario which we could label Theorising and Bounding. This involves greater

conceptualisation, and theorising about the relationships between concepts. There is also sufficient knowledge
from prior research to be more confident about defining precise constructs for formal experimentation. This
corresponds with the mature stage of a research topic as defined by Edmondson and McManus [50].

Table 12. Research program of Scenario II

Study Research goal Strategy Setting Strengths Weaknesses

2○ Ebert
et al. [49]

To investigate the impact
of co-location, coaching,
and teamwork on
software quality and costs.

Field
Experiment

Natural
setting

Company setting offers max-
imum level of realism of
study context.

Results may be strongly linked to
the specific organization due to
confounding variables that cannot
be isolated in a natural setting.

4○ Babar
et al. [8]

To investigate the impact
of groupware support for
distributed teams on the
quality of architecture
evaluation deliverables.

Laboratory
Experiment

Contrived
setting

High precision of measure-
ment to establish internal va-
lidity.

Low level of realism due to: con-
trived setting; use of undergrad
students; task limited to one task
only. Limited level of generaliz-
ability of findings.

8○
Setamanit
et al. [177]

To investigate task
allocation strategies in
GSE and its impact on
project duration.

Computer
Simulation

Non-
empirical
setting

Ability to run a large number
of complex scenarios that
are hard or too costly to eval-
uate in real-world settings.

Lack of realism as the simulation
depends on rules that must be pre-
programmed. No new empirical
results are observed.

REFERENCES
[1] S. Adolph, P. Kruchten, and W. Hall. 2012. Reconciling perspectives: A grounded theory of how people manage the process of software

development. Journal of Systems and Software 85 (2012), 1269–1286.
[2] P.J. Ågerfalk and B. Fitzgerald. 2006. Flexible and Distributed Software Processes: Old Petunias in New Bowls? Commun ACM 49, 10

(2006), 27–34.
[3] E. Alégroth and R. Feldt. 2017. On the long-term use of visual GUI testing in industrial practice: a case study. Empir Software Eng 22, 6

(2017), 2937–2971.
[4] V. Antinyan, M. Staron, and A. Sandberg. 2017. Evaluating code complexity triggers, use of complexity measures and the influence of

code complexity on maintenance time. Empir Software Eng 22, 6 (2017), 3057–3087.
[5] E. Arisholm, H. Gallis, T. Dybå, and D.I.K. Sjøberg. 2007. Evaluating Pair Programming with Respect to System Complexity and

Programmer Expertise. IEEE Trans. Softw. Eng. 33, 2 (2007), 65–86.
[6] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio, and A. Egyed. 2017. Multi-objective reverse engineering of

variability-safe feature models based on code dependencies of system variants. Empir Software Eng 22, 4 (2017), 1763–1794.
[7] D. Avison, F. Lau, M. Myers, and P.A. Nielsen. 1999. Action Research. Commun ACM 42, 1 (1999), 94–97.
[8] M.A. Babar, B. Kitchenham, and R. Jeffery. 2008. Comparing distributed and face-to-face meetings for software architecture evaluation:

A controlled experiment. Empir Software Eng 13, 1 (2008), 39–62.
[9] M. Bano, D. Zowghi, and F. da Rimini. 2017. User satisfaction and system success: an empirical exploration of user involvement in

software development. Empir Software Eng 22, 5 (2017), 2339–2372.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:44 • K. Stol and B. Fitzgerald

[10] L. Bao, J. Li, Z. Xing, X. Wang, X. Xia, and B. Zhou. 2017. Extracting and analyzing time-series HCI data from screen-captured task
videos. Empir Software Eng 22, 1 (2017), 134–174.

[11] V.R. Basili, R.W. Selby, and D.H. Hutchens. 1986. Experimentation in Software Engineering. IEEE Trans Softw Eng 12, 7 (1986), 733–743.
[12] V.R. Basili and M.V. Zelkowitz. 2007. Empirical studies to build a science of computer science. Commun ACM 50, 11 (2007), 33–37.
[13] B.C.D. Anda, D.I.K. Sjøberg, and A. Mockus. 2009. Variability and Reproducibility in Software Engineering: A Study of Four Companies

that Developed the Same System. IEEE Trans. Softw. Eng. 35, 3 (2009), 407–429.
[14] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp. 2008. Motivation in Software Engineering: A systematic literature review.

Inform Software Tech 50, 9-10 (2008), 860–878.
[15] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian, and N. Medvidovic. 2017. A large-scale study of architectural evolution in

open-source software systems. Empir Software Eng 22, 3 (2017), 1146–1193.
[16] M. Beller, A. Zaidman, A. Karpov, and R.A. Zwaan. 2017. The last line effect explained. Empir Software Eng 22, 3 (2017), 1508–1536.
[17] D.M. Berry and W.F. Tichy. 2003. Comments on “Formal Methods Application: An Empirical Tale of Software Development”. IEEE Trans

Softw Eng 29, 6 (2003).
[18] C.-P. Bezemer, S. McIntosh, B. Adams, D. M. German, and A. E. Hassan. 2017. An empirical study of unspecified dependencies in

make-based build systems. Empir Software Eng 22, 6 (2017), 3117–3148.
[19] N. Bos, N. Sadat Shami, J.S. Olson, A. Cheshin, and N. Nan. 2004. In-group/Out-group Effects in Distributed Teams: An Experimental

Simulation. In Proc. International Conference on Computer-Supported Cooperative Work and Social Computing (CSCW) (New York, NY,
USA). ACM, 429–436.

[20] S.S. Brilliant and J.C. Knight. 1999. Empirical research in software engineering: a workshop. ACM SIGSOFT Software Engineering Notes
24, 3 (1999), 44–52.

[21] A. Bryant. 2000. ‘It’s Engineering Jim ... but not as we know it’: Software Engineering - solution to the software crisis, or part of the
problem?. In Proc. International Conference on Software Engineering (Limerick, Ireland). 77–86.

[22] M. Caneill, D.M. Germán, and S. Zacchiroli. 2017. The Debsources Dataset: two decades of free and open source software. Empir Software
Eng 22, 3 (2017), 1405–1437.

[23] E. Capra, C. Francalanci, and F. Merlo. 2008. An Empirical Study on the Relationship among Software Design Quality, Development
Effort, and Governance in Open Source Projects. IEEE Trans Softw Eng 34, 6 (2008).

[24] E. Carmel. 1999. Global Software Teams. Prentice Hall.
[25] A. Charpentier, J.-R. Falleri, F. Morandat, E. Ben Hadj Yahia, and L. Réveillère. 2017. Raters’ reliability in clone benchmarks construction.

Empir Software Eng 22, 1 (2017), 235–258.
[26] B. Chen and Z.M. Jiang. 2017. Characterizing logging practices in Java-based open source software projects – a replication study in

Apache Software Foundation. Empir Software Eng 22, 1 (2017), 330–374.
[27] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose. 2017. Predicting the delay of issues with due dates in software projects. Empir

Software Eng 22, 3 (2017), 1223–1263.
[28] M. Ó Cinnéide, I. Hemati Moghadam, M. Harman, S. Counsell, and L. Tratt. 2017. An experimental search-based approach to cohesion

metric evaluation. Empir Software Eng 22, 1 (2017), 292–329.
[29] R. Coelho, L. Almeida, G. Gousios, A. van Deursen, and C. Treude. 2017. Exception handling bug hazards in Android. Empir Software

Eng 22, 3 (2017), 1264–1304.
[30] K. Conboy and B. Fitzgerald. 2010. Method and Developer Characteristics for Effective Agile Method Tailoring: A Study of XP Expert

Opinion. ACM Trans. Softw. Eng. Methodol. 20, 1 (2010).
[31] D.S. Cruzes and T. Dybå. 2011. Research Synthesis in Software Engineering: A Tertiary Study. Inform Software Tech 53 (2011), 440–455.
[32] B. Curtis. 1980. Measurement and experimentation in software engineering. Proc. IEEE 68, 9 (1980), 1144–1157.
[33] B. Curtis. 1984. Fifteen Years of Psychology in Software Engineering: Individual Differences and Cognitive Science. In Proc. 7th

International Conference on Software Engineering (ICSE ’84). IEEE Press, Piscataway, NJ, USA, 97–106.
[34] B. Curtis. 2009. Point/Counterpoint: Are Rigorous Experiments Realistic for Software Engineering? IEEE Softw 26, 6 (2009), 56–59.
[35] B. Curtis, E.M. Soloway, R.E. Brooks, J.B. Black, K. Ehrlich, and H.R. Ramsey. 1986. Software Psychology: The Need for an Interdisciplinary

Program. Proc IEEE 74, 8 (1986), 1092–1106.
[36] N. Dalkey and O. Helmer. 1963. An Experimental Application of the Delphi Method to the Use of Experts. Manage Sci 9, 3 (1963),

458–467.
[37] D.E. Damian and D. Zowghi. 2003. RE challenges in multi-site software development organisations. Requir Eng 8 (2003), 149–160.
[38] M. Daneva. 2010. Engineering the Coordination Requirements in Cross-organizational ERP Projects. Enterprise Information Systems and

Implementing IT Infrastructures (2010), 1–19.
[39] M. Daneva and N. Ahituv. 2010. A Focus Group Study on Inter-organizational ERP Requirements Engineering Practices. In Proc. 2010

ACM-IEEE International Symposium on Empirical Software Engineering and Measurement. ACM.
[40] C. De Souza, Y. Dittrich, H. Sharp, and J. Singer. 2009. Cooperative and Human Aspects of Software Engineering (CHASE 2009). In Proc.

International Conference on Software Engineering (Companion Volume). 451–452.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:45

[41] O. Dieste, A. M. Aranda, F. Uyaguari, B. Turhan, A. Tosun, D. Fucci, M. Oivo, and N. Juristo. 2017. Empirical evaluation of the effects of
experience on code quality and programmer productivity: an exploratory study. Empir Software Eng 22, 5 (2017), 2457–2542.

[42] Y. Dittrich. 2000. Beg, Borrow, and Steal — But What, and What For?. In Workshop: Beg, Borrow, or Steal: Using Multidisciplinary
Approaches in Empirical Software Engineering Research (co-located with ICSE’00) (Limerick, Ireland).

[43] Y. Dittrich, M. John, J. Singer, and B. Tessem. 2007. For the Special issue on Qualitative Software Engineering Research. Inform Software
Tech 49, 6 (2007).

[44] L. Dobrica and E. Niemelä. 2005. A Survey on Software Architecture Analysis Methods. IEEE Trans Softw Eng 28, 7 (2005), 638–653.
[45] C.H. C. Duarte. 2017. Productivity paradoxes revisited. Empir Software Eng 22, 2 (2017), 818–847.
[46] T. Dybå, R. Prikladnicki, K. Rönkkö, C. Seaman, and J. Sillito. 2011. Qualitative research in software engineering. Empir Software Eng 16

(2011), 425–429.
[47] T. Dybå, D.I.K. Sjøberg, and D.S. Cruzes. 2012. What Works for Whom, Where, When, and Why? On the Role of Context in Empirical

Software Engineering. In Proc. International Symposium on Empirical Software Engineering and Measurement (ESEM) (Lund, Sweden).
ACM.

[48] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. 2008. Selecting Empirical Methods for Software Engineering Research. In Guide
to Advanced Software Engineering, Forest Shull, Janice Singer, and Dag I.K. Sjøberg (Eds.).

[49] C. Ebert, C.H. Parro, R. Suttels, and H. Kolarczyk. 2001. Better validation in a world-wide development environment. In Proc. 7th
International Software Metrics Symposium (METRICS).

[50] A.C. Edmondson and S.E. McManus. 2007. Methodological Fit in Management Field Research. Acad. Manage. Rev. 32, 4 (2007).
[51] H. Edwards, S. McDonald, and M. Young. 2009. The repertory grid technique: Its place in empirical software engineering research.

Inform Software Tech 51, 4 (2009), 785–798.
[52] J.A. Espinosa and E. Carmel. 2003. The Impact of Time Separation on Coordination in Global Software Teams: a Conceptual Foundation.

Softw. Process Improve. Pract. 8, 4 (2003), 249–266.
[53] D. Falessi, M. Di Penta, G. Canfora, and G. Cantone. 2017. Estimating the number of remaining links in traceability recovery. Empir

Software Eng 22, 3 (2017), 996—1027.
[54] N. Fenton and S. L. Pfleeger. 1997. Software Metrics: A Rigorous and Practical Approach (2nd (revised printing) ed.). PWS Publishing

Company.
[55] D. Méndez Fernández, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra, A. Vetrò, T. Conte, M.-T. Christiansson, D. Greer, C. Lassenius, T.

Männistö, M. Nayabi, M. Oivo, B. Penzenstadler, D. Pfahl, R. Prikladnicki, G. Ruhe, A. Schekelmann, S. Sen, R. Spinola, A. Tuzcu, J. L.
de la Vara, and R. Wieringa. 2017. Naming the pain in requirements engineering. Empir Software Eng 22, 5 (2017), 2298–2338.

[56] B. Fitzgerald and D. Howcroft. 1998. Towards dissolution of the IS research debate: from polarization to polarity. J Inform Technol 13, 4
(1998), 313–326.

[57] M. Gharehyazie and V. Filkov. 2017. Tracing distributed collaborative development in apache software foundation projects. Empir
Software Eng 22, 4 (2017), 1795–1830.

[58] Y. Gil and G. Lalouche. 2017. On the correlation between size and metric validity. Empir Software Eng 22, 5 (2017), 2585–2611.
[59] B.G. Glaser. 1978. Theoretical Sensitivity. The Sociology Press.
[60] B.G. Glaser and A.L. Strauss. 1967. The Discovery of Grounded Theory. AldineTransaction.
[61] R.L. Glass. 1994. The Software-Research Crisis. IEEE Softw 11, 6 (1994).
[62] R.L. Glass. 2002. Facts and Fallacies of Software Engineering. Addison Wesley.
[63] R.L. Glass, I. Vessey, and V. Ramesh. 2002. Research in software engineering: an analysis of the literature. Inform Software Tech 44 (2002).
[64] D. Graziotin, X. Wang, and P. Abrahamsson. 2014. Happy software developers solve problems better: psychological measurements in

empirical software engineering. PeerJ 2, e289 (2014).
[65] S. Gregor. 2006. The nature of theory in information systems. MIS Quart 30, 3 (2006), 611–642.
[66] J. Guo, M. Gibiec, and J. Cleland-Huang. 2017. Tackling the term-mismatch problem in automated trace retrieval. Empir Software Eng 22,

3 (nov 2017), 1103–1142.
[67] J.E. Hannay and M. Jørgensen. 2008. The Role of Deliberate Artificial Design Elements in Software Engineering Experiments. IEEE

Trans Softw Eng 34, 2 (2008).
[68] R. Harrison, N. Badoo, E. Barry, S. Biffl, A. Parra, B. Winter, and J. Wuest. 1999. Directions and Methodologies for Empirical Software

Engineering Research. Empir Softw Eng 4, 4 (1999), 405–410.
[69] S. Hassan, W. Shang, and A.E. Hassan. 2017. An empirical study of emergency updates for top android mobile apps. Empir Software Eng

22, 1 (2017), 505–546.
[70] V.T. Heikkilä, M. Paasivaara, C. Lasssenius, D. Damian, and C. Engblom. 2017. Managing the requirements flow from strategy to release

in large-scale agile development: a case study at Ericsson. Empir Software Eng 22, 6 (2017), 2892–2936.
[71] S. Herbold, A. Trautsch, and J. Grabowski. 2017. Global vs. local models for cross-project defect prediction. Empir Software Eng 22, 4

(2017), 1866–1902.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:46 • K. Stol and B. Fitzgerald

[72] J.D. Herbsleb and R.E. Grinter. 1999. Architectures, Coordination, and Distance: Conway’s Law and Beyond. IEEE Softw 16, 5 (1999),
63–70.

[73] J.D. Herbsleb and R.E. Grinter. 1999. Splitting the Organization and Integrating the Code: Conway’s Law Revisited. In Proc. International
Conference on Software Engineering (Los Angeles, CA). 85–95.

[74] R. Hoda, J. Noble, and S. Marshall. 2013. Self-Organizing Roles on Agile Software Development Teams. IEEE Trans Softw Eng 39, 3
(2013), 422–444.

[75] A. Höfer and W. Tichy. 2007. Status of Empirical Research in Software Engineering. In Empirical Software Engineering Issues, LNCS 4336.
10–19.

[76] G. Hofstede, B. Neuijen, D.D. Ohayv, and G. Sanders. 1990. Measuring Organizational Cultures: A Qualitative and Quantitative Study
Across Twenty Cases. Administrative Science Quarterly 35, 2 (1990).

[77] M. Höst, B. Regnell, J.N. och Dag, J. Nedstam, and C. Nyberg. 2001. Exploring bottlenecks in market-driven requirements management
processes with discrete event simulation. J Sys Softw 59, 3 (2001), 323–332.

[78] C.L. Iacovou and R. Nakatsu. 2008. A risk profile of offshore-outsourced development projects. Commun ACM 51, 6 (2008), 89–94.
[79] M. Ivarsson and T. Gorschek. 2011. A method for evaluating rigor and industrial relevance of technology evaluations. Empir Softw Eng

16, 3 (2011), 365–395.
[80] Tisseau J. 2008. In vivo, in vitro, in silico, in virtuo. In 1st Workshop on SMA in Biology at meso or macroscopic scales (Paris).
[81] S. Jain, M.A. Babar, and J. Fernandez. 2013. Conducting Empirical Studies in Industry: Balancing Rigor and Relevance. In Proc. International

Workshop on Conducting Empirical Studies in Industry (CESI).
[82] H. Jansen. 2010. The Logic of Qualitative Survey Research and its Position in the Field of Social Research Methods. Forum: Qualitative

Social Research 11, 2 (2010).
[83] A. Jbara and D.G. Feitelson. 2017. How programmers read regular code: a controlled experiment using eye tracking. Empir Software Eng

22, 3 (2017), 1440–1477.
[84] D.R. Jeffery and L.G. Votta. 1999. Guest Editor’s Special Section Introduction. IEEE Trans Softw Eng 25, 4 (1999), 435–437.
[85] J. Jiang, D. Lo, J. He, X. Xia, P.S. Kochhar, and L. Zhang. 2017. Why and how developers fork what from whom in GitHub. Empir Software

Eng 22, 1 (2017), 547–578.
[86] S. Jiang, C. McMillan, and R. Santelices. 2017. Do Programmers do Change Impact Analysis in Debugging? Empir Software Eng 22, 2

(2017), 631–669.
[87] M. Joblin, S. Apel, and W. Mauerer. 2017. Evolutionary trends of developer coordination: a network approach. Empir Software Eng 22, 4

(2017), 2050–2094.
[88] A. N. Johanson and W. Hasselbring. 2017. Effectiveness and efficiency of a domain-specific language for high-performance marine

ecosystem simulation: a controlled experiment. Empir Software Eng 22, 4 (2017), 2206–2236.
[89] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik. 2017. On negative results when using sentiment analysis tools for software

engineering research. Empir Software Eng 22, 5 (2017), 2543–2584.
[90] H. Jordan, S. Beecham, and G. Botterweck. 2014. Modelling Software Engineering Research with RSML. In Proc. 18th International

Conference on Evaluation and Assessment in Software Engineering.
[91] N. Juristo and A.M. Moreno. 2001. Basics of Software Engineering Experimentation. Springer Science+Business Media, LLC.
[92] E Kalliamvakou, G Gousios, K Blincoe, L Singer, DM German, and D Damian. 2014. The Promises and Perils of Mining GitHub. In Proc.

11th Working Conference on Mining Software Repositories.
[93] R. Kazman, M. Klein, and P. Clements. 2000. ATAM: Method for Architecture Evaluation. (2000). Carnegie Mellon Software Engineering

Institute, Technical Report CMU/SEI-2000-TR-004.
[94] M. Kessentini, U. Mansoor, M. Wimmer, A. Ouni, and K. Deb. 2017. Search-based detection of model level changes. Empir Software Eng

22, 2 (2017), 670–715.
[95] F. M. Kifetew, R. Tiella, and P. Tonella. 2017. Generating valid grammar-based test inputs by means of genetic programming and

annotated grammars. Empir Software Eng 22, 2 (2017), 928–961.
[96] J. King, J. Stallings, M. Riaz, and L. Williams. 2017. To log, or not to log: using heuristics to identify mandatory log events – a controlled

experiment. Empir Software Eng 22, 5 (2017), 2684–2717.
[97] B.A. Kitchenham and S.L. Pfleeger. 2002. Principles of Survey Research Part 2: Designing a Survey. ACM Software Engineering Notes 27,

1 (2002).
[98] B.A. Kitchenham and S.L. Pfleeger. 2002. Principles of Survey Research Part 3: Constructing a Survey Instrument. ACM Software

Engineering Notes 27, 2 (2002).
[99] B.A. Kitchenham and S.L. Pfleeger. 2002. Principles of Survey Research Part 4: Questionnaire Evaluation. ACM Software Engineering

Notes 27, 3 (2002).
[100] B.A. Kitchenham and S.L. Pfleeger. 2002. Principles of Survey Research Part 5: Populations and Samples. ACM Software Engineering

Notes 27, 5 (2002).

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:47

[101] B.A. Kitchenham and S.L. Pfleeger. 2003. Principles of Survey Research Part 6: Data Analysis. ACM Software Engineering Notes 28, 2
(2003).

[102] B.A. Kitchenham, S.L. Pfleeger, L.M.P Pickard, P.W. Jones, D.C. Hoaglin, K. El Emam, and J. Rosenberg. 2008. Preliminary Guidelines
for Empirical Research in Software Engineering. IEEE Trans. Softw. Eng. 28, 2 (2008), 721–734.

[103] A.J. Ko, B.A. Myers, M.J. Coblenz, and H.H. Aung. 2006. An Exploratory Study of How Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks. IEEE Trans Softw Eng 32, 12 (2006).

[104] J. Kontio, J. Bragge, and L. Lehtola. 2008. The Focus Group Method as an Empirical Tool in Software Engineering. In Guide to Advanced
Empirical Software Engineering. Springer.

[105] M. Krafft, K. Stol, and B. Fitzgerald. 2016. How Do Free/Open Source Developers Pick Their Tools? A Delphi Study of the Debian
Project. In Proc. 38th International Conference on Software Engineering (Companion Volume) (Austin, TX, USA). 232–241.

[106] P. Kruchten, R.L. Nord, and I. Ozkaya. 2012. Technical Debt: From Metaphor to Theory and Practice. IEEE Softw 29, 6 (2012), 18–21.
[107] I. Kwan, A. Schröter, and D. Damian. 2011. Does Socio-Technical Congruence Have an Effect on Software Build Success? A Study of

Coordination in a Software Project. IEEE Trans Softw Eng 37, 3 (2011).
[108] K. Labunets, F. Massacci, F. Paci, S. Marczak, and F. M. de Oliveira. 2017. Model comprehension for security risk assessment: an

empirical comparison of tabular vs. graphical representations. Empir Software Eng 22, 6 (2017), 3017–3056.
[109] F. Lanubile. 1997. Empirical Evaluation of Software Maintenance Technologies. Empir Softw Eng 2 (1997), 97–108.
[110] T.D. LaToza, M. Chen, L. Jiang, M. Zhao, and A. van der Hoek. 2015. Borrowing from the Crowd: A Study of Recombination in Software

Design Competitions. In Proc. International Conf. Software Engineering.
[111] S. Lauesen and O. Vinter. 2001. Preventing Requirement Defects: An Experiment in Process Improvement. Requir Eng 6 (2001), 37–50.
[112] T.-D. B. Le, F. Thung, and D. Lo. 2017. Will this localization tool be effective for this bug? Mitigating the impact of unreliability of

information retrieval based bug localization tools. Empir Software Eng 22, 4 (2017), 2237–2279.
[113] T. O. A. Lehtinen, J. Itkonen, and C. Lassenius. 2017. Recurring opinions or productive improvements—what agile teams actually

discuss in retrospectives. Empir Software Eng 22, 5 (2017), 2409–2452.
[114] P. Lenberg, R. Feldt, and L.G. Wallgren. 2015. Behavioral Software Engineering: a Definition and Systematic Literature Review. J Syst

Softw 107 (2015), 15–37.
[115] P. Lenberg, L. G. W. Tengberg, and R. Feldt. 2017. An initial analysis of software engineers’ attitudes towards organizational change.

Empir Software Eng 22, 4 (2017), 2179–2205.
[116] F.J. Lerch, D.J. Ballou, and D.E. Harter. 1997. Using simulation-based experiments for software requirements engineering. Annals of

Software Engineering 3, 1 (1997), 345–366.
[117] T.C. Lethbridge, S.E. Sim, and J. Singer. 2005. Studying Software Engineers: Data Collection Techniques for Software Field Studies.

Empir. Software Eng. 10 (2005), 311–341.
[118] H. Li, W. Shang, and A. E. Hassan. 2017. Which log level should developers choose for a new logging statement? Empir Software Eng

22, 4 (2017), 1684–1716.
[119] H. Li, W. Shang, Y. Zou, and A. E. Hassan. 2017. Towards just-in-time suggestions for log changes. Empir Software Eng 22, 4 (2017),

1831–1865.
[120] D. Lin, C.-P. Bezemer, and A. E. Hassan. 2017. Studying the urgent updates of popular games on the Steam platform. Empir Software

Eng 22, 4 (2017), 2095–2126.
[121] H.A. Linstone and M. Turoff (Eds.). 2002. The Delphi Method Techniques and Applications. Addison-Wesley.
[122] C. Lokan and E. Mendes. 2017. Investigating the use of moving windows to improve software effort prediction: a replicated study.

Empir Software Eng 22, 2 (2017), 716–767.
[123] L. Lopez-Fernandez, G. Robles, and J.M. Gonzalez-Barahona. 2004. Applying social network analysis to the information in CVS

repositories. In Proc. 1st Workshop on Mining Software Repositories (MSR). 101–105.
[124] Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk. 2017. FOREPOST: finding performance problems automatically with feedback-

directed learning software testing. Empir Software Eng 22, 1 (2017), 6–56.
[125] J. Ma, J. Li, W. Chen, R. Conradi, J. Ji, and C. Liu. 2008. A State-of-the-Practice Study on Communication and Coordination between

Chinese Software Suppliers and Their Global Outsourcers. Software Process Improvement and Practice 13, 3 (2008), 233–247.
[126] L. MacLeod, A. Bergen, and M.-A. Storey. 2017. Documenting and sharing software knowledge using screencasts. Empir Software Eng

22, 3 (2017), 1478–1507.
[127] A. Mahmoud and G. Bradshaw. 2017. Semantic topic models for source code analysis. Empir Software Eng 22, 4 (2017), 1965–2000.
[128] R. Malhotra and M. Khanna. 2017. An empirical study for software change prediction using imbalanced data. Empir Software Eng 22, 6

(2017), 2806–2851.
[129] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment

on the defects4j dataset. Empir Software Eng 22, 4 (2017), 1936–1964.
[130] J.E. McGrath. 1964. Social Psychology: A Brief Introduction. Holt, Rinehart and Winston, Inc.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:48 • K. Stol and B. Fitzgerald

[131] J.E. McGrath. 1964. Towards a “Theory of Method” for research on organizations. In New Perspectives in Organization Research,
W. Cooper, H. Leavitt, and M. Shelly (Eds.). 533–556.

[132] J.E. McGrath. 1981. Dilemmatics: The Study of Research Choices and Dilemmas. Am. Behav. Sci. 25, 2 (1981), 179–210.
[133] J.E. McGrath. 1984. Groups: Interaction and Performance. Prentice-Hall, Inc.
[134] J.E. McGrath. 1994. Methodology Matters: Doing Research in the Behavioral and Social Sciences. In Readings in Human-Computer

Interaction: Toward the Year 2000, Ronald M. Baecker (Ed.). 152–169.
[135] E.R. McLean. 1973. Comments on Empirical studies of management information systems by Richard L. Van Horn. Data Base 5, 2 (1973),

181–182.
[136] N. Medvidović and R. N. Taylor. 2000. A classification and comparison framework for software architecture description languages.

IEEE Trans Softw Eng 26, 1 (2000), 70–93.
[137] T. Menzies, W. Nichols, F. Shull, and L. Layman. 2017. Are delayed issues harder to resolve? Revisiting cost-to-fix of defects throughout

the lifecycle. Empir Software Eng 22, 4 (2017), 1903–1935.
[138] T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn. 2017. Negative results for software effort estimation. Empir Software Eng 22, 5

(2017), 2658–2683.
[139] B. Meyer, H. Gall, M. Harman, and G. Succi. 2013. Empirical Answers to Fundamental Software Engineering Problems (Panel). In

Proceedings of ESEC/FSE’13. 14–18.
[140] M.W. Mkaouer, M. Kessentini, M. Ó Cinnéide, S. Hayashi, and K. Deb. 2017. A robust multi-objective approach to balance severity and

importance of refactoring opportunities. Empir Software Eng 22, 2 (2017), 894–927.
[141] A. Mockus, R.T. Fielding, and J.D. Herbsleb. 2000. A case study of open source software development: the Apache server. In Proc.

International Conf. Software Engineering.
[142] A. Mockus, R.T. Fielding, and J.D. Herbsleb. 2002. Two case studies of open source software development: Apache and Mozilla. ACM

Trans. Softw. Eng. Methodol. 11, 3 (2002).
[143] M. Montesi and P. Lago. 2008. Software engineering article types: An analysis of the literature. J Syst Softw 81, 10 (2008), 1694–1714.
[144] M. Müller and D. Pfahl. 2008. Simulation Methods. In Guide to Advanced Software Engineering, F. Shull, J. Singer, and D. I.K. Sjøberg

(Eds.).
[145] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan. 2017. Curating GitHub for engineered software projects. Empir Software Eng 22, 6

(2017), 3219–3253.
[146] C.J. Neill and P. Laplante. 2003. Requirements Engineering: The State of the Practice. IEEE Softw 20, 6 (2003).
[147] L. Nguyen and G. Shanks. 2008. A framework for understanding creativity in requirements engineering. Inform Software Tech 51, 3

(2008), 655–662.
[148] A. Niknafs and D. Berry. 2017. The impact of domain knowledge on the effectiveness of requirements engineering activities. Empir

Software Eng 22, 1 (2017), 80–133.
[149] H. Niu, I. Keivanloo, and Y. Zou. 2017. Learning to rank code examples for code search engines. Empir Software Eng 22, 1 (2017),

259–291.
[150] E. Noei, M. D. Syer, Y. Zou, A. E. Hassan, and I. Keivanloo. 2017. A study of the relation of mobile device attributes with the user-perceived

quality of Android apps. Empir Software Eng 22, 6 (2017), 3088–3116.
[151] P. Ovaska, M. Rossi, and P. Marttiin. 2003. Architecture as a Coordination Tool in Multi-site Software Development. Softw. Process

Improve. Pract. 8 (2003), 233–247.
[152] C. Palomares, C. Quer, and X. Franch. 2017. Requirements reuse and requirement patterns: a state of the practice survey. Empir Software

Eng 22, 6 (2017), 2719–2762.
[153] J. Park, M. Kim, and D.-H. Bae. 2017. An empirical study of supplementary patches in open source projects. Empir Software Eng 22, 1

(2017), 436–473.
[154] D.L. Parnas. 2009. Point/Counterpoint: Empirical Research in Software Engineering: A Critical View. IEEE Softw 26, 6 (2009), 56–59.
[155] D.E. Perry, A.E. Porter, and L.G. Votta. 2000. Empirical Studies of Software Engineering: A Roadmap. In Future of Software Engineering

(Limerick, Ireland).
[156] D.E. Perry, N.A. Staudenmayer, and L.G. Votta. 1994. People, Organizations, and Process Improvement. IEEE Softw 11, 4 (1994).
[157] K. Petersen and C. Wohlin. 2009. Context in Industrial Software Engineering Research. In Proc. 3rd International Symposium on Empirical

Software Engineering and Measurement.
[158] S.L. Pfleeger and B.A. Kitchenham. 2001. Principles of Survey Research: Part 1: Turning Lemons into Lemonade. ACM SIGSOFT Software

Engineering Notes 26, 6 (2001), 16–18.
[159] A.A. Porter, L.G. Votta, and V.R. Basili. 1995. Comparing Detection Methods for Software Requirements Inspections: A Replicated

Experiment. IEEE Trans Softw Eng 21, 6 (1995).
[160] D. Raffo and S.-O. Setamanit. 2005. A Simulation model for global software development project. In Proc. 6th International Workshop on

Software Process Simulation and Modeling (ProSimâĂŹ05) (Stuttgart, Germany). Fraunhofer IRB Verlag.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

The ABC of Software Engineering Research • 1:49

[161] P. Ralph. 2018. Toward Methodological Guidelines for Process Theories and Taxonomies in Software Engineering. IEEE Transactions
on Software Engineering in press (2018).

[162] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. 2014. A large scale study of programming languages and code quality in github. In Proc.
22nd ACM SIGSOFT International Sym. Foundations of Software Engineering.

[163] M. Riaz, J. King, J. Slankas, L. Williams, F. Massacci, C. Quesada-López, and M. Jenkins. 2017. Identifying the implied: Findings from
three differentiated replications on the use of security requirements templates. Empir Software Eng 22, 4 (2017), 2127–2178.

[164] H. Robinson, J. Segal, and H. Sharp. 2007. Ethnographically-informed empirical studies of software practice. Inform Software Tech 49, 6
(2007), 540–551.

[165] J. Miguel Rojas, M. Vivanti, A. Arcuri, and G. Fraser. 2017. A detailed investigation of the effectiveness of whole test suite generation.
Empir Software Eng 22, 2 (2017), 852–893.

[166] D. Rosenblum and E. Weyuker. 1996. Lessons learned from a regression testing case study. In Proc. International Workshop on Empirical
Studies of Software Maintenance (WESS’96).

[167] D.T. Ross. 1977. Guest Editorial: Reflections on Requirements. IEEE Trans Softw Eng 3, 1 (1977), 2–5.
[168] P. Runeson and M. Höst. 2009. Guidelines for conducting and reporting case study research in software engineering. Empir Software

Eng 14 (2009), 131–164.
[169] P. Runeson, M. Höst, A. Rainer, and B. Regnell. 2012. Case Study Research in Software Engineering: Guidelines and Examples. Wiley.
[170] P.J. Runkel and J.E. McGrath. 1972. Research on Human Behavior: A Systematic Guide to Method. Holt, Rinehart and Winston, Inc.
[171] A. Sabané, Y.-G. Guéhéneuc, V. Arnaoudova, and G. Antoniol. 2017. Fragile base-class problem, problem? Empir Software Eng 22, 5

(2017), 2612–2657.
[172] V. Sakhnini, L. Mich, and D.M. Berry. 2017. Group versus individual use of power-only EPMcreate as a creativity enhancement

technique for requirements elicitation. Empir Software Eng 22, 4 (2017), 2001–2049.
[173] A. Ashok Sawant and A. Bacchelli. 2017. fine-GRAPE: fine-grained APi usage extractor – an approach and dataset to investigate API

usage. Empir Software Eng 22, 3 (2017), 1348–1371.
[174] C.B. Seaman. 1999. Qualitative Methods in Empirical Studies of Software Engineering. IEEE Trans Softw Eng 24, 4 (1999), 557–572.
[175] J. Segal. 2003. Some parallels between empirical software engineering and research in human-computer interaction. In Proc. 15th

Workshop of the Psychology of Programming Interest Group (Keele, UK).
[176] S.-O. Setamanit. 2007. A Software Process Simulation Model of Global Software Development (GSD) Projects. Ph.D. Dissertation. Portland

State University.
[177] S.-O. Setamanit, W. Wakeland, and D. Raffo. 2007. Using Simulation to Evaluate Global Software Development Task Allocation

Strategies. Softw. Process Improve. Pract. 12 (2007), 491–503.
[178] B. Sharif, J. Meinken, T. Shaffer, and H. Kagdi. 2017. Eye movements in software traceability link recovery. Empir Software Eng 22, 3

(2017), 1063–1102.
[179] H. Sharp, Y. Dittrich, and C.R.B. de Souza. 2016. The Role of Ethnographic Studies in Empirical Software Engineering. IEEE Trans Softw

Eng 42, 8 (2016), 786–804.
[180] H. Sharp and H. Robinson. 2004. An Ethnographic Study of XP Practice. Empir Software Eng 9, 4 (2004), 353–375.
[181] H. Sharp, M. Woodman, and F. Hovenden. 2005. Using Metaphor to Analyse Qualitative Data: Vulcans and Humans in Software

Development. Empir Software Eng 10, 3 (2005), 343–365.
[182] M. Shaw. 2002. What Makes Good Research in Software Engineering? Int J Softw Tools Technol Transf. 4, 1 (2002).
[183] M. Shaw. 2003. Writing Good Software Engineering Research Papers. In Proc. 25th International Conf. Software Engineering. 726–736.
[184] Y. Shi, M. Li, S. Arndt, and C. Smidts. 2017. Metric-based software reliability prediction approach and its application. Empir Software

Eng 22, 4 (2017), 1579–1633.
[185] F. Shull, J. Singer, and D.I.K. Sjøberg (Eds.). 2008. Guide to Advanced Empirical Software Engineering. Springer.
[186] J. Siegmund, N. Siegmund, and S. Apel. 2015. Views on Internal and External Validity in Empirical Software Engineering. In Proc. 37th

International Conference on Software Engineering. IEEE. 10.1109/ICSE.2015.24.
[187] S.E. Sim, J. Singer, and M.-A. Storey. 2001. Beg, Borrow, or Steal: Using Multidisciplinary Approaches in Empirical Software Engineering

Research. Empir Softw Eng 6, 1 (2001), 85–93.
[188] D.I.K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanovic, E.F. Koren, and M. Vokác. 2002. Conducting Realistic

Experiments in Software Engineering. In Proc. International Symposium on Empirical Software Engineering (ISESE’ĂŹ02).
[189] D.I.K. Sjøberg, T. Dybå, B.C.D. Anda, and J.E. Hannay. 2008. Building Theories in Software Engineering. In Guide to Advanced Empirical

Software Engineering, Forrest Shull, Janice Singer, and Dag I.K. Sjøberg (Eds.).
[190] D.I.K. Sjøberg, T. Dybå, and M. Jørgensen. 2007. The Future of Empirical Methods in Software Engineering Research. In Future of

Software Engineering. IEEE Computer Society.
[191] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahansanovic, N.-K. Liborg, and A.C. Rekdal. 2005. A Survey of Controlled

Experiments in Software Engineering. IEEE Trans Softw Eng 31, 9 (2005).

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

10.1109/ICSE.2015.24

1:50 • K. Stol and B. Fitzgerald

[192] A.E. Kelley Sobel and M.R. Clarkson. 2002. Formal Methods Application: An Empirical Tale of Software Development. IEEE Trans
Softw Eng 28, 3 (2002), 308–320.

[193] A.E. Kelley Sobel and M.R. Clarkson. 2003. Response to “Comments on ‘Formal Methods Application: An Empirical Tale of Software
Development”’. IEEE Trans Softw Eng 29, 6 (2003).

[194] D. Spinellis. 2017. A repository of Unix history and evolution. Empir Software Eng 22, 3 (2017), 1372–1404.
[195] D. Ståhl, K. Hallén, and J. Bosch. 2017. Achieving traceability in large scale continuous integration and delivery deployment, usage and

validation of the eiffel framework. Empir Software Eng 22, 3 (2017), 967–995.
[196] I. Stavropoulou, M. Grigoriou, and K. Kontogiannis. 2017. Case study on which relations to use for clustering-based software architecture

recovery. Empir Software Eng 22, 4 (2017), 1717–1762.
[197] K. Stol, B. Caglayan, and B. Fitzgerald. 2018. Competition-Based Crowdsourcing Software Development: A Multi-Method Study from a

Customer Perspective. IEEE Trans Softw Eng in press (2018).
[198] K. Stol and B. Fitzgerald. 2014. Two’s Company, Three’s a Crowd: A Case Study of Crowdsourcing Software Development. In Proc. 36th

International Conference on Software Engineering (Hyderabad, India). 187–198.
[199] K. Stol and B. Fitzgerald. 2015. A Holistic Overview of Software Engineering Research Strategies. In Third International Workshop on

Conducting Empirical Studies in Industry (CESI) (Florence, Italy). ACM.
[200] K. Stol and B. Fitzgerald. 2015. Theory-Oriented Software Engineering. Science of Computer Programming 101 (2015), 79–98.
[201] K. Stol, M. Goedicke, and I. Jacobson. 2016. Introduction to the special section—General Theories of Software Engineering: New

advances and implications for research. Inform Software Tech 70 (2016), 176–180.
[202] K. Stol, P. Ralph, and B. Fitzgerald. 2016. Grounded Theory in Software Engineering Research: A Critical Review and Guidelines. In

Proc. 38th International Conference on Software Engineering (Austin, TX, USA). ACM, 120–131.
[203] M.-A. Storey, L. Singer, F.F. Filho, A. Zagalsky, and D.M. German. 2017. How social and communication channels shape and challenge a

participatory culture in software development. IEEE Trans Softw Eng 43, 2 (2017), 185–204. 10.1109/TSE.2016.2584053.
[204] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. 2017. Review participation in modern code review. Empir Software Eng 22, 2

(2017), 768–817.
[205] N.M. Tichy, M.L. Tushman, and C. Fombrun. 1979. Social Network Analysis For Organizations. Acad. Manag. Rev. 4, 4 (1979), 507–519.
[206] W.F. Tichy. 1998. Should Computer Scientists Experiment More? Computer 31, 5 (1998), 32–40.
[207] W.F. Tichy. 2000. Hints for Reviewing Empirical Work in Software Engineering. Empir Softw Eng 5 (2000), 309–312.
[208] J. Tisseau. 2001. Virtual Reality : in virtuo autonomy. (2001). University of Rennes I.
[209] A. Tosun, O. Dieste, D. Fucci, S. Vegas, B. Turhan, H. Erdogmus, A. Santos, M. Oivo, K. Toro, J. Jarvinen, and N. Juristo. 2017. An

industry experiment on the effects of test-driven development on external quality and productivity. Empir Software Eng 22, 6 (2017),
2763–2805.

[210] G.H. Travassos and M. de Oliveira Barros. 2003. Contributions of In Virtuo and In Silico Experiments for the Future of Empirical
Studies in Software Engineering. In Proc. 2nd Workshop on Empirical Software Engineering.

[211] C. Tsigkanos, L. Pasquale, C. Menghi, C. Ghezzi, and B. Nuseibeh. 2014. Engineering Topology Aware Adaptive Security: Preventing
Requirements Violations at Runtime. In Proc. 22nd IEEE International Requirements Engineering Conference (Karlskrona, Sweden).
203–212.

[212] R.L. van Horn. 1973. Empirical studies of management information systems. ACM SIGMIS Database: the DATABASE for Advances in
Information Systems 5 (1973), 172–182.

[213] J. van Maanen. 1982. Fieldwork on the Beat. In Varieties of Qualitative Research, J. van Maanen, J.M. Dabbs, and R.R. Faulkner (Eds.).
Sage Publications.

[214] C. Vendome, G. Bavota, M. Di Penta, M. Linares-Vásquez, D. German, and D. Poshyvanyk. 2017. License usage and changes: a large-scale
study on gitHub. Empir Software Eng 22, 3 (2017), 1537–1577.

[215] P. Vitharana. 2017. Defect propagation at the project-level: results and a post-hoc analysis on inspection efficiency. Empir Software Eng
22, 1 (2017), 57–79.

[216] L. Votta. 1995. By the Way, Has Anyone Studied Any Real Programmers, Yet?. In Proc. 9th International Software Process Workshop.
[217] E.J. Webb, D.T. Campbell, R.D. Schwartz, and L. Sechrest. 1966. Unobtrusive measures: Nonreactive research in the social sciences.

Rand-McNally.
[218] G.M. Weinberg. 1971. The psychology of computer programming. Van Nostrand Reinhold New York.
[219] R. Wieringa. 2009. Design Science as Nested Problem Solving. In Proc. DESRIST.
[220] R. Wieringa and M.G. Heerkens. 2006. The methodological soundness of requirements engineering papers: a conceptual framework

and two case studies. Requir Eng 11 (2006), 295–307. 10.1007/s00766-006-0037-6.
[221] R. Wieringa, N. Maiden, N. Mead, and C. Rolland. 2006. Requirements engineering paper classification and evaluation criteria: a

proposal and a discussion. Requir Eng 11 (2006), 102–107. 10.1007/s00766-005-0021-6.
[222] C. Wohlin and A. Aurum. 2015. Towards a decision-making structure for selecting a research design in empirical software engineering.

Empir Software Eng 20, 6 (2015).

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

10.1109/TSE.2016.2584053
10.1007/s00766-006-0037-6
10.1007/s00766-005-0021-6

The ABC of Software Engineering Research • 1:51

[223] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén. 2000. Experimentation in Software Engineering. Kluwer
Academic Publishers.

[224] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén. 2012. Experimentation in Software Engineering (2nd ed.).
Springer.

[225] C. Wohlin, D. S̆mite, and N.B. Moe. 2015. A general theory of software engineering: Balancing human, social and organizational
capitals. J Sys Softw 109 (2015), 229–242.

[226] J. Wu, S. Ali, T. Yue, J. Tian, and C. Liu. 2017. Assessing the quality of industrial avionics software: an extensive empirical evaluation.
Empir Software Eng 22, 4 (2017), 1634–1683.

[227] X. Xia, L. Bao, D. Lo, P.S. Kochhar, A. E. Hassan, and Z. Xing. 2017. What do developers search for on the web? Empir Software Eng 22,
6 (2017), 3149–3185.

[228] D. Ye, Z. Xing, and N. Kapre. 2017. The structure and dynamics of knowledge network in domain-specific Q&A sites: a case study of
stack overflow. Empir Software Eng 22, 1 (2017), 375–406.

[229] R.K. Yin. 2003. Case Study Research: Design and Methods. Sage.
[230] C. Zannier, G. Melnik, and F. Maurer. 2006. On the Success of Empirical Studies in the International Conference on Software Engineering.

In Proc. International Conf. Software Engineering. 341–350.
[231] M.V. Zelkowitz. 2007. Techniques for Empirical Validation. Empirical Software Engineering Issues LNCS 4336 (2007), 4–9.
[232] M.V. Zelkowitz and D.R. Wallace. 1998. Experimental Models for Validating Technology. Computer 31, 5 (1998), 23–31.
[233] W. Zogaan, I. Mujhid, J. C. S. Santos, D. Gonzalez, and M. Mirakhorli. 2017. Automated training-set creation for software architecture

traceability problem. Empir Software Eng 22, 3 (2017), 1028–1062.

Received November 2017; revised March 2018; revised June 2018; accepted July 2018

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Terminology
	2.2 Related Work
	2.3 Dimensions of Research Strategies: Obtrusiveness and Generalizability

	3 The ABC Framework for Research Strategies
	3.1 Field Studies
	3.2 Field Experiments
	3.3 Experimental Simulations
	3.4 Laboratory Experiments
	3.5 Judgment Studies
	3.6 Sample Studies
	3.7 Formal Theory
	3.8 Computer Simulations

	4 Applicability of the ABC Framework to Software Engineering Research
	4.1 Research Strategies in Global Software Engineering Research
	4.2 Research Strategies in Requirements Engineering Research
	4.3 Analysis of a Sample of Studies

	5 Discussion and Conclusion
	5.1 Metaphors and Research Settings in Software Engineering
	5.2 The A, B, and C of Software Engineering Research
	5.3 Limitations of the ABC Framework
	5.4 Conclusion

	A Sample Analysis of Research Strategies
	B Guidelines for Using the ABC Framework to Design a Research Program
	B.1 Scenario I: Exploring and Understanding
	B.2 Scenario II: Measuring and Testing

	References

