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Flat foliations of spherically symmetric geometries

Jemal Guveh )
Instituto de Ciencias Nucleares, Universidad Nacional Aotoa de Mgico, Apdo. Postal 70-543, 04510 Meo, D.F., Mexico

Niall O Murchadha
Physics Department, University College Cork, Cork, Ireland
(Received 6 May 1999; published 20 October 1999

We examine the solution of the constraints in spherically symmetric general relativity when spacetime has
a flat spatial hypersurface. It is demonstrated explicitly that, given one flat slice, a foliation by flat slices can be
consistently evolved. We show that when the sources are finite these slices do not admit singularities and we
provide an explicit bound on the maximum value assumed by the extrinsic curvature. If the dominant energy
condition is satisfied, the projection of the extrinsic curvature orthogonal to the radial direction possesses a
definite sign. We provide both necessary and sufficient conditions for the formation of apparent horizons in this
gauge which are qualitatively identical to those established earlier for extrinsic time foliations of spagtime,
Guven and N. OMurchadha, Phys. Rev. 56 7658 (1997; 56, 7666 (1997 ], which suggests that these
conditions possess a gauge invariant validi§0556-282(199)02420-(

PACS numbds): 04.20.Cv, 04.60.Kz

INTRODUCTION gauge, we propose in this paper to place our prejudice in
favor of extrinsic time foliations to the test, i.e., by abandon-

Despite the impressive array of techniques we currentlyng such foliations entirely in favor of a foliation which is
possess for constructing initial data in general relativity, arspecified completely by a condition on the intrinsic geometry
unsatisfying feature persists: the sensitivity of the solution tmf the leaves of the foliation. We will explore the simplest
the way we foliate spacetime. Indeed, this often overshadowshoice: that the spatial geometry be flat. It is well known that
entirely the physics we are attempting to understand. It isuch slices are provided in the Schwarzschild spacetime ge-
clear that the problem is even worse at the dynamical levelometry by Lemare coordinategsee, e.g.[6]). Recently,

In order to solve the constraints it is traditional to appealthese coordinates have been exploited to describe the canoni-
to an extrinsic time foliation of spacetime. This involves cal reduction of the theory with a source consisting of a shell
some restriction on the extrinsic curvature so as to define thef massive dusf7]. Indeed, there has been a revival of in-
slicing. One such foliation, in particular, has a long history:terest in the canonical reduction of spherically symmetric
in asymptotically flat spacetimes, the mean extrinsic curvageneral relativity (see, for example[8,9] and references
ture is set to zero. In the simplified context of sphericallytherein). However, when the sources are not confined to a
symmetric general relativity it is possible to examine explic-shell, the canonical procedure in an extrinsic time foliation is
itly how sensitively the solution of the constraints dependsnot generally tractable. The notable exception is the polar
on this choice of gauge. This is easy in this case because thsticing [10,11]. But simplicity comes at a price: the corre-
extrinsic curvature is completely specified by two scalarsponding chart is pathological if the slice possesses an ap-
functions and the mean curvature is a linear combination oparent horizon, as it ultimately will in a classically collapsing
these two scalars. One can then treat any extrinsic time fogeometry. Flat slicings, while remarkably simple, escape this
liation as a specification of the ratio of these scalars. This hashortcoming.
been the approach adopted[ib-5] in our examination of Historically, flat foliations of spacetime are of interest due
the constraints. to the role they played in the seventies as a provider of useful

In [3-5] we restricted our attention to extrinsic curvaturesguidelines for the construction of the proof of the positive
which, at every point on the slice, are timelike vectors inmass theorem. Brill and Jani@2] showed that if the spatial
superspace. In these articles we were able to demonstrate tlgggometry is flat, and the extrinsic curvature falls off more
the solution to the constraints is largely independent of theapidly thanr ~ % at infinity, the only solution of the vacuum
particular extrinsic time foliation we choose. Remarkably,Einstein equations is flat. One might, therefore, be tempted
we appear to have a robust characterization of the physicab conclude that such foliations are pathological, inconsistent
landmarks of the spatial geometry; specifically, it is possibleas they appear to be with the presence of gravitational waves.
to provide necessary and sufficient conditions for the formaAs we will see, however, the falloff of the extrinsic curvature
tion of apparent horizons which are not overwhelmed by thén this gauge is slowexactly asr %) and thus Brill and
gauge. Jang’s argument is not applicable. Indeed, this slicing pos-

In order to be really satisfied that we have control over thesesses the unusual feature that the Arnowitt-Deser-Misner

(ADM) mass is encoded completely by the extrinsic curva-

ture. While we do not have gravitational waves to contend
*Email address: jemal@nuclecu.unam.mx with in a spherically symmetric geometry, it is still possible
"Email address: niall@ucc.ie that the gauge exhibit pathologies associated with the
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sources. However, we demonstrate here that if the sourcashere the line element of the spherically symmetric spatial
are finite, all solutions of the constraints are non-singular ifgeometry is parametrized by

they are non singular at the origin. Therefore, this gauge

steers clear of singularities because the extrinsic curvature ds*=dI?+R?dQ?, €)

(which is now the only measure of the geomgtis/ always

bounded when the sources are. This should be contrasté"tﬁ1d we haYe expanded the extrinsic curvatlm%ié.the out-
with the situation in an extrinsic time foliation where the Ward pointing unit normal to the two-sphere of fixedas,

solutions may well be singular if the sources are large but
finite [2,3].

_ We examine the occurrence of apparent horizons in the| derivatives are with respect to the proper radius of the
intrinsic time gauge. \We must abandon the geometricallpherical geometryl. The spatial geometries we wish to
satisfying but nonetheless gauge dependent identification Qfynsider areR® (Ie0,%) with a single asymptotically flat

an apparent horizon with the formation of a bag with a ”eCl‘region with a regular center=0. The appropriate boundary
(minimal surfacg in the spatial geometry. Because the ge-.ondition on the metric at=0 is then

ometry is flat, there is no bag to speak of, much less the kind

of bag envisaged by Wheeler. Now apparent horizons occur R(0)=0. (5)
due to the action of extrinsic curvature alone. However, it is

no longer enough that the extrinsic curvature be large, it als§Ve recall thatR’(0)=1 if the geometry is regular at this
must possess the appropriate sign. This is due to the pecpeint. We assume that both the energy density of magter,
liarity of this gauge that, when the dominant energy condi-and its radial flow,J,are appropriately bounded functions of
tion is satisfied, the tangential projectiéy of the extrinsic | on some compact support.

curvature tensor has a definite sign. When we consider general spherically symmetric initial

We next search for necessary and sufficient conditions fodata we start off with six functionsg(; ,9,4,Kr.K;,p,J),
the appearance of apparent horizons. Remarkably, once wehich satisfy the two constraints. Because the dynamics re-
take into account the obvious obstruction associated with theide in the matter field, so that the geometry is purely kine-
sign of Kz, we can reproduce the inequalities we derivedmatical, it seems natural to choose ) as the independent
earlier in the extrinsic time gaugdd,5]. This suggests a variables. This still leaves us with four dependent objects
validity which transcends their gauge dependent derivationsatisfying the two constraints. One of the extra degrees of

It remains to confirm that the flat foliation is consistent freedom is obviously the coordinate choice on the three slice.
with the dynamics. We do this by constructing explicitly We can fix this more-or-less independently of everything
both the lapse and the shift necessary to maintain the flathesése. One natural choidevhich we usgis to setg,,=1; the
of the intrinsic geometry and we write down explicitly the other standard choices are to arrange that the metric be con-
exterior form of the spacetime metric. formally flat or that the radial coordinate be the areal

Schoen and Yau ifl9] gave a sufficient condition for the (Schwarzschilg radius.
appearance of trapped surfaces in general initial data sets. It This leaves us with one extra variable among the three
turns out that the only place these estimates can be realisiig,,=R? Kg,K ) so we choose some relationship between
cally tested is on intrinsically flat manifolds. We compare thethem. Such a condition should fix the slicing, the way that
Schoen and Yau sufficient condition with ours for the case othe given slice is embedded into the spacetime. When we
a constant density intrinsically flat sphere and find that oursolve the constraints completely we determine both the in-
is better by a factor of 3. trinsic geometry and the extrinsic curvature.

Finally, in the same spirit which has prompted us to con- In this paper we propose to foliate spacetime using the
sider flat foliations in the first place, we examine the flatintrinsic geometry to mark time. The simplest possible
foliation as a special case of foliations with negative spatiathoice is the one we will adopt. Let us suppose that
scalar curvature.

Kab=NaNpK £+ (Gap—NaNp) Kg- (4)

R()=1 (6)

FLAT FOLIATIONS everywhere so that the spatial geometry is fRit every-
where. This condition isa priori, no more restrictive than
any of the other slicing conditions we have considered. The
scalar curvature now vanishes with the result that the Hamil-
tonian constraint reduces to the algebraic conditioiKgpin
terms ofp,

We recall that the constraints are given(ime exploit the
notation introduced if1])

1
KrlKrt 2K ]— —[2(RR)' —R'?~1]=8mp, (1)
R Kr[Kr+ 2K .]=8mp. 7

The momentum constraint, apparently at least, is only modi-
fied in a trivial way:R'/R is replaced by 1/
To solve the constraints we eliminate the extrinsic curva-
_ ture scalaK , from Eq.(7) in favor of Kg andp and substi-
Kr—Kp)=47J, 2 ; £ R
(Kp=Kp)=4m @ tute into(2). We get

and

!

KR+ E
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1 /2m [2m
. (8) K£: - E R—, KR: + ? (15)

The equation is no longer linear Kg. This is not too sur- Clearly these satisfy Eqé7) and(8) with vanishing sources.
prising. The constraints in general relativity are non-linear toBoth K, and Kg diverge atR=0. The singularity in the
start with and the physics is now completely encoded in thgpacetime curvature is encoded completely in the extrinsic
extrinsic geometry. curvature.

LA

32 N1 1302
(I°KRg) =4l Ky

Lemaitre slicing of the Schwarzschild geometry Momentarily static solutions

As mentioned above, one example of such a flat slicing is A peculiarity of the flat foliation is thaKy responds di-
given by the Lemare coordinatization of the Schwarzschild rectly to p. Unlike its behavior in extrinsic time foliations,
solution. We start off with the Schwarzschild solution in K does not vanish il is identically zero unlesp also is
standard coordinates identically zero. Clearly, if there are any sources acting, this
foliation does not admit any moment of time symmetry so-
lutions withK ,,=0. In this respect, the simple constant den-
sity “star” solutions, withp constant on some compact sup-
port andJ=0, should not be confused with genuine constant
and change the time coordinate via density solutions occurring in a momentarily static configu-

-1

2m
olszz—(l—F dt?+ dR?+R?dQ?, (9)

1 2m
R

ration.
R JR—12m
t=7+4m %4— 2min —\/E+ \/% . (10 Two solutions for each(p,J)

One can show using E@8) that there are two solutions

Differentiating Eq.(10), we get for each specification ofg,J). We write Eq.(8) as
_ 2m| 7t f2m Kot 21~ el 22 4 403 (16)
dt=dr+ 1—3 ?dR, (11) R 2 R KR .
and when this is substituted into E@) we obtain Suppose thaKy is finite at the origin/=0. Then
8mp(0)
2m 2m _ p
ds2=—<1— F)drz—Z\/?deﬁLdRz—k R2dQ2. Kr(0)== 3 (17)
(12)

which is independent of. Having fixedKg(0), Eq. (16)

It is clear from Eq.(12) that the spatial geometry of the  allows us to integrate out to finklg(l).

equal constant slices is flat4]. In addition, Lemére coor-

dinates are non-singular on the horizorRat 2m. The price The momentum constraint
one pays, however, is that the form of the spacetime metric is and the quasi-potential local mass
no longer diagonal iR and 7. Leimaltre coordinates cover
half of the maximal extension of the Schwarzschild geom-
etry. For our choice, this is the region above the principal 32y _ 2

diagonal on the Kruskal diagram. Note that the spatial geom- (IPKR)" =8m(p+JIKg). (18

etry is regular at the Schwarzschild singularityRat 0. Each  \ye recall that in this gauge the spherical quasi-local mass

spatial slice intersects this singularity. (the Misner-Sharp, Hawkinget al. mas$ [15,16 (see also
Itis simple to construct the extrinsic curvature tensor. Thg'17] and[1] for references defined by

Wald ([13]) definition of the extrinsic curvature gives

An alternative casting of the momentum constraint is as

1
909ab=2NKap+ Nap+ Np.4- (13 m(l)= ER(l—R'Z)+R3K2, (19

In the coordinate choice given by E(l2) we havedygap

—0, N=1, andN, = (— \2m/R.0,0) which gives is completely determined by extrinsic curvature:

1
1 [2m m(l)=>1°K3, (20)
KRRZ_E $, K09=+\/2mR, 2
and our rewriting of the constraint, E@.8), can be identified
K 4=+ 2mRsir? 6. (14)  with the integrability condition omm,
From the definition4) we get m' =47R%(pR’ +JRKR). (21)
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Thus we can solve Eq18) as LHS, (1®KRg)’, is also positiveKr is therefore increasing
and cannot fall through zero. An identical argument applies
1 for negativeKy. In this gauge, dominant energy places a
Kr= ils—/ZVZm(l), (22 very strong constraint oz . Note, however, that the radial
extrinsic curvatureK -, which is now determined by E7),

wherem(l) is the quasi-local mass. Therefore, a necessar§loes not possess a definite sign.

condition for the existence of a flat slice through a given The effect of introducing a current sourck, on a solu-

spherical spacetime is that the mass function be positive. tion with J=0 is easily deduced from Eq18). If Kg is

is manifestly positive in this gauge. positive, then a positive current incread€g, whereas a
The geometry is necessarily singular if the constant ofiegative one decreases it. In particularJihas a definite

integrationm(0) is nonvanishing. Indeed, in vacuumy(l)  Sign (positive say, the solution has everywhere greak&g

=m(0) and we reproduce a Lerta slice of the Schwarz- than the corresponding solution wigh=0.

schild geometry.

Outside the support of matter, The extrinsic geometry is non-singular everywhere
2m(l,) Whenp andJ are finite, and the center is non-singular,
K&= ) (23)  Kgis finite and bounded away from zero everywhere. How-

ever, the only way the extrinsic geometry can become singu-
lar is by Ky diverging orK . diverging (for which it is nec-
essary thatKg=0) so that the flat slice is singularity
avoiding.

We can place an explicit bound dfg as follows. We
integrate Eq(18)

The ADM mass is encoded completely|Kg|. We note also
that Kr has the same asymptotic falloff as the gaulge,
+0.5Kg=0. In this gauge, the Hamiltonian constraint as-
sumes the intrinsic geometric form,

SR=16mp, (24 )
32 _ 2

where 3R is the scalar curvature. It is equally legitimate, L KR 877Jo dif(p+JKg)- @)
however, to treat Eq24) itself as a source dependent intrin-
sic time gauge condition. The Hamiltonian constraint thenwe then have
reduces to the algebraic conditidf;+ 0.9Kg=0. This way,
the extrinsic time gauge can be viewed as entirely equivalent
to an intrinsic time gauge, albeit an unconventional one de-
pending explicitly on the source.

Lz(Ké)Max$87T

1 2 1 3
§L PMax+ZL Inax(Kr)max |, (28)

so that(by solving the quadratjc
J=0 is exactly solvable

8 1/2
WhenJ=0, for any giverp, Eq.(18) is exactly solvable. L(KR) max= TImaxk. 2+ | m2(Ipaxl2) %+ ?pMaxL2
Suppose that the weak energy conditipes 0, holds. Then 29
_ Kgis clearly finite wherp andJ are. We note that the bound
Kr=*—:V2M(l), 25 R o L
SR EE: M) 29 is more sensitively dependent di, than it is onpyay-
Finally, we have seen th#tg cannot vanish on the support
where[18] of p when the(generalizeyl dominant energy condition is
| satisfied. Thud,, which is determined by E(7), is also
M(I)=477f diI2p, (2¢)  bounded.
0

. . . APPARENT HORIZONS
is the bare material mass and equals the mass function. It

must be positive. One solution is minus the other Krchas We define the two optical scalars,
a definite sign. Indeed, when the dominant energy condition
holds, this property continues to hold. w.=2(R'"£RKg). (30

A future (pas} apparent horizon forms whew.=0. The
surface is futurdpas) trapped whenw . <0. In this gauge,

If p=c|J| for any constant, thenKy possess a definite the appearance of an apparent horizon is entirely due to the
sign. In particular, this is true if the dominant energy condi-action of extrinsic curvature.
tion, c=1, is satisfied. To prove this, let us suppose Hat We have already seen that solutions fall into two catego-
is positive all = 0. Suppose that it falls to zero on the supportries when the dominant energy condition is satisfied: those
of p. WhereKg~0+, the combinatiorp/IKg+J appearing with Kg>0 and those withKz<0. On solutions withKy
on the right-hand sidéRHS) of Eq. (8) is positive so that the positive (negative, future (pas) trapped surfaces are impos-

Kgr has a definite sign

104015-4
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sible. Let us therefore focus on the occurrence of future We can exploit the universal bound &k, Eg. (29 to
(pas) trapped surfaces in solutions wikr<0 (Kg>0). obtain a corresponding necessary condition.

Suppose thakKr<<0 and that the solution is free of future Let the first apparent horizon occurlatL. Then
apparent horizons so thi¢ g> — 1. It is then clear from Eq.
(8) that 1K r)’ <0 so thatl®?K decreases monotonically
from zero at the origirit saturates at the value y2m out-
side the sourde Thus, if|¥?K; is not monotonic, the solu-
tion must possess an apparent horizon. Of course the cose that
verse of this statement is false: monotohiK g does not 8L
necessarily imply that the geometry is free of an apparent ™ 4
horizon[recall that any solution witd=0 given by Eq.(25) L= 3 Puact 2L Jval Kr)wax: (38)
is monotonidg.

A sufficient condition for the formation of trapped sur- We now exploit the bound Eq29) for L(KRg)wax to obtain
faces can be obtained as follows:

We integrate Eq(8) from I=0 up tol=L:

L=8wJOLdII2(p+JIKR), (37

8w ) )
1$ ?pMaXL + ZWJMHXL

- p
LY (w,—1),_ :47TJ dII3’2(—+J). (31 8 12
o 0 IKgr X WJMaXL2+(7T2(JMaXL2)2+ ?pMaXLz) }
Let us suppose that the surfacd atL is not future trapped, (39
so thatw..=0, nor does any trapped surface exist in the
interior (IKg=—1). Then On rearrangement, EG39) can be cast
12 b s P 2 22, 87 2
LY=47 od” TKR—J . (32) 1<4x (‘JMaxL ) +?pMaxL . (40)
If IKg>0, the inequality is vacuous as we would expect. Iflf, in addition, we exploit dominant energy, we can replace
IKr<0, then 1/1Kg)>1, so that Jmax BY pvax @nd solve the quadratic to get
L 1 \/1—3
L1’2>4WJ dil¥ A p—J). (33 —| = —1|<pual? (41)
0 37T 2
In addition, Thus if pyal?<(1/13/2—1)/37, the region cannot contain

an apparent horizon. The constant of proportionality is com-
L L ing i i =

5 12 (a2 parable to that appearing in E7) of [5] with a=1. The
fo I"f(hdlI<L fo P (al, (34) derivation is, however, considerably simpler. In the extrinsic
time foliation, the derivation depended in an essential way

for any positive functionf(l), so that, with dominant en- ©n the application of a weighted Poincarequality. This
ergy, we obtain improvement is clearly related to the singularity avoidance

of the intrinsic time gauge we have exploited here.

L
200 N=M—
L>4WJO dif(p=d)=M=P, (35 CONSISTENCY OF FLAT FOLIATION
WITH THE EVOLUTION
where The condition that the flat foliation be preserved under
L evolution, dgya,=0, implies that the extrinsic curvature is
P=477J’ dlzJ. (36)  proportional to a Killing form:
0

ZNKab:_VaNb_VbNa- (42)
It is clear that Eq.(34) is sharp as it is saturated with
peaked sharply abolt. In the spherically symmetric geometry we are considering
The inequality Eq.(35 depends only on the physical this reduces to the set of conditions
measures of the initial data, i.e., andJ, and the size of the

region, L. It assumes the same form as the inequality we N/ =NK,
obtained in[4]. Indeed, in this gauge, we equal the best
constant we obtained if#]. N,=INKg. (43

Note that if the dominant energy condition is violated, the
inequality Eq.(34) is not valid. No inequality analogous to HereN andN;, are respectively the lapse and the radial shift.
Eq. (35) appears to hold. Eliminating N, we obtain
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1K, It is straightforward to demonstrate that a bound can be
N/ =71 Ni (44 placed onKy. Such gauges therefore share with the flat fo-
R liation its singularity avoidance. This differs from any folia-
with the solution, tion with >R positive where large sources are not always
consistent with any singular geometry.
Let us examine the robustness of E85). It is simple to
N|=exp<— f dla/ |) demonstrate that instead of E(5), we obtain the sharp
inequality
N=exr<—J dlall
which does not depend explicitly ofiR. Equation(50) co-
wherea= —K /K is the ratio of extrinsic curvature scalars incides with Eq.(35) whenR=1. We see, however that the
introduced in[3]. Thus flat slicing is consistent with evolu- more negative the scalar curvature, the greater is the maxi-
tion. Indeed, both the lapse and shift are completely determum of R’, and thus the weaker the inequality.
mined without appealing to the dynamical Einstein equations
for K, andKg. _ THE SCHOEN AND YAU CRITERION FOR TRAPPED
In the exterior region we havexr=1/2, so thatN, SURFACES
=N,(L)(L/1)¥2andN=N,(L)LY%(2mq) ~ Y2 whereN(L) is
the boundary shift. The lapse is constant. The boundary con- The first mathematically precise statement of a sufficient

dition N—1 at infinity therefore fixes\|(L). Let 7 be the ~ condition for the appearance of apparent horizons in a gen-
time coordinate defined by this foliation. We then have the€ral(i.e., nonsymmetricinitial data set was given by Schoen

KR, (45) RR=M-P, (50

exterior spacetime metric and Yau in[19]. This condition is difficult to evaluate in
general but it is possible to use it in the special case where
2my 2mg the spatial geometry is flat, exactly the situation we are dis-
ds’=—|1- |—)d7'2i2 |—de|+(1|2+|20|92- cussing in this article.
(46) Schoen and Yau define the size of any compact three

dimensional subset(}) of a Reimannian manifold as the
This is the Schwarzschild metric expressed in Léreaczo- ~ Minor radius of the largest three torus that can be embedded
ordinates as we have already seen in @6). The spacetime in . They call thisRad(2). In [19] they prove two theo-

is completely characterized by the shift. rems. Theorem | is a statement that one cannot have a large
set with large positive scalar curvature. More precisely, they
NEGATIVE SCALAR CURVATURE show that if the scalar curvature 6f is bounded below by a

positive constant®R=Ry>0, then
Let us consider instead of the flat slicing, any foliation

with negative scalar curvature: 87°
g Rad Q)< \/——. (51)
3R,
1
R=— ;[Z(RR')'— R'2-1]. (47 Theorem Il deals with the situation where one has a solution

to the initial value constrainténcluding positive mattgron
a set(). If the matter satisfieg—|J|=\>0 and ifQ} is large

It is then simple to demonstrate thRt =1 everywhere so in the sense that

thatR=1. We have, at a critical point dR’,

’ 3
R'2=1-3RR2. (48) Rad Q)= \/m, (52

If the scalar curvature is bounded then sdris Such folia- .

tions are clearly very different from the extrinsic time folia- tNeN the initial data must have a trapped sun;ace. .
tions we considered i{8—5] with everywhere positive scalar T we have a maximal slice, we have thetR=K" Kij
curvature in whichR’2<1 andR<I in regular solutions. +16mp=16m\ and so we can use . in place ofR, in
With a prescribed value of the scalar curvature, we can solva N€orem I. However, since 8/33, we have from Theorem |

the constraints exactly as we did in the flat slice. We get thatwe can never get maximal initial data to satisfy €3).
It is clear that the estimates leading to Theorem Il are not

R'D sharp and some number smaller than 3 would almost cer-
(R3/2KR)’=477R3/2(—+J , (49)  tainly suffice. Unfortunately, the constant in Theorem I is
RKg also not shargsee[20]) and the two constants are linked.

- ~ Therefore our only hope of finding a nontrivial system in
where we sep=p— *R/16m. We havep=p so that what- which to use Theorem Il of Schoen and Yau is to look at
ever energy condition is good withis better withp. Now,  nonmaximal initial data. In this case there is at least the
exactly as in a flat slicing{g has a definite sign when domi- possibility of having large, so as to satisfy the condition in
nant energy holds. Theorem I, while simultaneously having sm&f'R to es-
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cape the barrier that Theorem | imposes. When one looks ditypersurface is very different from that on a hypersurface
the way that Theorems | and Il are derived, to try and find aéelonging to an extrinsic time foliation of spacetime. The
configuration that satisfies the condition in Theorem II, it isHamiltonian constraint becomes an algebraic constraint on
clear that one wants to have no current, because it workthe extrinsic curvature: when the weak energy condition is
againstp and to have the mass density as uniform as possatisfied, trajectories in superspace lie completely inside the
sible. Further, one wants as little transverse trace(@33  superspace light-cone—the complement in superspace of the
part in the extrinsic curvature as possible as that adds to thallowed region consistent with any standard extrinsic curva-
scalar curvature. Finally, the metric should be as simple ature foliation (Kgr=0 or TrK=0 or, more generally, any of
possible. This leads one to consider the situation where thihose considered if3]).
intrinsic metric is flat, and thus eliminating any barrier due to  In this foliation, solutions of the constraintéo exhibit
Theorem [; the extrinsic curvature is pure trace; and the tracpeculiarities: when the sources are finite, there are no singu-
is constant, so that there is no current and one has a constdat geometries satisfying the constraints other than those
mass density. The other great advantage of the flat metric iwhich contain a singularity at their center; when the domi-
that one can easily evaluate their “torus” measure of the sizaant energy condition is satisfiet,z possesses a definite
of a set. sign; they do not admit minimal surfaces. Despite this, we
In our notation, this is equivalent to choositk=K,  find that the physical description they provide of apparent
= 1tr K=constant. From Eq(2) this givesJ=0. From Eq. horizons is completely consistent with that in an extrinsic
(7) we get that the mass density is constant and satisfies time foliation. Not only do the natural measures of the ma-
terial content for necessary and sufficient conditiopg,(
andM respectively coincide with those we found when we
considered extrinsic time slices but, in addition, the inequali-

. : L _ . ties assume identical forms.
If we have a spherical set of radiussatisfying this solution Analogous gauges are applicable with other topologies.

(one can think of it as part of a flat cosmologit is clear g, example, in a closed cosmology wili topology one
from Eq.(30) that the horizon appears wheiKg|=1. The .14 choosdR(1) = (I o/27r)sin(l/lg), wherel is the inter-
sufficient condition we have derivééq. (35)] when applied polar distance.
to this special case givésKg|> 2, and the necessary con- |t would be interesting to examine the canonical reduction
dition [Eq. (41)] gives|LKg|>0.84. Happily, these numbers anq subsequent quantization of spherically symmetric gen-
lie on each side of 1. . __ eral relativity in this gauge. The fact that many of the fea-
If we apply the Schoen and Yau condition to an intrinsi-yres of extrinsic time foliations which are problematic do
cally flat constant density sphere of radius we get that ot occur suggests that flat foliations could provide a valu-
Rad((})=L/2 and the Schoen and Yau sufficient condition gp|e alternative, in particular, for the description of gravita-
[Eq. (52)] becomes|LKg|= 2. This calculation shows tional collapse.
that the Schoen and Yau Theorem Il is not vacuous. How- Finally, there appears to be no immediate obstruction to
ever, their set is 4 times larger than is required and theithe construction of a foliation of a general asymptotically flat
sufficiency condition a factor of 3 weaker than ours. spacetime by a gauge of the for#iR=0.

3K3
P=po=g—- (53
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