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PHYSICAL REVIEW D, VOLUME 60, 104015
Flat foliations of spherically symmetric geometries

Jemal Guven*
Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Apdo. Postal 70-543, 04510 Me´xico, D.F., Mexico

Niall Ó Murchadha†

Physics Department, University College Cork, Cork, Ireland
~Received 6 May 1999; published 20 October 1999!

We examine the solution of the constraints in spherically symmetric general relativity when spacetime has
a flat spatial hypersurface. It is demonstrated explicitly that, given one flat slice, a foliation by flat slices can be
consistently evolved. We show that when the sources are finite these slices do not admit singularities and we
provide an explicit bound on the maximum value assumed by the extrinsic curvature. If the dominant energy
condition is satisfied, the projection of the extrinsic curvature orthogonal to the radial direction possesses a
definite sign. We provide both necessary and sufficient conditions for the formation of apparent horizons in this
gauge which are qualitatively identical to those established earlier for extrinsic time foliations of spacetime,@J.
Guven and N. O´ Murchadha, Phys. Rev. D56 7658 ~1997!; 56, 7666 ~1997!#, which suggests that these
conditions possess a gauge invariant validity.@S0556-2821~99!02420-0#

PACS number~s!: 04.20.Cv, 04.60.Kz
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INTRODUCTION

Despite the impressive array of techniques we curre
possess for constructing initial data in general relativity,
unsatisfying feature persists: the sensitivity of the solution
the way we foliate spacetime. Indeed, this often overshad
entirely the physics we are attempting to understand. I
clear that the problem is even worse at the dynamical le

In order to solve the constraints it is traditional to app
to an extrinsic time foliation of spacetime. This involve
some restriction on the extrinsic curvature so as to define
slicing. One such foliation, in particular, has a long histo
in asymptotically flat spacetimes, the mean extrinsic cur
ture is set to zero. In the simplified context of spherica
symmetric general relativity it is possible to examine expl
itly how sensitively the solution of the constraints depen
on this choice of gauge. This is easy in this case because
extrinsic curvature is completely specified by two sca
functions and the mean curvature is a linear combination
these two scalars. One can then treat any extrinsic time
liation as a specification of the ratio of these scalars. This
been the approach adopted in@1–5# in our examination of
the constraints.

In @3–5# we restricted our attention to extrinsic curvatur
which, at every point on the slice, are timelike vectors
superspace. In these articles we were able to demonstrate
the solution to the constraints is largely independent of
particular extrinsic time foliation we choose. Remarkab
we appear to have a robust characterization of the phys
landmarks of the spatial geometry; specifically, it is possi
to provide necessary and sufficient conditions for the form
tion of apparent horizons which are not overwhelmed by
gauge.

In order to be really satisfied that we have control over

*Email address: jemal@nuclecu.unam.mx
†Email address: niall@ucc.ie
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gauge, we propose in this paper to place our prejudice
favor of extrinsic time foliations to the test, i.e., by abando
ing such foliations entirely in favor of a foliation which i
specified completely by a condition on the intrinsic geome
of the leaves of the foliation. We will explore the simple
choice: that the spatial geometry be flat. It is well known th
such slices are provided in the Schwarzschild spacetime
ometry by Lemaıˆtre coordinates~see, e.g.,@6#!. Recently,
these coordinates have been exploited to describe the ca
cal reduction of the theory with a source consisting of a sh
of massive dust@7#. Indeed, there has been a revival of i
terest in the canonical reduction of spherically symme
general relativity ~see, for example,@8,9# and references
therein!. However, when the sources are not confined to
shell, the canonical procedure in an extrinsic time foliation
not generally tractable. The notable exception is the po
slicing @10,11#. But simplicity comes at a price: the corre
sponding chart is pathological if the slice possesses an
parent horizon, as it ultimately will in a classically collapsin
geometry. Flat slicings, while remarkably simple, escape
shortcoming.

Historically, flat foliations of spacetime are of interest d
to the role they played in the seventies as a provider of us
guidelines for the construction of the proof of the positi
mass theorem. Brill and Jang@12# showed that if the spatia
geometry is flat, and the extrinsic curvature falls off mo
rapidly thanr 23/2 at infinity, the only solution of the vacuum
Einstein equations is flat. One might, therefore, be temp
to conclude that such foliations are pathological, inconsist
as they appear to be with the presence of gravitational wa
As we will see, however, the falloff of the extrinsic curvatu
in this gauge is slow~exactly asr 23/2) and thus Brill and
Jang’s argument is not applicable. Indeed, this slicing p
sesses the unusual feature that the Arnowitt-Deser-Mis
~ADM ! mass is encoded completely by the extrinsic cur
ture. While we do not have gravitational waves to conte
with in a spherically symmetric geometry, it is still possib
that the gauge exhibit pathologies associated with
©1999 The American Physical Society15-1
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JEMAL GUVEN AND NIALL Ó MURCHADHA PHYSICAL REVIEW D 60 104015
sources. However, we demonstrate here that if the sou
are finite, all solutions of the constraints are non-singula
they are non singular at the origin. Therefore, this gau
steers clear of singularities because the extrinsic curva
~which is now the only measure of the geometry! is always
bounded when the sources are. This should be contra
with the situation in an extrinsic time foliation where th
solutions may well be singular if the sources are large
finite @2,3#.

We examine the occurrence of apparent horizons in
intrinsic time gauge. We must abandon the geometric
satisfying but nonetheless gauge dependent identificatio
an apparent horizon with the formation of a bag with a ne
~minimal surface! in the spatial geometry. Because the g
ometry is flat, there is no bag to speak of, much less the k
of bag envisaged by Wheeler. Now apparent horizons oc
due to the action of extrinsic curvature alone. However, i
no longer enough that the extrinsic curvature be large, it a
must possess the appropriate sign. This is due to the p
liarity of this gauge that, when the dominant energy con
tion is satisfied, the tangential projectionKR of the extrinsic
curvature tensor has a definite sign.

We next search for necessary and sufficient conditions
the appearance of apparent horizons. Remarkably, once
take into account the obvious obstruction associated with
sign of KR , we can reproduce the inequalities we deriv
earlier in the extrinsic time gauges@4,5#. This suggests a
validity which transcends their gauge dependent derivati

It remains to confirm that the flat foliation is consiste
with the dynamics. We do this by constructing explicit
both the lapse and the shift necessary to maintain the flat
of the intrinsic geometry and we write down explicitly th
exterior form of the spacetime metric.

Schoen and Yau in@19# gave a sufficient condition for the
appearance of trapped surfaces in general initial data se
turns out that the only place these estimates can be rea
cally tested is on intrinsically flat manifolds. We compare t
Schoen and Yau sufficient condition with ours for the case
a constant density intrinsically flat sphere and find that o
is better by a factor of 3.

Finally, in the same spirit which has prompted us to co
sider flat foliations in the first place, we examine the fl
foliation as a special case of foliations with negative spa
scalar curvature.

FLAT FOLIATIONS

We recall that the constraints are given by~we exploit the
notation introduced in@1#!

KR@KR12KL#2
1

R2
@2~RR8!82R8221#58pr, ~1!

and

KR81
R8

R
~KR2KL!54pJ, ~2!
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where the line element of the spherically symmetric spa
geometry is parametrized by

ds25dl21R2dV2, ~3!

and we have expanded the extrinsic curvature (na is the out-
ward pointing unit normal to the two-sphere of fixedl ! as,

Kab5nanbKL1~gab2nanb!KR . ~4!

All derivatives are with respect to the proper radius of t
spherical geometry,l . The spatial geometries we wish t
consider areR3 ( l P0,`) with a single asymptotically flat
region with a regular center,l 50. The appropriate boundar
condition on the metric atl 50 is then

R~0!50. ~5!

We recall thatR8(0)51 if the geometry is regular at thi
point. We assume that both the energy density of matterr,
and its radial flow,J,are appropriately bounded functions
l on some compact support.

When we consider general spherically symmetric init
data we start off with six functions, (grr ,guu ,KR ,KL ,r,J),
which satisfy the two constraints. Because the dynamics
side in the matter field, so that the geometry is purely kin
matical, it seems natural to choose (r,J) as the independen
variables. This still leaves us with four dependent obje
satisfying the two constraints. One of the extra degrees
freedom is obviously the coordinate choice on the three sl
We can fix this more-or-less independently of everythi
else. One natural choice~which we use! is to setgrr [1; the
other standard choices are to arrange that the metric be
formally flat or that the radial coordinate be the are
~Schwarzschild! radius.

This leaves us with one extra variable among the th
(guu[R2,KR ,KL) so we choose some relationship betwe
them. Such a condition should fix the slicing, the way th
the given slice is embedded into the spacetime. When
solve the constraints completely we determine both the
trinsic geometry and the extrinsic curvature.

In this paper we propose to foliate spacetime using
intrinsic geometry to mark time. The simplest possib
choice is the one we will adopt. Let us suppose that

R~ l !5 l ~6!

everywhere so that the spatial geometry is flatR3 every-
where. This condition is,a priori, no more restrictive than
any of the other slicing conditions we have considered. T
scalar curvature now vanishes with the result that the Ham
tonian constraint reduces to the algebraic condition onKab in
terms ofr,

KR@KR12KL#58pr. ~7!

The momentum constraint, apparently at least, is only mo
fied in a trivial way:R8/R is replaced by 1/l .

To solve the constraints we eliminate the extrinsic cur
ture scalarKL from Eq. ~7! in favor of KR andr and substi-
tute into ~2!. We get
5-2
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FLAT FOLIATIONS OF SPHERICALLY SYMMETRIC . . . PHYSICAL REVIEW D60 104015
~ l 3/2KR!854p l 3/2S r

lK R
1JD . ~8!

The equation is no longer linear inKR . This is not too sur-
prising. The constraints in general relativity are non-linear
start with and the physics is now completely encoded in
extrinsic geometry.

Lemaı̂tre slicing of the Schwarzschild geometry

As mentioned above, one example of such a flat slicin
given by the Lemaıˆtre coordinatization of the Schwarzschi
solution. We start off with the Schwarzschild solution
standard coordinates

ds252S 12
2m

R Ddt21S 12
2m

R D 21

dR21R2dV2, ~9!

and change the time coordinate via

t5t14mA R

2m
12m lnUAR2A2m

AR1A2m
U . ~10!

Differentiating Eq.~10!, we get

dt5dt1S 12
2m

R D 21A2m

R
dR, ~11!

and when this is substituted into Eq.~9! we obtain

ds252S 12
2m

R Ddt222A2m

R
dRdt1dR21R2dV2.

~12!

It is clear from Eq.~12! that the spatial geometry of thet
equal constant slices is flat@14#. In addition, Lemaıˆtre coor-
dinates are non-singular on the horizon atR52m. The price
one pays, however, is that the form of the spacetime metr
no longer diagonal inR andt. Leimaı̂tre coordinates cove
half of the maximal extension of the Schwarzschild geo
etry. For our choice, this is the region above the princi
diagonal on the Kruskal diagram. Note that the spatial geo
etry is regular at the Schwarzschild singularity atR50. Each
spatial slice intersects this singularity.

It is simple to construct the extrinsic curvature tensor. T
Wald ~@13#! definition of the extrinsic curvature gives

]0gab52NKab1Na;b1Nb;a . ~13!

In the coordinate choice given by Eq.~12! we have]0gab

50, N[1, andNi5(2A2m/R,0,0) which gives

KRR52
1

2
A2m

R3 , Kuu51A2mR,

Kff51A2mRsin2 u. ~14!

From the definition~4! we get
10401
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KL52
1

2
A2m

R3 , KR51A2m

R3 . ~15!

Clearly these satisfy Eqs.~7! and~8! with vanishing sources
Both KL and KR diverge atR50. The singularity in the
spacetime curvature is encoded completely in the extrin
curvature.

Momentarily static solutions

A peculiarity of the flat foliation is thatKR responds di-
rectly to r. Unlike its behavior in extrinsic time foliations
KR does not vanish ifJ is identically zero unlessr also is
identically zero. Clearly, if there are any sources acting, t
foliation does not admit any moment of time symmetry s
lutions withKab50. In this respect, the simple constant de
sity ‘‘star’’ solutions, withr constant on some compact su
port andJ50, should not be confused with genuine consta
density solutions occurring in a momentarily static config
ration.

Two solutions for each„r,J…

One can show using Eq.~8! that there are two solution
for each specification of (r,J). We write Eq.~8! as

KR81
3

2
l 21KR54p l 21

r

KR
14pJ. ~16!

Suppose thatKR is finite at the origin,l 50. Then

KR~0!56A8pr~0!

3
, ~17!

which is independent ofJ. Having fixedKR(0), Eq. ~16!
allows us to integrate out to findKR( l ).

The momentum constraint
and the quasi-potential local mass

An alternative casting of the momentum constraint is a

~ l 3KR
2 !858p l 2~r1JlKR!. ~18!

We recall that in this gauge the spherical quasi-local masm
~the Misner-Sharp, Hawking,et al. mass! @15,16# ~see also
@17# and @1# for references!, defined by

m~ l !5
1

2
R~12R82!1R3KR

2, ~19!

is completely determined by extrinsic curvature:

m~ l !5
1

2
l 3KR

2, ~20!

and our rewriting of the constraint, Eq.~18!, can be identified
with the integrability condition onm,

m854pR2~rR81JRKR!. ~21!
5-3
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JEMAL GUVEN AND NIALL Ó MURCHADHA PHYSICAL REVIEW D 60 104015
Thus we can solve Eq.~18! as

KR56
1

l 3/2
A2m~ l !, ~22!

wherem( l ) is the quasi-local mass. Therefore, a necess
condition for the existence of a flat slice through a giv
spherical spacetime is that the mass function be positivem
is manifestly positive in this gauge.

The geometry is necessarily singular if the constant
integrationm(0) is nonvanishing. Indeed, in vacuum,m( l )
5m(0) and we reproduce a Lemaıˆtre slice of the Schwarz
schild geometry.

Outside the support of matter,

KR
25

2m~ l 0!

l 3
. ~23!

The ADM mass is encoded completely inuKRu. We note also
that KR has the same asymptotic falloff as the gauge,KL
10.5KR50. In this gauge, the Hamiltonian constraint a
sumes the intrinsic geometric form,

3R516pr, ~24!

where 3R is the scalar curvature. It is equally legitimat
however, to treat Eq.~24! itself as a source dependent intri
sic time gauge condition. The Hamiltonian constraint th
reduces to the algebraic condition,KL10.5KR50. This way,
the extrinsic time gauge can be viewed as entirely equiva
to an intrinsic time gauge, albeit an unconventional one
pending explicitly on the source.

J50 is exactly solvable

WhenJ50, for any givenr, Eq. ~18! is exactly solvable.
Suppose that the weak energy condition,r>0, holds. Then

KR56
1

l 3/2
A2M ~ l !, ~25!

where@18#

M ~ l !54pE
0

l

dl l 2r, ~26!

is the bare material mass and equals the mass functio
must be positive. One solution is minus the other andKR has
a definite sign. Indeed, when the dominant energy condi
holds, this property continues to hold.

KR has a definite sign

If r>cuJu for any constantc, thenKR possess a definite
sign. In particular, this is true if the dominant energy con
tion, c51, is satisfied. To prove this, let us suppose thatKR
is positive atl 50. Suppose that it falls to zero on the supp
of r. WhereKR;01, the combinationr/ lK R1J appearing
on the right-hand side~RHS! of Eq. ~8! is positive so that the
10401
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LHS, (l 3/2KR)8, is also positive.KR is therefore increasing
and cannot fall through zero. An identical argument appl
for negativeKR . In this gauge, dominant energy places
very strong constraint onKR . Note, however, that the radia
extrinsic curvature,KL , which is now determined by Eq.~7!,
does not possess a definite sign.

The effect of introducing a current source,J, on a solu-
tion with J50 is easily deduced from Eq.~18!. If KR is
positive, then a positive current increasesKR , whereas a
negative one decreases it. In particular, ifJ has a definite
sign ~positive say!, the solution has everywhere greaterKR
than the corresponding solution withJ50.

The extrinsic geometry is non-singular everywhere

When r and J are finite, and the center is non-singula
KR is finite and bounded away from zero everywhere. Ho
ever, the only way the extrinsic geometry can become sin
lar is by KR diverging orKL diverging ~for which it is nec-
essary thatKR50) so that the flat slice is singularit
avoiding.

We can place an explicit bound onKR as follows. We
integrate Eq.~18!

L3KR
258pE

0

L

dll 2~r1JlKR!. ~27!

We then have

L2~KR
2 !Max<8pS 1

3
L2rMax1

1

4
L3JMax~KR!MaxD , ~28!

so that~by solving the quadratic!

L~KR!Max<pJMaxL
21Fp2~JMaxL

2!21
8p

3
rMaxL

2G1/2

.

~29!

KR is clearly finite whenr andJ are. We note that the boun
is more sensitively dependent onJMax than it is onrMax .
Finally, we have seen thatKR cannot vanish on the suppo
of r when the~generalized! dominant energy condition is
satisfied. ThusKL , which is determined by Eq.~7!, is also
bounded.

APPARENT HORIZONS

We define the two optical scalars,

v652~R86RKR!. ~30!

A future ~past! apparent horizon forms whenv650. The
surface is future~past! trapped whenv6<0. In this gauge,
the appearance of an apparent horizon is entirely due to
action of extrinsic curvature.

We have already seen that solutions fall into two cate
ries when the dominant energy condition is satisfied: th
with KR.0 and those withKR,0. On solutions withKR
positive~negative!, future ~past! trapped surfaces are impos
5-4
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FLAT FOLIATIONS OF SPHERICALLY SYMMETRIC . . . PHYSICAL REVIEW D60 104015
sible. Let us therefore focus on the occurrence of fut
~past! trapped surfaces in solutions withKR,0 (KR.0).

Suppose thatKR,0 and that the solution is free of futur
apparent horizons so thatlK R.21. It is then clear from Eq.
~8! that (l 3/2KR)8,0 so thatl 3/2KR decreases monotonicall
from zero at the origin~it saturates at the value2A2m out-
side the source!. Thus, if l 3/2KR is not monotonic, the solu
tion must possess an apparent horizon. Of course the
verse of this statement is false: monotonicl 3/2KR does not
necessarily imply that the geometry is free of an appar
horizon@recall that any solution withJ50 given by Eq.~25!
is monotonic#.

A sufficient condition for the formation of trapped su
faces can be obtained as follows:

We integrate Eq.~8! from l 50 up to l 5L:

L1/2~v121! l 5L54pE
0

L

dll 3/2S r

lK R
1JD . ~31!

Let us suppose that the surface atl 5L is not future trapped,
so that v6>0, nor does any trapped surface exist in t
interior (lK R>21). Then

L1/2>4pE
0

L

dll 3/2S r

2 lK R
2JD . ~32!

If lK R.0, the inequality is vacuous as we would expect
lK R,0, then 1/(2 lK R).1, so that

L1/2>4pE
0

L

dll 3/2~r2J!. ~33!

In addition,

E
0

L

l 2f ~ l !dl<L1/2E
0

L

l 3/2f ~ l !dl, ~34!

for any positive function,f ( l ), so that, with dominant en
ergy, we obtain

L>4pE
0

L

dll 2~r2J!5M2P, ~35!

where

P54pE
0

L

dll 2J. ~36!

It is clear that Eq.~34! is sharp as it is saturated withf
peaked sharply aboutL.

The inequality Eq.~35! depends only on the physica
measures of the initial data, i.e.,r, andJ, and the size of the
region, L. It assumes the same form as the inequality
obtained in @4#. Indeed, in this gauge, we equal the be
constant we obtained in@4#.

Note that if the dominant energy condition is violated, t
inequality Eq.~34! is not valid. No inequality analogous t
Eq. ~35! appears to hold.
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We can exploit the universal bound onKR , Eq. ~29! to
obtain a corresponding necessary condition.

Let the first apparent horizon occur atl 5L. Then

L58pE
0

L

dll 2~r1JlKR!, ~37!

so that

L<
8pL3

3
rMax12pL4JMax~KR!Max . ~38!

We now exploit the bound Eq.~29! for L(KR)Max to obtain

1<
8p

3
rMaxL

212pJMaxL
2

3FpJMaxL
21S p2~JMaxL

2!21
8p

3
rMaxL

2D 1/2G .
~39!

On rearrangement, Eq.~39! can be cast

1<4p2~JMaxL
2!21

8p

3
rMaxL

2. ~40!

If, in addition, we exploit dominant energy, we can repla
JMax by rMax and solve the quadratic to get

1

3p SA13

2
21D<rMaxL

2. ~41!

Thus if rMaxL
2,(A13/221)/3p, the region cannot contain

an apparent horizon. The constant of proportionality is co
parable to that appearing in Eq.~57! of @5# with a51. The
derivation is, however, considerably simpler. In the extrin
time foliation, the derivation depended in an essential w
on the application of a weighted Poincare´ inequality. This
improvement is clearly related to the singularity avoidan
of the intrinsic time gauge we have exploited here.

CONSISTENCY OF FLAT FOLIATION
WITH THE EVOLUTION

The condition that the flat foliation be preserved und
evolution, ]0gab50, implies that the extrinsic curvature i
proportional to a Killing form:

2NKab52¹aNb2¹bNa . ~42!

In the spherically symmetric geometry we are consider
this reduces to the set of conditions

Nl85NKL

Nl5 lNKR . ~43!

HereN andNl are respectively the lapse and the radial sh
Eliminating N, we obtain
5-5
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Nl85
1

l

KL
KR

Nl , ~44!

with the solution,

Nl5expS 2E dla/ l D
N5expS 2E dla/ l D / lK R , ~45!

wherea52KL /KR is the ratio of extrinsic curvature scala
introduced in@3#. Thus flat slicing is consistent with evolu
tion. Indeed, both the lapse and shift are completely de
mined without appealing to the dynamical Einstein equati
for KL andKR .

In the exterior region we havea51/2, so that Nl
5Nl(L)(L/ l )1/2 andN5Nl(L)L1/2(2m0)21/2 whereNl(L) is
the boundary shift. The lapse is constant. The boundary c
dition N→1 at infinity therefore fixesNl(L). Let t be the
time coordinate defined by this foliation. We then have
exterior spacetime metric

ds252S 12
2m0

l Ddt262A2m0

l
dtdl1dl21 l 2dV2.

~46!

This is the Schwarzschild metric expressed in Lemaıˆtre co-
ordinates as we have already seen in Eq.~12!. The spacetime
is completely characterized by the shift.

NEGATIVE SCALAR CURVATURE

Let us consider instead of the flat slicing, any foliatio
with negative scalar curvature:

3R52
1

R2
@2~RR8!82R8221#. ~47!

It is then simple to demonstrate thatR8>1 everywhere so
that R> l . We have, at a critical point ofR8,

R82512 3RR2. ~48!

If the scalar curvature is bounded then so isR8. Such folia-
tions are clearly very different from the extrinsic time foli
tions we considered in@3–5# with everywhere positive scala
curvature in whichR82<1 and R< l in regular solutions.
With a prescribed value of the scalar curvature, we can so
the constraints exactly as we did in the flat slice. We get

~R3/2KR!854pR3/2S R8r̃

RKR
1JD , ~49!

where we setr̃5r2 3R/16p. We haver̃>r so that what-
ever energy condition is good withr is better withr̃. Now,
exactly as in a flat slicing,KR has a definite sign when dom
nant energy holds.
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It is straightforward to demonstrate that a bound can
placed onKR . Such gauges therefore share with the flat
liation its singularity avoidance. This differs from any folia
tion with 3R positive where large sources are not alwa
consistent with any singular geometry.

Let us examine the robustness of Eq.~35!. It is simple to
demonstrate that instead of Eq.~35!, we obtain the sharp
inequality

RR8>M2P, ~50!

which does not depend explicitly on3R. Equation~50! co-
incides with Eq.~35! whenR5 l . We see, however that th
more negative the scalar curvature, the greater is the m
mum of R8, and thus the weaker the inequality.

THE SCHOEN AND YAU CRITERION FOR TRAPPED
SURFACES

The first mathematically precise statement of a suffici
condition for the appearance of apparent horizons in a g
eral~i.e., nonsymmetric! initial data set was given by Schoe
and Yau in @19#. This condition is difficult to evaluate in
general but it is possible to use it in the special case wh
the spatial geometry is flat, exactly the situation we are d
cussing in this article.

Schoen and Yau define the size of any compact th
dimensional subset (V) of a Reimannian manifold as th
minor radius of the largest three torus that can be embed
in V. They call thisRad(V). In @19# they prove two theo-
rems. Theorem I is a statement that one cannot have a l
set with large positive scalar curvature. More precisely, th
show that if the scalar curvature ofV is bounded below by a
positive constant,(3)R>R0.0, then

Rad~V!<A8p2

3R0
. ~51!

Theorem II deals with the situation where one has a solu
to the initial value constraints~including positive matter! on
a setV. If the matter satisfiesr2uJu>l.0 and ifV is large
in the sense that

Rad~V!>A 3p2

16pl
, ~52!

then the initial data must have a trapped surface.
If we have a maximal slice, we have that(3)R5Ki j Ki j

116pr>16pl and so we can use 16pl in place ofR0 in
Theorem I. However, since 8/3,3, we have from Theorem
that we can never get maximal initial data to satisfy Eq.~52!.
It is clear that the estimates leading to Theorem II are
sharp and some number smaller than 3 would almost
tainly suffice. Unfortunately, the constant in Theorem I
also not sharp~see@20#! and the two constants are linked
Therefore our only hope of finding a nontrivial system
which to use Theorem II of Schoen and Yau is to look
nonmaximal initial data. In this case there is at least
possibility of having larger, so as to satisfy the condition in
Theorem II, while simultaneously having small(3)R to es-
5-6
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cape the barrier that Theorem I imposes. When one look
the way that Theorems I and II are derived, to try and fin
configuration that satisfies the condition in Theorem II, it
clear that one wants to have no current, because it wo
againstr and to have the mass density as uniform as p
sible. Further, one wants as little transverse traceless~TT!
part in the extrinsic curvature as possible as that adds to
scalar curvature. Finally, the metric should be as simple
possible. This leads one to consider the situation where
intrinsic metric is flat, and thus eliminating any barrier due
Theorem I; the extrinsic curvature is pure trace; and the tr
is constant, so that there is no current and one has a con
mass density. The other great advantage of the flat metr
that one can easily evaluate their ‘‘torus’’ measure of the s
of a set.

In our notation, this is equivalent to choosingKR5KL
5 1

3 tr K5constant. From Eq.~2! this givesJ50. From Eq.
~7! we get that the mass density is constant and satisfies

r5r05
3KR

2

8p
. ~53!

If we have a spherical set of radiusL satisfying this solution
~one can think of it as part of a flat cosmology!, it is clear
from Eq. ~30! that the horizon appears whenuLKRu51. The
sufficient condition we have derived@Eq. ~35!# when applied
to this special case givesuLKRu>A2, and the necessary con
dition @Eq. ~41!# givesuLKRu>0.84. Happily, these number
lie on each side of 1.

If we apply the Schoen and Yau condition to an intrin
cally flat constant density sphere of radiusL, we get that
Rad(V)5L/2 and the Schoen and Yau sufficient conditi
@Eq. ~52!# becomesuLKRu>A2p. This calculation shows
that the Schoen and Yau Theorem II is not vacuous. Ho
ever, their set is 4 times larger than is required and th
sufficiency condition a factor of 3 weaker than ours.

CONCLUSIONS

We have examined the constraints in spherically symm
ric general relativity using an intrinsic time to foliate spac
time. Specifically we have foliated spacetime with flat spa
slices. The presentation of the initial data on a flat spa
D
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hypersurface is very different from that on a hypersurfa
belonging to an extrinsic time foliation of spacetime. T
Hamiltonian constraint becomes an algebraic constraint
the extrinsic curvature: when the weak energy condition
satisfied, trajectories in superspace lie completely inside
superspace light-cone—the complement in superspace o
allowed region consistent with any standard extrinsic cur
ture foliation (KR50 or TrK50 or, more generally, any o
those considered in@3#!.

In this foliation, solutions of the constraintsdo exhibit
peculiarities: when the sources are finite, there are no sin
lar geometries satisfying the constraints other than th
which contain a singularity at their center; when the dom
nant energy condition is satisfied,KR possesses a definit
sign; they do not admit minimal surfaces. Despite this,
find that the physical description they provide of appar
horizons is completely consistent with that in an extrin
time foliation. Not only do the natural measures of the m
terial content for necessary and sufficient conditions (rMax
andM respectively! coincide with those we found when w
considered extrinsic time slices but, in addition, the inequ
ties assume identical forms.

Analogous gauges are applicable with other topolog
For example, in a closed cosmology withS3 topology one
could chooseR( l )5 ( l 0/2p)sin(pl/l0), wherel 0 is the inter-
polar distance.

It would be interesting to examine the canonical reduct
and subsequent quantization of spherically symmetric g
eral relativity in this gauge. The fact that many of the fe
tures of extrinsic time foliations which are problematic d
not occur suggests that flat foliations could provide a va
able alternative, in particular, for the description of gravi
tional collapse.

Finally, there appears to be no immediate obstruction
the construction of a foliation of a general asymptotically fl
spacetime by a gauge of the form,3R50.
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D

,

i-
@1# J. Guven and N. O´ Murchadha, Phys. Rev. D52, 758 ~1995!.
@2# J. Guven and N. O´ Murchadha, Phys. Rev. D52, 776 ~1995!.
@3# J. Guven and N. O´ Murchadha, Phys. Rev. D56, 7650~1997!.
@4# J. Guven and N. O´ Murchadha, Phys. Rev. D56, 7658~1997!.
@5# J. Guven and N. O´ Murchadha, Phys. Rev. D56, 7666~1997!.
@6# Yu. A. Rylov, Zh. Eksp. Teor. Fiz.40, 868~1961! @Sov. Phys.

JETP13 ~6!, 1235~1961!#.
@7# J. L. Friedman, J. Louko, and S. Winters-Hilt, Phys. Rev.

56, 7674~1997!.
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