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Abstract 

Devising a concrete plan for power supply should conduct the best technology-capacity-time 

strategy while satisfying fuel, infrastructure, and trading constraints. Addressing sustainability 

concerning stakeholders' opinions aligned with upstream policies escalates the problem, 

demanding new reliable frameworks. This paper aims to develop an integrated simulation-

optimization decision support system for electricity generation planning. A differential evolution 

algorithm simulates the future power supply configurations. A linear programming model 

characterizes the optimal pathways towards those futures. Multi-criteria decision-making methods 

are also included for determining the preference weights of sustainability indicators and ranking 

the scenarios. The proposed framework offers a sustainable plan for Iran by 2050. The 

sustainability criteria are tracked and compared with a business as usual (BAU) scheme. The 

results show that the broader deployment of wind turbine primarily, solar thermal subsequently, is 

the major source of difference in the sustainable expansion compared to BAU. Those technologies 

along with photovoltaics, contribute to 48% of the generation at the end of the planning horizon. 

However, the findings indicate that even the extensive utilization of renewable energy sources 

cannot guarantee sustainability improvement all through the planning period. Thus, supply-side 

plans should be appropriately supported by demand-side strategies. 
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1. Introduction 

In the age of electricity, there is a strong need for a well-thought-out and workable plan to pave 

the way for sustainability in power supply [1]. However, designing a solid plan is a challenging 



task due to some reasons: (i) variety in types of power generation technologies in terms of energy 

sources and techno-economic parameters; (ii) social and environmental conflicts arising from the 

utilization of different technologies [2]; (iii) fuel, investment, trading, and infrastructure 

constraints [3]; (iv) diverse stakeholders’ interests and requirements; and (v) upstream goals and 

policies [4]. Some of these aspects cab be addressed by using the Energy System Models (ESMs), 

but the examination of multiple decision variables significantly escalates the problem. 

Characterizing a reliable configuration—what type, how much, and when to install power 

generation plants—calls for a state-of-the-art and integrated modelling approach that adequately 

captures individual characteristics and the intricate interdependencies.   

Simulation and optimization are two principal methodologies used for the development of energy 

models [5]. The primary concentration in optimization models is on the current system's 

configuration as a starting point, and procedures are followed afterwards to identify the optimal 

pathway ahead [6]. In this way, optimization models are suitable for forecasting. Satisfying the 

problem's constraints in these models, the energy system’s interactions create a feasible region, 

and the goal is to seek the optimal solution within the region. The optimal solution is explored in 

the direction of the objective function that is typically cost minimization. Negative environmental 

impacts are sometimes considered as a cost term in the objective function [7]. Due to the quasi-

dynamic nature of energy supply problems in which the interaction between periods is issue, 

mathematical optimization techniques are the most prevalent methods used in this field (a detailed 

review on energy system optimization models is contained in [8] [9]). 

Optimization has numerously been employed either in energy system tools—that are available as 

a computer-based software—or user-developed models—that their formulations are presented by 

researchers and should be coded by users. TIMES, MESSAGE, and MARKAL are some of the 

most well-known energy system tools that have been frequently hired to facilitate electricity 

policy-making. User-developed models also have been adapted in a variety of researches, for 

example, for long-term energy and power planning in Greece [10], making trade-offs between 

carbon emissions and job creation in Iran's power sector [11], analyzing the effects of temporal 

divisions on electricity sector planning in China [12], investigating future pathways for power 

supply's cost and carbon in the UK [13], and evaluating the adequacy of local energy sources in 



Indonesia [14]. The ability to carefully match the scale and scope of the problem and the easiness 

to use are particular advantages of the user-developed optimization models [15].  

In simulation models versus optimization, a logical representation of a system describes the 

simplified operation of that system [5]. As a kind of scenario model, simulation methods are often 

used to analyze and compare scenarios. The details of the current system arrangement in these 

models are less significant than optimization, while the prospect options’ components are 

indispensable. This characteristic makes simulation well-suited for backcasting [6]. Backcasting 

includes designing desired future scenarios, i.e., normative scenarios, and planning backward to 

explore which transition pathways lead to those desired futures [16]. Some recent studies have 

used simulation models to design power supply strategies (e.g., [17] [18]). 

Taking sustainability indicators into consideration makes energy planning problems more 

complicated because the ultimate plan should be satisfactory respecting conflicting outlooks. 

Accordingly, there is a need to upgrade the existing energy analysis frameworks. Taking advantage 

of simulation principles into optimization models could be a significant effort. In this regard, the 

common methodology includes defining a set of future scenarios, identifying the best 

configuration of each scenario, and finally assessing and comparing the scenarios in association 

with the sustainability criteria. Over the past few years, this framework has been the dominant 

foundation for sustainable power supply planning and received enormous attention. Based on that 

method, for instance, Volkart et al. [19] evaluated climate protection scenarios in the Swiss energy 

sector, and  Rosso-Cerón et al. [20] appraised power generation alternatives in San Andrés, 

Colombia, 

Nevertheless, the past efforts can be considered a small step towards incorporating simulation into 

optimization. In most of the previous works, a small number of scenarios have been examined. In 

practice, however, more than a few future scenarios should be evaluated, as simulation models do. 

Many countries in their national energy policy address a long-term approach. Given that they 

provide only a broad outline, policies need to be accompanied by a detailed plan with specific and 

measurable targets. Accordingly, a lot of future scenarios could be in accordance with the policies. 

Identifying the most fitting scenario, thus, is crucial to make available an executive and trackable 

plan in association with the upstream policies.  



This paper aims to move one step more towards combining simulation and optimization models, 

merging forecasting and backcasting. Few previous works have developed this idea. Rodgers et 

al. [21] used a simulated generation expansion planning (GEP) model to mitigate health risks. Piao 

et al. [22] integrated the Monte Carlo simulation, support-vector-regression, and inexact chance-

constrained programming techniques to deal with uncertainty. Mahbub et al. [23] coupled 

EnergyPLAN with a multi-objective genetic algorithm (GA) to minimize cost and carbon 

emissions. Bjelić and Rajaković [24] used EnergyPLAN aligned with the generic optimization 

program (GenOpt) to explore renewable energy sources. The present study integrates simulation 

and optimization in a novel initiative. Specifically, the goal is to incorporate simulation 

approaches' precious ability in searching numerous future scenarios into optimization models. For 

this purpose, an efficient evolutionary algorithm (EA) is brought into play. EAs as artificial 

intelligence techniques are robust tools in solving complex search problems [25].  

Using an EA could merge simulation into optimization. The remaining problem is how various 

scenarios be appraised in the presence of different sustainability factors. Multi-criteria decision-

making (MCDM) methods are recognized as practical means that have recently gained wide 

applications for multi-metric sustainability evaluation [26]. In energy and electricity systems 

analysis, MCDMs can be hired in two manners, one determining the importance of criteria and 

assigning weights to them during which concerning goals [27], and another ranking the alternatives 

(scenarios [28] or technologies [29]) while regarding the criteria. In the former use, experts' and 

stakeholders' opinions and interests are included in the decision-making process. This paper 

utilizes the Analytic Network Process (ANP) [30] to convert qualitative experts’ judgments into 

quantitative criteria weights. Besides, VIKOR [31] is applied to assess and rank the scenarios in 

connection with the overall sustainability performance.  

The proposed framework is put into practice to draw a sustainable expansion design for Iran. Iran 

is a key player in the global energy supply scene as it possesses the largest oil and gas reserves 

worldwide [32]. On the other hand, the country's per capita energy consumption is ten times the 

European Union [33]. Enormous accessible oil and gas resources have been the root cause of the 

overreliance of the country's power sector on fossil fuels, where 93% of electricity comes from 

fossil-based power plants [34]. This electricity mix is a crucial reason to bring the country among 

the world's top ten GHG producers [35], because over 30% of the total GHG stems from electricity 



generation activities [36]. However, the country presumably has a bright energy supply perspective 

since it benefits from a wide variety of renewable resources in abundance. The current mix's 

leading renewable resource is water, with a 4.9% share in the generation. Non-hydro renewables 

such as solar, wind, geothermal, and biomass totally have a negligible contribution of 0.1%. They 

could be put on the map more seriously, especially if we know that two-thirds of Iran's area has 

above 300 days of sunshine annually [37], east and northwestern regions are in the path of strong 

winds [38], and close to 9% of the land has the geothermal potential [39].  

In summary, the present work makes distinctive contributions through the following ways:  

• Proposing a decision support system based on a state-of-the-art simulation-optimization 

framework for sustainable electricity supply planning passing through integrating a 

differential evolution algorithm, a linear programming (LP) model, and a combined ANP-

VIKOR.    

• Devising a long-term sustainable power expansion plan in which the trend of sustainability 

indicators is tracked and assessed.  

The paper's outline is as follows: Section 2 explains the methodology used to derive the sustainable 

plan. Section 3 examines the applicability of the proposed framework for the case of Iran. Section 

4 analyzes the results of electricity generation pathways and sustainability indicators trend. In 

Section 5, the results are tested and compared with some previous works. Finally, Section 6 

provides conclusions and main insights.  

2. Methodology 

The schematic of the proposed methodology is illustrated in Fig. 1. The methodology can be used 

to determine which technologies to what extent should be employed to achieve sustainability in 

the power supply. It provides sustainable generation and capacity pathways for a country or region 

based on the experts' and stockholders' opinions. By utilizing the framework, it is possible to assess 

the sustainability measures through a long planning horizon. The methodology uses an artificial 

intelligence technique combined with an optimization model and MCDM tools. This integration 

provides the ability to automatically generate normative scenarios and evaluate them in terms of 

overall sustainability. This is a step forward in the transition from cost-concentration modeling 

frameworks to sustainability-focused ones. Almost all of the existing energy systems tools 



(TIMES, etc.) are based on cost and the proposed methodology could be a source of idea to extend 

those models towards sustainability.   

The proposed framework consists of four steps that based on some inputs and assumptions gives 

rise to a sustainable plan in an iterative manner. Inputs include electricity demand projection, 

techno-economic parameters of power generation technologies, fuel prices, trading costs, and grid 

losses. As the aim is addressing sustainability, environmental and social data are also regarded as 

input. Experts' judgments are another input that is required to provide a sustainable arrangement. 

Since sustainability depends on a region where planning is undertaking, the opinion of local, 

knowledgeable people regarding the significance of indicators is determinative. The share ranges 

of technologies in the planning horizon is the other data used for simulation and could be sourced 

from the upstream policies or the previous analyses. Besides, each step results in an output that 

plays an input role for the next step. The note is that steps 2 to 4 comprise an iterative process that 

continues until a stop criterion is met. 

Fig. 1. The schematic representation of the proposed simulation-optimization framework. 

2.1. Step 1. Indicator weighting 

The ANP method derives the comparative importance of indicators. As a general form of the 

Analytic Hierarchy Process (AHP) method, the ANP relies on a network of relationships rather 

than a hierarchy. The network structure makes it possible to consider the interdependencies 

between elements within a decision making problem [30]. Accordingly, it would be a suitable tool 

to deal with multiple sustainability indicators that are sometimes co-dependent in nature. The 

influence of indicators in a network could be accounted for not just in a top-down arrangement but 

also in other directions. 

A network includes clusters, elements, and arcs. Elements categorized in clusters, are connected 

by arcs in the same or other clusters to show dependencies according to the problem specifications. 

The experts' opinions regarding the relative preferences of the decision elements are acquired 

through pairwise comparisons in which two elements are compared concerning a controlling 

factor. The elements' weights are computed as the same procedure as AHP (see [40] for AHP 

calculations). The consistency ratio is a reliable index to figure out whether judgments are 

reasonable. The priorities resulting from pairwise comparison matrices compose a supermatrix that 



each of its segments represents a relationship between two clusters. The relative importance of the 

clusters in the supermatrix is computed to derive the absolute priorities. The comparison of rows 

is then made to obtain first, eigenvectors, next, the weighted supermatrix. To converge the weights, 

the supermatrix is raised to the power of a large number, and the result is called the limit 

supermatrix. By normalizing this matrix, the final weights are gained (see [41] for the detailed 

procedure). 

The network in this study encompasses three clusters. The first corresponds to the decision 

problem's goal, which is sustainability in the power supply sector. The second cluster involves 

major sustainability dimensions, including economic, technical, environmental, and social. The 

last cluster includes the sub-criteria of sustainability dimensions that appear as the role of 

alternatives, and the aim is to determine their weights. The interdependencies and relationships 

between the elements are specified, and pairwise comparisons are carried out. It deserves to 

mention that breaking down the techno-economic dimension into two distinct economic and 

technical aspects decreases the necessary pairwise comparisons and subsequently boosts the 

consistency.          

2.2. Step 2. Scenario definition 

In order to define the scenarios, a differential evolution (DE) algorithm is brought into play. The 

DE algorithm is used to outline the future configuration of the power system—this is the way also 

is used in some other simulation-based energy systems tools for example EnergyPLAN. According 

to scenario-based planning concepts, these configurations are called normative scenarios. Using 

the DE in the mentioned way provides a foundation for simulation because the rest of the 

methodology in a backward move seeks optimal pathways towards those normative scenarios. 

More clearly, this process, i.e., generating future power scenarios and finding pathways towards 

them backwardly, has been referred to as a simulation process.   

DE is a competitive stochastic search method developed initially to solve continuous problems and 

has been frequently used to solve various complicated search problems [42]. As an evolutionary 

algorithm, DE iteratively regenerates populations of solutions by implementing some operators 

through which the populations' members are gradually modified and finally converged to the fittest 

solution. The solutions are evaluated based on a fitness function that classically is a single-

objective optimization. Like the GA [43], DE relies on three operators, namely mutation, 



crossover, and selection, but in an upgraded structure and order. In the DE process, each member 

of the current population is considered a target vector, and the operators are implemented regarding 

each of them. Within mutation, the weighted difference of some of the randomly selected vectors 

is added to another one to create the mutant vector. The crossover operator is applied afterwards 

to generate the trial vector by mixing the mutant and target. At last, the fittest vector among the 

trial and target is admitted within the selection operator to transfer to the next generation [44].  

Depending upon the vector selection strategy, the number of used difference vectors, and the 

crossover type, different versions for DE exist. In this paper, DE/best/2/bin is taken up, meaning 

that the weighted difference of two pairs of vectors is added to the best individual to produce the 

mutant vector, and then structuring the trial is done using a binomial crossover. The reasons for 

making use of DE in general and the mentioned version, in particular, are proven performance in 

solving complex continuous problems, keeping diversification in population and avoiding 

premature convergence, few control parameters (population size, crossover rate, and scaling 

factor), in-built elite strategy (preserving the best member of the previous generation), and finally 

well matching of the operators' structure with the problem representation [45] [46].   

Each scenario corresponds to a chromosome (vector or individual) in the context of the DE 

literature. A scenario refers to a generation mix at the end of the planning horizon and determines 

a lower bound of the share of different categories of technology. In this way, the DE helps regulate 

the minimum share of technology from a predefined range. It is noticeable that specifying a 

predefined range can be skipped, but keeping it reduces the search space and hinders the creation 

of undoubtedly unacceptable portfolios. So, it helps reach an optimal solution at a faster pace. Each 

scenario then works as a constraint in the optimization model in the next step. Running the DE is 

initiated in this step, but it continues in the next steps to shape its loop. The solution representation, 

i.e., the chromosome, is organized as a string of real numbers that each gene stands for a share of 

a specific type of technology. Fig. 2 illustrates the structure of a chromosome. 

Fig. 2. Solution representation scheme in the designed DE algorithm. 

The pseudo-code for the proposed DE is as follows: 

Begin 

Generate a random population of chromosomes (consists of n-pop members) 

Set the generation counter G equal to 0 



while (the termination condition is not true) 

Set G = G + 1 

for i = 1 : n-pop 

Do mutation to create mutant vector 

Do crossover on mutant and target i to create the trial vector 

Rank the trial and target and find the current best 

Accept the current best as the ith member of the population in generation G 

end for i 

end while  

Output the best member in generation G 

End 

 

For each target vector i in the current population (𝑥𝑖
𝐺), the mutant vector 𝑣𝑖

𝐺+1 is generated by 

putting into operation the following mutation operator: 

( )1

1 2 3 4  G G G G G G

i best r r r rx F x x x xv + = + + − −  (1) 

where subscript best refers to the best-ranked individual in the population, 𝑟1, 𝑟2, 𝑟3, and 𝑟4 are 

randomly chosen numbers from the set {1. 2. … 𝑛 − 𝑝𝑜𝑝}, and F is a real constant scaling factor 

from U[0 1]. The mutant vector is formed based on the mutation formulation, relying on the best 

individual in the current population. Its genes however are changed by adding a weighted 

difference of four randomly selected vectors. This procedure keeps the diversification of the 

population in a reasonable range.   

The genes (j=1, 2, …, D) of the trial vector 𝑢𝑖
𝐺+1 are specified via combining the target vector 

𝑥𝑖
𝐺with the mutant vector 𝑣𝑖

𝐺+1 by executing the following crossover operator:  

( )( )
( )

1
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v if rand j CR or j rndI
u
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


 =
=

 
 

(2) 

where rand (j) is a real random number in U[0 1], CR denotes the crossover rate, and rndI is an 

integer random number from {1. 2. … .  𝐷}, which guarantees 𝑢𝑖
𝐺+1 ≠ 𝑥𝑖

𝐺  [44]. 

2.3. Step 3. Power supply optimization 

In order to derive the optimal capacity expansion pathway, the Reference Energy System (RES) 

comprising the flows from energy resources to end-use demands is optimized through developing 

and solving the corresponding LP model. The model includes an objective function representing 

the net present value of different cost elements including investment cost, operation and 



maintenance (O&M) cost, trading cost, fuel cost, decommissioning cost, and grid cost. The 

objective function is subject to a set of constraints involving electricity demand, power generation, 

fuel availability, infrastructure capacity, and trading limitation. The model adapted from [11] [14] 

[13] is provided in Appendix A. 

The maximum share of different technologies regulated by a scenario is embedded in the LP model 

by the following constraint. 

, , , ,    
end end end end

New Ext

i t i t i t i t

i I i I

G G G i I
 

 
 +   

 
   (3) 

where , endi tG  refers to the electricity generation by technology type i in the last period of planning, 

, endi t  denotes the share of technology i at the end of the planning horizon, I is the set of all types 

of power plants, and New and Ext imply the new and existing technologies, respectively. As a 

result of the inequality above, each scenario in a population of solutions leads to a different 

capacity transition plan.  

2.4. Step 4. Scenario ranking  

After shaping the power supply configurations corresponding to the scenarios, it should be 

examined which scenario is the most preferred in the presence of multiple indicators. To 

accomplish this, VIKOR, as an MCDM tool, is utilized, wherein scenarios play the role of 

alternatives. Based on an Lp-metric aggregating function [47], VIKOR formulates the utility (Sj in 

Eq. (4)) and regret (Rj in Eq. (5)) measures to rank an array of alternatives concerning a group of 

contradictory criteria to give rise to a (set of) compromise choice(s). A compromise choice gives 

the most group utility of the majority and the least individual regret. Closeness to the ideal choice 

as the fundamental principle in VIKOR is quantified by using the ranking measures [31]. Relative 

to other similar MCDM methods, the high ability of VIKOR to select the ideal alternative in terms 

of the various sustainability indicators [48] is the motivation of this study to put it into work. 

To take an overview of the VIKOR model, assume that fij represents the performance of alternative 

j (j=1,2, …, m) according to criterion i (i=1,2, …, n). The subsequent mn decision matrix is 

normalized to remove the units of criterion functions, and the procedure below is followed. 

Step 1. Determining the best if +
 and the worst if −

values for all criteria: 



max ;  min  i ij i ij
jj

f f f f+ −= = if i is a positive criterion (the higher value, the better performance) 

min ;  max  i ij i ij
j j

f f f f+ −= =  if i is a negative criterion (the lower value, the better performance) 

Step 2. Calculating the utility measure jS and the regret measure jR : 

( ) ( )
1

n

j i i ij i i

i

S w f f f f+ + −

=

= − −  (4) 

( ) ( )maxj i i ij i i
i

R w f f f f+ + − = − −
 

 
(5) 

where iw is the weight of criterion i assigned by the ANP method.  

Step 3. Computing the VIKOR index jQ : 

( )
( )

( )
( )
( )

1
j j

j

v S S R R
Q v

S S R R

+ +

− + − +

− −
= + −

− −
 (6) 

where min , max , min , maxj j j j
j jj j

S S S S R R R R+ − + −= = = = , and v is the weight of the maximum 

group utility strategy and is assumed to be 0.5 [49].  

Step 4. Sorting the alternatives according to Q, S, and R values in descending order and accepting 

a choice with the lowest Q value as the compromise solution. Checking “acceptance advantage” 

and “acceptable stability in decision-making” conditions [31] regarding S and R arrays also is 

suggested to determine whether multiple compromise solutions are available. 

3. Demonstration of the proposed methodology for the case of Iran 

As the most important Iranian government department for power supply, the Ministry of Energy 

(MOE) is responsible for the regulation and implementation of policies for energy, electricity, 

water, and wastewater services. Besides, the Ministry of Petroleum is the other critical organ that 

supervises exploration, extraction, marketing, and selling crude oil, NG, and petroleum products 

via its subsidiaries. Iran High Energy Council has been established to make a concentration in 

policymaking by coordinating policies of the whole energy sector through contributing MOE, 

Ministry of Petroleum, and other relevant ministries. 

There are two main holding companies supervised by the MOE: (1) Power Transmission, 

Generation, and Distribution Company (Tavanir) and (2) Thermal Power Plants Holding 

Company. The former deals with management and supervision on the installation and operation of 



power system facilities. The latter organizes government enterprise activities in thermal power 

generation. At a more operational level, there are regional electric companies, power distribution 

companies, power generation management companies, Iran Grid Management Company (IGMC), 

Iran Power Plant Project Management Company (MAPNA), and Renewable Energy and Energy 

Efficiency Organization (SATBA). They are in charge of the implementation of the plans and 

programs [50]. 

The proposed framework is put into play to prepare a sustainable plan for Iran's electricity supply 

sector. A 30-year planning period is considered from 2020 to 2050. According to the current 

condition and future potential of resources and infrastructure, a set of 18 electricity generation 

technologies including the steam power plant, combined cycle technology (conventional and 

advanced), gas turbine (conventional and advanced), gas engine (off-grid), coal-fired power 

stations (conventional and advanced), nuclear power plant (conventional and advanced), 

hydropower (small and large), wind turbine, solar photovoltaic (on- and off-grid), solar thermal, 

geothermal, and biomass (landfill) is determined as the candidates. The sustainable pathway is 

aimed to devise according to 16 indicators.   

3.1. The sustainability indicators weights 

A detailed review analysis on the sustainability assessment of power generation [51] [52] shows 

that most previous studies considered three dimensions (i.e., techno-economic, social, and 

environmental indicators). However, as mentioned by Santoyo-Castelazo and Azapagic [51], the 

number of indicators are significantly different, ranging from four [53] to 75 indicators [54]. After 

extensive engagement with multiple stakeholders from academic centers to industrial sectors and 

governmental organizations, 16 different indicators have been selected in this paper. Each 

indicator addresses the most critical problems facing Iran during recent years.   

To gain the preference weights by using the ANP method, the indicators and the relations network 

are characterized as Fig. 3. The description of the indicators has been provided in Table 1. The 

network includes three clusters, which are goal, criteria, and alternatives. The goal cluster 

encompasses one element that aims to address sustainability in Iran's power supply. The criteria 

cluster has four elements referring to sustainability aspects. The alternative cluster includes the 

operational indicators whose importance weights are the main issue. Arcs show the relationships 

between the elements. The goal is connected to the four sustainability aspects, and then each of 

the aspects is connected to relevant indicators. Besides, some economic indicators are self-



connected to consider interdependencies. For instance, the arc from the LCOE to investment cost 

denotes that the former depends on the latter. The required pairwise comparisons resulting from 

the network structure are carried out by experts based on a numerical scale from one to nine, where 

the more significant number indicates the higher preference. The valid outputs resulting from 

SuperDecisions software are shown in Fig. 4.   

 
Fig. 3. Sustainability indicators and their relationship network in the ANP method. 

Table 1. The description of the sustainability indicators [55]. 

Fig. 4. Sustainability indicators' weights for the case of Iran. 

3.2. Solution representation  

The assumed set of power generation technologies are categorized into nine groups. Subsequently, 

the chromosome in the DE algorithm includes nine genes representing the share of different 

categories of technologies in electricity supply at the horizon 2050. The share range of each group, 

given in Table 2, is determined according to the country's potential and the previous studies.  

Table. 2. The groups of technologies and their range of share in 2050 generation [56] [57] [11] [58] [59].  

3.3. Data 

Iran's electricity demand is projected to grow by a 3.8% annual average rate reaching from the 

current 280 to 854 TWh in 2050 [60]. The transmission and distribution losses that currently are 

about 10.4% and 2.8%, respectively, are expected to decrease to 2.5% and 6.0% at the horizon 

2050 [61]. Per megawatt-hour, electricity distribution cost is around $8.3, and that for transmission 

is near $8.9 [62]. At present, the import and export shares account for at most 1.3% and 3.8% of 

the overall generation and can rise to 5% and 10% by the end of the planning period. Electricity 

import cost and export price are assumed to be 60 $/MWh and 80 $/MWh at present, both with a 

growth rate of 1.8% by 2030 [61] [36]. The limitation of natural gas (NG) contribution from the 

current 70% steadily relaxes by 2030 [57]. NG, fuel oil, diesel, and thermal coal prices are assumed 

to be 0.28, 0.52, 0.75, and 0.19 cents/MJ with a 1.1% yearly increase rate [32] [63] and nuclear 

fuel cost is set on 1 cents/kWh [64]. The techno-economic parameters and the environmental and 

social factors of the power generation technologies are provided in Appendix B.  

4. Results  



GAMS/CPLEX was used to solve the LP model, and MATLAB software was employed to run the 

DE algorithm in a link with GAMS's outputs. After primary runs, the population size was set on 

20, and the crossover rate was determined as 0.4 so that the algorithm converged in 150 

generations. In addition to the sustainable plan, the business as usual (BAU) scheme was also 

arranged in which the ongoing development was continued. The two expansion plans were 

analyzed and compared in terms of power supply transitions and sustainability indicators trends.       

4.1. Capacity and generation expansion  

The optimal capacity pathway and its corresponding gross generation for BAU and sustainable 

schemes are depicted in Fig. 5. The BAU's total installed capacity is expected to grow with a 3.8% 

average annual rate reaching 229 GW by 2050. Thanks to the low NG price and conversion 

efficiency improvement, the combined cycle holds its dominion. With a 78 GW capacity, 54% of 

the generation at the end of the model horizon comes from that technology. Concerning the other 

fossil fuel technologies, the existing steam power plants are gradually phased out, and gas turbine 

and coal power plant preserve their marginal share. Over time, renewable technologies become 

economically competitive and gain an essential role in the portfolio. Wind turbine is the leading 

renewable source that continues its accelerating penetration and reaches 13% in generation due to 

48 GW capacity. Solar PV is the next promising renewable with a 55 GW capacity, i.e., 9% share 

in the generation.  

The sustainable scheme's overall capacity shows a 4.6% year-on-year average growth that finally 

reaches 288 GW in 2050, 26% more than BAU. The more significant contribution of renewable 

technologies with lower availability factors is the reason behind that increase. Like BAU, the 

combined cycle is the dominant technology but with less significance. After reaching 58% in 2030, 

its generation share reduces to 36% by 2045 and rises again to 37% in the ending years, satisfying 

the escalating demand. The sustainable plan accelerates the adoption of clean and renewable 

technologies, especially wind turbines, compared to the BAU. Over the medium- to long-term, 

wind turbine capacity increases markedly and touches 83 GW, making it the most favorable 

renewable. The total share of non-hydro renewables in the generation is 49% in 2045 and stabilizes 

at this level by 2050. Solar thermal and hydropower altogether with near 48 GW capacity are 

necessary to meet a demand portion. With 58%, the share of CO2 free electricity in the sustainable 

strategy is 27% greater than that of BAU.   

 



Fig. 5. Capacity and generation pathways in the BAU and sustainable schemes up to 2050. 

Fig. 6 highlights the generation mix differences in scenarios. Out of the total 945 TWh generation 

in 2050, there is 254 TWh, i.e., near 27% difference in energy sources in the two schemes. Before 

2030, there is no substantial discrepancy in the expansion pathways. After that, the generation 

mostly stemmed from the combined cycle in BAU, substituted in the sustainable plan first by the 

wind turbine, then solar thermal, and finally solar PV. In the last period of the sustainable plan, 

wind turbine and solar thermal generate 93 and 81 TWh more electricity than in the BAU. Solar 

PV is another source that makes a difference and plays a more critical role in the sustainable plan 

with around 57 TWh more generations.  

Fig. 6. Change in electricity generation source due to development scheme. 

4.2. Sustainability indicators outlook 

In this section, the sustainability indicators trends throughout the planning period are traced in a 

comparative representation between BAU and sustainable schemes.  

4.2.1. Techno-economic indicators 

The fluctuations of techno-economic indicators from 2020 to 2050 is shown in Fig 7.  

Investment cost 

In the first year of planning, the investment cost is calculated as 2.44 cents/kWh. Before 2030, it 

remains almost flat at the same level as 2020 in the two plans. A slight increase in BAU is observed 

afterward, ultimately leading to 2.58 cents/kWh in 2050. In the sustainable plan, however, a higher 

tendency is towards capital-intensive technologies. In that plan, a sharp increase occurs from 2030 

onwards; thereby, the cost rises above 38% and reaches 3.38 cents/kWh, driven by a substantial 

increase in nuclear power and renewables, especially wind and solar thermal. In line with the 

declining share of clean technologies within the last periods, the investment cost falls around 0.23 

cents and stabilizes at 3.15 cents/kWh in 2050.   

Fuel cost 

While both BAU and sustainable plans present a similar pattern in fuel cost, the latter shows lower 

levels after 2030. In BAU, fuel cost declines from 3.18 to 2.60 cents/kWh during 2020-2045 and 

rises again to 3.02 at the ending period. Moving towards renewable energies in the sustainable plan 



causes less fuel consumption and lower per-unit electricity fuel costs. At its minimum level, the 

sustainable scheme's fuel cost is expected to be 1.87 cents/kWh. In 2050, it would be 2.14 cents, 

29% less relative to BAU.   

O&M cost   

In both scenarios, O&M costs follow an increasing trend until the last decade. It rises from 0.64 

cents/kWh in 2020 to 1.06 and 1.30 cents/kWh by 2040 in BAU and sustainable schemes, 

respectively, decreasing slightly. Putting renewable and nuclear technologies on the map, which 

have generally higher O&M costs, justifies that increase in the sustainable plan. In BAU, 

decommissioning the existing steam power plants with small O&M costs is one reason for that 

increasing trajectory. In addition, concerning the total cost, the model suggests advanced combined 

cycle technologies rather than the conventional ones because the advanced systems work in higher 

conversion efficiency, even though they necessitate more maintenance costs. 

Levelised cost of electricity (LCOE) 

The BAU, by and large, leads to favorable economics in the sense of LCOE. The indicator lies 

within the range of 6.21 to 6.49 cents/kWh for BAU, while within 6.24 and 6.57 in the sustainable 

plan. Increasing O&M cost in midterm causes a higher level of LCOE for both schemes compared 

to the 2020 level. From 2035 to 2040, the fuel cost decline, coupled with stabilized investment 

cost, brings a sensible LCOE decrease in BAU. A smother decline is observed in the sustainable 

plan due to the high investment cost of deploying clean technologies. As a result of the combined 

cycle rising share, and subsequently, fuel expense soaring in the last periods, LCOE turns to an 

increasing trend and sits at 6.49 and 6.57 cents/kWh in BAU and sustainable schemes, 

respectively. 

Fuel price sensitivity 

As a function of fuel price and LCOE, fuel price sensitivity is more affected by the former and 

proceeds the same trend of that. Before 2030, the meter stays almost flat, around 50% in the two 

schemes. After that, it behaves like an inverted bell curve, falls to 42% and 27% by 2045 in BAU 

and sustainable plan, respectively, and rises again up to 46% in BAU and 32% in the sustainable 

plan. Sensitivity to fuel price dwindles in sustainable development following the diffusion of 

renewable technologies.  



Economic dispatchability 

As the ratio of investment cost to LCOE, economic dispatchability shows a path like the numerator 

because of more severe fluctuations. After passing a relatively smooth line during the first decade, 

it grows from 37% to 42% in BAU and 53% in the sustainable plan. Accordingly, at its maximum 

difference occurred in 2045, economic dispatchability in the sustainable plan is 13% more than the 

BAU. With a decline in the ending years, the indicator sits at 41% and 48% in BAU and sustainable 

plan, respectively.  

Construction time 

The average construction time in both plans continuously follows a decreasing pattern, so from 

the current 4.85 years diminishes to 3.41 and 2.70 years in 2050 for BAU and sustainable schemes, 

respectively. Synchronous with the intense penetration of clean technologies, this index faces a 

decreasing trend in the sustainable plan. Although nuclear units need longer time to be built, the 

sustainable plan is more affected by solar and wind technologies, which need shorter times to start 

up.     

Capacity factor   

From the capacity factor standpoint, the BAU is more reliable than sustainable expansion. At the 

end of the planning projection, that indicator in BAU shows a decrease as negligible as 4% 

compared to 2020. In the sustainable power mix, however, only 38% of the 2050 on-hand capacity 

contributes to the electricity supply. Pursuing the substitution of baseload combined cycle with 

variable solar and wind sources triggers that result.  

Fig. 7. The trends of techno-economic indicators in BAU and sustainable schemes (per unit of 

generation). 

4.2.2. Annual costs 

Fig. 8 represents per year imposed investment, O&M, and fuel costs. Versus fuel cost, the annual 

investment and O&M cost continually increase over time, where a higher growth speed in the 

sustainable plan is observed. Investment cost in sustainable design increases by a 4.5% average 

annual rate, rising from the current 8.2 to about $30.5 billion in 2050. That rate accounts for 3.7% 

in BAU. The demand push along with penetration of nuclear power and renewables, which in 



midterm still require more capital costs than fossil fuel plants, are the reasons for that increasing 

trend.     

With a similar pattern, O&M annual cost rises from $2.15 billion in the base year to 8.66 and 11.8 

in BAU and sustainable plans, respectively, denoting 4.7% and 5.8% average growth rates. The 

fuel cost pattern contrasts with the priors, wherein the sustainable plan presents lower levels of 

annual expense. Although in BAU a constant yearly growth is observed in fuel spending, in the 

sustainable generation, thanks to renewables deployment, a substantial decrease takes place within 

2035 to 2040. However, penetrating fossil fuel power plants in the last periods turns the trend to 

the upside. Following this pattern, $10.7 billion fuel cost in the present-day grows to $20.5 billion 

in 2050.                

Fig. 8. Total annual costs of electricity supply in BAU and sustainable schemes. 

4.2.3. Environmental indicators 

The performance of the two plans in terms of environmental criteria is shown in Fig. 9.  

Water consumption 

Regardless of some temporal fluctuations, a continuous improvement in water consumption is seen 

in both plans, but sustainable design leads to a better result. The required water for one megawatt-

hour of electricity is about 640 gallons in the current generation mix. The reduction to 324 and 282 

gallons is expected for BAU and sustainable plan, representing a 46% and 56% decrease relative 

to 2020. Phasing out the existing steam power plants of most water-intensive technologies is the 

main reason behind the two plans' decreasing pattern. Although more nuclear power in the 

sustainable plan should result in more water consumption, the high growth rate of solar and wind 

power makes a balance so that the decreasing trend is kept during the planning horizon. 

Acidification 

Until 2030, per MWh SO2 emissions, sink below 277 gr in BAU. In fact, no substantial increase 

is observed. The reason is that by that time, no extensive change in the share of fossil fuel 

technologies, which have approximately the same level of acidification potential, would be 

occurred. In the long-term, however, the acidification potential reduces to 223 gr/MWh as a result 

of decreasing share of fossil fuel technologies. A remarkable decrease is observed in sustainable 



plan, such that the indicator diminishes to 136 gSO2/MWh, which is 48% lower than that of the 

present. Alternative options, including nuclear, solar PV, solar thermal, and wind turbine, all in 

comparison with fossil fuel power plants have lower levels of acid gas emissions. Putting those 

clean technologies into play explains the considerable drop.   

Land use 

Both schemes tend to occupy more land than the current, however, installing coal-fired power 

stations makes the BAU more land-intensive. The current per megawatt-hour land occupation is 

about 3.83 m2. Over the coming decades, it is projected to increase and reach around 5.78 and 6.19 

m2 in 2050 in sustainable and BAU plans, denoting a 51% and 62% increase, respectively. The 

conventional steam power plant, gas turbine, and combined cycle are compacted in terms of 

facilities so that they need only 4% of the land needed in solar systems to produce the same amount 

of electricity. Accordingly, moving a bit towards solar technologies, as happens especially in 

sustainable expansion, causes a considerable increase in land demand.  

Global warming 

Thanks to clean technologies utilization and efficiency improvement, both designs achieve a fast 

reduction in global warming potential by 2045. Yet, the trend turns to the upside during the last 

period due to increased combined cycle share. From an estimated 443 gCO2/MWh in 2020, 

emissions reduce to 261 gr in BAU and 138 gr in the sustainable plan at their minimum levels, 

which show a sizeable 41% and 69% decline, respectively. Through pursuing sustainable 

development, CO2 emissions would lie at 150 gCO2/kWh at the endpoint of the planning horizon, 

which accounts for one-third of the current level.   

Fig. 9. The trends of environmental indicators in BAU and sustainable schemes expressed per unit of 

generation. 

4.2.4. Annual environmental performance 

Fig. 10 provides the annual operation of the environmental index. In the medium- to long-run, 

there are some time frames wherein yearly SO2 and CO2 emissions reduce. However, the required 

water and land constantly increase year by year. If the present arrangement continues, the 

acidification potential will rise from 88 to 212-kilo tonnes SO2 per year. The sustainable supply 

can moderate this outcome by up to 83-kilo tonnes reduction in annual SO2 emissions.  



Although the electricity demand is progressively rising, even in the BAU, there would be no 

substantial increase in yearly CO2 emissions until the last decade. The emissions sink below 191 

Mt by 2040 but increase to 270 Mt in 2050. In the sustainable expansion, a 39% decrease is 

observed compared to the present level, reaching 91 Mt in 2040. In 2050, the amount of emissions 

in the sustainable plan is almost the same level as 2020, but 45% lower than that of BAU.  

Even though per MWh water requirement is decreasing over time, electricity generation expands 

at such an accelerating rate that the annual water need is persistently mounting going forward in 

both plans, a bit more in the BAU. The annual demanded water rises less than 44% during the 30-

year timeframe and reduces from 214 billion gallons in the base year to a range between 272 and 

307 billion gallons in 2050, depending on the plan.  

Land occupation also follows an increasing trend over time regardless of the expansion plan. With 

incremental growth, the area needed to satisfy the demand surpasses fourfold and grows from 1288 

million m2 in 2020 to 5451 and 5867 million m2 in 2050 in sustainable plan and BAU. At the 

horizon of 2050, the total land occupation in the sustainable scheme is 7.01% lower than that of 

BAU.      

Fig. 10. Total annual environmental impacts of electricity supply in BAU and sustainable schemes. 

4.2.5. Social indicators 

Fig. 11 displays the performance of the BAU and sustainable scheme regarding social perspectives.     

Job creation 

Typically, all the alternative technologies have higher job creation potential. Consequently, jobs 

associated with both expansion plans tend to rise. At present, the index is around 133 person-yrs 

for each terawatt hour of electricity. In long-run, job creation per unit of electricity in the 

sustainable plan is higher than that of BAU.  The indicator is expected to grow less than 47% by 

2050 in BAU and 83% in the sustainable plan, reaching 195 and 244 person-yrs. 

Human toxicity potential  

Human toxicity potential increases over the next two decades in both plans and then stabilizes in 

the sustainable scheme and turns to a decreasing trajectory in BAU. The current power supply mix 

causes 3.77 gr 1,4.DCBeq per kWh output. In line with the increase in the share of wind, solar 



thermal, and more importantly, solar photovoltaic, which have higher toxicity potential relative to 

fossil fuels (except for coal), the performance in the sustainable design deteriorates, reaching 7.69 

gr 1,4.DCBeq/kWh in 2050. BAU is more harmful than sustainable development in terms of 

toxicity potential, mainly due to higher dependency on coal-fired power stations that are by far the 

worst option concerning toxic gases and vapors. The index in BAU is around 9.49 gr at the horizon 

2050, 23% more than that of the sustainable scheme.  

Fossil fuel consumption 

Fossil fuel consumption decreases in both scenarios, falling from the present-day value of 7.1 

MJ/MWh to 4.2 to 4.7 in BAU and 2.7 to 2.9 in the sustainable plan in the last decade. This implies 

that the required fossil fuel-sourced energy to produce a unit of electricity can be around 40% of 

the current amount if sustainability is pursued. The expected cost reduction of renewables is so 

high that they would be a part of the solution even in an economic-focused aspect. This results in 

less dependency on fossil fuel not only in the sustainable plan but also in BAU. 

Diversification 

Supply mix diversification based on the Shannon-Wiener measure [65] sinks below 1.54 in the 

sustainable scheme and shows fluctuations in a range of 1.51 and 1.65 in BAU within the first 

decade. Within the next five years, it decreases to 1.42 in the BAU and increases to 1.69 in the 

sustainable scheme. In the remaining periods, the sustainable design presents better performance 

regarding diversification. The higher level of the index in BAU during the first decade is due to 

contributing coal power plants to the generation. After 2030, an enormous increase in the share of 

solar systems and wind turbines justifies the higher levels of diversification in sustainable strategy. 

In 2050, the index in the sustainable plan shows a 13% improvement compared to the base year 

and almost the same amount of superiority relative to the BAU. The decreasing trend prior to 2035 

lies in decommissioning steam power. However, between 2035 and 2040, an enormous increase 

in the share of solar systems, wind turbines, and then nuclear power leads to a jump in the index. 

Fig. 11. The trends of social indicators in BAU and sustainable schemes expressed per unit of generation. 

4.2.6. Annual social performance 

Fig. 12 presents the annual performance in social criteria. The total employment in the current 

supply system is estimated to be over 45 thousand person-years. In both plans, job creation is 



steadily increasing, so that the indicator reaches 185 thousand person-years in BAU and 56 

thousand more in the sustainable scheme. Accordingly, based on sustainable development, the 

total number of jobs on the horizon 2050 would be five times surpassing the current. Aligned with 

the continuous increase in demand, the penetration of solar PV, which employs more than 

sevenfold staff compared to fossil fuel technologies, is the main reason for that increasing trend. 

Replacing the combined cycle mainly by wind turbine justifies the higher level of the indicator in 

the sustainable plan.     

In all periods, the BAU's human toxicity potential experiences higher levels than that of the 

sustainable scheme. In 2050, there is a difference as high as 1.5 Mt between the two plans. By an 

average annual growth rate of over 6.2%, the sustainable plan's toxicity increases from 1.2 to about 

7.2 Mt 1,4.DCBeq within the period 2020 to 2050. 

Fossil fuel energy consumption per unit of electricity decreases in such an accelerated transition 

that the annual usage declines 27% by 2040 in the sustainable plan. As a result of combined cycle 

diffusion, the indicator turns increasing during the last decade. Nevertheless, the total yearly 

energy requirement at the end of the planning period is only 11% greater than the present. In the 

BAU, huge dependency on fossil fuels still exists so that in 2050, close to 4480 PJ energy is 

sourced from fossil fuels, which is 67% more than the sustainable plan.       

Fig. 12. Total annual social impacts of electricity supply in BAU and sustainable schemes. 

5. Discussion 

This section aims to discuss the results and determine the validity of the proposed methodology. 

For that purpose, three extreme scenario variants are first defined to examine the function of 

weights in the model. Then, the results of the sustainable plan are compared with some similar 

previous works. Finally, the importance of short-term variations of the variable renewable energy 

sources is discussed. 

5.1. Model validation  

Extreme scenarios help to determine whether the model’s output is reasonable. Among the 

considered indicators, the maximum possible weight (100%) is dedicated to LCOE in the first 

variant (SLCOE). The other two variants are moved towards environmental sustainability. This is 

done by allocating a weight of 80% to global warming in the second variant (SCO2) and to water 



consumption in the third variant (SWater). The remaining 20% still belongs to LOCE in both 

variants. 

Fig. 13 shows the generation share of solar systems, wind turbine, and other clean technologies. 

Variant SLCOE is close to the BAU in terms of renewables and clean technologies contribution. 

This was predictable since the two schemes merely matter the costs of the system. Although solar 

PV is the most favorable renewable in the short-term, wind turbine share increases at a faster pace 

and gets the first priority among clean power plants in the long-term. Expectedly, variant SCO2 has 

the highest share of clean sources where besides solar and wind, nuclear and hydropower largely 

contribute to electricity supply. When the emphasis is put on water consumption, it is observed in 

Swater that wind turbine by far becomes the most favorable renewable since its water usage is 

economically fewest. 

Fig. 13. Generation share of clean technologies in extreme scenarios. 

To take further insights about the methodology and results, three related previous studies are 

selected for comparison. Aryanpur and Shafiei [59] analyzed the impact of renewable sources 

deployment on Iran’s power sector. They used the MESSAGE model to optimize capacity 

expansion. Fossil fuel price was increased, and the carbon tax was imposed in deployment 

scenarios. The most important difference of that research with the current study from the 

methodological point of view is that instead of using an energy system tool, this paper has 

developed its own mathematical model, which makes it flexible for further development. 

Moreover, the considered research only regarded cost while making the decision. The results of 

the two studies, however, support each other. Aryanpur and Shafiei [59] concluded that the 

combined cycle is the most promising technology. Among renewables, wind turbine and solar PV 

have been recognized as the first and second priorities. This study also suggests the same, but it 

puts more emphasis on renewables. The reason is twofold. One is due to decreasing capital cost of 

wind and solar technologies within the last five years and the expectation for a further decline in 

the midterm. Another reason is that considering sustainability criteria pushes decisions towards 

more renewables’ diffusion, as they are more compatible with sustainability measures.       

Santoyo-Castelazo and Azapagic [51] assessed Mexico’s power generation options in terms of 

life-cycle sustainability. In their method, the evaluation of generation mixes as scenarios was 

accomplished after configuring the future energy supply. Thus, there was a limitation on the 



exploration of numerous generation portfolios. This is a source of difference with the proposed 

methodology, where scenario ranking is automatically done within the process. The other 

development in this study is utilizing an optimization model to characterize the energy system 

instead of predetermining technologies’ contribution. The results showed that when the equal 

weighting strategy is followed, a green scenario in which the share of gas and coal are substantially 

decreased in favor of the wind, solar thermal, and solar PV is the most attractive option. However, 

that study criticized equal weighting as the selected scenario had some critical social aspects. 

Paying more attention to stockholders’ opinions led to less wind and solar contribution but 

increased the share of biomass, nuclear, and hydropower. Except for some differences that are 

related to local potential, there are some general lessons common in the two studies. In both 

studies, when sustainability is concerned, a more distributed energy portfolio is suggested. 

Moreover, solar and wind are recommended to have a moderate to large share depending on the 

country’s resources and infrastructure.     

Atilgan and Azapagic [66] identified sustainable options for Turkey’s future electricity generation. 

They defined different scenarios in which the future mixes were changed. They then evaluated 

scenarios according to a set of sustainability indicators. They ranked scenarios through an MCDM 

method based on their performance in the indicators. They didn’t deal with stakeholders regarding 

sustainability preferences. Moreover, they assumed the generation mixes only based on the 

scenario’s assumptions. Both that paper and the current study conclude that clean technologies 

scenarios outperform fossil fuels scenarios from the overall sustainability aspect. The increasing 

trend of job creation and decreasing trend of per unit acidification in different scenarios are also 

among similarities in the results. However, that research predicted a higher level of investment 

costs in renewable-based scenarios in comparison with the current study. This discrepancy stems 

from the higher ratio of clean technologies. In the case of Iran, wind and solar totally would 

contribute less than 50% by 2050, but capital-intensive scenarios for Turkey would supply near 

80% of electricity from renewables.  

The discussion above affirms that the proposed methodology illustrates the future electricity 

generation reasonably. The results are in accordance with the previous works, although some 

differences exist because of different input data and assumptions. In summary, it can be said that 

the main strength of the proposed framework is its accuracy. Some previous studies simply use 



assumed future generation configurations and then try to find the best one [66]. This paper, 

however, develops a programming model to characterize the future mixes. Some other works either 

do not care about experts' opinions [67] or consider them at the final stage to sort a limited number 

of scenarios [68]. This paper, however, applies the expert’s preferences iteratively within the 

process.  

5.2. The role of storage and time resolution 

The massive penetration of renewable energies has a substantial impact on the operation of the 

power system. In this system, the role of storage technologies as a source of flexibility would 

become crucial [69]. This especially is highlighted when the focus is on the operational plan, 

including very short-term intervals rather than long-term foresight drawn by strategic planning. 

Thus, increasing time resolution is essential to accommodate the intermittency of renewable 

energy sources. As the present work does not explicitly model the variations, the long-term results 

are compared with similar studies to know the validity of the results. More specifically, the section 

explores whether the existing studies that projected Iran’s power supply in higher temporal 

resolution and the presence of storage technologies support the prospect mix proposed by this 

paper.  

Aghahosseini et al. [70] examined the possibility of 100% renewable electricity for Iran by 2030. 

They concluded that a full renewable-based power system is reliable, low-cost for Iran. Among 

the total 180 GW capacity in 2030, above 70% belonged to wind turbine and solar PV. The main 

point is that the suggested capacity for the storage was only 5 GW. The reason mentioned was that 

the country has a high availability of renewable sources which can produce electricity all year 

round.   

Another study done by Ghorbani et al. [71] again exploring transition pathways towards a fully 

renewable source power in Iran shows that the storage technologies should be added to the system 

after 2030 when the share of variable renewables reaches about 60% of total generation. It is 

noticeable that in more recent research, Ghorbani et al. [58] concluded that under the best policy 

scenario, storage technologies would come into effect once variable renewables dominate the 

market share (over 90% of the total generation).  



The share of variable renewables in the current study never exceeds 50%. In comparison with the 

previous studies, this amount can be considered low enough to express that neglecting hourly time 

resolution and storage technologies may not substantially affect the long-term picture of the 

portfolio. Moreover, at the end of the planning horizon, fast response gas turbines and hydropower 

plants still play a significant role, reaching together about 10% of total installed capacity. 

Nevertheless, increasing time resolution and taking storage technologies into account would be 

helpful to ensure that blackout will not occur in all time slices. The advantage of the proposed 

model is that it consists of linear terms with continuous variables. This feature makes the model 

easy in terms of computational complexity, so provides a suitable foundation for future detailed 

models incorporating higher temporal resolution. By considering charging and discharging power 

respectively in the right- and left-hand sides of Eq. (A.10), satisfying demand can be guaranteed.  

6. Conclusions 

This study developed an integrated simulation-optimization framework to address sustainability 

in energy transition pathways. Taking advantage of an artificial intelligence technique, the 

framework brought an EA into play to search for future electricity supply configurations. The 

algorithm removed the limitation of the existing optimization-based methodologies in dealing with 

numerous prospect configurations. The EA provided the means to explore normative scenarios 

and, in this way, played the role of a simulation model, making possible backcasting. Within the 

EA, an LP model was set to formulate dynamic interactions in the energy system. The model was 

utilized to find the best pathway towards each scenario, shaping the forecasting-backcasting 

outline. In order to evaluate scenarios in terms of overall sustainability, the VIKOR, as an MCDM 

tool, was involved inside the process. ANP method was also applied to determine the preference 

importance of sustainability criteria, taking interdependencies into account in an open dialogue 

with experts. The methodology was employed to examine how harnessing low-carbon sources in 

Iran would affect the supply sector arrangement.  

The results show that onshore wind turbines and solar PVs should be put on the map even in the 

BAU scheme. In the sustainable transition, however, they will play a more significant role. At the 

horizon of 2050, near 40% of electricity would come from these two sources. Besides, the solar 

thermal plant is another source that distinct the sustainable plan from BAU. These variable 

renewable energy technologies would satisfy around 48% of the total demand. 



The findings reveal that moving towards renewables would lead to some deterioration in economic 

outlooks but improve most of the environmental and social indicators. As a result of an increase 

in investment and O&M costs, the sustainable plan would raise LCOE up to 6%. Lower fuel costs 

in the sustainable scenario balance total costs and prevent a substantial increase in electricity per-

unit cost. Putting wind turbine, solar PV, and solar thermal into operation leads to a persistent 

decrease in water consumption, fossil fuel consumption, and subsequently, CO2 emissions in both 

plans. Sustainable development also triggers a significant decline in SO2 emissions and continuous 

growth in job creation. Both scenarios regarding land requirements and human toxicity potential 

follow a deteriorating trajectory, while the sustainable plan moderates the trends. All in all, the 

trends show that some advances would stop or turn to the upside within the last decade of planning 

due to the limitation on renewables exploitation. This denotes that if the country desires to improve 

socio-environmental practices long-term, paving the way for more renewable technologies should 

be coupled with energy efficiency and demand-side management.   

Future works could use many-objective EAs to take sustainability aspects as objective functions 

[72], and robust optimization approaches to cope with different types of uncertainty [73]. The 

developed model accounts for the network's loss as an exogenous parameter. It can be extended to 

analyze the effects of grid constraints. This study used plant-level data (like [74]). Although a 

comparison showed that the overall future picture of electricity supply would not change if a life 

cycle approach is followed, the detailed possible differences could be revealed in future studies. 

Finally, aggregated spatial and temporal details limits this analysis. Future research might 

investigate higher spatio-temporal resolution to better incorporate the intermittency of renewable 

energy sources and demand fluctuations [75]. 

Appendix A. The linear programming model for power supply optimization 

This section provides an LP model for optimizing the RES. The following notations are used to 

formulate the model.  

Sets:  

𝑇 Period 

𝐼 Power generation technology (𝐼𝑐: centralized, 𝐼𝑑: distributed, 𝐼𝑓: non-renewable, 𝐼𝑟: 

flexible) 

𝐽 Fuel (𝐽𝑖: fuel types used in technology 𝑖) 

Parameters:  



𝑐𝑐 Capital cost  

𝑝𝑐 Decommissioning cost  

𝑓𝑐 Fuel price  

𝑥𝑐, 𝑣𝑐 Fixed and variable O&M costs  

𝑡𝑐, 𝑑𝑐 Transmission and distribution costs 

𝑖𝑐, 𝑒𝑐 Import cost and export price 

𝑟 Discount rate  

𝑑 Electricity demand  

𝑙𝑡 Technology lifespan 

𝑐𝑡 Installation time  

𝑠 Self-consumption percentage 

𝜂 Technology efficiency  

𝑙 Load factor  

ℎ Heat value  

𝑓𝑢 Maximum available fuel  

𝛿, 𝛾 Transmission and distribution losses  

𝑙𝑒, 𝑢𝑒 Minimum and maximum amount of existing capacity  

𝑙𝑛, 𝑢𝑛 Minimum and maximum amount of new installed capacity  

𝑙𝑝, 𝑢𝑝 Minimum and maximum amount of total available capacity  

𝜀′, 𝜀 Minimum and maximum share in generation  

𝛼′, 𝛼 Minimum and maximum share of import  

𝛽′, 𝛽 Minimum and maximum share of export  

𝜃′, 𝜃 Minimum and maximum share of fuel  

Variables:   

𝐶, 𝐶𝑁𝑒𝑤, 𝐶𝐸𝑥𝑡 Available capacity (total, newly installed, existing)  

𝐺, 𝐺𝑁𝑒𝑤, 𝐺𝐸𝑥𝑡 Electricity generation (total, from newly installed capacity, from existing capacity) 

𝑃 Capacity being installed  

𝐹 Required fuel  

𝐷𝑟, 𝑁𝑜 Distribution network input and output 

𝐼𝑚, 𝐸𝑥 Imported and exported electricity 

𝑇𝑟 Transmission grid input 

The objective function presented in Eq. (A.1) attempts to minimize the total discounted cost of the 

energy system. 
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The objective function is subject to the following constraints. Eqs. (A.3)-(A.6) describe the 

capacity limitations. Eq. (A.3) associates the available new installed capacity with the time of 

installation. Eqs. (A.4)-(A.6) impose upper and lower bounds for the capacity of existing and 

newly installed plants.   
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Eqs. (A.7) and (A.8) define the power generation constraints resulting from capacity limitation or 

maximum possible share of each technology. Eq. (A.9) denotes that the generation share of flexible 

(fast response) technologies should exceed a predetermined level for considering temporal demand 

fluctuations.  
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Eqs. (A.10)-(A.12) guarantee electricity demand satisfaction either by grit output, decentralized 

generation, or import.  
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Eq. (A.13) calculates fuel requirements for electricity generation. Eqs. (A.14) and (A.15) control 

fuel consumption and contribution.   
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Eq. (A.16) computes the amount of import based on the total generation and transmission input. 

Eqs. (A.17) and (A.18) restrict trading volume as a fraction of generation. 
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Appendix B. The sustainability parameters of power generation technologies 

The sustainability parameters of the considered technologies are given in Table B1. 

Table B1. Techno-economic, environmental, and social parameters of power generation technologies [59] 
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Figures: 



 
Fig. 1. The schematic representation of the proposed simulation-optimization framework. 
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Fig. 2. Solution representation scheme in the designed DE algorithm. 
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Fig. 3. Sustainability indicators and their relationship network in the ANP method. 
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Fig. 4. Sustainability indicators' weights for the case of Iran. 
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Fig. 5. Capacity and generation pathways in the BAU and sustainable schemes up to 2050. 
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Fig. 6. Change in electricity generation source due to development sch 
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Fig. 7. The trends of techno-economic indicators in BAU and sustainable schemes expressed per unit of 

generation 
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Fig. 8. Total annual costs of electricity supply in BAU and sustainable schemes. 
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Fig. 9. The trends of environmental indicators in BAU and sustainable schemes expressed per unit of 

generation. 
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Fig. 10. Total annual environmental impacts of electricity supply in BAU and sustainable schemes 
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Fig. 11. The trends of social indicators in BAU and sustainable schemes expressed per unit of generation 
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Fig. 12. Total annual social impacts of electricity supply in BAU and sustainable scheme. 
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 Fig. 13. Generation share of clean technologies in extreme scenarios. 
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Tables: 

Table. 1. The description of the sustainability indicators [55]. 

Indicator Description Unit  

Levelized cost of electricity 

(LCOE)  

Generation cost per unit of 

electricity 
cent/kWh 

Economic dispatchability  
Ratio of investment cost to 

LCOE 
Percentage 

Investment cost - cent/kWh 

Fuel cost - cent/kWh 

O&M costs - cent/kWh 

Fuel price sensitivity  Ratio of fuel cost to LCOE Percentage 

Capacity  factor  
Ratio of actual electricity output 

to the maximum possible  
Percentage 

Construction time - Year 

Global warming  Greenhouse gas emissions gr CO2eq/kWh 

Acidification  
Emissions of SO2, NOx, HCl, 

and NH3 
gr SO2eq/kWh 

Land use  - m2/MWh 

Water consumption - gal/MWh 

Job creation - Person.year/TWh 

Fossil fuel consumption  - MJ/MWh 

Human toxicity potential 
- gr 1,4 dichlorobenzene 

(DCB)eq/kWh 

Diversification Power supply diversification Real number  

 

 

 

 

Table 2. The groups of technologies and their range of share in 2050 generation [56] [57] [11] [58] [59]. 

Group of technologies  The range of generation share in 2050 (%) 

Steam power plant 0-10 

Combined cycle power plant 20-70 

Coal-fired power station 0-15 

Gas turbine and gas engine 0-15 

Nuclear power 0-20 

Hydropower 0-15 

Solar power 0-40 

Wind turbine 0-25 

Other technologies 0-5 
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Table B1. Techno-economic, environmental, and social parameters of power generation technologies 

[59] [11] [57] [76] [61] [77] [78] [79] [80] [81] [51] [82] [55] [83]. 

Parameter
a  

 

 

Technolog

y 

Capit

al 

costb 

Fixe

d 

O&

M 

cost 

Variab

le 

O&M 

cost 

Constructi

on time 

Lif

e 

tim

e 

Efficien

cy 

Self-

consumpti

on 

Loa

d 

facto

r 

Maximu

m 

annual 

realizabl

e 

capacity
d 

Huma

n 

toxicit

y 

potenti

al 

Job 

creatio

n 

Acidificati

on 

potential 

Water 

use 

Land 

occupati

on 

$/kW 
$/k

W 

$/MW

h 
year 

yea

r 
% % % MW 

gr 1,4. 

DCBeq 

/kWh 

Job 

yr/G

Wh 

gr SO2-eq 

/kWh 

gal/M

Wh 

m2 

yr/MWh 

Solar PV 
(on-grid, 

off-grid) 

1100-

790-
630c, 

1500-

1000 

24, 

37 
- 1 20 - - 

18, 

17 

350-

6000 
21.67 0.87 0.075 26 9.92 

Solar 

thermal 

4300-

2700 
64 - 2 30 - - 39 

350-

6000 
4.27 0.23 0.032 52 9.00 

Onshore 

wind  

1400-

1200 
48 - 2 20 - 1.4 32 

450-

6000 
6.33 0.17 0.021 0 0.26 

Biomass 

(landfill) 
3300 2 1.7 2 20 30 3 70 10-100 38.20 0.21 0.319 35 466.60 

Geothermal 5600 84 1.1 7 30 - 8 80 55 8.80 0.25 2.733 135 0.17 

Hydropowe

r (small, 

large) 

2000, 
1200 

14, 
10.8 

- 4, 7 
40, 
50 

- 0.5 
35, 
18 

20-100, 
400 

3.58 0.27 0.016 4491 4.44 

Nuclear 
(LWR, 

ALWR) 

4000, 
4200-

3550 

74, 

69 
0.7, 0.5 7,8 

40, 

60 
31, 33 10, 8 

80, 

85 
- 13.12 0.14 0.037 672 0.54 

Combined 
cycle 

(convention

al, 
advanced) 

700, 

1140-

840 

4.4, 
21 

0.42, 
2.6 

5 30 47, 58 1.9 
70, 
80 

- 3.40 0.11 0.221 198 0.41 

Gas turbine 

(convention

al, 

advanced) 

550, 

780 

4.5, 

24 
0.6, 4.3 2, 3 

12, 

15 
34, 40 0.8 60 - 3.40 0.11 0.221 0 0.41 

Gas engine 770 8 5.1 1 10 40 0.7 90 100-700 3.40 0.11 0.221 0 0.41 

Coal power 
plant 

(convention

al, 
advanced, 

IGCC) 

1600, 
2200, 

5500 

64, 
88, 

92 

0, 0, 

6.5 
3, 4, 4 

30, 
40, 

40 

35, 46, 

45 
5.5, 6.5, 10 

75, 
80, 

80 

- 57.34 0.11 0.836 505 27.28 

Steam 

power plant 
900 9.5 0.48 5 30 38 6.8 70 - 3.40 0.11 0.221 826 0.41 

a The values separated by comma are associated with different types of a technology for example conventional 

or advanced.  
b The first and second values refer to the present and 2030 capital cost, respectively.  
c The first, second, and third values refer to the present, 2030, and 2050, respectively. 
d The first and second values refer to the present and 2050, respectively.  
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