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Abstract—In this paper, we propose a technique to extract sys-
tem parameters of nonlinear MEMS devices using a combination
of model reduction and nonlinear optimization. The model is
tested on a MEMS energy harvesting device employing magnetic
actuation and piezoelectric energy conversion.
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I. INTRODUCTION

The extraction of the system parameters of nonlinear
MEMS devices can be quite a challenging problem. Of-
ten, the only way to obtain these parameters is the fitting
of experimentally obtained resonance curves (in the form
of amplitude-frequency or voltage-frequency characteristics)
with some pre-assumed lumped linear or nonlinear models (in
the form of ordinary differential equations). This approach is
usually implemented numerically and requires one to integrate
differential equations many times with different parameters
until a good fit is achieved. However, if a MEMS device
is indeed nonlinear and there are many parameters to fit,
the problem becomes very time and resource consuming. In
this paper, we show a semi-analytical technique that reduces
numerical integration to a nonlinear optimisation problem and
allows a parameter extraction for nonlinear MEMS. As an
example, we test this approach on a piezoelectric MEMS

energy harvester and show very good agreement with its
experimental characterisation.

II. STATEMENT OF THE PROBLEM AND METHOD

The most recent generation of microscale kinetic energy
harvesters (KEHs) that convert mechanical vibrations to elec-
tricity is nonlinear [1], [2], and the modelling of such devices
is a challenging task. Different physical mechanisms are
used in these devices to facilitate energy conversion, and,
hence, one generally distinguishes electrostatic kinetic energy
harvesters (eKEHs) [3], [4], electromagnetic kinetic energy
harvesters (emKEHs) [5], [6] and piezoelectric kinetic energy
harvesters (pKEHs) [7], [8]. In this paper, we consider a
kinetic energy harvester that is actuated through a magnetic
force generated by an AC current acting on a magnetic mass.
In addition, the force causes a deformation of a cantilever with
a piezoelectric layer as shown in Fig. 1, and, for this reason,
this harvester can be seen as a kind of piezoelectric kinetic
harvesters.

One typical problem arising in the modelling of microscale
resonators and, in particular, KEHs is the extraction of the
parameters responsible for the dynamical behaviour of the
system: nonlinear spring coefficients, air damping coefficient,
etc. Usually, one has access to electrical signals in the system
(current and voltage) while the extraction of the aforemen-
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Fig. 1: The schematic diagram of the kinetic energy harvester
used for characterisation in this study.

tioned parameters requires access to mechanical signals. The
typical lumped model of a KEH can be described in terms of
the Newton’s second law:

mẍ+cẋ+k(x)·x+fstop(x)+ΩV −mAext cos(ωextt) = 0, (1)

where x is the displacement of the mobile mass or cantilever,
V is the voltage generated in its piezoelectric layer, m is
the movable mass of a harvester, Ω is the coupling factor,
fstop is the force of the impact between the movable mass of
the device and stoppers, k(x) is the nonlinear spring force, c
is the damping coefficient, Aext is the amplitude of external
vibrations and ωext is their angular frequency.

The force due to stoppers is set to zero if the amplitude
of KEH oscillations is small and the movable mass does not
reach the stoppers. In the case when the movable mass hits
the stopper, the impact is modelled as a stiff spring:

fstop =

{
kstop · x, if mass hits the stopper
0, if mass does not hit the stopper

(2)

In the most general case, the presence of a piecewise stopper
force causes strong nonlinear behaviour. The equation in the
electrical domain, completing the formulation of the system,
is obtained from Kirchhoff’s voltage law:

Cp
dV

dt
= Ωẋ− V

RL
, (3)

where Cp is the capacitance of the piezoelectric layer and RL
is the load resistance.

The dynamics of the system can be explored through
numerical simulations of the system of nonlinear coupled
differential equations (1)–(3). A reliable result can be obtained
by the use of any higher-order integration technique. The use
of a lower-order integration method with a fixed step also
provides an acceptable result in this case (see Fig. 3a) even
though the integration of piecewise equations is involved.

Fig. 2: The algorithm demonstrating the proposed semi-
analytical method for kinetic energy harvesters with symmet-
rical and asymmetrical forces.

However, to extract the parameters of the system, we pro-
pose a semi-analytical method based on the harmonic balance
method. The main idea is to represent the dynamical variables
as a combination of multiple harmonics. For instance, if, for
simplicity, we write the signals in terms of the first harmonic,
we obtain:

V (t) = V0 + V1 sin(ωextt) + V2 cos(ωextt). (4)

We note that in the conventional implementation of the
method, the decomposition is applied to the displacement x
and velocity v. Knowing V0, V1 and V2, one can obtain the
voltage and the converted power P .

The implementation of the method for systems with and
without impacts are very similar:

1) Represent the voltage using (4). For systems with sym-
metrical impacts and springs, the DC voltage component
is zero: V0 = 0.

2) Find the derivative V̇ (t) and substitute V and V̇ into
equation (3) to get ẋ(V1, V2, t). The resulting function
is clearly a combination of sin(ωextt) and cos(ωextt)
multiplied by time-independent coefficients.

3) Find x(V1, V2, t) by integrating
∫
ẋ(V1, V2, t)dt. The in-

tegration constant is equal to zero since we assume that
the coordinate of the cantilever is zero in equilibrium.

4) Represent all forces acting on the system as a Fourier
series. For example, a representative nonlinear spring
force can be approximated as follows [9]:

k(x) ·x = kx+ k2x · |x|+ k3x
3 + k4x

3|x|+ k5x
5. (5)
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Fig. 3: The converted power generated in the harvester: (a)
without impact with the stopper and (b) with impact. The
graphs show the experimental characterisation of the devices
compared with the semi-analytical modelling and numerical
simulations with the extracted parameters from Table I.

TABLE I: Parameters of the piezoelectric KEH

Parameter Value
Proof mass (m) 7.36× 10−5 kg
Quality factor (Q) 63.55
Coupling factor (Ω) 4.34× 10−6 N/V
Piezoelectric capacitance (Cp) 2.1× 10−9 F
Load resistance (RL) 1.9× 106 Ω
External acceleration (Aext) 0.18g ' 1.76 m/s2

Spring parameters:
k 4.65 N/m
k2 6.53× 102 N/m2

k3 4.14× 104 N/m3

k4 −1.56× 108 N/m4

k5 −4.01× 109 N/m5

In this expression, for the second term we can write:

k2x|x| ' Ak2(V1, V2) sin(ωextt) +

Bk2(V1, V2) cos(ωextt), (6)

and the coefficients can be calculated as:

AK2(V1, V2) =

∫ 2π/ωext

0

x(V1, V2, t)·

|x(V1, V2, t)| sin(ωextt)dt, (7)

BK2(V1, V2) =

∫ 2π/ωext

0

x(V1, V2, t)·

|x(V1, V2, t)| cos(ωextt)dt. (8)

It may be challenging to calculate these expressions for
piecewise continuous functions; however, this can be
done analytically for many functions.

5) The obtained expressions are substituted into equa-
tion (1) and grouped as containing the sin and cos
functions:

ξ(V1, V2) sin(ωextt+ ϕ0) + χ(V1, V2) cos(ωextt+

ϕ0) +mAext cos(ωextt) = 0, (9)

which results in a system of two nonlinear equations. In
the case of symmetrical forces, they are further reduced
to one nonlinear equation:

ξ(V1, V2)2 + χ(V1, V2)2 = (mAext)
2. (10)

III. RESULTS AND DISCUSSION:

This algorithm allows one to reduce the system of differen-
tial equations (1)–(3) to one nonlinear algebraic equation (10),
which is significantly easier to solve numerically and to
optimise (if one solves the problem of parameter extraction).
Moreover, this method allows one to avoid problems of insta-
bility of differential schemes for strongly nonlinear systems.
Semi-analytical methods are well-developed for MEMS and
are known to be very useful tools [10]. This algorithm has been
applied to extract the parameters of the nonlinear harvester
described in [8], and the extracted parameters are listed in
Table I. They are very closed to the ones that have been found
in [9] using purely numerical simulations.

The comparison between the Newton and Runge-Kutta
integration methods applied to the dynamical (differential)
equations and the proposed semi-analytical method shows a
very good agreement with the experimental characterisation
of the device in non-impact mode (see Fig. 3a). In the case
of impact-mode operation where the mobile mass experience



collisions with the stopper, the methods (in particular the semi-
analytical one) may provide somewhat different results due
to the issues with determining the gradient and the Hessian
of the equivalent optimization problem (see Fig. 3b). As a
conclusion, the described semi-analytical method allows one
to extract the parameters of KEHs in a very fast and accurate
manner in the cases of symmetrical forces, but improvements
of the method are required when one deals with asymmetrical
spring and stopper forces.
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