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ABSTRACT

Today’s HTTP adaptive streaming applications are designed to pro-
vide high levels of Quality of Experience (QoE) across a wide range
of network conditions. The adaptation logic in these applications
typically needs an estimate of the future network bandwidth for
quality decisions. This estimation, however, is challenging in cellu-
lar networks because of the inherent variability of bandwidth and
latency due to factors like signal fading, variable load, and user mo-
bility. In this paper, we exploit machine learning (ML) techniques
on a range of radio channel metrics and throughput measurements
from a commercial cellular network to improve the estimation
accuracy and hence, streaming quality. We propose a novel sum-
marization approach for input raw data samples. This approach
reduces the 90th percentile of absolute prediction error from 54% to
13%. We evaluate our prediction engine in a trace-driven controlled
lab environment using a popular Android video player (ExoPlayer)
running on a stock mobile device and also validate it in the com-
mercial cellular network. Our results show that the three tested
adaptation algorithms register improvement across all QoE metrics
when using prediction, with stall reduction up to 85% and bitrate
switching reduction up to 40%, while maintaining or improving
video quality. Finally, prediction improves the video QoE score by
up to 33%.

CCS CONCEPTS

« Information systems — Multimedia streaming; - Networks
— Public Internet; Wireless access networks; Network mea-
surement;

KEYWORDS

HAS, 4G, LTE, Mobility, throughput prediction, DASH, adaptive
video streaming

*Work done while with AT&T Labs — Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference format:

Darijo Raca, Ahmed H. Zahran, Cormac J. Sreenan, Rakesh K. Sinha, Emir
Halepovic, Rittwik Jana, Vijay Gopalakrishnan, Balagangadhar Bathula,
and Matteo Varvello. 2019. Empowering Video Players in Cellular: Through-
put Prediction from Radio Network Measurements. In Proceedings of ACM
Conference, Washington, DC, USA, July 2017 (Conference’17), 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Recent reports show that re-buffering ranks ahead of playback
failures, slow startup, and poor quality on the list of user com-
plaints about video streaming.! Cellular networks are a challenging
environment for Adaptive BitRate (ABR) video streaming due to
various reasons. Radio channel conditions and cell load are contin-
uously changing. Data transmission to a mobile device is coordi-
nated by protocols that operate at diverse time scales, e.g., radio
channel scheduling at millisecond level vs. congestion control at
hundreds of milliseconds to seconds level. Furthermore, the base
station scheduler allocates the wireless resources based on the
bandwidth demand of each device and their channel conditions;
this can cause burstiness in the cellular data traffic. State-of-the-
art video clients employ adaptation algorithms that use network
and application state to determine the quality of the next video
chunk to download. There are several recent algorithms based on
approaches such as optimization [35, 37], control theory [3], game
theory [1], machine learning [15], and other heuristics integrating
well-known averaging techniques. While these algorithms differ in
the specifics of their decision making, most of them need to know
the available network bandwidth to determine the quality of the
video to download. Since this information is not readily available
to them, clients typically use recent throughput measurements to
estimate the likely network conditions. This is combined with ap-
plication state in terms of buffer occupancy and chunk qualities to
yield decisions on the quality of future chunks to be selected. The
high variability in cellular networks, however, leads to significant
throughput estimation errors and in turn results in sub-optimal
decisions [21]. While there have been proposals that attempt to use
cellular-specific information to aid estimation [5, 33], they are in
the minority.

Since statistical estimation is affected by the variability in cellular
networks, there has been significant interest in exploring the possi-
bility of accurately predicting throughput instead. Indeed, several

!http://connect. mux.com/2017-streaming-perceptions-report
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studies based on trace-driven controlled experiments demonstrate
that video streaming quality can be improved in cellular networks
if throughput can be predicted accurately [13, 21, 40]. The main
reason is that stalls are avoided because the player would not over-
commit to large chunks of high bitrate when throughput drop is
predicted [14]. Additionally, players can avoid streaming the lowest
quality after a stall or at startup when high throughput is predicted.
Finally, accurate prediction can help reduce the number of quality
changes. However, accurate throughput prediction in cellular net-
works is challenging due to the complex changes and interactions
in the network state [39]. It is also unclear whether a typical mo-
bile device can extract appropriate network-level information and
leverage it to make accurate throughput predictions.

In this paper, we present a novel ML-based throughput prediction
engine for use by mobile devices in cellular networks. This engine
predicts average network throughput for a future time window
(horizon) based on radio-specific metrics and network throughput
observed over a historical window. Our engine uses a novel statis-
tical data summarization method that significantly improves the
throughput estimation accuracy in comparison to both ML through-
put estimation based on raw data samples and application-level
bandwidth estimation commonly used in ABR clients. This result
illustrates not only the predictive power of radio metrics but also
the effectiveness of our summarization technique. We also show,
using an implementation of our engine on Android phones, that
state-of-the-art video streaming algorithms benefit from the im-
proved throughput estimation using our prediction engine [25, 38].
All evaluated adaptation algorithms improve their stall (up to 85%)
and switching (up to 40%) performance in all tested scenarios. The
average quality also improves in most scenarios. Overall, the tested
algorithms show improvements of 6%-33% in QoE score.

The novelty of our work derives from two key elements: accu-
rate prediction of future throughput using radio metrics on mobile
devices and a realistic quantification of the effect of prediction
on adaptive video streaming performance. Our contributions are
summarized as follows:

e In Section 3 we propose a novel ML-based throughput pre-
diction technique that leverages radio metrics to improve the
throughput prediction accuracy in mobile networks signifi-
cantly. We thoroughly explore the design space (prediction
horizon, measurement history, mobility pattern, etc.) to il-
lustrate the impact of different design parameters on the
prediction accuracy.

e In Section 4, we build a testbed and evaluate three ABR al-
gorithms with and without our prediction engine. We use
publicly available 4G/LTE cellular traces, real video content
and an Android client of a broadly-adopted video player (Ex-
oPlayer 2). Our evaluation considers the impact of important
parameters, such as chunk duration and prediction horizon.
In all tested scenarios, the performance metrics show a clear
improvement, leading to better user QoE.

o In Section 5 we perform a field evaluation in an operational
cellular network. This exercise enables us to identify chal-
lenges that merit further research and will be of interest to

http://google.github.io/ExoPlayer/
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practitioners seeking to implement ML-based prediction in
real systems (Section 6).

2 MOTIVATION

ABR algorithms commonly consider combinations of network and/or
application states for quality selection decision, as illustrated in Fig-
ure 1. The estimator module captures the network state, while the
application monitoring module captures the video player state by
monitoring playback buffer and streamed video quality. Estimator
consists of sample processor sub-module (not shown in the figure)
responsible for collecting significant statistics from Chunk loader
module in order to estimate available bandwidth for chunk. For
example, depending on algorithm design, it can track the rate sam-
ple for each chunk or multiple rate samples per chunk (in the case
when a time-based measurement is used). Sample processor feeds
sample array to one of the smoothing functions, from which final
throughput estimate for next chunk is passed to adaptation logic
module. Finally, the adaptation logic module combines information
from estimator and application monitoring modules to decide on
the quality of the chunks to be requested. Chunk loader module
carries out decision from the adaptation logic module and requests
next chunk. While most of the efforts focus on enhancing adapta-
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Figure 1: Simplified HAS player architecture and addition
of measurement and prediction module

tion logic, little or no work has been done in improving bandwidth
estimation. Most of the algorithms employ one of the standard
smoothing techniques (e.g., arithmetic, harmonic or exponential
moving average to name a few) applied over n last measured rate
samples, where rate samples can be a chunk, time or size based. For
example, ARBITER+ [38] combines chunk and time-based sampling
with an exponential moving average for bandwidth estimation. The
approach we take in this paper is to leverage Android OS, which
provides APIs for capturing measurements of radio channel metrics,
velocity and throughput samples. We use this capability to build
prediction engine that captures those metrics at one-second granu-
larity to provide more accurate throughput prediction (see Figure 1,
dotted boxes). As a result, this module feeds predicted value to esti-
mator module. Estimator module may process this value through
standard smoothing techniques or feed directly to adaptation logic
to improve decision-making process for the next chunk.
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The need for better throughput estimates To further quantify
the needs for better throughput prediction we analyze some of the
most commonly used bandwidth estimation techniques. We use
results from Section 4 for cases with no throughput guidance. Every
HAS algorithm in this study takes an estimate from its estimator
module and uses it to decide bitrate for next chunk. We take that es-
timate and compare it against a delivery rate of a requested chunk
(we use information from logs which allow us to have delivery
rates of “future” requested chunks). We label this case as “1-chunk”.
Furthermore, we extend analysis by looking beyond one chunk.
For “2-chunk” and “5-chunk” scenarios, we calculate average value
of delivery rates for next two/five chunks requested. Figure 2 de-
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Figure 2: Accuracy of different throughput estimation
techniques for different prediction horizon values

picts accuracy of three classical bandwidth estimation techniques,
EWMA, average and median. For accuracy, we analyze the absolute
value of the residual error between throughput estimates and the
actual average download rate of chunks.

The main takeaway from Figure 2 is that none of these techniques
exhibit high estimation (not prediction) accuracy regardless of how
far into the future we look.

To further illustrate potential gain in improving estimator mod-
ule, we show in Figure 3 one randomly selected video session played
using Exoplayer and its default ABR algorithm, with and without
accurate throughput guidance. With accurate prediction, the player
starts at a higher quality and settles to the optimal rate earlier (i.e.,
highest) than when relying on classical bandwidth estimation (e.g.,
median). Furthermore, prediction helps to recognize the level of
drop in bandwidth more accurately, forcing the client to switch to
the lowest quality quickly. As a result, buffer underrun is cut by
90%, improving the overall user experience.

3 THROUGHPUT PREDICTION VIA ML

In this section, we present our proposed throughput prediction
approach and extensively evaluate its performance under different
scenarios and configurations.

3.1 Proposed Prediction Technique

In our design, we focus on the prediction of average throughput
rather than instantaneous throughput. The needs of ABR applica-
tions motivate this decision. To illustrate, when a streaming client
downloads video chunks, throughput fluctuations over the future
x seconds is of little concern for the player. What matters is the
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Figure 3: Comparing ExoPlayer sessions with throughput
prediction (green, 12 sec. horizon) and without (blue)

average throughput that the video player will observe in the next
x seconds, as this will drive the behavior of the video adaptation
algorithm. We call x the prediction horizon and make it a parameter
of the ML algorithm. The data driving this prediction includes both
radio metrics and throughput samples collected at the device at arbi-
trary granularity. We use a granularity of 1 second,; this is driven by
the sampling period used in capturing radio data that we use in this
paper [19]. However, the proposed prediction technique can also
be used in conjunction with other sampling time scales. A typical
prediction engine input would consist of one or more historic radio
metrics and throughput samples. In this study, we investigate sev-
eral scenarios for the combination of prediction horizon and history
length. We introduce the notation PyFx, where Py denotes past y
seconds of historical data, and Fx denotes a prediction horizon of
future x seconds. In Section 3.4, we show the impact of varying Py
and Fx on the prediction accuracy.

The combination of channel conditions and the current state of
a cell largely determines the number of allocated radio resources
blocks; this translates to achievable throughput at the device. To cap-
ture these dimensions, we use the following radio channel metrics
in conjunction with physical mobility speed (in kmh) and historical
application throughput:

o RSRP - Average power over cell-specific reference symbols
carried inside distinct resource element (RE). RSRP is used
for measuring cell signal strength/coverage and therefore
cell selection (dBm)

® RSRQ - defined as the ratio NXRSRP/(RSSI), where N is the
number of physical resource blocks (PRB). RSSI is pure wide-
band power measurement, including intracell power, inter-
ference, and noise. RSRQ is measured in dB.

® SNR - signal-to-noise ratio (dB)

e CQI - CQl s feedback provided by UE to eNodeB. It indicates
data rate that could be transmitted over a channel (highest
MCS with a BLER probability less than 10%), as the function
of SINR and UE’s receiver characteristics. Based on UE’s
prediction of the channel, eNodeB selects an appropriate
modulation scheme and coding rate

o NRxRSRQ, NRxRSRP - RSRQ and RSRP values for the neigh-
boring cell

o Downlink Throughput/Uplink Throughput - download/upload
rate measured at the device (kbit/s)
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We select the random forest (RF) as our ML algorithm. RF [2]

represents an ensemble/boosting learning method for regression
and classification tasks. The main reasons for selecting RF are fol-
lowing. First, RF works by growing a collection of decision trees
(weak learners) and then making a prediction by taking the mean
of individual trees. This approach reduces overfitting because each
tree is constructed on a randomly selected subset of features. They
are further de-correlated (which minimizes the overfitting) by con-
sidering a random subset of features for each split of the decision
tree. Second, it can be used for feature ranking, enabling analysis of
the importance of each metrics used for training. Finally, it requires
minimal tuning (number of trees are the most critical hyperparam-
eter). Also previous studies show that RF outperforms other ML
techniques for this problem space [20, 28].
Summarization Techniques: When applying machine learning
techniques, the first step includes feeding data without any pro-
cessing (except normalization methods). For throughput prediction,
we use the full history of each metric (raw in the list below). How-
ever, classical ML algorithms usually require high-level features
extracted from raw data (i.e., feature engineering) to achieve high
accuracy. For example, history may be summarized, e.g., by the
average value. However, the average and entire history can be af-
fected by outliers and can react slowly to changes if maintaining a
long history. Having outliers in real data is an unavoidable hurdle.
For throughput prediction, we are interested in capturing patterns
based on historical data. Instead of feeding every sample collected
at the arbitrary time interval to the ML algorithm, we only feed key
values that best summarize the data. Collected historical data repre-
sents a distribution for each metric. To infer unknown distribution
from empirical data, we use percentiles (if historical data follows a
normal distribution, using mean and standard deviation is enough
to explain the whole distribution). We empirically test different
combinations of percentiles (including the mean). Finally, we find
that the inter-quartile range, mean and 90" percentile give the
highest prediction accuracy. Let m{ represent n;j, metric at time
i. We consider the following summarization technique: quantile:
fora (m? |, m? ,,m} ,,..) array of values we calculate the follow-
ing metrics: 25/, 5017, 75t 90" and mean of the input array. We
compare this summarization technique to the strawman prediction
based on raw data; i.e., using (m;’_l, m?_z, m;’ 4 ..) for every n as
input to the prediction model.

3.2 Evaluation of Prediction Techniques

3.2.1 4G Dataset. Our evaluation is based on publicly available
4G dataset with RAN metrics [19]. The dataset contains over 150 4G
traces collected from major Irish and US mobile operators. Traces
reflect the use of Android API by providing previously mentioned
device-based metrics. The collected trace profiles are a mixture
of five different mobility patterns: static, pedestrian, bus, train, car
and highway. In [36], authors show 500 records are enough for
successfully training ML model. Following their result, we filter out
all traces with less than 500 records.

3.2.2  Metrics. We compare the Quantile and raw ML-based
throughput prediction techniques described above using two key
metrics: the absolute value of residual error (ARE) and coefficient of
determination (R?).

D. Raca et al.

ARE is the ratio of absolute residual error and actual through-
put, where the residual error is the difference between actual and
predicted throughput. The following equation defines ARE:

_ |max(10, R;) — max(10, R))|

ARE
max(10, R;)

X 100, (1)

where R; and R; is the actual measured throughput and predicted
(estimated) throughput (in Kbps), respectively. To avoid cases when
actual bandwidth drops to zero causing zero division in equation 1
we bound all values less than 10Kbps to 10Kbps.

R? score (0-1) is a measure of the goodness of a model compared
to a naive model. e.g., a R? score of 0.8 (respectively 0.9) implies
that the naive model has five (respectively ten) times higher error
than the model in question. The following equation defines R%:

2 S No(Ri — Ry)?
Ro=1-—Fi——, 2)
BiLo(Ri - R)?
where N is the number of samples in the test dataset, and R the
average throughput for the test dataset.

When evaluating performance of RF, it is crucial to analyze gen-
eralization error (also called out-of-sample error), which represents
the model’s ability to represent unseen data. Generalization error
is a composition of bias, variance, and noise. Bias represents er-
ror introduced by approximation of a more complex problem with
a simpler model. In other words, if the model assumes a certain
relationship for data which does not reflect the actual data genera-
tion mechanism, we have bias in our estimate. To capture this, we
use training error (i.e., ARE metric for our specific case). However,
low training error does not necessarily translate to low bias. Low
training error could be a consequence of limited data that do not
entirely capture the nature of actual problem. In this case, we have
low training error but significant bias. Variance represents the vari-
ability of error as we vary the dataset (e.g., re-sampling the training
set). We quantify generalization error using cross-validation (CV)
data to test a model. If the resulting error is low, then the model
is said to have a small generalization error, implying that it can
successfully predict new values on unknown data. A high error
indicates that the model overfits the training data, and is thus only
capable of predicting values based on data similar to the training
data. Desirable outcome is to have both low training and CV errors.

Unless otherwise noted, we tune RF algorithm and estimate its
quality using 10-fold cross-validation®. Cross-validation is computa-
tionally more expensive than alternative techniques like “holdout”,
but it guarantees higher accuracy [6].

In our evaluation, we explore a large set of parameters (e.g., hori-
zon, history length, and summarization techniques). Furthermore,
a majority of experiments are done in a mobile case (highway sce-
nario), as it is the most challenging environment (see section 3.5).
Hence, we create a funnel-based approach where we progressively
fix some parameters after investigating their impact on throughput
accuracy as presented in the following subsections.

3.3 Impact of the Summarization Technique

Figure 4 shows the ARE for two approaches: feeding raw input,
and applying quantile summarization technique to the input data.

3We use sckit-learn tool as our main ML framework (https://scikit-learn.org)



Throughput Prediction from Radio Network Measurements

These two approaches are compared with various combinations of
PxFy; i.e., history and horizon duration.

Regardless of the prediction horizon, quantile summarization
technique achieves lower ARE (higher prediction accuracy) than
raw technique. This difference gets bigger with a longer metric
history. For example, with a prediction history of 20 seconds (P20Fx)
the quantile technique lowers the ARE compared to raw by 20%
(75”’ percentile) and 40% (90”’ percentile). For R? score, we observe
a similar trend as for ARE, e.g., a value of 0.99 for large history
when using the quantile strategy which is a 0.05 boost compared
to the raw approach.

To understand the causes of different prediction accuracy across
different history lengths, we use the standard approach of analyzing
the learning curve. The learning curve represents a ratio/difference
between training and cross-validation error metric. The choice of
error metric is arbitrary, as more emphasis is on the difference
obtained from training and CV data. For the following analysis,
we choose CoD for the error metric. Next, we investigate both
training and Cross-Validation (CV) error (see Section 3.2.2) for RF.
Table 1 shows both training and CV error for the RF algorithm
above as a function of the history length, i.e., amount of training
data considered. RF does not suffer from high bias for any history
and horizon combinations. However, for history lengths shorter
than eight seconds, the RF model relatively overfits the training
data. This effect is countered as the history length increases.

Table 1: Learning Curves for RF algorithm as a function of
history interval and 12-second horizon
Px = 4s 8s 12s 16s 20s
Train sc. 1.0 {1.0 {1.0 |1.0 (1.0
CVsc. 0.93]0.97/0.98(0.99(0.99

3.4 Impact of Prediction Horizon and History
Length

Figure 4c also shows that throughput prediction accuracy improves
when increasing the prediction horizon. At first, this result appears
counter-intuitive as one would expect that predicting throughput
for a near future should be easier than for the more distant future.
This observation is true for classical estimation techniques, such as
EWMA, AVERAGE, and MEDIAN (Figure 2) which relies solely on
past throughput values and coarse granularity of history samples
to predict future capacity.

However, when predicting the average throughput over the next
x seconds by using both radio metrics and throughput, overall
accuracy improves with the longer horizons. Reason for improved
accuracy is that larger horizon results in variance decrease among
throughput values. Figure 5a illustrates the effects of averaging
over different horizons resulting in a flatter throughput curve.

Similar to the increasing horizon, our analysis also suggests a
decrease of ARE as we increase the history length. To confirm this,
Figure 5b shows the ARE as a function of increasing history length.
The figure shows that increasing history length is beneficial in term
of ARE reduction up to a saturation point of 20 seconds, beyond
which the ARE reduction is marginal. Furthermore, similar obser-
vations hold for 4 and 8-second horizons. The same trend can also
be seen for the R?. In [36] authors show that increasing history
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decreases prediction accuracy countering results of our own. Au-
thors argue that having large history results in predictor having
less power in reacting to sudden changes in the wireless channel.
This intuition comes from the inability of sudden changes to be
reflected when averaging over a large history period. However, we
argue that having multiple measures of variability helps in coun-
tering this effect. e.g., 25'", percentile can capture small changes in
link variability. Based on this result, in the following, we consider
history length up to 20 seconds.

3.5 Different Mobility Patterns

We analyze the performance of our proposed ML technique across
different mobility patterns. Table 2 shows average, standard devia-
tion and coefficient of variation (CoV) for all five mobility patterns.
Intuitively, a static case has the lowest standard deviation. We ex-

Table 2: Throughput stats for various mobility patterns

Mobility Pattern|Mean (Mbps) Std (Mbps) CoV
Static 12.37 5.04 0.4
Pedestrian 10.22 7.59 0.74
Bus 13.97 12.35 0.88
Car 16.29 12.53 0.77
Highway 14.56 12.65 0.87

pect that static case should yield higher prediction accuracy due to
lower variation in throughput values. The larger standard deviation
implies a throughput time series that is less “stable” around the
mean. The higher variability of the mobile scenarios (we classify
bus, pedestrian, car, and highway as mobile cases) is due to environ-
mental changes, e.g., channel and cell load. Intuitively, predicting a
throughput with lower variation is an easier challenge; we further
quantify this observation in the upcoming analysis.

Figure 5c shows ARE values for static and mobile use-cases. We
fix the prediction horizon to 12 seconds but vary the history dura-
tion. Overall, the figure shows much better accuracy (lower ARE)
in the static scenario. We compare the influence of history length
on accuracy for static and mobile cases. With a history length of
4 seconds, 90% of time prediction error is less than 30%, for static
case, while for the highway case this increases to 43%. However,
extending history to 8 seconds (we use 4 seconds as a threshold
to exploit the full benefits of the quantile approach), benefits both
mobile and static cases, as the 90'* percentile of ARE drops by 20%
on average for different mobile cases, while in static scenarios this
drop is 16%. Increasing history follows the same trend, e.g., 90* h
of ARE decreases by 40% and 46%, for the mobile and static case,
respectively. Nevertheless, the pattern changes for history length
beyond 12 seconds, as relative error difference becomes more promi-
nent (e.g., 20-second history lowers 90th percentile by 74% and 71%
for static and mobile, respectively). Among mobile cases, overall
highway scenario shows the highest prediction error. However, the
difference between different mobile patterns is negligible.

We observed similar trends for other values of prediction horizon,
e.g., for P20F8 the 90%" of ARE for static and mobile cases is 12%
and 16%, respectively. Similarly, for P20F4 the 90" of ARE for static
and mobile cases is 19% and 26%, respectively.
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Our main takeaway is that utilization of quantile technique al-
lows high prediction throughput accuracy for longer prediction
horizons regardless of mobility environment.

3.6 Metric Contribution to Prediction Accuracy

We investigate the importance of metrics in throughput prediction.
Instead of reporting individual metric (the reader is referred to [36]
for analysis of each feature individually), we divide them into three
groups and report the importance of each group.

We divide metrics into the following groups: throughput (which
includes the history of both downloads and uploads throughput
values), radio (which consists of the history of RSRP, RSRQ, SNR,
etc.) and device velocity.

Table 3a shows how feature importance changes as we vary
the history length. For the P4F4 case, historical throughput con-
tributes to 71% of future throughput prediction, and radio metrics
and velocity contribute 25% and 4%, respectively.

With an even longer history, the quantile approach can finally
be applied, and now we get a greater contribution from radio met-
rics. As the history increases from 2 to 20 seconds, radio metrics
importance increases to 41%, while throughput importance drops
to 53%. Table 3b shows that if we fix a history length, then through-
put importance goes down with longer horizons. e.g., for P4, the
importance of throughput goes down from 71% for F4 to 57% for
F12. The drop is significant, and we have observed similar trends
for other values of history length as well.

Table 3: Feature Importance for PxF4 and P4Fx cases

(@ (b)
P4F4 P8F4 P20F4 P4F4 P4F8 P4F12
Radio 25% 31% 41% 25% 32% 36%
Throughput 71% 65% 53% 71% 62% 57%
Velocity 4% 4% 6% 4% 6% 1%

E.g., in the P20Fx scenario, throughput importance drops from
53% to 48% to 44% for 4-second, 8-second, and 12-second horizon,
respectively.

Finally, when predicting for longer horizons, ML model learns
more on non-throughput metrics for making a more accurate pre-
diction. This result explains why relying only on throughput is not
a good indicator of distant throughput in a highly mobile scenario.

4 VIDEO EXPERIMENTS IN A CONTROLLED
ENVIRONMENT

In this section, we evaluate the impact of improved throughput
estimation on the streaming performance using a lab testbed. We
first present our testbed followed by streaming performance results.

4.1 Testbed Setup

4.1.1 Testbed Overview. Figure 6 depicts our testbed architec-
ture which consists of a mobile device (Nexus 6 running Android OS
version 7.1.1), a wireless access point (AP), and a server (PC running
Ubuntu 16.04 equipped with 16GB of RAM and Intel i7 CPU). The
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mobile device streams video content from the server through AP.
The server also acts as a traffic shaper by inserting bandwidth pro-
files from 4G traces between itself and the AP. This is achieved using
Linux traffic control (tc*). Traffic shaper changes link capacity every
second, based on a bandwidth trace file. Simultaneously, Android
Debug Bridge (ADB) is used to feed offline-calculated® throughput
prediction values to the mobile device every second by saving a
value to a file on a mobile device.

ExoPlayer Apache Web Server

Traffic Shaper: Trace Driven
4 i 4G

| Throughput Predictions |

N

Control Channel (Android Debug Bridge)

Figure 6: Testbed Architecture

ARBITER+
BOLA-E
EXO P

The mobile device runs a video player built using ExoPlayer.
ExoPlayer supports the DASH standard via a stand-alone library,
and also provides a default adaptation algorithm, which we refer
to as EXO. In addition to EXO, we have also ported BOLA-E from
dash.js ¢ and implemented ARBITER+ [38]. The workload videos
comes from the publicly available dataset [18]. Videos are split in
4-second and 8-second chunks and encoded with ten representation
rates: 231, 369, 553, 744, 1044, 1748, 2349, 3006, 3856, 4310 Kbps.

4.1.2  Video Streaming Algorithms. Many HAS algorithms can
be found in the literature [22]. For our evaluation, we select three
algorithms: ARBITER+, BOLA-E, and EXO. Selected algorithms use
information from both bandwidth estimators, as well as from buffer
occupancy when deciding on the rate of the next chunk.

As a bandwidth estimator, ARBITER+ uses the exponential mov-
ing average (EWMA) of the last ten chunks rates. Alongside EWMA
Arbiter+ employs two additional rate scale factors, to track variation
in throughput samples and buffer occupancy. The first factor tracks
variation in throughput samples and reduces the estimated rate if
bandwidth fluctuation increases. The second one tracks buffer oc-
cupancy drain and lowers the rate if the buffer is too low to prevent
stalls. However, for higher buffer levels this factor will increase the
bandwidth estimate, thus slowing buffer saturation.

BOLA [25] is a buffer based algorithm that relies on Lyapunov
optimization to maximize video rate and minimize stall (rebuffering)
events. Utility function increases with average bitrate, while the
increase in stalls reduces it. However, the algorithm is flexible to
allow optimization of different QoE metrics (by defining different
utility functions). BOLA-E [24] introduces a throughput estimate to
improve startup, seek and low-latency performance of BOLA. The
throughput estimate is average of the last five chunk delivery rates.

Finally, EXO algorithm calculates median of a specified number
of recent chunk rates (unlike previous two approaches, EXO uses
the sum of chunk sizes to decide a number of the last downloaded
chunks). Intuitively, median (resistant to outliers) also represents a
slightly less conservative estimate compared to the harmonic mean.

For buffer length, we use the recommended values for each
algorithm (60-seconds for ARBITER+, 32 seconds for BOLA-E, and

4https://wiki.debian.org/TrafficControl
SNote that the cellular TRX is not used in the controlled experiment.
Shttps://github.com/Dash-Industry-Forum/dash.js/wiki
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30-seconds for EXO). The initial delay is set to two chunks. After a
stall event, a play is resumed after one chunk finishes downloading.

4.1.3  Throughput Prediction Module. Our experiments are based
on a subset of the 4G dataset traces to illustrate the benefit of
prediction. We filter out traces where average throughput is greater
than 6 Mbps for the first five minutes of a trace (streaming is five
minutes long). Our rationale being that when bandwidth is so high,
any rate adaptation algorithm will be able to stream the highest
video quality (4.3 Mbps in the used video dataset) and the benefit of
prediction would not be evident. We ended up with 26 traces after
this filtering. For characterization of selected traces, we considered
standard deviation of throughput within a trace. We sort traces
based on standard deviation of BW. Table 4 shows throughput
statistics for the top 20% and bottom 20% of sorted traces.

Table 4: Throughput for selected traces

Type |Avg (kbps)|Std (min - max, kbps)
591 - 1166
4010 - 6447

Low-variable traces 1656
High-variable traces 4451

Majority of traces with high BW variability are collected in
the highly mobile environment (car), while traces with low BW
variability were collected while devices were static or moving at
low velocity (pedestrian).

We implement the throughput prediction module using our pro-
posed prediction approach. When testing the streaming perfor-
mance using one of the selected traces, this trace is eliminated from
the training set of the prediction engine used in this experiment.
The prediction engine is then used to identify the predicted through-
put for every record in the trace. The predicted throughput is stored
offline and provided to the video client during the experimentation.
In a nutshell, we keep tested trace out of training procedure to
ensure unbiased prediction values.

The presented prediction setup is close to reality as it does not
imply the knowledge of the transportation mode. Note that the
prediction engine is based on traces with mixed mobility patterns.
We set the history to 20 seconds and tested different horizon values
from 12 seconds-32 seconds. The choice of horizon values was
driven by results in [21], where authors show that longer horizons
benefit HAS players more than shorter horizons.

Figure 7 shows ARE across five different prediction horizons with
history set at 20 seconds. Mixing mobility patterns does not change
the performance trends established in Section 3.5. The prediction
accuracy increases with the horizon. For the 12-second horizon,
90‘" percentile ARE is less than 16%. Furthermore, this error drops
below 10% for the longest, 32-second horizon.

4.1.4 Integrating Predicted throughput in HAS Algorithm. The
predicted throughput can be integrated into the adaptation logic
in two different ways. First, the predicted throughput may replace
the entire throughput estimation in the algorithm (E-type). Alter-
natively, the predicted throughput may be used to replace the es-
timated throughput samples (S-type). In [21] authors show that
for ideal prediction algorithms with more conservative bandwidth
estimation (harmonic, median) have higher improvement with di-
rect estimate while algorithms with more aggressive bandwidth
estimation (EWMA) prefer feeding prediction as a sample. As a
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Figure 7: ARE accuracy for five different prediction
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result, we use prediction values as a direct estimate for the EXO
and BOLA-E, while for the ARBITER+ we feed values through BW
estimation module.

4.1.5 Video QoE Models. To evaluate the performance of HAS
algorithms, we analyze standardized QoE metrics, such as average
video bitrate, switching behavior (e.g., stability), stall frequency
and duration. However, to compare algorithms performance these
metrics cannot be studied independently. For example, an algorithm
achieving the highest average throughput but frequent stalls is
inferior to a more cautious algorithm with no stalls, as it provides a
better end-user experience. We thus resort to using two video QoE
models developed for HAS. These models blend individual QoE
metrics to compute a score representing user QoE. Both models are
derived from subjective testing of users grading video clips with
various induced impairments. The first model (Yao QoE) was derived
from data collected in a lab environment [11] and is limited to five
minutes. Such limitation does not apply to the second model which
relies on data crowd-sourced from users watching videos posted
on a website [30]. However, in their evaluation, the authors did not
consider stall events. As a result, we select an enhanced model [17]
which extends the preceding model with stall information (Clay
QoE). The score derived from these QoE models can be summarized
by the following equation:

QoEscore =V X Q0Emax — (KTQ X Irg + Ky X IVQ)+

+X(Itg,Ivo) ®

Where ITQ, and Iy, represent temporal and visual quality im-
pairment factors, respectively. Similarly, k7o and xy ¢ represent
their respective weights. Temporal quality impairments refer to
degradation due to initial delay and stall events (stall number and
stall duration). Analogously, visual quality impairments take into
account average rate and switching behavior. QoE; 4x indicates
the maximum value (score) of QoE or growth factor depending
on QoE model. Similar to impairment weights, v is weight for
the QoEpmqx score. Finally, Y(ITg, Iy o) represents a cross-effect
function of impairment factors occurring simultaneously. When
multiple impairments happen, their cumulative subjective effect
is not simply the sum of individual impairment [11]. Function Y
compensates for this effect.

D. Raca et al.

The Yao QoE score starts at 100 and is reduced by impairments,
compensated by Y function of the stall, switching and initial delay
impairments. The Clay QoE initial score is based on average rate,
reduced by impairments capturing stall and switching impairment.
Clay QoE doesn’t include cross-effect compensation function Y.

We analyze both QoE models across different traces allowing
us to make the following observations: Both models perceive stall
impairments similarly with high correlation (0.9); Models calculate
switching impairment differently (Clay uses standard deviation
between rates, while Yao relies on difference in Video Quality Met-
ric (VQM) between chunks); Unlike Clay, Yao uses cross-effect
compensation function which limits negative impact of multiple
impairments; While Clay QoE is calculated over the entire session,
Yao QoE calculation is split into 1-min windows, for which QoE
score is calculated separately. Total QoE equals arithmetic average
of five windows.

Because of the observations mentioned above, we decided to use
the geometric mean of the two models to represent an overall QoE
score. We chose geometric mean instead of the arithmetic mean
because model scores are on a different scale. Table 5 summarizes
QoE metrics and their notation.

Table 5: QoE Metrics Notation
Metric Summary
Bitrate  Average bitrate
Stability Average stability, equal to 1 — i with i

being instability as defined in [9]

Stallspum Average number of stalls
Stallsy,,, Average stall duration
QoE Geometric mean of Clay and Yao QoE

4.2 Streaming Performance Results

We evaluate the streaming performance without prediction as a
base case and with prediction using different horizon duration. We
repeated such evaluation for two scenarios including 4-second and
8-second chunk duration. The shown performance results represent
the average of 10 runs.

For the 4-second scenario, Figure 8 plots the relative improve-
ment in performance metrics, for the evaluated algorithms, relative
to the no prediction case. Hence, a larger relative improvement in
the streaming bitrate means a higher rate while a larger relative
improvement in the number of stalls means fewer stalls. The per-
formance metrics of the no prediction case for every algorithm are
shown in the white boxes just above the x-axis. Figure 8 shows that
integrating our prediction noticeably improves the QoE metrics of
different algorithms. Specifically, prediction enables all algorithms
to reduce/eliminate stalls. Additionally, prediction allows HAS algo-
rithms to improve switching stability. In particular, average stability
can be improved by 15%-47%. Furthermore, improving the accuracy
of bandwidth estimation enables the algorithm to enhance their
selected chunk quality. For example, integrating prediction fixes
throughput underestimation with EXO leading to a higher chunk
quality (by 16%). On the other hand, incorporating the prediction
with ARBITER+ results in a negligible lower average chunk quality
(2%). All these improvements add up leading to boosting the overall
user QoFE by 8%-27% in the 4-second chunk scenario. It is evident
that BOLA-E is the least beneficiary of the compared algorithms.
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However, this is expected due to its design relies on a buffer level
as the main quality selection decision and only uses throughput
estimates in very limited cases as illustrated in Section 4.1.2.

In the 8-second scenario, Figure 9 depicts the relative improve-
ment of the performance metrics for the evaluated algorithms. Sim-
ilar to the 4-second case, the prediction shows a positive impact
on all metrics in the majority of the traces. Overall, QoE can be
improved by 19%, 13% and 33% for ARBITER+, BOLA-E, and EXO,
respectively. This improvement is higher than that attained in the
4-second scenario. We explain this by the fewer opportunities to
change the quality and react to sudden changes to channel capacity
in the longer chunk case. In both 4-second and 8-second scenario,
EXO features the highest relative improvement in QoE score. This
improvement is attributed to the increase in the average bitrate
(15% improvement compared to 1-5% for ARBITER+ and BOLA-E).

Identifying the optimal horizon duration is an essential design
parameter. For the 4-second scenario, the algorithms show a similar
QoE improvement for 20-24 second horizon. In the 8-second chunk
duration scenario, algorithms show distinct performance as the pre-
diction horizon increases. ARBITER+ shows the best QoF relative
improvement with a 32-second horizon, while BOLA-E and EXO
achieve the best performance with a 24-second horizon. Extend-
ing the horizon results in averaging over a longer period and thus
reducing variability between subsequent prediction values. This
leads to an improved switching performance. Additionally, longer
horizon enables a client to proactively switch quality and avoid
stalls when the throughput drops for a relatively long time that can
deplete the buffer. However, increasing horizon will eventually lead
to client inability to adapt to sudden changes in channel capacity.
This can be seen in case of 8-second chunk and EXO algorithm. For
the 32-second horizon, stability improves by 33%. However, this
stability leads to a decrease in stall performance (compared to other
horizons) and a sharp drop in overall QoE.

Finally, there is a discrepancy between improvement in each QoE
metric and overall QoE improvement. This is a direct consequence
of QoE model we use in this study. To understand this behavior,
we look at each QoE model individually. Let’s analyze particular
trace where we have high improvement in rebuffering performance
(ARBITER+, 4-second chunk duration). Reduction in a number of
stalls and total stall duration results in 35x and 1.9x higher stall
impairment for Yao and Clay, respectively. For switching, impair-
ment is 1.6x higher for Clay, compared to 1.25x for Yao. While Clay
produces similar tradeoff between stall and switching impairment,
Yao gives much higher weight on the stall reduction. As a result,
the prediction improves Yao QoE by 40%, while for the Clay, lowers
QOoE by 44%. Overall, QoE improves by 14%. A similar observation
holds for BOLA-E.

5 REAL-TIME PREDICTION

Motivated by results of the lab experiments, we implemented our
prediction engine inside mobile devices leveraging the Android
API and an existing Java ML library. For the ML library, we opt
for Weka’, a software framework that has an extensive collection
of state-of-art machine learning algorithms implemented in Java.

Thttps://www.cs.waikato.ac.nz/ml/weka/
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While not explicitly designed to run on mobile devices, it represents
a good starting point for testing the initial prototype.

For the collection of radio metrics and device velocity, we use
classes and methods detailed in Table 6. Values are collected pe-
riodically, every 1-second in a separate thread inside ExoPlayer.
We store all metrics in FIFO queues with size limited to 20 values
per queue. We trained an ML model (Random Forest) offline and
ported to the mobile devices. For the HAS algorithm, we select
EXO using the same parameters as outlined in Section 4.1.2. We
use a 20-second prediction horizon (direct estimate). The prediction
value is generated in the following way: every time a decision for
the next quality needs to be made, the adaptation logic requests
a prediction value. This value is generated by creating Quantile
statistics based on current state of FIFO queues, followed by a call
to the model itself with statistics as input. Finally, the model returns
a prediction value for the next 20 seconds.

Table 6: Android API classes used for collecting radio and

throughput metrics
metrics Class/Method
RSRQ CelllnfoLte/getCellSignalStrength().getRsrq()
RSRP CellInfoLte/getCellSignalStrength().getDbm()
CQI CellInfoLte/getCellSignalStrength().getCqi()
SNR CelllnfoLte/getCellSignalStrength().getRssnr()
Velocity LocationManager
Throughput TrafficStats

We perform 56 static and mobile field tests in a real cellular
network. Each experiment consists of two mobile devices (same
model) streaming the same video content side by side. One mobile
device stream content with no throughput guidance, while the
other one uses our throughput prediction as outlined above. To
minimize non-radio related effects, we perform all tests in the early
morning while assuming the network is not busy. The following
sections explain the device and model limitations we faced while
implementing the prediction engine in a mobile device.

Device Limitation: We leverage the standard Android library for cap-
turing channel metrics. However, implementation of these callback
functions depends on the manufacturer of the mobile system on a
chip (SoC) chipsets. Also, not all parameters are reported for differ-
ent cellular technologies (2G/3G/4G). We use Samsung J5 mobile
devices, as the Exynos chipset implements almost all Android call-
back methods for reporting channel metrics. Furthermore, loading
and running ML model inside a mobile device can be challenging.
Due to hardware limitations, loading of the appropriate model can
take up to several minutes. e.g., training Random Forest model on
all traces results in a large model (400MB) which can not be loaded
in the mobile device. As a tradeoff, we limit the number of trees (30)
and tree depth to generate a smaller model. This tradeoff results in
accuracy decrease of the model. As a result, prediction error (90° h
percentile) increases from 13% to 21%.

Experiment Limitation: Running two devices side-by-side at the
same time does not necessarily mean same channel and environ-
ment conditions. There are a couple of limitations we faced during
these trials. Firstly, devices do not necessarily report the same val-
ues for metrics. Second, even in the static case, phones can be
connected to different eNodeBs or same eNodeB but different cell
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sector. While we tried to minimize these occurrences, we have little
or no control over this in mobile cases.
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Figure 10: Relative improvement of different QoE metrics
in real cellular network with respect to the no-prediction
case (EXO algorithm, 4s chunks)

Figure 10 shows similar trend for QoE metrics as in Section 4.

However, there exists one major difference between experiments
performed in the previous section and experiments in a real cellular
network. While we selected a certain subset of traces in controlled
experiments (in particular, traces with an average rate close to
highest video rate), in a real environment, the majority of tests
were conducted in a high channel capacity environment (with the
average rate greater than 6 Mbps). This is most evident in the case
of bitrates. Average bitrate across all session is 3.4 Mbps (compared
to 1.5 Mbps in a controlled environment). As a result, the impact
of prediction is limited as the highest rate is 4.3 Mbps, leaving

less space for improvement. Still, prediction improves all QoE met-
rics. In particular, improvement in bitrate is only 7%, capping QoE
improvement to 11%.

6 DISCUSSION

Optimal use of prediction: In our experiments we simply replaced the
bandwidth estimator with a prediction value and constant horizon.
However, the optimal horizon is unknown in advance. Furthermore,
none of the tested algorithms is optimized to take full benefit from
more accurate predictions. In previous studies [13, 40], authors
show that HAS algorithms can be fully tuned based on prediction
horizon. Furthermore, some of the algorithms take multiple hori-
zons into account when deciding for the next quality. We argue that
having various horizons, i.e., short and long horizon can improve
user experience even further than only taking one constant horizon.
However, generating multiple horizons in real time is challenging.
To overcome this issue following section introduces motivation for
a transition towards deep learning algorithms.

Possible model improvement by deriving optimal high-level fea-
tures: Deep learning frameworks (TensorFlow Lite for Android and
Core ML for Apple iOS) are optimized to run on mobile devices.
Deep learning architectures may help in obtaining even more accu-
rate predictions. We showed that representing history with multiple
measures of variability helps drive down prediction error. However,
we use standard statistical measures, which are not necessarily the
optimal ones. Also, the same statistics are used across all metrics.
However, optimal statistics for one metric may not necessarily be
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optimal for other metrics. Instead of “handpicking” high-level fea-
tures from raw input, using neural networks with multiple layers
can automate extraction of more significant features from input
data. This observation leads us to deep learning algorithms, and in
particular recurrent neural networks. Sequence-to-sequence neu-
ral networks [27] have a broad reach in language translation. The
main power of these networks lies in the ability to summarize a
sentence from one language by a couple of critical values (encoder)
which then can be used to translate it into another language (de-
coder). Inspired by this approach, we believe similar architecture
can be employed for throughput prediction, where the history of
each metric will be summarized by optimal measures of variability
independently of each other.

Enhancing model with network metrics: We use device related
metrics to improve throughput prediction. However, relying only on
device-based metrics is not sufficient in all situations. During busy
hours, prediction values can overestimate throughput capacity as a
correlation between user channel conditions and available through-
put deteriorate. To alleviate this issue, network-related metrics are
needed. e.g., cell load would indicate how busy cell is, prevent-
ing overestimation and increased probability of rebuffering events.
Also, network operators can inflict throttling in a network [10]
during busy hours which can skew prediction system completely.

Device vs. in network prediction: In our experiments, we took the
approach of making predictions at the device itself. While this ap-
proach brings benefits regarding scalability and possibility to retrain
model to suit better for local conditions, its prediction power can
be limited for reasons outlined in previous sections. Unlike device-
based prediction, in-network prediction does not suffer from limited
computational power. The device can send its metrics periodically
and request forecast when needed. However, this implies having
coordination between end-device and network provider/service.

7 RELATED WORK

Cellular networks represent the most challenging environment for
throughput estimation leading to the majority of work done in this
area. Existing solutions for throughput prediction can be grouped
into two general categories: non-machine learning and machine
learning approaches. Furthermore, additional useful categorization
can be made regarding prediction horizon (e.g., short, the order
of milliseconds, or medium, the order of seconds) and whether
solutions are application-specific (e.g., video or voice).

Non-machine learning approaches include different techniques
for throughput estimation. Lots of work has been done in order to
improve TCP performance over cellular networks [4, 29, 31, 32].

Active measurements were also proposed to estimate throughput,
round trip time, and packet losses by sending carefully crafted
sequences of short data packets [8]. Other studies rely instead on
passive measurements [12, 26] using a device’s instantaneous radio
channel quality indicator (CQI) and discontinuous transmission
ratio (DTX) for throughput estimation.

Applying machine learning in throughput forecasting has slowly
gained momentum over the years. Most of the work is concerned
with improving TCP estimates over shorter horizons [16, 31, 34].

Introduction of adaptive streaming and rise of multimedia stream-
ing consumption over a cellular networks motivated investigation

Conference’17, July 2017, Washington, DC, USA

of ability to predict longer horizons. Sayeed et al. use an auto-
regressive ARIMA based time-series model taking very specific
parameters such as Signal-to-Interference and Noise ratio (SINR)
and Modulation and Coding Scheme (MCS) as inputs to first predict
the number of received bits per physical resource blocks (PRB) and
then translate that to effective throughput [23]. Their experiments
are evaluated for a stationary device under different channel config-
urations. Also, some solutions are crafted with a video application
in mind. For example, Zou et al. propose an algorithm for HTTP
adaptive streaming that relies on an accurate forecast of average
throughput [40]. Their solution leads to significant improvements
in video Quality of Experience (QoE) compared to other state-of-
the-art approaches [7, 9]. In a similar vein, Mangla et al. design
an adaptation algorithm that takes prediction errors into account
when making a decision for the next chunk [13]. Some solutions
look for patterns of similarity between sessions to predict what
QoE the new session will have, where similarity is determined
through coarse-grained geographic and network features, not pre-
cise network performance measurements [26]. Xie et al. propose a
framework for HTTP adaptive streaming application where authors
leverage LTE resource structure by monitoring available bandwidth
based on PRBs utilisation of the cell, enabling more accurate esti-
mation of available bandwidth. Their approach enables HAS client
to track changes in available bandwidth more accurately resulting
in high video quality while minimising stalling rate [33].

Machine learning has also been used to develop adaptation logic
for video streaming algorithms. In [15] authors propose a reinforce-
ment neural network backed algorithm that learns from real traces
best strategy for adapting to different network conditions.

In our work, we tackle the throughput prediction problem for
video streaming applications using a machine learning approach,
considering variable prediction horizons and realistic mobility con-
ditions. Similar to our work, Yue et al. [36] also investigate pre-
diction using only device-based metrics. However, they rely on
UDP based technique for measuring throughput bandwidth and
use the average as their summarization technique. For the hori-
zon, they consider one second. While the framework is based on
measurement of radio channel metrics from Android OS they do
not quantify its impact on video streaming performance. Further,
they compute prediction accuracy using the holdout method while
we rely on cross-validation, a more reliable method for estimating
model performance. Similar to our evaluation, Xie et al. conducted
experiments on real mobile devices in a real cellular network [33].
However, in their approach, they used specialised hardware (Uni-
versal Software Radio Peripheral - USRP) for monitoring wireless
channel between device and eNodeB and estimating PRB utilisa-
tion. Furthermore, all the calculations are done on a laptop which
feeds the information back to the device through USB cable. In our
real-world experimentation, all the measurements and decision is
done at the mobile device.

8 CONCLUSIONS

It is known that cellular radio access networks exhibit highly vari-
able conditions due to a variety of factors. In this paper, we address
the problem faced by applications such as video streaming in trying
to estimate the available future throughput in the cellular network.
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Prior work has focused on the use of a small set of performance
metrics gathered by an end-user device to make predictions up to
one second. In this paper, we present a thorough quantitative study
of throughput prediction in a real cellular network. We combine ma-
chine learning techniques with radio channel metrics summarized
by a novel quantile abstraction technique to achieve low through-
put prediction errors (90% of errors below 13%). By utilizing our
abstraction technique, we were able to capture trends and variation
in metric data accurately in the environment where metrics are
updated/available at fine time granularity. Having more accurate
predictions allow us to improve performance of three adaptation
algorithms. All tested algorithms improve all QoE metrics when
using prediction. Notably, prediction reduces stalls by up to 85%,
and bitrate switching by up to 40%, while maintaining or improving
video quality. As a result, QoE score improves significantly, by up
to 33%.
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