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Abstract. This paper deals with the monolithic decoupled XYZ compliant parallel mechanisms (CPMs) 
for multi-function applications, which can be fabricated monolithically without assembly and has the 
capability of kinetostatic decoupling. At first, the conceptual design of monolithic decoupled XYZ CPMs is 
presented using identical spatial compliant multi-beam modules based on a decoupled 3-PPPR parallel 
kinematic mechanism. Three types of applications: motion/positioning stages, force/acceleration sensors 
and energy harvesting devices are described in principle. The kinetostatic and dynamic modelling is then 
conducted to capture the displacements of any stage under loads acting at any stage and the natural 
frequency with the comparisons with FEA results. Finally, performance characteristics analysis for motion 
stage applications is detailed investigated to show how the change of the geometrical parameter can affect 
the performance characteristics, which provides initial optimal estimations. Results show that the smaller 
thickness of beams and larger dimension of cubic stages can improve the performance characteristics 
excluding natural frequency under allowable conditions. In order to improve the natural frequency 
characteristic, a stiffness-enhanced monolithic decoupled configuration that is achieved through employing 
more beams in the spatial modules or reducing the mass of each cubic stage mass can be adopted. In 
addition, an isotropic variation with different motion range along each axis and same payload in each leg is 
proposed. The redundant design for monolithic fabrication is introduced in this paper, which can overcome 
the drawback of monolithic fabrication that the failed compliant beam is difficult to replace, and extend the 
CPM’s life. 

 
 
1 Introduction 
 
Compliant parallel mechanisms (CPMs) transmit motion/loads by deformation of their compliant links (namely 
jointless), and belong to a class of parallel-type mechanisms. They aim to utilize the material compliance/flexibility 
instead of only analyzing/suppressing the negative flexibility effect like those initial works in the area of kinematics of 
mechanisms with elasticity (Howell, 2001; Hao, 2011). This revolutionary change leads to many potential merits such 
as zero backlashes, no need for lubrication, reduced wear, high precision and compact configuration in comparison with 
the rigid-body counterparts. CPMs with multiple DoF (degrees of freedom) have drawn more attentions from academia 
and industries due to their extensive applications such as motion/positioning stages (Awtar and Slocum, 2007; Dong et 
al, 2007; Hao and Kong, 2012a; Hao and Kong, 2012b), acceleration/force sensors (Gao and Zhang, 2010; Hansen et al, 
2007; Cappelleri et al, 2010) and energy harvesting devices (Rupp et al, 2009; Ando et al, 2010).  

For a planar multi-DOF CPM such as the XY CPM, it is always easy to fabricate towards a monolithic configuration 
using existing well-developed planar manufacturing technologies such as wire EDM, water jet, and laser cutting (Awtar, 
2004). However, these manufacturing technologies usually fail to satisfy the needs of fabricating most spatial 
multi-DoF CPMs (such as XYZ CPM) monolithically, and therefore assembly has to be passively applied as shown in 
(Dong et al, 2007; Hao and Kong. 2012b; Gao and Zhang, 2010), which leads to some issues such as assembly error, 
increased number of parts, reduced stiffness (by about 30% by bolted joints), and increased cost (Hao and Kong. 2012b). 
Over recent years, 3-D printing technology has been developed rapidly. Various base/substrate materials, such as 
engineering plastics, ceramics and metal, can be used for fabrication for a variety of applications. But the emerging 3-D 
printing technology may lead to limited or undesired performance characteristics of material due to no traditional heat 
treatment applied and inherent layer-by-layer fabrication. This shortcoming has been proved by testing our initial 
prototype, made of engineering plastic, obtained using a 3-D printer. Therefore, better manufacturing 
approaches/strategies for spatial multi-DoF CPMs are potentially needed. Averting the manufacturing issue on spatial 
CPMs, one can design a type of spatial multi-DoF CPMs that are possible to be fabricated monolithically using the 
above planar manufacturing technologies without bringing any assembly issues. 

In this paper, we will only deal with the XYZ CPMs with (kinetostatically) decoupled configuration. Kinetostatic 
decoupling means that one primary output translational displacement is only affected by the actuation force along the 
same direction, which describes the relationship between the input force and output motion. This decoupling (not 
absolute) is also called the output-decoupling/minimal cross-axis coupling in CPMs. Kinetostatic coupling may lead to 
complicated motion control, which is the sufficient condition of kinematic decoupling. A number of literatures have 
reported the design of decoupled XYZ CPMs for motion/positioning stage and sensing applications (Hao and Kong. 
2012b; Gao and Zhang, 2010; Li and Xu, 2011; Pham et al 2006; Hao and Kong, 2009; Yue et al, 2010; Tang et al, 
2006) using kinematics design methods (Hao, 2011). Here, each of the three kinematic chains, which are coupled in 
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parallel, is individually a serial-parallel hybrid arrangement. But none of them have showed the possibility for 
monolithic fabrication. Also, these designs have their own limitations such small motion range (Li and Xu, 2011; Pham 
et al 2006; Yue et al, 2010), bulky and complex configuration (due to the serial-parallel hybrid arrangement) (Li and Xu, 
2011; Pham et al 2006; Hao and Kong, 2009; Tang et al, 2006), and poor out-of-plane stiffness of the PP plane in each 
leg (Li and Xu, 2011; Pham et al 2006; Hao and Kong, 2009; Yue et al, 2010; Tang et al, 2006). Recently, Awtar et al 
(2013) proposed a novel XYZ parallel kinematic flexure mechanism with geometrically decoupled DoF using identical 
flexure plates, which has a more compact and simpler construction and has the possibility to be fabricated 
monolithically. However, this design suffers from complicated modelling, bad out-of-plane stiffness and big lost motion, 
especially its three actuation directions are skew and cannot intersect at the center of the primary motion stage so that its 
applications are limited in low payload, and/or low speed. Hao and Kong (2012b) reported a decoupled XYZ CPM 
composed of identical spatial modules, but still has the challenging issue on fabrication. 

This work builds on the above advances on decoupled XYZ CPMs towards a monolithic configuration (also compact 
and simple) for manufacturing purpose. It also stresses the potential extensive applications in multi-axis 
motion/positioning stages, multi-axis sensors (acceleration/force), and energy harvesting devices using the present 
monolithic decoupled XYZ CPMs. 

This paper is organized as follows. Section 2 proposes the conceptual design of monolithic decoupled XYZ CPMs for 
three-type applications: motion/positioning stages, acceleration/force sensors, and energy harvesting devices at first. 
Then the analytical kinetostatic and dynamic modelling is undertaken in Section 3. In Section 4, the performance 
characteristics analysis to reflect the change of performance characteristics with that of the geometrical parameters is 
investigated. Section 5 discusses the thermal stability. Conclusions are drawn in Section 6. 
 
 
2 Conceptual design of monolithic decoupled XYZ CPMs for multi-function applications 
 
 
2.1 Monolithic decoupled XYZ CPMs 
 
A decoupled XYZ CPM for the motion/positioning stage can be generated using a design approach proposed in the 
references (Hao, 2011; Hao and Kong, 2012b). This design is demonstrated in Fig. 1, which is based on a decoupled 
XYZ parallel kinematic mechanism (PKM) whose three planes associated with the passive PPR kinematic chains are 
orthogonal. It is obtained by replacing the active P joint and the passive PPR chain in each leg of the 3-PPPR XYZ 
PKM (Fig. 1(a)) with the compliant P joint in Fig.1 (b) and a compliant PPR joint in Fig. 1(c), respectively, and making 
appropriate arrangement for the identical building blocks (spatial four-beam modules).  
 

 
Figure 1. The generating process of a decoupled XYZ CPM: (a) A decoupled 3-PPPR XYZ PKM (Hao, 2011; Hao and 
Kong, 2012b) with three planes associated with the passive PPR kinematic chains orthogonal; (b) A compliant 
planar-motion PPR joint (Hao, 2011; Hao et al, 2011; Hao and Kong, 2013): spatial four-beam module that is composed 
four identical symmetrical square wire beams spaced around a circle uniformly; (c) A compliant P joint (Hao, 2011; Hao 
and Kong, 2012b): two spatial four-beam modules connected in parallel, two planes associated two PPR joints of which 
are orthogonal; (d) A decoupled XYZ CPM using identical spatial four-beam modules 
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In order to facilitate the monolithic fabrication, an improved design of the decoupled XYZ CPMs (Fig. 2) is adopted 
in terms of the proposed decoupled XYZ CPM (Fig. 1 (d)), which can be fabricated monolithically from a cubic 
material by three orthogonal directions’ cutting using EDM/milling machining for a macro-version, or 
lithography/DRIE for an MEMS version with same masks on three surfaces of the cube. The improved design is 
composed of eight rigid cubic stages organically connected by twelve identical spatial multi-beam modules with planar 
motion to form a monolithic and compact cubic confirguration. When any four adjacent rigid stages are fixed in the 
undeformed configuration (and therefore three spatial modules are inactive), the other four rigid stages act as the 
mobiles stages (X-, Y-, Z-, and XYZ-stages), displaced by the deformation of the nine spatial modules, to achieve the 
function of XYZ CPMs. 

Three different monolithic forms are shown in Figs. 2(a), 2(b) and 2(c), respectively. As mentioned earlier, the 
monolithic decoupled XYZ CPM (for instance, Fig. 2(a)) has mainly three types of applications: motion/positioning 
stages, acceleration/force sensors, and energy harvesting devices, which is detailed as follows. 

 
Figure 2. Monolithic decoupled XYZ CPMs: (a) a monolithic decoupled XYZ CPM with three geometrical parameters; 
(b) a monolithic decoupled XYZ CPM with enhanced stiffness via reducing the cubic stage mass; and (c) a monolithic 
decoupled XYZ CPM with enhanced stiffness via increasing the beam number (all configurations have same motion 
range) 
 
 
(1) High-precision motion/positioning stages 
 

For the applications as high-precision motion/positioning stages, the proposed monolithic decoupled XYZ CPM (Fig. 
2(a)) can be actuated by three linear Voice Coil (VC) actuators for large motion range or by three PZT actuators for 
small motion range as shown in Fig. 1(d). In addition three optical linear encoders (input sensing) and three capacitive 
measuring systems (output sensing) are required. 
 
(2) Acceleration/force sensors 
 

The presented monolithic decoupled XYZ CPM (Fig. 2(a)) can be used as the 3-axis acceleration/force sensor 
without using linear actuators. For the use as the force sensor, any external force exerted at the XYZ-stage along each 
axis can be sensed by measuring the displacements of the X-, Y- and Z- stages along the X-, Y-, and Z- axis, respectively, 
by piezoresistors or other types of sensors. When used as the acceleration sensor, the XYZ-, X-, Y- and Z- stage is 
served as the inertial mass of the sensor. If there is a acceleration along certain resultant direction, the components of 
the resultant iniertial force along the X-, Y-, and Z-axis will result from the contribution of the combined mass of the 
XYZ- and X-stage, that of the XYZ- and Y-stage, and that of the of the XYZ- and Z-stage, respectively. Then by 
sensing displacements of the X-, Y- and Z- stage along the X-, Y-, and Z- axis, respectively, one can obtain the inertial 
force along each axis and then work out the acceleration along each axis. 
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(3) Energy harvesting devices 
 

Coupling with magnets and coils, an example 3-axis energy harvesting device (Fig. 3) can be obtained based on the 
monolithic decoupled XYZ CPM (Fig. 2(a)). It harvests energy in three axes through the well-known eletromagnetic 
induction. If there is an external exitation along a certain axis, the inertial mass (including the magnet) coupled with the 
compliant members (spring) along this axis will produce a vabriation to make the magnet to go through the coil, and 
then magnetic flux changes with time, which induces the electricity production for harvesting. 

 

 
Figure 3. Energy harvesting devices: (a) Energy harvesting device based on a monolithic decoupled XYZ CPM; (b) 
Perspective view of FEA resutls in deformation; (c) Top view of FEA results in deformation 
 
 
2.2 Redundant design for monolithic fabrication 
 
A major drawback of the monolithic fabrication is that the failure (yield/fraction) of certain compliant beam(s) can 
cause the whole system’s permanent strike due to the fact that the failed wire beam is difficult to replace. However, the 
present monolithic decoupled XYZ CPM in this paper is a redundant design with three redundant spatial four-beam 
modules inactive (or four cubic stages fixed), and therefore the redundant building blocks (or fixed cubic stages) can 
swap the functions with certain (fatigue) failure’s mobile building blocks (or mobile cubic stages) to extend the system 
life.  
  In our design, each of three passive spatial four-beam modules undergoes two translations, and is prone to fail 
compared to other motion spatial modules to produce only one translation. If either of the three passive spatial 
four-beam modules fails, the base frame originally connecting the four fixed cubic stages can be moved to connect with 
the four originally mobile cubic stages in their initially undeformed configuration. Such a way, the life of the XYZ CPM 
is retrieved. A more clear illustration is shown in Fig. 4. 
 

 
Figure 4. Demonstration of redudant design (rendered) 

 
 
2.3 Variation for the monolithic decoupled XYZ CPM 
  
It is easy to understand that the above proposed monolithic decoupled XYZ CPM have same motion range along each 
axis, i.e. a cubic workspace. However, for the purposes that the motion range in a certain direction is required 
larger/smaller than the other(s) and also that each leg has same payload (isotropic) (Kong and Gosselin, 2002; Werner et 
al, 2010), a variation can be made from the present monolithic decoupled XYZ CPM as shown in Fig. 5.  
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  This variation has the decoupling property with regard to the original coordinate system X1Y1Z1. But in the new 
coordinate system XYZ, the motion is not decoupled. The motion relationships between the two coordinate systems will 
be followed in the subsequent section. 
  

 
Figure 5. A variation for the monolithic decoupled XYZ CPM 

    
 
3 Modelling of the monolithic decoupled XYZ CPM 
 
In order to analyzing the performance characteristics of the monolithic decoupled XYZ CPM (Fig. (2(a)), it is essential 
to carry out the kinetostatic modelling and dynamic modelling. 
 
 
3.1 Kinetostatic modelling 
 
References (Hao, 2011; Hao and Kong, 2012b) have given the detailed analytical modelling derivation for an XYZ 
CPM using identical spatial double four-beam modules, therefore, in this paper, we will directly use the associated 
linear equations from these references with differenct geometrical parameters substitution. The purpose for linear 
kinetostatic modelling is to approximately estimate the displacements of the centers of the XYZ-, X-, Y-, and Z-stage 
under the action of loads at the centers of those stages to suit different applications. Here, the normalization-based 
strategy (Hao et al, 2011; Hao and Kong, 2013) is also adopted to represent loads and displacements using the 
corresponding lower-case letters, which refers to that all translational displacements and length parameters are 
normalized by the beam actual length L, forces by EI/L2, and moments by EI/L. Here, E and I denotes the Young's 
modulus and the second moment of the area of a symmetrical cross-section, respectively.  

The compliance matrix for the CPM system (Fig. 2(a)) with regard to the center of the XYZ-stage in the global 
coordinate system XYZ, i.e. the loads and displacements are defined at the center, is obtained as  

11
leg3leg2leg3leg2

1
leg1leg2leg1

1
cpmcpm )( −−−− ++== RKRKRKRKC                        (1) 

where  
Ccpm and Kcpm are the compliance and stiffness matrices of the CPM system, respectively; 
Kleg2 is the stiffness matrix of Leg 2 (with the Y-stage) defined at the center of XYZ-stage in the global coordinate 
system, which is also a reference based on which the stiffness (or compliance) matrices for Legs 1 and 3 can be 
obtained by appropriate coordinate transformation such as 1

leg1leg2leg1leg1
−= RKRK , and 1

leg3leg2leg3leg3
−= RKRK ; 

Rleg1 and Rleg3 are the rotation transformation matrices for Legs 1 and 3, respectively, which are given as 
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The stiffness matrix of Leg 2 can be represented as 
1T

ppp
T
m3

1
ppmppm3leg2 ])([ −− += JCJJRCRJK                                 (2) 

where 
Cm is the compliance matrix of the spatial four-beam module (compliant PPR joint (Fig. 1(b))) in Leg 2 with regard to 
the center of the bottom-plane of its own motion stage in its own local coordinate system; 
Cp is the compliance matrix of the compliant P joint (Fig. 1 (c)) in Leg 2 with regard to the Y-stage center in the global 
coordinate system; 

Y1 
X1 

Z1 

Y1 
Z1 

X1 

(a) View 1 (b) View 2 



 

6 
 

Jm3 and Jp are the position transformation matrices, and Rpp is the rotation transformation matrix, which are detailed 
below: 
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The compliance matrix of the compliant P joint is further represented as 
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where Jm1 and Jm2 are the position transformation matrices, and Rm is the rotation transformation matrix, which are 
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The compliance matrix of the spatial four-beam module is further derived as 
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Here, x1'=0, y1'=(w−t)/2, and z1'=(w−t)/2; x2'=0, y2'=(w−t)/2, and z2'=−(w−t)/2; x3'=0, y3'=−(w−t)/2, and z3'=−(w−t)/2; 
x4'=0, y4'=−(w−t)/2, and z4'=(w−t)/2. d=12/(t)2 for square cross-section with normalized thickness t. v is the Poisson’s 
ratio of the material. 

Based on the above modelling results, the relationships between the displacements at the center of the XYZ-stage and 
the loads acting at both the actuation points and the centers of the XYZ-, X-, Y-, and Z-stage are derived as 
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zazyazxazzazyazxazaz ],,,,,[ −−−−−−= mmmfffF , which denote the load vectors at the centers of the X-, Y- and Z-stage, 
respectively. As an example for explaining the force symbols, fax-x, fax-y and fax-z denote the forces acting at the centers of 
X-stage along the X-, Y-, and Z-axes, respectively;  
Jpai (i=1, 2, 3) is the position transformation matrix for loads in each leg, which is shown below 
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Here, x1'=−(1+w), y1'=0, and z1'=0; x2'=0, y2'=−(1+w), and z2'=0; x3'=0, y3'=0, and z3'=−(1+w). 
We can then obtain the displacements at the center of the X-, Y-, and Z-stage as 
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where 
T

zaxyaxxaxaxaxaxax ],,,,,[ −−−= θθθzyxX , T
zayyayxayayayayay ],,,,,[ −−−= θθθzyxX , and 

T
zazyazxazazazazaz ],,,,,[ −−−= θθθzyxX , which denote the displacement vectors at the centers of the X-, Y- and Z-stage. 

As an example for explaining the displacement symbols, xay, yay, and zay denote the translational displacements of the 
Y-stage center along the X-, Y- and Z-axes, respectively; 
Jpi (i=1, 2, 3) is the position transformation matrix for loads in each leg as 
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Here, x1'=(1+w), y1'=0, and z1'=0; x2'=0, y2'=(1+w), and z2'=0; x3'=0, y3'=0, and z3'=(1+w). 
It should be noted that the above derived analytical models are capable of comprehensively reflecting the 

displacements of any stage under loading at any stage, and are accurate enough under small motion range. The proposed 
analytical models can be used for quick design synthesis, and also offer a reference for further nonlinear kinetostatic 
analysis and optimization. 

 
3.2 Dynamic modelling 
 
Accurate dynamic equations can be obtained from the classical Lagrange equation building on the above kinetostatic 
modelling results. However, we only give approximate estimatations of the natural frequencies of the monolithic 
decoupled XYZ CPM using simplified stiffness models. 

The actual primary translational stiffness along each axis can be simplied as 

3

4

3 161216
L

ET
L
EIK == .                                       (7) 

Then the equal first, second or third-order natural frequency is derived as 
π2/)/(I MKf =                                           (8) 

where M is the actual motion mass along each axis only considering two stages neglecting the compliant beams’ mass.  
Given that all stages are identical, M is double of mass of each (cubic) stage, which is equal to 2 ρW3 with a density 

of ρ. So Eq. (8) is rewritten as 

πρπρ 2/)/(82/)/(8 234334
I LwEtLWETf == .                         (9) 

 
3.3 Resutls analysis 
 

Let the material be a standard aluminum alloy AL 6061-T651with Young’s Modules E=69Gpa and Poisson’s ratio 
v=0.33. Also, we define the geometrical parameter: L=20mm (beam length), W=20mm (cubic stage’s side-length), 
T=1mm (beam thickness) (i.e. a system dimension of 60mm×60mm×60mm) for the initial performance analysis. 

Given an example of only three forces acting at the centers of the X-, Y- and Z-stage for the motion stage applications, 
the normalized load-displacement relationships based on Eq. (5) and (6) can be expressed as 
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(10b) 
The above equations can clearly show the performance characteristics for any three-axis loading. For example, under 

a single force, the ratio of magnitude of the parasitic rotation about the X- (or Z-axis) to the primary translation along 
the Y-axis can be obtained based on Eq. (10a) as 
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The cross-axis coupling effect, for example the effect of fay-y upon xs, is then determined using Eq. (10a) by 
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Moreover, the lost motion percentage under a single loading can be written using the results in Eqs. (10a) and (10b) 
as 
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Equation (10a) shows that the force applied along an axis cannot produce the parasitic rotation about this axis. And 
two equal forces applied along two out of three axes, respectively, cannot cause the parasitic rotation about the third 
axis either. 

In addition, simple comparisons, including kinetostatic and dynamic, between the analytical results and the FEA 
results (using Solidworks) are given in the Table 1, which shows good agreements in primary motion displacement, 
parasitic rotational angles, and modal frequency. There is relatively large difference only in cross-axis coupling motion, 
which may result from the error of the linear analytical modeling or that of the FEA results, but have reasonable 
estimation in the changing trends. 
 
 
Table 1. Comparisons of the analytical results and the FEA results 
 

Methods 

Displacements under single loading: Fy=50 N Modal frequency (Hz) 

Xs 
(mm) 

Ys 
(mm) 

Zs  
(mm) 

θsx  
(rad) 

θsy  
(rad) 

θsz  
(rad) 

First 
mode 

Second 
mode 

Third 
mode 

Analytical results −0.0049 0.3715 −0.0049 −3.87×10−4 0 3.87×10−4 284 284 284 

FEA results −0.0081 0.3884 −0.0077 −4.11×10−4 −3×10−7 4.20×10−4 273 273 281 

Difference 
|(Analytical-FEA)/FEA| 39.51% 4.35% 36.36% 5.84% negligible 7.86% 4.03% 4.03% 1.07%

 
 
 
 
4 Performance characteristics analysis 
 
In this section, performance characteristics analysis for the monolithic decouple XYZ CPM as the motion stage (Fig. 
2(a)) is conducted to see how the geometrical parameters’ change can affect the performance characteristics and which 
performance characteristic is most sensitive to a geometrical parameter. This analysis will provide an initial 
optimization. 

Figures 6, 7, and 8 illustrate the performance characteristics, defined in Eqs. (11), (12) and (13), against the 
normalized beam thickness, t, and the side-length, w, of the (cubic) stage under the conditions of specified material and 
beam length. Some key findings are summarized as follows. 

a) The parasitic rotation (Fig. 6) is influenced by both w and t, and increases with the increase of t and decreases with 
the increase of w. It is more sensitive to t compared with w. The smaller w is, the larger the effect of t on the parasitic 
rotation is. Similarly, the larger t is, the larger the effect of w on the parasitic rotation is. 

b) The cross-coupling (Fig. 7) is also affected by both w and t, and increases with the increase of t or with the 
decrease of w. It is also more sensitive to t in comparison with w. The smaller w is, the larger the effect of t on the 
cross-coupling is, and the larger t is, the larger the effect of w on the cross-coupling is. 

c) The lost motion (Fig. 8) is insensitive to w, and only is dominated by t. the smaller t, the smaller the lost motion is. 
In addition, under the specified material, the translational motion range (same motion range along each axis) is only 

affected by the normalized beam thickness, t, and insensitive to the side-length, w, of the stage. The decrease of t can 
improve the motion range. 

We can conclude from the above results that desired performance characteristics (large-range motion, minimized 
parasitic rotation, minimized cross-coupling and minimal lost motion) can be achieved by employing smaller t and 
appropriately larger w under the allowable conditions such as the minimum fabrication thickness, the overall system 
size, and stiffness/frequency requirements. 

It is observed from Fig. 9 (or Eq. (9)) that the first natural frequency goes up with the increase of t and/or the 
decrease of w, and a little more sensitive to t. Therefore, in order to improve the natural frequency characteristic under 
small t and/or large w, we can enhance the system stiffness through using a better elasticity-average configuration with 
more beams in each spatial module as indicated in Fig. 2(b).  
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Figure 6. Parasitic rotation effect 
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Figure 7. Cross-coupling effect 
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Figure 8. Lost motion percentage 
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Figure 9. Natural frequency 

 
 

The motion of the variation (Fig. 5) in the coordinate system XYZ can be further determined by the following 
equations 

Z=(X1z
2+Y1z

2+Z1z
2)0.5 subject to X1z=Y1z=Z1z with all positive values; 

Y=(X1y
2+Y1y

2+Z1y
2)0.5 subject to Y1y=Z1y with both negtive values and |Y1y |=0.5X1y; 

X=(Y1x
2+Z1x

2)0.5 subject to |Y1x|=|Z1x| with a positive Z1x and a negtive Y1x 
(14) 

where X, Y, and Z is the positive resultant motion in the coordinate system XYZ. X1z, Y1z, and Z1z are the motion along 
the X1-, Y1-, and Z1-axis in the coordinate system X1Y1Z1 contributing to Z. Y1y, and Z1y are the motion along the Y1-, 
and Z1-axis in the coordinate system X1Y1Z1 contributing to Y. X1x, Y1x, and Z1x are the motion along the X1-, Y1-, and 
Z1-axis in the coordinate system X1Y1Z1 contributing to X. 
  Let the motion range along each positive axis in the coordinate system X1Y1Z1 be δ, the following constraint 
conditions should be met: 

0<=X1=X1y+X1z<=δ; 
-δ<=Y1=Y1x+Y1y+Y1z <=δ; 
-δ<=Z1=Z1x+Z1y+Z1z <=δ. 

(15) 
  From the above resutls, it is directly obtained that the maximal single-axis motion along the positive X-axis is 20.5δ, 
the maximal single-axis motion along the positive Y-axis is 1.50.5δ, and the maximal single-axis motion along the 
positive Z-axis is 30.5δ. 
  The workspace for this variation in Octant I of the coordinate system XYZ can be obtained using numerical approach 
based on the above results (Eqs. (14) and (15)), and is shown in Fig. 10. Note that the number of points in Fig. 10 
depends on the set-up step size in the numerical approach. 
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                (a) Top view                       (b) Front view                     (c) Side view 
 

Figure 10. Workspace of the variation in Octant I of the coordinate system XYZ   
 
 

5 Discussions 
 
The large motion range requires a large-range linear actuator, which cannot be a PZT actuator. Although amplifiers as 
active compliant P joints can be combined with the PZT actuator to enlarge the motion range adversely, they lead to 

Optimal point 
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relatively low off-axis stiffness and augment the minimum incremental motion of the actuators, i.e. poor resolution. 
Thus, one needs to use the linear VC actuator for millimeter-level actuation range, which will generate heat to the 
mechanism. 
  The monolithic design proposed in this paper is an over-constraint design in both the individual spatial multi-beam 
modules and the three identical legs. Although the problems of over-constraint are largely mitigated by the fact that the 
mechanism is monolithic and requires no assembly, there are still problems with its over-constraint. For instance, when 
VC actuators are used, the temperature will vary over the mechanism producing stress building up that can be 
problematic for precision performance. Moreover, when the mechanism heats up, the stage will drift as the design is not 
fully symmetric and thus not considered thermally stable. 
 
 
6 Conclusions 
 
This paper has presented and modelled a monolithic decoupled XYZ CPM (Fig. 2(a)) for multi-function applications: 
motion/positioning stages, acceleration/force sensors, and energy harvesting devices. The proposed monolithic 
decoupled XYZ CPM uses only identical spatial multi-beam modules as the building blocks involving three geometrical 
parameters and can be fabricated by the planar manufacturing technologies (EDM) without assembly as the 2D 
compliant mechanisms.  
  In addition, the monolithic decoupled XYZ CPM with enhanced stiffness (Fig. 2(b) and Fig. 2(b)) and the variation 
with different motion range in each axis and same payload in each leg (Fig. 5) have been proposed. Redundant design 
for monolithic fabrication has been discussed in this paper, which can be used to extend the CPM’s life.  

The derived analytical kinetostatic models can capture the displacements of any stage under loading at any stage. The 
performance characteristics analysis for the motion stage application has been implemented to identify the optimal 
geometrical parameters for beam thickness and stage dimension.  

It is noted that the proposed design may promote the fabrication using the carbon nanotubes or carbon fibers, which 
may lead to novel compliant mechanisms used in the emerging MEMS or nano-electro-mechanical-systems (NEMS). 
Experiment verification, nonlinear modelling, fatigue analysis, and optimization deserve further investigation in the 
near future. 
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Table 1. Comparisons of the analytical results and the FEA results 
 
Figure 1. The generating process of a decoupled XYZ CPM: (a) A decoupled 3-PPPR XYZ PKM (Hao, 2011; Hao and 
Kong, 2012b) with three planes associated with the passive PPR kinematic chains orthogonal; (b) A compliant 
planar-motion PPR joint (Hao, 2011; Hao et al, 2011; Hao and Kong, 2013): spatial four-beam module that is composed 
four identical symmetrical square wire beams spaced around a circle uniformly; (c) A compliant P joint (Hao, 2011; Hao 
and Kong, 2012b): two spatial four-beam modules connected in parallel, two planes associated two PPR joints of which 
are orthogonal; (d) A decoupled XYZ CPM using identical spatial four-beam modules 
 
Figure 2. Monolithic decoupled XYZ CPMs: (a) a monolithic decoupled XYZ CPM with three geometrical parameters; 
(b) a monolithic decoupled XYZ CPM with enhanced stiffness via reducing the cubic stage mass; and (c) a monolithic 
decoupled XYZ CPM with enhanced stiffness via increasing the beam number (all configurations have same motion 
range) 
 
Figure 3. Energy harvesting devices: (a) Energy harvesting device based on a monolithic decoupled XYZ CPM; (b) 
Perspective view of FEA resutls in deformation; (c) Top view of FEA results in deformation 
 
Figure 4. Use of redudant design (rendered) 
 
Figure 5. A variation for the monolithic decoupled XYZ CPM 
 
Figure 6. Parasitic rotation effect 
 
Figure 7. Cross-coupling effect 
 
Figure 8. Lost motion percentage 
 
Figure 9. Natural frequency 
 
Figure 10. Workspace of the variation in Octant I of the coordinate system XYZ   
 
 


