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Electrical properties of contact-interfaces in germanium nanowire field effect transistor devices are

studied. In contrast to planar bulk devices, it is shown that the active conduction channel and gate

length extend between and underneath the contact electrodes. Furthermore, direct scaling of

contact resistivity and Schottky barrier height with electrode metal function is observed. The

associated pinning parameter was found to be c ¼ 0:65 6 0:03, which demonstrates a significant

suppression of Fermi level pinning in quasi-one-dimensional structures.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821996]

The electrical performance of semiconductor nanowire

(NW) devices has been put under scrutiny for over a

decade.1–5 Properties of electrode/NW contact-interfaces are

of particular interest6–10 due to the potential application of

quasi-one-dimensional materials into future nanosensing and

nanoelectronic devices.11 It has been proposed by theory that

Fermi level pinning effects, which frequently hinder the per-

formance of planar devices,12 are expected to be strongly

reduced in side contacts to NW channels due to their con-

fined geometry.13,14 Although several studies regarding the

contact-resistivity in semiconducting NW devices can be

found,6–10 an analysis addressing both the contact-interface

properties and also verifying the plausibility of common

bulk-based extrapolation methods is to-date not presented.

Germanium NWs provide an excellent basis for such a

study. Since contacts to planar Ge have been demonstrated

to exhibit strong Fermi level pinning,15,16 the effects of con-

fined geometry on band realignment are expected to be most

prominent in this semiconductor material.

Here, we show a comprehensive study on side contacted

Ge NW devices. First, the electrically active conduction

channel and gate length are studied in order to provide accu-

rate evaluation of intrinsic transport parameters. On that ba-

sis, the device characteristics are analyzed, and scaling of

specific contact resistivity and Schottky barrier height with

electrode work function is shown.

Ge NWs were synthesized from Au nanoparticles cata-

lysts via supercritical fluid-liquid-solid (SFLS) method.

Details of SFLS technique can be found in earlier works.17,18

Two types of Ge NWs grown at different conditions19 were

used (referred to as “type A”17 and “type B” (Ref. 18)) to

demonstrate independence from the Ge NW synthesis condi-

tions. High resolution transmission-electron-microscopy

(TEM) (Fig. 1(a)) confirmed that both NW types were

monocrystalline, with few structural defects and covered by

a 2–4 nm thin low-density amorphous oxide layer.

For electrical characterization, the NWs were deposited

onto SiO2/Si substrates and contacted via electron beam li-

thography in multiterminal configuration (Fig. 1(b)). The

separation between neighbouring electrodes s varied from

700 to 3000 nm and the contact width D was between 350

and 600 nm for individual devices. Electrode height was set

at 80 nm to ensure continuous NW coverage and to avoid

surface scattering effects in the electrodes.20 Different metals

FIG. 1. (a) TEM image of a Ge NW covered by 3 nm amorphous oxide

layer. (b) SEM image of a six-terminal device layout with varied electrode

separation s (#1, #2, #3, shown for a 41 nm Pt-contacted NW). Inset (b) NW

device diagram (side-view) with electrodes of width D separated by distance

s. (c) TEM image of a cross-section of an Au-contacted 65 nm Ge NW. Inset

(c) Zoom-out of main figure.
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(Pd, Pt, Au, and Ag) were selected to account for work func-

tion differences.21

Cross-sectional lamellas of the electrode/NW regions

were prepared using focused ion beam to study the quality

of the contact-interfaces via TEM (Fig. 1(c)). Energy-

dispersive X-ray spectroscopy of the contact-interface region

showed the absence of oxide or contaminants for all elec-

trode materials.19

Two- and four-terminal electrical measurements of the

Ge NW devices were taken between electrodes with varied

electrode-separations. The transfer characteristics (back-

gated) of all wires tested showed a p-type field effect behav-

iour. Based on four-point and transfer measurements,19 the

NW resistivity, qNW / L�1
C , and mobility, lNW / L2

G=LC, are

obtained. The extracted values depend therefore on the elec-

trically active conduction-channel, LC, and the gate-length,

LG. To determine the correct LC, the material-intrinsic qNW

is used as it must be independent of the sample geometry—

that is, independent of the separation of contacting electro-

des. In Fig. 2(a), qNW is calculated for three assumed LC

values. The analysis shows unambiguously that qNW is the

same independent of the electrode separation along a single

NW only if LC ¼ sþ 2D is considered. Similarly, the active

gate length LG can be found when addressing the mobility,

and was found to be commensurate with LC (Fig. 2(b)). This

is a counterintuitive and highly non-trivial result, as the

assumption LC ¼ s ¼ LG leads to resistivity overestimate

and mobility underestimate, becoming more dramatic the

higher the D=s ratio.

In our devices, values for qNW were found to range from

0.03 to 4.1 X m, whereas lNW varied between 0.08 to 390

cm2 V�1 s�1. The carrier concentration, Nd, was found to

vary from 2� 1014 to 3.2� 1018 cm�3 and was interpreted as

the majority carrier (dopant) density since the measured val-

ues are well above the intrinsic concentration in Ge

(2.4� 1013 cm�3).21 qNW was significantly higher, while lNW

lower than previously reported for bulk Ge at the same dop-

ing levels.22

To address the work function dependence of the specific

contact resistivity, qC, the total nanodevice resistance, Rtot,

needs to be considered first. Rtot is the sum of NW resistance,

RNW , total contact resistance, RC, lead resistances, Rlead , and

geometrical contributions, Rgeom, due to current crowding

effects,

Rtot ¼
4qNWLC

pd2
þ RC þ Rlead þ Rgeom; (1)

where RC defines either the source or drain electrode/NW

interface resistance depending on the bias.19

Typical NW resistances were of the order of several MX
up the GX range. Rlead measured in short-circuited structures

were less than 1 kX, and Rgeom evaluated from a lateral cur-

rent crowding model for cylindrical NWs introduced in an

earlier work of ours23 was found to be two orders of magni-

tude smaller than RC and RNW .19

The specific contact resistivity, qC ¼ RCAC, of the

metal-electrode/NW interface was calculated within

the Transmission Line Model22 using the interface area

AC ¼ pbdD for b � 0.5–0.75 corresponding to the fraction

of NW circumference covered with electrode metal. In all

NW samples studied, qC increases with qNW (Fig. 3(a)) but

decreases towards higher Nd values (Fig. 3(b)), which is a

signature of the lowering of the potential-barrier at the con-

tact with augmenting Nd. A separation of qC values into dif-

ferent branches is observed following the different work-

functions of the electrode metals for both NW types. This

result unambiguously demonstrates the suppression of Fermi

level pinning in side-contacted Ge NW devices. The fact that

the same effect is observed for two types of differently

grown NWs proves that the effect is of general nature.

More intriguingly, for Ag contacts qC shows a linear

log-log dependence on Nd indicating ohmic character of the

interface24 (Fig. 3(b)). On the other hand, Pd and Au contacts

give Schottky-type non-linear log-log qC � Nd depend-

ence.24 The observed scaling of qC with qNW and Nd (Fig. 3)

suggests that the Pt contacts are of Schottky type as well.

Numerical analysis of the I - V characteristics of these devi-

ces confirms this conclusion.19

To gain insight into the extent of energy level realign-

ment in Ge NW devices with the Schottky-type Au, Pd, and

FIG. 2. (a) NW resistivity values extracted from measurement across elec-

trode pairs with different separation (#1–3, see Fig. 1(c)) for three different

channel lengths. The values coincide for all probing positions when

LC ¼ sþ 2D. (b) Field-effect mobility estimates extracted from transfer

measurement across electrode pairs with different separations (analogously

to (a)). Values coincide for the case of LG ¼ sþ 2D ¼ LC. Data are shown

for a 60 nm Pd-contacted Ge NW.

FIG. 3. Contact resistivity values plotted as function of (a) NW resistivity

and (b) carrier concentration. Full and open symbols denote type A and type

B NWs, respectively. Linear log-log dependence of contact resistivity on

carrier concentration in the case of Ag contacts indicates ohmic character of

the contact-interface.
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Pt contacts, the potential barrier height, USB, was estimated

using the Thermionic Emission (TE) model,24

USB ¼ kBT ln
qqCA�T2

kBT
; (2)

with the elementary charge q, Boltzmann constant kB, and

the Richardson constant A* in p-type Ge equalling

3.48� 105 A m�2 K�2 at temperature T¼ 300 K. Based on

our data, we excluded tunnelling and electron-hole recombi-

nation processes.19 For the ohmic case (Ag contacts), USB

was calculated evaluating the relationship25

qC / exp �USB

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ese0m�

Nd

r !
; (3)

with the effective hole mass m*¼ 0.28 m0, m0 being the free

electron mass, es ¼ 16, e0 the dielectric, and �h the reduced

Planck constant. USB for Ag contacts was found to be

0.02 6 0.01 eV, which lies in the range predicted for

unpinned Ag/Ge interfaces.19,26

The estimated USB values for Au, Pd, and Pt contacts

(Fig. 4(a)) are negative, which is characteristic for depletion

(Schottky) contacts to p-type semiconductors.24 A weak

decrease of USB towards higher Nd is due to a built-in poten-

tial resulting from the curvature of the contact-metal/NW

interface.14 The pinning factor c � j @USB

@Um
j ¼ 0.65 6 0.03

(Fig. 4(b)) is significantly larger than 0 (fully pinned sys-

tems), in unambiguous agreement with Fermi level pinning

suppression already shown by the data in Fig. 3.

Our study provides experimental evidence of Fermi-

level-pinning alleviation in side-contacted semiconductor

NWs—a direct consequence of a transition from planar to

1D-confined channel geometry. The results demonstrate that

the use of NW materials offers ways for band-engineering at

metal/semiconductor interfaces not possible in bulk.

Furthermore, the active conduction-channel and gate-length

in the NW devices was found to extend below the full

contact-electrode. The findings are in agreement with our

earlier study on metallic NWs,23 demonstrating a general

trend in quasi-1D nanomaterials.
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FIG. 4. (a) Schottky barrier heights for Au, Pd, and Pt contacts showing

weak decrease with carrier concentration associated with image-field-force

assisted barrier lowering. (b) Average measured Schottky barrier heights vs.

metal work function. Linear fitting yields the pinning parameter

c¼ 0.65 6 0.03, which indicates an exceptionally strong depinning of the

Fermi level in side-contacted Ge NW devices.
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