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11 
Abstract  12 

Insect pests now pose a greater threat to crop production given the recent emergence of insecticide 13 
resistance, the removal of effective compounds from the market (e.g. neonicotinoids) and the 14 
changing climate that promotes successful overwintering and earlier migration of pests. As 15 
surveillance tools, predictive models are important to mitigate against pest outbreaks. Currently they 16 
provide decision support on species emergence, distribution, and migration patterns and their use 17 
effectively gives growers more time to take strategic crop interventions such as delayed sowing or 18 
targeted insecticide use. Existing techniques may have met their optimal usefulness, particularly in 19 
complex systems and changing climates. Machine learning (ML) arguably is an advance over current 20 
capabilities because it has the potential to efficiently identify the most informative time-windows 21 
whilst simultaneously improving species predictions. In doing so, ML is likely to advance the length of 22 
any integrated pest management opportunity when growers can intervene. As an example, we studied 23 
the migration of 51 species of aphids, which include some of the most economically important pests 24 
worldwide. We used a combination of entropy and C5.0 boosted decision trees to identify the most 25 
informative time windows to link meteorological variables to aphid migration patterns across the UK. 26 
Decision trees significantly improved the accuracy of first flight prediction by 20% compared to general 27 
additive models; further, meteorological variables that were selected by entropy significantly 28 
improved the accuracy by a further 3-5% compared to expert derived variables. Coarser (e.g. monthly) 29 
weather variables resulted in similar accuracies to finer (e.g. daily) variables but the most accurate 30 
model included multiple temporal resolutions with different period lengths. This combined resolution 31 
model alone highlights the ability of machine learning to accurately predict complex relationships 32 
between species and their meteorological drivers, largely beyond the experience of experts in the 33 
field. Finally, we identified the potential of these models to predict long-term first flight patterns in 34 
which machine learning attained equally high predictive ability as shorter-term forecasts. Whilst 35 
machine learning is a statistical advance, it is not necessarily a panacea: experts will be needed to 36 
underpin results with a mechanistic understanding, thus avoiding spurious relationships. The results 37 
of this study should provide researchers with an automated methodology to derive and select the 38 
most appropriate environmental variables when predicting ecological phenomena, while 39 
simultaneously improving the accuracy of such models. 40 
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Introduction: 42 

The role of meteorological variables in identifying the drivers of ecological phenomena is well 43 
established (Gough et al. 1994; Awmack et al. 1997; Zhou et al. 1997; Harrington et al. 2001; Bale et 44 
al. 2002; Lobo et al. 2002; Awmack et al. 2004; Cocu et al. 2005; Westgarth-Smith et al. 2007; Lima et 45 
al. 2008; Estay et al. 2009; Sheppard et al. 2016; Thackeray et al. 2016); however, the use of basic or 46 
incorrectly identified weather signals can lead to unreliable predictions, and subsequently 47 
inappropriately timed management strategies (van de Pol 2016). Selecting the ‘best’ meteorological 48 
variables that are indicative of the ecological phenomena under study is therefore critical. Despite this 49 
importance, in a recent meta-analysis, van de Pol et al. (2016) found that variables were often selected 50 
based on narrow hypotheses founded on previous studies (66%), with little thought given to what 51 
other meteorological variables affect the phenomena of interest (86% only used a single weather 52 
variable), over what time period (62% did not refine the time window), or how these variables should 53 
be represented (55% only considered the arithmetic mean). Furthermore, 28% gave no justification 54 
for the choice of meteorological variable chosen. While many studies obviously do give considerable 55 
thought to the choice of meteorological variables, this is not always explicitly reported by authors, and 56 
moreover the issues identified by van de Pol et al. (2016) are indicative of a potentially broader issue 57 
in predictive ecological modelling.  58 

Aphids are a major pest of global importance, causing substantial damage to a wide variety of 59 
commercial crops in agriculture, forestry, and horticulture. Aphids cause feeding damage and transmit 60 
plant viruses to hosts. For example, the worldwide distributed peach-potato aphid Myzus persicae is 61 
widely polyphagous feeding on over 40 plant families (CABI 2017) and transmits over 100 plant viruses 62 
mediated by its highly adaptive and plastic life cycle (Bass et al. 2014). The need to better understand 63 
the emergence, distribution, and migration patterns of such serious pests remains an on-going 64 
challenge for growers. Ecological indicators (such as first flight day) are an important tool for 65 
understanding aphid phenology in terms of the forthcoming season, and by understanding the 66 
environmental drivers responsible for aphid migration, predictions can be made. This provides land 67 
managers, farmers (small and large scale), forestry officials, and governments with vital decision 68 
support on species emergence, distribution, and migration patterns that would reduce the 69 
prophylactic use of insecticides.  70 

Aphids have a low developmental temperature threshold of approximately 4°C, and above that 71 
continue to develop at a rapid rate (estimated generation time of 120 degree days) assuming that the 72 
temperatures do not exceed the optimum development threshold of approximately 25°C (Harrington 73 
et al. 2007). Once adult, the temperature thresholds for initiating first flight are considered to range 74 
from 11°C to 16°C for different aphid species (Irwin et al. 2007). In a recent study, Bell et al. (2015) 75 
corroborated that harsher winters (measured using the North Atlantic Oscillation – NAO) resulted in 76 
later first flight dates, while an increase in accumulated degree days (ADD) above 16°C in April and 77 
May had a linear relationship with earlier first flight dates for common species in the UK. While the 78 
importance of the host plant condition (Awmack and Leather 2002) and the emigration from host 79 
plants due to critical population size (Dixon et al. 1968) are important determinants for first flight 80 
initiation, the spatial scale of the meteorological drivers used in predictive entomological and 81 
ecological studies arguably supersede these biotic interactions (Stoner and Joern 2004; Wisz et al. 82 
2013; Miller and Holloway 2015).  83 

Although the importance of temperature and NAO in understanding and predicting aphid flight dates 84 
cannot be understated, the derivation of these variables is subject to a number of conceptual and 85 
methodological uncertainties. In particular, the effect of the temporal scale used in variable selection 86 
and how to select the most informative parameter needs to be considered. The temporal extent (i.e. 87 



the overall time-period) and temporal resolution (i.e. the frequency of data collation, hourly, daily etc) 88 
utilised for generating environmental variables will have important consequences for any inferences 89 
made from resulting models.  90 

For both annual and perennial species, the use of long-term averages can mask extreme 91 
meteorological events that are important in determining specific indicators such as emergence, 92 
migration, or death. Studies have subsequently begun to explore the ‘window’ of time over which 93 
environmental variables are generated. For example, Thackeray et al. (2016) investigated the 94 
differences in the seasonal periods within which climate had the most positive and negative 95 
correlations with phenology of a large number of terrestrial and marine UK species, that included 96 
aphid first flights. Thackeray et al.'s (2016) climate sensitivity profile approach improved the 97 
understanding of long-term changes in phenological responses that are a consequence of climatic 98 
changes. Similarly, van de Pol et al. (2016) introduced climwin, an R package that uses the Akaike 99 
Information Criterion (AIC) to compare models fit using different predictor windows (Bailey and van 100 
de Pol 2016). Studies have therefore begun to adopt a more flexible methodology in defining the 101 
temporal extent used to generate the environmental variables that describe the physiological 102 
tolerances of insect species (e.g. Cocu et al. 2005; Thackeray et al. 2016) as well as a large number of 103 
other organisms (e.g. Reside et al. 2010; Price et al. 2013; Gillings et al. 2015; Selwood et al. 2015; 104 
Fancourt et al. 2015; Holloway et al. 2016); however, there remains a need for research to identify 105 
ecologically meaningful environmental time windows. 106 

Like many organisms, environmental conditions drive each aphid life stage and these accumulate over 107 
a period to determine when first flight will occur (Harrington et al. 2007). However, there is a trade-108 
off between data-volume and information that would otherwise make models slow to run and 109 
unwieldy. For example, daily data provides a highly detailed, but possibly noisy account of the 110 
temperature preceding the first-flight, while monthly data provides a more smoothed representation 111 
of the preceding conditions but loses nuances, such as warm weather spikes, that may have profound 112 
implications for migration to begin. It is unknown whether coarsening the resolution significantly 113 
reduces the accuracy of predictive models, or whether daily data will result in an over-fitted model. In 114 
certain instances, a combined resolution model may be more informative and capture the relevant 115 
drivers at differing scales.  116 

Machine Learning (ML) is a tool, which could resolve variable selection when modelling ecological 117 
indicators across a large number of species with potentially differing meteorological drivers. 118 
Applications of ML in ecological modelling are diverse, and due to their ability to model complex, 119 
nonlinear ecological relationships have exhibited greater explanatory and predictive ability than 120 
conventional, parametric approaches (Fielding 1999; Olden et al. 2008). ML has been utilized across 121 
an array of ecological disciplines to identify migration patterns of species (Guilford et al. 2009), 122 
quantify species richness (Knudby et al. 2010), automatically classify bird calls (Acevedo et al. 2009), 123 
and predict habitat suitability (Franklin 2009).  124 

Here we will use a machine learning approach to inform and predict aphid migration patterns using a 125 
suite of meteorological variables. We focus on three main research questions:  1) does the modelling 126 
approach influence the accuracy of predictions? 2) does data representation and variable choice in 127 
predictive models affect the accuracy of the first flight indicator? and 3) does temporal scale, in terms 128 
of a) extent and b) resolution affect first flight predictions? 129 

Methodology 130 

Data Collection 131 



In the UK, the Rothamsted Insect Survey (RIS) has a network of suction-traps that continuously 132 
measure the areal density of flying aphids (currently 16 traps in 2017), and provides daily records 133 
during the main aphid flying season (Harrington et al. 2007; Bell et al. 2015). Data from 17 suction 134 
traps that supplied 10,715 first flight dates for 55 aphid species were obtained from the RIS, from 1980 135 
to 2010. In order to remove any issues of sample size or bias, we removed four species that had less 136 
than 30 observations in the series, resulting in a total of 51 species for analysis. We also removed 137 
observations from January as we were unable to distinguish between genuine first flight dates and 138 
those that were a construct of the new Julian calendar year (e.g. a first flight day of 1 suggests the 139 
species did not initiate flight on January 1, but was rather already in the air on December 31). First 140 
flights were converted to a binary Julian day series. Due to the continuous monitoring of the suction 141 
traps, any date before first flight was recorded has to be associated with no flight at the location of 142 
the suction trap. Therefore, for each first flight (FF) observation, we generated a spatially explicit no 143 
flight (NF) counterpart, which occurred within 7-105 days prior to the FF day (figure based on expert 144 
opinion). This resulted in 21,228 binary observations (10,614 FF : 10,614 NF) for use as response data 145 
in the analysis.  146 

Daily temperature (mean, maximum and minimum) and pressure data was obtained from the Dark 147 
Sky API (https://darksky.net/poweredby/) from 1979 to 2010, and daily North Atlantic Oscillation 148 
(NAO - the difference in atmospheric pressure at sea level between Iceland and the Azores) data was 149 
obtained from the National Weather Service (http://www.cpc.ncep.noaa.gov/) for the same period.   150 
Accumulated degree days (ADD) were generated at different temperature thresholds using both mean 151 
and maximum temperature ranging from 11°C to 16°C and measures of winter harshness were 152 
calculated using NAO, pressure, and mean, maximum, and minimum winter temperatures. We used a 153 
variety of dynamic temporal extents to calculate both ADD and winter variables. For ADD, we 154 
calculated the temporal extent immediately preceding a FF or NF observation, including 7-, 14-, 21-, 155 
28-, 60-, 90-, 120-, 180-, and 364-days. For example, for a FF observation recorded on May 28, a 7-day 156 
extent would calculate ADD on the temperatures recorded from May 20 to May 27, while a 14-day 157 
extent would calculate ADD on the temperatures recorded from May 13 to May 27.  Similarly, we 158 
calculated winter harshness across a number of dynamic temporal extents, including 6-2, 6-3, 6-4, 6-159 
5, 5-2, 5-3, and 5-4 months prior. For example, for the FF observation recorded on May 28, a 6-2 month 160 
dynamic temporal extent would calculate the winter variable (e.g. NAO) from November 27 of the 161 
previous year to March 27. The use of this methodology allows for dynamism in selecting the time 162 
windows over which the variables are derived.  163 

To explore the effect of the resolution (granularity) on results and subsequent predictions, we used 164 
the daily data to calculate temperature data at three different resolutions: daily, weekly and monthly. 165 
We then implemented these new variables separately in the machine learning methodology. We also 166 
employed a mixed resolution model, which consisted of daily observations for a two-month extent 167 
immediately preceding FF or NF, weekly data back until six months, and then monthly data for the 168 
remainder of the year. Baseline variables were defined as those deemed the most accurate and 169 
informative by Bell et al. (2015). For FF, these were ADD16 across an extent of 60 days and NAO across 170 
an extent of 6-2 months prior. It should be noted that Bell et al. (2015) used these variables to predict 171 
Julian day of FF and not a binomial delineation of FF or NF; however, the importance of these variables 172 
in determining FF should allow for comparison.  173 

Data Analysis – Machine Learning 174 

Variable Selection: Entropy 175 

https://darksky.net/poweredby/
http://www.cpc.ncep.noaa.gov/


Variable selection is an important way to improve the performance of ML techniques. The goal is to 176 
automatically identify the most informative variables in terms of predicting the response variable. The 177 
most informative variables are then used as predictor variables in the ML process and subsequently 178 
in the final model, while the remaining variables are ignored. The entropy measure is a popular and 179 
efficient way to select variables by measuring how well (or badly) a predictor variable distributes the 180 
training data into partitions with respect to the response variable (FF or NF) values. High entropy 181 
means that the resulting partitions tend to be 'impure' (i.e. have a uniform distribution of the training 182 
examples with respect to the response variable values). For continuous predictor variables, entropy 183 
can be used to discretise the values into subintervals to maximize the purity of the resulting partitions 184 
of training examples (i.e. minimize the entropy values). Entropy for a binary classification with classes 185 
a and b (corresponding to the target variable values) is defined as: 186 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) =  −𝑝𝑝(𝑎𝑎) ∗ log�𝑝𝑝(𝑎𝑎)� − 𝑝𝑝(𝑏𝑏) ∗ log (𝑝𝑝(𝑏𝑏))   Equation 1.  187 

S denotes a partition of the training examples, and p(x) is the proportion of training examples of class 188 
𝑥𝑥 in partition S. Entropy is maximal when p(a) = p(b) = 0.5, and minimal when p(a) = 0 or p(b) = 0. The 189 
information gain of a variable is the decrease in entropy caused by splitting the training data according 190 
to its  values. We implemented entropy using the FSelector package (Romanski and Kotthoff 2016) in 191 
R 3.3.1 (R Core Team 2016).  192 

Model Selection: Decision Trees and General Additive Models 193 

We used the C5.0 decision tree algorithm to test the predictive performance of the meteorological 194 
drivers of aphid flight. The C5.0 algorithm is considered the industry standard for producing decision 195 
trees due to its ability to perform comparably well on a variety of problems (Lantz 2013). C5.0 creates 196 
a branched tree, that identifies the value of a predictor variable that yields the largest information 197 
gain for the splitting the response variable (in this case FF or NF). The generation of the tree begins by 198 
creating a root node, chooses a variable to test at the current node, and recursively creates child nodes 199 
for each of the corresponding variable values. The training set is split accordingly, and the process 200 
continues until there is no further significant information gain. The advantage of C5.0 over previous 201 
implementations is that it builds smaller and more efficient trees. Another major advantage of 202 
decision tree learning is the readability of the output (i.e. a prediction hypothesis in form of a decision 203 
tree). Here we used the C50 package (Kuhn et al. 2015) in R 3.3.1 (R Core Team 2016) to create C5.0 204 
boosted decision trees to identify meteorological drivers of aphid flight.  205 

To illustrate the ability of decision tree learning to predict first flight, we compared the decision tree 206 
models with general additive models (gams), a commonly applied statistical model that has been used 207 
to explore similar ecological questions. Gams advance from general linear models by assuming that 208 
the functions are additive and the components are smoothed (Guisan et al. 2002). We define the 209 
expected value of the response value E(Y) as: 210 

𝑔𝑔�𝐸𝐸(𝑌𝑌)� = 𝛽𝛽0 + 𝑓𝑓1(𝑥𝑥1) + 𝑓𝑓2(𝑥𝑥2) + ⋯+ 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) +  𝜀𝜀  Equation 2. 211 

where 𝑔𝑔 describes the link function, 𝛽𝛽0 is the intercept term, 𝑓𝑓 describes the smoothing function used 212 
on predictor variable 𝑥𝑥, and finally we assume that the error term, 𝜀𝜀 is constant across observations. 213 
We generated gams from the same data as outlined above, meaning we used a binomial link function 214 
to specify the distribution of the response variable and we specified the smoothing of the 215 
environmental variables using thin plate regression splines. Again, we undertook analysis in R 3.3.1 (R 216 
Core Team 2016) in the mgcv package (Wood 2011), with further details outlined in Supplementary 217 
Information 1. 218 

Model Evaluation 219 



Six accuracy metrics were utilised to evaluate the predictions. The area under the curve (AUC) is 220 
calculated by summing the area under the receiver operating curve (ROC) plot, a graph of the false-221 
positive error rate on the x-axis plotted against the true positive rate on the y-axis. Values range from 222 
0 to 1, with a perfect classification recorded as 1, while 0.5 suggests a classifier that is no better than 223 
random. Sensitivity measures the proportion of correctly predicted first flights and specificity 224 
measures the proportion of correctly predicted no flights. Proportion correctly classified (PCC) 225 
measures the total number of correctly predicted responses. The true skill statistic (TSS) measures the 226 
combined sum of sensitivity and specificity. Kappa is a metric of categorical agreement that 227 
incorporates the differences between the observed agreement and chance agreement, with a value 228 
of 1 suggesting complete agreement. See Franklin (2009) for a discussion of these metrics in an 229 
ecological modelling context. We evaluated our models using a 10-fold cross-validation technique. 230 

Results 231 

Modelling Approach 232 

Implementation of a machine learning methodology resulted in significantly higher recorded first 233 
flight (FF) accuracies in five of the six evaluation metrics considered when compared with a gam 234 
implementation (measured to an α <= 0.01 using paired sample t-tests - Figure 1). The differences in 235 
mean accuracy ranged from an increase of 0.05 for AUC to 0.21 for sensitivity, with recorded specificity 236 
0.10 higher for the gam methodology. The higher sensitivity and lower specificity scores suggest that 237 
the machine learning methodologies are generating a smaller number of false positives, yet the gam 238 
methodology is predicting a larger number of false negatives and this is severely and substantially 239 
affecting the predictive models and in turn their accuracy. This is also seen in the evaluation metrics 240 
that take into account the correct prediction of both FF and NF, with decision trees recording higher 241 
PCC, TSS, and Kappa scores than gam implementations.  242 

Data Representation (Variable Selection) 243 

The use of entropy identified the variation in real-world variables that appear to best delineate first 244 
flight observations from no flight observations. Table 1 identifies the information gain across the 245 
different accumulated degree days (ADD) and winter variables for M. persicae, an aphid of global 246 
importance to agriculture. It can be seen that the information gain varies substantially across the 247 
different temperature thresholds and temporal extents. The ADD values calculated from the 248 
maximum temperature resulted in a higher information gain (or a purer split), than the use of the 249 
mean temperature (measured to an α <= 0.01 using paired sample t-tests). Furthermore, the use of 250 
entropy to select one ADD and one winter metric resulted in an increase in accuracy for over 80% of 251 
species (Table 2). When the proportion of correctly classified (PCC) observations were compared for 252 
a decision tree implementation using entropy selected variables against baseline selected variables, 253 
we observed an increase in the average accuracy of 0.027 (or ~3%). Again, this increase was significant 254 
at an α <= 0.01 when these values were compared using a paired sample t-test. The accuracy of 255 
entropy selected variables were consistently more accurate than decision trees fit on baseline 256 
variables across the different accuracy metrics including specificity. 257 

When the frequency distribution of environmental variables with the highest information gain for 258 
each species were analysed, we saw differences in both the thresholds (e.g. ADD value) and temporal 259 
extents (e.g. number of days) reported, with certain patterns emerging when species were analysed 260 
based on phenology (Figure 2). In general, the lower ADD thresholds resulted in higher information 261 
gain (Figure 2a), with 20 of the 51 species best predicted by a threshold of 11°C. A dynamic temporal 262 
window of 60 days immediately prior to FF was the most informative temporal extent for both host 263 
alternating and non-host alternating species (Figure 2b). The average maximum temperature reported 264 



higher information gains across the winter metrics, with neither NAO nor pressure resulting in the 265 
highest gain for any species (Figure 2c). Shorter dynamic temporal winter metrics were most 266 
informative, with longer periods of time prior to an observation indicative of a larger gain (Figure 2d).  267 

Machine Learning and Entropy 268 

Introducing temperature variables calculated at various temporal resolutions further increased the 269 
accuracy when compared to baseline and entropy models (Figure 3). When models fit with four 270 
different temperature resolutions were compared, we observed that the use of daily data (Figure 3a) 271 
did not result in an over-fitting of the models, reporting equally high accuracies when compared with 272 
other implementations (Figure 3e), although it did record a number of lower outliers that most likely 273 
resulted from noisy data. Similarly, the use of monthly data (Figure 3c) did not result in a smoothing 274 
of the models, reporting a higher number of more accurate models than the use of daily data (Figure 275 
3e). The use of weekly data (Figure 3b) resulted in a higher frequency of PCC scores for non-host 276 
alternating species compared to other temporal resolutions (Figure 3e), while for host-alternating 277 
species the temperature data consisting of various resolutions (Figure 3d) recorded the highest 278 
frequency of PCC scores (Figure 3e). This model incorporated daily data for the two months 279 
dynamically preceding the observations, weekly data back until six months, and then monthly data for 280 
the remainder of the year, suggesting that the use of different scales improves the predictive ability 281 
of decision trees fit for host-alternating species of aphids.  282 

Figure 4 illustrates the mixed temporal resolution (Figure 3d) decision tree for M. persicae which 283 
recorded the highest PCC score across the different models. Here we can see the benefit of 284 
incorporating variables at multiple resolutions. The root node splits the response data on the mean 285 
temperature for the twelfth month prior to the observation, with a temperature value of 9.4°C. 286 
Alternatively we see nodes (4, 5, 16, and 17) split the response data on recent daily temperature 287 
values. This identifies the hierarchical nature of the first flight phenomena, with both shorter term 288 
(less than a week) and longer-term (a year prior) temperature variables constantly deemed important 289 
in determining differentiation among flight or no flight. Many of the splits in the decision tree identify 290 
temperatures at these different temporal resolutions for which no-flight was recorded. Node 3 291 
identifies that if the maximum temperature for the eleventh month prior to an observation was 292 
<=20.2°C, then no flight was recorded (with a pure node of 145 observations). This suggests that 293 
conditions during the previous aphid flight season restrict whether aphids will be recorded there in 294 
the next season. Similarly, node 8 illustrates that if the minimum temperature for 32 days before the 295 
observation was <=6.7°C, then no flight occurred (with a pure node of 65 observations).  296 

Discussion  297 

There has been a recent resurgence in the importance of selecting appropriate environmental 298 
variables when attempting to explain or predict ecological phenomena (van de Pol et al. 2016). In 299 
addressing this, the aims of our study were twofold. Firstly, we identified the power of machine 300 
learning (specifically decision tree learning) to address complex, hierarchical ecological questions, and 301 
illustrated how this method can be used to attain highly accurate models and identify previously 302 
unknown features of ecological importance. Secondly, we utilised this methodology to explore the 303 
ecological indicators for UK aphids, and improved upon existing prediction techniques. The results of 304 
this study should provide researchers with an automated methodology to derive and select the most 305 
appropriate environmental variables when predicting ecological phenomena, while simultaneously 306 
improving the accuracy of such models. 307 

We identified from expert-opinion and well-established aphid literature (Harrington et al. 2007; Bell 308 
et al. 2015) that a measure of spring development (ADD16 in the previous 60 days) and a measure of 309 



winter harshness (mean NAO from 6-2 months’ prior) are strong predictors of aphid first flight. While 310 
we acknowledge that there are most likely other meteorological variables influencing these complex 311 
processes, our aim was to utilise machine learning to refine the temporal scales associated with these 312 
predictor variables. Here we used entropy to identify the most informative variables (ADD thresholds 313 
and winter variables) and subsequent temporal extents (spring and winter) for 51 UK aphid species. 314 
Decision tree models fit on entropy derived variables resulted in significantly higher accuracies 315 
compared to models fit on baseline variables (Table 2). NAO and pressure provided little input into 316 
our predictive models, and consistently provided less information gain than measures of winter 317 
temperature. While NAO incorporates various aspects of daily weather (e.g. wind, precipitation, 318 
temperature), as well as being important for aphid population dynamics (e.g. Westgarth-Smith et al. 319 
2007), it does not take into account spatial variation. NAO provides one daily value for the entire 320 
country and subsequently has been used to model ecological indicators at coarser spatiotemporal 321 
resolutions than we investigated here. The use of temperature as a winter metric provided both spatial 322 
and temporal variation among observations of aphid first flight, resulting in more accurate predictions 323 
compared to the NAO (Table 2).  324 

With approximately 4400 known species of aphid (Harrington et al. 2007), the temporal scales used 325 
to generate variables to predict first flight are likely to be highly species or even clone specific. 326 
Differences among aphid life cycles between species and clones (i.e. genotypes) are likely to influence 327 
such decisions. Similarly, different species may respond to different thresholds in weather patterns. 328 
The use of ‘events’ (e.g. heat wave, drought) or ‘episodes’ (e.g. degree day calculations) have been 329 
widely used in entomological (and other ecological) research, and have been found to improve 330 
interpretations of ecological phenomena (Bateman et al. 2012; Bell et al. 2015; Selwood et al. 2015). 331 
Despite this, these methods of variable derivation are still subject to the scale uncertainties associated 332 
with the temporal extent used. 333 

The use of shorter temporal extents when generating ADD increased the accuracy for certain species, 334 
in particular host-alternating species (Table 2; Figure 2). For example, Hyalopterus pruni produces 335 
wings in the summer and migrates from Prunus trees to grasses. Our results suggest that shorter-term 336 
changes in increasing temperature are better predictors than longer-term extents. Similarly, for non-337 
host alternating tree aphids Myzocallis castanicola, Betulaphis quadrituberculata, and Elatobium 338 
abietinum, and the cereal aphid Sitobion avenae that respond to overcrowding or senescing of host 339 
plants, a shorter temporal extent of a month coupled with higher temperature thresholds were better 340 
predictors, possibly representing spikes in temperature which could cause population booms or 341 
increased stress to plants (Dixon and Glen 1971; Watt and Dixon 1981). From these results, we may 342 
infer that host-alternating species respond by taking first flight based on short-term changes in 343 
meteorological variables, while non-host alternating species respond by taking first flight once the 344 
population on the host-plant exceeds a certain number, which could be represented by a 345 
meteorological variable indicative of egg development or generation time. The variation in the ADD 346 
threshold that best predicted first flight was not unanticipated due to the phenology of the 51 species. 347 
However, we did not expect initiation of first flight to be predicted at 11°C for 40% of the species 348 
(Table 2). The use of data-driven variable selection improves the accuracy of these final predictive 349 
models, and illustrates the potential for such methodologies to be utilised widely when selecting 350 
environmental variables.  The results from this research should help foster discussion on variable 351 
derivation in entomological research, but are also widely applicable to any predictive (or explanatory) 352 
ecological research that uses ecological indicators. 353 

An advantage of decision tree models is that they have the ability to handle more variables than 354 
commonly applied parametric approaches, in part due to the fact that they are not as sensitive to 355 
issues relating to multi-collinearity. Our results suggest that suitable information pertaining to the 356 



prediction of aphid first flight can be ascertained from both voluminous daily data and smoothed 357 
monthly data (Figure 3). This has important practical consequences for implementations of these 358 
predictive models; projecting species-environment relationships into future space and time at a 359 
monthly resolution would reduce the resources and cost of such an endeavour compared to using 360 
daily data. Moreover, as ecological phenomena are often influenced by drivers operating across 361 
multiple temporal scales, the use of variables generated at different temporal resolutions allowed for 362 
both longer- term conditions that enforce an overarching influence and shorter-term variations that 363 
describe finer-scale patterns to be included in the model (Figure 4). It should be noted that the use of 364 
a large number of meteorological variables within such models could result in the identification of an 365 
incorrect spuriously correlated variable that has nothing to do with aphid lifecycles. However, the high 366 
accuracy obtained from these models in predicting aphid first flight and the use of 10-fold cross-367 
validation to control for such concerns suggests that our models do well in identifying the 368 
meteorological drivers of this phenomena. One caveat to the study is that ML methods require a rich 369 
data set for the training of the algorithm and thus this technique may be limited to longer-term 370 
studies.  371 

Finally, to illustrate the applicability of decision trees to mitigate against long-term future pest 372 
outbreaks by strategic crop interventions, we implemented our methodology with filters (Figure 5a). 373 
In every instance our objective was the same, to predict FF or NF for day 𝑥𝑥; however, we applied filters 374 
(ranging from 28 days to 364 days) to the range of environmental days used in the generation of 375 
predictor variables. This resulted in a new set of predictor variables to use when estimating FF or NF 376 
at day 𝑥𝑥. The accuracy of our models decreased as the size of the filter increased towards a year; 377 
however, this difference was minimal (0.0286 difference in AUC - Figure 5b). The decision tree 378 
methodology discriminates between FF and NF for a variety of meteorological variables across a year 379 
period, choosing among days, weeks, or months when thresholds are representative of FF or NF. 380 
Therefore, the differences in FF predictions when fit on filtered environmental variables are negligible 381 
when a dynamic time window is applied. Subsequently, the high accuracies obtained should allow 382 
such methods to generate long-term predictions and mitigate against further crop losses.  383 
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501 
Tables 502 

Table 1. Information gain for different accumulated degree day (ADD) temperature thresholds 503 
calculated at a range of temporal extents for first flight of Myzus persicae for both maximum 504 
temperature and mean temperature, and for winter harshness measures.  Maximum information gain 505 
for each variable depicted by grid border. 506 

  Days  
Prior ADD11 ADD12 ADD13 ADD14 ADD15 ADD16 

Max Temp 7 0.140 0.143 0.144 0.158 0.152 0.135 
  14 0.147 0.191 0.181 0.155 0.147 0.143 
  21 0.172 0.181 0.180 0.156 0.151 0.158 
  28 0.155 0.162 0.167 0.201 0.206 0.174 
  60 0.167 0.170 0.174 0.185 0.178 0.186 
  90 0.131 0.133 0.142 0.166 0.161 0.170 
  120 0.070 0.086 0.091 0.101 0.117 0.123 
  180 0.038 0.041 0.042 0.043 0.043 0.044 
  364 0.000 0.000 0.036 0.041 0.035 0.034 
         

  Days Prior ADD11 ADD12 ADD13 ADD14 ADD15 ADD16 
Mean 
Temp 7 0.150 0.112 0.100 0.084 0.062 0.048 
  14 0.176 0.132 0.115 0.091 0.069 0.048 
  21 0.153 0.142 0.129 0.108 0.074 0.057 
  28 0.185 0.152 0.141 0.112 0.073 0.057 
  60 0.146 0.146 0.129 0.111 0.082 0.062 
  90 0.098 0.106 0.096 0.094 0.060 0.050 
  120 0.057 0.054 0.053 0.053 0.000 0.033 
  180 0.063 0.065 0.063 0.067 0.057 0.048 
  364 0.044 0.060 0.052 0.050 0.000 0.000 

         

Winter Months 
Prior NAO Pressure MeanTemp MaxTemp MinTemp  

  6-2 0.000 0.027 0.131 0.127 0.155 
 

  6-3 0.000 0.025 0.164 0.173 0.139 
 

  6-4 0.000 0.000 0.146 0.179 0.186 
 

  6-5 0.000 0.000 0.177 0.179 0.186 
 

  5-2 0.000 0.062 0.110 0.094 0.114 
 

  5-3 0.000 0.034 0.183 0.119 0.126 
 

  5-4 0.000 0.000 0.195 0.163 0.145 
 

 507 

*North Atlantic Oscillation (NAO), Accumulated Degree Day (ADD). 508 



509 
Table 2. Accuracy (proportion correctly classified - PCC) of decision tree models fit on baseline 510 
variables (accumulated degree days - ADD above 16°C for 60 days prior and North Atlantic Oscillation 511 
- NAO for 6-2 months prior) and entropy selected accumulated degree days (ADD) and winter 512 
variables. *depicts ADD calculated from mean temperature and no annotation depicts ADD calculated 513 
from maximum temperature. Days (d) and Months (m) depicted within extent. Monoecious and 514 
hetereocious alternations refer to non-host and host alternating aphid phenology respectively. Some 515 
of the biggest differences between model accuracies were recorded for Betulaphis quadrituberculata, 516 
Capitophorus similis and Rhopalosiphum maidis. 517 

 
   ADD Entropy 

Variable 
Winter Entropy 

Variable 
Species Alternation Baseline Entropy ADD Extent Winter Extent 

Acyrthosiphon pisum monoecious 0.842 0.832 15*  60d Mean    6-5m 

Anoecia corni heteroecious 0.831 0.814 12*  60d Max    6-5m 

Aulacorthum solani monoecious 0.918 0.871 16*  60d Mean    5-4m 

Betulaphis quadrituberculata monoecious 0.767 0.942 13*  21d Mean    6-5m 

Brachycaudus helichrysi heteroecious 0.861 0.889 14*  60d Mean    6-5m 

Brevicoryne brassicae monoecious 0.816 0.804 11*  21d Min    6-5m 

Capitophorus hippophaes monoecious 0.818 0.832 13*  60d Mean    6-5m 

Capitophorus similis heteroecious 0.767 0.880 11*  60d Max    6-5m 

Cavariella aegopodii heteroecious 0.803 0.850 12*  60d Min    6-5m 

Cavariella archangelicae heteroecious 0.860 0.785 12*  21d Max    6-5m 

Cavariella pastinacae heteroecious 0.887 0.907 13*  60d Mean    6-4m 

Cavariella theobaldi heteroecious 0.847 0.875 15*  90d Mean    6-4m 

Ceruraphis eriophori heteroecious 0.794 0.846 14*  90d Mean    6-5m 

Cryptomyzus galeopsidis heteroecious 0.852 0.836 11*  60d Max    6-5m 

Drepanosiphum platanoidis monoecious 0.852 0.912 11*  60d Max    6-5m 

Elatobium abietinum monoecious 0.841 0.872 14*  28d Max    6-5m 

Eriosoma patchiae heteroecious 0.765 0.752 11*  120d Mean    5-2m 

Eriosoma ulmi heteroecious 0.888 0.915 11*  60d Max    6-5m 

Eucallipterus tiliae monoecious 0.832 0.839 11*  90d Max    6-5m 

Euceraphis punctipennis monoecious 0.859 0.862 13*  60d Mean    6-5m 

Hyadaphis foeniculi heteroecious 0.919 0.926 12*  60d Min    6-5m 

Hyalopterus pruni heteroecious 0.871 0.908 11*  28d Mean    6-5m 

Hyperomyzus lactucae heteroecious 0.857 0.882 13*  60d Max    6-5m 

Macrosiphum euphorbiae heteroecious 0.812 0.851 11*  28d Max    6-4m 

Macrosiphum rosae heteroecious 0.650 0.713 13*  7d Min    6-5m 

Metopolophium dirhodum heteroecious 0.754 0.800 11*  28d Mean    6-5m 

Metopolophium festucae monoecious 0.803 0.818 15*  60d Max    6-5m 

Microlophium carnosum monoecious 0.840 0.892 11*  60d Mean    6-5m 

Myzocallis castanicola monoecious 0.903 0.908 16*  28d Max    6-5m 

Myzocallis coryli monoecious 0.911 0.912 13*  60d Min    6-5m 

Myzus ascalonicus monoecious 0.838 0.887 14*  180d Max    6-4m 

Myzus persicae heteroecious 0.807 0.801 15*  28d Mean    5-4m 

Myzus cerasi heteroecious 0.854 0.872 11*  60d Max    6-5m 

Myzus lythri heteroecious 0.825 0.925 12*  60d Min    6-4m 

Ovatus crataegarius heteroecious 0.913 0.923 12*  60d Max    6-5m 



Periphyllus testudinaceus monoecious 0.851 0.918 11*  60d Max    6-3m 

Phorodon humuli heteroecious 0.879 0.938 13*  90d Mean    6-4m 

Phyllaphis fagi monoecious 0.850 0.902 15*  60d Max    6-5m 

Pterocallis alni monoecious 0.840 0.866 11*  90d Mean    6-5m 

Rhopalosiphum insertum heteroecious 0.852 0.885 11*  60d Max    6-5m 

Rhopalosiphum maidis heteroecious 0.676 0.739 12*  14d Max    6-5m 

Rhopalosiphum padi heteroecious 0.790 0.803 15*  28d Max    6-5m 

Sitobion avenae monoecious 0.822 0.837 13*  28d Max    6-5m 

Sitobion fragariae heteroecious 0.836 0.862 14*  60d Max    6-5m 

Tetraneura ulmi heteroecious 0.862 0.911 14*  90d Max    6-5m 

Thecabius affinis heteroecious 0.815 0.848 11*  120d Mean    6-5m 

Thelaxes dryophila monoecious 0.914 0.944 12*  60d Min    6-5m 

Tuberculatus annulatus monoecious 0.888 0.924 11*  60d Max    6-5m 

Tuberculatus borealis monoecious 0.894 0.927 11*  60d Mean    6-5m 

Utamphorophora humboldti heteroecious 0.827 0.779 15*  21d Max    5-4m 

Wahlgreniella arbuti heteroecious 0.779 0.823 11*  60d Min    6-4m 

        

 Average       

 combined 0.836 0.863     

 heteroecious 0.824 0.851     

 monoecious 0.852 0.881     
 518 

 519 

520 



521 
Figures 522 

 523 

Figure 1. The average accuracy score of the predictive models measured across the 51 aphid species 524 
when decision tree models fit with baseline variables were compared with general additive models fit 525 
with the same baseline variables. Baseline variables were North Atlantic Oscillation (NAO) for the 526 
dynamic 6-2 months prior to a first flight observation and accumulated degree days above 16°C 527 
(ADD16) for 60 days prior a first flight observation. On average, the decision tree model recorded 528 
significantly higher evaluation scores in five out of the six metrics (measured to an α <= 0.01 using 529 
paired sample t-tests). Accuracy statistics included Area Under the Curve (AUC), Sensitivity, Specificity, 530 
Proportion Correctly Classified (PCC), True Skill Statistic (TSS), and Kappa. Readers are directed to 531 
Franklin (2009) for a discussion on these evaluation metrics. 532 

 533 



 534 

Figure 2: Frequency distribution of the variables attaining the highest information gain measured using entropy for each of the 51 species. The variables 535 
representative of spring development were a) accumulated degree days (ADD) above certain temperature thresholds, and these were calculated at a number 536 
of different b) dynamic temporal extents. The variables representative of winter harshness were  c) North Atlantic Oscillation (NAO), Pressure, and Minimum, 537 
Mean, and Maximum Temperature, and these were calculated at a number of different d) dynamic temporal extents.  538 



 539 

 540 

 541 

Figure 3: Illustration of the different resolutions that were used within the decision tree models to 542 
predict aphid first flight. Resolutions include a) fine-scale daily data, b) intermediate-scale weekly data, 543 
c) coarse-scale monthly data, and d) a mix of resolutions, including daily data going back 60 days, 544 
weekly data back until six months, and monthly data for the remainder of the year. These resolutions 545 
were used to fit decision tree models, and e) shows the frequency of a decision tree model to produce 546 
the highest accuracy (Proportion Correctly Classified – PCC) among models fit using these different 547 
resolutions, as well as both baseline variables (North Atlantic Oscillation – NAO at 6-2 months and 548 
Accumulated Degree Days – ADD above 16°C) and entropy selected variables for the 51 aphid species.  549 

550 



 551 

Figure 4: A decision tree for Myzus persicae fit using temperature data of mixed resolutions. The aim of a decision tree is to classify the response data correctly 552 
as either first flight (FF) or no flight (NF). The tree begins with the root node, that separates training data based on whether the mean temperature for the 553 
twelfth month prior to an observation was <= or > 9.4°C. For values with a mean temperature <= 9.4°C, the tree moves to the second node, which splits the 554 
response data based on whether the maximum temperature for the eleventh month prior was <= or > 20.2°C. Node 3 is a terminal node, whereby if the 555 
maximum temperature recorded was <=20.2°C, then the observation is classified as no flight. Based on our data, this was a pure node, with 145 observations 556 
classified as NF and 0 as FF. Temporal resolutions contained within the model are daily (D), weekly (W), and monthly (M). The tree continues in such a manner 557 
until all terminal nodes are reached (final node is 71). We only illustrate the tree up to split 17 in order to highlight the main decisions and the ability of 558 
decision tree modelling to predict hierarchical ecological systems.   559 



 

Figure 5: Illustration and results of the application of filters to the environmental variables in 
predicting aphid first flight. a) A two-year period of daily temperature data preceding a first flight or 
no flight recording at day 0, with a 0-day (red) and 56-day (blue) filter applied to the temperature data 
used to generated predictor variables. All models fit on these new environmental variables are 
predicting first flight or no flight at day 𝑥𝑥. b) the average Area Under the Curve (AUC) score of decision 
tree models fit on temperature data (at four different resolutions) with the filters applied for the 51 
species. As the number of filtered days applied to the environmental variable generation increases, 
the recorded AUC value subsequently decreases; however this decrease is minimal. The largest 
recorded difference in AUC between a 0-day and a 364-day filter is 0.0286 for the monthly resolution 
decision tree. 

 

 


