:COl

Title Decision diagrams for the computation of semiring valuations
Authors Wilson, Nic
Publication date 2005-07

Original Citation

Wilson, N. (2005) 'Decision Diagrams for the Computation
of Semiring Valuations®, IJCAI'05: Proceedings of the 19th
International Joint Conference on Artificial intelligence,
Edinburgh, Scotland, 30 July - 05 August, pp. 331-336.

Type of publication

Conference item

Link to publisher’s
version

https://www.ijcai.org/Proceedings/2005

Rights

© August 1, 2005 International Joint Conferences on Artificial
Intelligence. All rights reserved. This publication, or parts thereof,
may not be reproduced in any form without permission

Download date

2024-04-2512:10:47

[tem downloaded
from

https://hdl.handle.net/10468/10768

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh



https://hdl.handle.net/10468/10768

Decision Diagrams for the Computation of Semiring Valuations

Nic Wilson
Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
n.wilson@4c.ucc.ie

Abstract tions still correspond to complete directed paths; one can also
prune the representation to allow backtrack-free generation of
any solution. If we can find many such equivalences through
interchangeability then the number of nodes in the decision
diagram will be a tiny fraction of the number of nodes in the
corresponding decision tree. Indeed, the number of solutions
can even sometimes be exponential in the size of such a de-
cision diagram, as the merging of nodes ‘factorises’ the so-
lution set (so the size of the decision tree will be exponential
in the size of the decision diagram). This kind of representa-
tion, in the form of binary decision diagrariBryant, 1986;
1999, has proved very effective in certain domains, such as
CAD applications.

Testing full interchangeability is often expensive, but one
can instead use the sufficient conditioejghbourhood inter-
changeability that is, for all the constraints whose scope
intersects with botl/ andV — U, ¢, = ¢, Wwhere e.g.¢,
(which involves no variables ifY) is the ‘slice’ ofc given by
instantiating variable#/ to ». This condition can be tested
quickly, in time proportional to the size of the (sliced) con-
straints. Furthermore, if one constructs these slices for each
node visited, and indexes them appropriately, then check-
ing whether we have previously generated neighbourhood-
1 Introduction interchangeable’, can be achieved efficiently.

Suppose we are performing a depth-first search for solutions This computational approach can be generalised to
of a (not necessarily binary) CSP, where we record the nodegemiring-based systems (Section 2), including semiring-
of the search (decision) tree that we've visited so far. Solubased CSPs (in particular weighted CSPs, fuzzy CSPs and
tions correspond to complete paths in the tree, i.e., directegtandard CSPs) as well as Bayesian networks. Each edge in
paths from the root node to a node corresponding to a conthe decision diagram is labelled with a value in the semiring,
plete assignment. We are at a node with associated partigenerating (Section 3) what we camiring-labelled deci-
assignment. of set of variableg/, which we have checked sion diagramgSLDDg. We show how this can be done in
is consistent (in the CSP sense of it satisfying all constraintsuch a way that the SLDD represents the semiring-based sys-
involving only variables inJ). Suppose we manage some- tem, i.e., the product of semiring values of edges in a com-
how to find another assignmeat of U, corresponding to a plete path is equal to the semiring value of the complete as-
node previously visited, which is also consistent, and whictsignment associated with the path. The efficiency of this ap-
is fully interchangeablgthat is (extendingFreuder, 199])  proach to computation is very much dependent on how com-
for all assignmentsv of the remaining variable$/, uw isa  pact the SLDD is, especially compared to the corresponding
solution of the CSP if and only if w is a solution. search tree. If the SLDD is compact, then it can be efficiently
There is then no need to expand the subtree beloas it  constructed and the operations are efficient. We give exam-
is equivalent to the one below which we have already ex- ples of situations where the SLDD is compact (even linear
panded. Instead we can merge the nodes corresponding toSize) despite the number of solutions being exponential in the
andu’. The resulting structure will no longer be a tree—sonumber of variables.
can be described asdecision diagran{as opposed to a de-  Sections 4 and 5 show how the semiring-labelled decision
cisiontree—»but it will still represent all solutions, as solu- diagram can be used to perform various computations of in-

This paper describes a new approach to computa-
tion in a semiring-based system, which includes
semiring-based CSPs (in particular weighted CSPs,
fuzzy CSPs and standard CSPs) as well as Bayesian
networks. The approach to computation is based on
what we call semiring-labelled decision diagrams
(SLDDs). These can be generated in a similar
way to a standard search tree (decision tree) for
solving a CSP, but some nodes are merged, cre-
ating a more compact representation; for certain
classes of CSPs, the number of nodes in the re-
sulting network will be a tiny fraction of the num-
ber of nodes in the corresponding search tree. A
method is given for generating an SLDD that repre-
sents e.g., a particular instance of a semiring-based
CSP; it is shown how this can be used to perform
various computations of interest, such as solving a
semiring-based CSP, finding optimal solutions, de-
termining the possible values of each variable and
counting solutions of a CSP.



terest, including solving, optimising and generating inferred A-valuations, we may writ€ C' to mean), .. c. Letc be
constraints, and projections needed in inference in Bayesiaan .A-valuation, and leU be a subset o¥,.. The projection
networks and solving semiring-based CSPs. ¢tV of c ontoU is defined by, for: € D(U), ¢!V (u) is equal
The formalism SLDDs defined in this paper is a develop-to the semiring summation efw) over allw € D(V,) such
ment of the finite-state automata representations for weightetthatw!V = .
constraints ifAmilhastreet al, 2004 (where the soft con- Many computational problems can be expressed as com-
straints are unary). The latter, which can be considered as inputing a projection of a combinatiddl = ) C' of a multiset
plementing a kind oflynamic programmingBellman, 1957, C of semiring valuations (and a straightforward approach to
has been shown to be applicable as a compilation technigugich a computation is exponential). In particular, computa-
on a substantial real-world problem. tions in semiring-based CSPBistarelli et al,, 1997; 1999;
The main contributions of the paper are extending this2003 are of this form. This is a general formalism for
computational technique dfAmilhastreet al, 2004 in a  soft constraints, which includes weighted CSPs, fuzzy CSPs,
number of significant ways: our technique, SLDDs, can beprobabilistic CSPs, lexicographic CSPs and set-based CSPs.
applied to computation in many formalisms for preferencesThese use a special type of semiring, where idempotent
and uncertainty: in particular, to a very general class of sofand1 is an absorbing element gf.
CSPs, semiring-based CSPs; we allow soft constraints to be Finite CSPs can be expressed as acseff .4-valuations,
of arbitraryarity, as well as both extensional and intensionalusing.4 = ({0,1},0, 1, max, x), so that® = x (i.e., min)
representations of constraints; it applies also to computatioand @ is max. A constraint on set of variablds is repre-
in Bayesian networks, and for counting the solutions of asented as a semiring valuation D(U) — {0, 1}, where for
CSP. Our construction of the representation is also new, anassignment: of U, ¢(u) = 1 if and only if « satisfies the con-
is based on backtracking search, where certain nodes in thgraint. The CSP has a solution if and only®) c)l@ =1.
search tree are merged (implicity performing a kind of for-  To perform computations in Bayesian networks, we use the
malised caching); this enables constraint programming techsemiringA = (IR", 0,1, +, x), wherelR™ is the set of non-
nigues to be used, making SLDDs a combination of a form ohegative real numbers. As is well known, computation in
dynamic programming and search-based approaches usedBayesian network§Pearl, 1988; Shenoy and Shafer, 1p90

constraint programming. can be performed by computing projections of combinations
of such A-valuations, where eacH-valuation represents a
2 Semiring Valuations conditional probability table of a variable given its parents in

the Bayesian network. In particular, the marginal probability
that variableX is assigned te: is given byC{X}(z). This
semiring can also be used to count the solutions in a CSP as
aC“D, by restricting the input semiring values to beihgr 1.

Semirings consist of a set with two operatiogsand &,
which are both associative and commutative and suchghat
distributes over. Here we also assume a unit element and
null element. Tupled = (4,0, 1,4, ®) is said to be aemir-
ing if A is a set containing different elemertnd1 and® . )
andw are operations oA satisfying the following properties: 3 ~Constructing an SLDD Representing a
® is associative and commutative with identitys is asso- Combined Semiring Valuation

ciative and commutative with identi®, which is also a null

chren e T 100 S0 meson L B S,
o o ’ 7 _ " fticular sense, the combinatidd = ). ¢ of a multisetC
Semiring valuations. Let V' be a finite set of variables. For of 4-yaluations, wherel = (A,0,1,,®) is a given semir-
eachX e V' let D(X) be the domain (i.e., the set of possible jng. The SLDD is a directed acyclic graph, where the edges
assignments) ok. ForU C V let the set of partial tuples  gre |abelled with elements iA. As we'll show in Sections 4
D(U) = [[x ey D(X) be the set of possible assignments toan 5, this representation can then be used to perform certain
set of variabled/. A complete assignment is an element of jyportant computations.
D(V). Foru € D(U) andW C U, u!" is the projection  The construction of the SLDD is very similar to that
of u onto variablesV, so that for allX € W, u''"(X) = of a search tree generated by chronological backtracking;
u(X). . _ the difference is that when we generate an edge we use a
Let A = (4,0,1,&,®) be a semiring. AnA-valuation  certain conditiorforward neighbourhood interchangeability
c associates a semiring value with each of a particular set qgefined below, extending the definition of neighbourhood in-
partial tuples:c is a function fromD(V.) to A, where set of  terchangeability in the introduction) to test if we can avoid
variablesV. C V' is called thescopeof c. If u € D(U)is  creating a new node, but instead connect the edge to an al-
an assignment to set of variablEscontainingV., we may  ready existing node.
write c(u) as an abbreviation for(u'"*). The semiring op- | et/ C V be a set of variables. Define a valuatios C
erations allow one to define a combination and a projectiofg beactive(with respect tdJ) if its scope intersects botti
operation on semiring valuations. The combinatiah ¢’ of  andy — 7. For active valuatior:, define, foru € D(U),
A-valuationsc and¢’ is defined to have scope. U Vs, and  4.yajuatione, to be the ‘slice’ ofc given by assignind/ to
by, (c @ ¢')(u) = c(u) @ ' (u), i.e.,c(utVe) @ ¢/ (utVe), for
each assignmentof V. U V... ® is a commutative and asso-  *A more general definition of SLDDs is given [vilson, 2004,
ciative operation omi-valuations (o). If C'is a multiset of  with a corresponding version of Theorem 1.

We will show how to construct a structutealled asemiring-



u; that is, the scop#’, of ¢, is V. — U, and for all assign-  define the4-valuationcs by, forv € D(V), cs(v) = a(my).
ments oft to V.., ¢, () is defined to be(ut) (whereut isthe  The SLDD is said toepresent4-valuationcs.
concatenation of tuplesandt). Assignments, andv’ to set
of variablesU are said to bdorward neighbourhood inter- . . o .
. . : : A-valuations over variable¥”. LetS be an.4-decision dia-

changeabldwith respect taC) if for all active A-valuations a
¢, the slicesc, andc,, are equal. Roughly, what this im- gramSmconstructed as above. Théhrepresentsc =QC
plies is that the subproblems correspondingitand«’ are  @1d C" = >__ a(m), where the sum is over all complete
the same, so there is no need to solve them more than oncePaths inS.

A semiring-labelled decision diagram (over set of vari- In the next section it is shown how to compute such sums
ablesV) is defined to be am-decision diagram (oveV’) efficiently.
for some semiringd = (4,0,1,®, ®). An A-decision dia- Note that ‘dynamic variable ordering’ can be used, i.e., the
gram consists of a directed acyclic graph with a unique earliorder of variables can differ between paths. We can also adapt
est (parent-less) nodgmurce and a unique latest (childless) constraint programming techniques to improve the efficiency.
nodesink . Each edge\ is labelled with a valuev(\) inthe  We can use propagation e.g., maintaining arc consistency for
semiring (defined below). A complete path is defined to bethe zerogWilson, 2004. Furthermore, the SLDD can, like a
a maximal (directed) path, that is, a path frsmurce to  search tree, be generated in a depth-first fashion: this is nat-
sink . ural when we're attempting to solve a CSP; the construction

Nodes and edges are both labelled with various pieces afan be terminated when a solution is found.
information, as described below. Associated with each node To facilitate merging, for partial tuple we can represent
r (other thansink ) is a variableX,., which is the variable the collection of slicegc, : c active} as a stringr(u) of el-
that is about to be instantiated. A& is the set of variables  ements in the semiring. Then, foru’ € D(U), tuplesu and

Theorem 1 Let. A be a semiring and lef’ be a multisetC of

associated with nodes on any (directed) path famurce u’ are forward neighbourhood interchangeabile if and only if
tor. o(u) = o(u'). For set of variable§/, we can incrementally

We start off by creating the nodeource , and define construct arie (a tree of strings) storing eaeh(u,.) for all
Usource = 0, andusource to be the trivial assignment nodesr with u, € D(U); this enables efficient generation
to the empty set of variables. We also choose some variablef each edge of the SLDD. For valuations represented exten-
Y € V, and setXsource = Y. The construction pro- sionally, definesize(C) to be}" . size(c), wheresize(c) is

cess works by choosing a node already constructed, and cothe cardinality of the scope efmultiplied by the number of

structing the (directed) edges coming from the node, and thaon-zero tuples ir. An upper bound for the time needed to

nodes at the end of the edges. At each point we choose a nodenstruct the SLDD is then proportionaldiae(C) x size(S),

r # sink  which has currently no children (i.e., no edges em-wheresize(S) is the number of edges of the SLDD. In par-

anating from it). If there is no such node, the construction isticular, if the size of the SLDD is polynomial in, for some

complete. parametrised family of problems depending on the number of
For each assignmentto X, we create a (directed) edge variablesn, then constructing the SLDD is polynomial.

A from r with associated assignment, = z, (and define

X, = X,) and set of variable, = U, U {X,}, and as- When is the SLDD compact?

signmentu to Uy which is u, extended with assigning  The crucial factor in the determining the efficiency of our
to X,. The semiring valuex()) is defined to be®_ c(ux)  approach is the size of the SLDD; if the SLDD is compact,
where the semiring product is over alle C' which are ‘just  then it can be efficiently constructed and the operations are
instantiated’, i.e., such thaf € V. C U. _ _ efficient. The SLDD will tend to be compact (compared to

If Ux =V, so that all the variables have been instantiatedthe associated search tree) in situations where many differ-
we connect the end oftosink . If a(\) = O we also setthe  ent partial instantiations lead to equivalent subproblems (and
end ofA to besink . If a()) # 0, and we can find previously so a standard search-based technique would solve the same
created node’ such thatu, andw, are forward neighbour-  sybproblem many times). There are many kinds of situations
hood interchangeable (this requires alsp = U,+), we set  \yhere the problem structure causes this to happen.
the end of\ to ber’. We call this‘merging’, since it cor- We give a class of examples to illustrate that the con-
responds to merging nodes in a decision tree. Otherwise W&ructed semiring-labelled decision diagram can be compact,
create a new node, setu,, = uy, U» = Uy and choose  even if it represents an exponential number of non-zero com-
someX,. € V —U,. To aid future ‘merging’, we also store pjete assignments (e.g., solutions of a CSP). In these cases the
with the noder’ the slices:, ,, for active valuations. size of the SLDD is linear in the number of variables, whereas

_ FO"OW'lntg a (dltrecf:ted)_ %allth thlle COWESD?ntdS to an asthe size of the corresponding search tree is exponential.

signment to a set of variables; also a complete assignme B .
v € D(V) determines @omplete patlfi.e., a (directed) path Egr%n;ﬂ e|s ;?tn‘]/o s;l {i(el{ C .t’)éXg}r,n\lljvllgii:; gﬁ_ﬁ:ﬁ acg O%aSCh

from source tosink ) m,, by following, from each node, iy A
the edge associated with valugx, ). for some semiring4, such that the scope of each valuation

The semiring valuen(w) associated with a path is the  2gyen for random (binary) CSPs, it has been demonstrated ex-
semiring product of the semiring values associated with eacBerimentally that the size of the SLDD representation can be sev-
edge in the path, i.e), .. a(A). This might be thought of  eral orders of magnitude smaller than the size of the corresponding
as the cost of following path. For .4-decision diagran® search tree (this happens when the problems are sparse and loose).



involves variables which are at mgsapart (wherep is con-  source , for eachr # source , define
stant and fairly small): for alt € C, max{i : X; € V.} —

min {i : X; € V.} < p. This might arise, for example, in a fr) = @ (f(r"Yy @ a(r” —r)).

problem where there is a temporal component, with the in- 2

dex : related to time. We can generate dndecision dia- . L .
gram using the fixed variable orderidgy, .. ., X,, (i.e., the where the semiring summation is over all edgé&swhich

variables appear in that order in all paths). Lebe such POinttor. Because the SLDD is a directed acyclic graph
thatp < j < n, and consider any assignment@and’ to v_wth source being the unique parent-less n_ode, thls_ de-
set of variabled/ = {Xi,...,X;}. If uandu’ agree on fines f(r) for eachr unambiguously. Symmetrically, define
their lastp variables, i.e.u(X;) = u'(X;) for all i such that  9(Sink ) = 1, and, working backwards fromink , define,
j—p < i< j,then they are forward neighbourhood inter- fOr 7 # Sink -, g(r) = @, . (a(r — 1) @ g(r")), where
changeable, since for any activevaluationc, u andu’ agree  tN€ Semiring summation is over all edges- »* emanating
on the scope of, S0, = ¢, This implies that the construc- rom . Furthermore, for each nodean edge: — 1, de-
tion of the SLDD will produce at most” nodes at ‘levelj, ~ fiN€A(r) = f(r) ® g(r), andh(r — 1) = f(r) ® a(r —
and an upper bound for the size of the SLDD is hemg&e™; 7 )@ g(r").

this is linear inn, sinced andp are constants. For the CSP Proposition 1 Let ~ be a node and leA be an edge in the
case, the number of solutions will often be exponential,in 5| pp. If # source then f(r) = @, a(r) where the
and hence exponential in the size of the SLDD. Many Operagemiring summation is over all pathsfrc;rm source tor.
tions, such as counting the number of solutions, or finding afy, particular, f(sink ) is the semiring sum ofi(r) over
optimal solution for more general semirings (see Section S)| paths fromsource ~ to sink . Similarly, if  # sink
can be achieved in time linear in even though an exponen- g(r) = @. a(r), where the semiring summation is over
tial number of assignments are being reasoned about. all paths fromr to sink . Also, ifr ¢ {source ,sink },

A similar argument leads to an upper bound on the size ofi(r) = @, «(m) where the semiring sum of() is over all
the SLDD of the same form, but in terms mdthwidth[Bod-  complete paths passing through nadeFurthermore,i(\)
laender, 1998 for arbitrary multisets of semiring valuations is equal to the semiring sum of 7) over all complete paths
(A fixed variable ordering used to generate an SLDD giveswyhich include the edga.

rise to a corresponding path decomposition.
! ponding p position.) This proposition generalises proposition 8 [@milhas-

Other examples. Certain problems involving permutations tre et al, 2004, and the definitions of and g are gener-

can also lead to relatively compact SLDDs; for example,alised forms of functions in definition 10 ¢Amilhastreet

counting the number of linear orders which extend a giveral., 2003.

partial ordefvan Dongen, 2004 The structure of the prob- Note that the number of semiring operations needed to

lem ensures that the SLDD decomposes the problem (simeompute functiong, g andh islinear in the size of the SLDD

larly to a dynamic programming approach), reducing a fac-

torial prob_lem to an expon_ential one—which can be a huge; Computations Using an SLDD

reduction in time complexity, but at the cost of large space

requirements. Similar remarks apply to solvingehearsal In this section we show how the SLDD representation can

problem (CSPLib http://www.csplib.org/ problem  be used to perform important computations: projections and

number 39). Compact structures with a form similar to anfinding optimal solutions. lfiWilson, 2004 we also showed

SLDD can also be used for enforcing generalised arc conhow the SLDD can be used for randomly picking a solution of

sistency for many forms of global constraints e[@Pesant, a CSP with uniform probability (by using an algorithm with

2004. a very similar structure to that described below for finding
an optimal solution). It is assumed that we have an SLDD
representation of a functio® : D(V) — A, based on a

4 Propagation of Semiring Values in SLDD semiring A = (A, 0,1, ®, ®); we also assume that we have
computed the associated functighsy andh, as described in

The purpose of this section is to show how to efficiently per-the last section.

form various technical computations in an SLDD, in partic- . L

ular, the sum of the semiring values over (i) all completed-1 Performing Projections

paths, (ii) all complete paths which pass through a particuas mentioned above, computing the projection of the com-
lar node, (iii) all complete paths which pass through a partichination of a multiset of semiring valuations is important
ular edge. The algorithms are immediate generalisations gbr many different applications. It gives what is called in
a classic shortest path algorithm (and the application to thegistareiliet al., 1997 the ‘solution’ of a semiring-based con-
weighted CSP semiring/V U {0, oo}, oo, 0, min, +) reduces  straint problem, and can be used for generating implied soft
to this shortest path algorithm). constraints in an idempotent semiring-based ¢BiBtarelli
Suppose we have ad-decision diagram, with semiring et al, 2004. Projecting to the empty set of variables can be
A = (A,0,1,®,®). We associate with each nodetwo used, for example, for computing the weight of the best so-
semiring valuesf(r) and g(r), which are defined induc- lution in a weighted CSP, or for counting solutions of a CSP.
tively. Define f(source ) = 1, and, working forwards from Projection to a singleton set determines the possible values



of a variable for CSPs, and analogously for other semiring-\ to sink and resettingx(\) to 0), since such an edge is
based CSPs; for the Bayesian network semiring it computesot part of any optimal complete path. For certain addition-
a marginal of the Bayesian network. is-max semirings (in particular, a fuzzy semiring with
The lemma below shows how the projection@bnto the  equallingmin, or alternatively, if® is strictly monotonic),
empty set and to singleton sets can be computed efficiently. the resulting network has the property tleatery complete

follows easily from proposition 1. path is optimal (ignoring edgeswith «(A) = 0). This then
Lemma 1 Suppose and-decision diagram on set of vari- 9ives considerable flexibility in generating optimal solutions
ablesV (with associated functiong, g andh) representsd-  In an interactive setting, such as guiding a user in solving a

valuationC. Let X € V be a variable, and: € D(X)bea  configuration problem.
value ofX. Then ()C'? = f(sink ) = g(source ); and _ _
(i) CHX¥(2) = @,cq, h(N), where, is the set of edges 6 Discussion

associated with assignmenit = - N As well as the representation fAmilhastreet al,, 2004,

So to computeC! ¥} (z) requireg A, | — 1 semiring sum-  which they directly generalise (see Section 1), SLDDs are
mations. To compute the projections onto every single varirelated to several other computational approaches, includ-
able, i.e., computing>{X} (z) for all variablesX and allits  ing search-based approaches for solving CSPs, and join
valuesr, requires a semiring summation for each edge in tharee/hypertree-based decomposition methods, and AND/OR
SLDD, so can be computed in time linear in the size of thesearch graphs. We very briefly discuss these relationships be-
SLDD. low.

Adding unary semiring valuations. Suppose we receive a  Our construction of the SLDD in Section 3 is different from
new set of semiring valuations, all of which are unary (i.e.,the way that the representation[iémilhastreet al, 2007 is

the scope of each is a single variable) which we want to comgenerated or similar representations such as Binary Decision
bine with the previous combinatio&. It can be seen that Diagrams[Bryant, 198% and that off Vempaty, 1992 The

the same graphical structure can be used, but where we julstiter involve building up the representation by adding the
change the semiring values on the edges. This can be usednstraints incrementally, giving representations of subsets
for computing more general projections; it also has applicaof the constraints. SLDDs could also be generated in a sim-
tions in in dynamic soft CSPAmilhastreet al, 2004, and ilar way; however, the construction in Section 3 takes all the
for conditioning, and hence inference, in a Bayesian networkgonstraints (semiring valuations) into account at once. This

and computing most probable explanatipRearl, 1988 can sometimes be advantageous; in particular, when search-
- . . ing for a single solution of a CSP, the SLDD need have time

5.2 Finding optimal solutions complexity at most polynomially worse than a standard CSP

In this subsection we only consider semiringé =  search approach (such as chronological backtracking whilst

(4,0,1, 4, ®) with a special property: that for all, 5 € 4,  maintaining arc consistency), whereas the experimental re-
eithera ® 8 = aora @ § = §. SemiringsA satisfying  sults of[Pan and Vardi, 20Q4seem to suggest that a BDD
this property are said to satisfy thedition-is-maxproperty.  approach can be exponentially worse than a search approach.
We can then define a total order on A given bya > SLDDs often have large storage requirements, but they can
if and only if « © 3 = . Any valuation structure, as de- involve very much fewer nodes (and need never involve more
fined in definition 11 of Bistarelliet al, 1999, gives rise to  nodes) than a search tree approach. As illustrated by the ex-
a semiring satisfying addition-is-max, by using the order relaample in Section 3 (and by the application [iimilhastre

tion to defined (note that we are writing the order the oppo- et al, 2004), certain problems with a very large number of
site way round). Hence the approach in this section applies tgolutions (i.e., non-zero complete assignments) can have an
any valued CSPEBistarelliet al, 1999, including weighted ~ SLDD of manageable size, leading to efficient computation;
CSPs, fuzzy CSPs and lexicographic CSPs, as valued CSBssearch-based method will often then not be feasible if one
can be represented as multisets/s¥aluations whered sat-  wants to compile the set of solutions, or count the number of
isfies addition-is-max. solutions.

Complete assignmente D (V') is defined to be optimal if  perhaps the most-studied general approach for this kind
C(v) = C(v') forallv" € D(V). This happensif and only if - of problem is the join tree (or hypertree decomposition) ap-
C(v) = C!?. To generate any optimal complete assignmenproach, e.g., the general framework of Shenoy and Shafer
v € D(V) is very fast: linear im, the number of variables: [Shenoy and Shafer, 19p®ucket Elimination[Dechter,
we start with nodesource as the current node, and itera- 1999, and non-serial dynamic programmitBertele and
tively pick a child of the current node, satisfying the following Brioschi, 1972. Whether a join tree approach or a decision
condition, until we reaclink : we pick any child-’ of cur-  diagram approach is more efficient depends very much on the
rent node- with maximum value of(7) @ a(r — r")®@g(r’)  form of the problem; a join tree approach may be more ef-
(among children ofr), wherer is the path chosen so far, ficient if there is appropriate topological structure, but little
fromsource tor. The associated complete assignment will structure which is more value-specific; a decision diagram
be optimal, and conversely, any optimal complete assignmentpproach looks liable to be more efficient if there is a good
can be generated in this way. deal of value-specific structure (e.g., of the form of ‘context-

If we are only interested in optimal solutions, we could specific independencéBoutilier et al, 1994, defined in a
eliminate each edgk with h()\) < C? (by connecting such Bayesian network context), leading to a compact decision di-



agram. See also discussioniilson, 2004. 11th European Symposium on Programming (ESQ&9-
An SLDD is similar in form to an OR search graph, a ture Notes in Computer Science (LNCS), pages 53-67.
special case of AND/OR search graphgechter and Ma- Springer, 2002.

teescu, 200]4.the latter are also closely related to the d-[godlaender, 1993Hans L. Bodlaender. A tourist guide
DNNF formalism—see e.g[Darwiche, 200, and Case- through treewidthActa Cybernetical1:1-21, 1993.
Factor DiagramgMcAllester et al, 2004. SLDDs can be . o .

extended to also include AND nodes; these can be used whaReutilier etal, 1994 C. Boutilier, N. Friedman, M. Gold-
the sliced constraints associated with a node can be parti- S2Midt, and D. Koller. Context-specific independence in
tioned into (e.g., two) sets with non-overlapping scopes; there BaYesian networks. IRroc. UAI9G pages 115-123, 1996.
is no longer a unique final nodenk , and the computation [Bryant, 1986 R. E. Bryant. Graph-based algorithms for
generalises that of functiog, starting from the sink nodes ~ Boolean function manipulation.|IEEE Transactions on
and working backwards, with semiring producbeing used Computers35(8):677-691, 1986.

to combine the semiring values of th.e branches of an AND[Bryant, 1995 R. E. Bryant. Binary Decision Diagrams and
node. This sometimes leads to a still more compact repre- peyond: enabling technologies for formal verification. In
sentation, but with reduced functionality (as not all the tech-  proceedings of the 1995 IEEE/ACM international confer-
nigues in Section 5 extend). ence on Computer-aided desjgrages 236—243, 1995.

Summary [Darwiche, 2002 A. Darwiche. A logical approach to fac-
) ) o _ toring Belief Networks. IrProc. KR2002pages 409-420,
This paper introduces and develops semiring-labelled deci- 2002,

sion diagrams (SLDDs); this computational tool, combining[
. ; . . Dechter and Mateescu, 2JOR. Dechter and R. Mateescu.
a form of dynamic programming with a constraint program- Mixtures of deterministic-probabilistic networks and their

ming approach, can be used to solve a variety of important ;
computational problems for (soft or ordinary) constraints and andfor search space. Rroceedings of UAIG2004.

uncertainty. For problem instances with appropriate struclDechter, 199P R. Dechter. Bucket elimination: A unify-
ture, the SLDD will be compact, and hence be an efficient ing framework for reasoningArtificial Intelligence 113,
approach, for example, for solving constraints problems, op- 1999.

timisation, and knowledge compilation. [Freuder, 19911 E. C. Freuder. Eliminating interchangeable
values in constraint satisfaction problems.Piroc. AAAI-
Acknowledgements 91, pages 227-233, 1991.
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