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Decision Diagrams for the Computation of Semiring Valuations

Nic Wilson
Cork Constraint Computation Centre

Department of Computer Science, University College Cork, Ireland
n.wilson@4c.ucc.ie

Abstract

This paper describes a new approach to computa-
tion in a semiring-based system, which includes
semiring-based CSPs (in particular weighted CSPs,
fuzzy CSPs and standard CSPs) as well as Bayesian
networks. The approach to computation is based on
what we call semiring-labelled decision diagrams
(SLDDs). These can be generated in a similar
way to a standard search tree (decision tree) for
solving a CSP, but some nodes are merged, cre-
ating a more compact representation; for certain
classes of CSPs, the number of nodes in the re-
sulting network will be a tiny fraction of the num-
ber of nodes in the corresponding search tree. A
method is given for generating an SLDD that repre-
sents e.g., a particular instance of a semiring-based
CSP; it is shown how this can be used to perform
various computations of interest, such as solving a
semiring-based CSP, finding optimal solutions, de-
termining the possible values of each variable and
counting solutions of a CSP.

1 Introduction
Suppose we are performing a depth-first search for solutions
of a (not necessarily binary) CSP, where we record the nodes
of the search (decision) tree that we’ve visited so far. Solu-
tions correspond to complete paths in the tree, i.e., directed
paths from the root node to a node corresponding to a com-
plete assignment. We are at a node with associated partial
assignmentu of set of variablesU , which we have checked
is consistent (in the CSP sense of it satisfying all constraints
involving only variables inU ). Suppose we manage some-
how to find another assignmentu′ of U , corresponding to a
node previously visited, which is also consistent, and which
is fully interchangeable, that is (extending[Freuder, 1991])
for all assignmentsw of the remaining variablesW , uw is a
solution of the CSP if and only ifu′w is a solution.

There is then no need to expand the subtree belowu, as it
is equivalent to the one belowu′ which we have already ex-
panded. Instead we can merge the nodes corresponding tou
andu′. The resulting structure will no longer be a tree—so
can be described as adecision diagram(as opposed to a de-
cision tree)—but it will still represent all solutions, as solu-

tions still correspond to complete directed paths; one can also
prune the representation to allow backtrack-free generation of
any solution. If we can find many such equivalences through
interchangeability then the number of nodes in the decision
diagram will be a tiny fraction of the number of nodes in the
corresponding decision tree. Indeed, the number of solutions
can even sometimes be exponential in the size of such a de-
cision diagram, as the merging of nodes ‘factorises’ the so-
lution set (so the size of the decision tree will be exponential
in the size of the decision diagram). This kind of representa-
tion, in the form of binary decision diagrams[Bryant, 1986;
1995], has proved very effective in certain domains, such as
CAD applications.

Testing full interchangeability is often expensive, but one
can instead use the sufficient condition,neighbourhood inter-
changeability, that is, for all the constraintsc whose scope
intersects with bothU andV − U , cu = cu′ , where e.g.,cu

(which involves no variables inU ) is the ‘slice’ ofc given by
instantiating variablesU to u. This condition can be tested
quickly, in time proportional to the size of the (sliced) con-
straints. Furthermore, if one constructs these slices for each
node visited, and indexes them appropriately, then check-
ing whether we have previously generated neighbourhood-
interchangeableu′, can be achieved efficiently.

This computational approach can be generalised to
semiring-based systems (Section 2), including semiring-
based CSPs (in particular weighted CSPs, fuzzy CSPs and
standard CSPs) as well as Bayesian networks. Each edge in
the decision diagram is labelled with a value in the semiring,
generating (Section 3) what we callsemiring-labelled deci-
sion diagrams(SLDDs). We show how this can be done in
such a way that the SLDD represents the semiring-based sys-
tem, i.e., the product of semiring values of edges in a com-
plete path is equal to the semiring value of the complete as-
signment associated with the path. The efficiency of this ap-
proach to computation is very much dependent on how com-
pact the SLDD is, especially compared to the corresponding
search tree. If the SLDD is compact, then it can be efficiently
constructed and the operations are efficient. We give exam-
ples of situations where the SLDD is compact (even linear
size) despite the number of solutions being exponential in the
number of variables.

Sections 4 and 5 show how the semiring-labelled decision
diagram can be used to perform various computations of in-



terest, including solving, optimising and generating inferred
constraints, and projections needed in inference in Bayesian
networks and solving semiring-based CSPs.

The formalism SLDDs defined in this paper is a develop-
ment of the finite-state automata representations for weighted
constraints in[Amilhastreet al., 2002] (where the soft con-
straints are unary). The latter, which can be considered as im-
plementing a kind ofdynamic programming[Bellman, 1957],
has been shown to be applicable as a compilation technique
on a substantial real-world problem.

The main contributions of the paper are extending this
computational technique of[Amilhastre et al., 2002] in a
number of significant ways: our technique, SLDDs, can be
applied to computation in many formalisms for preferences
and uncertainty: in particular, to a very general class of soft
CSPs, semiring-based CSPs; we allow soft constraints to be
of arbitraryarity, as well as both extensional and intensional
representations of constraints; it applies also to computation
in Bayesian networks, and for counting the solutions of a
CSP. Our construction of the representation is also new, and
is based on backtracking search, where certain nodes in the
search tree are merged (implicity performing a kind of for-
malised caching); this enables constraint programming tech-
niques to be used, making SLDDs a combination of a form of
dynamic programming and search-based approaches used in
constraint programming.

2 Semiring Valuations
Semirings consist of a set with two operations⊗ and⊕,
which are both associative and commutative and such that⊗
distributes over⊕. Here we also assume a unit element and a
null element. TupleA = 〈A,0,1,⊕,⊗〉 is said to be asemir-
ing if A is a set containing different elements0 and1 and⊕
and⊗ are operations onA satisfying the following properties:
⊗ is associative and commutative with identity1, ⊕ is asso-
ciative and commutative with identity0, which is also a null
element (i.e., for allα ∈ A, α⊗0 = 0), and⊗ distributes over
⊕ i.e., and for allα, β, γ ∈ A, α⊗(β⊕γ) = (α⊗β)⊕(α⊗γ).
Semiring valuations. Let V be a finite set of variables. For
eachX ∈ V let D(X) be the domain (i.e., the set of possible
assignments) ofX. For U ⊆ V let the set of partial tuples
D(U) =

∏
X∈U D(X) be the set of possible assignments to

set of variablesU . A complete assignment is an element of
D(V ). For u ∈ D(U) andW ⊆ U , u↓W is the projection
of u onto variablesW , so that for allX ∈ W , u↓W (X) =
u(X).

Let A = 〈A,0,1,⊕,⊗〉 be a semiring. AnA-valuation
c associates a semiring value with each of a particular set of
partial tuples:c is a function fromD(Vc) to A, where set of
variablesVc ⊆ V is called thescopeof c. If u ∈ D(U) is
an assignment to set of variablesU containingVc, we may
write c(u) as an abbreviation forc(u↓Vc). The semiring op-
erations allow one to define a combination and a projection
operation on semiring valuations. The combinationc ⊗ c′ of
A-valuationsc andc′ is defined to have scopeVc ∪ Vc′ , and
by, (c ⊗ c′)(u) = c(u) ⊗ c′(u), i.e.,c(u↓Vc) ⊗ c′(u↓Vc′ ), for
each assignmentu of Vc ∪ Vc′ . ⊗ is a commutative and asso-
ciative operation onA-valuations (onV ). If C is a multiset of

A-valuations, we may write
⊗

C to mean
⊗

c∈C c. Let c be
anA-valuation, and letU be a subset ofVc. The projection
c↓U of c ontoU is defined by, foru ∈ D(U), c↓U (u) is equal
to the semiring summation ofc(w) over allw ∈ D(Vc) such
thatw↓U = u.

Many computational problems can be expressed as com-
puting a projection of a combinationC =

⊗
C of a multiset

C of semiring valuations (and a straightforward approach to
such a computation is exponential). In particular, computa-
tions in semiring-based CSPs[Bistarelli et al., 1997; 1999;
2002] are of this form. This is a general formalism for
soft constraints, which includes weighted CSPs, fuzzy CSPs,
probabilistic CSPs, lexicographic CSPs and set-based CSPs.
These use a special type of semiring, where⊕ is idempotent
and1 is an absorbing element of⊕.

Finite CSPs can be expressed as a setC of A-valuations,
usingA = 〈{0, 1}, 0, 1,max,×〉, so that⊗ = × (i.e., min)
and⊕ is max. A constraint on set of variablesU is repre-
sented as a semiring valuationc : D(U) → {0, 1}, where for
assignmentu of U , c(u) = 1 if and only if u satisfies the con-
straint. The CSP has a solution if and only if(

⊗
C)↓∅ = 1.

To perform computations in Bayesian networks, we use the
semiringA = 〈IR+, 0, 1,+,×〉, whereIR+ is the set of non-
negative real numbers. As is well known, computation in
Bayesian networks[Pearl, 1988; Shenoy and Shafer, 1990]
can be performed by computing projections of combinations
of suchA-valuations, where eachA-valuation represents a
conditional probability table of a variable given its parents in
the Bayesian network. In particular, the marginal probability
that variableX is assigned tox is given byC↓{X}(x). This
semiring can also be used to count the solutions in a CSP as
C↓∅, by restricting the input semiring values to being0 or 1.

3 Constructing an SLDD Representing a
Combined Semiring Valuation

We will show how to construct a structure,1 called asemiring-
labelled decision diagram (SLDD), that represents, in a par-
ticular sense, the combinationC =

⊗
c∈C c of a multisetC

of A-valuations, whereA = 〈A,0,1,⊕,⊗〉 is a given semir-
ing. The SLDD is a directed acyclic graph, where the edges
are labelled with elements inA. As we’ll show in Sections 4
and 5, this representation can then be used to perform certain
important computations.

The construction of the SLDD is very similar to that
of a search tree generated by chronological backtracking;
the difference is that when we generate an edge we use a
certain conditionforward neighbourhood interchangeability
(defined below, extending the definition of neighbourhood in-
terchangeability in the introduction) to test if we can avoid
creating a new node, but instead connect the edge to an al-
ready existing node.

Let U ⊆ V be a set of variables. Define a valuationc ∈ C
to beactive(with respect toU ) if its scope intersects bothU
andV − U . For active valuationc, define, foru ∈ D(U),
A-valuationcu to be the ‘slice’ ofc given by assigningU to

1A more general definition of SLDDs is given in[Wilson, 2004],
with a corresponding version of Theorem 1.



u; that is, the scopeVcu of cu is Vc − U , and for all assign-
ments oft to Vcu , cu(t) is defined to bec(ut) (whereut is the
concatenation of tuplesu andt). Assignmentsu andu′ to set
of variablesU are said to beforward neighbourhood inter-
changeable(with respect toC) if for all activeA-valuations
c, the slicescu and cu′ are equal. Roughly, what this im-
plies is that the subproblems corresponding tou andu′ are
the same, so there is no need to solve them more than once.

A semiring-labelled decision diagram (over set of vari-
ablesV ) is defined to be anA-decision diagram (overV )
for some semiringA = 〈A,0,1,⊕,⊗〉. An A-decision dia-
gram consists of a directed acyclic graph with a unique earli-
est (parent-less) nodesource and a unique latest (childless)
nodesink . Each edgeλ is labelled with a valueα(λ) in the
semiring (defined below). A complete path is defined to be
a maximal (directed) path, that is, a path fromsource to
sink .

Nodes and edges are both labelled with various pieces of
information, as described below. Associated with each node
r (other thansink ) is a variableXr, which is the variable
that is about to be instantiated. AlsoUr is the set of variables
associated with nodes on any (directed) path fromsource
to r.

We start off by creating the nodesource , and define
Usource = ∅, andusource to be the trivial assignment
to the empty set of variables. We also choose some variable
Y ∈ V , and setXsource = Y . The construction pro-
cess works by choosing a node already constructed, and con-
structing the (directed) edges coming from the node, and the
nodes at the end of the edges. At each point we choose a node
r 6= sink which has currently no children (i.e., no edges em-
anating from it). If there is no such node, the construction is
complete.

For each assignmentx to Xr we create a (directed) edge
λ from r with associated assignmentXr = x, (and define
Xλ = Xr) and set of variablesUλ = Ur ∪ {Xr}, and as-
signmentuλ to Uλ which is ur extended with assigningx
to Xr. The semiring valueα(λ) is defined to be

⊗
c c(uλ)

where the semiring product is over allc ∈ C which are ‘just
instantiated’, i.e., such thatXλ ∈ Vc ⊆ Uλ.

If Uλ = V , so that all the variables have been instantiated,
we connect the end ofλ to sink . If α(λ) = 0 we also set the
end ofλ to besink . If α(λ) 6= 0, and we can find previously
created noder′ such thatuλ andur′ are forward neighbour-
hood interchangeable (this requires alsoUλ = Ur′ ), we set
the end ofλ to ber′. We call this‘merging’, since it cor-
responds to merging nodes in a decision tree. Otherwise we
create a new noder′, setur′ = uλ, Ur′ = Uλ and choose
someXr′ ∈ V − Ur′ . To aid future ‘merging’, we also store
with the noder′ the slicescur′ , for active valuationsc.

Following a (directed) path thus corresponds to an as-
signment to a set of variables; also a complete assignment
v ∈ D(V ) determines acomplete path(i.e., a (directed) path
from source to sink ) πv, by following, from each noder,
the edge associated with valuev(Xr).

The semiring valueα(π) associated with a path is the
semiring product of the semiring values associated with each
edge in the path, i.e.,

⊗
λ∈π α(λ). This might be thought of

as the cost of following pathπ. ForA-decision diagramS

define theA-valuationcS by, for v ∈ D(V ), cS(v) = α(πv).
The SLDD is said torepresentA-valuationcS .

Theorem 1 LetA be a semiring and letC be a multisetC of
A-valuations over variablesV . LetS be anA-decision dia-
gramS constructed as above. ThenS representsC =

⊗
C

and C↓∅ =
∑

π α(π), where the sum is over all complete
paths inS.

In the next section it is shown how to compute such sums
efficiently.

Note that ‘dynamic variable ordering’ can be used, i.e., the
order of variables can differ between paths. We can also adapt
constraint programming techniques to improve the efficiency.
We can use propagation e.g., maintaining arc consistency for
the zeros[Wilson, 2004]. Furthermore, the SLDD can, like a
search tree, be generated in a depth-first fashion: this is nat-
ural when we’re attempting to solve a CSP; the construction
can be terminated when a solution is found.

To facilitate merging, for partial tupleu we can represent
the collection of slices{cu : c active} as a stringσ(u) of el-
ements in the semiring. Then, foru, u′ ∈ D(U), tuplesu and
u′ are forward neighbourhood interchangeable if and only if
σ(u) = σ(u′). For set of variablesU , we can incrementally
construct atrie (a tree of strings) storing eachσ(ur) for all
nodesr with ur ∈ D(U); this enables efficient generation
of each edge of the SLDD. For valuations represented exten-
sionally, definesize(C) to be

∑
c∈C size(c), wheresize(c) is

the cardinality of the scope ofc multiplied by the number of
non-zero tuples inc. An upper bound for the time needed to
construct the SLDD is then proportional tosize(C)×size(S),
wheresize(S) is the number of edges of the SLDD. In par-
ticular, if the size of the SLDD is polynomial inn, for some
parametrised family of problems depending on the number of
variablesn, then constructing the SLDD is polynomial.

When is the SLDD compact?
The crucial factor in the determining the efficiency of our
approach is the size of the SLDD; if the SLDD is compact,
then it can be efficiently constructed and the operations are
efficient. The SLDD will tend to be compact (compared to
the associated search tree) in situations where many differ-
ent partial instantiations lead to equivalent subproblems (and
so a standard search-based technique would solve the same
subproblem many times). There are many kinds of situations
where the problem structure causes this to happen.2

We give a class of examples to illustrate that the con-
structed semiring-labelled decision diagram can be compact,
even if it represents an exponential number of non-zero com-
plete assignments (e.g., solutions of a CSP). In these cases the
size of the SLDD is linear in the number of variables, whereas
the size of the corresponding search tree is exponential.

Example. Let V = {X1, . . . , Xn}, where the size of each
domain is at mostd. Let C be a multiset ofA-valuations,
for some semiringA, such that the scope of each valuation

2Even for random (binary) CSPs, it has been demonstrated ex-
perimentally that the size of the SLDD representation can be sev-
eral orders of magnitude smaller than the size of the corresponding
search tree (this happens when the problems are sparse and loose).



involves variables which are at mostp apart (wherep is con-
stant and fairly small): for allc ∈ C, max {i : Xi ∈ Vc} −
min {i : Xi ∈ Vc} ≤ p. This might arise, for example, in a
problem where there is a temporal component, with the in-
dex i related to time. We can generate anA-decision dia-
gram using the fixed variable orderingX1, . . . , Xn (i.e., the
variables appear in that order in all paths). Letj be such
that p ≤ j < n, and consider any assignmentsu andu′ to
set of variablesU = {X1, . . . , Xj}. If u andu′ agree on
their lastp variables, i.e.,u(Xi) = u′(Xi) for all i such that
j − p < i ≤ j, then they are forward neighbourhood inter-
changeable, since for any activeA-valuationc, u andu′ agree
on the scope ofc, socu = cu′ . This implies that the construc-
tion of the SLDD will produce at mostdp nodes at ‘level’j,
and an upper bound for the size of the SLDD is hencendp+1;
this is linear inn, sinced andp are constants. For the CSP
case, the number of solutions will often be exponential inn,
and hence exponential in the size of the SLDD. Many opera-
tions, such as counting the number of solutions, or finding an
optimal solution for more general semirings (see Section 5)
can be achieved in time linear inn, even though an exponen-
tial number of assignments are being reasoned about.

A similar argument leads to an upper bound on the size of
the SLDD of the same form, but in terms ofpathwidth[Bod-
laender, 1993], for arbitrary multisets of semiring valuations.
(A fixed variable ordering used to generate an SLDD gives
rise to a corresponding path decomposition.)

Other examples. Certain problems involving permutations
can also lead to relatively compact SLDDs; for example,
counting the number of linear orders which extend a given
partial order[van Dongen, 2004]. The structure of the prob-
lem ensures that the SLDD decomposes the problem (simi-
larly to a dynamic programming approach), reducing a fac-
torial problem to an exponential one—which can be a huge
reduction in time complexity, but at the cost of large space
requirements. Similar remarks apply to solving arehearsal
problem(CSPLibhttp://www.csplib.org/ problem
number 39). Compact structures with a form similar to an
SLDD can also be used for enforcing generalised arc con-
sistency for many forms of global constraints e.g.,[Pesant,
2004].

4 Propagation of Semiring Values in SLDD

The purpose of this section is to show how to efficiently per-
form various technical computations in an SLDD, in partic-
ular, the sum of the semiring values over (i) all complete
paths, (ii) all complete paths which pass through a particu-
lar node, (iii) all complete paths which pass through a partic-
ular edge. The algorithms are immediate generalisations of
a classic shortest path algorithm (and the application to the
weighted CSP semiring〈IN ∪{0,∞},∞, 0,min,+〉 reduces
to this shortest path algorithm).

Suppose we have anA-decision diagram, with semiring
A = 〈A,0,1,⊕,⊗〉. We associate with each noder two
semiring valuesf(r) and g(r), which are defined induc-
tively. Definef(source ) = 1, and, working forwards from

source , for eachr 6= source , define

f(r) =
⊕

r′′→r

(f(r′′)⊗ α(r′′ → r)).

where the semiring summation is over all edgesr′′ which
point to r. Because the SLDD is a directed acyclic graph
with source being the unique parent-less node, this de-
finesf(r) for eachr unambiguously. Symmetrically, define
g(sink ) = 1, and, working backwards fromsink , define,
for r 6= sink , g(r) =

⊕
r→r′(α(r → r′) ⊗ g(r′)), where

the semiring summation is over all edgesr → r′ emanating
from r. Furthermore, for each noder and edger → r′, de-
fine h(r) = f(r) ⊗ g(r), andh(r → r′) = f(r) ⊗ α(r →
r′)⊗ g(r′).

Proposition 1 Let r be a node and letλ be an edge in the
SLDD. If r 6= source then f(r) =

⊕
π α(π) where the

semiring summation is over all pathsπ from source to r.
In particular, f(sink ) is the semiring sum ofα(π) over
all paths fromsource to sink . Similarly, if r 6= sink ,
g(r) =

⊕
π α(π), where the semiring summation is over

all paths fromr to sink . Also, if r /∈ {source , sink },
h(r) =

⊕
π α(π) where the semiring sum ofα(π) is over all

complete paths passing through noder. Furthermore,h(λ)
is equal to the semiring sum ofα(π) over all complete paths
which include the edgeλ.

This proposition generalises proposition 8 of[Amilhas-
tre et al., 2002], and the definitions off and g are gener-
alised forms of functions in definition 10 of[Amilhastreet
al., 2002].

Note that the number of semiring operations needed to
compute functionsf , g andh is linear in the size of the SLDD.

5 Computations Using an SLDD
In this section we show how the SLDD representation can
be used to perform important computations: projections and
finding optimal solutions. In[Wilson, 2004] we also showed
how the SLDD can be used for randomly picking a solution of
a CSP with uniform probability (by using an algorithm with
a very similar structure to that described below for finding
an optimal solution). It is assumed that we have an SLDD
representation of a functionC : D(V ) → A, based on a
semiringA = 〈A,0,1,⊕,⊗〉; we also assume that we have
computed the associated functionsf , g andh, as described in
the last section.

5.1 Performing Projections
As mentioned above, computing the projection of the com-
bination of a multiset of semiring valuations is important
for many different applications. It gives what is called in
[Bistarelliet al., 1997] the ‘solution’ of a semiring-based con-
straint problem, and can be used for generating implied soft
constraints in an idempotent semiring-based CSP[Bistarelli
et al., 2002]. Projecting to the empty set of variables can be
used, for example, for computing the weight of the best so-
lution in a weighted CSP, or for counting solutions of a CSP.
Projection to a singleton set determines the possible values



of a variable for CSPs, and analogously for other semiring-
based CSPs; for the Bayesian network semiring it computes
a marginal of the Bayesian network.

The lemma below shows how the projection ofC onto the
empty set and to singleton sets can be computed efficiently. It
follows easily from proposition 1.

Lemma 1 Suppose anA-decision diagram on set of vari-
ablesV (with associated functionsf , g andh) representsA-
valuationC. LetX ∈ V be a variable, andx ∈ D(X) be a
value ofX. Then (i)C↓∅ = f(sink ) = g(source ); and
(ii) C↓{X}(x) =

⊕
λ∈Λx

h(λ), whereΛx is the set of edges
associated with assignmentX = x.

So to computeC↓{X}(x) requires|Λx| − 1 semiring sum-
mations. To compute the projections onto every single vari-
able, i.e., computingC↓{X}(x) for all variablesX and all its
valuesx, requires a semiring summation for each edge in the
SLDD, so can be computed in time linear in the size of the
SLDD.
Adding unary semiring valuations. Suppose we receive a
new set of semiring valuations, all of which are unary (i.e.,
the scope of each is a single variable) which we want to com-
bine with the previous combinationC. It can be seen that
the same graphical structure can be used, but where we just
change the semiring values on the edges. This can be used
for computing more general projections; it also has applica-
tions in in dynamic soft CSPs[Amilhastreet al., 2002], and
for conditioning, and hence inference, in a Bayesian network,
and computing most probable explanations[Pearl, 1988].

5.2 Finding optimal solutions
In this subsection we only consider semiringsA =
〈A,0,1,⊕,⊗〉 with a special property: that for allα, β ∈ A,
eitherα ⊕ β = α or α ⊕ β = β. SemiringsA satisfying
this property are said to satisfy theaddition-is-maxproperty.
We can then define a total order≥ on A given byα ≥ β
if and only if α ⊕ β = α. Any valuation structure, as de-
fined in definition 11 of[Bistarelli et al., 1999], gives rise to
a semiring satisfying addition-is-max, by using the order rela-
tion to define⊕ (note that we are writing the order the oppo-
site way round). Hence the approach in this section applies to
any valued CSPs[Bistarelli et al., 1999], including weighted
CSPs, fuzzy CSPs and lexicographic CSPs, as valued CSPs
can be represented as multisets ofA-valuations whereA sat-
isfies addition-is-max.

Complete assignmentv ∈ D(V ) is defined to be optimal if
C(v) ≥ C(v′) for all v′ ∈ D(V ). This happens if and only if
C(v) = C↓∅. To generate any optimal complete assignment
v ∈ D(V ) is very fast: linear inn, the number of variables:
we start with nodesource as the current node, and itera-
tively pick a child of the current node, satisfying the following
condition, until we reachsink : we pick any childr′ of cur-
rent noder with maximum value ofα(π)⊗α(r → r′)⊗g(r′)
(among children ofr), whereπ is the path chosen so far,
from source to r. The associated complete assignment will
be optimal, and conversely, any optimal complete assignment
can be generated in this way.

If we are only interested in optimal solutions, we could
eliminate each edgeλ with h(λ) < C↓∅ (by connecting such

λ to sink and resettingα(λ) to 0), since such an edge is
not part of any optimal complete path. For certain addition-
is-max semirings (in particular, a fuzzy semiring with⊗
equallingmin, or alternatively, if⊗ is strictly monotonic),
the resulting network has the property thateverycomplete
path is optimal (ignoring edgesλ with α(λ) = 0). This then
gives considerable flexibility in generating optimal solutions
in an interactive setting, such as guiding a user in solving a
configuration problem.

6 Discussion
As well as the representation of[Amilhastreet al., 2002],
which they directly generalise (see Section 1), SLDDs are
related to several other computational approaches, includ-
ing search-based approaches for solving CSPs, and join
tree/hypertree-based decomposition methods, and AND/OR
search graphs. We very briefly discuss these relationships be-
low.

Our construction of the SLDD in Section 3 is different from
the way that the representation in[Amilhastreet al., 2002] is
generated or similar representations such as Binary Decision
Diagrams[Bryant, 1986] and that of[Vempaty, 1992]. The
latter involve building up the representation by adding the
constraints incrementally, giving representations of subsets
of the constraints. SLDDs could also be generated in a sim-
ilar way; however, the construction in Section 3 takes all the
constraints (semiring valuations) into account at once. This
can sometimes be advantageous; in particular, when search-
ing for a single solution of a CSP, the SLDD need have time
complexity at most polynomially worse than a standard CSP
search approach (such as chronological backtracking whilst
maintaining arc consistency), whereas the experimental re-
sults of [Pan and Vardi, 2004] seem to suggest that a BDD
approach can be exponentially worse than a search approach.

SLDDs often have large storage requirements, but they can
involve very much fewer nodes (and need never involve more
nodes) than a search tree approach. As illustrated by the ex-
ample in Section 3 (and by the application in[Amilhastre
et al., 2002]), certain problems with a very large number of
solutions (i.e., non-zero complete assignments) can have an
SLDD of manageable size, leading to efficient computation;
a search-based method will often then not be feasible if one
wants to compile the set of solutions, or count the number of
solutions.

Perhaps the most-studied general approach for this kind
of problem is the join tree (or hypertree decomposition) ap-
proach, e.g., the general framework of Shenoy and Shafer
[Shenoy and Shafer, 1990] Bucket Elimination [Dechter,
1999], and non-serial dynamic programming[Bertele and
Brioschi, 1972]. Whether a join tree approach or a decision
diagram approach is more efficient depends very much on the
form of the problem; a join tree approach may be more ef-
ficient if there is appropriate topological structure, but little
structure which is more value-specific; a decision diagram
approach looks liable to be more efficient if there is a good
deal of value-specific structure (e.g., of the form of ‘context-
specific independence’[Boutilier et al., 1996], defined in a
Bayesian network context), leading to a compact decision di-



agram. See also discussion in[Wilson, 2004].
An SLDD is similar in form to an OR search graph, a

special case of AND/OR search graphs in[Dechter and Ma-
teescu, 2004]; the latter are also closely related to the d-
DNNF formalism—see e.g.,[Darwiche, 2002], and Case-
Factor Diagrams[McAllester et al., 2004]. SLDDs can be
extended to also include AND nodes; these can be used when
the sliced constraints associated with a node can be parti-
tioned into (e.g., two) sets with non-overlapping scopes; there
is no longer a unique final nodesink , and the computation
generalises that of functiong, starting from the sink nodes
and working backwards, with semiring product⊗ being used
to combine the semiring values of the branches of an AND
node. This sometimes leads to a still more compact repre-
sentation, but with reduced functionality (as not all the tech-
niques in Section 5 extend).

Summary
This paper introduces and develops semiring-labelled deci-
sion diagrams (SLDDs); this computational tool, combining
a form of dynamic programming with a constraint program-
ming approach, can be used to solve a variety of important
computational problems for (soft or ordinary) constraints and
uncertainty. For problem instances with appropriate struc-
ture, the SLDD will be compact, and hence be an efficient
approach, for example, for solving constraints problems, op-
timisation, and knowledge compilation.
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