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Abstract
Managing the nonlethal effects of disturbance on wildlife populations has been a 
long-term goal for decision makers, managers, and ecologists, and assessment of 
these effects is currently required by European Union and United States legislation. 
However, robust assessment of these effects is challenging. The management of 
human activities that have nonlethal effects on wildlife is a specific example of a 
fundamental ecological problem: how to understand the population-level conse-
quences of changes in the behavior or physiology of individual animals that are 
caused by external stressors. In this study, we review recent applications of a con-
ceptual framework for assessing and predicting these consequences for marine 
mammal populations. We explore the range of models that can be used to formalize 
the approach and we identify critical research gaps. We also provide a decision tree 
that can be used to select the most appropriate model structure given the available 
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1  | INTRODUC TION

The nonlethal effects of disturbance, which we define as a deviation 
in an animal’s physiology or behavior from patterns occurring in the 
absence of predators or humans (Frid & Dill, 2002), can strongly af-
fect wildlife populations (Lima, 1998). Understanding the population-
level repercussions of these changes in individual behavior and 
physiology is part of a more comprehensive ecological challenge: the 
quantification of trait-mediated indirect effects (Werner & Peacor, 
2003), also referred to as nonconsumptive effects (Peckarsky et al., 
2008), on ecological interactions. Under this paradigm, a predator or 
other stressor can affect a species directly via the removal of individ-
uals and alteration of population density (the consumptive or lethal 
effects), and indirectly by inducing changes in morphology, physiol-
ogy, behavior, or life history (i.e., the species’ traits) that reduce the 
risk of predation (Schmitz, Krivan, & Ovadia, 2004). Trait-mediated 
indirect interactions can, in turn, lead to cascading effects on other 
components of the ecological community (Peckarsky et al., 2008; 
Ripple & Beschta, 2012). Characterizing these processes requires an 
integrative approach that can scale the responses of individual ani-
mals to demographic effects in the context of their energy balance 
and the species’ life history (Middleton et al., 2013).

Because the responses of animals to many anthropogenic stimuli 
are similar to their responses to predation risk (Beale & Monaghan, 
2004; Frid & Dill, 2002), the evaluation and management of human 
activities that have nonlethal effects on wildlife can be framed in this 
wider context. Assessing the population consequences of disturbance 
(PCoD) has been a long-term goal for ecologists, decision makers, 
and managers and is currently a requirement for most environmen-
tal impact assessments under European Union (European Habitats 
Directive 92/43/EEC) and United States (Marine Mammal Protection 
Act, 16 U.S.C. §§ 1361 et seq.) legislation (King et al., 2015). However, 
comprehensive assessments of the effects of disturbance are rarely 
undertaken because of a lack of relevant data and because permit and 

policy decisions about disturbance must be made within strict time-
lines. In addition to these constraints, the theoretical understanding 
and the empirical and analytical methods needed to evaluate these 
long-term consequences are often not available. As a result, man-
agement decisions have been generally based on evidence of behav-
ioral responses to disturbance, although such responses may have no 
population-level effect (Christiansen & Lusseau, 2015). Conversely, 
the absence of an obvious behavioral response does not rule out a 
population-level effect (Gill, Norris, & Sutherland, 2001). Given the in-
creasing expansion of activities that can disturb wildlife, quantitatively 
linking disturbance to population dynamics is a major objective for 
modern conservation (Gill et al., 2001). A mechanistic understanding 
of the processes by which disturbance affects populations is especially 
useful for long-lived, wide-ranging species, for which empirical data 
are often collected over relatively small spatial and temporal scales 
(National Research Council, 2005).

Groups established by the National Research Council of the US 
National Academies and the US Office of Naval Research have ad-
dressed ways of modeling the population-level effects of disturbance 
on marine mammals (National Academies, 2017; National Research 
Council, 2005; New et al., 2014). Their efforts led to the develop-
ment of a conceptual framework that summarizes the functional 
links among processes (Figure 1). The underlying concept is that 
disturbance-induced changes in behavior or physiology affect fit-
ness through individuals’ health and vital rates (survival, reproductive 
success, and growth rate, the latter affecting age at first breeding). 
The population-level consequences of changes in individual fitness 
depend on what proportion of the population is affected, which in 
turn determines the distribution of fitness-related traits in the pop-
ulation. The framework provides a way to quantify four phenomena: 
(a) the physiological and behavioral changes that occur as the result of 
exposure to a particular stressor, (b) the acute effects of these phys-
iological and behavioral responses on individual vital rates, and their 
chronic effects via individual health, defined by New et al. (2014) as 
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data. Synthesis and applications: The implementation of this framework has moved the 
focus of discussion of the management of nonlethal disturbances on marine mammal 
populations away from a rhetorical debate about defining negligible impact and to-
ward a quantitative understanding of long-term population-level effects. Here we 
demonstrate the framework’s general applicability to other marine and terrestrial 
systems and show how it can support integrated modeling of the proximate and ulti-
mate mechanisms that regulate trait-mediated, indirect interactions in ecological 
communities, that is, the nonconsumptive effects of a predator or stressor on a spe-
cies’ behavior, physiology, or life history.
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all internal factors that affect fitness or homeostasis, (c) the way in 
which changes in health may affect individuals’ vital rates, and (d) how 
changes in individual vital rates may affect population dynamics.

Thirteen years after the first published formalization of this 
framework (National Research Council, 2005), we review its ap-
plications to marine mammal populations. We first discuss the as-
sessment of the exposure levels of individuals in a population, and 
then review the approaches that have been used to model each 
of the functional links in the framework (Figure 2). Our synthesis 
will help reconcile the marine mammal literature with studies on 
other taxa that have quantified the effects of anthropogenic dis-
turbance on vital rates and population dynamics (e.g., Broekhuis, 
2018; Coetzee & Chown, 2016; Green, Johnson-Ulrich, Couraud, 
& Holekamp, 2018; Kight & Swaddle, 2007; McClung, Seddon, 
Massaro, & Setiawan, 2004; Wood, Stillman, & Goss-Custard, 
2015). We also provide a decision tree that can guide the selection 
of the most applicable PCoD modeling approach, given the infor-
mation available.

2  | ESTIMATING LE VEL S OF E XPOSURE IN 
THE POPUL ATION

Estimating the population-level consequences of individuals’  
responses to disturbance requires information on the proportion 
of the population that is exposed to the stressor, and the aggregate 

exposure of each individual (i.e., the total duration and intensity of 
exposure to the stressor during a given period). In this context, the 
stressor corresponds to an anthropogenic source of disturbance. 
The spatial and temporal overlap between the stressor and the 
focal animals determines the probability of exposure. This overlap 
is influenced by the patterns by which the stressor is produced at 
the source and propagates through the environment (Merchant, 
Faulkner, & Martinez, 2018) and the animals’ residence time in the 
area where exposure may occur (Costa, Hückstädt, et al., 2016). 
Residence time is determined inter alia by the size of individual 
home ranges, the motivation underlying the use of the area of in-
terest (e.g., whether the area contains foraging patches or is used 
solely for transit), and any migratory behavior. In some cases, 
these factors may result in the lack of any geographical or tem-
poral overlap between a population and a stressor, obviating the 
need to assess population effects.

We believe that evaluating the spatial and temporal overlap be-
tween a population’s range and the distribution of stressors on the 
basis of density maps derived from the results of dedicated or his-
torical surveys (Ellison et al., 2016; Hammond et al., 2002) should 
be a routine component of environmental impact assessments. 
Telemetry data can provide information on the patterns of re-
peated exposure for specific individuals (Costa et al., 2003; Falcone 
et al., 2017; Jones et al., 2017; Madsen et al., 2006; Pirotta, New, & 
Marcoux, 2018), and photographic identification (e.g., Calambokidis, 
Barlow, Ford, Chandler, & Douglas, 2009) can be used to estimate 

F IGURE  1 The Population Consequences of Disturbance (PCoD) conceptual framework, modified from National Academies (2017). 
The boxes within the dashed gray boundary line represent the effects of exposure to a stressor and a range of ecological drivers on the 
vital rates of an individual animal. The effects are then integrated across all individuals in the population to project their effects on the 
population’s dynamics
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exposure risks for regularly monitored populations (Christiansen, 
Bertulli, Rasmussen, & Lusseau, 2015; Pirotta, Thompson, Cheney, 
Donovan, & Lusseau, 2015). In alternative, some studies examined 
the consequences of exposing all individuals in a population to the 
same amount of disturbance (Braithwaite, Meeuwig, & Hipsey, 2015; 
New et al., 2014; Villegas-Amtmann, Schwarz, Gailey, Sychenko, & 
Costa, 2017; Villegas-Amtmann, Schwarz, Sumich, & Costa, 2015).

3  | EFFEC T OF E XPOSURE ON 
PHYSIOLOGY AND BEHAVIOR

The initial step in implementing the PCoD framework (Figure 1) is 
the quantification of the physiological and behavioral responses 
of individuals to a known or potential stressor. Controlled expo-
sure experiments (Harris et al., 2018) have used electronic loggers 

to assess changes in the movement and vocalizations of marine 
mammals exposed to military sonar and air guns used for seismic 
surveys (Dunlop et al., 2013; Wensveen et al., 2017). Loggers have 
also been applied to monitor marine mammal responses to ac-
tual disturbance events; for example, of Cuvier’s beaked whales 
(Ziphius cavirostris) to sonar exercises (Falcone et al., 2017) as well 
as of harbor seals (Phoca vitulina) to pile driving for wind farm con-
struction (Russell et al., 2016) and to pedestrian and vessel ap-
proaches at their haul-outs (Andersen, Teilmann, Dietz, Schmidt, 
& Miller, 2014). Visual observations have been used to quantify 
activity budgets and estimate changes in behaviors such as rest-
ing or foraging in the presence of other human activities, such 
as whale watching (e.g., Christiansen, Rasmussen, & Lusseau, 
2013; Lusseau, 2003; New et al., 2015; Williams, Trites, & Bain, 
2002). Visual studies on pinnipeds have also monitored flushing 
response and return to haul-out sites (e.g., Cowling, Kirkwood, 

F IGURE  2 Studies investigating the Population Consequences of Disturbance (PCoD) on marine mammals, updated from Nowacek, 
Christiansen, Bejder, Goldbogen, and Friedlaender (2016). The arrows indicate the functional steps of the framework (simplified on top) that 
were included in each study. White gaps in the arrows indicate studies that evaluated the link between behavior and vital rates directly, 
without estimating health
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Boren, Sutherland, & Scarpaci, 2015; Osterrieder, Salgado Kent, 
& Robinson, 2017). Passive acoustic monitoring techniques offer a 
more continuous alternative to visual sampling for collecting such 
data on cetaceans. They have been used to assess the responses 
of harbor porpoises (Phocoena phocoena) to wind farm develop-
ments (Brandt, Diederichs, Betke, & Nehls, 2011; Nabe-Nielsen, 
Sibly, Tougaard, Teilmann, & Sveegaard, 2014; Nabe-Nielsen et al., 
2018), of Blainville’s beaked whales (Mesoplodon densirostris) to 
sonar (Moretti et al., 2014; Tyack et al., 2011), and of bottlenose 
dolphins (Tursiops truncatus) to boat presence (Pirotta, Merchant, 
Thompson, Barton, & Lusseau, 2015). In the absence of empirical 
data, behavioral responses have been extrapolated from better-
studied species or assumed, often in terms of the number of 
lost foraging days (King et al., 2015; New et al., 2014; Villegas-
Amtmann et al., 2015, 2017). Most studies (e.g., Williams, Lusseau, 
& Hammond, 2006) have evaluated the decrease in energy in-
take due to the observed behavioral responses. However, there 
have been efforts to quantify the change in energy expenditure 
associated with avoidance responses (Braithwaite et al., 2015; 
Christiansen, Rasmussen, & Lusseau, 2014; Miller et al., 2009; 
Williams, Blackwell, Richter, Sinding, & Heide-Jørgensen, 2017; 
Williams, Kendall, et al., 2017). Measuring physiological responses 
to disturbance is more challenging than measuring behavioral re-
sponses, and may require the analysis of tissue, exhalations, or 
feces from wild animals (Hogg et al., 2009; Rolland et al., 2012), 
dedicated physiological tags (Karpovich, Skinner, Mondragon, & 
Blundell, 2015; Williams, Blackwell, et al., 2017; Wilson, Wikelski, 
Wilson, & Cooke, 2015), or experiments in captivity (Kvadsheim, 
Sevaldsen, Folkow, & Blix, 2010; Miksis et al., 2001; Thomas, 
Kastelein, & Awbrey, 1990). Due to these limitations, most applica-
tions of the PCoD framework have not modeled the physiological 
consequences of disturbance explicitly.

4  | EFFEC T OF BEHAVIOR AL AND 
PHYSIOLOGIC AL CHANGES ON HE ALTH

Some behavioral or physiological changes can have acute effects 
on individuals’ vital rates, for example, by changing their preda-
tion risk or because injury directly affects their survival prob-
ability (Hooker et al., 2012). However, such changes can also 
affect vital rates indirectly by impairing an individual’s health. 
Modeling health explicitly provides the mechanistic link scaling 
individual responses to demographic effects that is required for 
the assessment of trait-mediated indirect interactions (Middleton 
et al., 2013). Although an individual’s health encompasses many 
aspects of its physiology (for example, immune status, stress lev-
els, and contaminant and parasite load, Pettis et al., 2017), most 
PCoD applications have used an individual’s energy stores (that 
is, its body condition) as the measure of health. For example, New 
et al. (2014) and Schick, New, et al. (2013) examined the relation 
between foraging activity and energy stores (estimated from 
changes in buoyancy) of female southern elephant seals (Mirounga 

leonina) over the course of a foraging trip. Other applications have 
inferred changes in energy stores from models of foraging activity 
that either treat energy explicitly using a bioenergetic approach 
(Beltran, Testa, & Burns, 2017; Christiansen & Lusseau, 2015; 
Farmer, Noren, Fougères, Machernis, & Baker, 2018; McHuron, 
Costa, Schwarz, & Mangel, 2017; McHuron, Mangel, Schwarz, & 
Costa, 2017; Noren, 2011; Pirotta, Mangel, et al., 2018; Villegas-
Amtmann et al., 2015, 2017) or use an arbitrarily scaled energy 
metric that represents an underlying motivational state (Nabe-
Nielsen et al., 2014, 2018; New, Harwood, et al., 2013; Pirotta, 
Harwood, et al., 2015; Pirotta, New, Harwood, & Lusseau, 2014). 
Although technologies that can measure the morphometrics of in-
dividuals remotely may make it easier to estimate changes in body 
condition directly (e.g., Christiansen, Dujon, Sprogis, Arnould, 
& Bejder, 2016; Miller, Best, Perryman, Baumgartner, & Moore, 
2012), extensive health assessment in cetaceans will probably 
remain limited to a few closely monitored coastal populations, 
due to logistical constraints (Wells et al., 2004). In contrast, some 
pinniped populations can be regularly accessed to measure the 
variation in body condition and health among individuals (e.g., 
McDonald, Crocker, Burns, & Costa, 2008; McMahon, Harcourt, 
Burton, Daniel, & Hindell, 2017; Shero, Krotz, Costa, Avery, & 
Burns, 2015; Wheatley, Bradshaw, Davis, Harcourt, & Hindell, 
2006). However, even when such assessments are possible, es-
tablishing the cause of observed changes in health is challenging.

5  | EFFEC T OF VARIATIONS IN HE ALTH 
ON VITAL R ATES

For most species, few empirical data are available to quantify the 
relation between an individual’s health and its vital rates. New 
et al. (2014) and Costa, Schwarz, et al. (2016) used empirical data 
on the relation between a female elephant seal’s energy stores at 
the start of lactation and the weaning mass of her pup, which af-
fects the pup’s survival probability (McMahon, Burton, & Bester, 
2000, 2003), as the basis for the relation between health and re-
productive success. Schick, Kraus, et al. (2013) and Rolland et al. 
(2016) used state-space models linking the health of individual 
North Atlantic right whales (Eubalaena glacialis), obtained from 
the integration of multiple photographic assessments, to their sur-
vival and fertility. Schwacke et al. (2017) used a respiratory met-
ric of health to quantify the effect of the Deepwater Horizon oil 
spill on vital rates of bottlenose dolphins in the Gulf of Mexico. In 
the absence of a direct estimate of calf survival, Christiansen and 
Lusseau (2015) used the fetal length of minke whales (Balaenoptera 
acutorostrata) as a proxy, and investigated how fetal length was 
associated with female body condition (Christiansen, Víkingsson, 
Rasmussen, & Lusseau, 2014). All other PCoD studies of marine 
mammals have assumed a simple relationship between various 
health metrics and vital rates (McHuron, Costa, et al., 2017; Nabe-
Nielsen et al., 2014, 2018; Pirotta, Mangel, et al., 2018; Villegas-
Amtmann et al., 2015, 2017).



     |  9939PIROTTA et al.

6  | A DIREC T LINK BET WEEN E XPOSURE 
AND VITAL R ATES

Few monitoring programs collect information on the changes in in-
dividual health and vital rates that may result from behavioral re-
sponses to disturbance. In situations where a management decision 
is needed and this information is not available, a pragmatic alterna-
tive is to use a single function to link behavioral responses directly 
to vital rates. This has been referred to as an interim PCoD approach 
(King et al., 2015) because this function should be replaced with one 
based on empirically derived values as soon as they become avail-
able. In some of these cases, structured elicitation of information 
from multiple experts (known as expert elicitation) can provide both 
estimates of the appropriate parameters and a measure of the asso-
ciated uncertainty (King et al., 2015; Martin et al., 2012; Oedekoven, 
Fleishman, Hamilton, Clark, & Schick, 2015). In alternative, the meas-
ured effect of changes in prey availability can be used as a proxy 
for the relation between energy intake and vital rates (Williams, 
Thomas, Ashe, Clark, & Hammond, 2016). The latter requires the 
assumption that a reduction in foraging time resulting from distur-
bance is equivalent to a reduction in the availability of prey.

7  | MODELING THE EFFEC T OF VITAL 
R ATES ON POPUL ATION DYNAMIC S

The final step in the PCoD conceptual model is the propagation of 
changes in individuals’ vital rates to the population. It is beyond the 
scope of this study to review methods for modeling the dynam-
ics of wildlife populations. Here, we describe the types of popula-
tion models that have been used, or could be used, to estimate the 
population-level effects of disturbance. They lie along a continuum 
from treating all animals in a population as identical to considering 
all animals as unique individuals that are followed from birth to death 
(i.e., individual- or agent-based models [IBMs]).

Because traditional matrix models (Caswell, 2001) are formu-
lated in discrete time, they generally have a birth-pulse structure. 
In this structure, all births and deaths are assumed to occur at the 
same moment in time, which usually corresponds to the transition 
from one age class to the next, and all individuals within a class are 
treated as identical. However, classes may be subdivided to reflect 
the different vital rates of disturbed and undisturbed animals (King 
et al., 2015). Most PCoD applications have used a simple Leslie ma-
trix to predict the trajectory of a population under different scenar-
ios of anthropogenic disturbance (King et al., 2015; New et al., 2014; 
Schwacke et al., 2017). Matrix models historically assumed that vital 
rates are simply a function of an individual’s age or stage, but integral 
projection models (IPMs) account for the additional effects of con-
tinuously varying traits (such as physical size) on vital rates (Ellner 
& Rees, 2006). In principle, a continuous measure of health or the 
amount of disturbance experienced by different individuals could 
be modeled as a fitness-related trait (Coulson, 2012). However, be-
cause IPMs do not assign traits to specific individuals, individuals are 

still not consistently followed over time, and models are formulated 
in discrete time.

In reality, survival and reproduction are affected by an indi-
vidual’s physiological status and behavior in a complex manner 
(Houston & McNamara, 1999), and changes induced by distur-
bance can affect vital rates from the moment at which disturbance 
occurs. Continuous-time life-history models (De Roos, 2008) could 
therefore be more appropriate for estimating the population-level 
effects of disturbance. Although continuous-time life-history 
models also assume individuals are identical, they can readily be 
structured into multiple classes (De Roos, Galic, & Heesterbeek, 
2009).

IBMs follow simulated individuals throughout their life, allowing 
for explicit modeling of individual heterogeneity and environmental 
stochasticity in quasi-continuous time (Grimm & Railsback, 2013). 
Some PCoD applications developed IBMs that simulate individuals 
moving, accessing prey, and accumulating energy stores to sustain 
survival and reproduction (New, Harwood, et al., 2013; Pirotta, 
Harwood, et al., 2015; Pirotta et al., 2014; Villegas-Amtmann et al., 
2015). However, only three studies (Nabe-Nielsen et al., 2014, 2018; 
Villegas-Amtmann et al., 2017) have used IBMs to predict the dy-
namics of a population over time. Although IBMs require consid-
erable data, they are extremely flexible. In addition, simple models 
with sufficient realism can often be constructed on the basis of a 
relatively small amount of empirical information. Unknown param-
eters may, as an interim measure, be extrapolated from a species 
with a comparable life history (Sibly et al., 2013), as long as their 
influence on the model’s outcome is explicitly quantified and ac-
knowledged, for example, using sensitivity analysis. Model param-
eters then can be optimized with standard calibration techniques 
(Grimm & Railsback, 2013), or fitted to data with Bayesian inference 
(Kattwinkel & Reichert, 2017). IBMs can also be implemented via 
stochastic dynamic programming (Mangel & Clark, 1988) and used 
to estimate optimal behavior given estimates of state variables over 
time. The ability of this approach to forecast population-level effects 
of disturbance was demonstrated for pinnipeds by McHuron, Costa, 
et al. (2017) and for Eastern North Pacific blue whales (Balaenoptera 
musculus) by Pirotta, Mangel, et al. (2018), whereas Klaassen, Bauer, 
Madsen, and Tombre (2006) used stochastic dynamic programming 
to quantify the effects of disturbance on the survival of Svalbard 
pink-footed geese (Anser brachyrhynchus).

8  | CHOOSING A MODEL STRUC TURE

In most situations, selection of a model structure to forecast the 
population-level effects of disturbance is likely to be driven by data 
availability (Figure 3). No PCoD model to date has been fully param-
eterized with empirical data. Even models that encompass the chain 
from exposure to population dynamics (King et al., 2015; Nabe-
Nielsen et al., 2014, 2018; New et al., 2014; Villegas-Amtmann et al., 
2017; Williams et al., 2016) have used data extrapolated from other 
species, expert judgments, proxy relations, or informed assumptions.
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The first step in choosing a model is to evaluate the availability 
of estimates of basic demographic parameters, such as vital rates, 
population growth rate, or age at first breeding or maturity. Precise 
estimates of these parameters are not essential, and missing values 
can be inferred if reliable estimates of other demographic attributes 
are available. If no demographic information is available for the tar-
get population or a related species, PCoD modeling is not possible 
(outcome 1 in Figure 3), but insights into a population’s propensity 
for PCoD can be obtained from first principles using prospective ap-
proaches (Nattrass & Lusseau, 2016). Although some demographic 
parameters are emergent properties of bioenergetic models (see 
below), estimates of these parameters are needed to calibrate the 
models and validate their predictions.

The second step is to assess evidence of empirical relations be-
tween measures of individual health and fitness. For example, New 
et al. (2014) estimated a relation between pup survival and total 
body lipid of adult female elephant seals. If no empirical informa-
tion is available, a simple, theoretical relation between an individual’s 

health and its subsequent survival, fecundity, or growth can be as-
sumed (New, Moretti, Hooker, Costa, & Simmons, 2013). Typically, 
such relations are hyperbolic (Nabe-Nielsen et al., 2014) or sigmoidal 
(McHuron, Costa, et al., 2017).

The third step is to investigate whether there are empirical data 
on the relation between behavioral change and individual health. If 
such information is unavailable, bioenergetic models can be used to 
examine the potential effects of lost foraging opportunities on an in-
dividual’s health, as measured by its energy stores (McHuron, Costa, 
et al., 2017; Nabe-Nielsen et al., 2014, 2018; Pirotta, Mangel, et al., 
2018; Villegas-Amtmann et al., 2015, 2017). This allows construc-
tion of a full PCoD model for the population (outcome 3 in Figure 3), 
as in New et al. (2014). The basic data required to construct such bio-
energetic models are duration of gestation and lactation, a growth 
curve to predict mass at different ages, and an estimate of field met-
abolic rate (Costa & Maresh, 2017; Villegas-Amtmann et al., 2015). 
Ideally, these data should be collected from the target species or 
population, but they can be derived theoretically or from related 

F IGURE  3 Decision tree to guide 
selection of the most suitable Population 
Consequences of Disturbance (PCoD) 
model for a given population, given 
data availability. Decision points are 
represented by diamonds, and possible 
outcomes by rectangles
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species. The resulting models can be calibrated using information 
on the demography of the population, such as the ratio of calves to 
mature females. Expert elicitation can be used to fill some knowl-
edge gaps, for example, to estimate the level of energy stores below 
which starvation mortality may occur, or to establish whether the 
rate of milk transfer is determined by the offspring or the mother.

If there is insufficient information to develop a bioenergetic 
model, expert elicitation can be used to estimate a direct relation 
between behavioral change and vital rates. This is represented by 
outcome 2 of the decision tree (Figure 3): the use of an interim PCoD 
approach (King et al., 2015).

9  | INCORPOR ATING UNCERTAINT Y

Whichever model is chosen, it is necessary to quantify uncertainty 
at all stages of modeling (Harwood & Stokes, 2003; Milner-Gulland 
& Shea, 2017). Uncertainty arises through the precise choice of 
model parameterization, the specification of input parameter val-
ues, environmental stochasticity, and variation among individuals. 
Incorporation and propagation of these uncertainties vary among 
the modeling approaches described above. For example, in IBMs, it 
is possible to simulate from distributions on input parameters, and 
to include environmental stochasticity and variation among indi-
viduals in the simulation (Grimm & Railsback, 2013). To incorporate 
model uncertainty, simulations can sample from alternative param-
eterizations, although this rarely is done in practice. By contrast, life-
history models are intrinsically deterministic, although it is possible 
to repeat the modeling with different inputs. In all cases where un-
certainty is not explicitly incorporated into the modeling, we suggest 
that a sensitivity analysis be performed post hoc to determine the 
robustness of conclusions to plausible violation of model assump-
tions and variation in the inputs. Uncertainty in the estimated popu-
lation consequence ultimately can be reported as a distribution of 
potential outcomes. This will allow the precautionary principle to be 
applied if the results are used to make management decisions.

10  | APPLIC ATIONS OF PCOD MODEL S

Since its formulation (National Research Council, 2005), the PCoD 
conceptual model has served as a common framework for examin-
ing the potential effects of nonlethal human disturbance on marine 
mammal populations, accounting for the uncertainties associated 
with each step in the process. Use of this model has changed the 
focus of the scientific discussion from establishing subjective 
thresholds of acceptable behavioral change to quantifying long-
term, population-level effects (National Academies, 2017).

Real-world applications of the PCoD framework in the last de-
cade used a range of modeling approaches to translate the con-
ceptual model into a mathematical structure, and highlighted 
challenges and data gaps (Figure 2). The effects of disturbance on 
population size predicted in these studies were generally too small 

for short-term detection with conventional methods of abundance 
estimation (Taylor, Martinez, Gerrodette, Barlow, & Hrovat, 2007). 
Yet these effects could have substantial medium-term effects on 
population status.

To remain tractable, most PCoD models to date considered 
one disturbance source or scenario in isolation. However, multiple 
sources of disturbance are likely to occur in an area at any given 
time, together with other, concurrent environmental and ecolog-
ical processes. Attributing causation to a single stressor and de-
veloping mitigation measures therefore is challenging in practice. 
Accordingly, the PCoD framework recently was expanded to incor-
porate the cumulative effects of multiple stressors and ecological 
drivers (National Academies, 2017).

Although models of the population consequences of anthropo-
genic disturbance have been developed to assess the effects of ex-
panding human activities in the ocean on marine mammal populations, 
the PCoD framework is relevant for other marine and terrestrial taxa. 
The literature on the effects of human disturbance on wildlife behavior 
is extensive (e.g., Blumstein, Fernández-Juricic, Zollner, & Garity, 2005; 
Stankowich, 2008). Moreover, many studies have linked changes in 
behavior deriving from interactions with humans to the survival and 
reproductive success of individuals (e.g., Broekhuis, 2018; Dussault, 
Pinard, Ouellet, Courtois, & Fortin, 2012; Ellenberg, Mattern, Seddon, 
& Jorquera, 2006; Giese, 1996; Gosselin, Zedrosser, Swenson, & 
Pelletier, 2014; Kerley et al., 2002; Kight & Swaddle, 2007; McClung 
et al., 2004; Rodriguez-Prieto & Fernandez-Juricic, 2005), and some 
have quantified the long-term effects on population dynamics (e.g., 
Coetzee & Chown, 2016; Green et al., 2018; Iverson, Converse, Smith, 
& Valiulis, 2006; Wood et al., 2015). These studies could be incor-
porated into the unifying framework we describe here to model the  
effects of many forms of nonlethal anthropogenic disturbance.

There is interest in integrating proximate (mechanisms and func-
tions) and ultimate (adaptation and fitness value) aspects of behavior 
into conservation (Cooke et al., 2014; Sutherland, 1998). Knowledge of 
the physiological mechanisms of an animal’s interaction with its envi-
ronment is also relevant to conservation (Wikelski & Cooke, 2006). The 
PCoD approach provides a means for investigating the physiological 
and the behavioral drivers of an individual’s response to human distur-
bance, and therefore a population’s viability (Cooke et al., 2014). Linking 
behavioral and physiological changes to demography also facilitates 
prediction of the effects of climate change on wildlife populations (e.g., 
Desprez, Jenouvrier, Barbraud, Delord, & Weimerskirch, 2018; Pagano 
et al., 2018; Weimerskirch, 2018). More generally, the nonlethal effects 
of human disturbance and environmental change and their repercus-
sions at a population level can be viewed as examples of the fundamen-
tal processes regulating trait-mediated, indirect ecological interactions 
(Ripple & Beschta, 2012; Werner & Peacor, 2003). Disentangling con-
sumptive and nonconsumptive effects requires an understanding of 
the interactions among the individual, population, and community lev-
els (Schmitz et al., 2004), and integrative approaches are necessary to 
link individual behavior, energy balance, and life history and to investi-
gate demographic effects (Middleton et al., 2013). The PCoD approach 
therefore could offer a formal framework for the investigation of the 
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proximate mechanisms of these and other ecological phenomena that 
operate via changes at the individual level. Experience already gained 
from application of PCoD models to marine mammal populations pro-
vides practical guidance for model development and data collection 
(Fleishman et al., 2016).
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