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Abstract: Ocean waves are a huge and largely untapped resource of green energy. In order to 1 
extract energy from waves, a novel wave energy converter (WEC) consisting of a floating, 2 
hollow cylinder capped by a roof with a variable aperture is presented in this paper. The power 3 
take-off (PTO) system is composed of a linear generator attached to the seabed, driven by the 4 
heave motion of the floating cylinder through a tether line. The air pressure within the cylinder 5 
can be modified by adjusting the roof aperture. The hydrodynamic characteristics of this WEC 6 
are investigated through an analytical model based on potential flow theory, in which the wave 7 
diffraction/radiation problems are coupled with the air pressure fluctuation and PTO system. 8 
Analytical expressions are derived for the maximum power absorbed by the WEC under 9 
different optimization principles, revolving around the PTO damping, roof aperture damping 10 
and non-negative mooring stiffness. We find that the best power absorption is obtained when 11 
the aperture is either completely open or entirely closed, depending on the wave conditions. 12 
Intermediate values of the aperture are useful to minimize the heave motion and thus ensure 13 
survivability under extreme sea states. 14 

Keywords: Wave power; Wave energy converter; Marine Renewable Energy; Ocean energy; 15 
Point-absorber. 16 

1. Introduction 17 

Ocean waves constitute a vast energy resource (Iglesias and Carballo, 2009; Drew et al., 18 
2009), and research to harness it is under way along a number of lines: the characterisation of 19 
the resource (e.g,, Carballo et al., 2014; Lopez et al., 2015); the combination of wave power 20 
with other renewables, notably offshore wind (e.g., Veigas and Iglesias, 2014; Astariz and 21 
Iglesias, 2016); the environmental impacts of wave farms (e.g., Veigas et al., 2014; Abanades 22 
et al., 2015); the economics of wave energy (e.g., Astariz and Iglesias, 2015; Contestabile et al., 23 
2016); and, last but not least, the development of wave energy technology (e.g., Falcão, 2010; 24 
Babarit et al., 2012).  25 

Point-absorbers are a particular type of WEC: floating devices smaller than the typical 26 
wave length and capturing wave power mainly through a translating motion relative to a 27 
reference point. Although not the most efficient WEC type, point-absorbers are advantageous 28 
considering total performance and energy costs (Sjolte et al., 2013a), their compact dimensions 29 
and simple construction (Chen et al., 2017). 30 

Most of the point-absorbers developed so far are based on truncated cylinders, e.g., the 31 
Uppsala University heaving buoy, connected to a translator in a linear generator installed on 32 
the seabed (Hai et al., 2016). The translator has a limited stroke, and is equipped with springs 33 
to dampen endstop shocks. A peak force still occurs on the mooring line when the upper endstop 34 
spring is hit (Sjökvist and Göteman, 2017). The Ocean Power Technology PowerBuoy (Figure 35 
2a) uses a damping plate for reference (Mekhiche and Edwards, 2014). Wavebob (Figure 2b) 36 
adopts a submerged float rather than a plate or the seabed for reference (Falcão, 2010). The 37 
submerged float allows the tuning to the incident wave frequency. Other point-absorbers 38 
(BOLT, CETO and Wavestar) are described in Ding et al. (2016), Ransley et al. (2017), and 39 
Ulvin et al. (2012).  40 

 41 
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 1 
Figure 1. Heaving buoy, Uppsala University (Falcão, 2010). 2 

 3 

 4 

Figure 2.(a) OPT PowerBuoy (Mekhiche and Edwards, 2014); (b) Wavebob (Falcão, 2010). 5 
 6 

Chen et al. (2017); Engström et al. (2017); Gravråkmo (2014) and Göteman (2017) 7 
suggested that torus buoys (truncated cylinders with moonpools) may be advantageous for 8 
survivability given their reduced surge motion and line forces. Two examples are Lifesaver and 9 
Seabased (Fig.3). Lifesaver has three integrated PTOs (BOLT, 2018; Sjolte, 2014). Wave-to-10 
wire simulations and array performance were reported by Sjolte et al. (2013a, 2013b). With 11 
Seabased, loadings on the upper endstop were smaller than for a truncated cylindrical buoy with 12 
the same water plane area and displacement, although 10.9% less power was delivered 13 
(Lejerskog et al., 2015). Thus, torus buoys have advantages for survivability, at the expense of 14 
slightly lower power absorption than conventional point-absorbers.  15 
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 1 
Fig. 3.   (a) Lifesaver (Sjolte, 2014); (b) Seabased (Lejerskog et al., 2015). 2 

 3 
The present work is motivated by three main objectives: to enhance the survivability of 4 

the system under extreme conditions, to reduce its cost, and to improve its wave power 5 
absorption in terms of the peak value of the frequency response. To this aim, a novel WEC, 6 
VAPA (Variable Aperture Point-Absorber), which combines the advantages of traditional point-7 
absorbers (truncated cylinders) and torus buoys, is proposed and investigated. VAPA is a hollow 8 
cylinder with an inner chamber covered by a roof that can be opened totally or partially, and 9 
open at its bottom, below the waterline (Fig. 4). As the cylinder oscillates under wave action, 10 
so does the water column in the chamber, causing the air pressure in the chamber to fluctuate. 11 
Unlike floating oscillating water columns, there is no turbine installed on the roof. Instead, 12 
power extraction is achieved by a linear generator on the seabed, connected to the cylinder 13 
through a tether. The air pressure effect can be adjusted by changing the roof aperture. When 14 
the aperture is totally open, VAPA performs as a torus buoy, which is beneficial for survivability 15 
under extreme wave conditions; by contrast, when the aperture is totally closed, VAPA works 16 
like a traditional solid point-absorber with the water enclosed performing as ballast, which is 17 
beneficial in terms of cost (less weight of steel required) and wave power extraction (in 18 
particular, vis-à-vis the peak value of the frequency response). Thus, VAPA can switch between 19 
two configurations, the traditional point-absorber and the torus buoy, by changing the roof 20 
aperture, by means of an intelligent control system, the details of which are beyond the scope 21 
of the present article. To determine the effect of the roof aperture on power extraction, we 22 
develop, validate and apply an analytical model. 23 

 24 

 25 
Fig. 4.  VAPA schematic 26 
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2. Analytical model 1 

For a preliminary performance assessment, the roof aperture effect is modelled as a linear 2 
damping, and nonlinear, viscous effects are neglected. Under an incident wave train of small 3 
amplitude, A, and angular frequency, ω, the free surface displacement in the chamber may be 4 
written as ( )iˆRe e tQ Q ω−= , with Q̂  the complex amplitude, t time, and i the imaginary unit. Air 5 
pressure in the chamber may be written as ( )iˆRe e tp p ω−= , with p̂  the complex amplitude. 6 
Assuming the mass flux across the roof aperture to be proportional to the pressure, and 7 
considering the effect of air compressibility, which results in a phase lag between Q and p, 8 
following Falcão and Sarmento (1980) and Sarmento and Falcão (1985) we have: 9 

 0
2

0

iˆ ˆr
a

VQ c p
c
ω
ρ

 
= − 
 

, (1) 10 

where cr is a damping coefficient representing the damping effect induced by the aperture 11 
on the roof. More specifically, it is related to the volume flux across the roof due to unit air 12 
pressure in the internal chamber. When cr=0, no volume flux will be excited regardless of 13 
the value of the internal air pressure, i.e., the roof aperture is totally closed; by contrast, 14 
when cr=∞, volume flux can be very easily excited with a small value of internal air 15 
pressure, i.e., the roof aperture is totally open. V0 is the air chamber volume, ca denotes the 16 
sound velocity in air, and ρ0 represents the static air density. 17 

For small-amplitude regular waves, Q results from scattered (incident and diffracted) and 18 
radiated waves, which are induced both by cylinder oscillation and pressure oscillation. This 19 
also applies to the hydrodynamic forces acting on the float.  20 

2.1 Governing equations and boundary conditions of wave diffraction and radiation problems 21 

Let a vertical truncated circular cylinder of radius R with a moonpool of radius Ri float in 22 
water of finite depth h, with draught d. A Cartesian coordinate system is adopted, with the xy-23 
plane at the mean water surface, the Ox-axis in the incident wave direction, and the Oz-axis 24 
along the cylinder axis, pointing upwards (Fig. 5). The cylinder has three DoFs: surge, heave 25 
and pitch. A local cylindrical coordinate system (Orθ) is defined with r measuring radially from 26 
the z-axis and θ from the positive Ox-axis. The rotation center (r=0, z=z0) may serve as the 27 
reference point to calculate the pitch wave excitation moment and hydrodynamic coefficients 28 
in relation with the oscillation in pitch mode. 29 

 30 
Fig. 5.  Definition sketch: (a) Top view; (b) Side view. 31 

 32 
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Assuming the fluid to be isotropic, incompressible and inviscid, and the wave amplitude 1 
to be small, linear potential flow theory may be adopted to describe the hydrodynamic problem. 2 
The total spatial velocity potential Φ  may be decomposed into the incident, IΦ , diffracted, 3 

DΦ , and radiated wave spatial potential, 4 

 ( ) ( )
3

0
I D R R

1

ˆj
j

j
pΦ Φ Φ ΑΦ Φ

=

= + + +∑  , (2) 5 

where jΑ   is the complex velocity amplitude of the chamber oscillating in j-th mode (with 6 
j=1,2,3 denoting surge, heave, and pitch, respectively); ( )

R
jΦ is the spatial velocity potential 7 

due to a unit amplitude velocity oscillation in j-th mode; and ( )0
RΦ   is the spatial velocity 8 

potential due to a unit air pressure oscillation. 9 
The spatial velocity potential for the undisturbed incident regular waves propagating along 10 

the positive Ox axis may be written as 11 

 
( )
( )

00 i
I

0

coshi e
cosh

k xk z hgA
k h

Φ
ω

+  = − , or as (3a) 12 

 ( ) ( )
( ) ( )0 i

I 0
0

coshi, , i e
cosh

m m
m

m

k z hgAr z J k r
k h

θΦ θ
ω

∞

=−∞

+  = − ∑ , (3b) 13 

where Eq.(3a) employs the Cartesian coordinate system (Oxyz) and Eq.(3b) the local cylindrical 14 
coordinate systems (Orθz); k0 is the wave number, which satisfies the dispersion relation, 15 
ω2=gk0tanh(k0h); and g is the gravitational acceleration. 16 

The free-surface and body boundary conditions to be satisfied by DΦ  and ( )
R

jΦ  can be 17 
found in Mavrakos and Konispoliatis (2012), Zheng et al. (2018).  18 

2.2 Spatial potentials in subdomains 19 

The spatial potentials DΦ   and ( )
R

jΦ   (j=0,1,2,3) in fluid subdomain Region n can be 20 
written in a unified format as n

χΦ  , in which χ=’D’ and ’(j)’ represent the wave diffracted 21 
potential and the radiated potential due to air pressure oscillations inside the chamber (j=0) and 22 
cylinder motions in j-th mode (j=1,2,3), respectively. Applying the method of separation of 23 
variables in different regions, the general spatial potentials may be expressed by complex 24 
Fourier series as follows: 25 
1) In Region 1 26 
 

( ) ( )
( )

( )
( ) ( ),0 i

1 1,p , ,
1

, , cos e
2
m m l m l m

m l m l l
m l m l m l

E I r K r
r z A C z h

I R K R

χ
χ χ χ χ θβ β

Φ θ Φ β
β β

∞ ∞

=−∞ =

  
= + + + +         

∑ ∑
27 

 (4) 28 

where 29 

 
,0 ,0

,0

,0 ,0

1 ln , 0

, 0

m m

m m m

m m

rA C m
R

E
r rA C m
R R

χ χ

χ

χ χ
−

   + + =     = 
    + ≠       

 (5) 30 
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Im is the modified Bessel function of first kind and order m; Km is the modified Bessel function 1 

of second kind and order m; ,m lAχ  and ,m lC χ  are unknown coefficients; lβ  is the l-th eigenvalue:  2 

 
π

l
l

h d
β =

−
, l=0, 1, 2, 3…, (6) 3 

1,p
χΦ  is a particular solution; for χ=’D’, 1,p

χΦ =- IΦ ; for χ=’(j)’ (j=0,1), 1,p
χΦ =0; and for χ=’(j)’ 4 

(j=2,3),  5 

 ( ) ( ) ( )

( ) ( )

2 2

1,p
23

1 2 , 2
4

cos 4 , 3
8

j

z h r j
h d

r r z h j
h d

Φ
θ

  + − =  −= 
  − + =  −

 (7) 6 

 7 

2) Region 2 8 

 ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

,0 0 0 , i
2 2,p

10 i 0 i

, , e
0 0

m m m l m l l m

m lm m l l

D J k r Z z D I k r Z z
r z

J k R Z I k R Z

χ χ
χ θ χΦ θ Φ

∞ ∞

=−∞ =

 
= + + 

 
∑ ∑  (8) 9 

where ,m lDχ   is the coefficient to be solved; Jm is the Bessel function of order m; lk   is the 10 

eigenvalue (Falnes, 2002). 11 

 ( )2 tanl lk g k hω = − ,     l=1,2, 3, … (9) 12 

 ( ) ( )0.5
0 0 0coshZ z N k z h−= +   ; ( ) ( )0.5 cosl l lZ z N k z h−= +   ;  (10) 13 

 
( )0

0
0

sinh 21 1
2 2

k h
N

k h
 

= + 
 

;  
( )sin 21 1

2 2
l

l
l

k h
N

k h
 

= + 
 

; (11) 14 

2,p
χΦ  is a particular solution, which for χ=’(0)’, ( )2,p iχΦ ρω= − , ρ is the water density; whereas 15 

for χ=’D’ and ’(j)’(j=1,2,3), 2,p
χΦ =0. 16 

3) Region 3 17 
The spatial potential in Region 3 represents the wave travelling outwards from the cylinder, 18 

and can be written as an eigen-function expansion, 19 

 ( ) ( )
( )

( )
( )

( )
( )

( )
( )

0 0 i
3 ,0 ,

10 0

, , e
0 0

m m l l m
m m l

m lm m l l

H k r Z z K k r Z z
r z B B

H k R Z K k R Z
χ χ χ θΦ θ

∞ ∞

=−∞ =

 
= + 

 
∑ ∑ , (12) 20 

where Hm is the Hankel function of first kind of order m, and ,m lBχ  are unknown coefficients to 21 

be determined. 22 

2.3 Method of computation for unknown coefficients 23 

The expressions of the diffracted spatial potential and radiated potentials, Eqs. (4)~(12) in 24 
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Section 2.2,  should satisfy the conditions of continuity for pressure and normal velocity on the 1 
interfaces of the two adjacent subdomains, i.e., at r=R and r=Ri, as follows.: 2 
1) Pressure at the boundary r=R: 3 

 3 1 , ,h z d r Rχ χΦ Φ= − < < − =  (13) 4 

2) Pressure at the boundary r=Ri: 5 

 2 1 i, ,h z d r Rχ χΦ Φ= − < < − =   (14) 6 

3) Normal velocity at the boundary r=R: 7 
For h z d− < < − , 8 

 3 1

r r

χ χΦ Φ∂ ∂
=

∂ ∂
. (15a) 9 

For 0d z− < < , 10 

 
( ) ( )

I
3

1, 3, 0

, 'D '

cos cos , ' 'j j

r
r z z j

χ Φ χΦ

δ θ δ θ χ

∂− =∂  ∂= ∂  + − =

, (15b) 11 

in which δ is the Kronecker delta function. 12 

4) Normal velocity at the boundary r=Ri: 13 
For h z d− < < −  14 

 2 1

r r

χ χΦ Φ∂ ∂
=

∂ ∂
.  (16a) 15 

For 0d z− < <  16 

 
( ) ( )

I
2

1, 3, 0

, 'D '

cos cos , 'j j

r
r z z j

χ Φ χΦ

δ θ δ θ χ

∂− =∂  ∂= ∂  + − =

. (16b) 17 

Upon substituting the diffracted and radiated spatial potentials, Eqs. (4)~(12), into Eqs. 18 
(13)~(16), utilizing the orthogonal properties of the functions cos(nθ), sin(nθ), and Zl(z), and 19 
rearranging, the diffracted and radiated spatial potentials in each subdomain can be obtained by 20 
solving a matrix equation, in which the infinite series are truncated by choosing (2M+1) terms 21 
(m=–M…0…M) for eimθ functions and L0+1 terms (l=0, 1, 2, … L0) for Zl(z) and cos[βn,l(z+h)] 22 
functions (Zheng and Zhang, 2015, 2016, 2018). 23 

2.4 Wave excitation volume flux/forces 24 

The rate of free surface displacement inside the chamber due to the contributions of the 25 

undisturbed incident wave and the diffracted wave can be written as ( )0 i
eRe e tF ω− 

  , where, 26 

with utilization of Eq. (3) and Eq. (8), 27 
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( ) ( ) ( )

( ) ( )
( )

( )
( )

i i
22π 2π0 I D D

e I 20 0 0 0 0
0

D D2
0,0 1 0 i 0, 1 i1 0 ii

10 0 0 0 i 0 i

d d d d

2π i

R R

z
z

l l

l l l

F r r r r
z g

D J k R D I k RJ k RR gA
g k k J k R k I k R

Φ Φ ωθ Φ Φ θ

ω
ω

=
=

∞

=

∂ +
= = +

∂

 
= − + + 

 

∫ ∫ ∫ ∫

∑
. (17) 1 

The wave excitation forces due to the incident wave acting on structures which are 2 
stationary can be computed from the incident wave potential and the diffracted potential. The 3 

generalized wave excitation force on the WEC chamber in j-th mode (j=1,2,3) is ( ) i
eRe ej tF ω− 

  , 4 

where 5 

 ( ) ( )e I Di dj
jS

F n sωρ Φ Φ= − +∫ .  (18) 6 

in which n1=nx, n2=nz, n3=(z-z0)nx-xnz, knjninn zyx


++=  is the unit normal vector directed into 7 

the fluid domain at the wetted surface of the cylinder. 8 

2.5 Hydrodynamic coefficients 9 

An upward flux at the water surface inside the chamber (radiation volume flux) and forces 10 

on the floats (radiation forces) can be induced when the air pressure inside the chamber or the 11 

cylinder oscillate in the absence of an incident wave. 12 

The complex amplitudes of the radiation volume flux due to a unit amplitude velocity 13 

oscillation of the WEC chamber oscillating in j-th mode (j=1,2,3) and a unit air pressure 14 

oscillation inside the WEC (j=0) can be written, respectively, as: 15 

 

( )
( )

( )

( ) ( )
( )

( ) ( )
( )

i i
22π 2π0 2

R, 20 0 0 0
0

2
0,0 1 0 i 0, 1 ii

0, 0,
10 0 0 i 0 i

d d d d

2π i

jR R j
j

z

j j
l l

j j
l l l

F r r r r
z g

D J k R D I k RR a c
g k J k R k I k R

Φ ωθ Φ θ

ω ω

=

∞

=

∂
= =

∂

 
= + = − 

  

∫ ∫ ∫ ∫

∑
 (19) 16 

where 0, ja  and 0, jc  are called the hydrodynamic coefficients. 17 

Similarly, the complex amplitudes of radiation force exerted on the WEC chamber in j’-th 18 

mode (j’=1,2,3) due to unit amplitude velocity oscillation of the chamber oscillating in j-th 19 

mode and unit air pressure oscillation inside the WEC (j=0) can be respectively written in terms 20 

of the hydrodynamic coefficients ,j ja ′  and ,j jc ′  as: 21 

 ( ) ( )
R, R , ,i d ij j

j j j j j jS
F n s a cωρ Φ ω′

′ ′ ′= − = −∫ . (20) 22 

The method for calculating the hydrodynamic coefficients as given in Eqs. (19)-(20) is 23 

straightforward based on the definitions of radiation volume flux and radiation forces. Hence it 24 

is referred henceforth as the “direct method (DM)”. In fact, there is a Haskind relation (HR) 25 

between wave diffraction and radiation problems (Falnes, 2002), and a number of 26 

hydrodynamic coefficients can be written in terms of the wave excitation volume flux and wave 27 

excitation forces as: 28 
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( ) 2

0
, e2

g4
j

j j
kc F
gv Aρ

= , (j=0, 2) (21) 1 

 
( ) ( )0

, e e2
g8

j j
j j

kc F F
gv Aρ

′ ∗
′ = , (j=1, 3; j’=1, 3) (22) 2 

 
( ) ( )0

, e e2
g

i
4

j j
j j

ka F F
gv Aωρ

′ ∗
′ = , ((j, j’)=(0, 2) and (2, 0)) (23) 3 

where ‘*’ denotes the complex-conjugate, and vg is the wave group velocity expressed as 4 

 
( )

0
g

0 0

21
2 sinh 2

k hv
k k h
ω  

= + 
 

. (24) 5 

2.6 Response and power absorption of the VAPA WEC 6 

For the novel WEC under regular waves of small amplitude, after coupling the chamber 7 
oscillation with the air pressure fluctuation and PTO system, the matrix equation of motion in 8 
the frequency domain may be written as 9 

 ( ) ( ) ( )a PTO d PTO r s m ei + iω ω− + + + + + + =  M M M C C C K K X F , (25) 10 

where X  is the motion/pressure response vector written as 
T

1 2 3ˆ , , ,p Α Α Α =  
   X , in which 11 

the motion response of the floats are given in terms of velocities, ‘T’ denotes the transpose; Fe 12 
represents the wave excitation volume flux/force acting on the device, and it is a 4×1 vector, 13 

written as ( ) ( ) ( ) ( ) T0 1 2 3
e e e e e, , ,F F F F =  F . Ma and Cd are two 4×4 square matrices of added-14 

mass and radiation damping coefficients due to wave radiation, which can be calculated, 15 
together with Fe, from Sections 2.4 and 2.5. MPTO is a diagonal matrix of mass coefficients of 16 
Power Take-Off system (PTO) in the device, the diagonal elements of which can be written as 17 

( )[ ]T2
a 0 01 ,0,0,0c Vρ  . Here, 2

0 i=πV R d   is adopted with ca=340 m/s and ρ/ρ0=1000, following 18 

Martins-rivas and Mei (2009). The non-vanishing elements involved in MPTO are used to 19 
consider the effect of compressibility of air in the chamber. CPTO represents a diagonal matrix 20 
of the damping coefficients of the PTO written as diag(CPTO)=[0,0,cPTO,0]T, in which cPTO 21 
represents the PTO damping induced by the linear generator connected to the WEC; Cr is a 22 
matrix used to consider the damping effect induced by the aperture size of the roof, the volume 23 
flux created by the heaving motion of the WEC chamber, and the force on the horizontal roof 24 
of the WEC due to its inner pressure. These effects are reflected by the non-vanishing elements, 25 

cr, 2
iπR   and 2

iπR−  , located at the first row and the first column, the first row and the third 26 

column, and the third row and the first column of Cr, respectively. M and Ks are the mass matrix 27 
and hydrostatic stiffness matrix of the device. For the effect of hydrostatic stiffness on the air 28 
pressure enclosed by the chamber has already been included in radiation coefficients (Falnes, 29 
2002), different from those for traditional floats, no separate term is required in Ks for the air 30 
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pressure. We assume the WEC is half submerged at equilibrium with the mass uniformly 1 
distributed all over its chamber body. Km is the restoring stiffness matrix induced by the 2 
mooring lines. Here we consider mainly the spring effect on the heave motions, which is the 3 
most prominent influence of the mooring system, and disregard other effects, such as damping 4 
or inertia. Thus, there is only one non-vanishing element, located on the diagonal line as: 5 
diag(Km)=[0,0,km,0]T, where km is the moorings restoring force coefficient in heave mode of 6 
the WEC. Actually, the stiffness in the PTO system can also be treated as a part of km. 7 

In regular waves, the time-averaged absorbed power of the novel WEC can be expressed 8 
as: 9 

 
2

PTO 2
1
2

P c A=  . (26) 10 

The capture factor, also called the relative capture width, can be defined by 11 

 
in2

P
RP

η = , (27) 12 

where Pin represents the incoming wave power per unit width of the wave front (Zheng and 13 
Zhang, 2018). 14 

2.7 Maximization of power absorption 15 

Although the system has four degrees of freedom, Eq. (25), the surge motion (and also the 16 
pitch motion) are decoupled from the heave motion and the internal air pressure; therefore, the 17 
advantage of the hollow cylinder in terms of survivability thanks to its weaker surge motion 18 
still applies to the VAPA WEC. The heave motion used to capture wave power is only coupled 19 
with the air pressure enclosed by the WEC chamber. Therefore, a two DOF motion matrix 20 
equation as given below can be used also to evaluate the heave motion of VAPA: 21 
 22 

 
( )

( )

0
1,1 r 1,2 e

2
2,1 PTO m 2,2 2 e

i
S c S Fp

S c k S Fω Α

 +     =    + +      


, (28) 23 

where  24 

 0
1,1 0,0 0,0 2

0

i
a

VS c a
c

ω
ρ

 
= − + 

 
; 2

1,2 0,2 i 0,2π iS c R aω= + − ; 2
2,1 2,0 i 2,0π iS c R aω= − − ;  25 

0
2,2 2,2 2,2 0 2i gsS c a m ρω

ω
 = − + − 
 

. (29) 26 

The expression of the heave velocity can be derived as: 27 

 
( ) ( ) ( )

( )
2 0

e e 2,1 1,1 r
2

PTO m 2,2 2,1 1,2 1,1 ri
F F S S c

c k S S S S c
Α

ω

− +
=

+ + − +
 , (30) 28 

The power absorbed in the PTO damping is: 29 
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( ) ( ) ( ) ( )

( )

22 0
PTO e e 2,1 1,1 r

2

PTO m 2,2 2,1 1,2 1,1 r

2

i

c F F S S c
P

c k S S S S cω

− +
=

+ + − +
. (31) 1 

There are three variables involved in the expression of P, i.e., PTOc , km and cr. The more 2 
variables that are optimized at the same time, the more complicated the design/control system 3 
that is required, with the consequent difficulties for practical applications. Therefore, in addition 4 
to the optimization of two or three variables at the same time, the optimization of individual 5 
variables is considered in the following. 6 

1) Optimization of the PTO damping coefficient 7 

We note that P=0 for PTOc  =0 and for PTOc  =∞, and that P> 0 for 0 < PTOc  <∞. Thus there 8 

is a maximum of absorbed power when ∂P/∂ PTOc  = 0, which occurs if: 9 

 ( ) ( )2 PTO2
PTO 1 2 m optc k cκ κ ω= + + ≡ , (32) 10 

where κ1 and κ2 are two real parameters introduced from 11 

 ( )1 2 2,2 2,1 1,2 1,1 ri S S S S cκ κ+ = − + , (33) 12 

in which κ1 is found and can also be proved positive regardless of the WEC scales (see Eq. (A1) 13 

in Appendix A). Note that both κ1 and κ2 are dependent of cr. Therefore, referring to Eq. (32), 14 

the optimal PTOc  for maximizing power absorption, i.e. ( )PTO
optc , is influenced by both cr and km. 15 

The corresponding maximum of absorbed power is 16 

 ( )
( ) ( ) ( )

( )

22 0
e e 2,1 1,1 rPTO

max 22
1 1 2 m

4F F S S c
P

kκ κ κ ω

− +
=

+ + +
. (34) 17 

2) Optimization of the mooring stiffness 18 

With reference to Eq. (31), if only km is variable, the maximum power absorption occurs 19 
when km/ω+κ2=0, i.e., 20 

 ( )m
m 2 optk kωκ= − ≡ , (35) 21 

which is only affected by cr, regardless of PTOc . 22 

The corresponding maximum of absorbed power is 23 

 ( )
( ) ( ) ( )

22 0
e e 2,1 1,1 r PTOm

max 2
PTO 12

F F S S c c
P

c κ

− +
=

+
. (36) 24 

In practice, km should be non-negative, hence Eqs. (35) and (36) are rewritten as: 25 
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 ( )m 2 2
opt

2

, 0
0, 0

k
ωκ κ

κ
− ≤

=  >
, (37) 1 

 ( )

( ) ( ) ( )

( ) ( ) ( )

22 0
e e 2,1 1,1 r PTO

22
PTO 1m

max 22 0
e e 2,1 1,1 r PTO

22
PTO 1 2

, 0
2

, 0
2 i

F F S S c c

c
P

F F S S c c

c

κ
κ

κ
κ κ

 − + ≤ += 
 − +
 >
 + +

. (38) 2 

3) Optimization of the roof damping coefficient 3 

The analysis the effect of cr on the power absorption is obviously more complicated than 4 

those for the optimization of PTOc   and km. After making some rearrangement, the power 5 

absorbed by the novel WEC as expressed in Eq. (31) can be rewritten as: 6 

 
( ) ( ) ( ) ( )

( )

2 22 0 2
PTO e r 1,1 e 2,1 e

22
PTO m 2,2 r 1,1 2,1 1,2 PTO m 2,2

2

i i

c F c S F S F
P

c k S c S S S c k Sω ω

+ −
=

+ + + − + +
. (39) 7 

There can be two different solutions of cr satisfying ∂P/∂cr=0. It is found through 8 
analytical experiments that only one of the two roots is positive, which is written as: 9 

( ) ( ) ( ) ( )
( )

22 2 2 2 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4 3 1 1 3 4 3 1 2

r
3 1

4

2
c

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ

 + − − + + − − − − + − + =
−

 ,10 

 (40) 11 
where ξ1, ξ2, ξ3 and ξ4 are four real parameters introduced from 12 

 ( ) ( )0 2
1 2 1,1 e 2,1 ei S F S Fξ ξ+ = − ; ( )3 4 1,1 2,1 1,2 PTO m 2,2i iS S S c k Sξ ξ ω+ = − + + . (41) 13 

According to Haskind relation, it can be known from Eqs.(21)~(23) that 14 

 ( ) ( ) ( )0 2
e e 0,0 2,2 02iF F c c sign a= − ; ( )02 0,0 2,2 02a c c sign aω = , (42) 15 

using which we have 1 0ξ ≡ ; 3ξ >0 is also satisfied regardless of PTOc  and km which can be 16 

proved in Eq.(A2), as given in Appendix A. 17 

Since 3ξ >0, the value of cr calculated from Eq. (40) minimizes power absorption rather 18 

than maximizes it. Hence the cr obtained from Eq. (40) can be denoted as cr,min. This is 19 
reasonable for the roof aperture exerts a linear damping, implying power dissipation, which 20 
results in diminished power absorption by the WEC. Therefore, cr,min may be seen as the optimal 21 
option for reducing the heave oscillation of the WEC, i.e., for survivability under extreme wave 22 

conditions. The corresponding minimum absorbed power ( )r
minP  may be easily evaluated by 23 

substituting Eq. (40) into Eq. (39). 24 
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The maximum power absorption can be evaluated after making a comparison between the 1 
results with cr=0 and ∞; its analytical expression is: 2 

 ( )

( ) ( )

( ) ( ) ( )

22 2 2
PTO e 1 2

2 2 2
3 4PTO m 2,2r

max 22 0 2 2
PTO e e 2,1 1,1 1 2

2 2 2
3 4PTO m 2,2 2,1 1,2 1,1

2
, 1

i

2
, 1

i

c F

c k S
P

c F F S S

c k S S S S

ξ ξ
ξ ξω

ξ ξ
ξ ξω


+ ≤ ++ += 

 − + >
+ + + −

, (43) 3 

for which the corresponding optimal cr is 4 

 ( )

2 2
1 2
2 2
3 4r

opt 2 2
1 2
2 2
3 4

, 1

0, 1
c

ξ ξ
ξ ξ

ξ ξ
ξ ξ

 +
∞ ≤ += 

+ > +

, (44) 5 

implying that to improve power capture width of the novel WEC, the roof should either be 6 
entirely open, or be completely closed. 7 

4) Optimization of the PTO damping coefficient and the roof damping coefficient 8 

The expressions of these optimal values of PTOc , km and cr as derived above are obtained 9 

when each of them is regarded as the only variable parameter. Furthermore, when both PTOc  10 

and cr can be arbitrarily specified, the maximum power could be: 11 

 ( ) { }PTO,r
max 1 2max ,P p p= , (45) 12 

where 13 

 
( )

( ) ( )

22
e

1 22
2,2 2,2 2,2 0 0 m

4F
p

c c a m gs kω ρ ω
=

 + + + − + 

, (46) 14 

 
( ) ( )

( )

22 0
e e 2,1 1,1

2 22
1 1 2 m

4F F S S
p

kζ ζ ζ ω

−
=

+ + +
, (47) 15 

in which ζ1 and ζ2 are two real parameters satisfying  16 

 1 2 2,2 2,1 1,2 1,1i S S S Sζ ζ+ = − . (48) 17 

The corresponding optimal values of PTOc  and cr are written as: 18 
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( ) ( ){ }
( ) ( ) ( )

( ){ } ( )

2 PTO,r2
2,2 2,2 0 0 m max 1

PTO,r PTO,r
opt,PTO opt,r

2 PTO,r2
1 2 m max 2

, ,
,

, 0 ,

c a m gs k P p
c c

k P p

ω ρ ω

ζ ζ ω

  + + − + ∞ =    = 
 + + =

 .1 

 (49) 2 

Note: 1ζ  can be treated as an special root of κ1 with cr =0, thus we have 1ζ >0 as well. 3 

5) Optimization of the PTO damping coefficient and the mooring stiffness 4 

It can be seen by inspection of Eqs. (32)~(34) that if PTOc  and km can be chosen such that 5 

 
( )

( )

PTO,m
PTO 1 opt

PTO,m
m 2 opt

c c

k k

κ

ωκ

 = ≡


= − ≡
, (50) 6 

then the maximum absorbed power is  7 

 ( )
( ) ( ) ( )

22 0
e e 2,1 1,1 rPTO,m

max
18

F F S S c
P

κ

− +
= . (51) 8 

Considering km to be non-negative, the maximum absorbed power and the corresponding 9 

optimized PTOc  and km can be rewritten as 10 

 ( )

( ) ( ) ( )

( )

22 0
e e 2,1 1,1 r

PTO,m 2
max 1

PTO
max m 2

, 0
8

( 0), 0

F F S S c
P

P k

κ
κ

κ

 − + ≤= 


= >

. (52) 11 

 ( ) ( ){ }
{ }

( ) ( ){ }
1 2 2PTO,m PTO,m

opt opt PTO
opt m 2

, , 0
,

0 , 0 , 0
c k

c k

κ ωκ κ

κ

− ≤= 
= >

. (53) 12 

6) Optimization of the roof damping coefficient and the mooring stiffness 13 

Similar to the optimization of PTOc  and cr, when both cr and km can be arbitrarily specified 14 

the maximum absorbed power is 15 

 ( ) { }r,m
max 1 2max ,P p p′ ′= , (54) 16 

in which 17 

 
( ) ( )

( )

22
PTO e

1 2
PTO 2,2

2c F
p

c c
′ =

+
,  

( ) ( ) ( )

( )

22 0
PTO e e 2,1 1,1

2 2
PTO 1

2c F F S S
p

c ζ

−
′ =

+
. (55) 18 

The corresponding optimal cr and km are written as 19 
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 ( ) ( ){ } ( ){ } ( )

{ } ( )

r,m2
2,2 0 0 max 1r,m r,m

opt opt r,m
2 max 2

, ,
,

0, ,

a m gs P p
c k

P p

ω ρ

ωζ

 ′∞ + − == 
′− =

. (56) 1 

With consideration of the non-negative property of km, Eqs. (54) and (56) can be rewritten 2 

as 3 

 ( ) ( ) ( ) ( ) ( ){ }r,m r2
max 1 2,2 0 0 2 2 max mmax , , 0P p f a m gs p f P kω ρ ωζ ′ ′= + − − =  , (57) 4 

where 5 

 ( )
1, 0
0, 0

x
f x

x
≥

=  <
, (58) 6 

and 7 

 ( ) ( ){ }
( ){ } ( )

{ } ( )

( ) ( ){ } ( ) ( ) ( )

r,m2
2,2 0 0 max 1

r,m r,m r,m
opt opt 2 max 2

r r,m r
opt m max max m

, ,

, 0, ,

0 , 0 , 0

a m gs P p

c k P p

c k P P k

ω ρ

ωζ

 ′∞ + − =

 ′= − =


= = =

. (59) 8 

7) Optimization of the PTO damping coefficient, the roof damping coefficient and the mooring 9 
stiffness 10 

Furthermore, referring to Eq. (54), if PTOc  is also included as a variable parameter in the 11 

optimization, i.e., if PTOc , cr and km are optimized concurrently, the maximum absorbed power 12 

can be written as: 13 

 ( ) { }PTO,r,m
max 1 2max ,P P P= , (60) 14 

where 15 

 
( ) 22

e
1

2,28

F
P

c
= ;  

( ) ( ) 22 0
e e 2,1 1,1

2
18

F F S S
P

ζ

−
= , (61) 16 

in which P1 represents the maximum absorbed power by the WEC with its roof completely 17 

open; whereas P2 denotes the one when the roof is entirely closed. In fact, it can be proved that 18 

P2≡P1, as given in Eq. (A3) in Appendix A. Hence Eq.(60) simplifies to: 19 

 ( )
( ) 22

ePTO,r,m
max

2,28

F
P

c
= . (62) 20 

The corresponding optimal PTOc , cr and km have two solutions, wrtten as 21 

 ( ) ( ) ( ){ } ( ){ }
{ }

2
2,2 2,2 0 0PTO,r,m PTO,r,m PTO,r,m

opt,PTO opt,r opt

1 2

, ,
, ,

, 0,

c a m gs
c c k

ω ρ

ζ ωζ

 ∞ + −= 
−

. (63) 22 

The capture factors corresponding to ( )
maxP   can be denoted as ( )

maxη  , in which from Eqs. 23 



17 
 

(21), (27) and (62), we have  1 

 ( )PTO,r,m
max

1
2kR

η = . (64) 2 

Actually, with heave motion as the only mode of oscillation for any single axisymmetric 3 
body, it has been first derived independently by Budal and Falnes (1975); Evans (1976); 4 
Newman (1976) that the maximum absorption width (defined as the ratio between P and Pin) 5 

is equal to 1/k. The results of Eq.(64) reveals that when PTOc , cr and km can be optimized at 6 

the same time, the theoretical maximum absorbed power and wave capture factor of the novel 7 
WEC are all the same to those of a solid cylinder with the same radius, regardless of 8 
compressibility of the air in the chamber. 9 

If we consider the mooring stiffness non-negative, we have: 10 

 11 

( )
( )

( )
( )

( ) ( ) ( )
2 22 2

e ePTO,r,m PTO,r2
max 2,2 0 0 2 max m

2,2 2,2

max , , 0
8 8

F F
P f a m gs f P k

c c
ω ρ ωζ

 
  = + − − =  
  

12 

. (65) 13 

 14 

( ) ( ) ( ){ }
( ){ } ( )

{ }
( ) ( ) ( ) ( ){ } ( ) ( ) ( )

2 2
2,2 2,2 0 0 2,2 0 0

PTO,r,m PTO,r,m PTO,r,m
opt,PTO opt,r opt 1 2 2

PTO,r PTO,r PTO,r,m PTO,r
opt,PTO m opt,r m max max m

, , , 0

, , , 0, , 0

0 , 0 , 0 , 0

c a m gs a m gs

c c k

c k c k P P k

ω ρ ω ρ

ζ ωζ ωζ

  ∞ + − + − ≥ = − − ≥


= = = =

15 

. (66) 16 

3. Validation of the analytical model 17 

The dimensionless quantities of the non-vanishing wave excitation volume flux/forces and 18 
hydrodynamic coefficients are defined by: 19 

 ( )
( )0

0 e
e 2

iπ
FF

R Aω
= ; ( )

( )

( )
e

e 2 2
iπ

j
j

i

FF
g R R d Aρ

=
−

, (j=1,2,3) (67) 20 

where i=0 for j =1,2; whereas i=1 for j=3. 21 

 
2

0,0
0,0

i

a
a

R
ω ρ

= ; 0,0
0,0

i

c
c

R
ωρ

= , (68a) 22 

 ( )
,

, 2 2
iπ

j j
j j i

a
a

R R dρ
′

′ =
−

; ( )
,

, 2 2
iπ

j j
j j i

c
c

R R dωρ
′

′ =
−

, (j, j’=1,2,3) (68b) 23 

where i=1 for (j, j’)=(1, 1) and (2, 2); i=2 for (j, j’)=(1, 3) and (3, 1); whereas i=3 for (j, j’)=(3, 24 

3), 25 

 ( )
,

, 2 2
iπ

j j
j j

a
a

R R
ω ′

′ =
−

; ( )
,

, 2 2
iπ

j j
j j

c
c

R R
′

′ =
−

, (j, j’)=(0,2) or (2,0). (68c) 26 
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The PTO damping induced by the linear generator ( PTOc ), the damping induced by the size 1 

of the aperture on the roof (cr), and the moorings restoring force coefficient (km) are normalized 2 
as: 3 

 ( )
PTO

PTO 2 2
i

c gh
c

gd R Rρ
=

−
, r

r
i

c g h
c

R
ρ

= , ( )
m

m 2 2
i

kk
g R Rρ

=
−  (69) 4 

The dimensionless quantities of the optimal PTO damping and the moorings restoring 5 

force coefficient corresponding to ( )
maxP   are denoted as ( )

opt,PTOc  , ( )
opt,rc   and ( )

opt,mk  , respectively, 6 

which can be obtained from ( )
opt,PTOc   , ( )

opt,rc    and ( )
opt,mk    following the same normalizing 7 

principles in Eq. (69). 8 

In our analytical computations for all the cases below, we take M=20, L0=50 to obtain 9 
converged results using the eigen-series analysis described above. To keep things simple, the 10 
wave number k0 is represented by k in the following sections. 11 

3.1 Wave diffraction and radiation 12 

Nader (2013) applied a three-dimensional FEM (Finite Element Method) model to a 13 
heaving cylindrical OWC with the following dimensionless parameters: R/h=0.25, Ri/h=0.2, 14 
d/h=0.2. The FEM model is based on linear potential flow theory and the discretisation of the 15 
entire computational water domain into a finite number of elements, where the quantity of 16 
interest is approximated. Neither the wave excitation forces nor the hydrodynamic coefficients 17 
related to the surge or pitch modes were considered in this FEM model. The corresponding 18 
coefficients can be evaluated with commercial codes based on the conventional BEM 19 
(Boundary Element Method), such as WAMIT and ANSYS-AQWA. In this section, the present 20 
analytical model is applied to study wave diffraction and radiation from the VAPA WEC with 21 
the same basic dimensionless parameters used by Nader (2013). For validation the analytical 22 
results are compared with numerical results from both FEM (Nader, 2013) and ANSYS-AQWA 23 
(ANSYS AQWA, 2011) codes. 24 

Figure 6 presents the results of wave excitation forces and volume flux using different 25 
methods. It is apparent that the analytical results agree well with those from other methods. 26 
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 1 
Fig. 6.  Real and imaginary parts of the dimensionless wave excitation volume flux and forces 2 
against kh, (a) wave excitation volume flux; (b) surge wave excitation force; (c) heave wave 3 

excitation force; (d) pitch wave excitation moment. 4 
 5 

Note that the case studied in this paper is a circular truncated cylinder with a circular 6 
moonpool; therefore, in addition to the plane y=0, x=0 is also a plane of symmetry. It follows 7 

that  n1 and n3 in Eq. (20) are odd functions of x, whereas ( )0
RΦ  and ( )2

RΦ  are even functions. 8 

Hence ( )1
R,0F  = ( )3

R,0F  = ( )1
R,2F  = ( )3

R,2F  =0. Moreover, the reciprocity relations ( ) ( )
R, R,

j j
j jF F′

′=   and 9 

( ) ( )
R, R,

j j
j jF F′

′= −  are satisfied for (j=1,2,3; j’=1,2,3) and (j=1,2,3; j’=0 or j=0; j’=1,2,3 ), 10 

respectively, for the wave radiation problem of the present case (Falnes, 2002). Therefore, the 11 

only nonvanishing off-diagonal elements of the radiation hydrodynamic matrix are ( ) ( )1 3
R,3 R,1F F=  12 

and ( ) ( )2 0
R,0 R,2F F= −  . The normalised hydrodynamic coefficients corresponding to the 13 

nonvanishing ( )
R,

j
jF ′  in the frequency domain as a function of kh are plotted in Fig. 7. 14 
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 1 

Fig. 7.  Dimensionless hydrodynamic coefficients against kh, (a) 0,0a  and 0,0c ; (b) 0,2a  and 2 

0,2c ; (c) 1,1a  and 1,1c ; (d) 1,3a  and 1,3c ; (e) 2,2a  and 2,2c ; (f) 3,3a  and 3,3c . 3 

 4 
Additionally, the hydrodynamic coefficients calculated by means of the DM and Haskind 5 

relation are listed and compared in Table 1. It may be seen that our results satisfy the Haskind 6 
relation between the diffraction and radiation problems very well, further proving the capability 7 
of the analytical model to solve the hydrodynamic problem of the novel WEC. 8 
 9 
 10 
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Table 1 Comparison of the hydrodynamic coefficients using DM and the Haskind relation 1 
kh 1.0 2.0 3.0 4.0 5.0 6.0 

0,0c  DM 0.01970 0.39500 15.18591 1.74723 0.34245 0.12341 
HR 0.01970 0.39499 15.18521 1.74711 0.34242 0.12339 

0,2a  DM 0.03373 0.17064 1.81294 -0.06358 -0.04666 -0.02572 
HR 0.03373 0.17064 1.81294 -0.06358 -0.04666 -0.02572 

1,1c  DM 0.03446 0.25872 0.72426 1.11079 1.23236 1.17622 
HR 0.03446 0.25872 0.72426 1.11079 1.23236 1.17622 

1,3c  DM -0.00957 -0.07553 -0.21734 -0.33762 -0.37581 -0.35729 
HR -0.00957 -0.07553 -0.21733 -0.33762 -0.37581 -0.35728 

2,2c  DM 0.10207 0.13028 0.38249 0.00409 0.01123 0.00948 
HR 0.10207 0.13028 0.38249 0.00409 0.01123 0.00948 

3,3c  DM 0.00266 0.02205 0.06522 0.10262 0.11460 0.10853 
HR 0.00266 0.02205 0.06522 0.10262 0.11460 0.10852 

3.2 Maximization of power absorption 2 

In this section, we consider the case of a VAPA with dimensionless parameters: R/h=0.15, 3 
Ri/h=0.1, and d/h=0.1, as an example to validate the power absorption optimization by means 4 
of the analytical model. 5 

Figure 8 presents the variation of ( )PTO
maxη  and ( )PTO

optc  vs. kh for mk =0, rc =1 obtained with 6 

the present analytical model and by trial and error. The trial and error (“brute force”) method 7 
may be described as an exhaustive search approach characterized by repeated, varied attempts 8 
until success without any intelligent algorithms employed. In Figures 9 and 10 these two 9 
methods, the present model and trial and error, are employed to evaluate the maximum and 10 
minimum power absorption of the device when only cr can be varied. Figure 11 presents the 11 
results when both cr and km can be optimized.  12 

 13 

Fig. 8.  Variation of ( )PTO
maxη  and ( )PTO

optc  with kh for mk =0, rc =1. 14 

 15 
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 1 

Fig. 9.  Variation of ( )r
maxη  and ( )r

optc  with kh for mk =0, PTOc =5. 2 

 3 

 4 

Fig. 10.  Variation of ( )r
minη  and ( )r

minc  with kh for mk =0, PTOc =5. 5 

 6 
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 1 

Fig. 11.  Variation of ( )r,m
maxη , ( )r,m

optc  and ( )r,m
optk  with kh for PTOc =5. 2 

As shown in Figs. 8~11, there is excellent agreement between the analytical and numerical 3 
optimization results, corroborating the correctness of the expressions derived in Section 2.7. 4 

4. Results and discussion 5 

In this section the validated analytical model is employed to investigate the power 6 
extraction by a VAPA WEC with the following dimensionless parameters: R/h=0.15, Ri/h=0.1, 7 
d/h=0.1. After solving the wave diffraction and radiation problems, the excitation forces and 8 
volume flux, and the hydrodynamic coefficients with respect to the oscillating water column 9 

and the heave motion of the chamber are presented in Figure 12. As shown in Fig.12a, ( )0
eF  10 

and ( )2
eF  reach their peak values of 6.44 and 0.97, respectively, at kh = 6.2 and 6.1. We have 11 

( )2
eF  = 0 at kh = 7.1. In Fig.12b, 0,0a = 0 occurs at kh = 6.2, which corresponds to the resonant 12 

wave frequency of the device as a fixed OWC. In Fig.12c, apart from 2,2a   and 2,2c , a 13 

combination parameter ( ) ( )2 2 2
0 0 iπgs m R R dρ ω ρ − − 

 versus kh is also plotted into a black dot 14 

curve. An intersection point of such curve and the blue solid curve (i.e., 2,2a -kh) is observed at 15 
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kh=8.3, which is the resonant wave frequency of the device when it works with the roof entirely 1 

open. Since 2,0a  and 2,0c  are exactly the oppsite of 0,2a  and 0,2c , here Fig.12d only presents 2 

variation of the latter two hydrodynamic coefficients with kh. 3 
 4 

 5 
Fig. 12.  Dimensionless wave excitation force/volume flux and hydrodynamic coefficients 6 

regarding oscillating water column and heave motion of the chamber against kh for R/h=0.15, 7 

Ri/h=0.1, d/h=0.1: (a) ( )0
eF  and ( )2

eF ; (b) 0,0a  and 0,0c ; (c) 2,2a  and 2,2c ; (d) 0,2a  and 0,2c . 8 

The power absorption of the novel WEC can be evaluated by combining the solutions of 9 
the diffraction/radiation problems with power take-off systems by means of Eq. (25). Figure 13 10 

presents variation of η with kh for different rc , i.e., different aperture size of the roof, and mk11 

=0, PTOc =5. As indicated, changing the size of the roof aperture leads to obvious changes in the 12 

frequency response of η. With the aperture entirely closed the device captures more power than 13 
with the aperture completely open for most wave conditions, except in the range 5.5 < kh < 6.1. 14 

As rc  increases from 0 towards ∞, the kh corresponding to the peak of η-kh curve increases, 15 

whereas the peak value of η first decreases and then increases after reaching a minimum value. 16 

Among the six cases with different values of rc  as plotted in Fig. 13, the minimum peak value 17 
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of η is 0.46 occurring at kh=5.4 with rc  =10, while the maximum peak value of η is 0.57 1 

occurring at kh=5.7 with rc =∞, which is 1.24 times as large as the minimum one. In addition 2 

to the curves for the novel WEC, the power absorption of a conventional (solid cylinder) point-3 
absorber with the same scales of R and d is plotted as well. It is found that the novel WEC with 4 
the roof entirely closed works almost all the same in absorbing power with traditional point-5 
absorber using solid cylinder. Since the surge motion is decoupled from the heave motion, surge 6 
is not affected by the size of the roof aperture, i.e., the surge motion of the novel WEC is 7 
independent of the aperture size, and is the same as that of a hollow cylinder without a roof. 8 
This means that a hollow cylinder with the roof aperture completely closed  performs similarly 9 
to a solid cylinder in capturing wave power; however, since the displacement of the hollow 10 
cylinder is much smaller than that of the solid cylinder, from a cost point of view, the novel 11 
WEC could be more attractive than traditional point-absorber. Additionally, compared with the 12 
solid cylinder, the hollow cylinder might be advantageous in terms of survivability as well 13 
because it presents less motion in surge mode, as reported by Engström et al. (2017); 14 
Gravråkmo (2014) and Göteman (2017). 15 

 16 

Fig. 13.  Variation of η  with kh for different rc and mk =0, PTOc =5. 17 

The results as shown in Fig. 13 are those without optimization of any parameters. The 18 
maximum power extraction of the device with different optimization principles as derived in 19 
Section 2.7 is presented and discussed in the following sections. 20 

4.1 Optimization of the PTO damping coefficient 21 

Figure 14 illustrates the variation of the maximum power capture factor of the novel WEC 22 

( ( )PTO
maxη ) and the corresponding optimal PTO damping coefficient ( ( )PTO

optc ) with wave number 23 

(kh) for mk  =0. Different curves represent the device with different values of cr. When the 24 

aperture size of the roof is small, e.g., rc  <10, ( )PTO
maxη  -kh presents the characteristics of a 25 
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unimodal curve with ( )PTO
maxη  peaking at kh=5.5. For such cases, the ( )PTO

optc -kh performs as a 1 

single-valley-curve, and ( )PTO
optc  reaches the minimum value at kh=5.7, slightly different from 2 

that where the peak of ( )PTO
maxη  occurs. For rc <10, the larger the aperture size is, the smaller both 3 

( )PTO
maxη  and ( )PTO

optc  are for most wave conditions, except 5.0<kh<7.0, where ( )PTO
optc  is nearly 4 

independent of rc . As the roof aperture size turns larger and larger ( rc ≥10), frequency response 5 

of ( )PTO
maxη  changes towards a bimodal curve, in which the second peak appears at kh=8.3 where 6 

resonance occurs. Meanwhile, a vanishing power absorption point is also obtained at kh=7.1. 7 
This is due to no wave excitation force acting on the chamber (see Fig.12a) and very limited 8 
interacting air/hydrodynamic force exerted on the roof/chamber bottom because of the 9 

negligible air pressure. Although the peaks of ( )0
eF  and ( )2

eF  both occur at kh=6.1~6.2, the 10 

main peak of ( )PTO
maxη -kh is found at a rather smaller kh, i.e., 5.5~5.7. This can be explained from 11 

Fig.12c, which indicates a large difference between 2,2a  and 12 

( ) ( )2 2 2
0 0 iπgs m R R dρ ω ρ − −   for kh=6.1~6.2, whereas the difference turns very small at 13 

kh = 5.5~5.7, meaning more close to resonance conditions. The bimodal frequency response of 14 

( )PTO
maxη   for a large roof aperture might well be beneficial for situations with bimodal wave 15 

spectra, e.g., when wind seas and swell coexist. For rc ≥10, the peak and valley of the ( )PTO
optc - 16 

kh curves occur at kh = 6.2 and 8.2, respectively.  17 

 18 

Fig. 14.  Variation of ( )PTO
maxη  and ( )PTO

optc  with kh for different rc and mk =0. 19 
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4.2 Optimization of the mooring stiffness 1 

When only the stiffness of the mooring lines can be changed, the maximum power capture 2 

factor ( )m
maxη  and ( )m

optk  for PTOc =5 versus kh are illustrated in Fig. 15, in which different curves 3 

represent the device with different sizes of roof aperture. For small kh, i.e., kh < 5.0, the mooring 4 

stiffness is detrimental to power extraction, hence ( )m
optk = 0 is adopted. Whereas for large kh, 5 

i.e., kh > 6.0 for rc <2, the right value of ( )m
optk  is beneficial for power absorption. The larger 6 

the value of kh, the larger the value of ( )m
optk . Conversely, the smaller the value of rc , the larger 7 

the value of ( )m
optk  . The comparison between Fig. 15a and Fig. 13 shows that the power 8 

absorption of the device can be significantly improved in short waves by properly increasing 9 
mooring stiffness. 10 

 11 

 12 

Fig. 15.  Variation of ( )m
maxη  and ( )m

optk  with kh for different values of rc  ( PTOc =5). 13 

4.3 Optimization of the roof damping coefficient 14 

Figure 16 shows the variation of ( )r
maxη  and ( )r

optc  with kh for different values of PTOc  and 15 

mk   = 0. Different curves represent the device with different PTO damping coefficients. As 16 

shown in Fig.16b, the optimal damping induced by a roof aperture ( )r
optc  for maximizing power 17 

absorption of the novel WEC is either 0 or ∞. For kh < 5.0, the device with the roof aperture 18 
completely closed is preferred regardless of the value of PTO damping coefficient. Instead, for 19 
kh > 5.0 the device with the roof aperture totally open may capture more power depending on 20 

the value of the PTO damping, e.g., for 5.3 < kh < 6.3 for PTOc =10, where an obvious bulge of 21 

the ( )r
maxη -kh curve can be observed. As PTOc  increases from 1 to 10, the main peak of ( )r

maxη -kh 22 
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moves towards a smaller kh, and the peak value of ( )r
maxη  first increases and then, after reaching 1 

0.59 at kh = 5.5 for PTOc = 3.0, decreases. Meanwhile, the bandwidth increases. 2 

 3 

Fig. 16.  Variation of ( )r
maxη  and ( )r

optc  with kh for different PTOc  and mk =0. 4 

 5 
When the novel WEC is subjected to extreme waves, it may be required to restrict its heave 6 

motion for the sake of survivability. For the VAPA WEC, the air pressure within the cylinder 7 
can be modified by adjusting the roof aperture. This may  be used to minimize the heave motion, 8 
which naturally reduces power capture. The contrary of Fig. 16, Fig. 17 presents the results of 9 

( )r
minη  and ( )r

minc  when the power absorption of the device is minimized with a proper value of cr. 10 

Comparing the two figures it is apparent that ( )r
minη  is much smaller than ( )r

maxη . For example, the 11 

values of ( )r
maxη  at kh = 5.5 are 0.46, 0.58, 0.59, 0.55 and 0.44, respectively, for PTOc =1, 2, 3, 5 12 

and 10; whereas the values of ( )r
minη  are merely 0.34, 0.45, 0.47, 0.44 and 0.32, leading to a 13 

reduction in heaving amplitude of 13.9%, 11.7%, 10.6%, 10.8% and 14.0%, respectively. Under 14 

longer waves, e.g., kh=4.0, for PTOc =1, 2, 3, 5 and 10, a proper selection of the aperture size of 15 

the roof might result in the maximum reduction in heaving amplitude of 6.2%, 7.7%, 9.3%, 16 
12.4% and 17.6%, respectively. 17 

Another important aspect with reference to extreme waves is that viscous effects become 18 
relevant; under such conditions the linear model may overpredict the motion and power 19 
absorption of the WEC. 20 

 21 
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 1 

Fig. 17.  Variation of ( )r
minη  and ( )r

minc  with kh for different PTOc  and mk =0. 2 

4.4 Optimization of the PTO damping coefficient and the roof damping coefficient 3 

Results of ( )PTO,r
maxη   when PTOc   and cr can be optimized simultaneously, and the 4 

corresponding ( )PTO,r
opt,PTOc  and ( )PTO,r

opt,rc  versus kh are shown in Fig. 18, in which different curves 5 

represent the device adopting different mooring stiffness. As mk  increases from 0 to 2.0, the 6 

peak of ( )PTO,r
maxη  moves towards high wave frequencies with the peak value turning smaller and 7 

smaller. The maximum value of ( )PTO,r
maxη  is no more than 1/(2kR), which is the ratio of analytical 8 

maximum power capture width by a vertical asymmetrical heaving buoy relative to 2R. For 9 

large mooring stiffness, e.g., mk =1.0, 1.5 and 2.0, a bulge occurs at 5.5<kh<6.2, where the 10 

corresponding ( )PTO,r
opt,rc =∞. The sharp peak of the bulge occurs at kh=6.0 exactly, where the peak 11 

of 2,2a  happens as shown in Fig.12c.  12 
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 1 

Fig. 18.  Variation of ( )PTO,r
maxη , 

( )PTO,r
opt,PTOc  and ( )PTO,r

opt,rc  with kh for different mk . 2 

4.5 Optimization of the PTO damping coefficient and the mooring stiffness 3 

Results of ( )PTO,m
maxη   when PTOc   and km can be optimized simultaneously, and the 4 

corresponding ( )PTO,m
optc  and ( )PTO,m

optk  versus kh are shown in Fig. 19, in which different curves 5 

represent the device with different sizes of aperture on the roof. The device with the roof 6 

completely closed, i.e., rc = 0, performs better in power extraction for the entire range of wave 7 

conditions studied. Note that for kh > 8.2, ( )PTO,m
maxη -kh with rc  = ∞ almost overlaps that for rc8 

= 0, while the device with the roof partly open presents a much smaller power capture capability. 9 

Even though both rc  = 0 and ∞ result in the same ( )PTO,m
maxη   for kh > 8.2, the ( )PTO,m

optc  10 

corresponding to rc = 0 is much larger than that for rc = ∞ (Fig.19b), e.g., ( )PTO,m
optc =1.69 and 11 

0.21 at kh=9.0 for rc =0 and ∞, respectively. Consequently, the heaving amplitude for rc =∞ is 12 

2.8 times as large as that for rc =0, implying that to achieve the same power absorption a much 13 
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larger heave motion is required for the device with the roof completely open compared to that 1 

with the roof entirely closed. Given that the optimal mooring stiffness is independent of PTOc , 2 

as derived in Eqs. (35) and (50) , the values of ( )PTO,m
optk  (Fig.19c) are found to be similar to 3 

those of ( )m
optk  (Fig.15b). 4 

 5 

Fig. 19.  Variation of ( )PTO,m
maxη , 

( )PTO,m
optc  and ( )PTO,m

optk  with kh for different rc . 6 

4.6 Optimization of the roof damping coefficient and the mooring stiffness 7 

Figure 20 presents the optimization results when cr and km can be adjusted simultaneously, 8 

in which different curves represent the device for different values of PTOc  . When the PTO 9 

damping coefficient is large enough, e.g., PTOc  ≥ 5, the device without any roof covering has a 10 

better performance in power extraction for certain wave conditions, e.g., 5.4 < kh < 6.2 (Fig. 11 
20b). Notwithstanding, for generic (unconstrained) wave conditions the device with the roof 12 
entirely closed is preferable. Thanks to the positive mooring stiffness for kh > 6.0 (Fig. 20c), 13 
the maximum power capture factor of the device can be increased significantly, which is 14 
apparent when comparing Figs. 20a and 16a. For kh < 4.0, the device with a larger value of 15 
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PTOc  can capture more power from waves; however, for wave conditions with large frequencies 1 

such that kh > 6.5, a large value of PTOc  might be detrimental to power absorption. Indeed, for 2 

kh > 6.5, ( )r,m
maxη  with PTOc =10 is much smaller than in all the other cases with smaller values of 3 

PTOc  (Fig. 20a). Since the optimal mooring stiffness is independent of PTOc , but does depend 4 

on cr, the ( )r,m
optk  -kh curves (Fig. 20c) overlap each other when the same value of ( )r,m

optc   is 5 

adopted, regardless of the value of PTOc . 6 

 7 

Fig. 20.  Variation of ( )r,m
maxη , 

( )r,m
optc  and ( )r,m

optk  with kh for different PTOc . 8 

4.7 Optimization of the PTO damping coefficient, the roof damping coefficient and the mooring 9 
stiffness 10 

Figure 21 presents the frequency response of the maximum power capture factor when 11 

PTOc , cr and km are all optimized simultaneously. For kh > 5.7, ( )PTO,r,m
maxη  is equal to 1/(2kR). 12 
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 1 

Fig. 21.  Variation of ( )PTO,r,m
maxη  with kh. 2 

5. Conclusions 3 

In this paper a novel WEC, Variable Aperture Point-Absorber (VAPA), was proposed; it 4 
consists of a hollow cylinder capped by a roof with an aperture of variable size. To extract wave 5 
power the cylinder is connected by a tether to a linear generator on the seabed. The 6 
characteristics of power absorption of the WEC can be modified by adjusting the aperture on 7 
the roof. To study the performance of VAPA, the wave diffraction and radiation problems are 8 
solved with an analytical model. The influence of the PTO system and the roof aperture is 9 
represented by linear damping coefficients.  10 

The power absorption of the novel WEC was found to be strongly dependent on three 11 
parameters: the PTO damping coefficient, the roof aperture damping coefficient and the non-12 
negative mooring stiffness. A systematic analytical derivation of the maximum absorbed power 13 
was carried out under different optimization principles revolving around these three parameters. 14 
The following conclusions may be drawn. 15 

First, changing the roof aperture modifies the frequency response of the wave capture 16 
factor.  17 

Second, for unspecified wave conditions, the device generally captures more wave power 18 
with the roof aperture completely closed than with it completely open. Furthermore, with the 19 
roof aperture completely closed, the novel WEC performs similarly to a conventional (solid 20 
cylinder) point-absorber in terms of power capture. The VAPA WEC has, however, two 21 
significant advantages, a lower cost and enhanced survivability, thanks to its smaller 22 
displacement and lower surge motions.  23 

Third, opening the roof aperture leads to a narrower bandwidth and a larger peak value of 24 
power capture relative to the configuration with the roof aperture closed. This may be 25 
advantageous when the wave conditions match the peak of the response of the device. 26 

Fourth, if the configuration of the PTO is such that its damping can be tuned to the wave 27 
conditions, then increasing the size of the roof aperture leads gradually to a bimodal response, 28 
with the second peak (at kh = 8.3) corresponding to resonant conditions. This configuration 29 
would be ideal for bimodal sea states, when a swell and a wind sea coexist.  30 

Fifth, the optimal mooring stiffness for the novel WEC was found to be independent of 31 
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the PTO damping coefficient. 1 
Finally, the Variable Aperture Point-Absorber, VAPA, presents the best power absorption 2 

when the roof aperture is completely open or entirely closed for any specified wave conditions. 3 
Intermediate values of the roof aperture are preferable, however, in storm conditions, for the 4 
adequate aperture was found to minimize power extraction and heave motions – an advantage 5 
for survivability. 6 

In sum, a novel WEC concept, Variable Aperture Point-Absorber (VAPA), was presented 7 
and investigated by means of an ad hoc analytical model. A thorough analysis was carried out 8 
to determine its performance and optimize the values of PTO damping, roof aperture damping 9 
and mooring stiffness for power capture. Unlike conventional point-absorbers, VAPA is capable 10 
of minimizing heave motions, hence forces on the mooring lines, under extreme wave 11 
conditions. This is a significant advantage in that it can be the difference between surviving a 12 
storm or not.  13 

The wave power absorption of the VAPA WEC proposed in this work might be further 14 
enhanced to some extent by capturing the surge or pitch motion for power generation. 15 
However, this must be balanced with the greater cost and, possibly, smaller robustness 16 
under extreme sea states of the more complicated PTO system that would be required – 17 
which will be considered in future work. 18 
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Appendix A. Proofs of κ1>0; ξ3>0; P2≡P1 26 

κ1>0 can be proved as follows, in which Eqs.(21)~(23) are adopted to express a0,2 by c0,0 27 
and c2,2: 28 
 29 
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 7 
P2≡P1 is proved in Eq. (A3), 8 
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in which Eq.(42) is used to express ( ) ( )0 2
e eF F  in terms of c0,0 and c2,2. 3 
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