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2Physics Department, University College, Cork, Ireland

3Max-Planck-Institut für Astrophysik, Garching, Germany
(Received 23 April 2010; published 2 December 2010)

We compare Newtonian and general relativistic descriptions of the stationary accretion of self-

gravitating fluids onto compact bodies. Spherical symmetry and thin gas approximation are assumed.

Luminosity depends, among other factors, on the temperature and the contribution of gas to the total mass,

in both—general relativistic ðLGRÞ and Newtonian ðLNÞ—models. We discover a remarkable universal

behavior for transonic flows: the ratio of respective luminosities LGR=LN is independent of the fractional

mass of the gas and depends on asymptotic temperature. It is close to 1 in the regime of low asymptotic

temperatures and can grow several times at high temperatures. These conclusions are valid for a wide

range of polytropic equations of state.

DOI: 10.1103/PhysRevD.82.124005 PACS numbers: 04.40.Nr

I. INTRODUCTION

The classical accretion model of Bondi [1] has been
generalized to radiation hydrodynamics in the 1970s.
Shakura [2] discussed steady radiating flows attracted by
a pointlike Newtonian mass. Thorne and his coworkers
formulated models of stationary accretion in the
Schwarzschild spacetime [3,4]. The self-gravity of infal-
ling radiating gases has been included into the general
relativistic model by Park and Miller [5] and Rezzolla
and Miller [6] in the 1990s. The steady accretion of
Newtonian self-gravitating flows has been recently
investigated [7,8].

In this paper we compare the general relativistic and
Newtonian models for transonic flows. We make a number
of simplifying assumptions—spherical symmetry, a poly-
tropic equation of state p ¼ K��

0 , and the thin gas approxi-

mation in the transport equation [9]. It is assumed that the
accretion is quasistationary.

To begin with, there are two kinds of possible general
relativistic effects. The first is related to the backreaction—
and that includes self-gravity and the dependence on the
fraction of total mass in the accreting gas (defined later as
1� y)—and the other is related to the asymptotic speed of
sound a1. (We shall occasionally use the term ‘‘asymptotic
temperature’’; both quantities are related, for ideal poly-
tropic gases a2 ¼ kT=�. Here k is the Boltzmann con-
stant.) The same boundary conditions are assumed in
both models.

It is already known that the Newtonian description is not
adequate for the accretion of hot transonic test fluids
[10,11] in pure hydrodynamics. Thus it is not surprising
to discover—we do—that the Newtonian description can
fail in radiation hydrodynamics. But it is surprising that
there emerges a particular universality that is unknown in
the existing literature. To rephrase it, let us point out that

each of the two luminosities, LGR (general relativistic) and
LN (Newtonian), taken separately depends on the gas mass
fraction 1� y and the asymptotic temperature T1. Yet we
find that their ratio LGR=LN depends only on the asymp-
totic temperature. This universality means that the general
relativistic enhancement of luminosity, the ratio LGR=LN,
can be found by solving the accretion of test fluids in
hydrodynamics without radiation. This is a much simpler
algebraic problem than the original one, investigated in
[10,11]. These facts are valid for polytropic equations of
state with 1< �< 5=3.
The order of the rest of this paper is as follows. Section II

discusses notation and equations. Section III shows how
the validity of the thin gas approximation constrains the
choice of boundary data. We describe the form of boundary
data for the accretion problem. Section IV discusses the
notion of sonic points and transonic flows in radiation
hydrodynamics. In the first part of Sec. V we formulate
a low-radiation condition and prove the universality of
LGR=LN . The luminosity of hot accreting gases in a general
relativistic model can be much higher than that given by
the related Newtonian counterpart. In the second part of
Sec. V we find a sector of luminous transonic flows which
again gives a universal ratio, but now the asymptotic
temperature is low and LGR=LN � 1. Section VI describes
the numerical scheme that is used in this work, gives the
equation of state, and details numerical values for most of
the boundary data. Section VII reviews numerical results.
The last section summarizes the main conclusions.

II. FORMALISM AND EQUATIONS

A. General relativistic accretion

The metric

ds2 ¼ �N2dt2 þ âdr2 þ R2ðd�2 þ sin2ð�Þd�2Þ (1)
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uses comoving coordinates t, r, 0 � � � �, 0 � �< 2�:
time, coordinate radius, and two angle variables, respec-
tively. R denotes the areal radius and N is the lapse. The
radial velocity of gas is given by U ¼ 1

N
dR
dt . We assume

relativistic units with G ¼ c ¼ 1.
The energy-momentum tensor reads T�� ¼ TB

�� þ TE
��,

where the baryonic part is given byTB
�� ¼ ð�þ pÞU�U� þ

pg�� with the timelike normalized four-velocity U�,

U�U
� ¼ �1. The radiation part TE

�� possesses only four

nonzero components, T0E
0 � ��E ¼ �TrE

r and TE
r0 ¼ TE

0r.

A comoving observer would measure local mass densities,
the material density � ¼ TB��U�U�, and the radiation

density �E, respectively. The baryonic current reads j� �
�0U

�, where �0 is the baryonic mass density. Its conserva-
tion is expressed by the equation

r�j
� ¼ 0: (2)

Let n� be the unit normal to a coordinate sphere lying in the

hypersurface t ¼ const and let k be the related mean curva-

ture scalar, k ¼ R
2 rin

i ¼ ð1= ffiffiffî
a

p Þ@rR. The quantity j ¼
U�n

�NT
�E
� =

ffiffiffî
a

p ¼ NT0E
r =

ffiffiffî
a

p
is interpreted as the

comoving radiation flux density. We assume the poly-
tropic equation of state p ¼ K��

0 , with constants K
and �. The internal energy density h and the rest and
baryonic mass densities are related by � ¼ �0 þ h, where
h ¼ p=ð�� 1Þ.

There are four conservation equations that originate

from the contracted Bianchi identities, r�T
�B
� ¼

�r�T
�E
� ¼ F� (here � ¼ 0, r). The radiation force

density F� describes the interaction between baryons
and radiation. This formulation of general relativistic
radiation hydrodynamics agrees with that of Park and
Miller [5], Rezzolla and Miller [6], and (on the fixed,
Schwarzschildean, background) Thorne, Flammang, and
Żytkow [4].

One can find the mean curvature k from the Einstein
constraint equations G�0 ¼ 8�T�0 ([10,12]),

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðRÞ

R
þU2

s
; (3)

where mðRÞ is the quasilocal mass,

mðRÞ ¼ M� 4�
Z R1

R
drr2

�
�þ �E þUj

k

�
: (4)

The integration in (4) extends from R to the outer boundary
R1 of the ball of gas. Its external boundary is connected
to the Schwarzschild vacuum spacetime by a transient
zone of a negligible mass. Thus the asymptotic mass M
of the Schwarzschild spacetime is approximately equal to
mðR1Þ.

In the polar gauge foliation one has a new time tSðt; rÞ
with @tS ¼ @t � NU@R. The quantity 4�NkR2ðjð1þ
ðUkÞ2Þ þ 2U�E=kÞ is the radiation flux measured by an

observer located at R in coordinates ðtS; RÞ. One can
show that

@tSmðRÞ ¼ ð@t � NU@RÞmðRÞ
¼ 4�

�
NkR2j

�
1þ

�
U

k

�
2
�
þ 2N�EU

�
R1

R

þ 4�ðNUR2ð�þ pÞÞR1
R þ A1; (5)

where A1 is the value of �4�NUR2ð�þ �E þ Uj
k Þ at

R ¼ R1. The mass contained in the annulus ðR; R1Þ
changes if the fluxes on the right-hand side, one directed
outward and the other inward, do not cancel. The local
baryonic flux reads _M ¼ �4�UR2�0, it is not constant
(@R _M � 0), and its boundary value reads _M1.
The accretion process is said to be stationary (or quasi-

stationary) if all relevant physically observables, which are
measured at a fixed areal radius R, remain approximately
constant during time intervals much smaller than the run-
away instability time scale T ¼ M= _M1. That means that
@tSX � ð@t � NU@RÞX ¼ 0 for X ¼ �0; �; j; U . . . .

The above assumptions imply that in the thin gas
approximation F0 ¼ 0 and the radiation force density

has only one nonzero component Fr ¼ �k
ffiffiffî
a

p
�0j [8].

Baryons and radiation interact through the elastic
Thomson scattering. � is a material constant, in standard
units � ¼ �=ðmpcÞ and c, �, and mp are, respectively, the

speed of light, the Thomson cross section, and the proton
mass.
The full system of equations in a form suitable for

numerics has been obtained in [8]. It consists of
(i) The total energy conservation

_MN
�� 1

�� 1� a2
þ 2 _MN

�E

�0

¼ 4�R2jNk

�
1þU2

k2

�
þ C; (6)

the constant C is the asymptotic energy flux inflow-
ing through the sphere of a radius R1.

(ii) The local radiation energy conservation

�
1� 2mðRÞ

R

�
N

R2

d

dR
ðR2�EÞ

¼ ��k2Nj�0 þ 2NðU�E � kjÞ dU
dR

þ 2kðjU� k�EÞdN
dR

þ 8�NR

�
j2 � j�E U

k

�
:

(7)

(iii) The equation related to the relativistic Euler equa-

tion (below a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dp

p
is the speed of sound)
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d

dR
lna2 ¼ ��� 1� a2

a2 � U2

k2

�
1

k2R

�
mðRÞ
R

� 2U2

þ 4�R2

�
�E þ pþ j

U

k

��

� �j

�
1� a2

�� 1

��
: (8)

(iv) The baryonic mass conservation

dU

dR
¼ � U

�� 1� a2
d

dR
lna2 � 2U

R
þ 4�Rj

k
:

(9)

(v) The equation for the lapse

dN

dR
¼ N

�
�j

�� 1� a2

�� 1
þ d

dR
lnð�� 1� a2Þ

�
:

(10)

Equations (3), (4), and (6)–(10) give the complete model
used in numerical calculations.

The asymptotic data for the accretion must satisfy sev-
eral physical conditions. We assume the inequalities a21 �
M=R1 � U21 ensuring, as demonstrated by Karkowski,
Malec, and Roszkowski [7] and Mach et al. [13], that the
assumption of stationary accretion is reasonably well sat-
isfied. These inequalities are probably needed to ensure
stability (see a discussion in [7] and studies of stability of
accreting flows in Newtonian hydrodynamics [13]). In the
asymptotic region j1 � �E1 and the total luminosity is well
approximated by L0 ¼ 4�R21j1. The total luminosity is
related to the asymptotic accretion rate _M1 by [8]

L0 ¼ 	 _M1 �
�
1� NðR0Þ

kðR0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðR0Þ

R0

s �
_M1: (11)

Here R0 is the size of the compact core and the quantity 	
can be interpreted as a binding energy per unit mass.

B. Newtonian approximation

The notation is as in the preceding part of this section.
The mass accretion flux is now R-independent, in contrast
to the general relativistic case, @R _M ¼ 0, and the baryonic
mass density �0 coincides with �. �ðRÞ is the Newtonian
gravitational potential,

�ðRÞ ¼ �MðRÞ
R

� 4�
Z R1

R
r�ðrÞdr; (12)

MðRÞ � M� 4�
RR1
R r2�ðrÞdr is the mass contained

within the sphere R.
The Newtonian model can be described by two basic

equations [7]:

(i) The energy conservation equation

L0 � LðRÞ ¼ _M

�
a21

�� 1
þU21

2
þ�ð1Þ � a2

�� 1

�U2

2
��ðRÞ

�
:

(13)

(ii) The luminosity equation

L ¼ L0 exp

��� _M

4�R

�
¼ L0 exp

��L0
~R0

LER

�
: (14)

Notice that the luminosity has the same form as in the case
of test fluids [2]. Here we introduced the Eddington lumi-
nosity LE ¼ 4�M=� while ~R0 � GM=j�ðR0Þj is a kind
of modified size measure of the compact body. In the case
of test fluids ~R0 ¼ R0. We assume L0 ¼ j�ðR0Þj _M; notice,
however, that for small 	 this relation [with 	 ¼ j�ðR0Þj]
appears as the Newtonian limit of Eq. (11).
We shall give a sketch of the proof that Eqs. (13) and

(14) constitute a limit of the general relativistic model,
assuming the thin gas approximation. Let us assume ob-
vious nonrelativistic conditions (we return to our conven-
tion G ¼ c ¼ 1) that (i) velocities U2, a2 � 1 and
(ii) mass concentrations 2MðRÞ=R � 1 (for any R bigger
than the size R0 of the compact core) are small. We shall
require also that most of the mass rests in the core,

(iii) Mg <M=2. Here Mg � 4�
RR1
R drr2 �0

k represents

the massMg of gas in the annulus ðR; R1Þ. This assumption

is made only for the sake of simplicity; we believe that it
can be eliminated. Finally, we need that (iv) the comoving
radiation energy density �E and the comoving radiation
flux density j are of the same order of magnitude. We shall
comment on that. We already assumed that at the boundary
R1 both quantities are equal. It follows by the volume
integration of both sides of Eq. (7) that, under conditions
(i)–(iii),

ðR2�EÞjR1
R � ��

Z R1

R
drr2�0j: (15)

The right-hand side of (15) can estimated from above by

 supðjjjR2Þ and from below by 
 infðjjjR2Þ. Here 
 is the
optical thickness (see the next section for the definition). If

 � 1, then in fact �E � j.1 It is clear that (iv) is not
generically valid if the gas is opaque, 
 � 1.

1It might well be that by a careful and tedious calculation one
can eliminate the condition (iv), assuming a weaker condition
that 
 � 1 (or even 
 < 1).
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Define an auxiliary quantity

L̂ � �2 _MN
�E

�0

þ 4�R2jNk

�
1þU2

k2

�
: (16)

L̂ represents local luminosity as measured by an observer
stationary at R [8]. We already have shown that conditions
(i)–(iv) imply �E � j. In the nonrelativistic regime
jUj � 1 and careful investigation of (16) leads to the

equality L̂ � 4�R2jN. It follows from Eq. (6) that at the

boundary of the accretion cloud L̂ðR1Þ ¼ LGR; L̂ðR1Þ is
the total luminosity. It is convenient to replace _M by
_M � _M1 þ 16�2

RR1
R drjr3 �0

k [8]; the new quantity _M1
is constant and coincides with _M at the boundary R1.
We have 16�2

RR1
R drjr3 �0

k � 16�2 supðjr2ÞRR1
R drr �0

k �
4� supðjr2Þ 4�R

RR1
R drr2 �0

k . We conclude that

16�2
Z R1

R
drjr3

�0

k
� 4� supðjr2Þ; (17)

since we assumed Mg <M=2 and in the Newtonian limit

holds 2M=R � 1. The term 4� supðjr2Þ is equal to

supL̂ ¼ L̂ðR1Þ; this in turn is equal to 	M1 � M1. The
last inequality again exploits the fact that in the Newtonian
limit 	 ¼ j�ðR0Þj � 1. Thus we can conclude that
_M � _M1 and the energy conservation equation becomes

_M 1N
�� 1

�� 1� a2
¼ L̂þ C: (18)

By differentiating Eq. (6) and employing Eq. (10) one can
easily derive the following equation:

d

dR
L̂ ¼ _M1N�j: (19)

Now, the assumptions (i)–(iv) imply that the metric func-
tions

k � 1�MðRÞ
R

þU2

2
(20)

and the lapse

N � 1þ�ðRÞ þU2

2
(21)

are close to unity.

Then the function L̂ satisfies with good accuracy the
differential equation

d

dR
L̂ � _M1�

L̂

4�R2
; (22)

which is solved by L̂ ¼ L0 expð��
_M1

4�RÞ. Thus we obtain

the same form of a solution as in the Newtonian equation
(14). Furthermore, one can approximate Eq. (18) by a
suitable Newtonian model in the region ðR�; R1Þ.
Expanding the lapse N [keeping only the first order terms

inMðRÞ=R andU2, as in (21)] and replacing ��1
��1�a2

by 1þ
a2

��1 , we arrive at the Newtonian equation (13).

III. THIN GAS APPROXIMATION
AND BOUNDARY DATA

The thin gas approximation demands that the optical
thickness [9] of the cloud is smaller than 1, i.e.,


 ¼
Z R1

R0

nðrÞ�dr < 1; (23)

where n is the baryonic number density. Notice that n ¼ �0

mp

if we assume the monoatomic hydrogenic gas. Assuming
that n decreases to the asymptotic value n1, we arrive at
1>R1n1�. Thus the rough condition for the validity
of the thin gas approximation is that the radiation free
path l � 1=ðn1�Þ is not shorter than the size of the cloud,
l > R1. This implies �0 <

mp

R1�
and (taking into account

that �0 � �) estimates the mass of gas, Mg <
4�
3�c R

21.
Denote the solar mass by M� and define 10s � R1

M .

One obtains an estimate consistent with the thin gas
approximation

Mg

M
< 10�21 	 102s 	 M

M�
: (24)

We choose s andM that give the right-hand side of (24) of
the order of unity. In such a case a significant part of the
total mass M would be contributed by the gas itself. That
could allow for the strong impact of backreaction and self-
gravitation onto accretion. It is clear that there is a scaling
freedom—one can trade the size (represented by the
exponent s) for the total mass without changing the bound
in (24).
The boundary data set is the same for the Newtonian and

general relativistic models. Thus we specify in both cases
the same values of asymptotic masses M, masses of the
core, the binding energy per unit mass 	 ¼ j�ðR0Þj, the
asymptotic speed of sound a1, and the size R1. The total
luminosity L0 is not a free data, but it results from equa-
tions. We assume identical equations of state in the two
models.

IV. SONIC POINTS AND LUMINOSITY

We shall study transonic flows. For these flows there

exists a radius R� such that a� ¼ j ~U�j; the speed of sound
is equal to the length of the spatial part of the velocity
vector. Henceforth all quantities denoted by asterisk will
refer to a sonic point.
It is clear from the inspection of equations that the

regularity of solutions demands a particular relation for
the fraction m�=R�; here m� is the mass within the sonic
sphere. In the Newtonian model the three characteristics,
a�N , U�N , and m�N=R�N , are related as below [7]:
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a2�N ¼ U2�N ¼ m�N
2R�N

�
1� L�N�

4�m�N

�
¼ m�N

2R�N

�
1� L�NM

LEm�N

�
:

(25)

In the last equation appears the Eddington luminosity LE.
It is clear that the necessary condition for the critical
Newtonian flow—that is, possessing a sonic point—reads

L�NM
LEm�N

< 1: (26)

Define x � L0=LE and y � m�=M. Since L� � L0, the
inequality x < y becomes the necessary condition for a
sonic point. In the general relativistic model, at the sonic

point a2 ¼ U2

k2
; the denominator of the right-hand side of

Eq. (8) vanishes and that implies the vanishing of the
numerator. One obtains

1

k2R

�
m

R
� 2U2 þ 4�R2

�
�E þ pþ j

U

k

��

¼ �j

�
1� a2

�� 1

�
: (27)

Let us remark, that in the Newtonian limit a2 � 1 and

4�R2
�GRð��E þ p� þ j U�

k�
Þ � m�GR

R�GR
. Therefore, in this limit

Eq. (27) coincides with Eq. (25). It is obvious that radiation
pushes the sonic point inward; if the size of a compact
object is bigger than the value of R� predicted by (26) and
(27), then the flow becomes subsonic.

V. UNIVERSALITY IN LGR=LN

We assume in this section the polytropic equation of
state p ¼ Kn� with �< 5=3� �, for some small � > 0.
This restriction is due to the peculiar character of the
equation of state corresponding to � ¼ 5=3 The constancy
of LGR=LN is valid for all �’s, although the specific value
of this ratio depends on the equation of state.

A. Low luminosities

The natural reference quantity for radiating systems is
the Eddington luminosity LE. It can be roughly described
as the luminosity at which the infall of gas is prevented.
Thus one might define weakly radiating systems as radiat-
ing with a luminosity L0 (herein L0 ¼ LGR or L0 ¼ LN)
that is much smaller than the Eddington luminosity, L0 �
LE. We will adopt a different definition, for reasons that
will become clear.

The ðXYÞ condition.Wewill say that an accretion system
satisfies the ðXYÞ condition if x � y.

Notice the trivial fact that y < 1. If ðXYÞ holds, that is,
x � y, then obviously L0 � LE. Thus the ðXYÞ assump-
tion is stronger than just the statement L0 � LE. Another
interesting fact is that ðXYÞ guarantees that the character-
istics of the sonic point are essentially unchanged by the
radiation—see Eqs. (25) and (27). The luminosity is the
product of 	 by the (asymptotic) mass accretion rate, and

since the mass accretion rate can be formulated completely
in terms of the sonic point parameters, it becomes lumi-
nosity independent if x � y. The general relativistic mass
accretion rate _MGR within the steadily accreting fluid can
be expressed as below [see Eq. (6.1) in [10] ]:

_MGR ¼ �m2�GR�1GR

R2
�GR

m2
�GR

�
a2�GR
a21

�ð5�3�Þ=2ð��1Þ

	
�
1þ a2�GR

�

�
1þ 3a2�GR

a31
: (28)

The corresponding Newtonian expression reads

_MN ¼ �m2�N�1N

R2�N
m2�N

�
a2�N
a21

�ð5�3�Þ=2ð��1Þ 1

a31
: (29)

Equation (29) has been derived by Kinasiewicz in [14], but
it follows also from (28) in the limit of small sound speeds,
a�GR � 1. The way of writing these two expressions is not
accidental. It has been shown in [15] that characteristics of
the sonic point—a2�GR and R2�GR=m2�GR—do not depend on

the fraction of mass carried by the gas. These quantities are
dictated just by the asymptotic speed of sound a1 in a test
fluid model. An analogous result holds in the Newtonian
model, as shown in [14]. Therefore LGR=LN ¼ _MGR= _MN

is equal to the ratio F	m2
�GR�1GR=m

2�N�1N , where the

coefficient F depends on � (and thus on the equation of
state) and on the sonic point parameters a�N , a�GR,
R2
�GR=m

2
�GR, and R2�N=m2�N . Therefore the coefficient F is

independent of the mass fraction y. Now the masses are
approximately equal, m�GR � m�N; this is because the
masses within the sonic point are well approximated by
the masses of the cores, and the latter are equal by defini-
tion. The equality of masses of the cores in both models is
one of our boundary conditions. The asymptotic gas
densities �1GR and �1N are approximately equal to
ðM�m�GRÞ=V ([14,15]); in order to show that one should
invoke assumptions concerning boundary conditions
U21 � M

R1
� a21. The calculation is long but straightfor-

ward. Thus, we finally obtain LGR=LN ¼ F; the ratio of
luminosities is independent of the fraction of mass carried
by the gas, in the regime of low luminosities. This means
that the appropriate information on the ratio of the relativ-
istic and Newtonian luminosities, LGR=LN , can be ob-
tained just by the analysis of accreting systems with test
gas (and for these see, for instance, results in [10,11]). This
is despite the fact that actual values of both luminosities
taken separately depend on the contribution of the gas to
total mass. We already know that in accretion with-
out radiation the mass accretion rates are maximal when
m� ¼ 2M=3 and they tend to zero at both ends: (i) m� !
M (when the density �1 tends to zero) and (ii) m�=M ! 0
(when the mass of the core is negligible in comparison to
the mass of the fluid) [15]. That implies, for weakly
radiating systems, that luminosities behave in a similar
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way. But still their ratio is constant and independent of the
parameter y.

B. High luminosities

The argument of the former subsection does not apply to
accreting luminous systems, when the total luminosity L0

is close to the Eddington limit or more generally when
the ðXYÞ condition is broken. That this can happen, is
easily illustrated by the Newtonian model. In this model
one obtains an equation that relates luminosity x and the
mass content y [see Eq. (21) in [7], in units adapted to the
convention of this paper]:

x¼ 	
�1M2

4a31
ð1� yÞðy� xÞ2

�
2

5� 3�

�ð5�3�Þ=ð2ð��1ÞÞ
: (30)

Here �1 is a constant. The argument that was used above
relied on the fact that the right-hand side of (30) does not
depend on x if x � y. But if x is relatively large, then _M
becomes x-dependent, and (30) yields a relation x ¼ xðyÞ.
A similar reasoning can also be applied to the general
relativistic model; again _M depends on x if x is large. In
conclusion, for luminous systems the ratio of LGR=LN can
become x- and y-dependent.

Luminous systems are characterized by small values of
the asymptotic speed of sound, a1 � 1. We restrict our
attention to systems that satisfy the following.

Xð1� YÞ condition. We will say that an accretion
system satisfies the Xð1� YÞ condition if x � 1� y and
x < y=2.

Since y > x, the above implies y > 2=3. Thus Xð1� YÞ
selects a subclass of luminous accretion systems with
moderate contribution of the gas to total mass. Luminous
test fluids belong to this category.

The assumptions a1 � 1 and x < y=2 imply that in the
region extending from the sonic point to R1 the infall
velocity U is small and the position of the sonic point R�
is large (R� � M). Therefore one can approximate Eq. (6)
by a suitable Newtonian model in the annular region
ðR�; R1Þ (see Sec. II B for the discussion). But Eq. (30)
has a unique solution, assuming x < y < 1. Therefore the
Newtonian limit of the general relativistic model and the
Newtonian solution do coincide and the ratio LGR=LN is
not only constant, but it is equal to 1.

VI. NUMERICS

We compare two accreting systems, a Newtonian one
and its general relativistic counterpart, that have identical
sizes, the same asymptotic masses and identical masses
of compact cores, equal asymptotic temperature, and the
same binding energy. Thus, it is legitimate to say that the
boundary data are ultimately the asymptotic mass, the mass
of the core, the binding energy per unit mass 	 ¼ j�ðR0Þj,
the asymptotic speed of sound a1, and the size of the

system R1. The total luminosity L0 is not part of these
data but is the sought result of the two models.
It appears convenient in numerical calculations to spec-

ify temporarily �01 and L0 instead of the mass of the core.
Conceptually the computational technique is the same in
the two models. For a given �01 one randomly chooses L0

(equivalently one could choose an accretion rate, due to
relation _M ¼ L0=	). This choice completely specifies LðrÞ
in the Newtonian model—see formula (14). Asymptotic
radiation data for the general relativistic system in turn are
given by j1 ¼ �E1 ¼ L0=ð4�R21Þ, and the mass accretion
rate _M1 ¼ L0=	. During the numerical integration one
gets a subsonic solution (if the chosen L0 is smaller than a
critical luminosity) or finds no solution at all (if L0 is
greater than a critical value). Using the bisection method
one finds this critical luminosity for which the gas flow
becomes transonic. The mass of the core results from
computations. Notice that for a given �01 masses of the
core usually differ in the Newtonian and the general
relativistic models. The difference is particularly notice-
able for high asymptotic sound speeds a1. One should
change the value of �01 and repeat the procedure until
finally the masses of both cores are the same for both
critical flows.
In this way one obtains a boundary of the solution set

(in the plane L0-Mcore) that consists exclusively of tran-
sonic solutions, if the mean free path of photons is larger
than the size of the system R1.
From a mathematical point of view we have a system of

ordinary first order differential equations. The general
relativistic problem also includes the integro-algebraic
constraint Eq. (6). Numerical calculations start from the
values adopted at the outer boundary R1 and continue

inward until the equality 	 ¼ 1� NðRÞ
kðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½ð2mðRÞÞ=R
p

(in the GR case) is met at some R; this value of the areal
radius is denoted as R0 and interpreted as the radius of the
compact core of the accreting system. For the Newtonian
model the calculation continues until the gravitational
potential � becomes equal to �	. The numerical integra-
tion employs the 8th order Runge-Kutta method [16].
The main numerical difficulty is encountered in the vicin-
ity of the sonic point. In the general relativistic case the

denominator and the numerator of Eq. (27) vanish for a2 ¼
U2

k2
. In numerical computation, the division by very small

numbers may cause errors and lead to unphysical solutions;
therefore a special regularization technique had to be
implemented. We omit further discussion of related
technicalities, but let us mention that because of this
difficulty with the sonic point there appear small numerical
errors for Mcore � 1 and Mcore � 0:1 (see Fig. 3). In
the Newtonian model one has to deal with the same
problem.
We choose specific numerical data, but since the accret-

ing system possesses a simple scaling property—as dis-
cussed in one of preceding sections—one can extend the
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validity of all conclusions to a large family of systems with
appropriately scaled masses M and sizes R1.

We assume standard gravitational units G ¼ c ¼ 1, the
size R1 ¼ 108 	M, and the mass M ¼ 106M�, where
M� is the solar mass. In the scaling M ¼ 1 one gets
� ¼ 3:6258	 1022ðM�=MÞ, that is, � ¼ 3:6258	 1016.
The Eddington luminosity reads LE ¼ 3:4658	
10�22M=M� ¼ 3:4658	 10�16. These data are arranged
to ensure the validity of the thin gas approximation. The
optical thickness (23) is always smaller than 1.

VII. RESULTS

In the first part of this section we consider the case with
the polytropic index � ¼ 3=2. Figures 1 and 2 show accret-
ing solutions on the luminosity-(mass of the central core)
diagram for 	 ¼ 0:9. The squared speed of sound is a21 ¼
10�1 and a21 ¼ 10�6, respectively. The two figures show
transonic solution sets for the Newtonian and general rela-
tivistic models; they are depicted by dashed and solid lines,
respectively. Comparing these figures, we notice that the
brightness of a system increases sharply as a21 decreases. In
the case illustrated in the second figure, maximal luminos-
ities go up to one quarter of the Eddington luminosity. In
the test gas limit, the interaction between gas and radiation
is negligible and the gas accretion can be approximated by
the purely hydrodynamic description. Such a case was
already analyzed in [10], with the same conclusion as
suggested by the comparison of Figs. 1 and 2: the larger
the asymptotic speed of sound, the larger the gap between
the general relativistic and the Newtonian predictions.
The general relativistic model gives significantly larger
accretion rates for high asymptotic temperatures. These

figures clearly demonstrate that luminosities depend on
the fraction of mass deposited in the gas and become
maximal when this fraction is not bigger than 1=3.
Again, this aspect of the description of the regime of
weakly radiating sources agrees with the purely hydrody-
namic study of [15]. The position of this maximum de-
pends weakly on the relative luminosity L=LE and it shifts
from y ¼ 2=3 in Fig. 1 towards y ¼ 0:75 in Fig. 2. It is
clear that this effect is due to the influence of the radiation;

FIG. 1. Luminosity of general relativistic and Newtonian mod-
els. 	 ¼ 0:9 and a21 ¼ 10�1. The abscissa shows the luminosity
in terms of the Eddington luminosity LE and the ordinate shows
the mass of the compact core.

FIG. 2. Luminosity of general relativistic and Newtonian mod-
els. � ¼ 3=2, 	 ¼ 0:9, and a21 ¼ 10�6. The abscissa and ordi-
nate are as in Fig. 1.

FIG. 3. Binding energy 	 ¼ 0:9, � ¼ 3=2. The values of
LGR=LN are shown on the abscissa. The mass fraction y is put
on the ordinate. Asymptotic squared speeds of sound are 10�7

(line no. 1); 10�6, 10�5, 10�4 (the three close lines are grouped
as line 2); 10�3 (line 3); 10�2 (line 4); 2:5	 10�2 (line 5); 5	
10�2 (line 6); 10�1 (line 7).
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the higher the luminosity, the larger the mass of the core at
the maximum.

Figure 3 reveals a feature of spherical accretion that
confirms the analytic proof (made in one of the preceding
sections) that LGR=LN should be constant, at least for small
luminosities. While each individual quantity LGR, LN de-
pends on the contribution of the gas to the total mass, their
ratio is roughly constant at a given asymptotic temperature.
In the six sets of transonic flows (lines 2–7 in Fig. 3) the
ratio LGR=LN is independent of the mass of accreting gas.
We would like to call the reader’s attention to line 2, where
the maximal value of x ¼ 1=4 is achieved at y ¼ 0:75 (see
Fig. 2). Thus the maximal value of x=y � 1=3, x � 1� y
and still the fraction LGR=LN is constant. This agrees with

the analytic result shown in the second part of Sec. V,
although the proof of this requires x � 1� y. That sug-
gests that analytic results can be proven under less strin-
gent conditions than stated in Sec. V.
Figure 4 and line 1 in Fig. 3 display data where the

backreaction effect causes LGR=LN to vary (and, in par-
ticular, LGR=LN can be made significantly smaller than 1).
Notice, however, that in the general relativistic model the
flows cease to be transonic for y < 0:94. In contrast, they
are always transonic in the Newtonian model. There is a
small segment just below y ¼ 1, where the Xð1� YÞ con-
dition is met and the ratio of luminosities equals 1.
In the final part of this section we investigate how

the results depend on the equation of state. Figures 5–7
correspond to different values of the polytropic index,
� ¼ 4=3, � ¼ 14=9, and � ¼ 1:66, respectively. We are

FIG. 4. Binding energy 	 ¼ 0:9, � ¼ 3=2. The luminosities
are shown on the abscissa, while the mass fraction y (the core
mass) is put on the ordinate. Here a21 ¼ 10�7.

FIG. 5. Binding energy 	 ¼ 0:9, � ¼ 4=3. The values of
LGR=LN are shown on the abscissa. The mass fraction y is put
on the ordinate. Asymptotic squared speeds of sound are a21 ¼
10�7, a21 ¼ 10�6, a21 ¼ 10�5, a21 ¼ 10�4 (there are four close
lines denoted as 1); 10�3 (line 2); 10�2 (line 3); 10�1 (line 4).

FIG. 6. Binding energy 	 ¼ 0:9, � ¼ 14=9. The values of
LGR=LN are shown on the abscissa. The mass fraction y is put
on the ordinate. Asymptotic squared speeds of sound are 10�6,
10�5, 10�4 (the three close lines are grouped as line 1); 10�3

(line 2); 10�2 (line 3), 10�1 (line 4).

FIG. 7. Binding energy 	 ¼ 0:9, � ¼ 1:66. The values of
LGR=LN are shown on the abscissa. The mass fraction y is put
on the ordinate. Asymptotic squared speeds of sound are 10�5

(line no. 1), 10�4 (line 2), 10�3 (line 3), 10�2 (line 4), 10�1

(line 5).
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interested only in the universality aspect of the accretion. It
is clear that there emerges, as before, the enhancement of
the luminosity due to the relativistic effect. The larger the
polytropic index, the larger the enhancement.

VIII. CONCLUSIONS

There are interesting universal properties hidden in gen-
eralizations of the classical Bondi accretion model. It is
already known that when radiation is absent, transonic
flows (that maximize mass accretion rates) correspond to
the case when y � m�=M ¼ 2=3, irrespective of the equa-
tion of state and the asymptotic speed of sound [14,15,17].
The mass of the core is about 2=3 of the total mass of an
accreting system. This paper deals with radiating accretion
flows.We compare luminosities corresponding to transonic
solutions of the general relativistic and Newtonian accre-
tion models, assuming the same polytropic equation of
state and identical boundary data—asymptotic speed of
sound a1, size R1, total (asymptotic) mass, and fraction
1� y of the total mass contributed by gas. We focus our
attention on the investigation of the relation between their

relative luminosity (LGR=LN) and y. When accreting sys-
tems are characterized by low luminosity and the condition
ðXYÞ of Sec. V holds true (that is, LGR � LE 	 y and
LN � LE 	 y), then the ratio LGR=LN is independent of
y and can be significantly larger than 1. We have found an
example with the largest value of LGR=LN exceeding 1.6,
but in earlier investigation of test fluids with the polytropic
index close to 5=3 the ratio of mass accretion rates
_MGR= _MN exceeded 10 [11], which suggests that LGR=LN

can grow by 1 order of magnitude. On the other hand, when
the condition Xð1� YÞ of Sec. V is valid (that is, a tran-
sonic flow is highly luminous, x � L0=LE � 1� y and
x < y=2, but the contribution of gas to the mass is small),
then LGR=LN � 1. These properties of the ratio LGR=LN

have been derived analytically and confirmed (under less
stringent conditions) numerically.
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