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General spherically symmetric constant mean curvature foliations of the Schwarzschild solution
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We consider a family of spherical three-dimensional spacelike slices embedded in the Schwarzschild

solution. The mean curvature is constant on each slice but can change from slice to slice. We give a simple

expression for an everywhere positive lapse and thus we show how to construct foliations. There is a

barrier preventing the mean curvature from becoming large, and we show how to avoid this so as to

construct a foliation where the mean curvature runs all the way from zero to infinity. No foliation exists

where the mean curvature goes from minus to plus infinity. There are slicings, however, where each slice

passes through the bifurcation sphere R ¼ 2M and the lapse only vanishes at this one point, and is positive

everywhere else, while the mean curvature does run from minus to plus infinity. Symmetric foliations of

the extended Schwarzschild spacetime degenerate at a critical point, where we show that the lapse

function exponentially approaches zero.

DOI: 10.1103/PhysRevD.80.024017 PACS numbers: 04.70.Bw

I. INTRODUCTION

Constant mean curvature (CMC) foliations of the
Schwarzschild geometry have been constructed by Brill,
Cavalho, and Isenberg [1]. These foliations degenerate
when the lapse ‘‘collapses’’; foliations in the vicinity of
this critical point have been investigated in [2]. In both of
these papers, it is assumed that the trace of the extrinsic
curvature is not only a constant on each slice, but retains
this constant value from slice to slice. In this paper we
analyze more general families of CMC foliations, with the
trace K of the extrinsic curvature that can change with
time. The collapse of the lapse can again be described by
analytic approximations.

The standard way of viewing general relativity as a
dynamical system is by considering the 4-manifold as
foliated by a sequence of spacelike 3-surfaces [3,4]. Each
3-surface inherits a 3-metric, gij, and an extrinsic curvature

Kij ¼ ð1=2ÞLngij [5] whereLn is the Lie derivative along

the normal, and thusKij is a geometric object, the analogue

of the time derivative of the metric. Each slicing is equiva-
lent to a choice of time function. A standard choice is to
demand that the trace of the extrinsic curvature, gijKij,

usually written as K and known as the mean curvature of
the surface, be constant along each slice. Hence these are
the constant mean curvature, or CMC, slices. CMC slices
are attractive for a number of reasons. The Einstein equa-
tions give an evolution equation for K, it is (in vacuum)

r2N � KijKijN ¼ NLnK ¼ @K

@t
� Ni@iK; (1)

where N and Ni are the lapse and shift, respectively.
If K is a spatial constant, the shift term drops out and the

equation reduces to

r2N � KijKijN ¼ @K

@t
; (2)

and this can be regarded as an equation for the lapse
function, N, of a CMC slicing. This is a nice linear elliptic
equation that satisfies the maximum principle.
In the standard, conformal, methods of constructing

initial data for the gravitational field, choosing the trace
of the extrinsic curvature to be a constant simplifies the
equations. One gets a single, nonlinear scalar equation for
the conformal factor instead of a coupled system of non-
linear equations [6].
By taking the trace of the equation defining Kij, one can

show Ln
ffiffiffi
g

p ¼ ffiffiffi
g

p
K. This tells us that K is just the frac-

tional time rate of change of the volume along the normal,
and, in a cosmology, the CMC slices are the ‘‘Hubble
time’’ slices, with the instantaneous value of K equalling
the Hubble ‘‘constant.’’ In Minkowski space, on the other
hand, the ‘‘mass hyperboloids,’’ t2 � r2 ¼ m2, are CMC
slices, with K ¼ 3=m. Slices in general asymptotically flat
spacetimes mimic the behavior of the mass hyperboloids,
in that they are everywhere spacelike but become null at
null infinity. This feature makes them of value for the
analysis of gravitational or any other form of radiation,
see e.g. [7].
One major advantage of CMC slicings for numerical

relativity is that, if we consider gravitational waves of a
fixed wavelength, the number of wave cycles that a CMC
slice intercepts is finite. To resolve a wave in a numerical
computation, we need the separation between data points
to be less than the wavelength. This means that the domain
of a code can extend all the way to null infinity and track
the waves all the way out with a finite number of grid
points. This phenomenon is independent of whether one
compactifies or not.

II. EXPLICIT CMC FOLIATIONS

We possess a great deal of understanding about the
spherical CMC slices of the Schwarzschild solution [2].
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We can write the 3-metric and extrinsic curvature analyti-
cally in terms of the Schwarzschild radius R. They depend
only on two parameters, K, the trace of the extrinsic
curvature, and C, that quantifies the transverse-traceless
part of the extrinsic curvature. The expressions are

dS2 ¼ dR2

1� 2M
R þ ðKR

3 � C
R2Þ2 þ R2d�2: (3)

The extrinsic curvature is diagonal, with the nonzero com-
ponents being

KR
R ¼ K

3
þ 2C

R3
; K�

� ¼ K�
� ¼ K

3
� C

R3
: (4)

The sixth-order polynomial

k2 ¼ 1� 2M

R
þ

�
KR

3
� C

R2

�
2

(5)

plays a key role. It has several meanings, k ¼ dR=dL,
where L is the proper distance along the slice, therefore
2k=R is the 2-mean curvature of the round 2-spheres as
embedded in the 3-slice. Also k ¼ NK, where NK is the
Killing lapse, the dot product of the ‘‘timelike’’ Killing
vector with the unit normal to the slice. For small values of
K andC, k2 is positive for both small and large R, with only
two roots. We must have positive k2 for the metric to make
physical sense. Let us label the larger of these two roots Rt.
One can show easily that Rt < 2M. The zone where k2 is
positive from R ¼ Rt to R ¼ 1 corresponds to a slice that
starts out at one future null infinity (if K > 0), reaches a
minimum surface at R ¼ Rt (hence t0 for ‘‘throat’’), and
continues on to the other future null infinity. If C<
8M3K=3 it crosses below the bifurcation point, if C>
8M3K=3 it crosses through the upper quadrant. As C
becomes larger, while holding K fixed, the polynomial k2

rises up, the two roots approach each other until they
finally touch at a value of R which we call R?. The value
of K and C at that point equal

K? ¼ 2R? � 3Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MR3

? � R4
?

q ; C? ¼ 3MR3
? � R4

?

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MR3

? � R4
?

q : (6)

This is a critical point of the slicing. As ðC;KÞ change so as
to approach this point one gets the ‘‘collapse of the lapse’’
and ‘‘slice stretching’’ that one is used to in maximal
slicing [2,8]. If we increase C even further, k2 is positive
over the entire range R ¼ ð0;1Þ. When this is true, the
CMC slice starts at null infinity and plunges into the
singularity. We have previously analyzed the CMC slices
where we hold K fixed and just allowed C to change [2].
Obviously there exists a much richer class of CMC slic-
ings, where both C and K change. One really only needs to
give some relationship between C and K. However, it is
easier to introduce some parameter time t and write CðtÞ
and KðtÞ. One can always reparametrize, which will

change the form of both CðtÞ and KðtÞ. However, the ratio,
ðdK=dtÞ=ðdC=dtÞ, is unchanged.
The GRR ¼ 0 Einstein equation can be written as

@tðRK�
�ÞjR¼const ¼ k3@R

N

k
: (7)

This equation is solved by the lapse function N, where

N � �kþ k
Z 1

R
dr

_C� r3

3
_K

r2k3
: (8)

Here � is a (time-dependent) constant. One can verify
that the lapse equation (2), is solved by N as given in
Eq. (8).
It is clear that Eq. (2) is a linear elliptic inhomogeneous

equation, so therefore the solution can be written as a linear
combination of a ‘‘particular’’ solution of the inhomoge-
neous equation combined with a solution of the homoge-
neous equation ðr2 � KijKijÞc ¼ 0. Since k is the Killing

lapse, we know that

ðr2 � KijKijÞk ¼ 0: (9)

We also know that we can change C without changing K.
This also gives us a lapse that satisfies the homogeneous
equation, call it �ð _CÞ. It can be chosen to depend linearly
on _C (one may have to subtract off some multiple of k).
Finally, the inhomogeneous solution can be can be adjusted
so as to linearly depend on _K (again, one may have to
subtract off multiples of k and _C). This is why we get the
three constants �, _C, and _K appearing explicitly in Eq. (8).
Let us now restrict ourselves to the case where C and K

are small enough that k has a zero at R ¼ Rt. Let us also
assumeK > 0. This means that the slice comes in from one
future null infinity, has a minimal surface at R ¼ Rt, and
goes out to the other future null infinity. We know that the
Killing lapse k, the solution to Eq. (9), is antisymmetric,
passing through zero at R ¼ Rt. By adding an appropriate
multiple of kwe can find the solution that is proportional to
_K and the solution proportional to _C that are symmetric
around the throat.
Let us have a spherical CMC slicing of the

Schwarzschild solution. This can be described as a curve
in ðC;KÞ space. There is still some freedom. The term in
the lapse proportional to k can be thought of as ‘‘pure
gauge.’’ It slides the slice along the Killing vector without
changing either K or C. Since we are interested in the
effects of changing K and C we would like to eliminate
this freedom. The obvious way is to adjust the lapse by
adding an appropriate amount of k so that the lapse is
symmetric around the throat. This gives us a Neumann
boundary condition dN=dL ¼ dR=dLdN=dR ¼
kdN=dR ¼ 0 at R ¼ Rt where L is the proper distance
along the slice. Since k ¼ 0 at the throat, this looks like a
trivial equation. It is not, because dN=dR generically
blows up at the throat like 1=k. This has the effect of
reducing the number of constants in the solution from three
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to two. The second freedom is the choice of time parame-
trization of the slicing. It appears that the ‘‘natural’’ choice
is to set � ¼ 1 in Eq. (8). This allows the time translation
vector of the slicing to coincide with the timelike Killing
vector at null infinity. It turns out that we can satisfy both
conditions, i.e., � ¼ 1 and the symmetry at the throat,
simultaneously.

It is interesting to look at expression Eq. (8) in the limit
of large R. In that limit k � KR=3. Therefore the integrand
is dominated by�9 _K=K3r2. This integrates to 9 _K=K3r, so
the integral equals �9 _K=K3RþOð1=R2Þ. The k outside
the integral becomes KR=3 so we finally get

N � �k� 3 _K

K2
þOð1=RÞ: (10)

Therefore N=k ! � for large R. Since k is the Killing
lapse, if � ¼ 1 we can have the time translation of the
slicing equal the Killing vector. With this choice the time
parameter is the retarded time.

While expression Eq. (8) is easy to understand near
infinity, it is difficult to see from it what happens near the
throat. To find the cleanest expression, we have to manipu-
late Eq. (8). It is easy to see that

d

dR

�
1

k

�
¼ � 1

k3

�
M

R2
þ K2R

9
þ KC

3R2
� 2C2

R5

�
: (11)

Therefore we have

1

r2k3
¼ �

�
1

Mþ KC
3 þ K2r3

9 � 2C2

r3

�
d

dr

�
1

k

�
; (12)

and the expression for the lapse can be rewritten as

N ¼ �k� k
Z 1

R

� _C� _Kr3

3

Mþ KC
3 þ K2r3

9 � 2C2

r3

�
d

dr

�
1

k

�
dr: (13)

Now integrate by parts to get

N ¼ �kþ k
Z 1

R

1

k

d

dr

� _C� _Kr3

3

Mþ KC
3 þ Kr3

9 � 2C2

r3

�
dr

� k

�
1

k

_C� _Kr3

3

Mþ KC
3 þ K2r3

9 � 2C2

r3

���������1

R
: (14)

If we change the range of integration from the throat to R,
instead of from R to 1 we get

N ¼ �kþ k
Z 1

Rt

1

k

d

dr

� _C� _Kr3

3

Mþ KC
3 þ Kr3

9 � 2C2

r3

�
dr

� k
Z R

Rt

1

k

d

dr

� _C� _K2r3

3

Mþ KC
3 þ Kr3

9 � 2C2

r3

�
dr

þ
_C� _KR3

3

Mþ KC
3 þ K2R3

9 � 2C2

R3

: (15)

It turns out that if we choose

� ¼ �
Z 1

Rt

1

k

d

dr

� _C� _Kr3

3

Mþ KC
3 þ Kr3

9 � 2C2

r3

�
dr; (16)

i.e., eliminate the term that is of the form constant� k we
get the symmetric lapse function that satisfies dN=dL ¼ 0
at the throat. This is

N ¼ �k
Z R

Rt

1

k

d

dr

� _C� _Kr3

3

Mþ KC
3 þ Kr3

9 � 2C2

r3

�
dr

þ
_C� _KR3

3

Mþ KC
3 þ K2R3

9 � 2C2

R3

: (17)

We obviously assume that we are in the subcritical regime
so that Rt exists. It is straightforward, if tedious, to show
that this expression satisfies the CMC equation, Eq. (2).
As stated earlier, we can simultaneously set dN=dL ¼ 0

at the throat (just by choosing the lapse as given by
Eq. (17)) and simultaneously set � ¼ 1. We start off with
a curve in ðC;KÞ space on which we put some coordinate
time label. This defines _C and _K. Now compute

� ¼
Z 1

Rt

1

k

d

dr

� � _Cþ _Kr3

3

Mþ KC
3 þ Kr3

9 � 2C2

r3

�
dr; (18)

and scale the time by �, i.e.,

dt̂ ¼ �dt: (19)

This rescales _C and _K by �. Now the value of � for which
the two lapse functions, Eq. (8) and (17), are equal is � ¼
1!.
The quantity Mþ K2r3=9þ KC=3� 2C2=r3 that ap-

pears twice in the expression for N is nothing but (r2=2
times) the first derivative of k2 and this is positive on the
entire interval ½Rt;1Þ. It only goes to zero as we approach
the critical point. It is the ‘‘going to zero’’ of this function
that gives the classical ‘‘collapse of the lapse.’’
This lapse, while maintaining the CMCness of the slices,

will not keep the metric in the form Eq. (3), because the
normal to the slice is not along the R ¼ constant direction.
It is easy to work out what the appropriate shift is since the
Killing vector is along this direction. We know that the
Killing lapse is �K ¼ k and we also know that �2

K � �2
K ¼

1� 2M=R. Therefore �2
K ¼ ðKR=3� C=R2Þ2 ) �R

K ¼
kð�KR=3þ C=R2Þ. In turn we get NR ¼ Nð�KR=3þ
C=R2Þ. Since gRR ¼ 1=k2 we get NR ¼ Nð�KR=3þ
C=R2Þ. This argument works for both choice of lapse,
Eq. (8) and (17). In the upper half plane, if N > 0, we
want NR < 0 for large R because the normal to the CMC
slice is leaning over more towards null infinity than the
Killing vector is. This shift does not vanish at the throat for
the symmetricN as distinct from the Killing shift. It will be
positive (if N is positive) there and we seek a symmetric
solution. This means that we have a discontinuity in the
shift across the throat. This is to be expected, because, as
we move forward in time, the coordinate range of R
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expands. The opposite will occur in the lower half plane.
From the formula for the symmetric N, Eq. (17), we can
easily read off the value of the lapse at the throat as

NðR ¼ RtÞ ¼
dC
dt � dK

dt
R3
t

3

Mþ K2R3
t

9 þ KC
3 � 2C2

R3
t

: (20)

This is obviously positive if dC=dt� dK=dtðR3
t =3Þ> 0. If

we have a symmetric slicing and if N ¼ 0 at any one point
then it must be zero on an entire closed 2-sphere. If dK=dt
is positive, we can immediately see from applying the
maximum principle to the CMC equation, Eq. (2), that if
the lapse is positive in the center it is positive everywhere.
One way to show this is to assume the opposite. Let us
assume that we have a region on the 3-surface whereN > 0
in the interior, and N ¼ 0 on the boundary. Therefore
dN=dR � 0 on the boundary. Multiply the lapse equation,
Eq. (2), byN and integrate over the region in whichN � 0.
One gets an immediate contradiction. Therefore we have a
foliation instead of just a slicing. This kind of argument
was first introduced by [8]. This expression for the central
lapse in Eq. (17) gives us an immediate consistency check.
Let us consider the situation where the variations in C and
K are such that the radius of the throat does not change.
Since R ¼ Rt is the zero of k2, by inspecting the formula
for k2, Eq. (5), the condition is that

�KRt

3
� �C

R2
t

¼ 0: (21)

But, of course, if the radius does not change the lapse at the
throat must vanish. This is exactly what we get from
Eq. (20).

III. TWO SPACETIME METRICS

Let us start with a CMC slice whose 3-metric is given by
3, and let us drag this along the timelike Killing vector, i.e.,
we set _K ¼ 0, _C ¼ 0. We can now write down the 4-metric
associated with this slicing (it is not a foliation because the
lapse vanishes at the throat). It is

�g �� ¼

�
�
1� 2M

R

�
; 1

k

�
C
R2 � KR

3

�
0 0

1
k

�
C
R2 � KR

3

�
; 1

k2
0 0

0 0 R2 0
0 0 0 R2sin2�

0
BBBBBBB@

1
CCCCCCCA;

�g�� ¼

� 1
k2
; 1

k

�
C
R2 � KR

3

�
0 0

1
k

�
C
R2 � KR

3

�
;

�
1� 2M

R

�
0 0

0 0 1
R2 0

0 0 0 1
R2sin2�

0
BBBBBBBB@

1
CCCCCCCCA
:

Another spacetime metric can be constructed using the
same 3-metric but choosing a lapse function that allows

C andK to change with time, i.e., either Eq. (8) or Eq. (17).
This has the form

�g�� ¼

� N2

k2

�
1� 2M

R

�
; N

k2

�
C
R2 � KR

3

�
0 0

N
k2

�
C
R2 � KR

3

�
; 1

k2
0 0

0 0 R2 0

0 0 0 R2sin2�

0
BBBBBBBBB@

1
CCCCCCCCCA
;

�g�� ¼

� 1
N2 ;

1
N

�
C
R2 � KR

3

�
0 0

1
N

�
C
R2 � KR

3

�
; k2 0 0

0 0 1
R2 0

0 0 0 1
R2sin2�

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

IV. MATCHING CMC TO MAXIMAL SLICING

Using the explicit form of the metric(s) in the previous
section, we can show that one can smoothly match a
spherical CMC slicing (with either a constant or time-
dependent K) to a maximal slicing in an extended
Schwarzschild solution. The matching is performed along
a timelike surface with fixed Schwarzschild radius R ¼
Rj > 2M. We can handle the case where the CMC slices

are on the ‘‘inside’’ and the maximal slices are ‘‘outside,’’
and the converse.
We wish to match a patch of spacetime with metric

g�� ¼

� N2

k2

�
1� 2M

R

�
; N

k2

�
C
R2 � KR

3

�
0 0

N
k2

�
C
R2 � KR

3

�
; 1

k2
0 0

0 0 R2 0
0 0 0 R2sin2�

0
BBBBBBB@

1
CCCCCCCA

with

N

k
� �KðtÞ þ

Z 1

R
dr

_C� r3

3
_K

r2k3
(22)

along some cylinder of constant Schwarzschild radius R ¼
Rj to a patch of spacetime with metric

~g�� ¼
� ~N2

~k2

�
1� 2M

R

�
;

~N
~k2

~C
R2 0 0

~N
~k2

~C
R2 ;

1
~k2

0 0

0 0 R2 0
0 0 0 R2sin2�

0
BBBBBB@

1
CCCCCCA

with

~N
~k
� � ~CðtÞ þ

Z 1

R
dr

_~C

r2 ~k3
; (23)

with ~k2 ¼ 1� 2M
R þ ~C2

R4 .
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We need to check that the Israel-Darmois junction con-
ditions [9] are satisfied. Note that we allow � to be two
different time-dependent functions, one in each patch.
Really, we only need �KðtÞ to change with time, it makes
sense to keep � ~C ¼ 1. This guarantees that the time in the
‘‘maximal’’ zone is the proper time at infinity. The Israel-
Darmois junction conditions are that intrinsic metric and
the extrinsic curvature of the three-dimensional matching
surface be continuous. We can actually arrange that the
whole 4-metric be continuous.

The key condition is that we choose ~C, K, and C to

satisfy ~C ¼ C� KR3
j

3 . This has to be satisfied on every time

slice. Therefore we also want _~C ¼ _C� _KR3
j

3 . This guaran-

tees that k ¼ ~k along the matching surface. We also can use
the free parameter �KðtÞ to maintain ~N ¼ N. This guaran-
tees that the 4-metrics to the left and right of the surface
R ¼ Rj are the same.

Now we need to look at the extrinsic curvature. The

condition ~C ¼ C� KR3
j

3 guarantees that ~K�� ¼ K�� and
~K�� ¼ K��. This means that we only need to check

K00. The normals to the surface R ¼ Rj are respectively

~n� ¼ ð0; 1~k � 0; 0Þ and n� ¼ ð0; 1k � 0; 0Þ. Hence ~n� ¼ n�.

We have K00 ¼ n0;0 ¼ ��R
00nR ¼ � 1

2g
R�ð2g0�;0 �

g00;�ÞnR. Since the metrics match on the surface, we

have g0�;0 ¼ ~g0�;0. Therefore the problem reduces to com-

paring ð ~N=~kÞ;R to ðN=kÞ;R. Looking at Eqs. (22) and (23).

This reduces to comparing _~C to _C� _KR3
j

3 . These are ob-

viously equal. Therefore we can match both the intrinsic
metric and the extrinsic curvature along the 3-surface
defined by R ¼ Rj.

The metric along the matching surface is C1 while the
matching of the extrinsic curvatures guarantees that the
metric perpendicular to the surface is C1. Further, consider
the Hamiltonian and momentum constraints along the
matching surface. The behavior of the metric and extrinsic
curvature means that there is no jump discontinuity in
ð3ÞR� KabKab � K2 or raðKab � gabKÞ across the sur-
face. This means that there are no stresses along the
matching surface.

Consider the Hamiltonian and momentum constraints on

a spacelike CMC slice. These are ð3ÞR� KabKab þ K2 ¼
0 and raðKab � gabKÞ ¼ 0. If we write Kab ¼
Kab

t þ 1=3Kgab we can rewrite the constraints as ð3ÞR�
Kab

t Kt
ab ¼ �ð2=3ÞK2 and raK

ab
t ¼ 0. Therefore the ini-

tial data can be regarded as maximal data coupled to a
constant negative-density ‘‘matter’’ field at rest with
16	
 ¼ �ð2=3ÞK2. Therefore we can regard this as a
negative cosmological constant. We can even naturally
deal with the situation where the cosmological constant
is time dependent since we are free to allow K to change
from slice to slice.

Thus we can consider this matching as gluing a sphere in
a maximally sliced anti-de Sitter spacetime to a maximal

Schwarzschild exterior. This would involve holding K
fixed in time. Alternatively, we could have the interior
maximal and the exterior be CMC. Obviously, we are
only considering the Schwarzschild spacetime in a spheri-
cally symmetric slicing. This has no gravitational radia-
tion. Nevertheless, the community of people who
numerically analyze binary black hole collisions might
find such slicings appealing. The black holes could be
put in the maximal zone while the radiation could be
analyzed in the asymptotically null CMC zone.

V. FOLIATIONS VERSUS SLICINGS

If dK=dt is positive and if dC=dt� dK=dtðR3
t =3Þ> 0,

then the lapse function is positive everywhere and we have
a foliation. Why is this? How restrictive a condition is it?
If we holdK fixed and increase Cwe automatically get a

foliation [2]. The lapse is everywhere positive and the
slices move forward in time. However, if we hold C fixed
and increaseK, the slices move forward near both infinities
and backward in the middle. One way of seeing this is to
look at the (implicit) formula for Rt,

k2 ¼ 1� 2M

Rt

þ
�
KRt

3
� C

R2
t

�
2 ¼ 0: (24)

Now compute dRt=dK. We get

�
M

R2
þ K2R

9
þ KC

3R2
� 2C2

R5

�
dRt þ

�
KRt

3
� C

R2
t

�
dKRt

3
¼ 0:

(25)

This gives

dRt

dK
¼ 3ðM

R2 þ K2R
9 þ KC

3R2 � 2C2

R5 Þ
RtðCR2

t
� KRt

3 Þ > 0: (26)

This shows that Rt increases as K increases. However, in
the upper quadrant of the Schwarzschild solution the
Schwarzschild radius decreases as one moves forward in
time from the bifurcation sphere (at R ¼ 2M) to the sin-
gularity at R ¼ 0.

FIG. 1. K changes but C is fixed; the slices can intersect.
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Similarly, we have

dRt

dC
¼ �R2

t ðMR2 þ K2R
9 þ KC

3R2 � 2C2

R5 Þ
RtðCR2

t
� KRt

3 Þ < 0: (27)

Therefore Rt decreases with increasing C and so the slice
moves forward in time.

Therefore to have the slices moving forward every-
where, when K changes, one needs to simultaneously
increase C as well as K. This behavior is illustrated in
Figs. 1 and 2.

One way of finding CMC slices in Schwarzschild is by
means of a height function approach, see [2,8]. This in-
volves considering a slice defined as t ¼ 0 where t ¼ T �
hðRÞ, and where T and R are the standard Schwarzschild
coordinates. The condition that the slice be CMC reduces
to a second order differential equation for h. This can be
explicitly integrated once to give [2]

dh

dR
¼

KR
3 � C

R2

ð1� 2M
R Þk : (28)

In retrospect, the fact that the lapse function can be written
in such a compact form should not have been too surpris-
ing. The lapse function can be viewed as the derivative of
the height function with respect to K and C. Therefore one
might expect to write the first derivative of the lapse as a
function, and the lapse itself as a simple integral, just as we
do.

We can get an interesting slicing that is ‘‘almost’’ a
foliation by setting C ¼ 8M3K=3. All these slices have
their throats at the bifurcation sphere, R ¼ 2M. These
slices all touch at R ¼ 2M, and so the lapse is zero there.
Otherwise, as K increases, the lapse is positive everywhere
else. This slicing allows K to run all the way from �1 to
þ1. If we use K as our label time, the lapse function of
this slicing is

N ¼ 1

3

8M3 � R3

Mþ K2R3

9 þ 8M3K2

9 � 128M6K2

9R3

þ k

3

Z R

2M

dr

k

d

dr

�
�

8M3 � r3

Mþ K2r3

9 þ 8M3K2

9 � 128M6K2

9r6

�
: (29)

This slicing covers all of the left and right quadrants, but
never enters the upper or lower quadrants, the ‘‘black’’ or
‘‘white’’ hole zones. This shows us that, while we can get a
foliation that covers the range in K of ½0;1Þ, we cannot
find a foliation that allows K to run the whole range
ð�1;þ1Þ because the Schwarzschild solution is time
symmetric and a foliation that gets to K ¼ þ1must break
this. To some degree, this is a word game. If you prespecify
the range to be covered, i.e., one seeks a foliation that goes
from K ¼ �D=M to K ¼ þD=M, where D is a large
number, one can do this. Start off with a moment of time
symmetry slice, i.e., (K ¼ 0, C ¼ 0) and choose a curve in
ðK;CÞ space so that dC=dK is only infinitesimally bigger
than R3

t =3. This will reach any desired value of K, in
particular K ¼ D=M. Now add the time reversal of this,
and we have the desired object. Of course, all such folia-
tions eventually run into the critical curve at some finite
value of K. This, however, would be bigger than the
specified D=M.

VI. CRITICAL FOLIATIONS

Henceforth we assume the subcritical regime—a mini-
mal surface at Rt and the Neumann boundary condition
dN=dL ¼ 0 where L is the proper distance along the slice.
This guarantees that the slices are symmetric about the
throat. The line element, expressed in terms of comoving
time t and the areal radius R, takes the following form:

ds2 ¼ �dt2
�
1� 2m

R

�
�2 � 2�

C
R2 � KR

3

k
dtdRþ dR2

k2

þ R2d�2: (30)

Here � ¼ 1þ R1
R dr

_C�r3

3
_K

r2k3
. Let us define the following

integrals:

X ¼ �
Z 1

R

2
3K

2r2 þ 12C2

r4

kð2Mþ 2Kr3

9 þ 2KC
3 � 4C2

r3
Þ2 dr;

Y ¼
Z 1

R

1

k

r2ð6mþ 2KC� 24C2

r3
Þ

ð2Mþ 2Kr3

9 þ 2KC
3 � 4C2

r3
Þ2 dr:

(31)

The formula for the lapse function, N ¼ k�, can be rewrit-
ten as

N ¼ kþ 2
� R3

3
dK
dt þ dC

dt

Mþ K2R3

9 þ KC
3 � 2C2

R3

� 2

3

dK

dt
kY þ 2

dC

dt
kX:

(32)

This representation of the lapseN is convenient when there
FIG. 2. The trace K is constant and C changes; the slices form
a foliation.
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exist minimal surfaces. From (32) one clearly sees that if
the minimal surface exists at Rt, kðRtÞ ¼ 0, then

N ¼ 2
� R3

t

3
_K þ _C

Mþ K2R3
t

9 þ KC
3 � 2C2

R3
t

: (33)

One finds from (32) that at the throat dN=dL ¼ 1
2 �

d
dR k

2ð1þ 2 _CX � 2
3
_KYÞ. Therefore the condition

dN=dL ¼ 0 yields the differential equation

_C ¼ �1

2X
þ _KY

3X
; (34)

this is a highly nonlinear relation, since both integrals X
and Y depend in a convoluted way on C and K.
Nevertheless, it is possible to give a compact analytic
description of this foliation near the critical point C�, K�,
R� of the foliation. At this point vanish both k2 and the first
derivative dk2

dR . The integrals X and Y become divergent at

the critical point, but the right-hand side of (34) is finite
everywhere and vanishes at the critical point. Define

�¼1

3
K2R3

t �3C2

R3
t

þRt; �¼2

3
K2R2

t þ12
C2

R4
t

: (35)

Now assume that K, C, Rt are close to critical values K�,
C�, R�. One can show after a lengthy analysis and a number
of careful estimates, that

X � � ffiffiffiffiffiffi
2�

p Rt

�2
;

Y � � ffiffiffiffiffiffi
2�

p R4
t

�2
þ 3

ffiffiffiffi
2

�

s
R3
t

�
þ

�
	

2
� 1

�
72C2

Rt��
3=2

:

(36)

The calculation is completely analogous to that of
Section VII in [2] and it is sketched in the appendix.
Define � � Rt � R� and  � C� � C. Moreover, let �K �
Kt � K� and �K

� ! 0 as Rt tends to R�. Then (up to terms of

lower order) � � �� and  � � B
A �

2. Here A ¼ R2�
2 ��,

B ¼ �2C� þ 2
3K�R3� and �� is the value of � at the critical

point. The insertion of the above information into Eqs. (34)
and (36) yields the differential equation

d

dt

�
� 1

3
�KR3�

�
� �jBj�1=2ffiffiffi

2
p

R3�

�
� 1

3
�KR3�

�
: (37)

Define � ¼ jBj�1=2ffiffi
2

p
R3�

. The asymptotic behavior of the lapse

function near the critical point follows from (33), the
analysis of the decaying of k2 near R� and (37). One
obtains

N ¼ N0e
�t�=2: (38)

In the particular case of the trace K being independent of
time, the estimate (38) coincides with the result derived
earlier in [2].

VII. CONCLUSIONS

We consider a family of spherical three-dimensional
spacelike slices embedded in the Schwarzschild solution.

The mean curvature is constant on each slice but can
change from slice to slice. One describes how the slices
are stacked by defining the lapse function, that quantifies
distance along the normal as one goes from slice to slice.
We write down a simple expression for the lapse of any
such slicing. This allows us to glue a patch of a
Schwarzschild spacetime with a CMC slicing to a patch
that is maximally sliced. It is easy to identify those slicings
where the lapse is everywhere positive. The slices do not
cross so one has a foliation. There is a barrier that prevents
the mean curvature from becoming large, and we show
how to avoid this so as to construct a foliation where the
mean curvature runs all the way from zero to infinity. No
foliation exists where the mean curvature goes from minus
to plus infinity. However, if we consider the slicing where
each slice passes through the bifurcation sphere, the point
where R ¼ 2M, we almost get a foliation because the lapse
only vanishes at this one point and is positive everywhere
else, while the mean curvature does run from minus to plus
infinity. There exist symmetric foliations of the extended
Schwarzschild spacetime. They degenerate at a critical
point. We show that the lapse function exponentially ap-
proaches zero at this critical point.
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APPENDIX

Below we show how one calculates the integral X de-
fined in the main text. Define the following functions:

~F1 � 6
C2

r4
þ K2r2

3
;

~F2

Rt

� K2R2
t

9

�
r2

R2
t

þ r

Rt

� 2

�
� C2

R4
t

�
Rt

r
þ R2

t

r2
þ R3

t

r3
� 3

�
;

~F3 � 2

9
K2R3

t

�
r3

R3
t

� 1

�
þ 4C2

R3
t

�
1� R3

t

r3

�
: (A1)

The function k2 defined in the main text can be written as
follows:

k2 ¼
�
1� Rt

r

��
�

Rt

þ ~F2

Rt

�
(A2)

and the integral X takes the form
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X ¼ �2
ffiffiffiffiffi
Rt

p Z 1

Rt

drffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rt

r

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ ~F2

q

� ~F1

ð2mþ 2
3KCþ 2

9K
2r3 � 4C2

r3
Þ2 : (A3)

The function kðRÞ vanishes at the minimal surface, at Rt.

Thus 2mþ 2
3KC ¼ Rt þ 1

9K
2R3

t þ C2

R3
t
and the denominator

of the third factor of (A3) can be represented as

ð�þ ~F3Þ2: (A4)

Here appears the function �, already defined in the main
text. It is now convenient to replace r in the integral X by

y �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rt

r

q
. Then X reads

X ¼ �4
ffiffiffiffiffi
Rt

p Z 1

0
dy

F1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ y2F2

p ð�þ y2F3Þ2
: (A5)

Here Fi � ~Fi=y
2 for i ¼ 2, 3, and F1 � ~F1=ð1� y2Þ2.

Now define a new variable z � y=
ffiffiffiffi
�

p
; the integral (A5)

becomes

X ¼ �4

ffiffiffiffiffi
Rt

p
�2

Z 1=
ffiffiffi
�

p

0

dzF1ðz
ffiffiffiffi
�

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2F2ðz

ffiffiffiffi
�

p Þ
q

ð1þ z2F3ðz
ffiffiffiffi
�

p ÞÞ2
:

(A6)

One can split the integral
R1=

ffiffiffiffiffi
��

p
0 into two parts:

R1=
ffiffiffiffiffi
��

p
0 ¼R1=

ffiffiffiffiffiffiffiffiffiffi
104��

p
0 þR1=

ffiffiffiffiffi
��

p

1=
ffiffiffiffiffiffiffiffiffiffi
104��

p . It is easy to check that the contri-

bution coming from the second integral of the integrand of
X goes to zero as � approaches zero. The first integral of
the integrand of X in turn is well approximated by the
integral

X ¼ �4

ffiffiffiffiffi
Rt

p
�2

�Rt

Z 1

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

2 Rt�
q

ð1þ z2Rt�Þ2
: (A7)

This can be explicitly calculated, with the result displayed
in the main text. Let us remark that the function 1=�
explodes to infinity at the critical point of the foliation.
Thus in this limit the quantity X�2 becomes equal to
� ffiffiffiffiffiffiffiffi

2��
p

and the first of Eqs. (36) appears exact.
The calculation of the other (Y) integral defined in

Eq. (31) proceeds in a similar way.
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